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Chapter 1

Introduction

The predominant view of evolution of all the species is that all the organisms
derive from a common ancestor and that new species arise by splitting one
in two or more sub-populations that do not breed with each other. This
separation is usually caused by an evolutionary pressure that leads to ge-
nomic mutations. These alterations are caused by random chance and are
usually driven by external causes such as changes in habitat. Examples of
these phenomena are seen in all animal species, were the same animal liv-
ing in different locations on the globe show different characteristics, such as
different colors, fur types and so on. These visible changes of the species
(called phenotypes) are cause by changes in their DNA (genotypes) where,
over the course of centuries and generations, some random genetic mutations
resulted to be more efficient than others.

Using this definition of evolution, the history of the entirety of life on
the Earth can be organized and displayed as a rooted tree, referred to as
the tree of life, whose latest iteration can be seen in Figure 1.1. All the
known extant and extinct species are represented as leaves of the tree, while
each internal node represents a point in the history were of a set of species
diverged.

Computing the tree of life is an extremely computational intensive task
that requires very efficient algorithms to be completed. The branches can
be caused by an acquisition or a loss of a particular character; depending on
how the tree is calculated such a character can be a phenotype character,
such as the acquisition of wings or legs – resulting in a construction of a
species tree – or a genotype character, e.g. the rearrangement of genes that
causes different pathway of different protein expression – resulting in a genes
tree. While not part of this manuscript, the reconciliation of species and
genes tree is an interesting computational problem [40] that require efficient
algorithms and techniques since most of its formulations are NP-hard.

4



Figure 1.1: The tree of life, picture from [71]. Each branch represents the
birth of a new distinct specie and the leaves are the species that are known
at the time of computation.

1.1 Evolution of cancer

Cancer is a collection of diseases characterized by the abnormal growth of
particular cells. The entire process begins with a random mutation in a
single cell, called a driver mutation that, due to this alteration, gains an
evolutionary advantage over the healthy cells. This advantage allows the
cancer cells to live longer and to reproduce more frequently than normal
ones [88]. In such conditions, mutated cells grow in number and form a
mass – called neoplasm – that invades the body, causing a malfunction of
the organism that can lead to the death of the person.

As the tumor evolves from a single mutated cell to a neoplasm, vari-
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ous amount of genetic alterations are acquired. Indeed it is very common
that a mutation leads to another one, especially if a oncosuppressor gene is
affected in a way that makes it lose its main function – inhibiting cancer re-
lated phenotypes – and thus allowing various genetic modifications to occur.
When a cell acquires a new mutation all of its offspring will share the same
set of acquired mutations until another one will eventually gain a different
alteration. A population of cells that express the same set of mutations is
called a clonal expansion of the tumor, thus a cancer is considered as an
accumulation of mutations over time.

In recent years, tumors are increasingly being cured with targeted ther-
apies specifically designed for each type of cancer and for each patient —
for example, the drug Lynparza has recently been approved for treatment
of breast and ovarian cancers expressing a specific mutation of the BRCA
gene. This form of treatment – called Precision Medicine – relies on the
identification of the mutations present in the patient and most importantly
on the evolutionary history of the alterations, making fundamental the dis-
covery and understanding of the order in which the mutations are gained in
each patient through different genomic sequencing techniques.

Unfortunately the presence of a tumor is usually detected only when it is
large enough to cause symptoms. Hence the sequencing is usually performed
at a later stage, when the tumor has mutated several times, resulting in
mixture of different clonal population. Furthermore most of the times this
sequencing is the only time-point data available, thus it is crucial to develop
algorithms that are able to reconstruct the progression of the cancer starting
from its final state.

It is commonly assumed [103] that the entire disease starts from one
or a small set of – so called – driver mutations; therefore such drivers are
the most crucial genomic alterations to identify since knowing which they
are can be extremely useful for the treatment as well as facilitate an early
diagnosis.

However it is not trivial to identify drivers among all the various pas-
senger mutations that follow them. Being able to identify the evolutionary
history of the tumor – and mainly the progression driver mutations – is a
central problem that needs to be solved for developing targeted therapies
and to understand the biology of cancer.

1.2 Cancer progression inference

Genomic sequencing technologies produce data relative to the entire genome
divided into thousands small sections, called reads, which are then aligned to
the reference human genome to reconstruct the entire sequence and later the
mutations affecting the genome are called using different techniques; finally
the pre-processed data is the input of cancer progression inference tools.
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Figure 1.2: Birth and progression of cancer as time passes from left to
right: one random mutation occurs in the healthy cell (green cell) and such
mutation is carried to its harboring as well as other mutations that occurred
later in the process.

The need for efficient algorithms is given by the scale of the input of,
especially, single cell sequencing (SCS) data. Indeed it is very frequent that
the number of mutations scale up to thousands as well as the number of cells
that can be as high as various hundreds. One of the biggest SCS dataset
studied during the realization of this work had 1842 mutations and 926 cells.
Datasets as large as this require methods that are highly efficient and most
of the available algorithms fail to run on them, since the solution space
scales exponentially on the size of the mutations; therefore basic or naive
approaches are not feasible.

Since both the composition of the samples and the evolutionary history
are unknown in this model, most of the approaches relies on some simplifying
assumption, such as the Infinite Sites Assumption (ISA) which postulates
that each mutation is acquired exactly once, and never lost, in the entire
tree. While this assumption has only limited biological validity [87, 20], it
reduces greatly the space of all possible solutions, making feasible several
approaches [44, 62], which are at least partially inspired by a classical linear
time algorithm [55] for reconstructing the phylogeny from noise-free charac-
ter data. This latter computational problem is called the Perfect Phylogeny
(PP) problem.

1.3 Clustering of genomic sequencing datasets dataset

Nowadays, we are witnessing a decrease in genomic sequencing costs, coupled
with improvements in the quality of the data produced, stimulating the
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research on tools for tumor evolution inference data [75, 113, 30, 28, 138, 43].
We believe that this line of research is going to become even more important
in the next few years, since currently available data is associated with a very
large solution space. Moreover, the high missing value and false negative
rates allow a huge number of possible phylogenies with near optimal values of
the objective function. This fact makes difficult to determine which methods
actually produce better solutions, and shows that the objective function is
not able to fully capture the biological soundness of the phylogeny.

These advances in costs and quality of the data produced will result in
larger, but more constrained, instances — the net effect being a considerable
reduction in the number of likely solutions. Since most of the currently avail-
able methods do not scale well to large instances (usually their running time
is quadratic with respect to the number of mutations), one solution could be
to reduce the size of an instance by clustering: for example, SPhyR [43] uses
k-means [97, 9] to such purpose. However, k-means is designed for continu-
ous data — where means are usually based on a Euclidean distance — while
sequencing data, specifying the presence (1) or absence (0) of a mutation in
a cell, or the fact that it is missing (2), can be thought of as categorical.

Clustering categorical data is an active field of research in data min-
ing [83], where massive databases of categorical data are handled, e.g., find-
ing groups of members of a particular insurance policy who also travel over-
seas on a regular basis. While the goal of clustering here is to allow faster
downstream phylogeny inference, it could also be used for error correction
in genomic data [102, 98] — a closely related topic.

1.4 Comparison of phylogenies

Recent methods to accurately infer the clonal evolution and progression
of cancer have made it possible to develop targeted therapies for treating
the disease. As discussed in several studies [100, 131], understanding the
history of accumulation and the prevalence of somatic mutations during
cancer progression is a fundamental step to devise these treatment strategies.

Given the importance of the task, a multitude of methods for cancer
phylogeny reconstruction have been developed over the years. The in-
creasing number of tools created has been encouraged by the diversity of
data available; for instance, we are witnessing a shift from bulk sequencing
data [60, 62, 16, 17, 136] towards single-cell data [75, 28, 138, 43] and hybrid
approaches [92, 94].

Having many different tools accomplishing the same task requires solid
methods to compare their results. In contrast with classical phylogenetic
trees, whose leaves, and only leaves, are labeled (with the species they rep-
resent), the trees that model tumor phylogenies are fully-labeled, i.e., they
also have labels (corresponding to the mutations) on the internal nodes.
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A variety of measure to compare classic leaf-labeled phylogenies is avail-
able in the literature, while specific methods for tumor are appearing in the
latest years [38, 79, 54, 10, 11]. In a detailed analysis of different notions
of measures [38] two measures had been introduced to complement the ones
used in various tumor inference methods [30, 28]. Such new distances are
more specific to capture specific aspects regarding inheritance of mutations,
while remaining computationally efficient; however a common characteris-
tic of all the distances available is their reliance on the analysis of pairs of
nodes.

On the contrary the most widely used measures for classical phylogenies
rely on rooted triples [19, 39, 3] (for rooted phylogenies) or quartets [41] of
leaves-only labeled trees. While these metrics have limitations for the goal
of cancer phylogenetic analysis — they do not apply directly to fully-labeled
trees — they also show many desirable properties that are missing in this
field. In detail they can efficiently capture the differences in the topolo-
gies; our goal is thus to extend such triplet-based measures to provide more
insights into the different evolutionary progression, if applied to tumoral
phylogenies.

1.5 Pipeline for single-cell sequencing data analy-
sis

The field of cancer progression inference is crystallized into different steps
that are combined into a complete method that starting from single-cell se-
quencing datasets computes one or more phylogenies. However the combina-
tion of such steps is usually ad-hoc and needs to be implemented manually
for each method - or combination of methods - making it time-consuming
and error-prone to develop a pipeline.

With the goal of rendering the cancer analysis more streamlined, we de-
veloped plastic (PipeLine Amalgamating Single-cell Tree Inference Com-
ponents), an all-in-one and easy-to-use package that includes clustering,
inference and comparison of single-cell sequencing tumor data. The method
is developed with portability and reproducibility in mind, such that it can
be used to create custom scripts or used directly into interactive notebooks.

The module currently incorporates the publicly available methods de-
scribed in this manuscript celluloid [29], SASC [30], and MP3 [26] — respec-
tively for the clustering, inference, and distance — but the interface is pub-
licly available and open-source, making it easily extendable to incorporate
any other tool; for this reason plastic provides common data structures
shared across multiple tools and the file-system.

Furthermore we devised and implemented machine-learning techniques
focused on the reduction of the number of cells. In particular we utilized
ridge regression [65, 96] and autoencoder [133], that have been proven to
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be successful in similar tasks. All the submodules available in plastic can
either be used in conjunction or independently to create complex interaction,
thanks to the specific data structures devised for the scope.
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Chapter 2

Background and
preliminaries

2.1 Genomic Sequencing

Genomic sequencing (either DNA or RNA) is the main step that leads to
the investigation of the evolutionary history of cancer from a computational
point of view. Sequencing is a process that produces short fragments of the
original genomic sequence, called reads. From the reads, different types of
data can be produced that require extremely efficient and accurate methods
to reconstruct tumor cell evolution.

The first process is usually the alignment of reads to the reference genome
- that in case of humans has a length of over 3 billions bases [32, 31] - using
powerful and highly computational intensive tools [89, 7]. After the reads
are aligned to the genome, it is possible to process them using a mutation
caller algorithm that detects mutations in the sequenced DNA, i.e. bases or
entire DNA sub-sequences that differ from their healthy counterpart. After
identifying the set of relevant mutations the data can be processed to obtain
inputs as described in the following sections.

Nowadays there are two different sequencing methods corresponding to
two main different kinds of data that are available and that are the input
given to algorithms. Figure 2.1 shows the different type of data, while in
the following we will show how data is produced and the advantages and
disadvantages of each method.

2.1.1 Bulk Sequencing

In a Bulk Sequencing process a sample is extracted from the tumor, either a
tissue in the case of solid tumors or a blood sample in the case of Leukemia,
and the entire biomass is sequenced. This method is relatively cheap and
produces reliable data. Each sample contains several cells, tumoral and
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Gene Mutant Reference

BBS4 393 1607
CAMSAP1 337 1663
DOCK3 382 1618
EPHA10 412 1588
EYA4 201 1799
HIPK4 654 1346
HIST1H2AG 380 1620

Figure 2.1: Example of Bulk Sequencing (left) and Single Cell Sequencing
(right) data. Bulk data produces Variant Allele Frequency (VAF), calcu-
lated as VAF = Mutant / (Mutant + Reference). The heatmap shows the
SCS data, where columns represent cells and rows are the mutation called;
furthermore entries in purple indicate the absence of a mutation in a given
cell, light-blue entries indicate the presence of a mutation in a cell, finally
the white color represents a missing entry.

healthy, hence this kind of data produces an estimate of the fraction of cells
in the sample with a given mutation. Usually, the data is then represented as
a matrix VAF(s,m) that corresponds to the fraction of cells of the sample s
that express mutation m. It is common that the number of mutations found
in the samples rises up to several thousand, especially in solid tumors.

2.1.2 Single Cell Sequencing

During a Single Cell Sequencing (SCS) process the sampled is divided into
wells where each cell is extracted from the tumor and individually sequenced,
thus producing data for each single cell. This method produces much more
granular data, but given its novelty is still very expensive, can result in up to
20-40% false negative rate, a 1-5% false positive rate and a 10-30% missing
data rate.

In this case, the data are represented as a matrix Mcm with values 0,1,?
corresponding respectively to the fact that the cell c does not have mutation
m, has mutation m, or there is no information. This technology is becoming
cheaper and more accurate, therefore it is more and more common to se-
quence millions of cells and to detect thousand of mutations. The size of the
data in this case requires efficient algorithmic solutions to the computational
problems that arise.

Single-cell Sequencing (SCS) technologies promise to deliver the best
resolution for understanding the underlying causes of cancer progression.
However, it is still difficult and expensive to perform SCS experiments with
a high degree of confidence or robustness. The techniques available nowadays
are producing datasets which contain a high amount of noise in the form of
false negatives from allelic dropout, and missing values due to low coverage.

12



Although this sequencing technology is rapidly improving, and some issues
are slowly fading away, it is important to develop methods that are able to
infer cancer progression despite the lack of accuracy in the data produced
by current SCS techniques.

2.2 Phylogeny models

Here we will present and discuss two types of character-based phylogenies,
i.e. the input of the problem is a set of attributes called characters that
a set of species may posses. The goal of computational phylogenetic prob-
lems is to compute an evolutionary history of the species, based on the ex-
pression of the characters, that optimizes a likelihood function (maximum-
likelihood) or minimize the number of operation necessary to obtain the
solution (parsimony-based).

Definition 1. Let M be an n×m binary matrix representing n species in
terms of m characters that describe the species. Each character takes on
one of two possible states, 0 or 1, and cell (s, i) of M has a value of 1 if and
only if species s has character i.

Definition 2. Given an n×m binary-character matrix M for n species, a
phylogenetic tree for M is a rooted tree T with exactly n leaves that obeys
the following properties:

1. Each of the n species labels exactly one leaf of T .

2. Each of the m characters labels exactly one edge of T .

3. For any species s, the characters that label the edges along the unique
path from the root to leaf s specify all characters of s whose state is
one.

The interpretation of a phylogenetic tree T for M is that it produces
and evolutionary history of the species in terms of branching pattern, based
of the following biological assumptions:

1. The root of the tree represents an ancestral object that has none of the
m characters, i.e. the state of each characters is zero in the ”ancestral
root specie”.

2. Each of the characters change from the 0 state to the 1 state exactly
once. This condition is called the Infinite Sites Assumption (ISA).

While the first condition is generally considered true for any type of
phylogenetic model, the second one can be violated. In the following we will
describe different models of evolution starting from the one that adheres to
ISA.
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2.3 Perfect Phylogeny

The Perfect Phylogeny (PP) is the simplest evolutionary model – based
on the ISA – where each character c mutates exactly once, from 0 to 1.
A Perfect Phylogeny can be represented, as discussed previously, using a
binary matrix M where the columns indicates the character and the rows
represent the species. Every entry of the matrix is either a 0 or a 1 where
at the position Mij a 1 represents that the specie i has the character j and
a 0 indicates that the character is not present.

Theorem 3. (Three gametes rule). If a binary matrix M contains at least
one pair of columns p, q in which are presents all the pairs (0, 1), (1, 0),
(1, 1) then M does not admit a Perfect Phylogeny.

Figure 2.2 shows an example of matrix (left) admitting a PP, and on
the (right) the computed evolutionary history T of the matrix, where all
the species s1, . . . , s4 are the leaves of T and the inner nodes are not used.
A PP, like all other phylogenies, can be extended such that even the inner
nodes can be used to express species.

a b c d e f g


s1 1 0 1 0 0 0 1
s2 1 0 0 1 0 0 0
s3 0 1 0 0 0 1 0
s4 0 1 0 0 1 0 0

root

i1

i3 s2

s1

a b

s3 s4

i2
dc

e

f e

Figure 2.2: (left) Example of binary matrix that adheres to the ISA and
(right) the tree representing its perfect phylogeny.

When the three gametes rule is violated, it is not possible to compute a
PP, for example in the matrix in Figure 2.3 the columns a and c have in the
first row (1, 1), in the third (1, 0) and in the fourth (0, 1) thus it does not
adhere to the ISA. These three pairs are also called the forbidden gametes.

2.3.1 Computation of the Perfect Phylogeny

There exists a polynomial-time algorithm [56, 57] for computing a binary
perfect phylogeny, if it exists that consist of:

1. Consider each column of M as a binary number. Using radix sort,
sort these numbers in decreasing order, placing the largest number in
column 1. Call the new matrix M and name each character by its
column position in M .
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a b c d


s1 1 0 1 0
s2 0 0 0 1
s3 1 1 0 1
s4 0 0 1 0

Figure 2.3: Example of a matrix not admitting a PP, since columns a and
c violates the three games rule.

2. For each row p of M , construct the string consisting of the characters,
in sorted (increasing) order, that p posses.

3. Build the keyword tree T for the n strings constructed in step 2.

4. Test whether T is a perfect phylogeny for M .

However it is common that the input matrix M contains some unknown
entry, complicating the problem; in particular the character-based phylogeny
reconstruction problems we study in this manuscript are constrained versions
of the general Incomplete Directed Perfect Phylogeny (IDP) [105]. The IDP
problem asks for completing missing data in a binary matrix, where missing
data are represented by the symbol ?, in such a way that the completed
matrix is explained by a perfect phylogeny. More precisely, the input data
is an n × m matrix M?, where M?(i, j) ∈ {0, 1, ?} represents the absence,
presence or uncertainty of a character j in the species i respectively. If a
solution exists, then it consists of changing each ? into 0 or 1 obtaining a
new binary matrix Ms that has a directed perfect phylogeny.

Interestingly, the IDP problem has an efficient solution given by an
O(mn log2(m + n))-time algorithm [105] when the phylogeny is directed,
that is the root is known (and is the all 0s vector), otherwise, the problem
of deciding whether there exists an unrooted solution of the incomplete input
matrix is NP-complete [124]. There exists an ILP formulation for variants
of the IDP problem, where the main question is to complete missing data in
an input matrix on {0, 1, ?} with the goal of minimizing the conflicting pairs
[59]. Since finding a perfect phylogeny is easy, the main difficulty in solving
the IDP problem consists of replacing each ? with a 0 or a 1 to minimize
the number of conflicting pairs of columns.
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Figure 2.4: Example of a Dollo phylogeny model, where mutations b and c
are lost twice in the evolutionary history.

2.4 The Dollo Parsimony Model

There are some biological phenomena, such as homoplasy or cancer, that vio-
late the fundamental assumptions of Perfect Phylogeny, thus a more general
model is needed. The Dollo model allows any character to be lost multiple
(infinite) times. Most implementation of the model restrict the number of
losses to a predefined upper bound k, such models are called Dollo-k models.
With the restriction of the ISA the optimization problems associated with
the Dollo model are NP-Hard.

This phylogeny is used for evolutionary characters that are gained, but
that are lost with much higher probability — allowing the 1 to 0 muta-
tion. The Dollo model is appropriate for reconstructing evolution of the
gene repertoire of eukaryotic organisms because although multiple, indepen-
dent losses of a gene in different lineages are common, multiple gains of the
same gene are improbable. In Figure 2.4 we can see an example where all
characters are gained exactly once, and both characters b and c are lost
twice.

2.4.1 Computation of the Dollo-k Phylogeny

All the different representation of the computation of a Dollo-k phylogeny
are NP-Hard, here we will show one possible solution that exploits the prop-
erties of the PP [17].
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Let M be a binary (incomplete) matrix with n rows (species) and m
characters. The extended matrix MD(k) for the Dollo-k model is defined as
follows:

• MD(k) has n rows and m × (k + 1) columns, where each character
j of matrix M is associated to k + 1 columns in MD(k) denoted by

j+, j−1 , . . . , j
−
k .

• If M(i, j) = 1 then MD(k)(i, j
+) = 1 and MD(k)(i, j

−
l ) = 0, l ∈ [1, k].

• If M(i, j) = 0 or M(i, j) =? then MD(k)(i, j
+) =? and MD(k)(i, j

−
l ) =?

for each l ∈ [0, k].

For a character j, the column j+ represents the acquisition of charac-
ter j while each of the j−1 · · · j−k columns represents a possible loss of the
gained character. If M(i, j) = 1, then it is not possible for species i to lose
the character j, thus the only possible configuration is MD(k)(i, j

+) = 1

and MD(k)(i, j
−
l ) = 0, l ∈ [1, k]. Otherwise, if M(i, j) = 0 then the char-

acter has either (1) never been acquired, or (2) been acquired, then lost
along the path from the root to the species i of any solution. Therefore∑

1≤l≤kMD(k)(i, j
−
l ) = MD(k)(i, j

+).
Finally, if M(i, j) =?, that is the entry of M is missing, we must allow

both the constraints for the case M(i, j) = 0 as well as M(i, j) = 1.

Theorem 4. Let M be an incomplete binary matrix, and let MIDPP
(
MD(k),RD(k)(M)

)
be the corresponding incomplete instance in the extended matrix MD(k).
Then there exist a completion Mc of M satisfying the Dollo-k model if and
only if MIDPP

(
MD(k),RD(k)(M)

)
admits a PP.

2.5 Cancer Phylogenies

Cancer phylogenies are derived from the previous classic phylogenies and
are conceptually similar, albeit showing few differences. In particular, while
traditional phylogenies tend to focus on the leaves of the trees as internal
nodes are often transitional or extinct species, cancer phylogenies emphasize
the internal nodes of the tree, i.e. the mutations occurring in the tumor.
On the other hand the leaves, that represent the sequenced samples, are
often omitted from the representation of the tree. The root is usually called
germline, i.e. it represents all the non-somatic mutations that are specific
from the person and are not related to the progression of the cancer.

While most of the previous differences were mostly cosmetic, there are
two differences that completely change the landscape of the computational
problems: (1) while classical phylogenies tend to be (or can be transformed
into) binary trees, this is not true for cancer progression in which the trees
are not following any specific structure; (2) cancer tree nodes can have more
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Figure 2.5: (left) Representation of a classical phylogeny model; a binary
tree with leaves (species) as only labels nodes. (right) More traditional
representation of a cancer clonal tree, where the nodes are labeled - possibly
by multiple mutations appearing multiple times - and the species (samples)
nodes are not portrayed.

than one label associated and this fact renders almost all definition defined
for classical trees inapplicable to tumor progression.

Therefore it is easy to convert a classical phylogeny to a cancer one,
but the opposite can be impossible if (1) or (2) are present in the tumor
progression tree. An example of the differences can be seen in Figure 2.5.

