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applications
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Abstract—In this paper we present a novel probabilistic
technique, based on the Bayes filter, able to estimate the user
location, even with unreliable sensor data coming only from
fixed sensors in the monitored environment. Our approach has
been extensively tested in a home-like environment, as well as
in a real home, and achieves very good results. We present
results on two datasets, representative of real life conditions,
collected during the testing phase. We detect the patient location
with sub-room accuracy, an improvement over the state of the
art for localization using only environmental sensors. The main
drawback is that it is only suitable for applications where a
single person is present in the environment, like as with other
approaches that do not use any mobile device. For this reason
we introduced the “telehomecare” term, therefore differentiating
from generic telemedicine applications, where many people can
be in the same environment at the same time.

Index Terms—indoor localization, motion sensor, telehomecare,
wireless sensor network, smart home.

I. BACKGROUND AND OBJECTIVES

The population in today’s western countries is rapidly
growing older. Kinsella and Phillips [1] estimated that by 2030
23.5% of the European population will be above 65 years
old, and that by 2050 only 22% of the world elderly people
will live in what are nowadays called developed countries. In
this context, being able to provide high quality, yet cheap,
heath-care and assistance is gaining importance. A common
approach to achieve this objective is the use of remote-
monitoring of patients through pervasive networks of sensors.
A pervasive network can provide several benefits to elderly
people: from constant monitoring of vital parameters, to
emergency communications and memory enhancement. These
capabilities can help to early diagnose illness or, in some
situations, can even be life-saving. Consider e.g., fall detection
or heart-beat monitoring applications, where the monitoring
system can give critical help by automatically calling medical
assistance [2]–[4]. Remote assistance has many advantages
over both retirement homes and “human” home assistance.
First of all it is much cheaper [5], [6]; this is an important
factor, given the increase of the aged population [7]–[9], and
the declining amount of resources available for these people
in many countries. Moreover, elderly people often prefer to
remain in their home [10]. Self-sufficient people that still
require some level of assistance or monitoring will greatly
benefit from being remotely assisted at their homes. Within a
remote monitoring system, the localization component plays a
key role as the location of the person is used in several ways,
e.g., to analyze behavioral patterns so that certain afflictions
may be diagnosed early [11], to generate an alert, e.g., when
a person remains still for too much time, or to provide

a better interaction with the user, for example displaying
visual contents and playing audio reminders in the room
where the person is. In the last decade, various approaches
to indoor localization have been developed. These can be
roughly divided into two main categories: those using a device
worn or carried by a person and those that rely only ¡on
environmental sensors. The majority of the approaches falling
in the first class use some type of wireless device carried by the
person, in conjunction with a static infrastructure. A number
of techniques have been developed along these lines: RFID-
based localization, cell of origin, time of arrival, received
signal strength indicator (RSSI), time difference of arrival
and others. The interested reader can refert to [12] for an
extensive review. These techniques can often achieve meter
accuracy and, sometimes, even sub-meter accuracy, but they
have one main drawback: they require a device carried by the
person. This represents a major disadvantage, since a home-
care system should be as minimally intrusive as possible.
Ideally a person should be monitored without being affected by
the monitoring system. Moreover, the eventuality of forgetting
to wear the device or not wearing it on purpose for short
periods, such as when getting up during the night or when
showering, is definitely not negligible and would void the
safety function of the telehomecare system. Systems of this
class tend to work less than optimally in real-world scenarios
as their accuracy may decline greatly depending on other
electro-magnetic fields and on the presence of objects affecting
the electro-magnetic field [13].

There are various contributions in the literature that ap-
proach the person localization problem while avoiding wearing
devices. Noury et al. [14], [15] used motion sensors and
magnetic contact switches placed on the doors, in conjunction
with a rule-based system, to track the position of a single
person in an apartment. Lee et al. [16] described a system that
uses raw data from motion sensors, without any elaboration or
filtering. A similar work has be developed by Ogawa et al. [17]
that describe a system using motion sensors in conjunction
with flame and CO2 detectors and magnetic switches. A
similar approach also has been developed by Han et al. [18],
with the addition of an Autoregressive Hidden Markov Model
to better model the occupancy pattern.

