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Abstract. Recently, the number of machine learning based water demand forecasting solutions has been 

significantly increasing. Different case studies have already reported practical results proving that accurate 

forecasts may support optimization of operations in Water Distribution Networks (WDN). However, tuning 

the hyper-parameters of machine leaning algorithms is still an open problem. 

This paper proposes a parallel global optimization model to optimize the hyperparameters of Support Vector 

Machine (SVM) regression trained to provide accurate water demand forecasts in the short-time horizon (i.e. 

24 hours). Every SVM has the first 6 hourly water consumptions as input features and a specific hourly water 

demand as target to be predicted, among the remaining 18. The Mean Average Percentage Error (MAPE), 

computed on leave-one-out validation, is the black-box objective function optimized. 

Moreover, a preliminary time-series clustering has been applied in order to evaluate if this can improve the 

accuracy of the forecasting mechanism. Time-series clustering implies that the overall number of SVMs, 

whose hyperparameters are optimized through parallel global optimization, increases, with a SVM trained for 

each cluster identified and for each hourly water demand to be predicted, making even more critical a quick 

tuning of the hyperparameters. 

Results on the urban water demand data in Milan prove that forecasting error is significantly low and that 

preliminary clustering allows for further reducing error while also improving computational performances.  

 

Keywords: short-term water demand forecasting, support vector machine, global optimization, time-series 

clustering 

 

1. Introduction 

Water Distribution Networks (WDN) are large-scale complex systems whose management requires many 

interrelated decision making activities. One of the most relevant tasks is Pump Scheduling Optimization (PSO), 

which aims at reducing energy costs while matching the water demand. In the case that storage tanks are in 

the WDN, costs reduction can be achieved by scheduling most of the pumping activities within time windows 

associated to a low price of energy and by using the stored water in the remaining hours of the day.  According 

to this goal, accurate demand forecasting solutions represent an effective tool to estimate the demand to use 

for solving the PSO problem with sufficient advance [1]. Water demand forecasting in the short-term, typically 

on the 24 hours, is a sufficient information, if accurate, to operate pumps and tanks effectively and efficiently 

[2]. Water demand forecasting systems already proved to be able in supporting energy costs reduction around 

5% in a WDN in the Netherlands [3].  

Several water demand forecasting approaches have been proposed in the literature, however this problem still 

remains an open challenge, mostly due to the wide set of different characteristics for every case study. Recently 
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a meta-analysis of the empirical literature on the topic has been published [4] with the aim to identify the 

possible motivations about the differences in the accuracies resulting and reported according to the different 

approaches proposed. The most important conclusion is that accuracy depends on relevant characteristics such 

as demand periodicity, modelling strategy, forecasting horizon, sample size and available variables (only 

internal/endogenous or also external/exogenous). The availability, as well as the selection, of specific variables 

definitely drives the selection of the approach to adopt. Usually, approaches working only with variables that 

can be easily collected, monitored and used by the water utility, such as those collected through Supervisory 

Control And Data Acquisition (SCADA) system and Automatic Metering Readers (AMR), are preferred, since 

this is perceived as a possible reduction of the risk to add noise/errors from “external” data/information sources 

(e.g., weather forecast services) avoiding, for cyber security reasons, the connection of internal systems to the 

Internet. 

Furthermore, an useful categorization of water demand forecasting solutions has been reported in [5], taking 

into account relevant characteristics such as difference between linear and nonlinear methods – where linear 

methods are usually not as effective as the nonlinear ones due to the intrinsic nonlinearity of water demand 

data – and the difference between “modelling” and “predicting” [6], where modelling is devoted to identify 

periodicity, such as seasonality as well as trends, while predicting usually uses short memory data, together 

with a model of the underlying data generation process, to provide predictions. 

Relevant advances have been achieved through the adoption of machine learning for the implementation of 

effective short-term water demand forecasting, as well as in hydraulic engineering issues, in general [7].  In 

particular, Support Vector Machine (SVM) regression has gained an increasing interest [8][9], In particular, 

as reported in [10], SVM regression proved to be the best choice to implement hourly water demand forecasting 

when compared with Artificial Neural Networks (ANNs), Projection Pursuit Regressions (PPR), Multivariate 

Adaptive Regression Splines (MARS), Random Forests and weighted pattern-based water demand forecasting. 

Furthermore, SVM regression proved to be effective for dynamic forecasting [13]. 