2.6 Optimization techniques

Classical views of optimization in phylogenetics revolve around the use of a
Parsimony-based approach, where – following the idea of the Occam’s razor
– the best solution is the simplest. This philosophical reasoning is translated
into a computational one where given a set of operations the most optimal
solution will be the one the utilizes the less amount of them. For example in
the case of the PP or the Dollo-k model, described in the previous sections,
the idea is to change the minimum amount of entries in the input matrix and
- for the Dollo model - the minimum amount of losses introduced. While the
optimization method is based on a basic concept, it tends to perform very
well, especially in bioinformatics problems since the same principle apply to
the functioning of biology and to its evolution.

On the other hand in recent years more statistically-oriented approaches
has been developed - called maximum-likelihood - where a given probabil-
ity function is being optimized, usually based on Bayesian reasoning. The
advantage of such method is the ability to define more granular functions
that can capture different aspects of the same problem, as well as assigning
different priorities to different aspects.

There exist many different optimization techniques to solve these prob-
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lems, both from a combinatorial and heuristic approach. The main com-
binatorial methods use either Integer Linear Programming (ILP) [28, 94,
17, 18, 43] or Constraint Satisfaction Problems (CSP) [94]; while the most
used heuristic are Monte Carlo Markov Chain (MCMC) [75, 92] or Hidden
Markov Models (HMM) [139, 138] and Simulated Annealing (SA) [30].

ILP and CSP models define a mathematical representation of the prob-
lem respectively in form of a system of numerical constraints to satisfy or
a system of Boolean (truth) constraints. Both approaches allow the user
to define a specific optimization function in the same numerical or Boolean
fashion. These methods are very elegant and powerful however they require
the use of solvers to be computed. Since there is a lot of competition for the
solvers they are usually proprietary and require expensive licenses.

Heuristic algorithms can be defined in many different ways and do not
need to adhere to any specific paradigm; most of them are based on proba-
bility function that allow the algorithm to move to one solution to another
in the search space. Some methods are inspired by nature, such as SA, Par-
ticle Swarm Optimization and some from more statistical principles such
as MCMC and HMM. The main advantage is that there is a huge variety
of algorithms to use and they tend to be fast to compute, but unlike ILP
or CSP they cannot assure the optimality of the solution. While in theory
this seems to be a huge downside, in practice they tend to find solutions
very close to the optimum thus making them extremely useful for real case
scenarios.

2.7 Clustering of biological data

Clustering in general is a very common technique in computer science where
it is used to find similarity in the data either to group it or to reduce the
dimensions by choosing a representative for each given cluster. Notable
examples of clustering methods include k-means, k-modes, DBSCAN and
many others that work on numerical values. Other algorithms use proper-
ties of graphs - or other data structures - to find communities, i.e. highly
connected components of nodes, that represent specific clusters of elements.

Given their powerfulness and usefulness clustering algorithms are widely
used in computer science, however since biological data is not numerical
most of them require special re-formulation to be applied in bioinformatics.
The work done in this field is usually to adapt genomic data to work with
already existing methods, but recently more interest has been put to devise
specific algorithms for sequencing data. In this manuscript we will explore
a newly defined method specific for SCS data [29].

Clustering of biological data is extremely useful since the amount of ge-
nomic data is rapidly increasing each day and the pure number of sequences
available is too big to be computed directly. The main goal in the field
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would be to group similar data and select a single representative to use a
surrogate for the entire class, as a sort of reduction of the input.
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Chapter 3

Inference of cancer
progression allowing loss of
mutations

In recent years, the well-known Infinite Sites Assumption (ISA) has been
a fundamental feature of computational methods devised for reconstructing
tumor phylogenies and inferring cancer progressions. However, recent stud-
ies leveraging Single-Cell Sequencing (SCS) techniques have shown evidence
of the widespread recurrence and, especially, loss of mutations in several
tumor samples. While there exist established computational methods that
infer phylogenies with mutation losses, there remain some advancements to
be made. We present SASC (Simulated Annealing Single-Cell inference): a
new and robust approach based on simulated annealing for the inference
of cancer progression from SCS data sets. In particular, we introduce an
extension of the model of evolution where mutations are only accumulated,
by allowing also a limited amount of mutation loss in the evolutionary his-
tory of the tumor: the Dollo-k model. We demonstrate that SASC achieves
high levels of accuracy when tested on both simulated and real data sets
and in comparison with some other available methods. The Simulated An-
nealing Single-Cell inference (SASC) tool is open source and available at
https://github.com/sciccolella/sasc.

3.1 Introduction

Recent developments in targeted therapies for cancer treatment rely on the
accurate inference of the clonal evolution and progression of the disease. As
discussed in several recent studies [100, 131], understanding the order of
accumulation and the prevalence of somatic mutations during cancer pro-
gression can help better devise these treatment strategies.

Most of the available techniques for inferring cancer progression rely
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on data from next-generation bulk sequencing experiments, where only a
proportion of observable mutations from a large amount of cells is ob-
tained, without the distinction of the cells that carry them. In recent
years, many computational approaches have been developed for the anal-
ysis of bulk sequencing data with the purpose of inferring tumoral sub-
clonal decomposition and reconstructing tumor phylogenies (evolutionary
trees) [125, 77, 62, 136, 107, 93, 45, 95, 116, 18, 127]. The main drawback
of this technique is that a bulk sequencing sample contains a mixture of
both healthy and cancerous cells — and this clonal evolution can only be
estimated by the proportions of observable mutations.

Single-Cell Sequencing (SCS) technologies promise to deliver the best
resolution for understanding the underlying causes of cancer progression.
However, it is still difficult and expensive to perform SCS experiments with
a high degree of confidence or robustness. The techniques currently avail-
able are producing datasets which contain a sizable amount of noise in the
form of false negatives from allelic dropout, and missing values due to low
coverage. Another issue that these technologies suffer from is the presence of
doublet cell captures. However, such issues are slowly fading away and the
state-of-the art in preprocessing steps for removing such artifacts is quite ad-
vanced [37]. Hence, we believe that more immediate issues, such as the lack
of accuracy reflected in the high dropout and false negative rates inherent
to the technology, call for methods that are able to infer cancer progression
from this data produced by current SCS techniques.

Various methods have been recently developed for this purpose [75, 113,
138, 137], some of them introducing a hybrid approach of combining both
SCS and VAF (bulk sequencing) data [110, 92, 115]. Most of these meth-
ods, however, rely on the Infinite Sites Assumption (ISA), which essentially
states that each mutation is acquired at most once in the phylogeny and
is never lost. One reason being that such a simplifying assumption leads
to a computationally tractable model of evolution, namely, the problem of
finding a perfect phylogeny [55]. This model is safe to use in settings such as
the evolution of natural populations, and tends to be the norm more than
the exception in this setting [81]. Cancer progression, however, is a fairly
extreme situation, where the evolution is very fast, under attack from the
immune system, and with a high mutation rate. As a result, studies of SCS
data are beginning to reveal phenomena that cannot always be explained
with a perfect phylogeny [87, 20]. Some papers [87] reveal widespread re-
currence and loss of mutations, while large deletions on several branches of
a tree can span a shared locus [20], thus a given mutation may be deleted
independently multiple times.

In this work we propose a novel and more general model to explain the
above phenomena, which is not unnecessarily held back by strict adherence
to the ISA. Some recent methods are beginning to appear, which have the
same objective in mind, such as TRaIT [110], SiFit [138] and SPhyR [43]:
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in detail, TRaIT accounts for violations of the ISA by accommodating for
convergent evolution; SiFit accounts for both mutation recurrence and loss
without specifying a particular model of evolution; and, on the other hand,
SPhyR (independently from our paper) utilizes the same phylogeny model
used in this work, thus allowing deletions of mutations.

In our approach, we use the Dollo model [47, 111], one of the models
that is more general than the perfect phylogeny model, to allow the loss
of point mutations. In particular, while the Dollo model still constrains
that a mutation can only be acquired at most once, it allows any number
of independent losses of the mutation. Once we depart from an ideal, error-
free, perfect phylogeny model [55], we lose its convenient computational
tractability: in fact allowing errors or missing data results in an NP-hard
problem. Adopting the more general Dollo model is only going to exacerbate
the problem. However, if we restrict the number of losses of any mutation
to 1 or 2 (rather than strictly 0), the resulting solution space is still small
enough to explore a sizable portion of it in a reasonable amount of time, in
practice. Moreover, from a biological point of view, one would not expect
a mutation to be lost more than a few times, since it is not likely that
mutations are widely lost [87, 20]. Furthermore, all the currently available
methods assume that the false negative rate is the same for all mutations.
While this is suitable for samples coming from DNA (i.e., scDNA-seq) data,
the false negative rate of the mutations in samples coming from RNA (i.e.,
scRNA-seq) data can vary a because of differing levels of gene expression.
Since our approach is suitable for both types of data, that is, a suitable
parameter setting can be found for modeling the progression of cancer from
samples coming from either DNA or RNA data, to accommodate the latter,
our approach also allows a different false negative rate for each mutation:
it is one of the first methods with this feature. In fact, to the best of
our knowledge, the only other paper with a similar feature has appeared
very recently [135]; in that paper, different false negative and false positive
rates are allowed for each mutation and for each cell. At the same time,
mutation losses are not allowed. SciΦ [123] also allows different rates, but it
is essentially a phylogeny-aware mutation caller, not a tool designed to infer
tumor phylogenies.

Here we introduce the Simulated Annealing Single-Cell inference (SASC)
tool, a maximum likelihood phylogeny search framework that allows dele-
tion of mutations, by incorporating the Dollo parsimony model [47, 111].
We show that our approach is competitive with the state-of-the art tools
for inferring cancer progression from SCS data, while being the only tool
to correctly identify important driver mutations in some real datasets, as
verified by the manually curated progression scenarios for these data.
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3.2 Methods

3.2.1 Formulation of the tree reconstruction problem

As mentioned before, cancer progression reconstruction can be modeled as
the construction of a character-based incomplete phylogeny on a set of (can-
cer) cells, where each character represents a mutation.

In this framework we consider the input as an n × m ternary matrix
Iij , where an entry Iij = 0 indicates that the sequence of cell i does not
have mutation j, Iij = 1 indicates the presence of mutation j in the se-
quence of cell i, and a ? indicates that there is not enough information on
the presence/absence of mutation j in cell i. This uncertainty about the
presence of a mutation in a cell is a consequence of insufficient coverage in
the sequencing, a common scenario in Single-Cell Sequencing experiments.

However, the uncertainty of some entries is not the only issue that results
from the sequencing process. In fact, entries of the input matrix I can
also contain false positives and false negatives — while the false positive
rate is usually very low, the false negative rate can be high and can also
vary depending on different factors. In particular, for scRNA-seq data,
the varying expression levels of different genes can easily lead to different
false negative rates for each mutation, since a highly expressed gene will
have significantly higher coverage than an under-expressed gene, resulting
in a more accurate SNV call for that particular gene. On the other hand,
a gene which is less expressed is likely to have a lower coverage, leading
to a less accurate presence/absence estimation in the cells. We assume
that these errors occur independently across all the (known) entries of I.
Namely, if Eij denotes the final n×m output matrix, i.e., the binary matrix
without errors and noise estimated by the algorithm, then αj denotes the
false negative rate of mutation j, and β denotes the false positive rate,
similarly to [75, 113, 138, 43]. Hence, for each entry of Eij the following
holds:

P (Iij = 0|Eij = 0) = 1− β P (Iij = 0|Eij = 1) = αj
P (Iij = 1|Eij = 0) = β P (Iij = 1|Eij = 1) = 1− αj .

We aim to find a matrix which maximizes the likelihood of the observed
matrix I [75] under the probabilities of false positives/negative and missing
entries. Differently from previous works, our model also accounts for losses of
mutations, thus we define the prior probability P (L(j)) = γj — independent
from the previous ones — of losing mutation j and the set of variables cj
for j = 1, . . .m that denotes the total number of losses for mutation j in the
evolutionary history. In practice, we expect that a researcher might able to
determine that some mutations j are very unlikely be lost, therefore setting
γj = 0.

However, we are interested in the reconstruction of the evolutionary his-
tory of the input cells, thus the resulting matrix E should contain clones
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(groups of cells with the same mutations) that can be explained by an evolu-
tionary process of the mutations. This restriction motivates the introduction
of the concept of phylogenetic tree, or simply phylogeny.

A (cancer) phylogeny T on a set C of m mutations and n cells (affected
by these mutations) is defined as a rooted tree whose internal nodes are
labeled by the mutations of C, while the leaves are labeled by the cells (see
Fig. 3.1A). Notice that the labeling must satisfy some restrictions depend-
ing on the evolutionary model that we consider. For example, in a perfect
phylogeny, no two nodes have the same label. This is an alternative, but es-
sentially equivalent, definition of classical character-based phylogeny, where
the tree T is defined on a set of characters and where leaves have no label
and represent different species.

The state of a node x is defined as the set of mutations that have been
acquired but not lost in the path from the root to x. The state of each leaf l
of T is naturally represented by a binary vector of length m, called genotype
profile, that we denote D(T, l), where D(T, l)j = 1 if and only if the leaf l
has the mutation j and 0 otherwise (see Fig. 3.1B).

We say that the tree T encodes a matrix E if there exists a mapping σ
of the rows (cells) of E to the leaves of T such that Ei = D(T, σi) for each
row i of E, where σi denotes the image of row i through the mapping σ.
Informally, σi is the node in the phylogenetic tree corresponding to the node
where the cell i is attached. Notice that the matrix E is fully characterized
by the pair (T, σ) (see Fig. 3.1C). Thus, our problem can be expressed as
finding the tree T that maximizes the following objective function:

max
m∑
j

[
− cj log(1− P (L(j))) +

n∑
i

log(P (Iij |D(T, σi)j))
]

We point out that the values assigned to the unknown entries of the in-
put matrix do not factor into the objective function, that is P (Iij = ?|Eij =
1) = P (Iij = ?|Eij = 0). To simplify the computation of the likeli-
hood, we slightly abuse notation in supposing that P (Iij = ?|Eij = 1) =
P (Iij = ?|Eij = 0) = 1. Furthermore, σ can be computed directly from
T ; for each tree we can obtain the best assignment using an exact mapping;
leaving T as the only variable to optimize.

3.2.2 Introduction of the Dollo-k model

The Dollo parsimony rule assumes that, in a phylogeny, any single mu-
tation is uniquely introduced in the evolutionary history, but deletions of
the mutation can occur any number of times. A restricted version of the
Dollo model can be obtained by bounding the number of deletions for each
mutation. We denote as Dollo-k the evolutionary model in which each mu-
tation can be acquired exactly once and can be lost at most k times. The
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Figure 3.1: Example of a binary matrix E (right) representing a sample of
the (n=4) cells {s1 . . . s4} affected by the set C = {a . . . g} of mutations.
The tree (left) is a cancer phylogeny T explaining this matrix. Note that
the state of the internal node in the tree (left) labeled with (mutation) f
has state {b, d, f} (mutation a appears in the root, but was lost in the path
to this node), hence the genotype profile D(T, s3) of leaf s3 in the tree is
0101010. Note that Esi = D(T, σsi) holds for the (trivial) mapping σsi = si,
hence T (left) encodes E (right). Informally, leaf s1 was “attached” to the
internal node labeled by f because genotype profile D(T, s3) of leaf s3 in T
matches the row for s3 in E, for example. Observe that the matrix (right)
does not allow a perfect phylogeny, and that the tree (left) is a Dollo-1
phylogeny.

special cases, Dollo-0 and Dollo-1, correspond to the perfect [55] and per-
sistent [15, 128, 14] phylogeny models, respectively. The phylogeny recon-
struction problem under a Dollo-k model is NP-complete [52] for any k > 1.

Since the Dollo evolutionary model allows back mutations, we introduce
a new type of node label in the phylogenetic tree, to express mutational
losses. For each mutation p we create k new mutations p−l for l ∈ {1, . . . , k},
representing the possible losses of mutation p. As in the perfect case, we
require that no two different nodes have the same label. Additionally, we
impose that all nodes labeled by a mutation loss p− are descendants of the
node labeled by the gain of mutation p. Consequently, the vector D(T, σi)
which expresses the genotype profile of a row i will have a 1 in mutations
acquired but never lost in the path from the root to the parent σi of the leaf
i. Note that the tree of (Fig. 3.1D) is a Dollo-1 phylogeny. We stress that,
unlike the case of the perfect phylogeny, when deletions are introduced, we
might have more than one tree that is a solution. For example, switching
the labels of nodes b− and d− in Fig. 3.1 produces a different tree which
is still a solution of the proposed input matrix when the Dollo model is
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considered. Moreover, the set of ancestral relationships between those two
mutations is opposite in both representations. An increase of the number of
cells and mutations, coupled with the noise caused by false calls and missing
entries, expands the solution space of this problem, increasing the number
of different cancer progression phylogenies which equally explain the same
input.

Our model. The model we employ in this work is the Dollo-k model,
with the added restriction that there are at most d total mutation losses in
the entire progression. In addition to k, this d is a user supplied parameter.
Note that, with a maximum d of total losses in the progression, it means that
the variable c is subject to (1) cj ≤ k ∀j and (2)

∑m
j cj ≤ d. Only a small

number of mutation losses in each tumor have been reported [87], therefore
we expect small values of k and d to be used in practice. Most precisely, we
believe that k ≤ 2 and d ≤ 5 in almost all cases. If the number of mutation
is not too small, setting d ≤ 5 essentially implies k ≤ 1, hence making the
parameter k mostly irrelevant. Still, we have decided to keep it because it
guarantees that some degenerate trees are never computed. We recall that
our model also has the γj parameters, that is, the prior probability of losing
mutation j.

3.2.3 Simulated Annealing

As mentioned before, the fact that (1) we can flip entries and that (2) we
want to find the maximum likelihood tree, makes the phylogeny reconstruc-
tion problem under the Dollo-k model computationally hard for any k > 0.
For this reason, in this manuscript we consider the Simulated Annealing [82]
(SA) approach in order to find a tree which maximizes the likelihood of an
incomplete input matrix and that satisfies the Dollo-k phylogeny model,
where k is given as input.

SA is a random search technique which explores the region of feasible so-
lutions, searching for an optimal one. As all other meta-heuristic strategies,
it is not guaranteed that SA finds the optimal value of the objective function
in a finite number of steps; nevertheless, unlike other deterministic search
methods which can be trapped into local optima, SA has been designed to
overcome this drawback and converge to a global optimum. The basic idea
of the algorithm is to perform a random search which accepts, with some
probability, changes that do not necessarily improve the objective function.
At each step, the probability of moving to some state with a smaller value
changes according to a parameter called the temperature, which continuously
decreases as the exploration evolves. In the first iterations of the algorithm
execution, the temperature is very high, and it is possible (with a fairly high
probability) to accept a move into a state with a lower objective value, but
as temperature decreases, the probability of moving also decreases. At the

27



end, when the temperature is sufficiently low, the algorithm becomes a local
search method, hence unable to escape a local optimum.

Neighborhood topology

An essential element of a SA approach that we must provide how the al-
gorithm search process can move from a given state to another. In our
particular framework, we attempt to find a tree, thus we must define the
neighborhood of a phylogenetic tree in the feasible region, and the algorithm
moves from a tree to one of its neighbors. The choice of neighborhood is
crucial in the algorithm definition since it determines how feasible solutions
are explored, hence ultimately determining whether or not the algorithm
converges.

In our approach, the notion of neighborhood is operational, that is, two
phylogenetic trees are neighbors if one can obtained from the other via
some operation from a set we will define shortly. For the sake of clarity, we
introduce some notation: given a phylogenetic tree T and a node (labeled
as) i, ρ(i) denotes the parent of i in T .

• Subtree Prune and Reattach: given a tree T and two internal
nodes u, v ∈ T such that neither is an ancestor of the other, we prune
the subtree rooted in u by removing the edge (u, ρ(u)) and we reattach
it as a new child of v by adding the edge (v, ρ(v))

• Add a deletion: given two nodes u, v ∈ T such that v is an ancestor
of u, we insert a node v− that represents a loss of mutation v. The new
node is made the parent of u. We remark that this operation takes
place only if the resulting tree satisfies the desired phylogeny model.
More precisely, for the Dollo-k we must check that the mutation v has
been previously lost in the tree at most k − 1 times, and never lost in
any ancestor or descendant of v−.

• Remove a deletion: given a node u ∈ T , labeled as a loss, we simply
remove it from the tree T : all children of u are added as children of
ρ(u) and the node u is then deleted.

• Swap node labels: given two internal nodes u, v ∈ T , the labels of
u and v are swapped. If a previously added loss becomes invalid due
to this operation — because a mutation c is lost in a node c−, but
the node where the mutation c is acquired is not an ancestor of c−

anymore — then we remove the deletion c−.

The algorithm

The goal of the algorithm is to find a maximum likelihood Dollo-k phy-
logeny tree; a SA process is performed using the previously defined set of

28



valid operations according to the same temperature decay process — in each
iteration, one of these operations is performed, chosen uniformly among all
possible candidate operations. Finally, after a new neighbor is generated,
cells are optimally attached to the tree, maximizing its likelihood, resulting
in the score of the new solution.

Moreover, in the SA search processes, we have that, given a tree and
a valid tree operation, the probability of accepting the new solution is
min{e∆v/T , 1}, where ∆v is the possible change in the likelihood function
after performing the operation, and T is the current temperature. The cool-
ing process follows a geometric decay with a factor (cooling rate) cr of 10−2,
i.e., the temperature at the i-th iteration is equal to Ti = (1 − 10−2)Ti−1

and T0 = 104. The SA process stops when the temperature drops below a
lower bound set at 10−3.

Since mutation losses are not as frequent as mutation gains, our approach
allows to set an upper bound on d: the total number of deletions of the
resulting tree. For example, in a Dollo-k model we can consider only trees
where each mutation is lost at most k times, but there are at most d nodes
associated to mutation losses.

3.2.4 Visualization

Alongside the main tool, we produced a post-processing tool, called SASC-viz,
that can be used to perform processing and filtering operations after the
computation of the main tool. Notice that the following operations do not
change the actual evolutionary history computed, but only how it is dis-
played.

• Collapsing simple paths: when this option is activated, all simple
non-branching paths are collapsed, i.e. if a node has only one child,
then such node is merged with its child;

• Collapsing low-support paths: when this option is activated, if the
support of a node i is lower than a specified value, then i is merged
with its parent ρ(i), where the support si of a mutation i is computed
on the output tree as follows: let st(i) be the set of nodes in the subtree
rooted at i, and let C(i) be the number of cells assigned to the node
i. Then the mutation support si is:

si =

∑
u∈st(i)C(u)∑

v∈st(π(i))C(v)− C(ρ(i))
.

We used SASC-viz to produce the pictures of the real dataset analyzed.
In particular, Fig. 3.12 and 3.13 are obtained by activating the collapsing
simple paths option. Fig. 3.11 was produced with more enabled options:
by collapsing simple paths and collapsing low-support paths with threshold
5%.
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3.3 Results

Results on simulated data

We have test our method on simulated data, where the ground truth phy-
logeny is known. We recall that it is possible, however, that a completely
different tree achieves a better likelihood on the input data than the one
obtained via simulation. This problem is essentially unavoidable, since gen-
erating a progression that is the unique solution for the corresponding SCS
input matrix would require the contrived addition of artifacts to both the
desired tree and the input matrix. These artifacts would likely be so artifi-
cial that the resulting instance would not satisfy even the basic assumptions
on cancer progression.