De Miguel-Bilbao et al. [19] performed a comparative
analysis of three indoor localization platforms, one using
passive infrared sensors (the most common type of motion
sensor), one using UWB (Ultra WideBand) localization (a
wireless-based indoor localization technology that requires the
person to carry a device), and one based on RFID (Radio-
Frequency Identification), showing that the first two have the
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same level of accuracy, while the third performs slightly worse.
Hauptmann et al. [20] proposed a solution that uses cameras
to track people in a nursing-home. However, it is well-known
that people usually do not like to live constantly supervised by
cameras [21]; also our experience demonstrates this opposition
to cameras, as we had to spend time to persuade people that
our devices were just PIRs (Passive InfraRed motion sensors),
that do not include any video-gathering device.

Djuriç et al. [22] developed an approach to indoor localiza-
tion, using PIR sensors, that uses a particle filter to improve the
accuracy of the system. However, this kind of approaches uses
ceiling mounted sensors and needs to know the exact footprint
of the field of view of the PIRs in order to work properly. This
is a huge disadvantage, because there is lot of uncertainty
on both the field of view and the range of PIR sensors, and
hypothesizing to handle them at installation time makes the
approach unrealistic. Moreover, furniture and walls may block
the field of view of a sensor, thus making calculating its exact
footprint even more difficult. Hence, this kind of techniques is
hardly usable in a real home environment (the authors provide
only simulated results) and the installation would be very
complex and error prone, since the exact sensor positions, w.r.t.
some global reference frame, have to be measured. A similar
approach, that uses a mixture of Gaussian based tracking
algorithm instead of a particle filter, has also been developed
by La Scala et al. [23].

Another common approach consists in using an array of PIR
sensors, whose fields of view overlap. With this configuration,
the system is able to determine a more accurate localization
by evaluating when motion is detected in the intersection of
several fields of view [24], [25]. However, the large uncertainty
on the real shape of the field of view of the PIR sensors is an
obstacle to an effective utilization of this family of techniques
too. Indeed, the exact shape of the field of view has to be
known in order for this systems to work properly. An attempt
to mitigate this problem has been made by Kim et al. [26],
that used a Bayesian classifier along with the analog output
of a single PIR sensor, in order to better estimate when a
person is inside the field of view, when on the boundaries
and when outside. The problem of correctly estimating the
real field of view of PIR sensors has been reported by other
authors too, [27], and it is one of the challenges that led us
to develop the proposed approach. Yokoishi et al., in order to
tackle the unreliability of PIR sensors in a real-life scenario,
determined the occupancy of a single room, for energy saving
goals, using a particle filter and multiple motion sensors, [28].
While similar to our approach, this approach was limited to a
single room and thus lacks sub-room accuracy and occupancy
determination in a whole apartment, along with easy map
construction and sensor placement.

Álvarez-Garcı́a et al. [29] compiled, for the EvALL com-
petition, a list of five criteria for the evaluation of indoor
localization systems in assisted living environments. This
competition is divided into three phases, each with different
objectives and difficulties, so that the same criteria have to
be calculated differently in different phases. During the first
phase the systems are required to localize a person in various
areas of interest, a very similar scenario to the one described

in this paper. The criteria are:
• Accuracy
• Availability
• Installation complexity
• User acceptance
• Interoperability
It is our opinion that having common criteria to evaluate

many different assisted living localization systems is very
important. So, regarding our proposal, we will provide quan-
titative and/or qualitative values for each listed criterion.

A common approach to indoor localization for assisted-
living is to divide the home into areas of interest, usually
coinciding with the rooms. We tried to make improvements
over this approach using smaller areas of interest, to achieve
a finer grained localization. This gain is very useful in a
behaviour monitoring software, given the wide range of ac-
tivities that can be performed in some rooms. By localizing
the patient in different areas of a room, we are able to
distinguish, for example, when a person is sitting on the
sofa, from simply reporting that she/he is in the dining room.
The main improvement of our proposal is related to handling
the sensors’ inherent noisiness. Previous state-of-the-art works
do not account for this important factor. Some approaches
simply use the sensor output “as-is” [16], [17], while others
try to minimize the impact of incoherences, such as when
a person is detected in a zone non contiguous to the one
occupied previously, or when she/he is detected in more zones
simultaneously [14]. Instead, our solution has been purposely
designed to deal with sensors providing realistic data, i.e.
noisy data. To accomplish this task we use a Bayes filter, a
filtering technique commonly used for solving the problem of
estimating the state of a system from noisy observations [30].
In this way we are able to deal with both false negative
and false positive sensor readings. Thus, we do not need an
explicit definition of the rules anymore (see e.g. [15]), but
we implicitly deal with the noise using the filtering approach.
This approach requires, on one hand, a probabilistic model
of the sensors, so to take into account their uncertainty; on
the other hand a motion model that probabilistically describes
how a person moves from an area to another. We can cope
with the vast range of possible incoherences caused by sensor
noise, without the need to model each possibility individually.
Instead, using a rule based system, this would be necessary.

