
Scuola di Dottorato

Università degli Studi di Milano-Bicocca

Department of Medicine and Surgery

PhD program in Public Health

Cycle XXXIV

Curriculum in Biostatistics and Clinical Research

Adverse events in survival data:

from clinical questions to methods

for statistical analysis

Candidate: TASSISTRO ELENA
Registration number: 786970

Tutor: Prof.ssa Maria Grazia Valsecchi

Co-tutor: Prof.ssa Laura Antolini

Coordinator: Prof. Guido Grassi

ACADEMIC YEAR 2020-2021



Contents

Introduction 1

1 Basics of survival analysis and notation 4

1.1 Theoretical functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Common estimators in survival analysis . . . . . . . . . . . . . . . . . . . 6

1.2.1 The Kaplan-Meier estimator . . . . . . . . . . . . . . . . . . . . . 6

1.2.2 The Aalen-Nelson estimator . . . . . . . . . . . . . . . . . . . . . 7

1.2.3 Alternative KM formula and relationship between KM and AN es-

timators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.4 The Cox Regression Model . . . . . . . . . . . . . . . . . . . . . . 8

1.2.5 The Aalen-Johansen estimator for competing risks . . . . . . . . . 9

1.3 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Standard methods to analyse AE data 11

2.1 The crude proportion of AE . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 The crude incidence of AE . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 The epidemiological AE rate . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 The cause-speci�c hazard of AE . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Issues on the meaning of AN and KM estimators . . . . . . . . . . . . . 14

3 Hazard of AE: estimation and smoothing 15

3.1 Weighted average survival probability . . . . . . . . . . . . . . . . . . . . 15

3.2 IPCW estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Data examples 18

4.1 Motivating data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2 Simulated data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5 Simulation protocol 27

5.1 Data generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.2 Estimated quantities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.3 Extensions of the simulation protocol . . . . . . . . . . . . . . . . . . . . 30

i



5.3.1 Change in the imbalance of the covariates . . . . . . . . . . . . . 30

5.3.2 Change in the hazard ratio of relapse . . . . . . . . . . . . . . . . 30

6 Simulation results 33

7 Insights into event history following adverse events: recurrent adverse

events and failure event following adverse/intermediate event 45

7.1 Analysis of recurrent AEs . . . . . . . . . . . . . . . . . . . . . . . . . . 45

7.2 Analysis of the impact of the occurrence of the AE on the subsequent

hazard of relapse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Discussion 48

Bibliography 51

A Appendix - R codes 54

A.1 Simulated data example . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

A.2 Study simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

A.2.1 Theoretical survival probability . . . . . . . . . . . . . . . . . . . 55

A.2.2 Expected number of subjects at risk . . . . . . . . . . . . . . . . . 55

A.2.3 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56



Introduction

In clinical studies on novel treatments the evaluation of both e�cacy and safety out-

comes should play an important role in the assessment of the bene�t-risk pro�le of the

therapies. Object of interest of safety evaluations are the adverse events (AEs), that are

de�ned by the European Medicines Agency as �any untoward medical occurrence in a

patient or clinical investigation subject administered a pharmaceutical product and which

does not necessarily have to have a causal relationship with this treatment� [1]. From

this de�nition, an AE can therefore be any unfavourable and unintended sign, symptom

or disease which is temporally associated with the use of a treatment, whether or not

considered related to the treatment.

The majority of the studies, however, is designed only with respect to detecting treat-

ment e�ects in e�cacy outcomes, since the evaluation of safety outcomes requires larger

sample sizes and long trial durations [2]. This di�erence between e�cacy and safety in�u-

ences also the statistical analyses of the data. Indeed, whereas the statistical methodology

to evaluate the e�cacy of a treatment is continuously advancing, the analyses of safety

outcomes are limited to descriptive methods reported among the initial descriptive results

in clinical papers [2�7]. This limitation is due to a variety of factors, such as treatment

discontinuation (caused by toxicity, death, disease progression, etc.), low power due to

rare AEs or, when the outcome of interest is the time to �rst occurrence of an AE,

multiplicity of the possible AEs or recurrent episodes of the same AE-type.

The primary focus of safety evaluations is to quantify the incidence of AEs, so the

commonly used measures are the crude proportion of AE, that is the number of subjects

developing an AE divided by the total number of subjects, and the epidemiological AE

rate, that is the number of subjects developing an AE divided by the total time spent

free from failure [6�9]. These quantities are not functions of time and do not account

properly for the occurrence of one or more competing risks, which are events (death,

relapse, etc.) that preclude or alter the probability of experiencing the event of interest

(AE) [10]. A classical clinical example of competing events is death due to cardiovascular

diseases versus death due to any other cause. In order to account for the presence of

competing risks, one should resort to survival methodologies to analyse this type of data,

such as the Kaplan-Meier, the Aalen-Nelson or the Aalen-Johansen estimators.

In studies where novel therapies need to be evaluated both in terms of survival time
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outcomes (for example time to relapse in onco-hematology) and in terms of AEs (or severe

AEs) the treatment failure can be de�ned as the �rst event occurring among relapse and

serious AEs. In the presence of these competing risks, the occurrence of relapse as

�rst event and the subsequent treatment change exclude the possibility of observing AEs

related to the treatment under analysis. In principle, the analysis of AEs could be tackled

from two di�erent points of view. Approach 1 focuses on the description of the observed

occurrence of AE as �rst event among the competing risks AE and relapse and on the

comparison between the two treatments. In this case, treatment ability to protect from

relapse has an impact on the chance of observing AEs due to the competing risks action.

The more the treatment causes relapse, the less is the chance to observe an AE as �rst

event (indirect protection) [6]. Approach 2 focuses on the description of the potential

occurrence of AE in relapse free patients. To address this issue, one should consider the

occurrence of AEs as if relapse would not exclude the possibility of observing AEs related

to the treatment under analysis, thus in the absence of competing risks. In this way,

the comparison between the treatment impact on AEs does not depend on the e�ect of

treatment on relapse. This approach is particularly important if one needs to compare

alternative treatments with di�erential indirect protections.

In both approaches, the theoretical quantities and the relative estimators used in

clinical papers to describe AEs data should have these features:

(a) the estimator addresses for the presence of right censoring;

(b) the theoretical quantity and estimator are functions of time, i.e. can be calculated

at di�erent time points.

This thesis has two aims: the �rst is the review of the two approaches starting from the

type of clinical question answered by the two types of analysis, and the identi�cation of the

suitable quantities and the commonly used estimators according to the aforementioned

features. The second aim is to de�ne a strategy to relax the assumption of independence

between the potential times to the competing events, such as that to AE and the potential

time to relapse, of the commonly used estimators in the second approach.

The thesis is organized as follows: in Chapter 1 a review of the basics of survival

analysis is presented. In addition the notation used throughout the work is introduced.

In Chapter 2 the standard methods commonly used to analyse AEs data represented

by the crude proportion of AEs and the epidemiological AEs rate are described and we

prove that they fail in at least one of the two features. We then show the use of crude

incidence and cause-speci�c standard methods to be consistent with the two features

for both approaches. In Chapter 3 we introduce the use of regression models, strati�ed

Kaplan-Meier curves and inverse probability of censoring weighting to relax the assump-

tion of independence by achieving conditional independence given covariates. In Chapter

4 we introduce, as motivating example, a study aiming at evaluating the occurrence of
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osteonecrosis as possible AE of the front line chemotherapy treatment of children diag-

nosed with acute lymphoblastic leukaemia. A simulated data example is also presented

in order to show the interpretation of the standard methods and the regression models

where the assumption of independence is relaxed. In addition, we aim at making clear to

the reader the impact of the assumption of independence between potential times to AEs

and to relapse of the standard estimators used for the second approach through simulated

datasets of increasing sample sizes. In Chapter 5 an extensive simulation protocol that

shows the performance of the latter methods and the impact of not accounting for an

unmeasured covariate is presented. The protocol is also extended changing the imbalance

of the covariates and the hazard ratio of relapse. In Chapter 6 results of the simulations

are presented. In Chapter 7, starting from on ongoing work on the analysis of AEs in

patients a�ected by leukaemia, the recurrent events are brie�y introduced and how to

interpret the Aalen-Nelson estimator in this context is explained. In addition, an insight

on the illness-death model to analyse the impact of the occurrence of the AE on the

subsequent hazard of relapse is presented. The thesis ends with a discussion of all the

�ndings presented in the previous chapters.
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Chapter 1

Basics of survival analysis and notation

The aim of survival analysis is to study the survival time, which is the time elapsed

from a certain starting point (e.g. �rst diagnosis of a given disease, surgical intervention,

beginning of a treatment, birth) to the occurrence of an event (e.g. death, relapse,

recovery or in general a prespeci�ed event of interest) [11].

A typical problem of the survival analysis is given by the presence of censoring, due to

the fact that the event of interest may not be observed on all subjects. As a consequence,

the survival time is completely available only for some individuals. A survival time

may be censored because the person does not experience the event of interest before the

study ends (i.e. administrative censoring), is lost to follow-up during the study period or

withdraws from the study because of reasons other than the event of interest. All these

reasons are typical examples of right censoring that in general happens when the true

survival time is equal to or greater than the observed survival time. However, two other

situations can occur: the true survival time is less than or equal to the observed survival

time (left censoring) or the true survival time is within a known time interval (interval

censoring) [10].

Survival data on a sample of N observations are represented by a pair of variables

(TO, δ), where TO is the observed survival (or failure) time and δ is the failure indicator

(δ = 1 if the subject develops the event of interest and δ = 0 if his/her survival time is

censored). De�ning with T the true survival time one wishes to analyse and with C the

censoring time, the observed survival time is TO = min(T,C). The assumption on which

methods for censored survival analysis are based on is that the random variables T and

C are independent (independent censoring). This means that the survival experience of

subjects censored prior a given time t can be estimated by using data on the remaining

subjects [11]. This assumption is also called non-informative censoring (e.g. administra-

tive censoring). In situations where there is dependence between T and C (informative

censoring) one should consider non standard methods that account for this problem.
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1.1 Theoretical functions

The distribution function of the survival time random variable (r.v.) T known as

cumulative incidence function (CIF) is

F (t) = P(T ≤ t)

and gives the probability that the event of interest occurs at a failure time less than or

equal to t. Its derivative d
dt
F (t) = f(t) is the probability density function at the time

point t. The complement to 1 of the CIF is the survival function

S(t) = 1− F (t) = P(T > t)

which represents the probability of surviving longer than time t. Since t ranges from 0

up to in�nity, S(t) is a non-increasing function of t and

S(t) =

1, if t = 0

0, if t → ∞

Another function at the basis of the survival analysis is the hazard function, de�ned

as

h(t) = lim
∆t→0+

P(t ≤ T < t+∆t | T ≥ t)

∆t

It gives the instantaneous rate, which corresponds to the risk at time t of an individual to

develop the event of interest in the next time unit, given that he/she is event-free up to

time t. Since the hazard expresses a rate, rather than a probability, h(t) ranges between

0 and in�nity. The hazard function can also be rewritten as

h(t) =
f(t)

S(t)
= − d

dt
log(S(t)) (1.1)

which depends only on S(t).

We de�ne with

H(t) =

∫ t

0

h(u)du

the cumulative hazard function, which is the cumulative risk of an event occurring by

time t. With some analytical calculation, from equation (1.1) one can derive a formula

for the survival function

S(t) = exp

(
−
∫ t

0

h(u)du

)
= exp (−H(t)) (1.2)

Another basic quantity of the survival analysis that can be used in the presence of
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competing risks is the crude incidence (CI) probability

CI(t) = P (T ≤ t; δ = 1) (1.3)

which corresponds to the absolute risk of failure due to the event of interest, in this case

denoted by 1, up to time t. In (1.3) there is the additional random variable δ used to

denote the type of event occurred by time t, in a scenario where failure may be originated

by two, or even more, events.

1.2 Common estimators in survival analysis

To analyse survival data and then to obtain estimates of the survival, hazard and

incidence functions one can use non-parametric, semi-parametric or parametric methods.

In the following, examples of the �rst two categories are brie�y described.

1.2.1 The Kaplan-Meier estimator

The Kaplan-Meier (KM) estimator [12], also known as the product limit estimator,

is a non-parametric maximum likelihood (ML) method that can be used to estimate

the survival function in the presence of survival data with right censored observations,

assuming independence between the censoring time (i.e. time of relapse) and the true

survival time (i.e. time of AE). Let t1 < t2 < ... < tj < ... < tJ , j = 1, ..., J , be the J ≤ N

distinct ordered failure times observed among the N subjects, δj the failure indicator and

dj =
∑N

i=1 I(ti = tj; δj = 1) the corresponding number of failures, dj ≥ 1. Let nj be

the number of subjects at risk of failure, i.e. the number of subjects who have either

AE or relapse times greater than or equal to tj. An estimate of S(t) derived by the KM

estimator is

Ŝ(t) =
∏
tj≤t

nj − dj
nj

(1.4)

If the largest observed survival time is a censored survival time t∗, Ŝ(t) is unde�ned for

times t > t∗, whereas if the largest observed survival time tJ is an uncensored observation,

nJ = dJ and so Ŝ(t) = 0 for t ≥ tJ . Of note, formula (1.4) is equal to the simple proportion

of subjects survived at time t in the absence of censoring.

The plot of the KM estimate of the survival function is a step-function in which the

estimated survival probabilities are constant between adjacent failure times and decrease

at each failure time. The KM estimator could be multiplied by 100 in order to interpret it

as the expected number of subjects surviving free from the event among 100 hypothetical

subjects.
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1.2.2 The Aalen-Nelson estimator

The Aalen-Nelson (AN) estimator [13�15] is a non-parametric ML method that can

be used to estimate the cumulative hazard function in the presence of survival data with

right censored observations, assuming independence between the censoring time (i.e. time

of relapse) and the true survival time (i.e. time of AE). An estimate of H(t) derived by

the AN estimator is

Ĥ(t) =
∑
tj≤t

dj
nj

(1.5)

which represents an increasing step function with increments equal to
dj
nj

at each distinct

observed failure time. In case of a single event of interest, the AN estimate of the

cumulative hazard can be interpreted as the expected number of events in the time interval

a patient may experience as if he/she would develop subsequent events in time [16]. This

interpretation is interesting in particular when recurrent events in time are collected. In

this case, the AN estimator could be multiplied by 100 in order to interpret it as the

expected number of events in time in 100 hypothetical subjects.

Of note, from equation (1.2), one can derive a formula to estimate the survival function

through the AN estimator:

Ŝ(t) =
∏
tj≤t

exp

(
−dj
nj

)
(1.6)

1.2.3 Alternative KM formula and relationship between KM and

AN estimators

An alternative (recursive) formula of the KM estimator is

Ŝ(t) = 1−
∑
tj≤t

dj
nj

Ŝ(tj−)

where Ŝ(0) = 1. Of note, this formula is algebraically equivalent to equation (1.4).

The KM and AN estimators of the survival function presented in formulas (1.4) and

(1.6) respectively are related each other. Considering the mathematical property that, for

large values of nj, exp(−1/nj) is approximately equal to 1−1/nj, the survival probability

estimated with the AN formula (1.6) approximates the survival probability estimated with

the KM formula (1.4) at least in large samples [11].