Generating simulated datasets

To test the methods, we run three different experiments with increasingly
sophisticated models, according to the parameter settings of Table 3.1. In
the first experiment, we explore a model with the possibility of mutation
losses, a phenomenon which has been evidenced by [87]; the second experi-
ment is produced with a model using only different (mutation-specific) false
negative rates, as seen in the real data we use. For the third experiment,
we combine the previous two to extend the simulation to the most general
model in which mutations have the possibility to be lost, and each have a
specific false negative rate.

For each of the three experiments, we produced dataset consisting of
50 randomly-generated clonal trees, according to the following procedure
for (randomly) generating a tree. Given the number S of subclones, we
generate a random tree on S nodes by adding a new node as a child of
a random pre-existing one. Each of the M mutations q1, . . . , qM is then,
uniformly at random, assigned to one of the si subclones. We allow at most
a fixed number d of deletions in each clonal tree, i.e., according to the prior
probability γj = P (L(j)) of losing mutation qj , at most d mutations are
randomly selected to be lost. For each such loss, a new node q− is created,
and then inserted in the tree at a random valid position, i.e., in the subtree
where mutation q is gained but not in a path where it has already been lost.

To obtain the genotype profile of the N cells, we uniformly assign, at
random, each cell to a node and derive its profile from the clonal tree. Finally
to simulate noise in the data, we change a 0 entry to 1 with probability β to
simulate false positives and a 1 entry to 0 with the corresponding probability
αj to simulate false negatives. Moreover, each entry has a probability µ to be
a missing entry. All flips and missing values are independently distributed,
without repetitions.

All the tools were run with the correct false positive rates, where the
values of false negatives rates are heterogeneous, the average value of the αj
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is given as input to the other tools, since SASC is the only method allowing
for different false negative rates.

The false negative error rate distribution of the real datasets are obtained
by analyzing the raw data of MGH36 and MGH64 from [126] and comparing
the mutation frequencies in the scRNA-seq data to the matching Whole
Exome Sequencing (WES) from bulk RNA sequencing, to deduce the drop
out frequency. We have analyzed more than 2000 mutations and observed
that the distribution of the real data are consistent with a Beta distribution,
which we have used as a base for the generation of our simulated data

The values of different false negative rates are randomly chosen from a
Beta distribution B(α, β) with parameters α, β < 1, to better simulate the
values found in real datasets; the different values of the prior probabilities
of mutation losses are produced using a Triangular distribution with lower
limit a, upper limit b, and mean c, indicated as T (a, c, b). Such distribution
is usually used when only the mode, upper and lower bounds are known in
a population as proxy for a fair estimation of real-case scenarios.

# S M N d α β γ µ

1 12 50 200 3 B(0.1, 0.1) 3.4× 10−5 T (10−4, 0.2, 1) 0.15

S1 9 50 250 2 0.15 0.1 T (10−4, 0.2, 1) 0.2

S2 7 80 150 0 B(0.2, 0.2) 3× 10−5 — 0.1

Table 3.1: Parameters used to simulate the input matrices. Here, S
is the number of subclones, M is the number of mutations, N is the number
of cells, d is the maximum number of allowed mutation deletions, α is the
false negative rate, β the false positive rate, γ is the prior probability of a
mutation loss and µ is the missing data rate.

Evaluating the simulated datasets

For each of the three experiments, we measure the accuracy of SASC with
two scores based on standard cancer progression measures used in various
studies [92, 75], i.e. Ancestor-Descendant and Different-Lineage accuracies;
a novel parsimony-based score based on the difference between the number
of flips, i.e., changes from 0 to 1 and from 1 to 0, estimated by some tool
to correct the input; and the actual number of flips introduced by the sim-
ulation process to induce the noise. Lastly, we evaluate the trees using the
edit distance measure of [104].

Ancestor-Descendant accuracy: This measure considers all pairs
of mutations (x, y) that are in an Ancestor-Descendant relationship in the
ground truth tree T . For each such pair we check whether the ancestor-
descendant relationship is conserved in the inferred tree I, in fact we calcu-
late the number of mutations in an Ancestor-Descendant correctly inferred
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(true positives); the number of mutations that are incorrectly inferred to
have an Ancestor-Descendant relationship (false positives); the number of
mutations correctly inferred to not be Ancestor-Descendant (true negatives);
finally the number of mutations incorrectly inferred to not have an Ancestor-
Descendant relationship (false negatives). The score is defined by the F1

score, that is the geometric mean of the precision and recall.
Different-Lineage accuracy: Just as the previous measure, we con-

sider all pairs of mutations (x, y) that are not in an ancestor-descendant
relationship, i.e. are in different branches of T . The score is defined, simi-
larly to the previous measure, as the resulting F1 score.

Parsimony Score: This is a parsimony-based measure. We measure
the difference between the number of flips, i.e., changes from 0 to 1 and
from 1 to 0, estimated by some tool to correct the input, and the actual
number of flips introduced by the simulation process to induce the noise.
The rationale is that a good solution should be smaller, i.e., closer to the
correct amount of changes introduced by the simulation process. Formally,
the Parsimony Score is defined as |H(S) − H(E)| where H(S) is the total
number of flips induced by the simulation, and H(E) is the number of flips
estimated by the tool. While this measure does not consider the overall
accuracy of a solution, it is a good estimation if used in conjunction with
the previous ones.

MLTED [104]: Similar to the Parsimony score, we measure the distance
between the tree inferred by some tool, and that of the ground truth — ac-
cording to the recently presented multi-labeled tree edit distance (MLTED),
which aims to define a distance tailored to cancer progression trees. Again
the idea is that a good solution should be smaller to the ground truth, in
terms of this distance. In [104], the MLTED is defined as the minimum
number of label deletions, leaf deletions and vertex expansions to convert
a pair of trees to the maximal common tree. The authors claim that such
measure has been recently presented aiming to define a distance tailored to
cancer progression trees, since most of the classic tree edit distances do not
adapt well when applied to cancer phylogenies. Here we use the implementa-
tion of MLTED available at https://github.com/khaled-rahman/MLTED

to compute the MLTED results reported below.
Note that none of the above mentioned metrics explicitly measures the

ability of tools to correctly infer ISA violations.
Additionally to the aforementioned measures, we provide two accuracy

measures for the estimation of false negatives: (a) an accuracy of the es-
timation of the average false negative rate in the simulations and (b) the
value of the average, over the 50 trees, of the Mean Squared Error (MSE)
over the set of estimations, for each mutation, of the mutation-specific false
negative rates. Note that (b) gives an indication also of the variance of the
estimation of false negative rates, which is important when these rates are
heterogeneous, and far from being normally distributed — something we see
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in real data that we use here and that is due to varying gene amplification
and expression levels.

Results of the simulation experiments

We decided to compare SASC against SCITE [75], SiFit [138] and SPhyR [43].
While B-SCITE [92] is a clear improvement over SCITE, it combines single-
cell data with bulk sequencing data — since we do not manage the latter
kind of data, a fair comparison is not feasible. For the same reason, we do
not compare against TRaIT [110] and PhISCS [94]. OncoNEM [113] was
excluded because it is not able to complete the execution on datasets as
large as the ones used in the simulations. Each of the tools is properly run
with millions of iterations and multiple restarts

The first experiment consists of the cases where only mutational losses
occur, thus representing our simplest model, based on scDNA-seq error
model. From Figures 3.2 , 3.3, 3.4 we see that SPhyR outperforms all other
tools, while SASC and SCITE score almost identically. SiFit on the other
hand shows poor results in all accounted measures. This is an expected re-
sult, since this are the experimental settings for which SPhyR was designed
and, given its ILP nature, it is able to achieve a near-optimal solution in
most cases.

In the second experiment we want to focus at the cases where a het-
erogeneous set of false negatives is present in the data while no deletion is
allowed, thus simulating errors from scRNA-seq data without any loss of mu-
tation. From Fig. 3.5 we see a clear improvement of SASC over SCITE, while
SPhyR shows an excellent accuracy. SASC and SPhyR perform very close
in the Ancestor-Descendant, Different Lineages and Parsimony score while
SCITE and SiFit show lower accuracy values. According to the MLTED
distance (Fig. 3.6 SASC outperforms all the other methods, with a slight ad-
vantage over SPhyR. SASC also better infers the false negatives rate in both
terms of average estimation and MSE, as seen in Fig. 3.7.

Lastly the third experiment shows the results when the datasets contain
both heterogeneous false negatives and deletions based on scRNA-seq error
model, thus complementing the other experiments. SASC outperforms any
other tool in every considered measure (Fig. 3.8 and 3.9) and it also shows
the best estimation of the false negative rates in terms of average and MSE
(Fig. 3.10). It is particularly interesting to notice the drop in performance
of SPhyR when it is forced to employ the Dollo model, since this is the only
experiment with mutation losses involved. It is also very clear that SASC

outperforms all the available methods when it deals with heterogeneous
false negative rates and mutation losses. It also interesting to notice that
SASC shows a much higher accuracy than the other two tools that allow
mutational losses — SiFit and SPhyR — when such losses are present in the
dataset.
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Figure 3.2: Accuracy results for Experiment 1, described in the section
“Evaluating the simulated datasets”. SPhyR outperforms all the other tools,
since the experiment matches the settings it was designed for, and given
given its ILP nature, it is able to achieve a near-optimal solution in most
cases. SASC and SCITE score almost exactly, both with high accuracy, while
SiFit shows lower results.

Figure 3.3: Parsimony scores and MLTED results for Experiment 1, de-
scribed in the section “Evaluating the simulated datasets”. SPhyR outper-
forms all the other tools, since the experiment matches the settings it was
designed for, and given given its ILP nature, it is able to achieve a near-
optimal solution in most cases. SASC and SCITE score almost exactly, both
with high accuracy, while SiFit shows lower results.

Results on real cancer data

We test and compare SASC on four different datasets, comprising both
scDNA-seq and scRNA-seq sequencing data. Since SiFit exhibited poor
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Mean Squared Error (average)
SASC SCITE SiFit SPhyR

MSE 7.62 7.64 5.20 9.07

Figure 3.4: False negative rates estimation for Experiment 1, described in
the section “Evaluating the simulated datasets”. SPhyR outperforms all the
other tools, since the experiment matches the settings it was designed for,
and given given its ILP nature, it is able to achieve a near-optimal solution in
most cases. SASC and SCITE score almost exactly, both with high accuracy,
while SiFit shows lower results.

performances on the simulated datasets, it is excluded in the comparison on
real datasets.

Oligodendroglioma IDH-mutated tumor

We test SASC on an oligodendroglioma IDH-mutated tumor; in particular,
on cancer MGH36 [126], consisting of 77 SNVs, distinguished from PCR
false positives using matched WES, over 579 cells. Fig. 3.11 shows the tree
computed by SASC and the distribution of the false negative rates (shown
in the bottom-right corner plot). The distribution stresses the necessity of
a method that considers heterogeneous false negative rates, since there are
two spikes of rates (at roughly 0.1 and 0.9), i.e., it is highly bimodal, and
using the average of the rates would not be an accurate representation. In
this particular tumor, no deletion was expected: this is confirmed by the
inferred tree.

For the dataset MGH36 from [126], there is no manually curated tree to
compare the results of the tools, thus we report the number of false negatives
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Figure 3.5: Accuracy results for Experiment 2, described in the section
“Evaluating the simulated datasets”. SASC slightly outperforms SCITE
in both measures, while SiFit is shown to be the poorest scoring method.
SPhyR scores slightly better than SASC on the Ancestor-Descendant accu-
racy and it outperforms all other tools on the Different Lineages measure.
Notice that larger values of both measures are better.

Figure 3.6: Parsimony scores and MLTED results for Experiment 2, de-
scribed in the section “Evaluating the simulated datasets”. SASC obtains
better results than SCITE in both measure, while SPhyR’s performance on
the Parsimony score is very similar (albeit with a larger variance) to that
of SASC. According to MLTED distance SASC scores better than any other
tool, even though its performance is only slightly better than SPhyR. We
represent the results of the parsimony score with and without SiFit, since
its results are much different from the other ones. Notice that smaller values
of both measures are better.
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Mean Squared Error (average)
SASC SCITE SiFit SPhyR

MSE 7.60 7.64 5.20 9.07

Figure 3.7: False negative rates estimation for Experiment 2, described in
the section “Evaluating the simulated datasets”. SASC shows a more accu-
rate estimation of the false negative rates than the other tools both in terms
of average estimation as well as MSE of the single rates for each mutation.
The thick red line is the average of the individual false negative rates of the
mutations in the ground truth.

and false positives inferred by the methods, this is the number of flips from 0
to 1 and from 1 to 0 respectively from the input to the output. The rationale
for this score is to report a parsimony score of the algorithms; a comparison
of the likelihood values will not be fair, since SASC uses a different formula
than the other tools. Such score is shown in Table 3.2; SASC introduces the
lowest number of false negatives to obtain the solution, albeit being very
close to SCITE , while SPhyR infers the highest number.

Childhood Acute Lymphoblastic Leukemia

Furthermore, we test SASC on Childhood Acute Lymphoblastic Leukemia
data from [50]. In particular, we focus on Patient 4 and Patient 5 of this
study, given their large amount of both cells and mutations, as well as their
complexity. Data on Patient 4 consists of 78 somatic Single Nucleotide
Variants (SNVs) over 143 cells, while Patient 5 is affected by 104 somatic
SNVs over 96 cells. The original study estimated an allelic drop-out rate
of less than 30%. Since the trees in [50], determined using expectation
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Figure 3.8: Accuracy results for the simulated experiment. In this experi-
ment, SASC scores better than any other tool in these measures. Once again
SiFit is the poorest scoring method. The accuracy of SPhyR lowers when
mutation losses are included into the dataset and it is forced to employ a
Dollo model. To the contrary, SASC performs the best when it utilizes the
full extent of its capabilities, i.e., the handling of heterogeneous false nega-
tive rates and mutation losses. Notice that larger values in both measures
are better.

maximization on a multivariate Bernoulli distribution model, are manually
curated and of high quality, we select them as the ground truth.

To ensure the absence of doublets, i.e. noise produced by error due to the
fact that two cells are sequenced instead of a unique cell, we preprocess the
input using the Single-Cell Genotyper (SCG) tool [114]. SCG is a statistical
model which removes all cells of the datasets that are likely to be doublets.

Fig. 3.12 shows the tree inferred by SASC for Patient 4; SASC correctly
infers the tree structure obtained in the study, as well as the size of the
subclonal population. The driver mutations are correctly detected, and mu-
tations COL5A2, SDPR and TRHR are inferred as deletions. Furthermore,
boldfaced and colored mutations indicate the correctly placed specific driver
mutations for the subclone of the same color. It is interesting to notice that,
in the original study, the violet subclone does not have mutations COL5A2
and TRHR: these particular mutations are in fact deleted in the clone. This
solution was found assuming a Dollo-1 phylogeny model with no restriction
on the total number of deletions in the cancer progression.

In Fig. 3.13, the inferred solution for Patient 5 of the same study is
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Figure 3.9: Accuracy results for the simulated experiment. According to
these two measures, SASC scores better than any other tool. A clear perfor-
mance drop is noticed when SPhyR is forced to employ a Dollo model. We
represent the results of the parsimony score with and without SiFit, since
its results are much different from the other ones. Notice that smaller values
of both measures are better.

shown. As in the previous dataset, our inferred tree perfectly supports the
hypotheses proposed in the original sequencing study: in fact, it correctly
infers the topology of the tree, as well as the placement of driver mutations.
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Mean Squared Error (average)
SASC SCITE SiFit SPhyR

MSE 14.76 8.96 4.26 14.17

Figure 3.10: False negative rates estimation for the simulated experiment.
SASC estimates the false negative rates better than the other tools, both
in terms of average estimation, as well as MSE of the single rates for each
mutation. Especially in the latter measure, we can notice a vast discrepancy
in the accuracy of the estimation of false negative rates. The thick red line
is the average of the individual false negative rates of the mutations in the
ground truth.

Boldfaced mutations are the driver mutations for the tree or the subclone
with the same color. This solution was found assuming a Dollo-1 phylogeny
model with a restriction of 10 deletions in the cancer progression. As de-
scribed in the section “Simulated Annealing”, such values for k and d were
empirically found to give the best likelihood.

Since the original study [50], provides manually curated trees we can
compare SASC, SCITE and SPHyR to them.

SCITE is run using the same setting used for SASC, i.e. the proposed
values of false positive and false negative rates. The tree inferred by SCITE
for Patient 4 shows a similar structure to the one proposed in the manuscript
but it presents more clones. The tree inferred by SCITE for Patient 5 shows
the correct topology, but a few driver mutations were not correctly detected.

SPhyR is run using the same setting used for SASC, i.e. the proposed
values of false positive and false negative rates and assuming a Dollo-1
model. For Patient 4 the tree structure is similar to the one proposed in
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the manuscript. The drivers and distinct subclones are also correctly placed.
The tree topology inferred by SPhyR for Patient 5 is correctly inferred, how-
ever it infers a large number of mutation losses, which is very unlikely and
it is probably due to the fact that deletions are used, in this case, to correct
false negatives at no cost in terms of likelihood function.

Medulloblastoma

Lastly we test the methods on Medulloblastoma patient BCH1031 from [66]
consisting of 96 mutations over 330 cells. SASC and SPhyR computed the
solution using a Dollo-2 phylogeny model.

Fig. 3.14 shows the tree inferred by SASC, which reported a total of
2 mutation losses. Both trees inferred by SASC and SCITE express, as
expected, various mutations correlated to the TUBB gene. On the other
hand SPhyR inferred a total of 56 mutations over the 96 present in the
sample. Furthermore, similarly to the previous experiment, SPhyR inferred
a total of 24 mutational losses, which is very unlikely for so many losses to
be present in a single sample, since evidence from [87] suggests that this
phenomenon is extremely rare. It is more likely that, also in this case,
deletions are used to correct false negatives at no cost in terms of likelihood.
Lastly, while SASC and SCITE each finished its computation in less than 2
hours, SPhyR took more than 24 hours.

SASC SCITE SPhyR

FN 115 121 430
FP 7 6 10

Table 3.2: Number of false positive and false negative introduced on the
MGH36 instance.

3.4 Conclusion

We have presented SASC and we have shown that it is an accurate tool
for inferring intra-tumor progression and subclonal composition from both
scDNA-seq and scRNA-seq data. SASC manages cases with mutation losses
and is robust to various sources of noise in all data.

We have tested SASC on three simulated datasets, and we have shown
that SASC is able to outperform all tools when there are mutation losses,
while being competitive with SCITE and SPhyR when there are no mutation
losses.

We have tested SASC on three real datasets. SASC has inferred a likely
phylogeny tree structure, correctly identifying the driver mutations and the
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Figure 3.11: Tree inferred by SASC for the oligodendroglioma IDH-mutated
MGH36 from [126]. The tree was computed using as input different false
negative rates for each mutation, whose distribution can be seen in the
bottom-right corner plot. The picture was drawn using the SASC-viz post-
processing tool.

decomposition of the clones. Furthermore, it has solved those large datasets
in adequate runtime.

A particularly interesting example is given by the inferred tree in Fig. 3.13.
The corresponding input dataset in this case contains more than 5000 con-
flicts between mutations — each conflict is a pair of mutations witnessing
a violation of the Infinite Sites Assumption (ISA). With only a slight relax-
ation of the ISA — the Dollo-1 model — SASC is able to infer an accurate
solution with a total of only 8 deletions, while perfect phylogeny methods
would require a large number of changes to the entries in the input just to
produce a feasible solution.

A future extension could be the inclusion of coverage information from
the reads, as in Monovar [139] and SciΦ [123], since it will also have an
impact on the false negative rates. Another direction is towards even more
general models, for example, allowing each mutation to appear more than
once in the tree. Also in this case, special attention must be paid to keeping
the model sufficiently restricted so that computation time does not explode,
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Figure 3.12: The tree inferred by SASC for Patient 4 of the Childhood Lym-
phoblastic Leukemia data from [50]. Different clones are indicated with
different colors. Red nodes indicate deletions of mutations, while boldfaced
mutations are the mutations indicated as driver in the original sequencing
study. Mutations in bold and colored are driver mutations for the clone with
the same color. Mutations are clustered by collapsing simple linear paths.
The picture was drawn using the SASC-viz post-processing tool.

and inferred trees are still relevant from a biological point of view.
The need for a model that allows mutation losses has been established

in [87], but no clear consensus on the model that is most suited to repre-
sent the true evolution of tumors has been reached so far, to the best of
our knowledge. In our manuscript, we introduce and follow a restricted ver-
sion of the Dollo-k model, where the number of mutations in each site and
the number of overall mutations is limited — even though our method can
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be used also in a more relaxed setting. Determining which of the possible
models is going to be the basis for effective and efficient tumor phylogeny in-
ference is something that needs to be explored in the future, but it will likely
need the development of different methods, and a deeper understanding of
the models.
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Figure 3.13: Tree inferred by SASC for Patient 5 of the Childhood Lym-
phoblastic Leukemia data from [50]. Different clones are indicated with
different colors, while the red-colored nodes indicate deletions of mutations,
and mutations highlighted in bold are the mutations indicated as driver in
the original sequencing study. Mutations boldfaced and colored are driver
mutations for the same colored clone. Mutations are clustered by collaps-
ing simple linear paths. The picture was drawn using the SASC-viz post-
processing tool.
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Figure 3.14: The tree inferred by SASC for BCH1031 of Medulloblastoma
data from [66]. Red nodes indicate deletions of mutations. Mutations are
clustered by collapsing support lower than 20%. The picture was drawn
using the SASC-viz post-processing tool.
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3.5 Additional formulations for phylogenetic in-
ference

Even though most of the methods for SCS data analysis are probabilistic,
many of the related methods for bulk sequencing data analysis are combi-
natorial in nature [125, 61, 107, 44, 93, 46]. Combinatorial, in particular
integer linear programming (ILP) formulations for phylogeny inference have
been available in the literature for a while. One example is the Haplotype
Inference Problem a.k.a. HIP [59], where given a binary incomplete matrix
M of n rows (corresponding to species) and m columns (corresponding to
sites), the goal is to decompose each row to two binary vectors (haplotypes)
so that the haplotypes can fit in a Perfect Phylogeny, i.e. a phylogeny sat-
isfying ISA. HIP can be formulated and efficiently solved as an instance of
ILP. Later, a similar formulation was proposed in [58] to solve the Persis-
tent Phylogeny Problem [52, 13]. A persistent phylogeny is one in which
each mutation is allowed to be “lost” at most once. Recently, an extension
of formulation from [58] was proposed in [16], where more general phylogeny
models are used and the goal is to infer entire cancer phylogenies by the use
of bulk sequencing data.

Finally, the notion of flip distance was introduced in [108] and later
explored in [22], to compare a matrix M (see above) that does not admit
a perfect phylogeny with M ′, a matrix admitting a perfect phylogeny that
differs from M as little as possible. As will be seen, our method builds on
this notion of distance.

ILP formulations for HIP and related problems are routinely solved
through commercial tools such as Gurobi or IBM CPLEX - which have
been developed over many years and provide reliable and fast solutions for
relatively small sized optimization problems. These solvers aim to optimize
a typically linear objective while satisfying a number of linear constraints.
As such, ILP is related to another fundamental problem, the Boolean Con-
straint Satisfaction Problem (CSP) that can be used as an alternative for
modeling many ILP problems encountered in practice.