The practical application of many machine learning algorithms is often limited, since the accuracy of the 

methods strongly depends on the choice of their hyperparameters. However, the successful application of 

machine learning in several areas is recently increasing the demand for machine learning systems to be used 

also by non-experts, making global optimization the most promising tool for disclosing machine learning 

[11][12] potential taking, in some sense, the human out of the loop [14]. 

In this paper, we solve the problem of optimizing the hyperparameters of a complex forecasting system whose 

components are SVM regression models with radial basis function kernel, one for each hour to be predicted. 

Two hyperparameters for each one of the SVM regression models are tuned through parallel global 

optimization. It can be considered as a bound-constrained optimization problem with a “black-box” objective 

function specified algorithmically. The simplest method of searching for a global extremum is to calculate the 

values of the objective function at the nodes of a two-dimensional grid. This procedure has a computational 

complexity O(m2), where m is the number of points for each hyperparameter. Given that the calculation of an 

objective function’s value requires the construction of a model with subsequent verification of its quality, this 

procedure is time-consuming for large values of m. The application of advanced methods of global 

optimization can significantly decrease the computational load. To determine hyperparameters, many methods 

of global optimization have been used: genetic algorithms, particle swarm optimization methods, chaos 

optimization algorithm, pattern search approach and others. With respect to decision support in WDN 

management, global optimization, in particular Bayesian Optimization, has been recently proposed for tuning 

hyperparameters of a Kernel-based clustering that is the core of an analytical leakage localization system [15]. 
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In this paper, we use a parallel global optimization algorithm [16] to optimize hyperparameters of a SVM 

regression model [17] for the water demand forecasting problem. The algorithm employs the space-filling 

Peano curves to reduce complicated multiextremal multidimensional optimization problems to the one-

dimensional ones. To solve the arising one-dimensional problems we use an information-statistical global 

search algorithm, empirically competitive with other global optimization methods both in accuracy and 

performance [16][18]. In the case when the objective function satisfies the Lipschitz condition, the 

convergence of these methods to the exact solution is proved analytically. Unfortunately, in this particular 

case, we are working with an algorithmically specified “black-box” function, whose properties are unknown. 

Nevertheless, the use of these methods still looks more promising compared to grid search and, as established 

empirically, allows to significantly reducing the calculation time as well as to identify more effective 

hyperparameters configurations out of the grid. 

While hyperparameters optimization for machine learning algorithms has been largely addressed through 

Random Search, such as in [19][20][21] and Bayesian Optimization, such as in [14][22][23], this is, at our 

knowledge, the first application of a deterministic global optimization algorithm in a real life application (i.e., 

machine learning based water demand forecasting). 

The rest of the paper is organized as follows: section 2 provides an overview on the methodological 

background, including SVM regression, parallel global optimization and time-series clustering, along with the 

description of the dataset used to validate the proposed approach. Section 3 reports all the information about 

the parallel global optimization and the computing system used to perform the experiments. In Section 4 the 

relevant results are reported, when a comparison between using and not using the preliminary time-series 

clustering phase before training the SVM regression models. Finally, Section 5 provides some relevant 

conclusions about this work. 

 

2. Materials & Methods 

This section provides the background about the methodologies adopted. Basics about SVM regression are 

presented along with the parallel global optimization approach proposed to optimally tune the SVM’s 

hyperparameters. Time-series clustering is then presented, where its application, as first stage of the overall 

forecasting system, allows for the preliminary identification of typical water consumption patterns/behaviours 

and, subsequently, the improvement of forecasting accuracy through specialized SVM models specifically 

trained for each one of the behaviours (i.e. clusters) identified. 

 

2.1. Support Vector Machine for regression 

Given a dataset D, defined as: 

𝐷 = { (𝑥𝑖, 𝑦𝑖) | 𝑥𝑖 ∈ ℝ𝑑 , 𝑦𝑖 ∈ ℝ } 

with i = 1, …, n, the basic idea of using SVM [24] for regression [25] consists of searching for a function f(x) 

that has at most ε deviations from the actual targets yi for all the data in D and, at the same time, is as “flat” as 

possible. The role of ε is to define a ε-insensitive the following piecewise linear loss function: 

𝐿𝜀(𝑦, 𝑓(𝑥)) = max (0, |𝑦 − 𝑓(𝑥)| − 𝜀) 
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According to the loss function, only predictions 𝑓(𝑥) differing more than ε from 𝑦 account for the empirical 

error computation. The easiest solution is a linear function in the form: 