II. THE LOCALIZATION SYSTEM

The goal of the proposed work is to localize a person within
her/his own home. The home has been divided into multiple
areas, sometimes corresponding to single rooms, sometimes
to a specific part of a room (such as the sofa area in a
dining room). To perform the localization we use a set of
passive motion sensors, which have low energy requirements
and are really unobtrusive. These are the same kind of sensors
typically used in burglar alarm systems. In contrast with
the majority of the approaches found in the literature, our
system does not require the user to wear a device. However,
this important advantage led us to design our solution for
environments where only a single person is present (a very
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common requirement among systems that do not use any
mobile device [14]–[17]). Nevertheless we do not see this as
limiting the real-world usefulness of our work, because the
system is able to smoothly recover from localization failures,
even from those caused by the presence of another person in
the home. Furthermore, telehomecare systems are often aimed
at people living alone most of the time, i.e., living in conditions
such that telemonitoring looses its relevance when also other
people (e.g., a doctor, relatives, etc.) move through the home.

A. Hardware infrastructure

To track the position of a person inside a home, we used
a network of ZigBee devices, [31], equipped with Passive
InfraRed motion sensors (PIR). A PIR is essentially a motion
sensor that detects changes inside its field of view, but only
in the infrared spectrum. The human body emits infrared
radiations and therefore activates the sensor. It has to be
noticed that there might be other sources of infrared radiations
inside a home, for example a heater or the sun coming through
a window. However, many modern PIR sensors are designed
in order to detect only infrared rays corresponding to the
wavelengths emitted by the human body, so to reduce, though
of course not to eliminate, the detection of other disturbing
sources. This kind of sensors, while being cheap and very easy
to use, have proved to be relatively unreliable. Specifically, the
range and the field of view vary greatly among different testing
conditions and among different units and may be very different
from what is specified on the datasheet. For this reason, in a
realistic non-controlled environment, an approach that is robust
against noise and against uncertainty on the area covered by a
sensor is essential . This was one of the main goals of our work
and the main innovation w.r.t. other approaches presented in
Section I.

ZigBee is a network protocol aimed at low-power wireless
sensor networks, so it is a perfect fit for our purposes.
Our network infrastructure relies on three types of devices:
end devices, routers and a coordinator. The end devices are
the nodes actually used to sense the environment. They are
equipped with a PIR and other environmental sensors to
measure pressure, temperature, humidity and the light intensity
in a particular area of the home. These other sensors provide
additional data to the remote monitoring software, but are
not used for the localization task, so they won’t be described
further in this paper. The routers are in charge of delivering to
the coordinator the messages coming from the subset of end
devices assigned to them, but they do not have any sensing
capability. Lastly, the coordinator is connected to a personal
computer to which it delivers each message coming from the
wireless network. We opted for a tree topology rather than
for a star one, since the former is more energy efficient:
the end devices do not need to be awake all the time, but
are allowed to fall back to the sleep mode immediately after
transmitting the sensed information. To further reduce energy
consumption, we developed the firmware on the end devices
in order to send the output of the PIR sensor only once per
second, rather than asynchronously whenever some motion is
detected. While a person is passing through the field of view

Fig. 1. The map of our test environment. Different areas are highlighted with
different colours.

of a sensor, it may detect her/his motion several times, so,
without our policy, this may result in multiple transmissions.
Given the high energy cost of a wireless transmission and the
fact that humans move at a relatively slow pace, a message
every second proved to be enough with our approach, while
providing a significant reduction in power consumption. So,
the message coming from an end device specifies whether the
PIR has detected any motion in its field of view within the
last second.