Perhaps the best-known variant of CSP is the satisfiability problem
(SAT) which asks to find a Boolean assignment to a set of input vari-
ables to satisfy (the conjunction of) a number of Boolean constraints. An-
other variant is Max-SAT, which asks to find a Boolean assignment to
variables such that not necessarily all but the maximum number of in-
put constraints are satisfied. Finally, the weighted version of Max-SAT,
which can be abbreviated as wMax-SAT, asks for the assignment that max-
imizes the sum of (user defined) weights of the constraints satisfied. The
generality of wMax-SAT has prompted the development of many tools to
solve them with the goal of obtaining solutions to practical instances of NP-
complete problems. These tools compete in the annual SAT conference on
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several benchmarking datasets generated by a wide variety of applications
(see http://www.satcompetition.org). Recently developed wMax-SAT
solvers such as MAXINO [8] and MaxHS [34, 35, 36], are very fast; in addi-
tion MaxHS is open source. A number of studies had already demonstrated
the utility of CSP solvers for the haplotype inference problem and its vari-
ants - before the advent of high throughput sequencing [91, 101, 64].

We here describe a combinatorial formulation to solve this problem which
ensures that several lineage constraints imposed by the use of variant allele
frequencies (VAFs, derived from bulk sequence data) are satisfied. We ex-
press our formulation both in the form of an integer linear program (ILP)
and - as a first in tumor phylogeny reconstruction - a Boolean constraint
satisfaction problem (CSP) and solve them by leveraging state-of-the-art
ILP/CSP solvers. The resulting method, which we name PhISCS, is the
first to integrate SCS and bulk sequencing data while accounting for ISA
violating mutations. In contrast to the alternative methods, typically based
on probabilistic approaches, PhISCS provides a guarantee of optimality in
reported solutions.

This chapter only focuses on the formal definitions of the computational
tools and does not go into the details of the results and experimental analy-
sis, as they tend to be similar in execution to the ones described previously;
therefore we chose to omit them in this section and describe only the more
interesting algorithmic alternative approaches to the problem of the cancer
phylogeny inference.

3.5.1 Combinatorial ILP formulations

We start describing the algorithmic underpinnings of PhISCS by formulating
integrative tumor phylogeny reconstruction as a combinatorial optimization
problem. We first focus two special cases of the problem for the instance in
which only single-cell sequencing data is available: (i) a special case where
the ISA cannot be violated, (ii) the case where ISA can be violated. We
then describe the general integrative problem where both bulk and SCS data
are available. We present solutions for this problem in the form of a novel
Integer Linear Program (ILP) as well as a Constraint Satisfaction Program
(CSP).

PhISCS-I for Tumor Phylogeny Inference via SCS Data with no
ISA Violations Allowed

The input to as a ternary matrix I with n rows and m columns, where
columns represent mutations and rows represent genotypes of single cells
observed in a single-cell sequencing experiment. For a given entry, I(i, j) =
0 indicates the absence, I(i, j) = 1 indicates the presence and I(i, j) =?
indicates the lack of knowledge about absence or presence (i.e. missing
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entry) of a mutation j in a cell i.
We ask to find the minimum weighted number of bit flips (typically from

0 to 1 and rarely from 1 to 0) and bit assignments (assigning a 0 or 1 to an
entry with value ?), where bit assignments are not a part of the objective
- such that the resulting matrix provides a Perfect Phylogeny (PP). We
recall that a binary matrix is a PP if the three-gametes rule holds, i.e. for
any given pair of columns (mutations) there are no three rows (cells) with
configuration (1, 0), (0, 1) and (1, 1). Bit flipping in the input matrix I is
essential to building a PP as some mutation inferences in I are false positives
and some mutations are not indicated in I (false negatives) as they do not
have sufficient read support in sequenced single cells. We name any pair of
mutations and triplet of cells violating three-gametes rule as a conflict and
refer to PP matrix also as a conflict-free matrix.

To allow correction of noisy genotypes in I (i.e. bit flips and bit as-
signments), for each cell i and mutation j, we introduce a binary variable
Y (i, j) which denotes the (unknown) true status (i.e. absence or presence)
of the mutation j in the cell i. If α and β respectively denote false pos-
itive and false negative error rates of single-cell data (as per other meth-
ods [92, 75, 113, 138, 137], we assume that α and β are fixed parameters),
we have:

P (I(i, j) = 0 | Y (i, j) = 0) = (1− α) P (I(i, j) = 0 | Y (i, j) = 1) = β

P (I(i, j) = 1 | Y (i, j) = 0) = α P (I(i, j) = 1 | Y (i, j) = 1) = (1− β).
(3.1)

Assuming that the mutated loci are independent and that the missing
entries in I are non-informative (i.e. bit assignments are not part of the
objective), we define the likelihood of an arbitrary conflict-free matrix Y as:

P (I | Y ) =
∏

(i,j)∈S

P (I(i, j) | Y (i, j)) (3.2)

where S is set of all pairs of integers (i, j) such that 1 ≤ i ≤ n, 1 ≤ j ≤ m
and I(i, j) ∈ {0, 1}.

Here, our goal is to find a conflict-free matrix Y such that the likelihood
P (I | Y ) defined in equation (3.2) is maximized.

Now, observe that (3.1) can be rewritten as:

P (I(i, j) = 0 | Y (i, j)) = (1− α)1−Y (i,j) · βY (i,j) = (1− α) ·
(

β

1− α

)Y (i,j)

,

P (I(i, j) = 1 | Y (i, j)) = α1−Y (i,j) · (1− β)Y (i,j) = α ·
(

1− β
α

)Y (i,j)

.

(3.3)
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and our objective is equivalent to maximizing the logarithm of P (I | Y )
which can be expressed as:∑

(i,j):I(i,j)=0

[
log(1− α) + log

β

1− αY (i, j)

]
+

∑
(i,j):I(i,j)=1

[
log(α) + log

1− β
α

Y (i, j)

]
.

(3.4)

In order to enforce that matrix Y satisfies the three-gametes rule, for each
pair of mutations (p, q), we first introduce variables B(p, q, a, b), for each
(a, b) ∈ {(0, 1), (1, 0), (1, 1)}. The variable B(p, q, a, b) is set to 1 if there
exists row r such that Y (r, p) = a and Y (r, q) = b. This property of matrix
B is guaranteed by adding the following constraints for all 1 ≤ i ≤ n and
1 ≤ p, q ≤ m:

Y (i, p) + Y (i, q)−B(p, q, 1, 1) ≤ 1 (3.5)

− Y (i, p) + Y (i, q)−B(p, q, 0, 1) ≤ 0 (3.6)

Y (i, p)− Y (i, q)−B(p, q, 1, 0) ≤ 0. (3.7)

(3.8)

Now, adding constraints

B(p, q, 0, 1) +B(p, q, 1, 0) +B(p, q, 1, 1) ≤ 2 (3.9)

for all 1 ≤ p, q ≤ m suffices to ensure that three-gametes rule holds for
matrix Y .

The problem defined above represents an instance of ILP and can be
solved using any of the standard ILP solvers.

Allowing ISA violations in PhISCS-I

As we have already discussed in the Introduction, recent evidence suggests
that the ISA might be violated for a subset of mutations in the input data.
To account for this, we introduce a more general version of what we discussed
in the previous section where we allow elimination (i.e. deletion from the in-
put matrix) of a given (maximum) number of mutations which do not satisfy
ISA; the remaining mutations, after genotype corrections, are expected to
satisfy PP. In order to achieve this, for each mutation q we introduce binary
variable K(q) which is set to 1 if and only if mutation q is among eliminated
mutations. To exclude eliminated mutations from three-gametes rule, we do
not require mutational pairs (p, q), where at least one of p and q is among
eliminated mutations, to fulfill this rule. Therefore we modify constraint
(3.9) from the integer linear program described above by replacing it with:

B(p, q, 0, 1) +B(p, q, 1, 0) +B(p, q, 1, 1) ≤ 2 +K(p) +K(q). (3.10)
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The objective defined in (3.4) is also modified so that the eliminated muta-
tions do not contribute to the objective score. This leads to the following
objective to handle the case allowing ISA violations:∑

(i,j):I(i,j)=0

(1−K(j)) ·
[
log(1− α) + log

β

1− αY (i, j)

]
+

∑
(i,j):I(i,j)=1

(1−K(j))

[
log(α) + log

1− β
α

Y (i, j)

]
.

(3.11)

All other constraints used previously in the limited version of the problem
are preserved. Note that the above objective contains quadratic terms (of
the form K(j)Y (i, j)) which can be transformed to linear variables using
standard linearization techniques. One can observe that mutation elimina-
tion never decreases data likelihood hence the global optimum in the above
maximization problem is achieved when all variables K are set to 1. How-
ever, in real applications we expect only a limited number of ISA violating
mutations and therefore set the upper bound kmax on the number of elim-
inated mutations which is implemented by the addition of the following
constraint

m∑
q=1

K(q) ≤ kmax, (3.12)

where kmax is an empirically estimated constant. It is also possible to com-
putationally estimate kmax.

Additional ILP Constraints to Integrate VAFs Derived from Bulk
Sequencing Data into PhISCS-I

Now we show how to integrate SCS data with bulk sequencing data - specif-
ically the VAF of each mutation we consider - through additional linear
constraints. These constraints will only apply to the set of single nucleotide
variants from the regions not affected by copy number aberrations. Suppose
that a particular SNV, denoted M , satisfies the above requirement; let v
and r respectively denote the number of reads supporting the variant and
the reference allele at the genomic locus of M . The VAF of M is typically
defined as v

v+r . Since we are interested in cellular prevalence rather than

the VAF below, we define vaf(M) = 2v
v+r . (Cellular prevalence represents

the expected fraction of cells in the sample that harbor M .)
Before defining constraints related to VAFs, we first define the root node

via a new row, indexed by 0, that represents genotype of a healthy cell. We
also add a new column, indexed by 0, and associated null mutation M0 which
represents mutation specific to the normal cell or, in other words, germline
SNP present in all cells. We set I(t, 0) = 1 for t = 0, 1 . . . , n and I(0, p) = 0
for p = 1, 2, . . . ,m. We also set vaf(M0) = 1 and do not allow elimination
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of M0. Matrices B and Y are also expanded in an obvious way by allowing
mutational indices to be equal to 0. The remainder of the tree topology
is imposed through additional constraints that specify ancestor-descendent
relationships in a consistent manner across all nodes.

1. We must satisfy the following constraints: (i) K(0) = 0, (ii) Y (t, 0) = 1
for t = 0, 1, . . . , n, and (iii) Y (0, p) = 0 for p = 1, 2, . . . ,m.

2. If a mutation p is an ancestor of a mutation q and ISA holds for
both p and q then the true cellular prevalence of p is expected to be
greater than or equal to true cellular prevalence of q. Since vaf(p)
and vaf(q) reflect cellular prevalences as discussed above, we expect
that in the implied evolutionary tree vaf(p)(1 + δ) ≥ vaf(q), where δ
is some positive constant which allows for the noise typically present
in the observed VAFs. In order to incorporate VAFs in our model, we
introduce binary function a, such that a(p, q) = 1 only if p is an “an-
cestor” of q. By definition we set a(p, p) = 0 for all p ∈ {0, 1, . . . ,m}.
The constraints that we need to introduce are thus as follows.

(a) For any pair of distinct mutations p, q we must satisfy the follow-
ing two constraints to ensure that (i) only one of them could be
the ancestor of the other, and (ii) if there is a cell in which they
appear together, then one must be the ancestor of the other (this
also eliminates the possibility of nodes with multiple mutation
assignments):

a(p, q) + a(q, p) ≤ min{1−K(p), 1−K(q)}
a(p, q) + a(q, p) ≥ B(p, q, 1, 1)−K(p)−K(q)

(3.13)

(we remind the reader that for any mutation r, K(r) = 1 indicates
that the column r in input matrix I has been eliminated).

(b) Each non-eliminated mutation q different from null mutation must
have at least one ancestor. This is ensured by adding the follow-
ing constraint:

m∑
p=0

a(p, q) ≥ 1−K(q). (3.14)

On the other hand, null mutation has no ancestors so we set
a(p, 0) = 0 for all p ∈ {0, 1, . . . ,m}.

(c) Consider two non-eliminated mutations p and q. If a(p, q) = 1
then in genotype corrected output matrix Y the column p should
dominate the column q - i.e. for each cell/row r if the entry for p
is 0 then the entry for q should also be 0. In other words, there
should not exist row r such that Y (r, p) = 0 and Y (r, q) = 1,
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which is equivalent to B(p, q, 0, 1) = 0. To ensure this, for all
pairs of mutation (p, q), we add the following constraint:

a(p, q) ≤ 1−B(p, q, 0, 1). (3.15)

(d) If, for two non-eliminated mutations p and q, matrix Y contains
a cell in which p is present and q is absent (i.e. there exists i
such that Y (i, p) = 1 and Y (i, q) = 0, which is equivalent to
B(p, q, 1, 0) = 1), as well as a cell where both p and q are present
(i.e. there exists j such that Y (j, p) = 1 and Y (j, q) = 1, which is
equivalent to B(p, q, 1, 1) = 1), then p must be ancestor of q (i.e.
a(p, q) = 1). In order to ensure this, for all pairs of mutations
(p, q) we add the following constraints:

a(p, q) ≥ B(p, q, 1, 0) +B(p, q, 1, 1)− 1−K(p)−K(q). (3.16)

(e) For some small user defined error tolerance value δ > 0 that
accounts for variation in sequence coverage, if vaf(q) > vaf(p)(1+
δ) then a(p, q) = 0; in other words for every pair of mutations p
and q we must satisfy:

a(p, q) · vaf(p) · (1 + δ) ≥ a(p, q) · vaf(q). (3.17)

If more than one sample from the same tumor with (indepen-
dent) bulk sequencing data are available, we will have to satisfy
the VAF constraints imposed by all of them. Let vaf`(p) denote
vaf(p) in sample `. Then for each pair of mutations p and q such
that vaf`(q) > vaf`(p)(1 + δ) we must satisfy: a(p, q) = 0; i.e. for
each sample `:

a(p, q) · vaf`(p) · (1 + δ) ≥ a(p, q) · vaf`(q) (3.18)

(f) For all triplet of mutations p, q, r, we must ensure that if a(p, q) =
1 and a(q, r) = 1 then a(p, r) = 1:

∀p, q, r : a(p, r) ≥ a(p, q) + a(q, r)− 1. (3.19)

3. Now we can describe our constraint for every triplet of distinct muta-
tions p, q and r, such that p is an ancestor of q and r but q and r do
not have an ancestor descendant relationship (i.e. a(p, q) = a(p, r) = 1
and a(q, r) = a(r, q) = 0).

vaf(p) · (1 + δ) ≥ vaf(q) · [a(p, q)− a(r, q)− a(q, r)]+

vaf(r) · [a(p, r)− a(r, q)− a(q, r)].
(3.20)
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If again, multiple samples with (independent) bulk sequencing data
are available, we have to satisfy the triple-VAF constraint for each
sample `, i.e. for each triplet of mutations p, q, r:

vaf`(p) · (1 + δ) ≥ vaf`(q) · [a(p, q)− a(r, q)− a(q, r)]+

vaf`(r) · [a(p, r)− a(r, q)− a(q, r)].
(3.21)

Note that the above triple-VAF constraint does not fully utilize the
information provided by VAFs, e.g. in case a parent mutation has three
distinct children whose total VAF should, in principle, not exceed that
of the parent. It is possible to generalize the triple-VAF constraint to
any number of children. Nevertheless we still recommend the use of
the triple-VAF constraint instead of this general-VAF constraint (even
though this choice may, in principle, produce trees that violate the
general-VAF constraint) since the two sets of constraints do not seem
to produce different trees in practice. Furthermore the general-VAF
constraint is quadratic and thus slows down PhISCS.

3.5.2 Combinatorial CSP formulations

PhISCS-B for Tumor Phylogeny Inference via SCS Data

In this section we first show how to reduce the ILP formulation of PhISCS
where only single-cell data is used as the input and no mutation elimination
allowed to a wMax-SAT problem. For each input entry I(i, j), 1 ≤ i ≤
n, 1 ≤ j ≤ m, we introduce a Boolean variable Y (i, j) which represents
the true state of mutation j in cell i. Our goal is to find the assignment of
values to variables Y (i, j) such that the resulting matrix Y is conflict-free
and the objective defined below is maximized. In order to enforce that Y is
conflict-free matrix, we use a set of additional Boolean variables B(p, q, a, b)
(analogous to binary variables used in earlier sections) that need to satisfy
the following hard constraints (the constraints that need to be satisfied):

¬(Y (i, p) ∧ Y (i, q) ∧ ¬B(p, q, 1, 1))

¬(¬Y (i, p) ∧ Y (i, q) ∧ ¬B(p, q, 0, 1))

¬(Y (i, p) ∧ ¬Y (i, q) ∧ ¬B(p, q, 1, 0))

¬(B(p, q, 0, 1) ∧B(p, q, 1, 0) ∧B(p, q, 1, 1)). (3.22)

We can now define our objective as satisfying all the hard constraints with
alterations on the input matrix I with maximum probability, where each
alteration (indicating a false positive or false negative) is independent. This
objective corresponds to the minimizing the (weighted) number of flipped
entries in the solution matrix Y in comparison to I, or, for the purpose
of formulating the problem as an instance of wMax-SAT, maximizing the
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weighted sum of the following “soft” constraints (for all i, j, s.t. I(i, j) 6=?
originally):

if I(i, j) = 0 weight for Y (i, j) is: log
β

1− α
if I(i, j) = 1 weight for Y (i, j) is: log

1− β
α

. (3.23)

Note that in order to get exactly the same objective value as in objective
defined in (3.4) we need to add constant terms from (3.4) to the objective
defined in (3.23). Alternatively, after solving for matrix E, we can compute
P (D | E) by the use of formula given in (3.2).

We now show how to account for ISA violations: for each column j ∈
{1, 2, . . . ,m} we introduce a Boolean variable K(j) that is set to 1 if and
only if column j is eliminated (i.e. mutation corresponding to column j is
not considered as a part of the output).

Analogously as in the ILP formulation, we allow at most kmax columns
to be eliminated, where kmax is a user-defined constant. In order to ensure
that no more than kmax of variables K(1),K(2), . . . ,K(m) are set to 1,
for each possible (kmax + 1)-tuple (i1, i2, . . . , ikmax+1) of integers such that
1 ≤ i1 < i2 < · · · < ikmax+1 ≤ m we add the the following hard clause

¬
(
K(i1) ∧K(i2) ∧ · · · ∧K(ikmax+1)

)
(3.24)

to our model.
Now, for any eliminated column p we do not have to check whether it is

in conflict with any other column q or vice versa. Therefore, for each pair
(p, q) of columns we replace the constraint (3.22) above with the following.

¬(¬K(p) ∧ ¬K(q) ∧B(p, q, 0, 1) ∧B(p, q, 1, 0) ∧B(p, q, 1, 1)). (3.25)

To get the objective equivalent to (3.11) for each pair of cell i and mu-
tation j we introduce a binary variable X(i, j) and add the following hard
constraint:

(
¬Y (i, j)∨¬K(j)∨X(i, j)

)
∧
(
Y (i, j)∨¬X(i, j)

)
∧
(
K(j)∨¬X(i, j)

)
(3.26)

and transform (3.11) to an instance of wMax-SAT where the goal is to
maximize weighted sum of the following “soft” constraints (for all i, j, s.t.
I(i, j) 6=?):
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if I(i, j) = 0 weight for ¬K(j) is: log(1− α)

if I(i, j) = 1 weight for ¬K(j) is: log(α)

if I(i, j) = 0 weight for X(i, j) is: − log
β

1− α
if I(i, j) = 1 weight for X(i, j) is: − log

1− β
α

if I(i, j) = 0 weight for Y (i, j) is: log
β

1− α
if I(i, j) = 1 weight for Y (i, j) is: log

1− β
α

. (3.27)

Additional Boolean Constraints to Integrate VAFs Derived from
Bulk Sequencing Data into PhISCS-B

In order to integrate information derived from bulk sequencing data, rep-
resented in the form of VAFs of the given set of mutations, we explicitly
impose a tree structure on the output matrix Y through the use of a num-
ber of Boolean constraints.

The Boolean constraints below start by defining the root node via a
new row, indexed by 0, that represents genotype of a normal cell. We also
add a new column, indexed by 0, and associated null mutation M0 which
represents mutation specific to the normal cell or, in other words, germline
SNP present in all cells. We set I(t, 0) = 1 for t = 0, 1 . . . , n and I(0, p) = 0
for p = 1, 2, . . . ,m. We also set vaf(M0) = 1 and do not allow elimination
of M0. The remainder of the tree topology is imposed through additional
constraints that specify ancestor-descendent relationships in a consistent
manner across all nodes:

1. We must satisfy the following constraints which can easily be con-
verted into Boolean expressions: (i) K(0) = 0, (ii) Y (t, 0) = 1 for
t = 0, 1, . . . , n, and (iii) Y (0, p) = 0 for p = 1, 2, . . . ,m.

2. If a mutation p is an ancestor of mutation q in the implied evolutionary
tree, then vaf(p) ≥ vaf(q) within some relatively small error tolerance.
In order to employ VAFs using the above constraints between muta-
tional pairs, we introduce Boolean function a such that a(p, q) = 1 if
and only if p is an ancestor of q. The hard constraints that need to be
imposed on a are as follows.

(a) For all pairs of distinct mutations p and q, where both p and q
are different from null mutation, we must satisfy:

a(p, q) ∨ a(q, p)⇒ ¬K(p) ∧ ¬K(q)
¬[(a(p, q) ∧ a(q, p))]

B(p, q, 1, 1)⇒ a(p, q) ∨ a(q, p).
(3.28)
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(b) For each non-eliminated mutation q different from null mutation
we must make sure that it has an ancestor mutation (which could
be null mutation). This is achieved by imposing the following
constraint:  ∨

∀p 6=q
a(p, q)

 ∨K(q). (3.29)

(c) Consider two non-eliminated mutations p and q. If a(p, q) = 1
then in genotype corrected output matrix Y the column p should
dominate the column q - i.e. for each cell/row r if the entry for p
is 0 then the entry for q should also be 0. In other words, there
should not exist row r such that Y (r, p) = 0 and Y (r, q) = 1,
which is equivalent to B(p, q, 0, 1) = 0. To ensure this, for all
pairs of mutation (p, q), we add the following constraint:

¬a(p, q) ∨ ¬B(p, q, 0, 1) ∨K(p) ∨K(q). (3.30)

(d) If, for two non-eliminated mutations p and q, matrix Y contains
cell in which p is present and q is absent (i.e. there exists i
such that Y (i, p) = 1 and Y (i, q) = 0, which is equivalent to
B(p, q, 1, 0) = 1), as well as cell where both p and q are present
(i.e. there exists j such that Y (j, p) = 1 and Y (j, q) = 1, which is
equivalent to B(p, q, 1, 1) = 1), then p must be ancestor of q (i.e.
a(p, q) = 1). In order to ensure this, for all pairs of mutations
(p, q) we add the following constraints:

(B(p, q, 1, 0) ∧B(p, q, 1, 1))⇒ (a(p, q) ∨K(p) ∨K(q)). (3.31)

(e) For some small user defined error tolerance value δ > 0 that
accounts for variation in bulk sequencing coverage, if vaf(q) >
vaf(p) · (1 + δ) then a(p, q) = 0; in other words for each pair of
mutations p and q for which a(p, q) = 1, we must satisfy vaf(p) ·
(1 + δ) ≥ vaf(q). In order to express this as a Boolean constraint
we introduce a new Boolean function Pvaf(p, q) defined for all
pairs of mutations p and q (as a part of the input specification)
as follows:

Pvaf(p, q) = 1, if vaf(p) · (1 + δ) ≥ vaf(q) (3.32)

= 0, otherwise.