The AN and KM estimators can also be used to obtain �smoothed� estimates of

the hazard function. In particular, an estimate of the hazard can be obtained by the

cumulative sum derived from the AN estimator represented in formula (1.5), which is by

de�nition a non-decreasing function. As an alternative, one may consider the cumulative

product of (1 − ĥ(t)) terms, with the complement to 1 of the KM estimate of formula
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(1.4) used to obtain again a non-decreasing function

1−
∏
tj≤t

(1− ĥ(tj)) = 1−
∏
tj≤t

(
1− dj

nj

)

1.2.4 The Cox Regression Model

The Cox regression model [17] is the most widely used method in the analysis of sur-

vival data with right censored observations for quantifying the impact of multiple covari-

ates on a certain survival outcome, assuming independence between the true survival time

and the censoring time (i.e. non-informative censoring) conditional on covariates [11]. Of

note, this assumption of conditional independence is less restrictive with respect to the

assumption of independence required by the KM estimator.

Let X = (X1, X2, ..., Xk, ..., XK), k = 1, ..., K, be the vector of K explanatory vari-

ables or covariates. For sake of simplicity X will be used to indicate a vector of both

time-�xed and time-dependent covariates. The Cox model assumes that the hazard func-

tion is

h(t,X) = h0(t) exp(β
′X) (1.7)

where h0(t) is an unspeci�ed non-negative function of time called baseline hazard, assumed

to be the same for all subjects, and β is a vector of coe�cients. Of note, if all covariates

are equal to zero, the Cox model reduces to the baseline hazard function. That is, the

exponential part of the formula (1.7) becomes equal to 1. This property is the reason

why h0(t) is called baseline function [10].

Another assumption of the Cox model is that independent covariates a�ect the hazard

in a multiplicative way: this is implied by the use of the exponential function for linking

the covariates to the hazard [11].

Since h(t,X) in formula (1.7) does not specify the form of h0(t) but it speci�es only

the hazard ratio for any two individuals with covariate vectorsX1 andX2, the Cox model

is a semi-parametric model. Because the hazard ratio

HR =
h(t,X1)

h(t,X2)
=

h0(t) exp(β
′X1)

h0(t) exp(β′X2)
= exp(β′(X1 −X2))

does not depend on h0(t) (and so is constant over time) the Cox model is a proportional

hazards (PH) regression model. Of note, if the two individuals are taken to have covariates

vectors X and 0 the hazard ratio becomes

HR =
h(t,X)

h(t,0)
=

h0(t) exp(β
′X)

h0(t)
= exp(β′X)

To estimate the vector of parameters β it is su�cient to maximize the partial likeli-

hood [17], which correspond to the product, on all event times, of the ratio between the
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hazard of a subject developing an event at time tj and the hazard of all subjects at risk

at the same time tj:

L(β) =
J∏

j=1

exp(β′Xj)∑
l∈Rj

exp(β′Xl)
(1.8)

where J is the number of events and Rj is the number of subjects at risk of developing

an event at time tj.

1.2.5 The Aalen-Johansen estimator for competing risks

The non-parametric ML estimator of the crude incidence presented in formula (1.3)

is given by the Aalen-Johansen (AJ) formula introduced in [18]

ĈIAE(t) =
∑
tj≤t

Ŝ(tj−) · ĥAE(tj)

where Ŝ(tj−) = P̂ (T > tj−) is the KM estimator of the proportion of patients free from

failure up to time tj− and ĥAE(t) is the instantaneous rate of AE, which corresponds to

the proportion of patients experiencing an AE at time t over the total number of patients

at risk, i.e. free from AE and relapse, at that time.

Of note, if only one event is involved (i.e. if competing risks are absent) the CI

estimate is equal to 1-KM estimate.

1.3 Notation

In the following of the thesis we will consider the occurrence of an AE as the event of

interest, whereas the occurrence of relapse acts as competing event. We will denote with

TAE the survival time from origin de�ned by the occurrence of AE in time. Similarly,

the occurrence of a relapse in time de�nes the survival time TRL. These survival times

are called �potential� since only the minimum is observable as �rst event. The observable

failure time is T = min(TAE, TRL) and the observable cause of failure is E (equal to 1 if

AE, equal to 2 if relapse). In the presence of a right censoring time C, the observed time

is min(T,C) and ∆ = I(T ≤ C) is the failure indicator. Finally, (ti, δi, δi ·ei), i = 1, ..., N ,

is used to denote the observed failure time, the failure indicator and the cause of failure,

on a sized N sample, and tj indicates the distinct observed failure times. Our focus will

be on

� the estimation of the CI of AE, thus on the distribution of (T,∆)

� the estimation of the survival (and related quantities) in an hypothetical world

where relapse is absent, thus on the distribution of the potential TAE.

9



When two binary covariates X1 and X2 are supposed to have an impact on the po-

tential time TAE, the survival function can be written (under exponential assumption)

as

SAE(t) = P (X1 = 0)P (X2 = 0)exp(−λ00AE · t)+

+ P (X1 = 0)P (X2 = 1)exp(−λ01AE · t)+

+ P (X1 = 1)P (X2 = 0)exp(−λ10AE · t)+

+ P (X1 = 1)P (X2 = 1)exp(−λ11AE · t)

(1.9)

This is an average of exponential distributions weighted for the proportion of patients

with covariates values X1 = k, k = 0, 1 and X2 = l, l = 0, 1.
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Chapter 2

Standard methods to analyse AE data

The analysis of AEs could be tackled from two di�erent points of view. Approach 1

focuses on the description of the observed occurrence of an AE as �rst event among the

competing risks AE and relapse. In this case, treatment ability to protect from relapse

has an impact on the chance of observing an AE due to the competing risks action. The

more the treatment protects from relapse, the greater is the chance to experience AEs [6].

Approach 2 focuses on the treatment action in the development of AEs in patients

relapse free in time. To address this issue, one should consider the occurrence of AEs as if

relapse would not exclude the possibility of observing AEs related to the treatment under

analysis, thus in the absence of competing risks. In this way, the comparison between the

treatment impact on AEs does not depend on the e�ect of treatment on relapse.

In both approaches, the theoretical quantities and the relative estimators used in

clinical papers to describe AEs data should have these features:

(a) the estimator addresses for the presence of right censoring;

(b) the theoretical quantity and estimator are functions of time.

In this chapter, the standard methods represented by the crude proportion of AE

and the epidemiological AE rate are described and we will prove that they fail in at

least one of the two features. We will then show the use of the crude incidence and

of the cause-speci�c standard methods to be consistent with the two features for both

approaches.

2.1 The crude proportion of AE

The empirical crude proportion (CP) is de�ned as

CP =
N∑
i=1

I(t = ti; δi · ei = 1)

N
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where I(·) identi�es an indicator function, and it originates from the count of patients

who fail due to AEs during the entire follow-up over a total of N patients, regardless of

the individual follow-up length.

The CP estimator is consistent with the �rst approach of analysis, since it can be

thought as a naïve estimate of the probability of observing AEs over the entire follow-

up. Of note AEs are counted only if observed as �rst events, whereas relapse acts as

competing risk. However, CP, although it is calculated at the last available event time,

is not a function of time in the sense that is not calculated at di�erent time points. In

addition, it does not address properly for the presence of right censoring because N is

�xed and the problem of censoring is disregarded. Thus, CP fails with respect to features

(a) and (b).

2.2 The crude incidence of AE

The theoretical CP can be generalized in time by the crude incidence (CI) probability,

which corresponds to the absolute risk of treatment failure due to AEs up to time t. The

non-parametric ML estimator of the CIAE(t) is given by the AJ formula reviewed in

paragraph 1.2.5 and here rewritten

ĈIAE(t) =
∑
tj≤t

Ŝ(tj−) · ĥAE(tj) (2.1)

where Ŝ(tj−) = P̂ (T > tj−) is the KM non-parametric ML estimator of the proportion

of patients free from treatment failure up to time tj− and

ĥAE(tj) =

∑N
i=1 I(ti = tj; δij · eij = 1)

nj

(2.2)

is the instantaneous rate of AEs, which corresponds to the proportion of patients ex-

periencing AEs at time t over the total number of patients at risk, i.e. free from AEs

and relapse (and censoring), at that time. Of note, the denominator corresponds to the

person-time spent at risk in the time window [tj, tj + 1). Formula (2.2) can be written

also as ĥAE(tj) =
djAE

nj
where djAE is the number of patients developing AE at time tj.

The AJ estimator of CIAE(t) is consistent with the �rst approach of analysis, since

it can be thought as an estimate of the probability of treatment failure due to AEs over

the course of time, where, since AEs are counted only if observed as �rst events, relapse

acts as competing risk. One may note in formula (2.1) the indirect protection of relapse,

that lowers down Ŝ(tj−) when relapse occurs. The CIAE(t) satis�es both features: it

addresses for the presence of right censoring, due to the non-parametric ML estimator

property, and it is a function of time.
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2.3 The epidemiological AE rate

The epidemiological AE rate is de�ned as

Rate =

∑N
i=1 I(ti = t; δi · ei = 1)∑N

i=1 ti

and it originates from the count of patients observed to fail due to AEs during the entire

follow-up divided by the total time spent free from treatment failure, i.e. spent free from

both AEs and relapse. The AE rate represents the number of observed AEs per 1 unit

of person-time spent at risk.

The AE rate can be thought as an estimate of the probability of observing AEs in

the next time unit for a patient that is now free from AEs and relapse (and censoring),

assuming this probability as constant. If this probability cannot be reasonably assumed

constant, the AE rate can be interpreted as an �average� rate over the follow-up. The AE

rate is consistent with the second approach of analysis, where the focus is on treatment

action in the development of AEs in patients relapse free in time. Of note, the occurrence

of relapse (or of right censoring) would imply a contribution to the denominator equal to

time of relapse (or of right censoring) and a null contribution to the numerator. Thus,

the AE rate does not fail with respect to feature (a). The AE rate can be proved to be

the parametric ML estimator of the probability of observing AEs in the next time unit

for a patient free from treatment failure

CSHAE(t) = lim
∆t→0+

P (t < T ≤ t+∆t;E = 1|T > t)

∆t
(2.3)

assuming this probability constant in time. The quantity presented in (2.3) corresponds to

the cause-speci�c hazard (CSH) of AEs and can be estimated through the non-parametric

ML estimator in (2.2). The AE rate, however, fails with respect to feature (b), being

constant in time.

2.4 The cause-speci�c hazard of AE

The theoretical AE rate can be generalized in time easily by relaxing the assumption

of constancy in time of the CSHAE(t) introduced in (2.3) and thus resorting to the non-

parametric estimator in (2.2). The estimator of the CSHAE(t) is commonly obtained by

the cumulative sum derived from the Aalen-Nelson (AN) formula

ÂNAE(t) =
∑
tj≤t

1 · ĥAE(tj) (2.4)
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which is by de�nition a non-decreasing function. The ANAE(t) estimator is consistent

with the second approach of analysis, where, unlikely in (2.1), there is no indirect pro-

tection from relapse. One may observe by comparing (2.1) and (2.4) that Ŝ(tj−), which

is lowered down in (2.1) when relapse occurs, is replaced in (2.4) by the �xed value 1.

As an alternative to the ANAE(t) estimator where �smoothing� is obtained by cumu-

lative sum, one may consider the cumulative product of (1 − ĥAE(t)) terms, with the

complement to 1 used to obtain again a non-decreasing function, leading to the KM

formula
ˆKMAE(t) = 1−

∏
tj≤t

(1− ĥAE(tj)) (2.5)

Both estimators (2.4) and (2.5) address for the presence of right censoring (feature

(a)) since it is addressed in ĥAE(tj), and they are functions of time (feature (b)).

2.5 Issues on the meaning of AN and KM estimators

At �rst glance, the ANAE(t) and KMAE(t) curves could be interpreted only in terms

of treatment action in determining AE occurrence as �rst event, regardless of the impact

of relapse. This interpretation comes natural since hAE(t) is related only to the velocity

of development of AEs in time unlikely CIAE(t), where S(tj−) in (2.1) is in�uenced by

the development of relapse.

One may note, however, that the occurrence of relapse may �select� not at random

patients excluded from the sub-sample of patients on which the instantaneous rate of

AEs is calculated in (2.2). This issue on patients selection may in�uence the interpre-

tation of CSHAE(t) and subsequently of the chosen smoother. The CSHAE(t) may not

capture entirely the mechanism of treatment action in terms of AEs on AEs free patients

represented by

HAE(t) = P (t < TAE ≤ t+ 1|TAE > t) (2.6)

unless there is independence between TAE and TRL. In this case, the sub-sample of

patients with T > t in (2.3) is a random sample of patients with TAE > t in (2.6) and

the interpretations of ANAE(t) and KMAE(t) hold. This independence, however, can be

rarely assumed and cannot be tested.
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Chapter 3

Hazard of AE: estimation and

smoothing

To relax the assumption of independence between the two potential times TAE and

TRL one possibility is to estimate the hazard of AE in strata de�ned by observed covari-

ates assuming only within each stratum independence between TAE and the additional

selection due to TRL. This approach can be carried out by averaging stratum estimates

obtained either non parametrically or by the use of the Cox model leading to a weighted

average survival probability. An alternative method is addressing the presence of selec-

tion due to relapse through inverse probability of censoring weighting (IPCW) [19, 20].

This method aims at creating a pseudo-population that is similar to the one observable

in the absence of relapse by adding a weight to patients who do not develop relapse. On

this pseudo-population a survival probability is then calculated.

3.1 Weighted average survival probability

The survival probability for each level of the observed covariates can be estimated

through the KM estimator within each stratum or by a Cox PH model including these

covariates among regressors. The overall average survival is determined by weighting the

survival probabilities in each level of the covariates by the proportion of subjects having

that covariate level. If both covariates X1 and X2 are observed, the weighted average
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survival is calculated as

SAE(t) =

∑N
i=1 I(X1i = 0, X2i = 0)

n
S00
AE(t)+

+

∑n
i=1 I(X1i = 0, X2i = 1)

n
S01
AE(t)+

+

∑n
i=1 I(X1i = 1, X2i = 0)

n
S10
AE(t)+

+

∑n
i=1 I(X1i = 1, X2i = 1)

n
S11
AE(t)

(3.1)

where Skl
AE(t) indicates the survival probability at time t obtained through the KM esti-

mator or the Cox model for a patient having X1 = k, k = 0, 1, and X2 = l, l = 0, 1.

3.2 IPCW estimator

The unitary contribution of a subject i in the count of subjects at risk of experiencing

an AE at time t is replaced by the unstabilized weight ŵu
i (t) =

1

ŜX
RL(t|X1,X2)

that is inversely

proportional to the estimate of the conditional probability of being relapse free (i.e. of

remaining uncensored) ŜX
RL(t|X1, X2) until time t. The lower is the probability of being

relapse free, the greater are the weights. The estimate ŜX
RL(t|X1, X2) can be based on

the KM estimator within each level of the observed covariates or on the �t of a Cox PH

model for relapse in which all prognostic factors for AE and for relapse are entered as

covariates [21]. Once the weights are calculated, one can estimate the survival probability

for time to AE in the absence of relapse using the KM estimator [22].