The end devices may be installed in several ways. The
easiest way is to install them so that a sensor’s field of
view corresponds roughly to a macro area of the localization
algorithm. However, this is not always possible. For example,
considering the map in Fig. 1, it would not be possible to
cover just the Entrance sofa area with a single sensor. In
order to accomplish this, we would need a sensor with a very
short range and/or field of view, or we should have fixed
one at the ceiling, just above the sofa, which is quite an
uncomfortable installation option. Using sensors with different
ranges and/or fields of view on different sensing nodes was a
solution that we wanted to avoid, because it greatly reduces
the flexibility of the system: a node would not be reusable in
different parts of the home and it would have to be replaced
with an identical one in case it broke. Fixing the nodes at
the ceiling, instead, has been considered not suitable for both
safety and practical installation reasons. We solved the issue
using two conveniently placed sensors, as will be illustrated
in Section III. This is just an instance of the cases where
the field of view of some sensors covers multiple areas. Of
course, situations where some areas are covered by more than
one sensor and where some areas are only partially covered
are also common. Our proposal has been designed in order to
cope with all these real-life situations.
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procedure BAYESFILTER({pk,t−1}, ut, zt)
for all k do

pk,t ←
∑

i p(Xt = xk|ut, Xt−1 = xi)pi,t−1

pk,t ← ηp(zt|Xt = xk)pk,t
end for
return {pk,t}

end procedure

Fig. 2. The Bayes Filter algorithm [30]

B. The algorithm

The localization problem may be formulated as the problem
of estimating the state of a dynamic system, given an uncertain
estimate of the previous state and noisy measurements. The
state of the system is represented by the area where the person
is, while the measurements are the outputs of the sensors.
A naı̈ve approach could use the raw outputs of the sensors
to deduce where the person is: when a sensor detects some
movement, the person is believed to be in its field of view.
However, this approach has many drawbacks. One of the most
important is related to the fact that real-world sensors are
noisy. Most of the time a sensor detects motion only when
a person is really traversing its field of view, but sensors may
fail, as they may detect some motion when actually there
is none (false positive) or fail to detect movement in their
field of view (false negative). These problems are particularly
relevant when the person is near the boundary of a sensor’s
field of view or very distant from the sensor. Another problem
of the naı̈ve approach is that it does not take into account
the fact that a person cannot suddenly move (“jump”) from a
room to another, non-adjacent, room. In order to model this
physical constraint, we leverage a concept normally used in
state estimation: the state transition equation. In our case the
unknown state is the location of the person, and the state
transition equation represents how a person can move from
a location to another; it is therefore called motion model.

To deal with these problems we used a probabilistic ap-
proach, called Bayes Filter. Instead of stating where the person
is, this approach estimates the probability distribution of the
presence of the person, over the whole state space. For each
area, the probability that the person can be found in that area
is provided. This approach has the advantage of dealing with
noise, of using both a motion model and the sensors’ mea-
surement model, and of being able to smoothly recover from
a failure. The Bayes filter is depicted in Fig. 2, where pk,t is
the probability of the state k at time t, {pk,t} is the probability
distribution on the state space and ut is the control vector,
representing an external variable affecting the state transition.
In our case there is no external control that intervenes on the
person, as she/he deliberates autonomously on her/his motion.
Lastly zt is the measurement, and p(zt|Xt = xk) is the sensor
model. Two main steps compose the algorithm: prediction
and update. The prediction step leverages the motion model
to calculate the probability that a person is located in each
particular area, a priori of the sensor measurements. This is
done given the probability distribution at the previous time
step. p(Xt = xk|ut, Xt−1 = xi) is calculated as shown in

Equation (1), where prob stay, prob move and prob jump are
parameters of the algorithm and N(areak) is the set of areak
neighboring areas.

p(Xt = xk|ut, Xt−1 = xi) =

=


prob stay if areai = areak

prob move if areai ∈ N(areak)

prob jump if otherwise

(1)

Equation (1) assigns a probability to the event of the person
remaining in the same area, a (typically smaller) probability
to the event of the person moving to another adjacent area,
and a (small, but not zero) probability to the event of the
person jumping to a non-adjacent area. These probabilities
are given at configuration time and reflect the following
intuition: the chances that a person disappears from an area
and reappears in a non-adjacent one are mainly related to
a pose estimation error at the previous time steps; thus, the
prob jump probability should be very low, but not zero, to
allow to recover from a failure at a previous time, as illustrated
below. Secondly, theoretically the prob stay and prob move
probabilities could be equal; however, it is important to notice
that the PIR sensors detect motion and not proximity. As a
consequence, if the user stops within the field of view of a
sensor (absence of new motion data), the belief about her/his
position should not change significantly: it should be localized
in the last position, while it appears to be reasonable to have
an increase of the uncertainty of this outcome, which means
to take into consideration that the user might have moved to a
nearby area. The fact that the probability of a person jumping
to a non-adjacent area is not zero may seem unreasonable, but
this is a key issue of the algorithm. This probability should
not be zero because sometimes the localization algorithm may
fail; by assigning a quite small probability to the event of the
user jumping from an area to a distant one, our approach can
recover from a failure, given an adequate evidence, i.e., several
measurements reporting that the person is in another area. In
our opinion, this is one of the main advantages of using a
probabilistic approach over a rule-based one.