Then the constraint that must be satisfied for each pair of muta-
tions p and q are:

a(p, q)⇒ Pvaf(p, q). (3.33)
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If more than one sample from the same tumor with (independent)
bulk sequencing data are available, we will have to satisfy the
VAF constraints imposed by all of them. Specifically, let vaf`(p)
denote vaf(p) in sample `. Then for each pair of mutations p and
q, Pvaf(p, q) = 1 only if vaf`(p) · (1 + δ) ≥ vaf`(q) for all samples
`, and Pvaf(p, q) = 0, otherwise.

(f) For all triplet of mutations p, q, r, we must ensure that if a(p, q) =
1 and a(q, r) = 1 then a(p, r) = 1:

∀p, q, r : a(p, q) ∧ a(q, r)⇒ a(p, r). (3.34)

3. For all triplet of distinct mutations p, q and r such that p is an an-
cestor of q and r, but q and r do not have an ancestor descendant
relationship (i.e. they belong to different lineages in the tree), we
must satisfy vaf(p) · (1 + δ) ≥ vaf(q) + vaf(r). In order to express this
as a Boolean constraint we introduce yet another Boolean function
Tvaf(p, q, r) defined for all triplet of mutations p, q, r (as a part of the
input specification) as follows:

Tvaf(p, q, r) = 1, if vaf(p) · (1 + δ) ≥ vaf(q) + vaf(r) (3.35)

= 0, otherwise.

Then the constraint that must be satisfied for all mutations p, q, r is:

[a(p, q) ∧ a(p, r) ∧ ¬a(q, r) ∧ ¬a(r, q)] =⇒ Tvaf(p, q, r). (3.36)

If multiple samples from the same tumor with (independent) bulk
sequencing data are available, we will have Tvaf(p, q, r) = 1 if vaf`(p) ·
(1 + δ) ≥ vaf`(q) + vaf`(r) for all `.
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Chapter 4

Clustering of SCS cancer
data

Single cell sequencing (SCS) technologies provide a level of resolution that
makes it indispensable for inferring from a sequenced tumor, evolutionary
trees or phylogenies representing an accumulation of cancerous mutations.
A drawback of SCS is elevated false negative and missing value rates, re-
sulting in a large space of possible solutions, which in turn makes it dif-
ficult, sometimes infeasible using current approaches and tools. One pos-
sible solution is to reduce the size of an SCS instance — usually repre-
sented as a matrix of presence, absence, and uncertainty of the mutations
found in the different sequenced cells — and to infer the tree from this
reduced-size instance. In this work, we present a new clustering proce-
dure aimed at clustering such categorical vector, or matrix data — here
representing SCS instances, called celluloid. We show that celluloid clus-
ters mutations with high precision: never pairing too many mutations that
are unrelated in the ground truth, but also obtains accurate results in
terms of the phylogeny inferred downstream from the reduced instance pro-
duced by this method. We demonstrate the usefulness of a clustering step
by applying the entire pipeline (clustering + inference method) to a real
dataset, showing a significant reduction in the runtime, raising consider-
ably the upper bound on the size of SCS instances which can be solved
in practice. Our approach, celluloid: clustering single cell sequencing data
around centroids is available at https://github.com/AlgoLab/celluloid/
under an MIT license, as well as on the Python Package Index (PyPI) at
https://pypi.org/project/celluloid-clust/

4.1 Introduction

The rise of next-generation sequencing (NGS) technologies has led to the
computational problem of tumor phylogeny inference from NGS bulk se-
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Figure 4.1: A schematic overview of how celluloid works, and how it fits into
a cancer phylogeny inference pipeline. When an input SCS matrix (upper
left) is too large for a phylogeny inference method (lower right), one can use
celluloid (middle) as an intermediate step to reduce the dimensionality of
this instance, making feasible the phylogeny inference.

quencing data [44, 93, 125, 62]. This idea is very cost-effective, since NGS
data is cheap to obtain and very reliable. The procedure consists of extract-
ing different samples of the tumor and aligning the NGS reads against the
reference genome: this allows to determine the approximate fraction of reads
from each sample that are affected by any given mutation. This fraction is
taken as a proxy of the fraction of cells in each sample that are affected
by that mutation. The main difficulties of this technique are the fact that
a sample contains a mix of both healthy cells and cancer cells, while the
cancer cells are an unknown mixture of different clones.

The newer single cell sequencing (SCS) technology provides a much finer
level of resolution: in fact we can determine whether or not a given cell has
a mutation, therefore avoiding the notion of sample and the approximations
implied by the use of samples. Still, SCS is expensive and plagued by high
dropout, i.e., missing values, and false negative rates.

In this paper we devise a new method for clustering categorical data,
called celluloid — a schematic of this depicted in Figure 4.1. Not only
does celluloid cluster categorical data (based on a k-modes framework), but
because of its novel conflict dissimilarity measure — tailored to properties
specific to SCS data (see Section 4.2: Methods) — it obtains the best results
in a comparison of a variety of different clustering approaches on SCS data.
This comparison has three goals: (1) to assess which clustering methods
are more precise on SCS data by comparing the actual clustering produced,
(2) to evaluate the effect of a clustering step on the downstream phylogeny
inference step, and (3) to assess the usefulness of a clustering step on real
data, by showing its capability to reduce an instance that is too large for
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some of the current methods, so that the clustered instance can be easily
solved.

4.2 Methods

Starting with the method we devise, celluloid , we now give an overview of
the methods we consider for reducing the size of single-cell sequencing (SCS)
datasets, by clustering mutations. Specifically, the problem is: given m ob-
jects, each with n values — each value taken from a set of possible categories
— we wish to cluster the m objects into k groups. In this context, the ob-
jects are m mutations (columns of an SCS matrix), each one over n cells
(rows of an SCS matrix), while each value can be one of three possibilities
— that the mutation is present (1), absent (0), or missing (2) from the cell.

Again, the goal of clustering here is to allow faster downstream phylogeny
inference. This is why we devise a method which takes, a priori, parameter k:
the desired number of clusters, i.e., the largest number that the downstream
inference can complete in a reasonable amount of time. For the same reason,
we also restrict our comparison to such methods, for which there is already a
wide variety. In light of this, we did not consider the entire field of methods
which determine the number of clusters based on properties of the data [85,
12, 99], which could also be appropriate.

4.2.1 Celluloid

Clustering methods are based on a notion of distance (or of similarity) be-
tween the elements that we want to cluster. In our case, we are dealing with
a set X of m objects on n categorical attributes {A1, . . . , An} — in other
words, each object x ∈ X is a point 〈x[1], . . . , x[n]〉 of the n-dimensional
space A = A1 ×A2 × · · · ×An — where an object x has a categorical value
x[i] ∈ Ai for each attribute Ai.

An intuitive and widely used notion of distance is the the dissimilarity
measure dM , also called matching dissimilarity, between two objects x =
〈x[1], . . . , x[n]〉 and y = 〈y[1], . . . , y[n]〉 of A, defined as:

dM (x, y) =
n∑
i=1

δM (x[i], y[i]), (4.1)

where δM is a trivially defined dissimilarity, based on the identity of two
categorical values:

δM (x[i], y[i]) =

{
0 if x[i] = y[i]
1 o.w. (x[i] 6= y[i])

. (4.2)

In our context, the value 2 is special, since it represents missing data.
Therefore, the fact that a given value is equal to 2 should not be penal-
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ized. For this reason, we design a new dissimilarity, based on the notion of
conflict (Equation 4.4) by adapting the previous matching dissimilarity of
Equation 4.2 to obtain what we call the conflict dissimilarity, defined as:

dC(x, y) =
n∑
i=1

δC(x[i], y[i]), (4.3)

and δC is a slight relaxation of δM , where 2s are not penalized:

δC(x[i], y[i]) =

{
0 if x[i] = 2 or y[i] = 2
δM (x[i], y[i]) o.w.

. (4.4)

Our method celluloid extends using the previously defined conflict dis-
similarity function the k-modes framework [68, 69] which clusters m objects
X on A, by computing an m×k partition matrix [63] p[·, ·] — a partitioning
of these m objects into k clusters — and a set Q = {q1, . . . , qk} of k modes
and that minimize the following objective function:

k∑
l=1

m∑
j=1

p[j, l] dC(xj , ql), (4.5)

subject to

k∑
l=1

p[j, l] = 1, 1 ≤ j ≤ m,

p[j, l] ∈ {0, 1}, 1 ≤ j ≤ m, 1 ≤ l ≤ k,
ql[i] = argmin

a∈Ai

∑
j:p[j,l]=1

δM (xj [i], a), 1 ≤ i ≤ n, 1 ≤ l ≤ k,

(4.6)

where p[j, l] = 1 if and only if the object xj is placed in the cluster Cl whose
mode is ql.

That is, for each ql ∈ Q, ql[i] is one of the possible categorical values
of the attribute Ai. Most precisely, ql[i] is a mode among the values (of
the attribute Ai) of the objects that are in the cluster Cl. Note that every
Ai = {0, 1, 2} when considering single cell sequencing data for inferring
tumor evolution.

Now, a mode of cluster Cl ⊆ X is a vector ql which minimizes:

D(Cl, ql) =
∑
x∈Cl

dM (x, ql). (4.7)

Note that ql is not necessarily an element of Cl. The k-modes algorithm
then starts with some initial set Q0 of k modes, and an initial collection C0

of k disjoint subsets of X, and then iterates the operations:
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1. compute dC(x, ql), where ql is a mode of cluster C0
l ∈ C, for each

object x and each cluster C0
l ;

2. for each mode ql create an empty cluster C1
l ;

3. allocate x to a cluster C1
l′ minimizing dC(x, ql′), hence updating p[·, ·];

and

4. recompute a new set of modes Q1 according to the new clusters C1,
exploiting the last constraint of Equation 4.6;

until convergence, i.e., until Qt+1 = Qt. The modes in the third step above
are found according to the following theorem, where cr[i] is the r-th cate-
gorical value of the attribute Ai and f(Ai = cr[i]|X) is its relative frequency
in X.

Theorem 5 ([69]). Eq. 4.7 is minimized iff f(Ai = ql[i]|X) ≥ f(Ai =
cr[i]|X) for ql[i] 6= cr[i] ∀ i ∈ [1 . . . n].

In other words, Eq. 4.7 is minimized by selecting any mode value for each at-
tribute. Note that this theorem implies that the mode of X is not necessarily
unique.

Since the solution depends on the initial set Q0 of k modes, we consider
two procedures for initializing Q0. The first one is quite simple: a random
selection of k objects from the set X of objects as the initial k modes —
which we refer to as the random initialization procedure. The second one,
devised in [69], is a more complicated procedure, based on the frequencies
f(Ai = cr[i]|X) of all categories, which we refer to as the Huang initialization
procedure [69]. We focus on this second procedure, since it achieves the best
results:

1. order the categories of each attribute Ai in descending order of fre-
quency, i.e., f(cr1 [i]) ≥ f(cr2 [i]) ≥ f(cr3 [i]), etc.;

2. assign uniformly at random the most frequent categories to the initial
k modes;

3. for each mode ql obtained in the previous step, select the xj ∈ X most
similar to ql and make this xj the mode q0

l ∈ Q0, such that q0
l 6= q0

l′

for l 6= l′.

This final step is to avoid empty clusters in C0. This initial selection proce-
dure is aimed at having a diverse set of initial modes Q0, which can lead to
better clustering results — see more details in [69].

Our approach, celluloid: clustering single cell sequencing data around
centroids, is our conflict dissimilarity and the Huang initialization proce-
dure, used within the k-modes framework — its implementation available
at under an MIT license [24]. It is also available on the Python Package In-
dex (PyPI) [25]: installable via pip, e.g., pip install celluloid-clust.
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4.2.2 k-modes

Since there is package for computing a clustering based on the k-modes
framework available on the Python Package Index (PyPI) [84], we decided
to use this in our tests as well. The above package comes with a variety of
standard dissimilarity measures, as well as the Huang (and random) initial-
ization procedures (see above).

Here we use the above implementation with the options of matching
dissimilarity (Equation 4.2) and the Huang initialization procedure, since
this combination of options produced the best results. This is what we refer
to as k-modes in our experiments.

4.2.3 k-means

Given m objects X = {x1, . . . , xm} on n real values, i.e., each xi ∈ Rn,
and an integer k, the k-means algorithm [97, 9] finds the vector of k values,
called means, Q = {q1, . . . , qk} and an m × k partition matrix minimizing
the following objective function:

k∑
l=1

m∑
j=1

p[j, l] d(xj , ql), (4.8)

subject to the first two constraints in Equation 4.6, while each mean ql is
based on a distance measure d, that is usually the Euclidean distance, i.e.,

d(xj , ql) =

n∑
i=1

(xj [i]− ql[i])2. (4.9)

The k-means algorithm starts with some initial set Q0 of k means, and
an initial collection C0 of k disjoint subsets of X, and then iterates the
operations 1–3 as in the k-modes algorithm, but using the Euclidean distance
(Equation 4.9) instead of dissimilarity, and computing means instead of
modes, that minimize instead the objective function of Equation 4.8, subject
to the first two constraints in Equation 4.6.

In our experiments, we used the implementation of k-means clustering
available in scikit-learn [120].

4.2.4 Affinity propagation

The affinity propagation algorithm [49] uses as input a set of similarities
between data points. Those similarities are clustered by choosing a point
as a representative for each class. Such points gradually emerge iteratively
using a message-passing procedure, where each point exchanges messages
with all other points.
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In particular, there exist two types of messages: (1) responsibility r(i, k)
is sent from point i to the candidate representative point k reflecting the
cumulative evidence of how well-suited k is to serve as representative of
i; and (2) availability a(i, k) sent from the candidate representative k to i
reflecting the cumulative evidence of how well-suited k should be chosen by
i to be its representative. Both variables take into account other potential
candidates.

Such messages are exchanged iteratively, each time refining r(·, ·) and
a(·, ·), until a stop condition is fulfilled. At any point these variables can be
combined to identify the representatives. For each point i, the value of k
that maximizes r(i, k) + a(i, k) identifies the representative k of i, where k
and i can be the same point.

In our experiments, we used the implementation of affinity propagation
clustering available in scikit-learn [117].

4.2.5 Hierarchical agglomerative clustering

The hierarchical agglomerative clustering method [78] produces, in an hier-
archical fashion, groups of disjoint subsets of a given set, each maximizing an
internal similarity score. The procedure is executed in a bottom-up fashion
in which, initially, each point is in a subset by itself. At each step, two sets
are merged together, so that the union maximizes a given criterion. The
procedure is then repeated until only one group remains, thus having the
complete hierarchical structure of the clustering.

In our experiments we used the Manhattan metric, i.e., the sum of the
horizontal and vertical distance between two points, to compute the similar-
ity scores, as this metric is more suited for a matrix containing categorical
data, as opposed to the Euclidean distance more suited for a continuous-
valued matrix. The similarity of two sets of observations is computed using
the average of the distances between elements in the respective sets. Conse-
quently, as expected, the hierarchical agglomerative clustering, when using
the Manhattan metric, performed better (see Section 4.3: Results) than the
Euclidean metric, and so we only included the former in the comparison.

In our experiments, we used the implementation of agglomerative hier-
archical clustering available in scikit-learn [118].

4.2.6 BIRCH clustering

The BIRCH clustering procedure [140] takes as input a set of points as
well as the desired number of clusters, and operates in four steps. (1) In
the first step it computes the clustering feature (CF) tree while computing
measures using a predefined metric. (2) The second optional phase tries
to build a smaller CF tree while removing outliers and regrouping crowded
subclusters into larger ones. (3) In the third step, a hierarchical clustering
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algorithm, usually an adaptation of the agglomerative clustering (briefly
described in the previous subsection), is used to cluster all the leaves of the
CF tree. During this phase, the centroids of each cluster are computed. (4)
The centroids are then used for the final fourth step to further refine the
clusters, since minor and localized misplacements could occur during the
previous step. This last step can also be used to label the points with the
cluster they are placed in — we used this feature to obtain the groups of
mutations in our experiments.

In our experiments, we used the implementation of BIRCH clustering
available in scikit-learn [119].

4.2.7 Spectral clustering

The spectral clustering algorithm [122] — see [130] for a gentle and com-
prehensive treatment of the topic — first performs dimensionality reduction
on the data, and then clusters, using a standard clustering technique such
as k-means, the data in this reduced dimension. In order to reduce the di-
mensionality, it first constructs a similarity graph from the initial matrix of
similarities of the input set of data points — usually a sparse representation
of this similarity matrix, e.g., the k-nearest neighbor graph [130]. It then
takes the Laplacian matrix [23] on this graph, and a subset of the (rele-
vant) eigenvectors (spectrum) of this Laplacian matrix — itself a matrix, is
the reduced-dimension data. It is then this matrix which is passed to the
clustering technique.

In our experiments, we used the implementation of spectral clustering
available in scikit-learn [121].

4.2.8 Generation of simulated data

The simulated data are generated as follows. First we simulate a random
tree topology on s nodes, each representing a tumor clone, by first creating
a root (the germline) and then iteratively attaching the s − 1 remaining
nodes uniformly at random to any other node in the tree. The nodes are
then randomly labeled with m mutations — meaning that each mutation is
acquired at the node that it labels. Then, a total of n cells are associated to
the nodes, uniformly at random. A binary matrix M is then extracted from
these cells giving rise to a genotype profile for each cell (a row in M), which
is the presence (1) or absence (0) of each mutation (column in M) in the
cell, given the presence or absence of the mutations on the path in the tree
from the root to this cell. The binary matrix is then perturbed according
to the false negative, false positive and missing value rates, to simulate a
real-case scenario. Each of the s nodes is therefore considered as a natural
(true) cluster of the simulated dataset.
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4.3 Results

To evaluate the accuracy of the clustering methods, we designed a two-fold
experiment on synthetic datasets. We first measure the quality of the clus-
ters found by the methods, and later we evaluate how such clusters impact
the quality of the phylogenies returned by a cancer progression inference
method.

For each experiment, we consider 100, 200 and 300 cells, respectively
experiments 1, 2 and 3. For each such value we generated 50 simulated
datasets (according to Section 4.2.8), where we fixed the number s of clones
to 20 and the number m of mutations to 1000. While this number of muta-
tions is at the high end in terms of currently available real cases, it will be
a typical size in the near future — some such cases already existing today
(see Section 4.3.3).

We performed clustering on the datasets of our experiments to obtain
instances with a reduced number of columns (mutations), which can in turn
be given as input to such a cancer progression inference method above. The
clustering methods we used were all the ones described in the Methods sec-
tion (Section 4.2), i.e., celluloid, k-modes, k-means, affinity, agglomerative,
BIRCH and spectral clustering. Note that all such clustering methods are
general-purpose: given m objects on n categorical values, and an integer k,
each method clusters the m objects into k groups. Since the cancer infer-
ence methods tend to scale quadratically with the number of mutations, we
decided to choose a k of 100 for each method, which is a reasonable number
of mutations given the currently available literature.

4.3.1 Evaluating a clustering

To evaluate the clusters obtained, we used standard precision and recall
measures, adapted to the particular goal, as follows.

Precision: measures how well mutations are clustered together. For each
pair of mutations appearing in the same clone in the simulated tree,
we check if they are in the same cluster, resulting in a true positive
(TP ). For each pair of mutations clustered together that are not in
the same clone, we encounter a false positive (FP ). The value of the
precision is then calculated with the standard formula: TP

TP+FP .

Recall: measures how well mutations are separated. For each pair of
mutations in the same clone, we now also check if they are not in the
same cluster, resulting in a false negative (FN). The recall is then
calculated as: TP

TP+FN .

It is important to highlight that we are mostly interested in obtaining a
high precision since, while cancer phylogeny inference algorithms can later
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cluster together mutations by assigning them to same subtree or the same
path, they cannot separate mutations that have been erroneously clustered
together. It is for this same reason that the number (k) of clusters we chose
is simply the largest such that the downstream inference tool can complete
in a reasonable amount of time.
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Figure 4.2: Precision and recall results for experiment 1, generated with a
total of 1000 mutations, 100 cells and a clustering size of k = 100. The
plots include results for celluloid, k-modes, k-means, affinity, agglomerative,
BIRCH and spectral clustering.
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Figure 4.3: Precision and recall results for experiment 2, generated with a
total of 1000 mutations, 200 cells and a clustering size of k = 100. The
plots include results for celluloid, k-modes, k-means, affinity, agglomerative,
BIRCH and spectral clustering.

In Figures 4.2, 4.3 and 4.4 — representing the respective experiments 1,
2 and 3 — a common trend is evident: indeed, standard clustering methods
(k-means, affinity, agglomerative, BIRCH and spectral clustering) perform
much more poorly than celluloid and k-modes, presenting a gap from all the
other methods in terms of both precision and recall. On the other hand,
celluloid and k-modes differ slightly in terms of precision.

It is interesting to notice that the precision of the conflict dissimilarity
rapidly increases when the amount of cells increase, thus being well-suited
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Figure 4.4: Precision and recall results for experiment 3, generated with a
total of 1000 mutations, 300 cells and a clustering size of k = 100. The
plots include results for celluloid, k-modes, k-means, affinity, agglomerative,
BIRCH and spectral clustering.

for future increases on the size of SCS datasets.
We have also evaluated the quality of the clusters with several standard

clustering metrics such as the adjusted Rand index [70], Fowlkes-Mallows
index [48], completeness score [112] and V-measure [112]. In this case, we
measure how much the computed clustering is similar to the ground truth.
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Figure 4.5: The adjusted Rand index, Fowlkes-Mallows index, completeness
score and V-measure between all clustering methods and the ground truth
for experiment 1, generated with a total of 1000 mutations, 100 cells and a
clustering size of k = 100. The plots include results for celluloid, k-modes,
k-means, affinity, agglomerative, BIRCH and spectral clustering.

In Figures 4.5, 4.6 and 4.7 — representing again, respectively, the results
of experiments 1, 2 and 3 — we see the similar trend of celluloid and k-modes
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Figure 4.6: The adjusted Rand index, Fowlkes-Mallows index, completeness
score and V-measure between all clustering methods and the ground truth
for experiment 2, generated with a total of 1000 mutations, 200 cells and a
clustering size of k = 100. The plots include results for celluloid, k-modes,
k-means, affinity, agglomerative, BIRCH and spectral clustering.
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Figure 4.7: The adjusted Rand index, Fowlkes-Mallows index, completeness
score and V-measure between all clustering methods and the ground truth
for experiment 3, generated with a total of 1000 mutations, 300 cells and a
clustering size of k = 100. The plots include results for celluloid, k-modes,
k-means, affinity, agglomerative, BIRCH and spectral clustering.
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performing much better than all the other methods, presenting this same
gap from all the other methods, while differing slightly from each other.

We decided also to compute the adjusted Rand index, Fowlkes-Mallows
index, completeness score and V-measure for all pairs of techniques to allow
the observation of the similarity, according to the measures, between differ-
ent algorithms. The heatmaps in figures 4.8, 4.9 and 4.10 — representing,
respectively, experiments 1, 2 and 3 — show the average value of the scores
of each simulated dataset for each pair of clustering method.

The first column of all the heatmaps represents the comparison with the
ground truth, where in all the cases celluloid achieves larger values, thus
more resembling the ground truth. Furthermore, celluloid and k-modes
are very similar to each other, while the other methods tend to be quite
dissimilar to each other.