In detail, the use of the IPCW estimator can be summarized in the steps below:

1. Fit a model for the censoring mechanism (i.e. relapse) including all the covariates

that could have an impact on the times of AE and of relapse. This type of model is

required in order to assess how long a subject stays in the study without experienc-

ing relapse. This means using the KM estimator or implementing a Cox PH model

considering the development of relapse as the event of interest (and so subjects who

experience an AE are now treated as censored observations).

2. Estimate, parametrically or semi-parametrically, the probability of remaining re-

lapse free at each observed time point t, denoted by ŜX
RL(t|X1, X2), for all subjects

at risk at the same time t. In addition, also the probability of being relapse free at

time t independently from covariates ŜX
RL(t) is estimated.

3. Calculate the IPCW unstabilized weights ŵu
i (t) =

1

ŜX
RL(t|X1,X2)

for each subject. In

case of heavy censoring, these weights become very large, so one can calculate the

stabilized weights substituting the numerator with the probability of being relapse

free at time t independently from covariates, ŵs
i (t) =

ŜX
RL(t)

ŜX
RL(t|X1,X2)

.
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4. Estimate the survival probabilities for time to AE in the absence of relapse weight-

ing subjects according to the IPCW methodology at each observed time point of

interest.
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Chapter 4

Data examples

In this chapter we present the standard methods commonly used to analyse AEs ap-

plied to a motivating example on osteonecrosis in childhood acute lymphoblastic leukaemia

and to a simulated dataset. In addition, we applied also the weighted average survival

probability and the IPTW methods in order to account for the possible dependence be-

tween the potential times of the competing events.

4.1 Motivating data

The motivating example of this thesis was the evaluation of the occurrence of os-

teonecrosis (ON), a relatively rare disabling complication related to the administration

of a front line intensive chemotherapy treatment in children newly diagnosed with acute

lymphoblastic leukaemia (ALL). The aim was to assess this complication as related to

the front line treatment, thus before death or the development of a relapse during or after

the end of this treatment. We show the application of the standard methods commonly

used to analyse AEs data to children with ALL enrolled in two subsequent multicenter

clinical trials conducted in Italy with the Italian Association of Pediatrical Hematology

and Oncology (AIEOP) [23]. In this study, ON is an AE of the treatment protocol ad-

ministered to children with ALL and acts as competing risk for death (not due to relapse)

or the �rst relapse (which is followed by another type of treatment).

We analysed data on 3668 children aged 1-17 years at diagnosis of ALL and of those,

87 experienced an ON during or after the end of the front line treatment (ON after

transplant or relapse were excluded) while 715 children relapsed or died.

The crude proportion of ON is 87
3668

= 0.023, meaning that 2.3% of the study popula-

tion developed an AE before relapse or death. In Figure 4.1 panel a) the crude incidence

of ON calculated through the AJ estimator is displayed. The CI probability of failure

due to an ON is lower that 2.5% after 4 years from diagnosis of ALL.

The epidemiological AE rate, calculated as the number of subjects experiencing an ON
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over the total time at risk of developing an ON, a relapse or death, is Rate = 87
20517.03

=

0.004, meaning that 4 ONs per 1000 person-years occur. The estimates of the CSHON(t)

obtained through the AN and KM smoothed estimators are displayed in Figure 4.1 panel

b). Multiplying the AN estimator by 100, at 4 years from diagnosis, the expected number

of ONs in 100 hypothetical children is 2.5.

Figure 4.1: a) CION(t) estimated through the Aalen-Johansen formula; b) ANON(t) and
KMON(t) smoothed curves of the CSHON(t).

In the dataset two covariates are of relevance: age at diagnosis of ALL, since inci-

dence of ON is higher with higher age, and risk group, which is the strati�cation of the

children, based on genetic features and cytological/molecular early response to treatment

and de�nes the intensity of treatment administered (the higher the risk, the higher the

intensity). In order to correctly account fo the presence of a dependence between the

potential time of ON and the potential time to relapse or death we implemented the

methods proposed in Chapter 3, including �rst only risk group as covariate and then

adding also age at diagnosis (> 10 versus ≤ 10 years).

In Figure 4.2 the estimates of the survival probability obtained with di�erent methods

are displayed. One can see that the naïve KM estimator and the weighted average method

considering only risk group as covariate give the same estimates of the survival probability.

Including also age at diagnosis as covariate, a similar but lower survival probability is

obtained. The distance between the two groups of curves (naïve and curves accounting

for 1 covariate and curves accounting for 2 covariates) suggests that the inclusion of the

second covariate removes part of the dependence. However, overall the inclusion of the two
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Figure 4.2: Survival probability estimates obtained with the naïve KM estimator, the
weighted KM estimator stratifying only for 1 covariate (risk group) or for 2 covariates
(risk group and age at diagnosis) and the weighted Cox model including only risk group
or both risk group and age at diagnosis as covariates.

covariates does not change remarkably the survival probability from the naïve estimator.

This could be due to the low ability of the covariates risk group and age at diagnosis

to remove the dependence between the potential time of ON and the potential time of

relapse or death. Yet another explanation could be that the two potential times do not

have a strong dependence as indeed the pathways to relapse or death is not necessarily

related to the determinants of ON.

4.2 Simulated data

The standard methods commonly used to analyse AEs are also calculated on a sim-

ulated example dataset of N = 300 subjects. The potential times TAE and TRL are

simulated from exponential distributions with parameters depending on two binary co-

variates X1 and X2, with P (X1 = 1) = 0.3 and P (X2 = 1) = 0.4. The combination of X1

and X2 identi�es a di�erent hazard pro�le in patients experiencing an AE or a relapse:

� if X1 = 0 and X2 = 0, TAE ∼ Exp(1) and TRL ∼ Exp(2)
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� if X1 = 0 and X2 = 1, TAE ∼ Exp(3) and TRL ∼ Exp(6)

� if X1 = 1 and X2 = 0, TAE ∼ Exp(3) and TRL ∼ Exp(5)

� if X1 = 1 and X2 = 1, TAE ∼ Exp(9) and TRL ∼ Exp(15)

One may note that, �xed X1 = 0 (or X1 = 1), if X2 changes, both the hazard of

AE and the hazard of relapse triple. For sake of simplicity, we did not consider the

presence of censoring despite we already explained the in�uence of right censoring on

each standard method. The distribution of the potential times TAE and TRL is presented

in Figure 4.3 panel a). At �rst glance, the dependence between the two times is not

evident. One can notice, however, that the times of patients with both covariates equal

to 0 are systematically greater (median time TAE equal to 0.7 and median time TRL equal

0.4) than the remaining points. Similarly, for the other points, median values for TAE

and TRL are: 0.2 and 0.1 (X1 = 0, X2 = 1), 0.2 and 0.2 (X1 = 1, X2 = 0), 0.1 and

0.0 (both covariates equal to 1). The correlation between times TAE and TRL is equal to

0.23. This moderate value is due to the absence of correlation within the four groups of

patients identi�ed by the covariates. However, the correlation between median times TAE

and TRL within the four groups becomes equal to 0.94. The distribution of the failure

time T , calculated as the minimum value between TAE and TRL, is displayed in Figure

4.3 panel b). Of note, the mean failure time is equal to 0.19.

In Table 4.1 quantities needed to analyse AE data with the standard methods are

displayed. In particular, the distinct failure times tj, the number of patients at risk

nj at each time point, the number of subjects experiencing an AE or a relapse as �rst

event (djAE and djRL respectively), the survival probability Ŝ(tj) estimated through the

KM estimator and the instantaneous rate of AE ĥAE(tj) in the simulated sample of 300

patients are summarised.

In this dataset, 80 subjects develop an AE and 220 fail due to relapse. Then, the crude

proportion of AE is CP = 80
300

= 0.27, meaning that 27% of the study population develop

an AE. In Table 4.1, at each time tj, the quantities needed to estimate the crude incidence

ĈIAE(t) through the AJ estimator are summarised and in Figure 4.4 panel a) the graph

is shown. For example, the highest CI probability of failure due to AE 0.263 is reached

at the last observed failure time 2.1. This means that the absolute risk of developing an

AE up to time 2.1 is 26.3% when allowing for the presence of the competing risk relapse.

The epidemiological AE rate, calculated as the number of subjects developing an AE

over the total time at risk of developing both an AE or a relapse, is Rate = 80
56.4

= 1.42

with the total time at the denominator derived from the sum of tj ∗ djAE and tj ∗ djRL

in Table 4.1. In the table also the values of the estimates obtained with both the AN e

KM smoothed estimators of the CSHAE(t) are reported and their curves are displayed

in Figure 4.4 panel b). One can see that in the time interval [0, 1.3], considering the
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Figure 4.3: a) Scatterplot of TAE and TRL times according to the four groups identi�ed
by the binary covariates X1 and X2 and b) histogram of the distribution of the failure
times calculated as the minimum value between TAE and TRL, in the simulated dataset
of N = 300 subjects.

AN estimator, a subject at risk is expected to develop 1.2 AEs. Considering the KM

estimator, at time 1.3 in an hypothetical sample of 100 subjects 73 AEs are expected to

happen.
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Figure 4.4: a) CIAE(t) estimated through the Aalen-Johansen formula; b) ANAE(t) and
KMAE(t) smoothed curves of the CSHAE(t).
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To enlighten the problems related to the interpretation of the ANAE(t) and KMAE(t)

smoothed curves, we simulated di�erent datasets according to the parameters speci�ed

at the beginning of this chapter with increasing sample size from N = 100 to N = 1000

and we compared these quantities with the theoretical cumulative hazard function of

TAE and with one minus the survival function respectively. The theoretical cumulative

hazard function can be calculated as− log(SAE(t)), where the theoretical survival function

SAE(t) is calculated following formula (1.9). In Figure 4.5 panels a) and b) the ANAE(t)

and KMAE(t) smoothed curves calculated in the simulated datasets are displayed. One

can notice that, independently from the sample size of the dataset and from the low

correlation between TAE and TRL, the ANAE(t) and KMAE(t) smoothed curves do not �t

the theoretical quantities, i.e. the cumulative hazard and one minus the survival function

respectively.

Figure 4.5: a) ANAE(t) and b) 1-KMAE(t) calculated for di�erent sample sizes.

The weighted average survival obtained with the KM estimator and from the Cox

model and the IPCW method proposed in Chapter 3 were calculated on the simulated

dataset of 300 subjects. The survival curves obtained adjusting for both binary covariates

X1 and X2 are displayed in Figure 4.6. One can observe that, comparing the estimates

with the theoretical survival function, for small times the three methods perform well,

whereas as the time increases the weighted average obtained with the Cox model (green

line) gives the less biased estimate.
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Figure 4.6: Survival probability estimates obtained with the weighted KM estimator, the
weighted Cox model and the IPCW method. The black line is the theoretical survival
function.
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Chapter 5

Simulation protocol

5.1 Data generation

We generated 1000 datasets of N = 300 observations, using the inversion method

proposed by Bender et al. [24]. First, we simulated two independent binary covariates

X1 and X2 from Bernoulli distributions with probabilities of success P (X1 = 1) = 0.3

and P (X2 = 1) = 0.4. Then we generated the potential times TAE and TRL from expo-

nential distributions with parameters depending on the two binary covariates. Finally,

the observable failure time T was determined as the minimum of the potential times TRL

and TAE. Of note, since in this thesis we are interested in the basic data structure and

statistical techniques accounting for it rather then to clinical questions, we decided not to

consider the presence of censoring. For the same reason, we simulated our data following

constant event-speci�c hazards models [7].

In detail, we simulated 4 di�erent scenarios varying the parameters of the exponential

distribution from which the potential time TRL is generated (summarised in Table 5.1):

� scenario 1 - the hazard of relapse is independent from the covariates values (it is

always equal to 2)

� scenario 2 - only X1 has an impact on the hazard of relapse (it changes from 2 when

X1 = 0 to 5 when X1 = 1)

� scenario 3 - the hazard of relapse depends on X1 and, when X1 = 0, on X2 (in this

case the hazard of relapse for subjects with X2 = 1 is tripled). In this scenario also

an interaction between the two covariates has an impact on the hazard of relapse

� scenario 4 - �xed X1 = 0 (or X1 = 1), if X2 changes, the hazard of relapse triples.

In this case, X2 generates a dependence between the potential times TRL and TAE.

In Figure 5.1 the theoretical survival functions of AE and of relapse, calculated ac-

cording to formula (1.9) in the four scenarios are displayed. Of note, in all scenarios �xed
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Table 5.1: Parameters of the exponential distributions from which the times of AE and
of relapse are generated

Scenario AE Relapse

λ00AE λ01AE λ10AE λ11AE λ00RL λ01RL λ10RL λ11RL

1 1 3 3 9 2 2 2 2
2 1 3 3 9 2 2 5 5
3 1 3 3 9 2 6 5 5
4 1 3 3 9 2 6 5 15

λijAE and λijRL are the parameters of the exponential distributions of TAE

and TRL, respectively, when X1 = i, i = 0, 1, and X2 = j, j = 0, 1.

X1 = 0 (or X1 = 1), if X2 changes, the hazard of AE triples. As a consequence, the

survival function of AE is the same in all scenarios.

5.2 Estimated quantities

For each scenario, we calculated the true value of the survival probability in an hy-

pothetical world where relapse is absent following formula (1.9) at two �xed time-points

(t = 0.2 and t = 0.3), chosen in order to have a su�cient number of events (at least 60

events). In addition, we estimated the expected number of subjects at risk of developing

an event (AE or relapse) at these time-points for an hypothetical sample of N = 300

patients as

N · P (TRL > t, TAE > t) =

= N ·[P (X1 = 0)P (X2 = 0)exp(−λ00RL · t)exp(−λ00AE · t)+

+ P (X1 = 0)P (X2 = 1)exp(−λ01RL · t)exp(−λ01AE · t)+

+ P (X1 = 1)P (X2 = 0)exp(−λ10RL · t)exp(−λ10AE · t)+

+ P (X1 = 1)P (X2 = 1)exp(−λ11RL · t)exp(−λ11AE · t)]

where the calculation of P (TRL > t, TAE > t) in each stratum is obtained by the product

of P (TRL > t) and P (TAE > t) given the conditional independence given the covariates.

In order to compare the methods that can be used to analyse AE data, for each

dataset we estimated di�erent quantities:

1. the naïve KMAE(t) survival estimate of the incidence of treatment failure only

due to AE, as if relapse was removed without accounting for covariates (following

formula (2.5))

2.1. the weighted average survival probability, obtained through the KM estimator in

strata de�ned according to the observed covariate X1, thus considering unobserved
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Figure 5.1: Theoretical survival functions of AE and of relapse in the four scenarios.

covariate X2

2.2. the weighted average survival probability, obtained through the KM estimator in

strata de�ned according to the observed covariates X1 and X2

2.3. the weighted average survival probability, obtained through the Cox model with

only the observed covariate X1, thus considering unobserved covariate X2

2.4. the weighted average survival probability, obtained through the Cox model with

the observed covariates X1 and X2

3.1. the KM survival probability on the pseudo-population obtained by IPCW estimator

(Cox based) where weights are estimated according to the observed covariate X1,
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thus considering unobserved covariate X2

3.2. the KM survival probability on the pseudo-population obtained by IPCW estimator

(Cox based) where weights are estimated according to the observed covariates X1

and X2.