For example, referring to the map in Fig. 1, let us assume
that the person goes from the atrium to the cooker area, passing
through the corridor and the kitchen, but, for some reason, the
sensor in the corridor does not detect any movement. A simple
rule-based system will never localize correctly the person,
until she/he returns to the corridor. Our probabilistic approach,
given that the sensor in the cooker correctly detects the
movement, will eventually correctly localize the person. This
scenario, in a real, non-controlled world, is more probable than
it may seem. It is often hard to provide 100% sensor coverage
of a particular area, so false negatives may happen. Another
situation where our formulation is useful is represented by the
following example: the person is in the dining room and moves
to the fridge sofa area, but passes near the door connecting
to the meeting room. As already mentioned, the borders of
the sensor’s field of view are not so neat, so it is pretty likely
that in the described situation the sensor in the meeting room
detects some movement. A simple rule-based system will first
localize the person in the meeting room and it will not re-
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Fig. 3. Sensor placement and their field of view in our test environment

localize her/him in the fridge sofa area, because these areas
are non adjacent. Instead, our probabilistic approach correctly
deals with false positives and will eventually localize the
person in the correct area. Of course, the frequency of this
kind of problems may be consistently minimized with a better
sensor displacement, however this is not always possible in
a real home and motion sensors are really unreliable at the
borders of their field of view.

The second step of the Bayes Filter algorithm is the update
step. This fundamental step weights the prediction with the
likelihood of the measurement p(zt|Xt = xk) that could
be expected considering the predicted value of the state. In
our implementation the measurement is a list containing the
identifiers of the sensors that detected some movement in
the last time interval. The likelihood of the measurement,
given an area (i.e., considering the person being in that area),
can be calculated in many different ways, depending on the
displacement of the sensors in the area. In the easiest case, a
sensor covers just a single area, so we assign a high likelihood
to a measurement vector containing the identifier of that
sensor, a lower likelihood to a measurement vector containing
the identifiers of the sensors in adjacent areas (because the
real field of view is uncertain) and an even lower probability
otherwise. However, in practice, we can have various sensor
configurations: multiple sensors may cover a single area, a
sensor may cover multiple areas or various combinations of
these. As it would be very hard to formulate an expression that
covers the whole set of real world cases, our algorithm lets
the person in charge of configuring the localization system
specify a list of boolean expressions with associated likeli-
hood. The algorithm evaluates these expressions in sequence
and eventually falls back to a default (low) likelihood. For
example, for the map in Fig. 1 and the sensor placement in
Fig. 3, for the dining room area we used the expression in
Equation (2), where G, E, C, B and A are the identifiers of

the motion sensors and high prob, low prob and lowest prob
are user-specified parameters.

p(zt|Xt = DiningRoom) =

=



lowest prob if G ∧ ¬B
high prob if A
low prob if E ∨ C

high prob if D ∨B

lowest prob if otherwise

(2)

The identifiers of the motion sensors in Equation (2) are
boolean variables whose values at a certain time are given by
Equation (3), where S is the set of all the sensors’ identifiers
and M(t) is the set of the identifiers of the sensors that
detected movement at time t.

∀s ∈ S, s = True ⇐⇒ s ∈M(t) (3)

The person in charge of the configuration of the localization
system, after the installation of the network of sensors, will
compile the list of boolean expressions for each location area,
which will represent the specificities of that installation.

The algorithm in Fig. 2 requires the a priori distribution
of the belief about the area where the person is, from the
previous time step. The algorithm is run every time a new
measurement vector is received. For this reason it needs
an initial distribution, a priori of any measurement. Many
different types of initial distribution can be used, however we
assign a high probability to a human-provided initial state and
a really low one to all the other states. Alternatively, a uniform
distribution can be used, which results very useful when there
is no knowledge about the initial position. It is worth noticing
that, even in this second case, the proposed approach converges
to the correct user localization after few iterations, thanks to
its effective probabilistic formulation.