𝑓(𝑥) =  〈𝑤, 𝑥〉 + 𝑏 with 𝑤 ∈ ℝ𝑑  and 𝑏 ∈ ℝ 

where <.,.> is the dot product in the d-dimensional space. “Flatness” of the solution is represented by small 

values of w. To address the feasibility of the linear solution, the parameter C is introduced in order to manage 

the trade-off between the complexity of the SVM model (i.e. “flatness”) and the empirical error (i.e. the amount 

to which deviations larger than ε are tolerated): 
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To solve the optimization problem above, the dualization method based on Lagrange multipliers is applied. By 

solving the dual problem, the resulting formulation of f(x) is usually known as the Support Vector expansion 

because w is expressed as a linear combination of the training patterns xi, making f(x) completely independent 

on the dimensionality d of the input; it depends only on the number of Support Vectors (xi such that the 

associated Lagrange multiplier is not zero). As f(x) is described in terms of dot products between data, it is not 

necessary to compute w explicitly, an important consideration when formulating the extension to the nonlinear 

case. 

The simplest method to extend the Support Vector regression to nonlinear data is to pre-process the training 

set by using a mapping function ϕ from the original space (Input Space) to some other space (Feature Space) 

where the linear approach may be successfully applied. The important result is that, rather than explicitly 

mapping all the data into the new space through the mapping ϕ(x), one can use a kernel function (also knonwn 

as “kernel trick”). Several types of kernel have been proposed (e.g., Polynomial, Radial Basis Functions, 

Sigmoid, etc.), each one with at least an internal parameter to be tuned [26]. One of the most widely used 

kernel is the RBF that is computed as: 

𝐾(𝑥, 𝑥′) = 𝑒
−𝛾‖𝑥−𝑥′‖2

2  

This is the kernel used in this study. 

 

2.2. Parallel global optimization algorithm 

In this section we consider optimal parameters selection for the SVM 𝜀-regression algorithm with the RBF 

kernel. Let the training set 𝐷 = { (𝑥𝑖, 𝑦𝑖) | 𝑥𝑖 ∈ ℝ𝑑, 𝑦𝑖 ∈ ℝ } be given, where 𝑥𝑖 ∈ 𝑅𝑑 is a feature vector, 

𝑦𝑖 ∈ 𝑅 is the target (numeric) feature, 𝜇(𝑥, 𝜃) is a SVM-regression function that minimizes the value of 

empirical risk (prediction error on the training set), where 𝜃 are internal parameters of the function that are 

unique for each training data and algorithm’s hyperparameters 𝐶, 𝛾 and 𝜀.  As is shown in [27] a generalization 

error of SVM-regression algorithm strictly depends on the choice of 𝐶, 𝛾 and 𝜀 parameters. 
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One of the common approaches for optimal parameters selection based on cross-validation error optimization 

was proposed in [28]. The idea of the method is to split the overall dataset randomly to S subsets {𝐺𝑠, 𝑠 =

1,… , 𝑆}, train the model on (𝑆 − 1) subsets (i.e. training set) and use the remaining subset (test set) to calculate 

the validation error. 

The error averaged over all the subsets is used as an estimate of the algorithm’s generalization error: 

𝑀𝑆𝐸𝐶𝑉 =
1

𝑆
∑∑(𝑦𝑖 − 𝜇(𝑥𝑖, 𝜃𝑠))

2

𝑖∈𝐺𝑠

𝑆

𝑠=1

 

where 𝜃𝑠 are parameters of the SVM-regression function trained on the 𝑇\𝐺𝑠 data. If the number of samples 

in the training set is not large, leave-one-out error can be used: 

𝑀𝑆𝐸𝐿𝑂𝑂 =
1

𝑆
∑(𝑦𝑖 − 𝜇(𝑥𝑖 , 𝜃𝑖))2
𝑆

𝑖=1

 

where 𝜃𝑖 are parameters of the SVM-regression function trained on 𝑇\{𝑥𝑖} data. Due to the fact that values of 

𝜃𝑖 parameters are unique for each set (𝐶, 𝛾, 𝜀) we can consider the leave-one-out error as the function of 𝐶, 𝛾 

and 𝜀: 

𝑀𝑆𝐸𝐿𝑂𝑂 =
1

𝑆
∑(𝑦𝑖 − 𝜇(𝑥𝑖, 𝜃𝑖(𝐶, 𝛾, 𝜀)))2
𝑆

𝑖=1

= 𝐹(𝐶, 𝛾, 𝜀) 

Let value of 𝜀 be fixed. We will find the optimal value of the parameters C  and  in the hypercube                   