5.3 Extensions of the simulation protocol

5.3.1 Change in the imbalance of the covariates

We de�ned a new simulation scenario varying the imbalance of the covariates. First,

we set the parameters of the Bernoulli distributions from which the binary covariates

X1 and X2 are generated in order to construct the �worst� situation that may happen

when analysing real data (named case A), that is both covariates are very frequent in the

population under study. To do so, we changed the Bernoulli parameters from the original

P (X1 = 1) = 0.3 and P (X2 = 1) = 0.4 to P (X1 = 1) = P (X2 = 1) = 0.5, meaning that

50% of the population have both covariates. Then, we set the Bernoulli parameters in

order to obtain the �best� scenario (named case B), that is at least one covariate (here

X2) is rare in the study population. In this case, we kept �xed the prevalence of the �rst

covariate P (X1 = 1) = 0.3 and we changed that of the second one to P (X2 = 1) = 0.1.

In Figure 5.2 the theoretical survival probabilities of AE and relapse in the two scenarios

are displayed.

5.3.2 Change in the hazard ratio of relapse

We de�ned another new simulation scenario changing the hazard ratio of relapse. We

changed the parameters of the exponential distributions from which the hazard of relapse

was generated in order to reduce the impact of the competing event (Table 5.2). First

we set the parameters in order to have, �xed X1 = 0 (or X1 = 1), when X2 changes, an

increase of 2 times of the hazard of relapse (case A) and then an increase of 1.5 times

(case B). In Figure 5.3 the theoretical survival probabilities of AE and relapse in the two

scenarios are displayed.
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Figure 5.2: Theoretical survival functions of AE and of relapse in the scenarios obtained
changing the imbalance of the covariates. In case A P (X1 = 1) = P (X2 = 1) = 0.5, in
case B P (X1 = 1) = 0.3 and P (X2 = 1) = 0.1.

Table 5.2: Parameters of the exponential distributions from which the times of AE and
of relapse are generated changing the hazard ratio of relapse

AE Relapse

λ00AE λ01AE λ10AE λ11AE λ00RL λ01RL λ10RL λ11RL

Case A 1 3 3 9 2 4 5 10
Case B 1 3 3 9 2 3 5 7.5

λijAE and λijRL are the parameters of the exponential distributions of
TAE and TRL, respectively, when X1 = i, i = 0, 1, and X2 = j, j = 0, 1.
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Figure 5.3: Theoretical survival functions of AE and of relapse in the scenarios obtained
changing the imbalance of the covariates. In case A λ00RL = 2, λ01RL = 4, λ10RL = 5,
λ11RL = 10, in case B λ00RL = 2, λ01RL = 3, λ10RL = 5, λ11RL = 7.5.
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Chapter 6

Simulation results

Simulation results in the four scenarios are displayed in Figure 6.1. At each time-

point the expected number of subjects at risk of developing an event is displayed and

the distance between the estimate and the theoretical survival probability (bias) is rep-

resented in a boxplot for each of the 7 estimators. In addition, the theoretical survival

probability, the mean of the estimates obtained with the di�erent methods, the bias from

the theoretical survival probability and the variance of the estimates are summarised in

Tables 6.1 (scenarios 1 and 2) and 6.2 (scenario 3 and 4).

In scenario 1, where the hazard of relapse is independent from the covariates values,

the results of all methods are similar: the median value of the di�erence of the survival

estimated through each method and the theoretical survival is equal to 0. Of note, even

the estimate of the survival obtained with the naïve KM estimator censoring relapsed

subjects is also unbiased.

In scenario 2, where only X1 has an impact on the hazard of relapse, the naïve KM

estimator gives a biased survival probability. With the other methods unbiased estimates

are obtained. Of note, the methods in which only the X1 covariate is considered perform

better with respect to those in which both covariates are included. This is due to the

fact that X2 does not have an impact on relapse.

In scenario 3 the hazard of relapse depends on X1 and, when X1 = 0, also on X2.

Methods in which only X1 is included give biased estimates. Methods with X1 and X2

covariates give unbiased estimates with the exception of the IPCW estimator, where

there is an underestimation of the survival probability. This is due to the fact that in

this scenario also an interaction between the two covariates is present: X2 has an impact

on the hazard of relapse only when X1 = 0. However this interaction is not accounted

for in the model to estimate weights. To corroborate this result, Figure 6.2 shows the

results of IPCW and weighted Cox approaches when X1, X2 and their interaction are

considered. The reader may observe that the inclusion of the interaction overcomes the

bias in the IPCW method, while it is not needed in the Cox model since, conditional on
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X1 and X2, this model requires an assumption of independence between TAE and TRL

that is present even if there is an interaction between X1 and X2. In this regard, the

Cox model is robust also in the presence of an interaction between the covariates on the

hazard of relapse.

In the last scenario displayed in Figure 6.1, where both X1 and X2 have an impact on

the hazard of relapse, all methods including one covariate only give similar biased results.

However, the distance between the estimated and the theoretical survival probabilities is

lower than that obtained from the naïve KM estimator. The estimates from the weighted

KM or the Cox model and from the IPCW are unbiased when the methods account for

the presence of all covariates that have an impact on the hazard of relapse. Of note, the

estimates from the IPCW have a greater variability with respect to the others (Table

6.2).
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Figure 6.1: Simulation results in all scenarios at times t = 0.2 and t = 0.3. The grey
horizontal line is the reference null bias.
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Figure 6.2: Simulation results for scenario 3 of the IPCW estimator accounting for the
presence of an interaction between X1 and X2 in the estimate of the weights. The grey
horizontal line is the reference null bias.

36



T
ab
le
6.
1:

S
im

u
la
ti
on

re
su
lt
s
in

sc
en
ar
io
s
1
an
d
2
at

ti
m
es

t
=

0.
2
an
d
t
=

0.
3

M
et
h
o
d

T
im

e
=

0.
2

T
im

e
=

0.
3

β
M

ea
n
(β̂
)

B
ia
s
·1
02

V
a
r(
β̂
)
·1
03

β
M

ea
n
(β̂
)

B
ia
s
·1
02

V
a
r(
β̂
)
·1
03

S
ce
n
a
ri
o
1

N
aï
ve

K
M

0.
61
62

0.
61
73

0.
11
07

0.
98
32

0.
50
62

0.
50
71

0.
08
33

1.
09
89

W
ei
gh
te
d
K
M

1
co
v
.

0.
61
62

0.
61
70

0.
08
71

0.
97
78

0.
50
62

0.
50
68

0.
05
45

1.
07
58

W
ei
gh
te
d
K
M

2
co
v
s.

0.
61
62

0.
61
69

0.
07
51

0.
97
05

0.
50
62

0.
50
67

0.
04
77

1.
07
08

W
ei
gh
te
d
C
ox

1
co
v
.

0.
61
62

0.
61
69

0.
07
62

0.
97
25

0.
50
62

0.
50
70

0.
07
27

1.
06
26

W
ei
gh
te
d
C
ox

2
co
v
s.

0.
61
62

0.
61
82

0.
20
26

0.
95
51

0.
50
62

0.
50
81

0.
18
24

1.
03
66

IP
C
W

1
co
v
.

0.
61
62

0.
61
71

0.
09
11

0.
97
69

0.
50
62

0.
50
68

0.
05
73

1.
07
53

IP
C
W

2
co
v
s.

0.
61
62

0.
61
69

0.
07
87

0.
96
85

0.
50
62

0.
50
66

0.
03
95

1.
06
12

S
ce
n
a
ri
o
2

N
aï
ve

K
M

0.
61
62

0.
63
29

1.
67
93

1.
07
54

0.
50
62

0.
53
03

2.
40
66

1.
22
62

W
ei
gh
te
d
K
M

1
co
v
.

0.
61
62

0.
61
70

0.
08
66

1.
14
90

0.
50
62

0.
50
77

0.
14
40

1.
32
57

W
ei
gh
te
d
K
M

2
co
v
s.

0.
61
62

0.
61
71

0.
09
48

1.
10
96

0.
50
62

0.
50
88

0.
25
73

1.
26
91

W
ei
gh
te
d
C
ox

1
co
v
.

0.
61
62

0.
61
69

0.
07
86

1.
12
05

0.
50
62

0.
50
67

0.
05
07

1.
23
40

W
ei
gh
te
d
C
ox

2
co
v
s.

0.
61
62

0.
61
81

0.
19
55

1.
07
42

0.
50
62

0.
50
90

0.
27
94

1.
17
12

IP
C
W

1
co
v
.

0.
61
62

0.
61
71

0.
09
14

1.
15
39

0.
50
62

0.
50
79

0.
16
89

1.
30
61

IP
C
W

2
co
v
s.

0.
61
62

0.
61
69

0.
07
87

1.
13
41

0.
50
62

0.
50
78

0.
15
38

1.
27
42

β
is
th
e
es
ti
m
at
ed

th
eo
re
ti
ca
l
su
rv
iv
al

p
ro
b
ab
il
it
y,

β̂
is
th
e
es
ti
m
at
ed

su
rv
iv
al

p
ro
b
ab
il
it
y
in

ea
ch

of
th
e
10
00

sa
m
p
le
s,

bi
a
s
is
ca
lc
u
la
te
d
as

d
i�
er
en
ce

b
et
w
ee
n
th
e
av
er
ag
e
of

th
e
es
ti
m
at
ed

su
rv
iv
al

p
ro
b
ab
il
it
y
on

th
e
10
00

sa
m
p
le
s
an
d
th
e

th
eo
re
ti
ca
l
su
rv
iv
al

p
ro
b
ab
il
it
y.

37



T
ab
le
6.
2:

S
im

u
la
ti
on

re
su
lt
s
in

sc
en
ar
io
s
3
an
d
4
at

ti
m
es

t
=

0.
2
an
d
t
=

0.
3

M
et
h
o
d

T
im

e
=

0.
2

T
im

e
=

0.
3

β
M

ea
n
(β̂
)

B
ia
s
·1
02

V
a
r(
β̂
)
·1
03

β
M

ea
n
(β̂
)

B
ia
s
·1
02

V
a
r(
β̂
)
·1
03

S
ce
n
a
ri
o
3

N
aï
ve

K
M

0.
61
62

0.
64
36

2.
74
11

1.
15
64

0.
50
62

0.
55
19

4.
56
41

1.
39
60

W
ei
gh
te
d
K
M

1
co
v
.

0.
61
62

0.
63
30

1.
68
79

1.
19
00

0.
50
62

0.
53
50

2.
87
23

1.
44
14

W
ei
gh
te
d
K
M

2
co
v
s.

0.
61
62

0.
61
65

0.
03
87

1.
30
20

0.
50
62

0.
50
86

0.
23
81

1.
70
80

W
ei
gh
te
d
C
ox

1
co
v
.

0.
61
62

0.
63
42

1.
80
33

1.
17
54

0.
50
62

0.
53
65

3.
02
88

1.
37
07

W
ei
gh
te
d
C
ox

2
co
v
s.

0.
61
62

0.
61
80

0.
18
39

1.
22
80

0.
50
62

0.
50
87

0.
24
33

1.
43
82

IP
C
W

1
co
v
.

0.
61
62

0.
63
12

1.
50
92

1.
18
95

0.
50
62

0.
53
41

2.
79
07

1.
40
23

IP
C
W

2
co
v
s.

0.
61
62

0.
60
42

-1
.1
91
0

1.
37
51

0.
50
62

0.
49
51

-1
.1
15
3

1.
73
30

S
ce
n
a
ri
o
4

N
aï
ve

K
M

0.
61
62

0.
66
89

5.
27
30

1.
17
02

0.
50
62

0.
57
92

7.
29
87

1.
42
96

W
ei
gh
te
d
K
M

1
co
v
.

0.
61
62

0.
65
19

3.
57
20

1.
28
18

0.
50
62

0.
55
44

4.
81
86

1.
60
89

W
ei
gh
te
d
K
M

2
co
v
s.

0.
61
62

0.
62
19

0.
57
84

1.
62
44

0.
50
62

0.
52
14

1.
51
29

2.
05
40

W
ei
gh
te
d
C
ox

1
co
v
.

0.
61
62

0.
65
12

3.
50
49

1.
25
36

0.
50
62

0.
55
43

4.
81
05

1.
47
61

W
ei
gh
te
d
C
ox

2
co
v
s.

0.
61
62

0.
61
86

0.
24
39

1.
37
57

0.
50
62

0.
50
95

0.
32
50

1.
58
12

IP
C
W

1
co
v
.

0.
61
62

0.
65
22

3.
60
39

1.
29
10

0.
50
62

0.
55
41

4.
78
82

1.
61
37

IP
C
W

2
co
v
s.

0.
61
62

0.
61
76

0.
14
18

1.
83
97

0.
50
62

0.
51
16

0.
53
22

2.
52
30

β
is
th
e
es
ti
m
at
ed

th
eo
re
ti
ca
l
su
rv
iv
al

p
ro
b
ab
il
it
y,

β̂
is
th
e
es
ti
m
at
ed

su
rv
iv
al

p
ro
b
ab
il
it
y
in

ea
ch

of
th
e
10
00

sa
m
p
le
s,

bi
a
s
is
ca
lc
u
la
te
d
as

d
i�
er
en
ce

b
et
w
ee
n
th
e
av
er
ag
e
of

th
e
es
ti
m
at
ed

su
rv
iv
al

p
ro
b
ab
il
it
y
on

th
e
10
00

sa
m
p
le
s
an
d
th
e

th
eo
re
ti
ca
l
su
rv
iv
al

p
ro
b
ab
il
it
y.

38



All the methods with the exception of the IPCW were compared in the extensions of

the simulation protocol. We decided not to consider the IPCW method since we saw that

already in scenario 4 of the main simulation it performs in the same way of the weighted

Cox model.

Figure 6.3 shows the results obtained changing the imbalance of the covariates. As

expected, in both cases only estimates obtained from the weighted KM and the weighted

Cox model methods with the inclusion of both covariates are unbiased. Comparing the

results of case A with the corresponding results of scenario 4 in Figure 6.1 one may observe

the greater variability due to the lower number of patients at risk of developing an event

(AE or relapse). In Table 6.3 one can observe that the variances of the estimates obtained

from the weighted Cox model are 0.0017 and 0.0018 at times 0.2 and 0.3 respectively;

these values are higher compared to the same values obtained in the main simulation

(0.0014 and 0.0016 respectively, Table 6.2). The low number of subjects at risk is also

the reason why the weighted KM does not perform very well. Comparing the results

of case B with the corresponding results of scenario 4 in Figure 6.1 the estimates of all

methods are less biased. This is particularly evident for the estimates derived from the

methods including only X1: for example, at time 0.2, in scenario 4 of Table 6.2 the bias

is near to 0.035, whereas in Table 6.3 it is near to 0.011.
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Figure 6.3: Simulation results for the variation of scenario 4 when P (X1 = 1) = P (X2 =
1) = 0.5 (Case A) or P (X1 = 1) = 0.3 and P (X2 = 1) = 0.1 (Case B). The grey horizontal
line is the reference null bias.
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Figure 6.4 shows results when the parameters of the exponential distributions from

which the hazard of relapse was simulated change. Comparing the results with the

corresponding results of scenario 4 in Figure 6.1 one can observe that the lower is the

hazard ratio of relapse, the lower is the bias of the estimated survival. For example,

considering the estimate obtained from the weighted Cox model adjusted for X1 and X2

at time 0.2, when the hazard ratio of relapse is equal to 3 the bias from the theoretical

survival probability is 0.0024 (Table 6.2), whereas when the hazard ratio of relapse is equal

to 2 or to 1.5 the bias is 0.0020 or 0.0015 (case A and case B in Table 6.4 respectively).