The algorithm described so far has a drawback: when an
empty measurement vector is received for several consecutive
seconds (for example because the personis not moving), the
uncertainty starts spreading over the state space, eventually
bringing the system back to a state of little knowledge about
the person’s position (nearly uniform distribution over the
state space). This is particularly significant while the person
is sleeping, because she/he will stay still enough to result
undetected by the motion sensors. For this reason we used a
prediction model slightly different with respect to the base one
described in Equation (1): when a non-empty measurement
vector is received, Equation (1) is used, otherwise Equation (4)
is applied instead.

p(Xt = xk|ut, Xt−1 = xi) =

=

{
prob stay if areai = areak

prob jump if otherwise

(4)

In this case, we assign a high probability to the event of the
person staying in the same area as the previous iteration and
a very low one to all the others. This formulation reflects the
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fact that, if an empty measurement vector is received, most
likely the person is stationary in a given area.

The output of the algorithm in Fig. 2 is a probability
distribution over the state space. However, in the field of
remote assistance, usually a unique location of the person is
required. The simplest way to obtain this information from
a distribution is to pick the state with the highest probability.
This approach works quite well, although it is usually better to
pick the most likely state only when its probability is above
a certain threshold or when the difference w.r.t. the second
most likely state is above another threshold. These selection
approaches make it clear that there are limits under which we
are not able to say with enough confidence where the person
is. Despite this may seem a drawback, a localization system
reporting that it does not know where a person is located is
much better, and correct, than a system reporting a wrong
location. This would not be possible without a probabilistic
approach.

C. Technical details

The software implementing our proposal has been writ-
ten using the Python programming language and consists
of components that use the publish/subscribe paradigm to
exchange messages. Python has been chosen because of its
suitability to rapid prototyping and, most important, for its
cross-platform nature. Performance was not an issue, given
the low computational resources required by the algorithm.

In our system there are two main components: the local-
ization and the data producer component. The latter inter-
acts with the first via messages, using the publish/subscribe
paradigm provided by the RabbitMQ framework [32]. This
means that the data producer puts messages on a topic and
that any component listening to that topic may view them.
This provides a high level of decoupling among components
and it is particularly useful because we can either use, as data
producer, a software that interacts with the real sensor network,
one that simply reads a dataset, or even one that simulates
realistic data, without changing a single line of code or the
configuration of the parameters of the localization component.

Each area of the monitored environment has its specific
measurement function, i.e., set of boolean expressions, de-
pending on the particular sensor configuration in that area.
Our software provides a straightforward way to specify these
functions, via a configuration file, without the need to re-
write the component programming code. It uses an XML file
to describe a high level map of the environment: each area
has a name, an initial value for the probability of being the
area where the person is, a set of neighbouring areas (i.e.
areas that share a boundary with it) and a set of expressions
with an associated likelihood (Fig. 4). These expressions are
written in prefix notation so they are easy to write, even for
non programmers; moreover they are very easy to parse and
unambiguous, even without parentheses (although parentheses
may be used to improve human readability). The likelihood
values expressed in natural language (high, low, lowest) are
automatically translated into numbers, using user-specified
parameters. In our opinion, the fact that these expressions are

<zone name =” Dining room”>
<prob >0.85</ prob>
<n e i g h b o r name=” F r i d g e s o f a ” />
<n e i g h b o r name=” E n t r a n c e s o f a ” />
<n e i g h b o r name=” Meeting room ” />
<s e n s o r l v a l u e =” l o w e s t ”>( and G ( n o t B)

) </ s e n s o r>
<s e n s o r l v a l u e =” h igh”>A</ s e n s o r>
<s e n s o r l v a l u e =” low”>( o r E C) </ s e n s o r>
<s e n s o r l v a l u e =” h igh”>D</ s e n s o r>
<s e n s o r l v a l u e =” h igh”>B</ s e n s o r>

</ zone>
<zone name =” E n t r a n c e s o f a ”>

<prob >0.05</ prob>
<n e i g h b o r name=” Dining room ” />
<s e n s o r l v a l u e =” h igh ”>( and E ( n o t A) )

</ s e n s o r>
<s e n s o r l v a l u e =” low”>D</ s e n s o r>

</ zone>

Fig. 4. Part of the configuration file for our test environment

easy to write even for non programmers is very important,
because, in real applications the system needs to be customized
according to the deployment environment. A technique that
does not require programming skills is thus necessary.