4.3.2 Assessing the impact of a clustering

To better understand the impact of the clustering on the actual cancer
progression inference, we considered SCITE [75], SASC [30] and SPhyR [43],
three published, publicly available inference tools tailored to SCS data, and
have been shown to scale to instances of the size we consider in our study
— the latter tool does clustering using k-means as part of the inference. We
executed SCITE [75] and SPhyR [43] on both the obtained clusters and on
the unclustered datasets, to understand the effect of the clustering on the
tools. SASC was not able to complete in a reasonable amount of time (with a
cut-off of < 2 hours) on the unclustered data, due to the higher complexity
of the search space of the solutions it generates. We performed the inference
with all of the clustering methods used as a preprocessing step. Note that
all methods were run with default parameters, with the exception of SASC

and SPhyR being parameterized to output trees with no losses, in order to
be able to compare with SCITE, which does not model losses, i.e., rather,
it adheres to the infinite sites assumption.

For assessing the accuracy of the methods we used the measures defined
in [28, 30]:

Ancestor-descendant accuracy: for each pair of mutations in an ancestor-
descendant relationship in the ground truth, we check whether the re-
lationship is conserved in the inferred tree (TP ) or whether it is not
(FN). For each pair of mutations in an ancestor-descendant relation-
ship in the inferred tree, we also check if such relationship does not
exist in the ground truth tree (FP ).

Different lineages accuracy: similarly to the previous measure, we check
whether mutations in different branches are correctly inferred or if any
pair of mutation is erroneously inferred in different branches.
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Figure 4.8: The adjusted Rand index, Fowlkes-Mallows index, completeness
score and V-measure between all pairs of clustering methods for experiment
1, generated with a total of 1000 mutations, 100 cells and a clustering size of
k = 100. The plots include results for celluloid, k-modes, k-means, affinity,
agglomerative, BIRCH and spectral clustering. Each cell is the average of
the scores obtained for each simulated instance.

Figures 4.11, 4.12 and 4.13 show very interesting results. Regarding the
results of SCITE and SASC, as expected, we observe a severe drop in per-
formance when used in combination with k-means, affinity, agglomerative,
BIRCH and spectral clustering methods. This fact is supported by the gap
in the precision of the methods — a low precision indeed leads to a low
accuracy in the tree reconstruction. The trend is still present in the differ-
ent lineages accuracy, but to a lesser extent — this is because, as previously
discussed, a cancer inference method can separate clusters of mutations, but
when a cluster is computed it is not possible to separate mutations within
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Figure 4.9: The adjusted Rand index, Fowlkes-Mallows index, completeness
score and V-measure between all pairs of clustering methods for experiment
2, generated with a total of 1000 mutations, 200 cells and a clustering size of
k = 100. The plots include results for celluloid, k-modes, k-means, affinity,
agglomerative, BIRCH and spectral clustering. Each cell is the average of
the scores obtained for each simulated instance.

this cluster.
On the other hand, the results obtained by SCITE when celluloid and

k-modes are used are much better, in particular, celluloid as a preprocessing
step — which leverages our conflict dissimilarity — allows SCITE to score
higher in both ancestor-descendant and different lineages accuracies than it
is able to using unclustered data as input. For this inference tool, using
celluloid as a preprocessing step actually helps SCITE to achieve a better
score than without it — experiment 3, being the largest of the three, shows
the biggest improvements. SCITE on unclustered data scores an average of
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Figure 4.10: The adjusted Rand index, Fowlkes-Mallows index, completeness
score and V-measure between all pairs of clustering methods for experiment
3, generated with a total of 1000 mutations, 300 cells and a clustering size of
k = 100. The plots include results for celluloid, k-modes, k-means, affinity,
agglomerative, BIRCH and spectral clustering. Each cell is the average of
the scores obtained for each simulated instance.

0.7551 and 0.9537 for ancestor-descendant and different lineages respectively,
against an average of 0.9358 and 0.9907 after clustering the datasets using
celluloid. Moreover, celluloid allows SCITE to achieve a 20x speedup in
runtime, on average.

The results obtained by SASC, shown in Figures 4.11, 4.12 and 4.13,
are very similar to what is computed by SCITE — in particular, celluloid
provides much better results than any other clustering method. Once again,
on the larger experiment, the gap between the clustering methods is seen
the most — in particular, SASC scores an average of 0.9365 and 0.9909
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Figure 4.11: Ancestor-descendant and different lineages accuracy measures
for experiment 1. Cancer phylogenies are inferred by SCITE (Top), SPhyR
(Middle) and SASC (Bottom) using as input both the unclustered data
as well as the clusters obtained by celluloid, k-modes, k-means, affinity,
agglomerative, BIRCH and spectral clustering.

for ancestor-descendant and different lineages respectively, when celluloid is
used as a preprocessing step. These results are particularly interesting since
SASC is unable to complete in a reasonable amount of time (with a cut-off of
< 2 hours) on the unclustered data, hence the reason for this absence from
the experiments.

Unlike the previous tools, SPhyR shows very interesting results since
the method itself performs a k-means clustering on both mutations and
cells given as input. For this reason, clustering already clustered data can
be a hit-or-miss case, as seen in Figures 4.11, 4.12 and 4.13. In almost all
cases, preprocessing the data causes SPhyR to obtain extremely low values
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Figure 4.12: Ancestor-descendant and different lineages accuracy measures
for experiment 2. Cancer phylogenies are inferred by SCITE (Top), SPhyR
(Middle) and SASC (Bottom) using as input both the unclustered data
as well as the clusters obtained by celluloid, k-modes, k-means, affinity,
agglomerative, BIRCH and spectral clustering.

in the ancestor-descendant measure, while achieving a very good different
lineages score, with the exception of spectral clustering in all experiments
and celluloid in experiment 1. On the other hand, the agglomerative clus-
tering seems to have no impact or to slightly improve the tool — this could
be a consequence of the high recall and low precision achieved by the clus-
tering algorithm — indeed it is possible that separating well clusters but
not merging them very much leads the clustering step of SPhyR to achieve
a better result.
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Figure 4.13: Ancestor-descendant and different lineages accuracy measures
for experiment 3. Cancer phylogenies are inferred by SCITE (Top), SPhyR
(Middle) and SASC (Bottom) using as input both the unclustered data
as well as the clusters obtained by celluloid, k-modes, k-means, affinity,
agglomerative, BIRCH and spectral clustering.

4.3.3 Application on real data

Finally, we run the entire pipeline (clustering + inference method) on an
oligodendroglioma IDH-mutated tumor [129] consisting of 1842 mutations
over 926 cells, to assess if the improvement in the runtimes that we have
seen on simulated data carry over to a real dataset.

Such computation was performed using SCITE, which on unclustered
data, takes as long as 68 hours, while adding a preprocessing step with cel-
luloid, we were able to compute the tree within 1 hour, therefore decreasing
the time needed by a factor of 70. Moreover, it is most likely that pre-
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Figure 4.14: Tree computed on the oligodendroglioma IDH-mutated tumor
from [129]. The labels on the nodes represent the 100 clusters obtained by
celluloid. The tree was inferred using the cancer inference tool SASC.

processing the data with celluloid provides a better phylogeny than SCITE
alone, as seen in the experiments on simulated data.

Furthermore we computed the same dataset using SASC, Figure 4.14
shows the tree inferred, where each node is one of 100 clusters computed by
celluloid.

4.4 Discussion

Motivated by the advancements in single cell sequencing (SCS) technologies
such as decreasing costs and improved quality which will result in larger
SCS instances, we proposed a method celluloid to reduce the size of such
instances, via categorical clustering based on the k-modes framework, and a
novel conflict dissimilarity — tailored to properties specific to SCS instances.
The idea is that this can allow tools which infer cancer phylogenies purely
from SCS data, such as SCITE [75], SPhyR [43] or SASC [30] — which work
well on the instances of today — to scale to the size of SCS instances of
the near future. We hence devised celluloid for clustering purely single-cell
data, and focused on comparing other methods with this same goal in mind.
Notwithstanding, there are important hybrid methods for inferring cancer
phylogenies from a combination of bulk sequencing and SCS data [92, 114],
which even perform clustering as part of the phylogeny inference (like with
the purely SCS tool, SPhyR).

We have shown how to compare various clustering methods on single
cell sequencing data, with three distinct experiments. More precisely, we
describe two experiments on synthetic data: the first experiment measures
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the quality of the clusters computed by the methods, while the second exper-
iment considers the effect of the clustering on the quality of trees obtained
downstream from a phylogeny inference tool. Finally, we have described an
experiment on real data that measures the usefulness of the clustering pro-
cedure, by computing the improvement in the runtime for a large instance.

We have made available the entire pipeline [24] that runs the clustering
tools on those data, and computes the plots and tables used in the cluster
analysis. Our comparison is reproducible and can be easily extended by
modifying a Snakemake [86] file.

One of the main conclusions that we can draw from our comparison is
that k-means is not an adequate choice for clustering single cell data for
inferring tumor phylogenies. The second main finding of our paper is that
a suitable clustering step, such as celluloid , not only decreases the runtime
of the phylogeny inference methods, but can also improve the quality of the
inferred phylogenies, as we have shown for SCITE and SASC.

Future work includes a more complete and comprehensive study of clus-
tering methods and downstream cancer phylogeny inference methods, but
also of simulated and real datasets.

Since the k-modes framework saw a boost in performance when coupled
with our novel conflict dissimilarity, an interesting future work is to deter-
mine if there are other dissimilarities, or even other categorical clustering
frameworks which perform even better. For example, the conflict dissimilar-
ity takes into account the high drop-out rate in SCS data; maybe there are
refinements that could account for other aspects of SCS data such as het-
erogeneous false-negative rate [30]. More generally, maybe there are other
dimensionality reduction techniques, or ways to select or extract a compact
set of representative features of this dataset (not necessarily mutations or
cells), which could in turn be passed to some downstream phylogeny infer-
ence.

Finally, while we focused on single cell data in this study, a more long-
term research direction is to develop tools — which use some combination
of clustering + phylogeny inference — for inferring cancer phylogenies using
multiple sources of information together (e.g., transcriptomics data, health
informatics data, phylogenetic information of other closely-related cancers,
etc.).
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Chapter 5

Comparing tumor
phylogenies

The latest advances in cancer sequencing, and the availability of a wide
range of methods to infer the evolutionary history of tumors, have made
it important to evaluate, reconcile and cluster different tumor phylogenies.
Recently, several notions of distance or similarities have been proposed in the
literature, but none of them has emerged as the golden standard. Moreover,
none of the known similarity measures is able to manage mutations occurring
multiple times in the tree, a circumstance often occurring in real cases.

To overcome these limitations, in this paper we propose MP3, the first
similarity measure for tumor phylogenies able to effectively manage cases
where multiple mutations can occur at the same time and mutations can
occur multiple times. Moreover, a comparison of MP3 with other measures
shows that it is able to classify correctly similar and dissimilar trees, both
on simulated and on real data.

5.1 Introduction

While there is a wide range of measures to compare leaf-labeled trees in
the literature, ad-hoc methods for tumor phylogenies are starting to appear
in the last few years [38, 79, 54, 10, 11]; in particular, a detailed study
of some notions of distance [38] has introduced two new measures comple-
menting some more established definitions used in various cancer inference
studies [30, 28]. Those new measures are more nuanced, in order to capture
some aspects of the mutation inheritance process, while still being very effi-
cient to compute. A common trait of all the latter distances is their reliance
on the analysis of pairs of nodes.

On the other hand, some of the most widely used distances on classical
phylogenies are based on rooted triples [19, 39, 3] (for rooted phylogenies)
or quartets [41] (for unrooted phylogenies) of labeled leaves. Although such
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metrics have major limitations for our purposes, as they do not apply directly
to fully-labeled trees, they also have some desirable properties that we would
like to transfer in our setting. Specifically, this kind of metric captures well
the differences in the topology of the trees; a feature that, to the best of
our knowledge, lacks in most of the existing methods for tumor phylogenies.
Therefore we expect a triplet-based measures to provide additional insights
on the different evolutionary histories, when applied to cancer progression.

In this paper, we generalize the notion of rooted triples similarity for
classical phylogenies to tumor phylogenies. Moreover, we further extend
this to multi-labeled trees (that is, where each node is labeled by a set of
labels) and poly-occurring labels (that is, each label can be assigned to more
than one node). The latter feature is needed since recent studies [87, 20]
suggest widespread recurrence and loss of mutations, and more and more
methods designed to infer tumor phylogenies considering such a possibility
are starting to appear [43, 30, 28]. In a phylogenetic tree a mutation loss
is represented by a special character in the label, such as a minus sign: the
design of our measure allows to handle such evolutionary events effectively,
as they uniquely correspond to their label like any other kind of mutation.

Through an extensive experimental analysis, we show that our novel
measure is able to overcome the limitations in the existing literature and to
provide a better alternative to both the direct comparison of evolutionary
histories and the application to established clustering techniques, following
the approach of [38]. Such a performing measure can also be incorporated in
recent works [2, 53] designed to cluster and build consensus across multiple
cancer progressions.

5.2 Methods

A classical phylogenetic tree is a rooted, unordered, leaf-labeled tree. The
set of all the labels occurring in T is denoted by λ(T ), and a function N(·)
maps each element of λ(T ) to a leaf of T . We denote with LCA(u, v) the
Lowest Common Ancestor of nodes u and v. Given three leaves u, v, z ∈ VT ,
the minimal tree topology they induce on T , denoted as MTTT (u, v, z), is the
smallest subtree of T that includes the nodes V u,v,z

T = {u, v, z}∪LCA(u, v)∪
LCA(v, z)∪LCA(u, z), and where all the nodes with degree 2 not in V u,v,z

T are
contracted.

The rooted triplet distance measures the dissimilarity between two leaf-
labeled trees with identical labels. It is given by the number of rooted triplets
that induce different minimal topologies (Figure 5.1) in the two trees over the
total number of triplets [76]. As tumor progression trees are fully-labeled,
such metric cannot be directly applied: in this section we propose a novel
similarity measure, inspired by the triplet distance, specifically designed for
these more general trees.
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a b c d e f g h m n a c e

Figure 5.1: Rooted triplet on labels (a, c, e). (Left) Tree T where the smallest
subtree that contains all three labels is highlighted. (Right) The minimal
topology induced by (a, c, e).

5.2.1 Extension to fully labeled trees and multi-labeled trees

A tree T on a set VT of n nodes is fully-labeled by a set λ(T ) of labels if there
is a bijection N : λ(T ) → VT . The definition of minimal topology of three
leaves can be trivially extended to the minimal topology of three nodes: we
next show that there are only five possible configurations (see Figure 5.2).

Lemma 6. Given nodes u, v, z ∈ VT , there exist only five possible configu-
rations for MTTT (u, v, z).

Proof. We start by dividing two possible cases: (i) LCA(u, v) = LCA(v, z) =
LCA(u, z), or (ii) just two LCAs are the same, say LCA(v, z) = LCA(u, z). There
are no other possibilities, as LCA(u, v) 6= LCA(v, z) 6= LCA(u, z) is impossible:
indeed, suppose without loss of generality that LCA(u, v) is a descendant of
LCA(u, z), LCA(u, v) 6= LCA(u, z): they cannot be unrelated, as by definition
they are both ancestors of u. LCA(u, z) is thus a common ancestor for v and
z. Suppose towards a contradiction that LCA(v, z) 6= LCA(u, z), thus it is
a descendant of LCA(u, z) and an ancestor of LCA(u, v). But then it is an
ancestor of both u an z and it is lower than LCA(u, z), a contradiction.

Case (i) has two subcases: either LCA(u, v) ∈ {u, v, z}, corresponding

a

b

c
a b c

a b c

a

b c
a

b

c

Figure 5.2: The five possible configurations for the minimal tree topology
induced by an unordered set of three labels.
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to the rightmost configuration in Figure 5.2, or LCA(u, v) /∈ {u, v, z}, corre-
sponding to the second configuration from the left.

Case (ii) has three subcases: either both the distinct LCAs are in {u, v, z},
or none of the two is, or finally one is in {u, v, z} and the other is not. The
first subcase corresponds to the leftmost configuration in Figure 5.2, the
second subcase to the fourth configuration from the left. For the third
subcase, either the external LCA is an ancestor of all of the three {u, v, z},
corresponding to the third configuration, or it is an ancestor of two nodes
and a descendant of the third one, say u. In the latter case, though, the
external node would be the only child of u, and thus would be contracted
by definition of MTTT (u, v, z), leading again to the rightmost configuration
of Figure 5.2.

In the case of fully-labeled trees, the definition of LCA of two nodes and
MTT of three nodes can trivially be extended to the LCA of two labels and the
MTT of three labels, as there is a one-to-one correspondence between nodes
and labels. From now on, for ease of presentation, given two nodes u and v
and their respective labels a and b, we will use LCA(u, v) or LCA(a, b) inter-
changeably. When modeling tumor progression, though, to have a bijection
between nodes and labels (i.e., mutations) is quite a strong assumption, as
multiple mutations often appear at the same time in the evolutionary his-
tory of cancer. We thus relax our assumptions and consider multi-labeled
instead of fully-labeled trees.

A rooted, unordered tree T is multi-labeled if there exists a surjective
function N : λ(T ) → VT that labels each node of T with a set of labels
from λ(T ): note that, in this model, each label is assigned to one and only
one node of T . We extend the definition of lowest common ancestor of two
labels for a multi-labeled tree as follows: if a ∈ λ(T ) and b ∈ λ(T ) label
the same node u, then LCA(a, b) = u; if they label two distinct nodes u, v,
then LCA(a, b) = LCA(u, v). This allows us to straightforwardly extend the
definition of minimal tree topology of three labels for multi-labeled trees.
There are only four possible additional configurations for the minimal tree
topology of multi-labeled trees, shown in Figure 5.3.

Lemma 7. Given T multi-labeled and a, b, c ∈ λ(T ), there exist nine con-
figurations for MTTT (a, b, c).

Proof. Besides the five possible configurations already listed in the proof of
Lemma 1, the multi-labeled model admits four additional configurations,
due to the extension of the definition of LCA of two labels. In the first three
additional cases, two labels are assigned to the same node and the third one
to a different one. Without loss of generality, suppose that a and b label
the same node. These cases are: (i) LCA(a, b) = LCA(b, c) = LCA(a, c) and
the LCA is a node in {a, b, c}, (ii) LCA(a, b) 6= LCA(b, c) = LCA(a, c) and both
LCA are nodes in {a, b, c}, and (iii) LCA(a, b) 6= LCA(b, c) = LCA(a, c) and only
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Figure 5.3: The four additional possible configurations for the minimal tree
topology of multi-labeled trees induced by an unordered set three labels.

LCA(a, b) is a node in {a, b, c}. The remaining case (iv) is the simplest one in
which a, b, c label the same node of T , implying that LCA(a, b) = LCA(b, c) =
LCA(a, c).

5.2.2 Extension to poly-occurring labels

We further extend our model of tumor phylogeny by allowing the same label
of λ(T ) to be assigned to multiple nodes of T . An element of λ(T ) that labels
more than one node of T is said to be a poly-occurring label. To the best
of our knowledge, none of the existing tools is able to handle poly-occurring
labels: indeed, although some of them accept input trees with poly-occurring
labels, they simply disregard the multiple occurrences of a same label.

Since it is often the case where the inferred evolutionary history involves
the appearance of the same mutation in multiple events, a meaningful com-
parison between tumor phylogenies cannot overlook such a phenomenon. To
consider poly-occurring labels in our similarity measure, we extend the def-
inition of minimal tree topology. First, note that if a label occur multiple
times in the tree, then N maps each label to one or more nodes in VT . Then,
we define the minimal tree topology of poly-occurring labels a, b, c, denoted
by M, as follows, where t indicates the multiset union:

MT (a, b, c) =
⊔

u∈N(a),v∈N(b),z∈N(c)

MTTT (u, v, z)

In other words, the minimal tree topology of three labels is the multiset of
all the minimal tree topologies of the nodes where a, b, and c appear. We
remark that in this setting MT is a multiset of configurations, thus the same
configuration may appear multiple times in MT .

5.2.3 Similarity measure between trees

We are now able to define a similarity measure between fully-labeled trees
with poly-occurring labels. Let S be a multiset and let |S| be its cardinality.
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We define the number of shared configurations of labels a, b, c between two
trees T1 and T2 as N(a, b, c) = |MT1(a, b, c) u MT2(a, b, c)|, i.e. the cardinality
of the multiset intersection, and the maximum number of configurations of
the triplet in the trees as D(a, b, c) = max{|MT1(a, b, c)|, |MT2(a, b, c)|}.

Based on these two values we define multiple variations of the Multi
Poly-occurring labels triplet-based (MP3) similarity measure that we will
later combine into a single score. We define MP3∩ as the similarity computed
between triplets of labels shared by the two trees:

MP3∩ =

∑
(a,b,c)∈I

N(a, b, c)∑
(a,b,c)∈I

D(a, b, c)
(5.1)

where I is the set of triples in λ(T1) ∩ λ(T2). Due to the nature of only
considering the subset of labels that appears in both trees, MP3∩ is a conser-
vative measure, therefore we present a variation that consider all possible
configurations in both trees, thus having a wider view:

MP3∪ =

∑
(a,b,c)∈J

N(a, b, c)∑
(a,b,c)∈J

D(a, b, c)
(5.2)

where J is the set of triples in λ(T1) ∪ λ(T2). Differently from MP3∩, MP3∪
weighs also the the labels that appear only in one of the trees. Note that,
for every pair of trees, MP3∪ ≤ MP3∩, as the numerator remains identical in
both, while the denominator of MP3∪ has all the elements in MP3∩ with the
addition of the values of D for the triples present only in one of the input
trees.

Although MP3∩ and MP3∪ are closely related, they provide two different
views of a tumor phylogeny. Indeed, on one hand MP3∩ measures how similar
the shared history of two tumor phylogenies is, i.e. it provides an idea of
how well the two progressions can be reduced to the same subsequence of
common mutations. On the other hand, MP3∪ measures how similar the
whole histories of the two evolutions are, i.e. it considers the impact of
mutations acquired (or lost) in only one progression.

Since the previous measures capture different aspects of the progressions,
we want to combine them into a single, usable and powerful similarity mea-
sure that couples the strengths of both. The most intuitive method is to
simply use a mean. We opted for the geometric mean: MP3G =

√
MP3∩ · MP3∪.

This function is not completely satisfactory, as a uniform function of 5.1
and 5.2 is not able to comprehensively capture the nuances in the input
trees. Therefore we developed a weighted mean with an intentional bias
towards MP3∩ to catch inner similarities in different trees. Such combination
then tends to be closer to MP3∩ when the trees are similar while moving
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towards MP3∪ as the trees are less similar:

MP3σ = MP3∪ + σ(MP3∩) ·min{MP3∩ − MP3∪, MP3∪},

where σ(x) = (1 + e−µ(x− 1
2

))−1 is the classic sigmoid function centered in
1/2 and µ is used to adjust the slopeness of the curve; we set µ = 10 in our
experimentation. In addition, the sigmoid polarizes the values close to 1/2,
thus helping to decide whether they are closer to 1 or 0, therefore moving
the final score closer to MP3∩ or MP3∪.

We show here an experimental comparison of the different versions of
MP3, demonstrating the reason we decided to use MP3 σ as our default mea-
sure. We show in Figure 5.4 (a) that MP3 σ combines the best aspect of MP3

∩ and MP3 ∪ while MP3 G is, as expected, the average of the two. The same
result can be seen in Figure 5.4 (b), while Figure 5.4 (c) display the effect of
the sigmoid, where as the trees become less similar the value move towards
the union.

While all four measures are available in our implementation, we decided
to use MP3σ as default measure and is denoted simply as MP3.