Of note, in this simulation setting the bias obtained from the naïve KM reduces (at time

0.2, from 0.053 when the hazard ratio is equal to 3 to 0.037 and 0.026 when it is equal

to 2 or to 1.5 respectively) but it gives always the worst survival estimates.
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Figure 6.4: Simulation results for the variation of scenario 4 when �xed X1 = 0 (or
X1 = 1), if X2 changes, the hazard of relapse increases of 2 times (Case A) or of 1.5 times
(Case B). The grey horizontal line is the reference null bias.
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Chapter 7

Insights into event history following

adverse events: recurrent adverse

events and failure event following

adverse/intermediate event

This chapter discusses insights into two additional topics: the analysis of recurrent

AEs and the analysis of the impact of the occurrence of the AE on the subsequent hazard

of relapse. The �rst topic is the generalization of the theoretical work carried out so far

in this thesis to the broader scenario of repeated AEs, that may arise in practice. The

second topic is on the assessment of the impact of the occurrence of the AE (and the

subsequent decisions on the patient management) on the development of failure (relapse).

This answers the subsequent question arising after the numerical quanti�cation of the

occurrence of the AE.

7.1 Analysis of recurrent AEs

This section is related to an ongoing work on the analysis of in�ammatory/immune-

related AEs in adult patients a�ected by leukaemia and treated with bosutinib. This type

of AEs are �recurrent events� since they may occur more than once over the follow-up

time for a given subject [10].

In this setting, the CP of AEs should not be used since it does consider that a patient

could develop more than one AE. The epidemiological AEs rate could be used but it is

important to underline that it is assumed to be constant in time, as in the case of only

one AE. To analyse correctly data on recurrent AEs, one could use an extension of the

AN estimator, which can be interpreted as the expected number of AEs in a sample of

100 subjects.
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The motivating application is not a�ected by the problems due to the dependence

between the potential time to AEs and the potential time to any other competing event,

since in this particular case relapse was not considered. However, it is important to

underline that in other settings one or more competing events could happen. In this

case, one should account for the presence of a dependence among potential times, as in

the case of only one AE.

Since results have not been yet published, we created a simulated dataset to show

how can be interpreted the AN estimator in case of recurrent events. In Figure 7.1

two di�erent ways of presenting the results of the AN estimator calculated on a dataset

including recurrent events. In panel a) the AN estimate can be interpreted as the expected

number of AEs a subject experiences in time. For example, at time 1.5 he/she develops

2 AEs. In panel b) the AN estimate can be viewed as the expected number of AEs in

time in 100 hypothetical subjects. In this case, for example, at time 1.5 quite 200 AEs

are expected in a population of 100 subjects.

Figure 7.1: Two di�erent ways of interpreting the AN estimator: a) expected number of
AEs for a subject; b) number of AEs per 100 subjects.

7.2 Analysis of the impact of the occurrence of the AE

on the subsequent hazard of relapse

When the focus moves to the impact that the occurrence of AEs have on the de-

velopment of failure (relapse), the illness-death model could be a suitable theoretical
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representation where the AE is thought of as a particular status of illness, that may

have an in�uence on the development of failure. The illness-death model is the simplest

multi-state model where the transition from the initial state 0 to the absorbing state 2

may involve an intermediate state 1, in this case the AE.

The standard approach of analysis in this setting is modelling the transition hazards

from 0 to 2 and from 1 to 2, including time to state 1 as a time-varying covariate and

measuring time from origin even after transition into state 1. The hazard from 1 to 2 can

be also modelled separately using only patients in state 1, measuring time from illness

and including time to state 1 as a �xed covariate. In the literature [26, 27] an approach

was proposed through a model where time after the transition into state 1 is measured in

both scales and time to state 1 is included as a time-varying covariate. Another possibility

is a model where time after transition into state 1 is measured only from transition into

state 1 and time to state 1 is included as a �xed covariate.

During my doctoral research activity I discussed through theoretical reasoning and

simulation protocols, the use of these models and I developed a practical strategy aiming

at:

(a) validate the properties of the illness-death process (Markov, semi-Markov, extended

semi-Markov properties)

(b) estimate the impact of time to state 1 on the hazard from state 1 to 2

(c) quantify the impact that the transition into state 1 has on the hazard of the ab-

sorbing state.

This theoretical reasoning hesitated in a scienti�c paper that was published on Bio-

metrical Journal in 2020 [28] and is attached to this thesis.
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Discussion

In the majority of clinical studies on novel therapies safety outcomes (such as incidence

of AEs) are analysed only through descriptive methods because of a variety of factors,

such as treatment discontinuation, low power due to rare AEs, multiplicity of the possible

AEs or recurrent episodes of the same AE-type. In this work we emphasized the critical

aspects of the standard methods (i.e. crude proportion, AE rate, smoothed estimators

of the cause-speci�c hazard) commonly used to analyse AEs data, proposing alternative

solutions that permit to relax the assumption of independence between the potential time

to AE and the potential time to relapse.

In the �rst part of this thesis we reviewed two di�erent approaches starting from the

type of clinical question when analysing AEs data: approach 1 consists in the description

of the observed occurrence of an AE as �rst event. In this case, treatment ability to

protect from relapse has an impact on the chance of observing AEs due to the competing

risks action. When the aim is to describe the proportion of AEs, since the frequently

presented crude proportion is not a function of time and does not properly account for

censoring [6,7], one can use the Aalen-Johansen estimator of the crude incidence of AEs,

commonly used for competing risks analysis [8]: this quantity gives an estimate of the

probability of treatment failure due to AEs over the course of time where relapse acts as

competing event since AEs are counted only if observed as �rst events.

Approach 2 consists in the description of the potential occurrence of AE in relapse

free patients. In this case, the commonly presented AE epidemiological rate correctly

addresses for the presence of right censoring but it is not a function of time [5, 6]. At

�rst glance, the estimators of the cause-speci�c hazard derived from the Aalen-Nelson or

Kaplan-Meier formulas could be interpreted in terms of treatment action in determining

the occurrence of an AE as �rst event regardless of the impact of relapse. However, the

occurrence of relapse may �select� not at random patients excluded from the sub-sample

of those on which the instantaneous rate of AEs is calculated. This selection, which is due

to the dependence between the two potential times to AE and to relapse, leads to biased

estimates. In particular, patients selection is stronger (and thus the bias is greater) when

the imbalance of the covariates is strong and when the hazard ratio of relapse is high [25].

We proposed alternative methods, such as weighted average survival probability (esti-

mated either by the Kaplan-Meier estimator or by the use of the Cox model) and inverse
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probability of censoring weighting, and we proved through simulations that they over-

come the problem due to the dependence between the potential times to AE and to

relapse. In particular, we showed that one can handle patients selection, and thus obtain

conditional independence between the two potential times, adjusting for all the observed

covariates. Of note, even adjusting only for few observed covariates as in the reality due

to unmeasured covariates, gives less biased estimates with respect to the estimate ob-

tained from the naïve Kaplan-Meier. In fact we proved that the estimate obtained from

the naïve Kaplan-Meier is always biased unless the hazard of relapse is independent from

the covariates values (scenario 1). In an hypothetical scenario where all the covariates

are observed, the weighted average survival estimate obtained either non parametrically

or by the Cox model and the survival estimate from the inverse probability of censoring

weighting would be unbiased (methods applied adjusting for both X1 and X2).

In addition, we point out that with the inverse probability of censoring weighting

method one could obtained biased estimates when all the possible interactions between

the observed covariates are not included in the model to estimate the weights (scenario 3).

However, the inclusion of the interaction is not needed when the weighted Cox model is

used, since conditional on the observed covariates, this model is robust in estimating the

average survival. Nevertheless, a limitation in the use of the weighted average survival

method is given by the fact that it may be applied only in the presence of binary (or

categorical covariates), since if the covariate is continuous it is impossible to identify the

subgroups in which the survival function is estimated.

We extended also the main simulation protocol changing the imbalance of the covari-

ates or the hazard ratio of relapse. In both cases, results are similar to those obtained

in the primary simulation: methods adjusted for the presence of both covariates give

unbiased estimates, whereas those adjusted only for X1 give less biased estimates with

respect to those obtained with the naïve Kaplan-Meier estimator.

Of note, we did not include the presence of right censoring in the simulation protocol

since the estimators we investigated already account for it. Thus, the inclusion of right

censoring would represent a feature of the data that would not help to quantify the extent

to bias of the estimators. This characteristic rather depends on intrinsic properties of the

estimators and not on the possible presence of censoring as additional complexity in the

data. A sensibility analysis to the presence of censoring could be however of interest and

would be matter of future work.

In the �nal part of the thesis, starting from on ongoing work, we showed that from

the point of view of the interpretation a complexity in the data given by the presence of

recurrent events as in Chapter 7 improves the interpretation of the Aalen-Nelson estima-

tor. This could be viewed as the expected number of AEs a subjects experiences in time

or as the expected number of AEs in time in 100 hypothetical patients.

Regarding the possible developments of this work, a starting point could be the ap-
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plication of the proposed models that relax the assumption of independence between the

potential times in the context of recurrent events.
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Appendix A

Appendix - R codes

In this Appendix the main lines of R code used to create the simulated data example

and the simulation protocol are reported.

A.1 Simulated data example

set.seed(12345)

n <- 100

lambda00AE <- 1

lambda01AE <- 3

lambda10AE <- 3

lambda11AE <- 9

lambda00RL <- 2

lambda01RL <- 6

lambda10RL <- 5

lambda11RL <- 15

# generate a binary covariate X1

x1 <- rbinom(n = n, size = 1, prob = 0.3)

# generate another binary covariate

x2 <- rbinom(n = n, size = 1, prob = 0.4)

# generate the time of Relapse (competing event)

genFt <- runif(n, min = 0, max = 1)

T_RL <- ifelse(x1 == 0 & x2 == 0, -1/lambda00RL * log(1-genFt),

ifelse(x1 == 0 & x2 == 1, -1/lambda01RL * log(1-genFt),

ifelse(x1 == 1 & x2 == 0, -1/lambda10RL * log(1-genFt),

-1/lambda11RL * log(1-genFt))))

# generate the time of Adverse Event

genFt <- runif(n, min = 0, max = 1)
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T_AE <- ifelse(x1 == 0 & x2 == 0, -1/lambda00AE * log(1-genFt),

ifelse(x1 == 0 & x2 == 1, -1/lambda01AE * log(1-genFt),

ifelse(x1 == 1 & x2 == 0, -1/lambda10AE * log(1-genFt),

-1/lambda11AE * log(1-genFt))))

# create the status indicator (1 = AE, 0 = RL)

status <- ifelse(pmin(T_RL, T_AE) == T_RL, 0, 1)

# create the time variable as minimum of T_RL and T_AE

time <- pmin(T_RL, T_AE)

id <- seq(1, n, 1)

# create the dataset

ds <- data.frame (id, x1, x2, T_RL, T_AE, time, status)

A.2 Study simulation

The code will be reported only for scenario 1. The other scenarios could be obtained

by simply varying the initial parameters denoted as lambdaRL.

A.2.1 Theoretical survival probability

lambda00AE <- 1

lambda01AE <- 3

lambda10AE <- 3

lambda11AE <- 9

lambda00RL <- 2

lambda01RL <- 2

lambda10RL <- 2

lambda11RL <- 2

time_vector <- c(0.2, 0.3)

reference_surv <- 0.7*0.6*exp(-lambda00AE*time_vector) +

0.7*0.4*exp(-lambda01AE*time_vector) +

0.3*0.6*exp(-lambda10AE*time_vector) +

0.3*0.4*exp(-lambda11AE*time_vector)

A.2.2 Expected number of subjects at risk

n <- 300

P00 <- 0.7*0.6

P01 <- 0.7*0.4

P10 <- 0.3*0.6
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P11 <- 0.3*0.4

exp_numb_0.2 <- n * ((P00*exp(-lambda00AE*time_vector[1])*

exp(-lambda00RL*time_vector[1])) +

(P01*exp(-lambda01AE*time_vector[1])*

exp(-lambda01RL*time_vector[1])) +

(P10*exp(-lambda10AE*time_vector[1])*

exp(-lambda10RL*time_vector[1])) +

(P11*exp(-lambda11AE*time_vector[1])*

exp(-lambda11RL*time_vector[1])))

exp_numb_0.3 <- n * ((P00*exp(-lambda00AE*time_vector[2])*

exp(-lambda00RL*time_vector[2])) +

(P01*exp(-lambda01AE*time_vector[2])*

exp(-lambda01RL*time_vector[2])) +

(P10*exp(-lambda10AE*time_vector[2])*

exp(-lambda10RL*time_vector[2])) +

(P11*exp(-lambda11AE*time_vector[2])*

exp(-lambda11RL*time_vector[2])))

A.2.3 Simulation

library(survival)

library(cmprsk)

library(dynpred)

library(prodlim)

library(rms)

nsim <- 1000

naive_surv <- c()

weighted_surv1_KM <- c()

weighted_surv2_KM <- c()

weighted_surv1_cox <- c()

weighted_surv2_cox <- c()

ipcw_surv1 <- c()

ipcw_surv2 <- c()

for (i in 1:nsim) {

x1 <- rbinom(n = n, size = 1, prob = 0.3)

x2 <- rbinom(n = n, size = 1, prob = 0.4)

genFt <- runif(n, min = 0, max = 1)

T_RL <- ifelse(x1 == 0 & x2 == 0, -1/lambda00RL * log(1-genFt),
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ifelse(x1 == 0 & x2 == 1, -1/lambda01RL * log(1-genFt),

ifelse(x1 == 1 & x2 == 0, -1/lambda10RL * log(1-genFt),

-1/lambda11RL * log(1-genFt))))

genFt <- runif(n, min = 0, max = 1)

T_AE <- ifelse(x1 == 0 & x2 == 0, -1/lambda00AE * log(1-genFt),

ifelse(x1 == 0 & x2 == 1, -1/lambda01AE * log(1-genFt),

ifelse(x1 == 1 & x2 == 0, -1/lambda10AE * log(1-genFt),

-1/lambda11AE * log(1-genFt))))

status <- ifelse(pmin(T_RL, T_AE) == T_RL, 0, 1)

time <- pmin(T_RL, T_AE)

ds <- data.frame (id = seq(1, n, 1), x1, x2, T_RL, T_AE, time, status)

### NAIVE KAPLAN-MEIER ESTIMATOR

naive_est <- summary(prodlim(Hist(time, status == 1) ~ 1, data = ds),

times = time_vector)

wrong_surv <- c(wrong_surv, wrong_est$table[1,5], wrong_est$table[2,5])