𝑋 = [𝐶𝑚𝑖𝑛; 𝐶𝑚𝑎𝑥] × [𝛾𝑚𝑖𝑛; 𝛾𝑚𝑎𝑥]. Let us define ( ) ,)( CFy = , where ),( Cy = , and consider the 

following global optimization problem (in our case 2=N ): 

𝜑∗ = 𝜑(𝑦∗) = min {𝜑(𝑦): 𝑦 ∈ 𝑋} 

𝑋 = {𝑦 ∈ ℝ𝑁: −2−1 ≤ 𝑦𝑖 ≤ 2−1, 1 ≤ 𝑖 ≤ 𝑁} 

Let the objective function 𝜑(𝑦) satisfies the Lipschitz condition1 

|𝜑(𝑦) − 𝜑(𝑦′)| ≤ 𝐾‖𝑦 − 𝑦′‖, 𝑦, 𝑦′ ∈ 𝑋 

with constant K which in a general case is unknown. We note that any hyperinterval 

𝑆 = {𝑦 ∈ ℝ𝑁: 𝑎𝑖 ≤ 𝑦𝑖 ≤ 𝑏𝑖, 1 ≤ 𝑖 ≤ 𝑁} 

can be reduced to a hypercube X using a linear coordinate transformation.  

The main idea of the algorithm [16] is to reduce the optimization problem to a one-dimensional problem 

(dimension reduction)  

 ]1,0[:))(()(min))(()( *** ==== xxyxxyy   

For this a continuous single-valued mapping such as Peano curve  

{𝑦 ∈ ℝ𝑁:−2−1 ≤ 𝑦𝑖 ≤ 2−1, 1 ≤ 𝑖 ≤ 𝑁} = {𝑦(𝑥): 0 ≤ 𝑥 ≤ 1} 

 
1 If properties of the objective function are unknown, the algorithm can still be applied, but the convergence is not guaranteed. 
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is used. Numerical methods that allow efficient constructing such mappings with any given accuracy are 

considered in [16]. The arising one-dimensional problem is solved using an information-statistical global 

search algorithm [16].  

Let us assume 𝑘 > 1 iterations of the method to be completed (the point of the first trial 𝑥1 can be an arbitrary 

point of the interval [a; b], for example, the middle of the interval). Then, at the (𝑘 + 1)-th iteration, the next 

trial point is selected according to the following rules. 

Rule 1. Renumber the points of the preceding trials (including the boundary points of the interval [a; b]) such 

that 

0 = 𝑥0 < 𝑥1 < ⋯ < 𝑥𝑘 < 𝑥𝑘+1 = 1. 

The function values 𝑧𝑖 = 𝜓(𝑥𝑖) have been calculated at all points 𝑥𝑖 (𝑖 = 1, 2, … , 𝑘). At the points 𝑥0 = 0 

and 𝑥𝑘+1 = 1 the function values have not been computed (these points are used for convenience of further 

explanation).  

Rule 2. Compute the values: 

𝜇 = 𝑚𝑎𝑥
1≤𝑖≤𝑘

|𝑧𝑖 − 𝑧𝑖−1|

Δ𝑖
, 𝑀 = {

𝑟𝜇, 𝜇 > 0,
1,          𝜇 = 0,

 

where 𝑟 > 1 is the reliability parameter of the method, Δ𝑖 = 𝑥𝑖 − 𝑥𝑖−1. 

Rule 3. Compute the characteristics for all intervals (𝑥𝑖−1; 𝑥𝑖), (𝑖 = 1, 2, … , 𝑘 + 1), according to the formulae: 

𝑅(1) =  2Δ1 − 4
𝑧1

𝑀
;         𝑅(𝑘 + 1) =  2Δ𝑘+1 − 4

𝑧𝑘

𝑀
; 

𝑅(𝑖) =  Δ𝑖 +
(𝑧𝑖 − 𝑧𝑖−1)2

𝑀2Δ𝑖
− 2

𝑧𝑖 + 𝑧𝑖−1

𝑀
, (𝑖 = 1, 2, … , 𝑘 + 1). 

Rule 4. Arrange the characteristics of the intervals in decreasing order:  

𝑅(𝑡1) ≥ 𝑅(𝑡2) ≥ ⋯ ≥ 𝑅(𝑡𝑘) ≥ 𝑅(𝑡𝑘+1) 

and select p intervals with the highest values of characteristics (p is the number of processors/cores used for 

the parallel computations). 

