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SHAX states and laminar dynamo. SHAx (Single Helical Axis) states are the self-organized 

helical states developing during high plasma current Reversed Field Pinch (RFP) discharges. 

The helical deformation arises due to the dominance in the MHD spectra of the innermost 

resonant mode, which in RFX-mod is the m=1/n=7 mode (where m is used for the poloidal 

mode number and n for the toroidal one) [1].  A dynamo process is always acting in Reversed 

Field Pinch (RFP) plasmas, in order to provide the reversal of the toroidal magnetic field 

through a velocity field v. In the standard view of the RFP configuration the dynamo term is 

the non-linear (v×B) term in the averaged parallel Ohm's law, understood as the effect of 

perturbations to the axi-symmetric fields. One mode of the perturbation could be enough to 

sustain the dynamo: in this case the necessity of a dynamo can be understood as the necessity 

of a helical deformation of the whole plasma column, and the flow v can be thought as an 

electrostatic drift due to a current density modulation along the helical magnetic field lines 

(electrostatic view) [2]. We call laminar or Single Helicity (SH) states plasma configurations 

where just one mode of the perturbation is present, in contrast to Multiple Helicity (MH) 

states where many MHD modes are present in the perturbation. In any case, the field reversal 

is a consequence of the loss of the axi-symmetry of the system: this is known (in astrophysics) 

as the Cowling's theorem, for which no dynamo can sustain an axi-symmetric RFP. 

The SHEq code. The SHEq code is an equilibrium code used to model plasma quantities in 

helical states [3]. It adopts a perturbative approach, superposing to an axi-symmetric 

equilibrium a single Fourier mode resulting from the solution of a Newcomb-like equation 

consistently with experimental boundary conditions. We therefore use pure SH states to 

model SHAx states, neglecting the so-called secondary modes which are still present in the 

configuration with small but non-zero amplitude. By default the axi-symmetric (force free) 

equilibrium reconstruction assumes a µ = J///B profile given by a two parameters 

model, ( ) ax /12 0

αµ −Θ= , where α and Θ0 are adjusted as to match the experimental pinch 

and reversal parameters, and x stands for the radius normalized to a=0.459m. As an example 

of the axi-symmetric equilibrium field reconstruction see the curves in fig.1. In the Newcomb-
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like equations (for the reconstruction of the MHD eigenfunctions) the force free condition is 

considered, together with a curvilinear metrics [4]. In fig.1d the reconstructed profile of the 

dominant mode (m=1/n=7) is plotted, as a perturbation of the equilibrium in fig.1a-1c. The 

discontinuity in its shape is in correspondence of the resonance of the mode. Using a 

perturbative approach in order to model helical states we are in particular able to reconstruct 

the safety factor profile during the helical SHAx states. This is done using action-angle 

coordinates following a Hamiltonian approach, and the typical shape of the helical safety 

factor can be seen in fig.2a: differently from the axi-symmetric q-profile (fig.1a) it is not 

monotonic, featuring a maximum in correspondence to an Internal Transport Barrier (ITB), 

[5]. The origin of the axis in the figure corresponds to the helical axis, and we use the symbol 

ρ to label the helical flux surfaces.                     

Fig.1  #30843 t=0.753s . Axi-symmetric equilibrium quantities 

 

The ohmic constraint. The equilibrium system of equation that is solved for SHEq does not 

account for Ohm's law. Considering SHAx states as stationary equilibria one can derive the 

ohmic constraint: ( ) 22/ BBJBVt ηµηπϕ =⋅= , where the Spitzer resistivity η is 

considered as a flux function and the loop voltage Vt is constant; both the magnetic field and 

the current density are made of an axi-symmetric part plus the m=1/n=7 perturbation and the 

averages are done over the helical magnetic flux surfaces. If the modelled equilibrium is 

consistent with Ohm's law, this relation must be valid on each flux surface: as one can see in 

fig.2c, this is not the case for SHEq equilibria. Using the definition 2

// // BBJBJ ⋅==µ it 

is possible to compute the non-ohmic helical µ profile, plotted in black in fig.2b, from the 