### WEIGHTED AVERAGE KAPLAN-MEIER ESTIMATOR - X1

est_KM1 <- survfit(Surv(time, status == 1) ~ as.factor(x1), data = ds)

unique_time <- unique(ds$time)

unique_time <- c(unique_time, time_vector)

surv_x0 <- evalstep(time = est_KM1[treat=1]$time,

stepf = est_KM1[treat=1]$surv,

newtime = unique_time, subst = 1,

to.data.frame = T)

surv_x1 <- evalstep(time = est_KM1[treat=2]$time,

stepf = est_KM1[treat=2]$surv,

newtime = unique_time, subst = 1,

to.data.frame = T)

colnames(surv_x0)[2] <- "surv_x0"

colnames(surv_x1)[2] <- "surv_x1"

ds_surv1 <- merge(surv_x0, surv_x1, by = 'newtime')

ds_surv1$surv_tot <- length(which(ds$x1 == 0))/n * ds_surv1$surv_x0 +

length(which(ds$x1 == 1))/n * ds_surv1$surv_x1

weighted_surv1_KM <- c(weighted_surv1_KM,

ds_surv1$surv_tot[ds_surv1$newtime == 0.2],

ds_surv1$surv_tot[ds_surv1$newtime == 0.3])

### WEIGHTED AVERAGE KAPLAN-MEIER ESTIMATOR - X1 and X2
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est_KM2 <- survfit(Surv(time, status == 1) ~ as.factor(x1) + as.factor(x2),

data = ds)

surv_x00 <- evalstep(time = est_KM2[treat=1]$time,

stepf = est_KM2[treat=1]$surv,

newtime = unique_time, subst = 1,

to.data.frame = T)

surv_x01 <- evalstep(time = est_KM2[treat=2]$time,

stepf = est_KM2[treat=2]$surv,

newtime = unique_time, subst = 1,

to.data.frame = T)

surv_x10 <- evalstep(time = est_KM2[treat=3]$time,

stepf = est_KM2[treat=3]$surv,

newtime = unique_time, subst = 1,

to.data.frame = T)

surv_x11 <- evalstep(time = est_KM2[treat=4]$time,

stepf = est_KM2[treat=4]$surv,

newtime = unique_time, subst = 1,

to.data.frame = T)

colnames(surv_x00)[2] <- "surv_x00"

colnames(surv_x01)[2] <- "surv_x01"

colnames(surv_x10)[2] <- "surv_x10"

colnames(surv_x11)[2] <- "surv_x11"

ds_surv2 <- merge(surv_x00, surv_x01, by = 'newtime')

ds_surv2 <- merge(ds_surv2, surv_x10, by = 'newtime')

ds_surv2 <- merge(ds_surv2, surv_x11, by = 'newtime')

ds_surv2$surv_tot <- length(which(ds$x1 == 0))/n *

length(which(ds$x2 == 0))/n * ds_surv2$surv_x00 +

length(which(ds$x1 == 0))/n *

length(which(ds$x2 == 1))/n * ds_surv2$surv_x01 +

length(which(ds$x1 == 1))/n *

length(which(ds$x2 == 0))/n * ds_surv2$surv_x10 +

length(which(ds$x1 == 1))/n *

length(which(ds$x2 == 1))/n * ds_surv2$surv_x11

weighted_surv2_KM <- c(weighted_surv2_KM,

ds_surv2$surv_tot[ds_surv2$newtime == 0.2],

ds_surv2$surv_tot[ds_surv2$newtime == 0.3])

### WEIGHTED AVERAGE COX MODEL - X1

est_cox1 <- cph(Surv(time, status == 1) ~ x1, data = ds, surv = T)
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mean_surv1 <- colMeans(survest(est_cox1, newdata = ds,

times = time_vector, se.fit = F)$surv)

weighted_surv1_cox <- c(weighted_surv1_cox, mean_surv1[[1]], mean_surv1[[2]])

### WEIGHTED AVERAGE COX MODEL - X1 and X2

est_cox2 <- cph(Surv(time, status == 1) ~ x1 + x2, data = ds, surv = T)

mean_surv2 <- colMeans(survest(est_cox2, newdata = ds,

times = time_vector, se.fit = F)$surv)

weighted_surv2_cox <- c(weighted_surv2_cox, mean_surv2[[1]], mean_surv2[[2]])

### IPCW - X1 (mod_den1) - X1 and X2 (mod_den2)

ds$censored <- ifelse(ds$status == 0, 1, 0)

ds.long <- survSplit(ds, cut = ds$time, end = "time", start = "Tstart",

event = "status", id = "id2")

ds.long <- ds.long[order(ds.long$id, ds.long$time), ]

ds.long.cens <- survSplit(ds, cut = ds$time, end = "time", start = "Tstart",

event = "censored", id = "id2")

ds.long.cens <- ds.long.cens[order(ds.long.cens$id, ds.long.cens$time), ]

ds.long$censored <- ds.long.cens$censored

mod_den1 <- cph(Surv(Tstart, time, censored) ~ x1, data = ds.long,

surv = T)

mod_den2 <- cph(Surv(Tstart, time, censored) ~ x1 + x2, data = ds.long,

surv = T)

ds.long$prob_den1 <- NULL

ds.long$prob_den2 <- NULL

for(j in 1:nrow(ds.long)){

dataj <- ds.long[j, ]

ds.long$prob_den1[j] <- as.numeric(survest(mod_den1, newdata = dataj,

times = dataj$Tstart, se.fit = F)$surv)

ds.long$prob_den2[j] <- as.numeric(survest(mod_den2, newdata = dataj,

times = dataj$Tstart, se.fit = F)$surv)

}

ds.long$weights_unst1 <- 1/ds.long$prob_den1

ds.long$weights_unst2 <- 1/ds.long$prob_den2

res_unst1 <- survfit(Surv(Tstart, time, status) ~ 1, data = ds.long,

weights = weights_unst1, timefix = F)

ipcw_surv1 <- c(ipcw_surv1, evalstep(time = res_unst1$time,

stepf = res_unst1$surv, newtime = time_vector,
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subst = 1, to.data.frame = F))

res_unst2 <- survfit(Surv(Tstart, time, status) ~ 1, data = ds.long,

weights = weights_unst2, timefix = F)

ipcw_surv2 <- c(ipcw_surv2, evalstep(time = res_unst2$time,

stepf = res_unst2$surv, newtime = time_vector,

subst = 1, to.data.frame = F))

}
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Abstract
The illness-death model is the simplest multistate model where the transition from the
initial state 0 to the absorbing state 2 may involve an intermediate state 1 (e.g., disease
relapse). The impact of the transition into state 1 on the subsequent transition hazard to
state 2 enables insight to be gained into the disease evolution. The standard approach
of analysis is modeling the transition hazards from 0 to 2 and from 1 to 2, including
time to illness as a time-varying covariate and measuring time from origin even after
transition into state 1. The hazard from 1 to 2 can be also modeled separately using
only patients in state 1, measuring time from illness and including time to illness
as a fixed covariate. A recently proposed approach is a model where time after the
transition into state 1 is measured in both scales and time to illness is included as a
time-varying covariate. Another possibility is a model where time after transition into
state 1 is measured only from illness and time to illness is included as a fixed covariate.
Through theoretical reasoning and simulation protocols, we discuss the use of these
models and we develop a practical strategy aiming to (a) validate the properties of
the illness-death process, (b) estimate the impact of time to illness on the hazard from
state 1 to 2, and (c) quantify the impact that the transition into state 1 has on the hazard
of the absorbing state. The strategy is also applied to a literature dataset on diabetes.

K E Y W O R D S
illness-death, Markov model, survival, time scales, transition hazard

1 INTRODUCTION

The illness-death model is the simplest multistate model where the transition from the initial state to the absorbing state may
involve or not an intermediate state, such as illness (Beyersmann, Allignol, & Schumacher, 2012). The impact of the intermedi-
ate transition on the subsequent hazard of the absorbing state enables insights to be gained into the disease evolution and refine
the prediction. The standard approaches of analysis rely on the choice of the time scale(s) to measure the follow-up time after
the transition to illness (Eulenburg, Mahner, Woelber, & Wegscheider, 2015; Putter, Fiocco, & Geskus, 2007). The original (or
“clock forward”) time scale, commonly used to measure the follow-up time before the first transition, can be considered even
after the transition to illness. The time to such transition can be included as a covariate in a model estimated on the entire set of
subjects. The follow-up time after the transition can be also measured in the “clock reset” scale that uses the intermediate state
as a new origin (Andersen, Esbjerg, & Sorensen, 2000; Putter et al., 2007). In this setting, models are commonly estimated only
on the subsample of subjects who developed illness, and the time of the transition to illness can be included as a covariate
836 © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Biometrical Journal. 2020;62:836–851.www.biometrical-journal.com
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F I G U R E 1 (a) Illness-death model with clock forward and clock reset time scales. Boxes and arrows represent the states and the possible
transitions, respectively; (b) Lexis diagram of two patients with times to illness 𝑟 = 1 for patient A and 𝑟 = 3 for patient B

(subsample models). In a recently proposed approach (Iacobelli & Carstensen, 2013; Meier-Hirmer & Schumacher, 2013;
Rebora, Galimberti, & Valsecchi, 2015), the follow-up time after the transition is measured both in the original scale and in
the clock reset scale. The model is estimated on the entire sample of subjects and the time of the transition is included as covari-
ate (full-sample models). A further possibility is to measure the follow-up time in the original scale before the transition and in
the clock reset scale after the transition.

The paper aims to set up a strategy a statistician can follow to fit the most suitable full-sample model on the hazards of
transition to the absorbing state. A feature of the strategy is that the scale to measure time after illness, for transition hazard to
the absorbing state, is not a choice done a priori, but it depends only on the Markov, semi-Markov, and extended semi-Markov
properties of the illness-death process (Bernasconi, Rebora, Iacobelli, Valsecchi, & Antolini, 2016). In case of non-Markov data,
we developed a novel modeling approach that ensures the interpretability of the model coefficient of the time to illness.

In Section 2, we set up the notation and provide definitions of the clock forward and clock reset time scales. In addition, we
review the meaning of the Markov, semi-Markov, and extended semi-Markov properties. In Section 3, we introduce models on
the subsample of patients who developed illness to validate the properties of the illness-death process. In Section 4, we present
full-sample models on the entire sample of patients. In Section 5, a simulation study is proposed. In Section 6, results of the
simulation study are presented. In Section 7, the proposed methods are applied to a literature dataset on diabetes. The paper ends
with a discussion where the strategy of analysis is summarized.

2 NOTATION AND BACKGROUND

We consider an illness-death model, where the initial state, the intermediate state, and the absorbing state are called 0, 1, and 2,
respectively. We assume that the transition to the intermediate state is due to the development of an intermediate event (illness)
and the transition to the absorbing state is due to the development of death. At the beginning of follow-up, all patients are in
state 0 and they can move directly to the absorbing state 2 or they can move first to state 1 and then to state 2. The hazard of
transition to the absorbing state is denoted by 𝜆02(𝑡) or 𝜆12(𝑡), depending on whether the subject was in state 0 or 1. A graphical
visualization of this process is provided in Figure 1a, where three time measurements are represented:

• 𝑡: It is time measured starting from the origin, which is the natural way to measure time for patients in state 0, but it can be
considered also for patients in state 1, since time from origin can be calculated even after the intermediate event. 𝑡 is called
clock forward time scale emphasizing that time “keeps going forward” even after the intermediate event.

• 𝑟: It is time of development of the intermediate event, which is a value in the clock forward time scale that we will call in the
remaining time to illness. It is defined only for patients in state 1.

• 𝑑: It is time measured from the intermediate state 1, thus from a new origin represented by the time 𝑟 of occurrence of the
intermediate event. This time scale is called clock reset time scale and can be indeed measured only for patients in state 1. It
is the natural way to measure time after the intermediate event.
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Let us consider a generic time point 𝑡∗ in the clock forward scale and a patient in state 0. This patient experienced up to 𝑡∗ the
hazard of transition to the absorbing state 2 𝜆02(𝑡), and also the hazard of transition to state 1. The latter hazard is not relevant
for the aim of this paper. If the patient will enter in the intermediate state 1 at some time 𝑟 in the clock forward scale, he/she will
start experiencing the hazard 𝜆12(𝑡) for 𝑡 > 𝑟, which may be different from the corresponding 𝜆02(𝑡) due to the development of
the intermediate event and at the time 𝑟 where the transition happened.

The relationship between the clock forward 𝑡 and the clock reset 𝑑 time scales is defined as follows. At the transition to the
intermediate state, 𝑡 is equal to 𝑟, the clock reset scale is defined as 𝑑 = 0, and the time to illness 𝑟 is set. The next time unit
is 𝑡 = 𝑟 + 1 and the clock reset scale starts increasing with 𝑑 = 1. In general, the relationship between 𝑡 and 𝑑 is 𝑡 = 𝑟 + 𝑑 or
equivalently 𝑑 = 𝑡 − 𝑟.

The value of 𝜆12(𝑡) acting on patients who developed the intermediate event may depend on time 𝑡 (𝑡 > 𝑟) through two
factors:

(i) the time when the transition to the intermediate state occurred, i.e. the fixed covariate time to illness 𝑟,
(ii) the time past from the transition 𝑑.

Depending on these factors, three properties of 𝜆12(𝑡) for 𝑡 > 𝑟 are defined: Markov (M), semi-Markov (SM), and extended
semi-Markov (ESM).

Markov property
The process is Markovian if the value of 𝜆12(𝑡) for 𝑡 > 𝑟 depends only on time 𝑡 from origin. This means, in other words, that
the value of 𝜆12(𝑡) depends on time 𝑑 after illness and on the fixed covariate time to illness 𝑟 only through their sum 𝑑 + 𝑟 = 𝑡
and not on the values 𝑑 and 𝑟 taken separately. The clock forward time scale alone can be conveniently used to measure time
even after the intermediate event and the notation 𝜆12(𝑡) can be kept, meaning that in this case the hazard depends only on 𝑡.

To enlighten the meaning of this property, let us consider two patients in state 1 at time 𝑡∗ = 6, as represented in the Lexis
diagram, where on the x-axis there is the clock forward scale 𝑡 and on the y-axis the clock reset scale 𝑑 (Figure 1b): patient A
developed the intermediate event at time to illness 𝑟𝐴 = 1 < 𝑡∗ and patient B two time units later, at time to illness 𝑟𝐵 = 𝑟𝐴 + 2 =
3, 𝑟𝐵 < 𝑡∗. The times after transition to illness 𝑑𝐴 and 𝑑𝐵 of these patients are different, being 𝑑𝐴 = 𝑡∗ − 𝑟𝐴 = 5 for patient A
and 𝑑𝐵 = 𝑡∗ − 𝑟𝐵 = 𝑡∗ − 𝑟𝐴 − 2 = 𝑑𝐴 − 2 = 3 for patient B. Although 𝑟𝐴 ≠ 𝑟𝐵 and thus 𝑑𝐴 ≠ 𝑑𝐵 , at time 𝑡∗ the two patients
share the same hazard value 𝜆12(𝑡∗). The only condition that matters is that both patients are in state 1 at time 𝑡∗, regardless of
when this transition happened and of the time after the transition.

Semi-Markov property
The process is semi-Markovian if the value 𝜆12(𝑡) for 𝑡 > 𝑟 depends only on time 𝑑 after illness. Thus, the clock reset time
scale alone can be conveniently used to measure time after the intermediate event and the new notation 𝜆12(𝑑) for 𝑑 > 0 is set,
meaning that time is measured on the clock reset scale.