Rule 5. Execute new trials at the points  

𝑥𝑘+𝑗 =

{
 
 

 
 

𝑥𝑡𝑗 + 𝑥𝑡𝑗−1

2
, 𝑡𝑗 ∈ {1, 𝑘 + 1},

𝑥𝑡𝑗 + 𝑥𝑡𝑗−1

2
− sign(𝑧𝑡𝑗 − 𝑧𝑡𝑗−1)

1

2r
[
|𝑧𝑡𝑗 − 𝑧𝑡𝑗−1|

M
]

N

, 1 < 𝑡𝑗 < 𝑘 + 1.

 

 

The termination condition should be checked for all intervals, in which the scheduled trials are executed  

Δ𝑡𝑗 ≤ 𝜀, 1 ≤ 𝑗 ≤ 𝑝 

where   is the predefined accuracy of the problem solution. The detailed description of the method is presented 

in [18]. 
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2.3. Time-series clustering 

Every clustering algorithm is aimed at grouping data, represented as vectors in a multi-dimensional space, by 

maximizing a given measure of similarity within groups while minimizing the same measure between data 

points belonging to different groups. This general goal is valid also for time-series data but the sequential 

nature of this type of data requires specific choices for data representation, pre-processing, and selection of the 

similarity measure to use [29][30]. 

With respect to data representation, and according to the idea proposed in this paper, the choice was to work 

directly with the raw data (i.e. the hourly water demand data represented as 24-dimensional vectors). Although 

this choice can be computational intensive when data dimensionality is high, it is well suited for the short term 

water demand forecasting. Another relevant point is the choice of a suitable similarity measure to compare 

time-series data. A useful characterization, proposed in [31], considers three different types of similarity 

measure: 

• Similarity in time. The goal is to cluster together time series that vary in a similar way at each time 

step. In this case, time series can be clustered by capturing repetitive behaviours occurring always at 

the same time step or in the same time window (e.g., peak/burst hours) 

• Similarity in shape. The goal is to cluster together time series having common shape features e.g., 

common trends occurring at different times or similar sub-patterns. 

• Similarity in change. The goal is to cluster together time series that vary similarly from time step to 

time step. In this case, data are clustered with respect to the variations between two successive time 

stamps. 

In this paper, clustering is performed, as first analytical stage, with the aim to capture typical consumption 

behaviours which are characterized by recurrent peak/burst hours depending on water consumption habits. 

Similarity in time measures are more suitable in capturing classes of typical behaviours, and cosine similarity 

was chosen for the implementation of the preliminary clustering phase. More in detail, cosine similarity is 

given by the cosine of a triangle between two vectors, so the value range of cosine similarity is [−1 to 1]. 

𝑠(𝑥𝑖, 𝑥𝑗) =
〈𝑥𝑖, 𝑥𝑗〉

‖𝑥𝑖‖ ‖𝑥𝑗‖
 

As the components of the urban water demand vectors are not negative, triangle similarity may vary from [0 

to 1]. The spherical k-means algorithm provided by the R package “skmeans” is used, which implements a 

simple k-means strategy based on the cosine distance: 

(𝑥𝑖 , 𝑥𝑗) = 1 − 𝑠(𝑥𝑖, 𝑥𝑗) = 1 − 
〈𝑥𝑖, 𝑥𝑗〉

‖𝑥𝑖‖ ‖𝑥𝑗‖
 

Since the clustering algorithm used is basically a k-means, the number k of desired clusters must be set up in 

order to identify a suitable set of different patterns representing typical water consumption behaviours. To 

select the most suitable value for k, two cluster validity measures have been considered, namely Silhouette and 

Calinski-Harabatz. 

The basic advantage of using time-series clustering is that it might allow for the identification of typical water 

consumption behaviours and, consequently, for splitting the entire dataset into subsets (i.e. clusters) which are 

used to train behaviour-specific SVMs-based forecasting models.  
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The application of time-series clustering according to a two-levels schema makes possible to identify possible 

seasonality. In particular, a new dataset is generated from the original one by computing the average hourly 

water demand vector for each month: 

𝑧𝑚𝑜𝑛𝑡ℎ = 
1

𝑁𝑚𝑜𝑛𝑡ℎ
 ∑ 𝑥𝑖
𝑖=1,…,𝑁𝑚𝑜𝑛𝑡ℎ

 

where month is the index of the month in the year, and Nmonth is the number of days in that month. Thus, the 

new dataset consists of Months time-series data where Months is the number of months in the dataset. At the 

first level, time-series clustering is performed on this new dataset with the aim to identify k1 clusters related to 

seasonality (i.e., months characterized by similar average daily consumption patterns). Cluster assignment at 

this first level is used to label the original time-series dataset; then, according to these labels, k1 sub-datasets 

are split from the original one and time-series clustering is performed on each one of them (second level). The 

best k2
q is selected for each sub-dataset, with q = 1, …, k1.  