(�) (�)

(�)

Figure 5.4: (a) Heatmaps displaying the scores between all the 150 simulate
trees from the second experimental setting. (b) Distribution of the similar-
ities between the trees in the same class (Intra-similarity) and in different
classes (Inter-similarity) for the 5 classes. (c) Effect of label duplication on
the similarity scores. Similarities are the average of 15 trees generate from
the same base with the specified value of maximum duplication from the
previous experiment.
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5.3 Results

5.3.1 Simulated Data

To perform our experiments we follow an approach similar to the one per-
formed in [38]. We start from a base tree on which we apply a series of per-
turbations selected from: label swapping, label removal, label duplication,
node swapping and node removal. Both the perturbations and the nodes
and labels on which they are applied are chosen at random: our procedure
allows to select a user-specified total number of actions and a probability
vector that will be used to select the perturbations from the previous list.

For the measure comparison experiments, we generated 30 perturbations
from each of the 5 base trees, for a total of 150 trees. For the clustering
evaluation, 3 base trees are entirely different from each other, and another
2 are perturbations of two of the others, to simulate similar sub-families
of the same tumor type: we perform a total of 10 perturbations on such
5 trees. More details on the perturbation parameters will be described in
each section, while the entire configuration is available and reproducible at
https://github.com/AlgoLab/mp3treesim supp.

5.3.2 Measures comparison

We compared MP3 against all the different versions of DISC and CASet
from [38] and MLTD [79]. While MP3 and MLTD provide similarity scores,
DISC and CASet compute a dissimilarity score, that we convert into a sim-
ilarity measure by simply subtracting their value from 1.

Effect of changes in the tree topology

A key feature a measure on tumor phylogenies should have is to discern
changes at different tree depths; indeed, a change close to the root should
be more impactful than a change towards the leaves. Such a behavior is
fundamental, as driver mutations are often acquired early in the evolutionary
history, while less important passenger mutations usually happen at later
stages: to mistake the two types of mutations should therefore have a high
impact on a good similarity measure.

To estimate this effect on all the measures, we start from a linear base
tree (T0 in Figure 5.5 (Left)); we then raise its only leaf one level at the
time and compute its similarity to the base tree, expecting a drop in simi-
larity as the leaf raises to the root, similarly to experiment proposed in [38].
Figure 5.5 (Left) clearly displays such effect for MP3, showing that it has the
highest similarity decrease among all measures; DISC and CASet also have
similar trends, but to a lower extent. Since the set of labels is the same for
all trees, there is no difference between union and intersection versions of
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DISC and CASet. Contrarily, as already observed in [38], MLTD plateaus
after the first change.

Another interesting aspect to investigate is how the presence of poly-
occurring labels influences the similarity scores, as the more sophisticated
the inference tools get, the more is common to have tumor phylogenies with
multiple acquisitions or losses of the same mutation. To evaluate this aspect
we started from a multi-labeled base tree with all labels occurring only once.
We then created 15 perturbed trees for 5 different configurations. In the
first one (on the abscissa 0 in Figure 5.5 (Right)) we allowed one operation
excluding label duplication; for the others we allowed a total of 1, 3, 5 and
7 operations with much higher chance of selecting a label duplication. Since
perturbations occur randomly, we are only sure that at most the specified
number of duplication occurred, and not necessarily to the same label.

Figure 5.5 (Right) shows that CASet∩, CASet∪, DISC∩ and DISC∪ have
similar trends in this setting, MP3 being the only one that differs. In par-
ticular, the other measures assign an higher similarity score to the second
configuration than to the first one, despite they are both obtained with
one perturbing operation, allowing label duplication only in the second one.
MP3 is the only measure that positively displays a monotonic decrease in
similarity as the number of poly-occurring labels increases, being markedly
steeper than the others. We believe that a larger steepness will be more
informative than a plateauing curve, since while being true that after many
of poly-occurrences no more information is gained, all the duplications will
inevitably add more and more noise to the tree. Since MLTD assumes that
every label appears only once, it failed to run on this experiment and was
therefore excluded.

Results on simulated data

To analyze the differences between all measures we designed two experimen-
tal settings: from 5 different base trees we generated 30 perturbations for
each class and computed similarities scores between all the 150 resulting
trees. In the first configuration we allowed a total of 3 operations excluding
label duplications, while in the second one we allowed them. All the parame-
ters and the different probabilities used for applying perturbations are avail-
able at our supplementary repository https://github.com/AlgoLab/mp3treesim supp.

Results for the first configuration are shown in Figure 5.6. The heatmaps
(Left) show that MP3 discerns the best between the trees in the same class
(main diagonal) and the others: the results of DISC∪ are really close to ours,
but there is a more noticeable noise outside the main diagonal. DISC∩ and
CASet∪ present even more noise than the others, but are still mostly able to
distinguish the different classes; CASet∩ seems to struggle the most on this
setting, while MLTD displays high values of similarities for every couple of
trees, but it is still able to differentiate between the bases.
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Figure 5.5: (Left) Effect of a node (highlighted in red) that ascends from leaf
to child of the root, T0 is the base tree to which the others are compared.
(Right) Effect of label duplication on the similarity scores. Similarities are
the average of 15 trees generated from the same base with the specified
maximum number of duplications. MLTD was excluded since it failed to
run on instances with poly-occurring labels.

The boxplots in Figure 5.6 (Top-Right) show the same result quantita-
tively: the crucial feature is to correctly distinguish the different classes. The
values represent the distribution of the similarities between the trees in the
same class (Intra-similarity) and in different classes (Inter-similarity). MP3

differentiates better between intra and inter similarity, exhibiting the most
compact distribution for the inter-similarities scores, while being a little
more dispersed on the intra-similarity due to the action of the sigmoid, that
pulls apart the values around 1/2. Similarly to the previous case, DISC∪,
CASet∪ and MLTD show similar trends, while CASet∩ displays the most
overlapping distributions.

Lastly, in Figure 5.6 (Bottom-Right), we computed a silhouette score
from the data using a hierarchical linkage clustering with cuts from 2 to
15 to simulate a clustering scenario. Once again, MP3 performs the best
expressing the maximum value for 5 cuts, being the five classes. DISC∩,
DISC∪ also show the largest value at the same cut. MLTD was excluded
from the plot since it scored values close to −1 for every cut, thus causing
the figure to be hard to interpret.

In the second experimental setting we introduced poly-occurring labels
to the simulation. Figure 5.7 exhibits results very similar to the previous
ones. The main difference is that in the silhouette score (Bottom-Right)
MP3, while still having its maximum value in correspondence of 5 cuts, is
slightly lower than the other measures. On this experiment MLTD, not
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Figure 5.6: Results for the first experimental configuration: (Left) Heatmaps
displaying the scores between all-pairs 150 simulate trees. (Top-Right)
Distribution of the similarities between the trees in the same class (Intra-
similarity) and in different classes (Inter-similarity). (Bottom-Right) Silhou-
ette score computed using a hierarchical linkage clustering with cuts from 2
to 15.

allowing poly-occurring labels, failed to compute the score in most of the
instances, shown in grey in the heatmaps (Left); it was excluded from the
other plots given the high amount of failed runs. On the other hand, CASet
and DISC accept input trees with poly-occurring labels, but they disregard
the multiple occurrences of a same label, considering only one occurrence
for each label in the computation.

5.3.3 Application to clustering of trees

A very important application of a tree similarity measure is clustering, e.g.,
to classify cancer type of patients by the similarity of their inferred phylo-
genies. This is of crucial interest for the development of precision therapies
based on the topological structure and the evolution of mutations. Since to
curate such classifications manually would be unfeasible as the size and the
number of mutations increases, a good measure to use in conjunction with
a clustering method is necessary.

To evaluate a similar scenario we started from 3 different bases, then
perturbing two of such trees chosen at random; these new trees are then
considered as additional base trees. Given this 5 bases we created a total of
10 perturbed trees from each class. The goal was to simulate an experiment
with three separate classes, with two of them further split in two subclasses,
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Figure 5.7: Results for the second experimental configuration: (Left)
Heatmaps displaying the scores between all the 150 simulate trees. (Top-
Right) Distribution of the similarities between the trees in the same class
(Intra-similarity) and in different classes (Inter-similarity). (Bottom-Right)
Silhouette score computed using a hierarchical linkage clustering with cuts
from 2 to 15.

to obtain subtypes of the same cancer families.
Results for the clustering experiment are reported in Figure 5.8; (a)

shows the clustermaps computed using hierarchical linkage clustering. MP3,
DISC∩ and DISC∪ correctly cluster the three main families as well as the
two sub-families, while both versions of CASet struggle the most in this
experiment. Figure 5.8 (b) displays the distribution of intra- and inter-
similarity between the five bases; MP3 has the most compact inter-similarity
distribution and is the only method that completely separates intra- and
inter-distributions. The high number of outliers for all methods is due to
the high similarity of the two subclasses. To confirm this hypothesis we
computed the same distributions only for the three main classes, remapping
the subclasses to the original corresponding base class in (d), where we note
that the number of outliers is significantly reduced. Finally, Figure 5.8 (c)
shows the silhouette scores for the dataset; all measures express a higher
score with 3 cuts, suggesting that the two subclasses are very similar to the
two main bases they are derived from. The scores are very similar for all
measures, with DISC∪ having a higher value with 3 cuts and MP3 having a
slightly higher with 5 clusters. CASet∩ is the only method that have a much
higher score in 5, however, as shown in (a), the five clusters it reports are
not the correct ones. MLTD was excluded from this experiment because it
failed to run on most instances due to poly-occurring labels.
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Figure 5.8: Results for the clustering experiment: (a) Clustermaps of the 50
simulated trees computed using hierarchical linkage clustering. (b) Distribu-
tion of the similarities between the trees in the same class (Intra-similarity)
and in different classes (Inter-similarity) for the 5 classes. The high number
of outliers for all methods is due to the high similarity of the two subclasses.
(c) Silhouette score computed using a hierarchical linkage clustering with
cuts from 2 to 15. (d) Distribution of the similarities between the trees in
the same class (Intra-similarity) and in different classes (Inter-similarity) for
the three main classes, remapping the subclasses to the original correspond-
ing base. MLTD was excluded from this experiment because it failed to run
on most instances due to the presence of poly-occurring labels.

5.3.4 Application to real dataset

To further evaluate our similarity measure, we applied it to two publicly
available real datasets: breast cancer xenoengraftment in immunodeficient
mice [42] and ultra-deep-sequencing of clear cell renal cell carcinoma [51].
Both datasets were previously considered for analyses by the two cancer
phylogeny reconstruction methods LICHeE [107] and MIPUP [72]. Data
from [42] was also used in [38] for evaluation. An interesting feature of the
data in [51] is that most samples in the study present poly-occurring labels,
suggesting recurrent mutations at different evolutionary stages. We recall
that DISC and CASet compute dissimilarity scores, that we convert into a
similarity measure subtracting their value from 1.

To evaluate the effectiveness of the measures in real scenarios, we selected
the manually curated trees, published in the corresponding original sequenc-
ing studies, for case SA501 from [42] and for patient RMH002 from [51]. We
then computed similarities between these reference trees and the ones in-
ferred by LICHeE and MIPUP, as reported in [72].

The reference RMH002 is very similar to the evolutions inferred by
LICHeE and MIPUP, thus most of the measures agree on a high similarity
score, as reported in Figure 5.9 (Left), with the exception of CASet∪. The
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scores computed by MP3 are higher than the others, possibly because it is
the only method to correctly identify and process poly-occurring labels in
the reference trees, due to the discovered recurring mutations. Differently
from the previous analysis, the measures disagree considerably for SA501,
as depicted in in Figure 5.9 (Center). Indeed, MP3 reports a similarity value
close to 0, suggesting that the considered trees are quite different, whereas
the other measures report a higher similarity, especially DISC scoring up to
60% similarity.

To thoroughly investigate this behavior, we defined some näıve approaches
used as a proxy to analyze some basic aspects of the trees, such as the count
of pairs of labels appearing in the same node in both trees. Even with such a
näıve measure, the reference tree for SA501 from [42] and the trees inferred
by MIPUP and LICHeE disagree considerably. The base tree contains only
50 labels, whereas the trees inferred by LICHeE and MIPUP contain 95 and
158 labels, respectively; of these, the reference shares a total of 24 label with
LICHeE and 37 with MIPUP. Most importantly, only 54 out of 1759 pairs
of labels appear in the same node both in the reference and LICHeE and
124 out of 8424 in MIPUP. Such evaluations, albeit very simplistic, suggest
that the trees are indeed dissimilar and thus a lower score, as provided by
MP3, is more reasonable than a high value of similarity.

To better understand this phenomenon, we created the edge case of a
single-node tree with all the 158 labels from MIPUP, and compared it against
the reference SA501. The resulting values in Figure 5.9 (Right) show a high
similarity score for DISC with values up to 69%, with CASet and MLTD
being less influenced by this aspect with scores up to 11% and 20%. On
the other hand, MP3 clearly defines the trees as extremely dissimilar, with
a score of 0.04%. Such results for trees that are clearly extremely different
show a strong bias for DISC towards high similarity values.

LICHeE MIPUP
MP3 0.997 0.897
CASet∩ 0.805 0.779
DISC∩ 0.930 0.876
CASet∪ 0.569 0.551
DISC∪ 0.764 0.725
MLTD 0.842 0.807

LICHeE MIPUP
MP3 0.017 0.004
CASet∩ 0.139 0.111
DISC∩ 0.627 0.624
CASet∪ 0.260 0.113
DISC∪ 0.405 0.610
MLTD 0.182 0.205

Edge case
MP3 0.0004
CASet∩ 0.0927
DISC∩ 0.5571
CASet∪ 0.1120
DISC∪ 0.6933
MLTD 0.2046

Figure 5.9: (Left) Similarities between the manually curated tree reported
in [51] for patient RMH002 and the trees inferred by LICHeE and MIPUP.
(Center) Similarities between the manually curated tree reported in [42]
for sample SA501 and the trees inferred by LICHeE and MIPUP. (Right)
Similarities between the manually curated tree reported in [42] for sample
SA501 and the edge case with all mutations appearing in a single node.
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Figure 5.10: Results for the clustering experiment: Hierarchical clustering
obtained from 36 medulloblastoma patients [66]. The trees were computed
from the available scRNA-seq datasets using the inference tool SCITE [75].
The colors indicate the true tumor subtype of each patient.

5.3.5 Application to clustering of patients

As a final evaluation of the measures we computed a clustering of 36 medul-
loblastoma patients from [66]; the patients are classified according to four
different subtypes of tumor. From the available scRNA-seq data we inferred
the cancer phylogeny of each patient using SCITE [75]; we then computed
the similarities between all the inferred trees and used them to perform a
hierarchical clustering.

Figure 5.10 displays the clustering results for all the measures; in partic-
ular using MP3 is possible to distinctively group the patients in their relative
subtypes with only a few mismatched trees. A similar result is achieved by
CASet∩, while the other measures tend to cluster together subtypes SHH
and WNT, without a clear distinction between them.

5.4 Discussion

We identified two major limitations in the existing methods to compare
tumor phylogenies: first, they are not sensitive enough to detect even major
differences in the topology of the trees, as we demonstrated with ad-hoc
experiments. Second, they are not able to meaningfully compare trees where
the same label is assigned to more than one node.

We addressed the latter by representing tumor phylogenies as multi-
labeled trees with poly-occurring labels. Such model is best suited to cancer
progression than the ones previously adopted, as it allows the same mutation
to appear in multiple evolutionary events, a circumstance often occurring in
real applications. Being inspired by the triplet distance for classical phyloge-
nies, our new similarity measure correctly detects differences in the topology
of the trees.
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Our experiments show that our method performs very well both on syn-
thetic and real data and, unlike the other existing tools, it is able to detect
differences regarding poly-occurring labels and it suitably distinguish trees
with different topologies. Moreover, when applied to hierarchical clustering,
it outperforms every other method.
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Chapter 6

Tumor phylogenetic pipeline

In the recent years there has been an increasing amount of single-cell se-
quencing (SCS) studies, producing a considerable number of new datasets.
This has particularly affected the field of cancer analysis, where more and
more papers are published using this sequencing technique that allows for
capturing more detailed information regarding the specific genetic mutations
on each individually sampled cell.

As the amount of information increases, it is necessary to have more
sophisticated and rapid tools for analyzing the samples. To this goal we de-
veloped plastic, an easy-to-use and quick to adapt pipeline that integrates
three different steps: (1) to simplify the input data; (2) to infer tumor phy-
logenies; and (3) to compare the phylogenies.

We have created a pipeline submodule for each of those steps, and de-
veloped new in-memory data structures that allow for easy and transparent
sharing of the information across the tools implementing the above steps.

While we use existing open source tools for those steps, we have ex-
tended the tool used for simplifying the input data, incorporating two ma-
chine learning procedures — which greatly reduce the running time without
affecting the quality of the downstream analysis. Moreover, we have intro-
duced the capability of producing some plots to quickly visualize results.

6.1 Introduction

During the last few years we have witnessed an explosion of computational
tools to infer tumor phylogenies (also called cancer progressions) from single-
cell sequencing (SCS) data.

Most of the algorithmic research has so far focused on bulk sequenc-
ing data for inferring tumor phylogenies, mainly because of the widespread
availability and affordability of the next-generation sequencing (NGS) data
that are used, producing a large number of tools [125, 77, 60, 136, 107, 93,
45, 95, 116, 18, 127, 135]. From a computational point of view, the main
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characteristic of bulk sequencing data is that only the approximate propor-
tion of cells with any given mutation is observable, without distinguishing
the cells that carry them. Moreover, each sample contains a mixture of both
healthy and cancerous cells — the latter belonging to different and unknown
clones — therefore further introducing uncertainty.

More recently, the introduction of single-cell sequencing (SCS) technolo-
gies promises to greatly reduce such uncertainty, since the presence or ab-
sence of mutation is determined at the level of the cell. Unfortunately, SCS
is still much more expensive than bulk sequencing, hence limiting its adop-
tion in practice. Moreover, the quality of the data obtained from SCS is
not yet at par with bulk sequencing [80]. In fact, those datasets are affected
by some clearly identified problems: (1) doublet cell captures, that is, data
originating from two cells instead of one; (2) false negatives from allelic
dropout, that is, the presence of a mutation is not detected; and (3) missing
values due to low coverage. However, all three of these problems are slowly
fading away — the latter two driven by the reduction in cost that allows
a higher coverage, and the first due to the development of state-of-the art
approaches [37] are able to remove such artifacts.

Various methods have been recently developed for inferring tumor phy-
logenies given current SCS data [75, 113, 138, 137, 30, 43, 123], some of
them introducing a hybrid approach of combining both SCS and VAF (vari-
ant allele frequency, from bulk sequencing) data [110, 92, 115]. To trim the
search space and reduce the time needed to infer a phylogeny, most methods
rely on the infinite sites assumption (ISA), which essentially states that each
mutation is acquired at most once in the phylogeny and is never lost. This
assumption leads to a computationally tractable model of evolution called
perfect the phylogeny [55, 81].

However, some studies [87, 20] on cancer data provide strong hints that
the ISA does not always hold, the main reason is that cancers usually have
large independent deletions on separate branches of the phylogeny [20].
When those deletions span a shared locus, we observe multiple deletions
of the same mutation.

Relaxing the ISA greatly expands the search space, making it more diffi-
cult to develop efficient approaches. For this reason, the number of possible
mutation losses is usually bounded in any (more general) model which re-
laxes the ISA. While the general Dollo model [47, 111] does not impose any
restriction on the number of losses, more restricted models are the Dollo-k
and the Dollo-1 (also known as the persistent phylogeny[14, 15]).

Even though relaxing the ISA increases the complexity, some methods
have appeared, such as TRaIT [110], SiFit [138], SASC [30] and SPhyR [43].
The latter is extremely relevant to our context, as it introduces the idea of
clustering the input SCS matrix to reduce the running time. In [29] this idea
is further developed, by devising a clustering method tailored to SCS data
— while SPhyR instead relied on the ubiquitous k-means [97, 9] algorithm.
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Since SCS data are becoming cheaper to produce, we expect the datasets to
increase more rapidly than computing power, as mentioned explicitly in [80].
Therefore including some steps to reduce the instance matrix will become
even more common in the next years.

The availability of so many tools for inferring tumor phylogenies, not
to mention the parameters that those methods routinely have, means that
it is easy to have several different phylogenies from the same SCS dataset,
motivating the search for methods that are able to compare and cluster
those phylogenies — a large cluster with several highly similar phylogenies
is likely to be more reliable, since the underlying evolution is confirmed by
multiple methods. In this direction, some methods to measure the distance
between two tumor phylogenies have recently been proposed [38, 79, 54, 10,
11, 26, 74]. While these measures vary greatly in practical applicability,
they all express the need for incorporating the evolutionary process into the
definition of distance.

Our discussion so far shows that tumor phylogeny inference is crystal-
lizing into different, well-established steps that are combined to obtain a
complete tool that starts from an SCS dataset and ends with one or more
phylogenies together with some rough idea of their relationships. Still, how
to combine those steps is largely ad-hoc, making it more time consuming
than is necessary to develop a complete pipeline.

With the goal of making the analysis of cancer data more streamlined,
we developed plastic (PipeLine Amalgamating Single-cell Tree Inference
Components), an integrated and easy to use tool that includes clustering,
phylogeny inference, and comparison steps. The plastic tool is developed
in Python submodules and can be easily integrated into any script or used
inside an interactive notebook, such as Jupyter Notebook, to facilitate the
reproduction of research results. Currently, plastic incorporates the pub-
licly available tools celluloid, SASC, and MP3 — respectively for the clustering,
inference, and distance steps — but provides the infrastructure to easily ex-
tend it to incorporate any other tool. In fact, plastic provides unified
in-memory data structures to manage the communication between steps.

Moreover, the current strategies for trimming SCS datasets focus on
reducing the number of mutations, while leaving the set of cells unchanged.
We have divided the clustering step into two parts: first reducing the number
of cells, then reducing the number of mutations. We have explored two
strategies for the first part that has been proven to be useful in the past,
namely, ridge regression [65, 96] and autoencoder [133].

Ridge regression is a variant of least squares regression, which deals with
the trade-off between bias and variance while fitting the regression line. As
compared to least squares regression, ridge regression consist of an l2 penalty
on the regression coefficients (see Equation 6.1). This penalty term in ridge
regression helps to introduce some bias, which eventually helps to reduce
the variance while fitting the regression line (hence regularizing the fit). In
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least squares regression, since we do not have the bias, there will be a high
variance while fitting the line. Ridge regression has been successfully used
in the literature for dimensionality reduction [21, 73, 90].

Autoencoder is an unsupervised approach based on artificial neural net-
works. It takes as input the data matrix, encodes it into a latent space (of
reduced dimension), and then tries to reconstruct the original input from
the latent space. During the reconstruction process, it tries to minimize
least squared error. Autoencoder has been successfully used in the litera-
ture for dimensionality reduction [109, 67, 33, 1]. For further detail about
ridge regression and autoencoder, please refer to Section 6.2.1. The idea
with both ridge regression and autoencoder is that we can perform down-
stream clustering (tree inference, etc.) in reduced dimensional data, rather
than applying clustering, etc., on the high dimensional data, resulting in
reduced downstream runtimes.

We have run two different experiments: one on real data to showcase
all features of plastic, including its capability to plot clustering of muta-
tions (i.e., the output of the clustering step) and trees; and the second on
simulated data, to assess the reduction in running time stemming from the
reduction in the number of cells provided by the two dimensionality reduc-
tion strategies mentioned above. The plastic tool and all data needed to
reproduce the analysis can be found at https://github.com/plastic-phy,
including the source code of the Jupyter notebook used for the real data ex-
periment, witnessing the simplicity of our approach. The plastic tool is
available under the MIT license.