To enlighten the meaning of this property, let us consider again the two patients of the Lexis diagram in Figure 1b. Let us
now consider for these patients a time point 𝑑∗ = 4 in the clock reset scale: here, 𝑑𝐴 = 𝑑𝐵 = 𝑑∗, whereas 𝑡𝐴 = 𝑟𝐴 + 𝑑∗ = 5 is
different from 𝑡𝐵 = 𝑟𝐵 + 𝑑∗ = 𝑟𝐴 + 2 + 𝑑∗ = 7. Although 𝑟𝐴 ≠ 𝑟𝐵 and thus 𝑡𝐴 ≠ 𝑡𝐵 , at time 𝑑∗ the two patients share the same
hazard value 𝜆12(𝑑∗). In other words, the only condition that matters is that both patients are in state 1 after 𝑑 time units from
the transition to the intermediate event, regardless of when this transition happened and of the time from origin.

Extended semi-Markov property
The process is extended semi-Markovian if the value of 𝜆12(𝑡) for 𝑡 > 𝑟 depends on time 𝑑 after illness and on the fixed covariate
time to illness 𝑟, taken separately. The time 𝑑 after illness, and thus the clock reset time scale, becomes again the natural way to
measure time after the intermediate event and one can set the new notation 𝜆12(𝑟, 𝑑) meaning that time is measured on the clock
reset scale and 𝑟 has an impact on the hazard 𝜆12(𝑟, 𝑑) for 𝑑 > 0.

To enlighten the meaning of this property, let us consider again the two patients of the Lexis diagram in Figure 1b. Consider
the time point 𝑑∗ = 4 in the clock reset scale: here, 𝑑𝐴 = 𝑑𝐵 = 𝑑∗, whereas 𝑡𝐴 = 𝑟𝐴 + 𝑑∗ = 5 is different from 𝑡𝐵 = 𝑟𝐵 + 𝑑∗ =
𝑟𝐴 + 2 + 𝑑∗ = 7. Suppose that an earlier transition to state 1 implies a greater 𝜆12(𝑟, 𝑑): since patient A has an earlier time to
illness than patient B, 𝑑∗ time units after the transition to the intermediate event, patient A will have a greater hazard of transition
to the absorbing state 2. Of note, the dependency of 𝜆12(𝑟, 𝑑) from the time 𝑡 is fully captured by the dependency on both 𝑑
and 𝑟.
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T A B L E 1 Subsample models
Model 𝒕 𝒅 𝒓 𝒕 ≥ 𝒓
CFr ✓ – ✓ 𝜆12(𝑡, 𝑟) = 𝜆0(𝑡)𝑒𝛽⋅𝑟

CFd ✓ ✓ – 𝜆12(𝑡, 𝑑) = 𝜆0(𝑡)𝑒𝛽⋅𝑑

CRr – ✓ ✓ 𝜆12(𝑑, 𝑟) = 𝜆0(𝑑)𝑒𝛽⋅𝑟

𝜆0(⋅) represents the baseline hazard, 𝛽 is the coefficient of 𝑟 in CFr and CRr models, and of 𝑑 in CFd model.
CFr = clock forward model with 𝑟 as covariate, CFd = clock forward model with 𝑑 as covariate, CRr = clock reset model with 𝑟 as covariate.

From the meaning of the three properties, we can thus recognize that the time to illness 𝑟 has a role on the hazard after illness
only in the extended semi-Markov scenario, that is, when Markov and semi-Markov properties are not satisfied. Therefore, the
analysis of the possible role of 𝑟, and of its impact, should start from assessing if either the Markov or semi-Markov properties
could be justified.

3 SUBSAMPLE MODELS FOR TRANSITION 𝟏 → 𝟐

Let us consider the subsample of patients who developed the intermediate event. Table 1 collects the three subsample models
on 𝜆12(𝑡) for 𝑡 > 𝑟 one might consider:

• CFr model: The clock forward scale 𝑡 is used to measure time even after the transition to state 1, and the time to illness 𝑟 is
included as a fixed covariate, since we do not consider time before the transition to the illness state.

• CFd model: The clock forward scale 𝑡 is used to measure time even after the transition to state 1, and the time after illness
𝑑 is included as covariate. This covariate is time varying since it is not defined before the transition at 𝑡 = 𝑟 and increases
deterministically in time with 𝑑 = 𝑡 − 𝑟 (Andersen et al., 2000). Of note, CFr and CFd models are algebraically equivalent,
since 𝑟 = 𝑡 − 𝑑 for 𝑡 > 𝑟 implies 𝜆12(𝑡, 𝑟) = 𝜆0(𝑡) ⋅ exp(𝛽𝑟) = 𝜆∗0(𝑡) ⋅ exp(−𝛽𝑑) = 𝜆12(𝑡, 𝑑), where the baseline hazards satisfy
the relationship 𝜆∗0(𝑡) = 𝜆0(𝑡) ⋅ exp(𝛽𝑡).

• CRr model: The clock reset scale 𝑑 is used to measure time after the transition to state 1, and the time to illness 𝑟 is included
as fixed covariate.

To check whether the Markov property can be assumed, the CFr (or the equivalent CFd) model is the natural choice since,
under the Markov property, 𝜆12(𝑡) should depend only on the time since origin 𝑡 and neither the time to illness 𝑟 nor the linear
transformation 𝑑 = 𝑡 − 𝑟 should have an impact on 𝜆12(𝑡). Thus, if the time to illness 𝑟 in CFr model, or the time after illness
𝑑 in CFd model, does not show an impact on the hazard 𝜆12(𝑡), the Markov property could be justified. Before relying on the
coefficient estimate of 𝑟 (or 𝑑 as an alternative) in the CFr (or CFd) model to test the Markov property, one should check if the
proportionality of the hazards and the log-linear effect of 𝑟 are plausible. This can be performed by the analysis of the Schoen-
feld and martingale residuals from the subsample model obtained according to the Cox model specification. The proportional
hazards assumption and the log-linear effect of 𝑟 can also be checked graphically by plotting the logarithm of the smoothed
hazard function against time in subgroups of subjects with similar times to illness (e.g., according to deciles) (Rebora, Salim,
& Reilly, 2014). If the curves tend to keep constant distances in time, the proportionality of the hazards may be plausible.
This suggests a naive method to test directly the plausibility of the Markov property, which consists of plotting a smoothed
estimate of the hazard function (or its logarithm) in subgroups of patients with similar times to illness against time measured
in the clock forward scale (Bernasconi et al., 2016). If the obtained curves are overlapping, the Markov property could be
reasonable.

If the Markov property cannot be justified, the validity of the semi-Markov property should be investigated using the clock
reset scale as natural time scale by the CRr model. If the time to illness does not show an impact on the hazard 𝜆12(𝑑), the semi-
Markov property could be justified. Before relying on this model, the proportionality of the hazards and the log-linear effect
of 𝑟 should be investigated. Again, a naive graphical method to test the semi-Markov property could also be used by plotting a
smoothed estimate of the hazard function in subgroups of patients with similar times to illness against time in the clock reset
scale. In case of overlapping curves, the semi-Markov property could be justified.

When neither the Markov nor the semi-Markov property hold, we are in the extended semi-Markov scenario and the CRr
model provides the strategy for a suitable estimation of the impact of the time to illness 𝑟.
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T A B L E 2 Full-sample models on 𝜆02(𝑡) and 𝜆12(𝑡)

Model 𝒕 𝒅 𝒓 𝒕 < 𝒓 𝒕 ≥ 𝒓
CFr ✓ – ✓ 𝜆02(𝑡) 𝜆12(𝑡, 𝑟) = 𝜆02(𝑡)𝑒𝛽𝑖𝑙𝑙 𝑒𝛽⋅𝑟

CFr* ✓ – ✓ 𝜆02(𝑡) 𝜆12(𝑡, 𝑟) = 𝜆02(𝑡)𝑒𝛽𝑖𝑙𝑙+𝛾(𝑡)𝑒𝛽⋅𝑟

CFrd ✓ ✓ ✓ 𝜆02(𝑡) 𝜆12(𝑡, 𝑟, 𝑑) = 𝜆02(𝑡)𝜇(𝑑)𝑒𝛽𝑖𝑙𝑙 𝑒𝛽⋅𝑟

CFrd* ✓ ✓ ✓ 𝜆02(𝑡) 𝜆12(𝑡, 𝑟, 𝑑) = 𝜆02(𝑡)𝜇(𝑑)𝑒𝛽𝑖𝑙𝑙+𝛾(𝑡)𝑒𝛽⋅𝑟

CRr ✓ ✓ ✓ 𝜆02(𝑡) 𝜆12(𝑟, 𝑑) = 𝜆02(𝑑)𝑒𝛽𝑖𝑙𝑙 𝑒𝛽⋅𝑟

CRr* ✓ ✓ ✓ 𝜆02(𝑡) 𝜆12(𝑟, 𝑑) = 𝜆02(𝑑)𝑒𝛽𝑖𝑙𝑙+𝛾(𝑡)𝑒𝛽⋅𝑟

The function 𝛾(𝑡) is an explicit time-varying component in the hazard ratio 𝜆12(𝑡)∕𝜆02(𝑡), and 𝛽 is the coefficient of the time to illness 𝑟.
CFr = clock forward model with 𝑟 as covariate, CFrd = clock forward model with 𝑟 and 𝑑 as covariates, CRr = clock reset model with 𝑟 as covariate; models with * =
models with a flexible effect of the intermediate event.

4 FULL-SAMPLE MODELS FOR TRANSITIONS 𝟎 → 𝟐 AND 𝟏 → 𝟐

In a full-sample model, the transition hazard 𝜆02(𝑡) is used as a baseline hazard that could be modified into 𝜆12(𝑡) at 𝑡 > 𝑟 if
illness occurred at time to illness 𝑟. Table 2 collects six models one might consider. In all models, the transition hazard 𝜆02(𝑡) is
implemented in the clock forward scale, as this is the only time scale available for subjects in state 0. The transition hazard 𝜆12(𝑡)
can be implemented according to three specifications, depending on the time scale and on the covariates included, as follows:
• CFr model: Clock forward scale and time to illness 𝑟 as covariate. This covariate is time varying since it is not defined before

the transition at 𝑡 = 𝑟. After the transition, 𝑟 is fixed.
• CFrd model: Clock forward scale and time to illness 𝑟 as time-varying covariate (not defined before the transition at 𝑡 = 𝑟,

fixed after the transition), and time after illness 𝑑 as time-varying covariate, where 𝜇(𝑑) was used to indicate a non-log-
linear effect of the time-varying covariate 𝑑. Substituting 𝑑 = 𝑡 − 𝑟, the hazard 𝜆12(𝑡) = 𝜆02(𝑡) ⋅ exp(𝛽𝑖𝑙𝑙) ⋅ 𝜇(𝑡 − 𝑟) ⋅ exp(𝛽𝑟)
depends on 𝑡 through 𝜇(𝑡 − 𝑟). For this reason, the CFrd model is a clock forward model with two explanatory time-varying
covariates: the time to illness 𝑟 and the time after illness 𝑑, respectively, with log-linear and non-log-linear effects. Of note, the
two covariates cannot be included both with log-linear effects since this would lead to the component exp(𝛽𝑑𝑑) ⋅ exp(𝛽𝑟𝑟) =
exp(𝛽𝑑(𝑡 − 𝑟)) ⋅ exp(𝛽𝑟𝑟) with a doubled inclusion of 𝑟. Approaches similar to CFrd can be found in the works of Iacobelli and
Carstensen (2013) and Meier-Hirmer and Schumacher (2013).

• CRr model: Clock reset scale 𝑑 and time to illness 𝑟 as fixed covariate.
The relationship between the transition hazards 𝜆02(𝑡) and 𝜆12(𝑡) for 𝑡 > 𝑟 is modeled by a proportional hazards-type specifi-

cation through the 𝛽𝑖𝑙𝑙 parameter in CFr, CFrd, and CRr models. Of note, this specification does not mean necessarily propor-
tionality in the clock forward time scale 𝑡 for 𝑡 > 𝑟. Let us consider the hazard ratio 𝜆12(𝑡)∕𝜆02(𝑡).
• CFr model: The hazard ratio is equal to exp(𝛽𝑖𝑙𝑙) ⋅ exp(𝛽𝑟) for 𝑡 > 𝑟, thus in this case proportionality is assumed in the clock

forward scale (given the fixed 𝑟).
• CFrd model: The hazard ratio is exp(𝛽𝑖𝑙𝑙) ⋅ 𝜇(𝑑) ⋅ exp(𝛽𝑟) that is nonproportional since owing to 𝑑 = 𝑡 − 𝑟 for 𝑡 > 𝑟, it becomes
exp(𝛽𝑖𝑙𝑙) ⋅ 𝜇(𝑡 − 𝑟) ⋅ exp(𝛽𝑟), which depends on 𝑡 through 𝜇(𝑡 − 𝑟) given the fixed 𝑟, and thus proportionality is not assumed.

• CRr model: We need to distinguish the case with 𝑟 = 0 from the case with 𝑟 > 0. In the first case, we can write 𝑑 = 𝑡 − 0 = 𝑡
and 𝜆12(𝑑) can be written as 𝜆12(𝑡). Thus, the hazard ratio 𝜆12(𝑡)∕𝜆02(𝑡) is equal to exp(𝛽𝑖𝑙𝑙) for any 𝑡 > 0, and proportionality
is assumed in the clock forward scale. If 𝑟 > 0, the hazard ratio is 𝜆02(𝑑) ⋅ exp(𝛽𝑖𝑙𝑙) ⋅ exp(𝛽𝑟)∕𝜆02(𝑡) for 𝑡 > 𝑟 and thus 𝜆02(𝑡 −
𝑟) ⋅ exp(𝛽𝑖𝑙𝑙) ⋅ exp(𝛽𝑟)∕𝜆02(𝑡) depends on 𝑡 through 𝜆02(𝑡 − 𝑟)∕𝜆02(𝑡), given the fixed 𝑟.

All models can be extended including an explicit time-varying component (denoted by 𝛾(𝑡)) in the hazard ratio 𝜆12(𝑡)∕𝜆02(𝑡) for
𝑡 > 𝑟 to model with more flexibility the impact of the intermediate event (models identified by * in Tables 2 and 4-6).

If the Markov property can be justified, the clock forward scale is the natural choice even for 𝜆12(𝑡). The CFr (or CFr*) model
can be applied and, as expected, the time to illness 𝑟 will not have an impact.

If the semi-Markov property can be justified, the clock reset scale should be used for 𝜆12(𝑑), whereas the clock forward scale
should be kept for 𝜆02(𝑡). The CRr (or CRr*) model can be applied and, as expected, the time to illness will not have an impact.

When neither the Markov nor the semi-Markov property holds (i.e., extended semi-Markov), the CRr (or CRr*) model pro-
vides the strategy for a suitable joint modeling of 𝜆02(𝑡) and 𝜆12(𝑟, 𝑑), enlightening the impact of the time to illness 𝑟 on the
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hazard of the absorbing event after illness. Of note, in the CFrd (and CFrd*) model the clock forward time scale is used even
after the transition to the intermediate state through the common baseline 𝜆02(𝑡) and thus the impact of 𝑟 solely on 𝜆12(𝑑) cannot
be estimated.