Although the combination of time-series clustering and SVM regression was initially proposed for both urban 

and individual customer demand forecasting [32][33], and successively extended to anomaly detection [34],  

global optimization of the SVMs’ hyperparameters is addressed for the first time in this paper. 

 

2.4. Available data set 

A real world data set has been used to validate the proposed approach. More in detail, the available data are 

related to urban water demand in Milan in the period 1 October 2012 to 30 September 2013. Data are collected 

through the Supervisory Control And Data Acquisition (SCADA) system used to monitor and control the 

overall urban water distribution network, serving more than 5000 customers (buildings) corresponding to 

approximately 1.5 million habitants. 

The available hourly water demand data have been organized into a time-series dataset 𝐷 = {𝑥1, … , 𝑥𝑙} 

consisting of 𝑙 vectors, one for each day in the observation period, and where each vector 𝑥𝑖 is a set of 24 

ordered values corresponding to the hourly water delivered during the i-th day (i.e. time-series data). 

 

3. Experimental setting 

 

3.1. Hyperparameters: definition of the search space 

In this work we consider parameter 𝜀 of SVM regression be fixed and equal to 1, optimum values of 𝐶 and 𝛾 

parameters are searched in [𝐶𝑚𝑖𝑛; 𝐶𝑚𝑎𝑥] × [𝛾𝑚𝑖𝑛; 𝛾𝑚𝑎𝑥] hyperrectangle, where 𝐶𝑚𝑖𝑛 = 1, 𝐶𝑚𝑎𝑥 = 10, 𝛾𝑚𝑖𝑛 =

10−4, 𝛾𝑚𝑎𝑥 = 10
−1. 

 

3.2. Forecasting error as objective function 

The frequent evaluation of the forecasting error has a relevant operational impact because the degradation of 

the forecasting model’s accuracy can significantly affect decision making processes, in particular the PSO 

problem, leading to unnecessary costs. A lot of error measures have been proposed in the literature, where the 

basic common idea is to compare forecasts with actual observations. The most widely adopted error measure 
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for time series forecasting, and in particular for the water demand forecasting, is the Mean Absolute Percentage 

Error (MAPE) [2,7,22–24,26], which is also used in this study. Let us denote  

𝐴𝑡—water demand observed at the time t, 

𝐹𝑡  —water demand forecasted at the time t, and 

𝐿—time-series length; 

Then, the MAPE is computed as the average of the absolute values of the difference, in percentage, between 

the forecasted and actual data at each time step 

MAPE = 
100

𝐿
∑|

𝐴𝑡 − 𝐹𝑡
𝐴𝑡

|

𝐿

𝑡=1

  

MAPE is the black-box and expensive function we want to optimize. It is important to highlight that every 

SVM regression model is optimized individually – and in parallel. This objective function is clearly black-box 

since the MAPE value can be computed only after the training and test of every SVM regression model. On 

the other hand, it is also expensive because MAPE is computed through Leave-One-Out validation (i.e. k-fold 

cross validation with k equals to the number of instances of the dataset considered) so training and test have 

to be repeated as many times as the number of time-series into the dataset considered (i.e. a given cluster of 

those identified through clustering). 

3.3. Computing system configuration 

Computational experiments were conducted on the Lobachevsky supercomputer at the University of Nizhni 

Novgorod. We used 18 computational nodes, each with two 8-core Intel Sandy Bridge E5-2660 CPUs (2.2 

GHz), 64 GB RAM. We employed the SVM implementation from the OpenCV 3.2 library and the parallel 

global optimization methods from the Globalizer solver. The code was compiled with Intel C++ Compiler 17 

from the Intel Parallel Studio XE tool suite. 

 

4. Results and discussion 

This section reports the results obtained on the experiments performed. In the following Table 1 the prediction 

error is reported, taking into account the case of preliminary application of time-series clustering at a first stage 

as well as the case of the use of the entire dataset as is. 

Results from time-series clustering have been already reported in [34]; in particular, the two level clustering 

procedure reported in the previous section 2.3 has been adopted in order to better identify possible seasonality. 

The relevant information for this study is that the preliminary time-series clustering phase is able to identify 6 

different typical behaviours – according to best value of Silhouette and Calinski-Harabaz indices – and, 

therefore, allows for splitting the entire dataset into 6 subsets. 
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Table 1. Prediction error results for water demand forecasting with (ClusterID = 1..6) and without (ClusterID 

= ALL) time-series clustering. 