SHEq code. On the other hand one can assume the ohmic constraint to be valid and therefore 

compute the ohmic helical µ profile as: ( )22/_ BBVohm t πηµ ϕ= . This is plotted in orange 

in the same fig.2b. As one can see the ohmic profile exhibits a steep gradient in 

correspondence of the thermal ITB (fig.2d), which is not the case for the non-ohmic profile: 

the SHEq code reconstructs the magnetic topology of helical states without any information 
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on the temperature profile, but starting from the α-Θ0 model assumed for the axi-symmetric 

zeroth-order parallel current density profile (fig.1b). An extended version of the code allows 

the use of any µ profile to model the axi-symmetric equilibrium. We therefore explore the 

effect of different current density profiles on the resulting helical magnetic topology.  

Fig.2. Helical equilibrium quantities computed by the SHEq code. Temperature profile from Thomson scattering 

Axi-symmetric current density profiles.  Using the helical q-profile computed with the 

SHEq code (fig.2a) as an input it is possible to run the VMEC code for RFP equilibria. 

VMEC does not account for the Ohm's law, and it converges very close to SHEq equilibria 

even if a non-zero pressure gradient compatible with temperature measurements is set. The 

non-ohmic helical µ profile from the VMEC code is plotted in green in fig.2b. In order to 

choose an axi-symmetric µ profile related to the helical geometry of the SHAx state (instead 

of the one coming from the α-Θ0 model), we can use this helical µ profile averaged on the 

circular cross-section of the shifted axi-symmetric equilibrium. The remapped profile can be 

seen in green in fig.3a, together with the remapped ohmic µ profile, in orange. 1. VMEC 

equilibria. To model the axi-symmetric equilibrium we use the green parallel current density 

profile in fig.3a, which is related to the helical equilibrium obtained from VMEC. The black 

curves in fig.3a-3b are related to the α-Θ0 model of the axi-symetric equilibrium (also plotted 

in fig.1a-1b). As one can see, the green curves are very similar to the black ones, with the 

difference that we obtain just a marginal reversal of the q-profile (green in fig.3b): even in an 

iterative way we are not going to peak the current density profile in order to approach the 

ohmic profile. 2. Ohmic equilibria. In order to look for an ohmic equilibrium, we start from 

the ohmic helical µ profile, remapped and averaged on the circular flux surfaces of the axi-

symmetric equilibrium (ohmic equilibria always in orange in the figures). As one can see in 

fig.3b the related equilibrium does not reverse and this is due to the steep gradient in the µ 

profile. In fig.3c are plotted the two components of the equation for the radial derivative of 

the toroidal flux (see eq.(A.50) in [4], which comes from the force-free force balance equation 

together with the Ampere's law): in order to have the reversal of the toroidal field at the edge 
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(fig.3d) the dashed line in fig.3c should always be over the solid one at the edge. While this is 

true for the α-Θ0 model (in black), it is not for the not-reversed 'orange' equilibrium. 3. Some 

more parametrization. Some parametrizations of the µ profile between the VMEC (green 

lines) and the ohmic one (orange lines) have been tried. In order to have the reversal of the 

axi-symmetric equilibrium (in agreement with experimental value) we need to have a less 

steep gradient and/or to higher the value of the current on the axis. But this leads to the loss 

the resonance of the dominant m=1/n=7 mode in reversed configurations.  

Fig.3. #30843 t=0.753. Study of the effect of different current density profiles on the equilibria 

Conclusions.  In order to comply with the ohmic constraint the improved confinement 

properties of SHAx states must be associated to peaked current density profiles, with respect 

to the Multiple Helicity (chaotic) states. But we could not find any current density profile 

which is in agreement with both the ohmic constraint (assuming a Spitzer resistivity) and the 

experimental reversal parameter (that indicates a reversed axi-symmetric equilibrium). A 

limitation in this study is the fact that VMEC cannot work using the (peaked) current density 

profile in input. Further work can use V3FIT instead of VMEC in order to take into account 

the temperature profile. At this moment we can just conclude that a dynamo process is still 

acting in our plasma during SHAx states, and we are not able to extract more information on 

the shape of the current density profile in pure SH ohmic states. Reminding that the ohmic 

constraint is true only for stationary equilibria, we can conclude that an inductive term in the 

electric field must be present, and probably due to the presence of non saturated MHD modes. 
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