6.2 Methods

We have developed an integrated, modular, and extendable tool for inferring
and comparing cancer progressions (also referred to as tumor phylogenies)
called plastic, which integrates three separate steps into a single program
that shares the same data structure among these steps. These three steps are
(1) input matrix reduction, (2) tumor phylogeny inference, and (3) tumor
phylogeny comparison.

One of the main contributions of our paper is the integration of different
tools that usually have specific on-disk input and output file formats, there-
fore needing a parsing step to process the input, and a dedicated procedure
to produce the output. Instead, plastic uses in-memory data structures to
share all information across the methods.

In particular, plastic provides an SCS matrix data structure that is
enriched with some additional information that can be shared among the
different steps, and a phylogeny tree structure that is used for communica-
tion between the phylogeny inference and the phylogeny comparison steps.
Such structures are transparent to the user and contribute many additional

99

https://github.com/plastic-phy


SCS matrix

GraphViz Tree

Figure 6.1: Graphical representation of the plastic framework and the
interaction between its components and with the input/output files.

functionalities without complications from the end-user perspective.
Furthermore, given the nature of plastic, we added some graphical

capabilities, so that each step of the pipeline can be displayed within an
interactive notebook or be exported to separate files.

Finally, notice that each step is optional, therefore allowing the execution
of the entire pipeline, or only of a part of it. A schematic of our plastic tool
is depicted in Figure 6.1. We now introduce some of the new dimensionality
reduction features we have added to plastic, as follows.

6.2.1 Dimensionality Reduction

Dimensionality reduction is a popular approach to enhance the performance
of machine learning algorithms and to avoid the problem of the “curse-of-
dimensionality” [5, 6]. To increase the clustering performance and reduce
the runtime for clustering, we use two dimensionality reduction approaches,
namely ridge regression [65, 96] and autoencoder [133].

The main goal of ridge regression (RR) is to find a linear function, which
models the dependencies between covariate variables and univariate labels.
Although ridge regression is an older approach, it is still successfully used in
order to reduce the dimensions of current datasets [21, 141]. Ridge regres-
sion help to find a subspace, which most compactly expresses the target and
rejects other possible but less compact candidates [73]. It works by intro-
ducing a bias term — the goal of ridge regression is to increase the bias (by
changing the slope of the regression line) in order to improve the variance
(generalization capability). The general expression for ridge regression is as
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follows:
min(sum of square residuals + α× slope2) (6.1)

where (α × slope2) is an l2 penalty term. Ridge regression gives insights
on which independent variables are not informative (independent variables
for which we can reduce the slope close to zero). We can eliminate those
independent variables to reduce the dimensions of the data. Note that after
the dimensionality reduction, we are left with the variables from the actual
data and not some latent variables.

Autoencoder (AE) is an unsupervised artificial neural network based
approach used for dimensionality reduction [132, 134]. It consists of three
the components: encoder; code; and decoder (pictured in Figure 6.2). The
encoder component compresses the input data and produces the code (low
dimensional latent-space representation). The decoder component then re-
constructs the input only using this low dimensional representation only
(hence an unsupervised approach). The low-dimensional data (in the code
component) is a compact summary, or compression of the input. This com-
pact data is used as the reduced dimensional representation of the original
data. The activation function used for the encoding component is the recti-
fied linear activation function (ReLU), while we used the sigmoid function
for the decoding. The loss function that we used in our experiments is the
least squared error. The optimizer that we use is Adadelta [106], a stochas-
tic gradient descent method which is based on adaptive learning rate per
dimension. It is a popular optimizer used in autoencoder because it avoids
the continual decay of learning rates throughout training. It also helps to
decide the global learning rate, hence not requiring to select it manually.

6.3 Results

Here we present our results on both real and simulated data.

6.3.1 Real data

As a result, we show a complete workflow example on a real medulloblastoma
dataset [66]. In particular, we will explore a full pipeline analysis where
multiple samples are taken into account. For each sample: mutations are
clustered using celluloid ; phylogeny trees are reconstructed using SASC; and
finally, the patients are clustered using MP3 as similarity measure between
them.

The sequencing study consists of 36 patients that we want to cluster into
different subtypes. To simulate a real case scenario, where such information
is not available, we started from SCS binary matrices, one for each patient,
and we clustered mutations using celluloid (k = 50), for which we can see a
summary in Figure 6.3.
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Figure 6.2: The autoencoder architecture. The encoder takes input data and
maps it to a latent space (code component) of reduced dimension. The de-
coders code back the latent representation to the output. This architecture
learns to compress data by reducing the reconstruction error (least squared
error).

GSM3905413_MUV29 GSM3905430_SJ970 GSM3905423_SJ454 GSM3905438_Med411FH GSM3905432_Icb1299 GSM3905416_MUV39 GSM3905414_MUV34 GSM3905407_BCH825 GSM3905441_RCMB24

GSM3905419_SJ17 GSM3905421_SJ129 GSM3905439_RCMB18 GSM3905436_Med211FH GSM3905411_MUV19 GSM3905406_BCH807 GSM3905410_MUV11 GSM3905433_Icb1572 GSM3905428_SJ723

GSM3905427_SJ625 GSM3905431_DMB006 GSM3905409_BCH1205 GSM3905412_MUV27 GSM3905437_Med2312FH GSM3905434_Med114FH GSM3905429_SJ917 GSM3905420_SJ99 GSM3905424_SJ516

GSM3905425_SJ577 GSM3905408_BCH1031 GSM3905440_RCMB20 GSM3905415_MUV37 GSM3905435_Med2112FH GSM3905422_SJ217 GSM3905426_SJ617 GSM3905418_MUV44 GSM3905417_MUV41

Figure 6.3: Mutations clustered on SCS data computed by the celluloid
submodule and displayed by plastic for the 36 medulloblastoma patients
in the dataset of [66]. Different colors represent different clusters.
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Figure 6.4: Trees computed by the SASC submodule and displayed by
plastic for the 36 medulloblastoma patients in the dataset of [66]. Dif-
ferent colors represent different SCS support, as defined in [30].

After the first preprocessing step, we utilized the SASC submodule of
plastic to infer the evolutionary trees of each patient. As a proof of concept
we run it using the following parameters α = 0.25, β = 1×10−4, k = 0, d = 0
for whose definitions we refer to SASC ’s manuscript [30]. Once computed
we used the newly-added plotting feature to display the phylogenies using
the SASC-viz plotting feature to prettify the trees; the result is shown in
Figure 6.4.

As the last step, we then used the MP3 submodule to compute a matrix of
similarity-scores between all the trees and then used it to cluster the patients
according to a hierarchical clustering method. We then displayed the final
clustering of the patients in Figure 6.5.

6.3.2 Simulated data

To evaluate the performance of the input matrix reduction methods that
we present here, we designed a two-fold experiment on synthetic datasets.
We first measure the quality of the matrix obtained from the reduction step
— in this case we have a ground truth that we can use for the evaluation.
Second, we evaluate the accuracy and runtime of the downstream phylogeny
inference tools when given as input the reduced instance from the first step,
to assess that our reduction step is actually useful. This is similar to the
experimental approach taken in [29].

The simulated data are generated as follows. First we generate a random
tree topology on s nodes, each representing a tumor clone, by first creating a
root (the germline) and then iteratively attaching the s−1 remaining nodes
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Figure 6.5: Clustermap based on the similarity between the trees computed
by the mp3 submodule of plastic for the 36 medulloblastoma patients in
the dataset of [66].
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uniformly at random to any other node in the tree. The nodes are then
randomly labeled with m mutations — each mutation understood as being
acquired at the node that it labels. Then, a total of n cells are randomly
associated to the s nodes. Each cell harbours all of the mutations on the
path in the tree from the root to the node that the cell labels. A binary
n ×m matrix M is then obtained from the cells, where M [i, j] = 1 if cell
i harbours mutation j, otherwise M [i, j] = 0. Noise is then added to this
matrix according to the false negative, false positive and missing value rates,
to simulate a real single cell sequencing experiment. Each of the s nodes is
therefore considered as a natural (true) cluster of the simulated dataset.

We design three experiments, each with 100, 200 and 300 cells, respec-
tively. In each experiment, we generate 50 simulated datasets with its corre-
sponding number of cells, using the procedure mentioned above. In all three
experiments, the number s of clones is 20, and the number m of mutations
is 1000.

To each dataset of our experiments, we first performed dimensionality
reduction in the cells using both the ridge regression and autoencoder tech-
niques mentioned in Section 6.2. The number of dimensions selected in case
of autoencoder are 50, 100, and 150 for experiments 1, 2 and 3, respectively.
This number of dimensions, in each case, is selected empirically when the
least squared error for the loss function is minimized. The loss function gives
us the error value when autoencoder tries to reconstruct the input in the
decoder component. The main goal in this case is to reconstruct the input
as accurately as possible, giving rise to the respective numbers of dimensions
above. The number of dimensions selected in the case of ridge regression
is different for each dataset because ridge regression is a data driven tech-
nique, however the average number of dimensions for each of experiments 1,
2 and 3 is roughly 49, 97, and 146, respectively (see Table 6.1). Following
dimensionality reduction in the cells, we then clustered the mutations using
celluloid.

Evaluating input matrix reduction.

Because we are performing dimensionality reduction only on the cells, we
can still use the same measures of precision and recall used in [29], which
are based on how mutations are clustered together, as follows:

Precision: measures how well mutations are clustered together. For each
pair of mutations appearing in the same clone in the simulated tree,
we check if they are in the same cluster, resulting in a true positive
(TP ). For each pair of mutations clustered together that are not in
the same clone, we encounter a false positive (FP ). The value of the
precision is then calculated with the standard formula: TP

TP+FP .

Recall: measures how well mutations are separated. For each pair of
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Experiment mean ± SD

1 48.7± 2.51
2 97.0± 4.71
3 146± 5.85

Table 6.1: Number of cells selected by ridge regression from the exper-
iments. The mean (µ) ± standard deviation (σ) of the number of cells
selected from the 50 simulated datasets after applying dimensionality reduc-
tion using ridge regression. Calculations reported to three significant digits.
The original (full) table, from which these aggregates were performed, can
be found at https://github.com/plastic-phy/plastic/blob/master/

data/cells-ridge.csv

mutations in the same clone, we now also check if they are not in the
same cluster, resulting in a false negative (FN). The recall is then
calculated as: TP

TP+FN .

Notice that, just as in [29], we are mostly interested in obtaining a high
precision. The reason for focusing on obtaining high precision is that since
cancer phylogeny inference algorithms can later cluster together mutations
— for example, by assigning them to the same node or the same non-
branching path — however they cannot separate mutations that have been
erroneously clustered together. It is for this same reason that the number
(k) of clusters is carefully chosen with high precision in mind.

On the other hand, ridge regression does not allow to determine a priori
the number of cells that will be obtained. For this reason we report, in
Table 6.1, the distributions1 of the actual number of cells obtained.

Figures 6.6, 6.7, and 6.8 correspond to the precision and recall of the
clusterings of the mutations obtained after first applying dimensionality re-
duction in the cells of experiments 1, 2 and 3, respectively.

Evaluating the effect of the reduction step on downstream phy-
logeny inference

The goal of dimensionality reduction (in the cells) and clustering (of the mu-
tations) is to allow for a significant decrease in the runtime of the phylogeny
inference, the most expensive step in the pipeline — as long as it does not
worsen the accuracy. The idea is that, since the reduced matrix has much
fewer rows and columns, using it in place of the original matrix as input to
the phylogeny inference should result in much lower runtimes, at the risk of
decreasing the accuracy of downstream analysis, due to errors introduced in
the dimensionality reduction and clustering steps. The main observation is

1note that the variance of all three distributions is small
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Figure 6.6: Precision and recall results of the clusterings of the mutations
obtained for experiment 1, generated with 1000 mutations and 100 cells. The
first row corresponds the results obtained by clustering the mutations to k =
100 clusters using celluloid (no dimensionality reduction). The second and
third rows correspond to first applying a dimensionality reduction step on
the 100 cells, using ridge regression and autoencoder, respectively, followed
by the clustering of the 1000 mutations to k = 100 clusters (in the reduced
number of cells) using celluloid .
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Figure 6.7: Precision and recall results of the clusterings of the mutations
obtained for experiment 2, generated with 1000 mutations and 200 cells. The
first row corresponds the results obtained by clustering the mutations to k =
100 clusters using celluloid (no dimensionality reduction). The second and
third rows correspond to first applying a dimensionality reduction step on
the 200 cells, using ridge regression and autoencoder, respectively, followed
by the clustering of the 1000 mutations to k = 100 clusters (in the reduced
number of cells) using celluloid .

107



0.0 0.2 0.4 0.6 0.8 1.0

No Reduction

Ridge

Autoencoder

Precision

0.0 0.2 0.4 0.6 0.8 1.0

Recall

Figure 6.8: Precision and recall results of the clusterings of the mutations
obtained for experiment 3, generated with 1000 mutations and 300 cells. The
first row corresponds the results obtained by clustering the mutations to k =
100 clusters using celluloid (no dimensionality reduction). The second and
third rows correspond to first applying a dimensionality reduction step on
the 300 cells, using ridge regression and autoencoder, respectively, followed
by the clustering of the 1000 mutations to k = 100 clusters (in the reduced
number of cells) using celluloid .

that, if the clusters are highly precise, the decrease of the accuracy of the
downstream inference is negligible or small. Assessing this fact is the main
goal of our experimental analysis, based on the measures used in [28, 30]:

Ancestor-descendant accuracy: For each pair (m1,m2) of mutations
such that m1 is an ancestor of m2 in the ground truth, we check
whether m1 is an ancestor of m2 also in the inferred tree (TP ) or
whether it is not (FN). Moreover, each pair (m1,m2) of mutations
such that m1 is an ancestor of m2 in the inferred tree but not in the
ground truth, we consider that pair a false positive.

Different lineages accuracy: Similarly to the previous measure, we
check whether mutations in different branches (i.e., neither is an an-
cestor of the other) are correctly inferred or if any pair of mutation is
erroneously inferred in different branches.

Since these new dimensionality reduction techniques are built into the
plastic framework, one can customize a cancer phylogeny inference task
by:

1. choosing any (or none of the) dimensionality reduction steps from ridge
regression or autoencoder; followed by

2. clustering (or not) with celluloid ; and finally

3. phylogeny inference with SASC in either the reduced set of cells, or not.
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An extensive study of how clustering can reduce the runtime (and some-
times improve accuracy) of the downstream phylogeny inference appears
in [29], and so here we explore the further gains in runtime and/or accuracy
that might be achieved by adding a dimensionality reduction step. Hence,
in our experiments, we try three different choices for the reduction step —
ridge regression, autoencoder, and no dimensionality reduction to produce a
matrix to be given to celluloid (notice that SASC will receive the matrix on
the original set of cells, but with the clustered mutations). Moreover, when
applying ridge regression, we also provide the reduced set of cells to SASC,
hence resulting in four different settings — when no dimensionality reduction
is performed, the reduced and the original sets of cells are the same, while
autoencoder produces reduced matrices in its learned latent tensor space,
which is not an SCS matrix that can be fed to SASC. We always perform the
clustering step, because 1000 mutations is prohibitive for the downstream
phylogeny inference (see [29]).

Figures 6.9, 6.10 and 6.11 report the ancestor-descendant and different
lineages accuracy measures of the trees obtained by running plastic with
the four settings mentioned above. From the results, it is clear that when
dimensionality reduction is followed by inference in the original set of cells,
there is no noticeable loss in accuracy. In these two cases, the clustering is
still performed in the reduced set of cells, providing a speedup at no cost. On
the other hand, we see a slight loss of accuracy in the ancestor-descendant
measure when ridge regression is applied, and the resulting reduced set of
cells is used also in the inference step.

We have investigated the speedup provided by ridge regression. In Fig-
ure 6.12 are represented the running times of celluloid with and without
first applying ridge regression, as a function of the number of mutations.
More precisely, we take the first columns of the datasets of Experiment 1
(the number of mutations is the x axis).

Finally, in Table 6.2 we report the running times of SASC when ridge
regression is applied, and the resulting reduced set of cells is used also in
the inference step, that is, the case where we have observed a slight loss of
accuracy in the ancestor-descendant measure. In this case the phylogeny
inference is up to 100 times faster, making therefore possible to run SASC on
more mutations.

6.4 Discussion

Given the large amount of SCS cancer studies that are being published, there
is a need for a fast and easy-to-use framework that allows to perform the
needed analyses. We developed plastic with this goal in mind, a pipeline
composed of different submodules that allow for dimensionality reduction
on SCS cells, clustering of SCS mutations, inference of tumor phylogenies,
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Figure 6.9: Ancestor-descendant and different lineages accuracies of the trees
obtained by running plastic on the data of experiment 1. From the top,
the four rows correspond to the settings: no dimensionality reduction, just
clustering — No Reduction —; ridge regression + clustering in the original
set of cells — Ridge —; autoencoder + clustering in the original set —
Autoencoder —; and ridge regression + clustering in the reduced set —
Ridge(reduced).
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Figure 6.10: Ancestor-descendant and different lineages accuracies of the
trees obtained by running plastic on the data of experiment 2. From the
top, the four rows correspond to the settings: no dimensionality reduction,
just clustering — No Reduction —; ridge regression + clustering in the
original set of cells — Ridge —; autoencoder + clustering in the original set
— Autoencoder —; and ridge regression + clustering in the reduced set —
Ridge(reduced).
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Figure 6.11: Ancestor-descendant and different lineages accuracies of the
trees obtained by running plastic on the data of experiment 3. From the
top, the four rows correspond to the settings: no dimensionality reduction,
just clustering — No Reduction —; ridge regression + clustering in the
original set of cells — Ridge —; autoencoder + clustering in the original set
— Autoencoder —; and ridge regression + clustering in the reduced set —
Ridge(reduced).

Experiment celluloid RR + celluloid

1 37.7± 24.3 0.414± 0.0710
2 44.3± 21.2 0.832± 0.0682
3 34.2± 25.6 1.31± 0.112

Table 6.2: Runtimes of SASC on the experiments. The mean (µ) ± stan-
dard deviation (σ) of the runtime of SASC on the 50 datasets of each of the
three experiments (on the original set of cells), after having either: clustered
the mutations of the input matrix using celluloid (celluloid); or performed
dimensionality reduction on the cells using ridge regression, followed by clus-
tering the mutations with celluloid (RR + celluloid). Times are reported
in hours, and to three significant digits.
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Figure 6.12: Runtime analysis, as a function of the number of mutations, of
the clustering step (celluloid) without dimensionality reduction using ridge
regression (in black), and with ridge regression (in red).
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comparison of such trees, and convenient plotting of the results.
Each of the submodules can be used independently or they can be used

in conjunction with each other to create complex operations, due to special
data structures developed for the interaction between different methods.

The plastic pipeline is open-source and available at https://github.
com/plastic-phy along with extensive documentation and a Jupyter Note-
book that replicates the real-case scenario depicted in Section 6.3.1.

Future improvements for plastic would be to include more tools into the
pipeline to extend the breadth of analyses available and to provide additional
algorithmic alternatives for the same task. Moreover, we could incorporate
more steps, such as the removal of doublets, to streamline the entire pipeline
even more.
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Chapter 7

Future work

In this manuscript we described the main computational challenges of the
cancer phylogenetic field and we proposed different solutions for the three
main problems of (i) the progression reconstruction of a tumor sample, (ii)
the clustering of SCS data to allow for a cleaner and faster inference and
(iii) the evaluation of different phylogenies. Furthermore we combined them
into a usable pipeline to allow for a faster analysis.

The methods described, while designed for tumoral evolution, are gen-
eral enough that they can be used directly, or with small modifications, for
many different phylogenetic computational problems. In particular we are
developing methods to apply these concepts to other type of evolution, such
as viral comparison for which an example is shown in [27] were we devel-
oped a method for genotyping variants of viruses in a samples; we analyzed
the method in the settings of the SARS-CoV-2 pandemic and we included
phylogenomic assignment of the viral strain.

In conjunction with the viral analysis we are expanding our methods
for the reconstruction of tumoral evolution on multiple samples in different
time-points at various stages of the disease. We are also working on more
theoretical advancement for the definition of distances between phylogenies.
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Glossary

CSP Constraint Satisfaction Problems; they are a set of mathematical
problems modeled as Boolean expressions of constraints that need to
be satisfied in order to be solved. 19, 47, 48

Dollo Dollo phylogeny; it is a phylogeny model that allows losses of muta-
tions. In its most theoretical form each mutation can be lost infinite
times, but more realistic approaches utilize variations in the form of
Dollo-k model, where each mutation can be lost at most k times in
the entire tree. It is the most used loss model and commonly referred
to in this manuscript. 16–18, 21, 23, 25–29, 33, 38–43, 97

ILP Integer Linear Programming; it is a mathematical optimization of a
problem defined in term of an objective function over a set of integer
variable that are constrained by a set linear equations or inequalities.
ILP are typically modified by allowing the use of real variables, trans-
forming the problem in a Mixed Integer Linear Programming (MILP).
15, 19, 33–35, 47, 48, 50, 54, 55

ISA Infinite Sites Assumption; it is the most used assumption used in can-
cer evolution inference that states that no two mutations can occur at
the same site (or locus), meaning that once a mutation is acquired it
cannot be lost or modified. 7, 13, 14, 16, 21–23, 32, 42, 47, 48, 50, 51,
55, 97

PP Perfect Phylogeny; it is the simplest phylogeny model following directly
the ISA. Given its simplicity it is the most widely used, since in its
basic form – not accounting for errors – can be solved in polynomial
time. 7, 14–18, 48–50

SA Simulated Annealing; it is one of many nature-inspired heuristic algo-
rithms, in this case inspired by the annealing of metals. It is commonly
used to explore large search space for the optimal solutions; it utilizes
a temperature value that decreases over time. The probability of ac-
cepting a new solution is dependent on the value of the temperature;
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with high values it can easily move to less optimal solution, while the
temperature decreases the probability also decreases, transforming the
algorithms from a global to a local search. 19, 27–29

SAT Satisfiability problem; it is a logic problem that states whether a
Boolean expression is satisfied or not. They are the basis for the CSP
modeling. 47, 48, 54, 55

SCS Single Cell Sequencing; it is a technology to sequence genomic DNA
or RNA from specific cells. SCS is one of the most recent methods and
it is rapidly gaining popularity given the higher amount of details it
provides; however in its current state it tends to contain many errors
although they are bound to decreases as the technology improves. 7,
12, 13, 19, 21–23, 30, 47, 48, 51, 59–61, 69, 71, 78, 79, 96–99, 101, 102,
109, 114

SNV Single Nucleotide Variation; also called Single Nucleotide Polymor-
phism (SNP) is the biological occurrence of a different nucleotide in a
position in respect to what should be in the reference genome. Some
SNVs are germline to the individual – meaning that they are born with
them – and they define its phenotypes; others are somatic – meaning
that they arise during the course of life – and can be deleterious to the
individual. SNVs of either type can be benign (or have no effect at
all) or can be predictor (or driver) of particular diseases. Most tumors
are driven by specific somatic SNVs. 24, 35, 37, 51

VAF Variant Allele Frequency; it is the fraction (percentage) of sequenced
reads that match a specific genomic variant. VAFs are a typical
method in cancer analysis for estimating the fraction of the samples
that express a variation of interest. 12, 22, 48, 51–54, 56, 57, 97
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