ClusterID MAPE_LOO MIN MAX STD 

1 0.033837 0.007719 0.129705 0.027154 

2 0.063427 0.023554 0.210359 0.037293 

3 0.097701 0.013512 0.209294 0.053995 

4 0.072746 0.018296 0.291297 0.076188 

5 0.057024 0.020734 0.130043 0.028881 

6 0.043711 0.008002 0.217389 0.038703 

ALL 0.082123 0.018346 0.381675 0.058579 

 

ClusterID is a number of a time-series cluster, the “ALL” row corresponds to all data without any time-series 

clustering performed at the first stage, MAPE_LOO is the MAPE computed on leave one out validation, MIN 

is minimum MAPE, MAX is maximum MAPE, STD is standard deviation of the MAPE. 

 

Along with the prediction accuracy performance, we also provide results about computational 

performances in order to assess scalability of the algorithm. The computational experiment consists 

of solving 18 tasks, each corresponding to optimizing the SVM regression error in the water demand 

forecasting with time-series clustering, at the appropriate hour in a day. When solving each of the 

tasks for calculating the value of the objective function at each point, a series of SVM models are 

trained for different values of two SVM parameters, followed by the calculation of the prediction 

error. Note that the calculation of the objective function is quite computationally intensive. The 

number of such calculations and overall run time are the objects of our analysis.  

 

The experiment is organized as follows: each task was run on a separate node of the supercomputer. 

Then, in solving each problem, we used the previously described scheme of parallel computations. 

Each node of the supercomputer uses 16 cores using OpenMP for multithreading. Note that the 

scheme of calculations in sequential and parallel experiments differs. So, in the sequential case, the 

algorithm chooses the next point in the two-dimensional parameter space at the best-characteristic 

(an estimate of the probability of finding the global optimum) interval. In parallel mode, we select 16 

such intervals and calculate 16 values of the function in parallel, subsequently choosing the best. In 

this regard, the number of calculated values of the objective function in the sequential and parallel 

experiments can be significantly different. Table 2 shows the performance results for each of the 18 

tasks; the Problem ID column contains the task number. The Sequential version and Parallel version 

columns contain the results of the experiments using 1 and 16 threads, respectively. The numbers of 

points in which the value of the objective function is calculated and the total run time before the 

termination criterion is fulfilled are given. The results of experiments have shown that the run time 

varies slightly from task to task, exception is task #13. The situation changes in the parallel 

experiments. The run time from task to task changes, but intra-node speedup from 1 core to 16 cores 

at the same node is 9 to 24 times. Acceleration of more than 16 in some experiments is explained by 

the fact that the method, calculating the value of the objective function in 16 perspective points at 

every step. During this process, it is possible to build a better trajectory on the way to the global 

extremum than in the sequential case. The average strong scaling efficiency in calculations at one 

node is 82%. In whole, the wall time for a parallel experiment is 4.5 minutes approximately. 
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Table 2. Performance results in the sequential and parallel experiments during the SVM regression error 

optimization in the water demand forecasting WITHOUT time-series clustering. 18 nodes of the supercomputer 

are used for the experiments. 

Problem ID 

Sequential version  

(1 thread) 

Parallel version 

(16 threads) 

Speedup 

Number of Points 
Run time 

(seconds) 
Number of Points 

Run time 

(seconds) 

1 4055 2 079 3936 160 13 

2 4301 2 205 4384 178 12 

3 4296 2 206 6064 249 9 

4 4302 2 224 3296 133 17 

5 4303 2 227 2944 121 18 

6 4303 2 223 5936 235 9 

7 4308 2 243 5248 211 11 

8 4301 2 213 6656 269 8 

9 4049 2 081 6048 241 9 

10 4301 2 221 5952 242 9 

11 4304 2 252 4816 200 11 

12 4301 2 213 5184 207 11 

13 6986 3 640 6144 246 15 

14 4055 2 120 2240 91 23 

15 4296 2 237 2368 93 24 

16 4299 2 206 5792 234 9 

17 4304 2 202 3584 142 16 

18 4297 2 193 4416 175 13 

 

 

In the second experiment we collect performance data during optimization of the SVM regression 

error in the water demand forecasting with time-series clustering. First, we split the data into 6 

clusters. 