III. RESULTS

The proposed approach and implementation software has
been extensively tested in a real-life situation at a patient
home. We recorded data during the normal daily activity
of an elderly woman for two half days. Thus we had the
opportunity to prove that our approach works well even in
a real non-controlled situation. A sequence of screenshots of
our localization system running during these testing sessions
is depicted in Fig. 5. Notice how, when no motion is detected,
the confidence on the patient position decreases (Fig. 5e and
5f), while it increases quickly when some motion is detected
again (Fig. 5g).

Moreover, we evaluated the system also in an ad-hoc setup
environment located at the 3rd floor of the Computer Science
Department of Università degli Studi di Milano - Bicocca. We
have chosen this area because it is very similar to a real home
environment: it has a bathroom, a kitchen and a dining room
with two sofas. It also sports a more office-like meeting room,
half of which has been used as our “control room” while the
other half was actually used in the experimental activities and
is covered by sensor G. A map, including the displacement
and the fields of view of the sensors is depicted in Fig. 3,
while the different areas of interest are depicted in Fig. 1.

For both safety and practical reasons we were not able to
place the sensors on the ceiling, although this would be the
ideal location for the motion sensors. However, our experi-
ments show that the proposed approach is able to achieve high
accuracy even with non-ideal sensor displacement. In order
to achieve sub-room accuracy in the entrance sofa area, we
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 5. A sequence of screenshots of our localization system during a testing session at a patient home. The areas where the patient is most likely located
are darker. The triangles represents where the motion sensors were placed. Filled triangles are those representing sensors that detected some motion. When
only a single sensor detects motion, the corresponding area assumes a high likelihood (Fig. 5a). It then decreases during transitions (Fig. 5b) and raises again
when the person is entirely in a single area (Fig. 5c). When no motion is detected, the confidence on the patient position decreases (Fig. 5e and 5f), while it
increases quickly when some motion is detected again (Fig. 5g).
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Fig. 6. The “shield” we placed on the side of some sensors to reduce their
field of view.

decided to place two sensors: one on the left side of the sofa
(sensor E), covering both the sofa and the entrance of the
dining room, and one covering only the entrance of the dining
room (sensor A). In this way we were able to supply our
system with enough information to discriminate the motion in
the area by exploiting when the sofa sensor was active while
the entrance sensor was not. This escamotage was necessary
because there was no way to place a single sensor able to
discriminate on its own the motion in the entrance sofa area.
Nevertheless, this real-life problem gave us the opportunity to
show the flexibility of our approach.

The motion sensors we used have a horizontal field of view
of about 100◦, but, to cover some areas, we needed a sensor
with a narrower field of view. This problem could be solved
using different sensors for different areas, however a much
simpler and flexible solution is to limit the field of view of
the sensor, e.g., by positioning a small shield (Fig. 6) on the
side of the sensor. Other field of view limiting solutions could
be devised, and easily used in our system, by acting on the
boolean expressions representing the likelihood of each sensor
reading on each state value.

A. The public dataset

Even though we looked for publicly available datasets
for evaluating the performance of our proposal, we could
not find anything suitable. Therefore, in order to report the
performance of our algorithm we collected two sequences of
situations of a person walking in the test environment. The
path followed during the data collection is depicted in Fig. 7,
starting from the entrance of the meeting room and ending in
the kitchen. Along with data coming from the motion sensors,
we collected a ground truth, in order to allow a quantitative
evaluation of the accuracy of our approach. This ground truth
provides information about when the person is moving from
an area to another, as well as the name of the destination area.

The datasets are available to the community for further
research and comparisons. For each sequence there are two
files, both with .pkl extension: one containing the sensor
data and one for the corresponding ground truth. The first is
composed of a sequence of tuples saved with the Pickle Python

Fig. 7. The path followed during the data collection sessions. The red point
is the starting position, the blue point the ending position.

module, [33]. The data from these files need to be loaded with
the appropriate functions; the first element of each tuple is the
timestamp of the measurement, the second is a list of sensors
that detected some motion at that time. The ground truth file
has a similar format, but the second element of the tuple is a
string stating the area in which the person is actually entering.