Next, we optimize the hyperparameters of SVM regression for each of the 18 tasks using the 

clustering results. The results are presented in Table 3. The column Problem ID indicates the number 

of the task. The number of computed objective function values and corresponding run time in seconds 

are given in the columns Number of points and Run time, respectively. The numbers in these columns 

are aggregated on clusters. The last column, Performance improvement, shows the advantage of time-

series clustering in terms of run time compared to the algorithm without clustering. The number of 

calculated values of the objective functions is much larger than before. This is due to the fact that we 

aggregate data from all 6 clusters. Note that the computational complexity of computing the objective 

function is much smaller after clustering, so the aggregated run time is even less than in the 

experiment without clustering. The wall time of this experiment can be computed as a maximum 

value in the second column of the table and is 1 minute approximately. It means that time-series 

clustering not only decreases the SVM regression error but also results in 4.5-fold performance 

improvement compared to the previous experiment. 
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Table 3. Performance results in the parallel experiments during the SVR error optimization in the water 

demand forecasting with time-series clustering. 18 nodes of the supercomputer (288 cores) are used for the 

experiments. Run time is compared to the previous results. 

Problem ID Number of points 
Run time 

(seconds) 

Performance 

improvement 

1 41 296 40 4 

2 40 560 29 6 

3 38 880 21 12 

4 46 032 59 2 

5 32 528 38 3 

6 38 480 22 11 

7 29 936 15 14 

8 32 336 23 12 

9 40 416 39 6 

10 36 704 25 10 

11 33 968 15 14 

12 37 008 37 6 

13 39 472 27 9 

14 34 704 23 4 

15 37 792 39 2 

16 34 848 19 13 

17 38 064 24 6 

18 38 576 39 5 

 

The results of the experiments showed that the value of the objective function (prediction error) varies 

insignificantly in the two-dimensional parameters search space. It means that the regularities in the analyzed 

data are sufficiently obvious. Therefore, SVM with a Gaussian kernel is good enough for practical use in case 

of reasonable choice of its parameters. Meanwhile, this fact is empirical and there is no guarantee that this is 

true for any dataset, such as an urban water data of a different town or individual customer water consumptions 

data, as well as forecasting in similar domains, such as energy/gas demand data. 

In this regard, the optimization of hyperparameters of SVM-based forecasting system proposed in this paper 

is still an actual problem for its subsequent practical use. 

 

5. Conclusions 

The short-term demand forecasting system proposed in this paper offers several interesting innovations. It uses 

SVM regression as base algorithm to provide predictions but, with respect to other papers using SVM, the 

proposed approach does not aim at inferring a relation like 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑡+1 = 𝑓(𝑎𝑐𝑡𝑢𝑎𝑙𝑡 , … , 𝑎𝑐𝑡𝑢𝑎𝑙𝑡−ℎ), with 

h to define how much past information is required to perform a prediction. Instead, the proposed system 

addresses the short-term water demand forecasting problem by training one SVM regression for every hour of 

the day which the water demand has to predicted for. Only the first 6 actual hourly water demand data are used 

as input of all the SVM models: this allows to have a complete forecast for the remaining hours of the day 

avoiding the propagation of a prediction error from and SVM to the next one, as it would be in a “staked” 

system. 

Another important innovation is the adoption of parallel global optimization for tuning the hyperparameters of 

every SVM regression model. With respect to grid search, global optimization allows for identifying a better 

hyperparameters configuration – if any – out of the grid, by using the same number of objective function 

evaluations of the grid (i.e. computations of forecasting error, MAPE, on leave one out validation). This is 
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crucially important for the hyperparameters tuning of individual machine learning algorithms as well as of 

more complex machine learning based system such as the one presented in this paper. 

Finally, using a preliminary time-series clustering phase, proved to be able to improve forecasting accuracy, 

based on the idea that clustering can capture the limited set of typical water usage behaviours occurs, recurring 

on different time scales, such as seasonality – at a monthly time scale – and type of day – at a finer scale. More 

important, even if time-series clustering increases the number of SVM regression model to be learned – in 

particular, one SVM for each pair (cluster, hour to predict) – the parallel global optimization algorithm is able 

to scale efficiently, reducing the wall clock time thanks to the distribution of the computational load and the 

reduced size of each subsets on which leave one out validation is performed. 

Authors are aware that the proposed approach does not deal with uncertainty which could potentially affect 

the water consumption data. Indeed, even if SCADA systems are usually highly reliable, sensors could be 

affected by some fault, resulting in noising data. To overcome this limitation, authors will replace SVM with 

robust chance-constrained SVM, recently proposed in the literature [35][36] and able to deal with data with 

uncertainties. 
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