During the data gathering sessions we had two major prob-
lems which, in our opinion, represent real-life situations: the
sensor in the fridge sofa area detected motion very frequently
even when no person was there and the sensor in the atrium
detected motion also when this was taking place in the dining
room. These problems made the datasets very noisy. We did
not suppress this noisy data in order to check one of the
main strength of our approach: its ability to work even with
realistically noisy sensor data. Along the lines presented in
Section II-B, during our experiments we set the values of
prob stay, prob move and prob jump to 0.65, 0.34 and 0.01,
respectively. These values have been obtained empirically
and, at the moment, no automatic way to estimate them
exists. Anyway the algorithm proved to be very robust against
variations of these parameters, as long as the general rules
described in Section II-B are respected. Moreover, we used
these parameters’ values also in an environment different from
our testing area (the patient’s home described in Section III),
without the need to fine-tune them to the specific situation. On
the two datasets, our algorithm performed the localization of
the person with an error rate of 5% and 9%, respectively. The
error rate has been calculated using Equation (5), where nerr

indicates how many times the software returned a wrong lo-
calization and nit is the total number of localizations returned.
A localization is considered to be wrong if the person is in
another area w.r.t. the one reported by the localization system.
This is a common criterion among similar systems and has
already been used in other works (see [19], [29]).
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Error rate =
nerr

nit
× 100 (5)

These error values may seem high at a first glance, however
we need to consider that almost every error occurred while the
person was moving from an area to another (see Fig. 8); it is
quite hard to say with high accuracy where the boundaries
of the areas are. If we remove the errors occurring during
such area transitions, the error rate drops to 3.03% for the
first dataset and 3.53% for the second. For the EvALL
competition [29], a system is required to recognize when a
person enters in a set of predefined areas of interest and stays
there for 5 seconds; in that scenario the errors occurring during
transitions would be irrelevant, so our system would perform
very well.

Regarding the evaluation criteria described by Álvarez-
Garcı́a et al. [29], the accuracy has already been discussed. The
availability was very high, in fact the software always returned
a localization, as expected. The installation complexity is
reasonably low, considering on one side that the algorithm
is robust against the noise coming from various sources and
against sensor misplacement and uncertainty on the sensors’
field of view (as we have shown with our experimental
activity); on the other side because the installation of the
sensors is realistically feasible, e.g., not requiring mandatory
mounting on the ceiling, providing reasonably simple to
compile configuration files, even for non-trained personnel.
Regarding the user acceptance, our system requires only the
installation of fixed sensors, so the person can move freely,
without carrying any device (this was one of the main goals of
our research). The interoperability of our software with other
systems is high. Since it is written in Python, it can be used
on any operating system and it returns the localization both
into a database and via message passing, using the RabbitMQ
messaging system. Thus the information produced is easily
available to other software modules. Moreover, while we used
motion sensors only, the measurement function can be easily
extended to take into account also other kind of sensors, such
as CO2 detectors or magnetic switches on the doors. While
we purposely avoided using ZigBee and other wireless based
techniques for localization because of the issues described in
Section I, the information coming from these kind of systems
can, nevertheless, be incorporated into our formulation of the
measurement function, so to obtain a more robust localization.
Of course this would imply, for the assisted person, the need
to wear a device. Basically our approach, besides providing
indoor localization using motion sensors, can be also seen as
a generic framework where data coming from multiple and
heterogeneous sensors can be used to provide a more accurate
and robust localization.

Quantitative comparisons with other approaches of the
same kind are, unfortunately, not possible, since there is
no other public dataset available and since quantitative
results are often not given. For this reason we decided
to make our dataset public, so that it can be a com-
mon benchmark for future developments. It is available on
our website at http://www.ira.disco.unimib.it/research/funded-
research-projects/hcim/indoor-localization-dataset/

IV. CONCLUSIONS

In this paper we propose a novel approach to tackle the
problem of indoor localization in assisted living environments.
Our approach is based on a probabilistic filtering technique and
is able to localize a single person within a home divided in
macro-zones, using only fixed, easy-to-install motion sensors.
Compared with other approaches, our system is able to achieve
localization with sub-room accuracy without using any mobile
device carried by the user. Because of this, we had to limit the
field of application to environments where only a single person
is present, however this is a common limit among approaches
that use only environmental sensors. We used only passive
infrared motion sensors, although the measurement function of
the filter may be easily expanded to incorporate other kind of
information. The performed experiments show that the system
is robust against sensor noise and misplacement, a feature that
makes it very easy to install in any home-like environment and
suitable for real-world applications.
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