5 SIMULATION PROTOCOL

5.1 Data generation
We generated 1,000 datasets of 𝑛 = 500 observations, using the inversion method proposed by Bender, Augustin, and Blettner
(2005), according to this strategy:
• Potential time to illness 𝑅, potential time of absorbing event without developing the intermediate event 𝑇02, and potential time

after the transition to the illness state 𝐷 were simulated independently.
• The binary variable 𝑋 indicating the development of the intermediate event was set equal to 1 if 𝑅 < 𝑇02 and 0 otherwise.
• The observed time since origin, denoted by 𝑇 , was equal to 𝑅 +𝐷 if 𝑋 = 1 and equal to 𝑇02 if 𝑋 = 0.
The time to illness 𝑅 was simulated according to an exponential distribution with parameter 𝜆 = 0.5. The times 𝑇02 and 𝐷 were
generated according to exponential and Weibull distributions representing constant or decreasing hazard behaviors of 𝜆02(𝑡) and
𝜆12(𝑡). More details on how the time after the transition 𝐷 was generated are presented in the Appendix. At first, we did not
consider the presence of censoring since we were only interested in the ability of the models to capture the effects.

Nine different scenarios were considered and summarized in Table A1: three under the Markov property, three under the
semi-Markov property, and three under the extended semi-Markov property.

Markov data
Under the Markov property, hazards 𝜆02(𝑡) and 𝜆12(𝑡) are constant in M0, proportional and decreasing in M1, and 𝜆02(𝑡) is
constant and 𝜆12(𝑡) is decreasing in M2, thus they are nonproportional.

Semi-Markov data
Under the semi-Markov property, hazards 𝜆02(𝑡) and 𝜆12(𝑑) are proportional and decreasing in SM1, and 𝜆02(𝑡) is constant and
𝜆12(𝑑) is decreasing in SM2, thus they are nonproportional; 𝜆02(𝑡) and 𝜆12(𝑑) are nonproportional and decreasing in SM3.

Extended semi-Markov data
In the extended semi-Markov scenarios for 𝑟 = 0, 𝜆02(𝑡) and 𝜆12(0, 𝑑) are identical to those in the corresponding semi-Markov
scenarios, whereas for 𝑟 > 0, 𝜆12(𝑟, 𝑑) = 𝜆12(0, 𝑑) ⋅ exp(𝛽𝑟), where 𝛽 is fixed and equal to 0.5.

The hazard functions corresponding to the nine scenarios summarized in Table A1 are represented in Figure A1, where
𝜆12(𝑡) is displayed for three patients with times to illness 𝑟 = 0, 1, 2. The ratio between 𝜆12(𝑡) and 𝜆02(𝑡) for 𝑡 ≥ 𝑟 is displayed in
Figure A2.

The simulation protocol was extended to evaluate the performance of the models in the presence of the following additional
issues:
1. independent censoring,
2. censoring dependent on an additional binary covariate,
3. nonmonotone hazard functions.

Simulations were carried out using the R software available at: http://cran.r-project.org/ (source code to reproduce data and
results are available as Supporting Information).

5.2 Model implementation
Subsample and full-sample models were estimated by the Poisson regression, including the baseline hazard as a parametric
function and the length of the time interval as an offset (Iacobelli & Carstensen, 2013). The follow-up data were splitted in
small intervals due to the fact that the Poisson regression assumes constant hazard rates in each time interval. Time scales were
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T A B L E 3 Simulation results of the subsample models in all scenarios
𝜷 = 𝟎

Scenario Model Est. SE % rejec. Miss-spec.
M0 CFr 0.001 0.035 5.4

CFd −0.001 0.035 5.4
M1 CFr −0.024 0.114 4.4

CFd 0.024 0.114 4.4
CFr 0.565 0.119 97.7 ✓

SM1 CFd −0.565 0.119 97.7 ✓
CRr −0.023 0.081 7.3

𝜷 = 𝟎.𝟓
Scenario Model Est. SE % rejec. Miss-spec.

CFr 1.390 0.150 100.0 ✓
ESM1 CFd −1.390 0.150 100.0 ✓

CRr 0.489 0.125 99.0
𝛽 is the coefficient of 𝑟 in CFr and CRr models, and of 𝑑 in CFd model.
Est. = mean of the estimates, SE = standard error of the estimates, % rejec. = percentage of rejected null hypotheses, Miss-spec. = if ✓ the model is miss-specified;
M0 = Markov 0, M1 = Markov 1, SM1 = semi-Markov 1, ESM1 = extended semi-Markov 1; CFr = clock forward model with 𝑟 as covariate, CFd = clock forward model
with 𝑑 as covariate, CRr = clock reset model with 𝑟 as covariate.

T A B L E 4 Simulation results of the full-sample models in the Markov scenarios (𝛽 is the coefficient of the time to illness 𝑟)
𝜷 = 𝟎 𝜷𝒊𝒍𝒍

Scenario Model Est. SE % rejec. Est. Bias SE % rejec. % rejec.* Miss-spec.
M0 CFr 0.001 0.034 5.5 1.103 0.004 0.145 100.0

CFr* 0.001 0.035 5.4 1.082 −0.017 0.455 64.9 6.2
M1 CFr −0.004 0.086 4.4 1.100 0.001 0.129 100.0

CFr* −0.025 0.113 4.7 1.001 −0.098 0.615 44.1 6.0
M2 CFr −0.119 0.088 32.6 1.408 – 0.133 100.0 ✓

CFr* −0.018 0.100 4.9 – – – – 56.0
*Likelihood ratio test.
Est. = mean of the estimates, SE = standard error of the estimates, % rejec. = percentage of rejected null hypotheses, Bias = difference between the mean of the estimates
and the true value (𝛽𝑖𝑙𝑙 = 1.099), Miss-spec. = if ✓ the model is miss-specified; M0 = Markov 0, M1 = Markov 1, M2 = Markov 2; CFr = clock forward model with 𝑟 as
covariate; models with * = models with a flexible effect of the intermediate event.

included with a flexible effect through natural splines, while covariates were included with log-linear or non-log-linear effects
(𝑑 in CFrd model) through natural splines.

Since CFr (both in subsample and full-sample approaches), CFd, and CFrd models are based on the clock forward scale even
for the transition hazard 𝜆12(𝑡), the time to illness 𝑟 has to be included also as left truncation time for time measured after the
intermediate event. In CRr models, the time after the intermediate event is directly measured in the clock reset scale 𝑑 and there
is no need of setting a left truncation time. In all full-sample models where modeling of 𝜆02(𝑡) is involved, an artificial right
censoring is included at the time where the intermediate event occurs.

6 RESULTS

Simulation results are presented in Tables 3-6, where some summary indicators are calculated. All the tables show the mean and
the standard error of the coefficients estimates obtained in the 1,000 simulated samples and the percentage of simulated samples
in which the coefficient of the time to illness is statistically significant (𝑝 < .05). The tables of the simulation results obtained in
the full-sample models (Tables 4-6) also show the bias, calculated as the difference between the mean of the 1,000 coefficients
estimates and the true values (𝛽𝑖𝑙𝑙 = 1.099 when it has a linear effect, 𝛽 = 0.5 in the extended semi-Markov scenarios) and
the results of the likelihood ratio test to test the presence of a time-varying 𝛽𝑖𝑙𝑙. In each table, we indicate whether the model is
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F I G U R E 2 Bias of the estimates of the 𝛽 coefficient of the time to
illness obtained from the correctly specified models according to the
scenario. M0 = Markov 0, M1 = Markov 1, M2 = Markov 2, SM1 =
semi-Markov 1, SM2 = semi-Markov 2, SM3 = semi-Markov 3, ESM1 =
extended semi-Markov 1, ESM2 = extended semi-Markov 2, ESM3 =
extended semi-Markov 3; CFr = clock forward model with 𝑟 as covariate,
CRr = clock reset model with 𝑟 as covariate, models with * = models with a
flexible effect of the intermediate event

miss-specified according to the considered scenario. The results dealing with the extension of the simulation protocol (censoring
and nonmonotone hazards) are available as Supporting Information.

6.1 Subsample models
Simulation results presented in Table 3 show the application of the sub-sample models to check the properties of the transition
hazard 𝜆12(𝑡) to assess the role of the time to illness 𝑟. Only four scenarios (M0, M1, SM1, and ESM1) were taken into account
because the subsample models approach considers only 𝜆12(𝑡), which is exactly the same within M1 and M2, SM1 and SM2,
ESM1 and ESM2, and it has a similar behavior (i.e., monotone decreasing) within SM2 and SM3, and ESM2 and ESM3.

We applied first the CFr and CFd clock forward models of Table 1 to check the Markov property. In case of violation of this
property, we subsequently applied the CRr clock reset model to check the semi-Markov property and to estimate the impact of
the time to illness 𝑟 when the property was not fulfilled (extended semi-Markov).

CFr or CFd model to check Markov property
In Table 3, one can notice that CFr and CFd models lead to the same absolute value of the estimate of 𝛽, as explained in Section 3.

In M0 and M1, none of the two models showed a significant impact of the time to illness 𝑟, with a rejection fraction of
H0 ∶ 𝛽 = 0 around the nominal 5%. This was expected since data were generated under the Markov property.

In SM1, a significant impact of the time to illness 𝑟 is shown with a high rejection fraction of H0 ∶ 𝛽 = 0 in both models.
This was expected since data were generated under the semi-Markov property and has to be interpreted as violation from the
Markov assumption only and not as an impact of the time to illness 𝑟 on 𝜆12(𝑡). This impact is an artifact due to the time after
illness 𝑑 and not to a different shape of 𝜆12(𝑑) and can be thought as a spurious effect of 𝑟. This spurious effect can be noticed in
Figure A1 (panel C), considering that at time 𝑡 the value of 𝜆12(𝑡) becomes higher as the time to illness 𝑟 increases. In ESM1, CFr
and CFd models showed again a significant impact of 𝑟 (or 𝑑) with a high rejection fraction of H0 ∶ 𝛽 = 0, indicating again the
violation of the Markov assumption only. In fact, even in this case a spurious effect of 𝑟 is still present, being the corresponding
𝛽 clearly overestimated.

CRr model to check semi-Markov property
In SM1 and ESM1 scenarios, where the violation of the Markov property was present, the CRr clock reset model was applied to
check the semi-Markov property. In Table 3, one can notice in SM1 a nonsignificant impact of the time to illness 𝑟with a rejection
fraction of H0 ∶ 𝛽 = 0 around the nominal value, indicating the validity of the property. By contrast, in ESM1, departure from
the semi-Markov property is demonstrated by the high rejection fraction of H0 ∶ 𝛽 = 0. Of note, in both scenarios the model
provided an unbiased estimate of 𝛽 addressing properly the role of 𝑟.

6.2 Full-sample models
Simulation results presented in Tables 4-6 show the application of the full-sample models on all the nine scenarios described in
the simulation protocol. Figures 2 and 3 report the distribution of the simulation estimates of 𝛽 and 𝛽𝑖𝑙𝑙 coefficients, respectively,
of the correctly specified models in each scenario.
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F I G U R E 3 Bias of the estimates of the 𝛽𝑖𝑙𝑙 coefficient of illness obtained from
the correctly specified proportional hazards models according to the scenario. M0 =
Markov 0, M1 = Markov 1, SM1 = semi-Markov 1, ESM1 = extended semi-Markov
1; CFr = clock forward model with 𝑟 as covariate, CRr = clock reset model with 𝑟 as
covariate

T A B L E 5 Simulation results of the full-sample models in the semi-Markov scenarios (𝛽 is the coefficient of the time to illness 𝑟)
𝜷 = 𝟎 𝜷𝒊𝒍𝒍

Scenario Model Est. SE % rejec. Est. Bias SE % rejec. % rejec.* Miss-spec.
SM1 CFr 0.317 0.101 90.2 1.331 0.232 0.143 100.0 ✓

CFr* 0.565 0.118 97.4 1.365 0.266 0.595 68.7 49.6 ✓
CFrd 0.230 0.110 57.4 1.966 0.867 0.252 100.0 ✓
CFrd* 0.186 0.229 13.5 0.979 −0.120 1.113 31.0 24.5 ✓
CRr −0.029 0.076 7.7 1.101 0.002 0.130 99.9
CRr* −0.029 0.078 8.4 1.088 −0.011 0.178 100.0 6.7

SM2 CFr 0.175 0.099 55.8 1.677 – 0.157 100.0 ✓
CFr* 0.572 0.103 99.7 – – – – 99.1 ✓
CFrd −0.022 0.096 5.7 2.601 – 0.233 100.0 ✓
CFrd* −0.009 0.196 5.1 – – – – 4.8 ✓
CRr −0.022 0.077 13.0 1.625 – 0.142 100.0 ✓
CRr* −0.023 0.067 8.0 – – – – 90.2

SM3 CFrd 0.325 0.123 84.0 0.837 – 0.278 85.6 ✓
CFrd* −0.051 0.628 9.1 – – – – 40.5 ✓
CRr −0.007 0.044 3.2 0.183 – 0.128 39.7 ✓
CRr* −0.007 0.048 5.6 – – – – 97.3

*Likelihood ratio test.
Est. = mean of the estimates, SE = standard error of the estimates, % rejec. = percentage of rejected null hypotheses, Bias = difference between the mean of the estimates
and the true value (𝛽𝑖𝑙𝑙 = 1.099), Miss-spec. = if ✓ the model is miss-specified; SM1 = semi-Markov 1, SM2 = semi-Markov 2, SM3 = semi-Markov 3; CFr = clock
forward model with 𝑟 as covariate, CFrd = clock forward model with 𝑟 and 𝑑 as covariates, CRr = clock reset model with 𝑟 as covariate; models with * = models with a
flexible effect of the intermediate event.

CFr and CFr* models
In Markov scenarios (Table 4), we assumed the Markov property previously verified through the subsample models strategy
and thus we applied the CFr and CFr* clock forward models. Nevertheless, the covariate 𝑟 was included to check whether even
in a full-sample model its null coefficient was maintained. In M0 and M1, the estimates of the coefficient 𝛽 of 𝑟 obtained by
the CFr model are close to 0 with a rejection fraction of H0 ∶ 𝛽 = 0 around the nominal value. In M2, the rejection fraction
of H0 ∶ 𝛽 = 0 is 32.6%. This is due to the fact that in M2 the hazard ratio 𝜆12(𝑡)∕𝜆02(𝑡) is decreasing (see Figure A2, panel
B), whereas the model assumes proportional hazards by the 𝛽𝑖𝑙𝑙 parameter. This generates a spurious effect of 𝑟 only due to
nonproportionality, which however disappears when the time-varying nature of the hazard ratio is taken into account by the
CFr* model. The presence of censoring (independent or dependent from a covariate) and nonmonotone hazards does not affect
the validity of these considerations (see the results in the Supporting Information).

CFr model was also applied in SM1 and SM2 (Table 5) to corroborate the idea that a clock forward model in a non-Markov
scenario generates a spurious effect of 𝑟 due to the fact that on the clock forward time scale subjects with different 𝑟 have also
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T A B L E 6 Simulation results of the full-sample models in the extended semi-Markov scenarios (𝛽 is the coefficient of the time to illness 𝑟)
𝜷 = 𝟎.𝟓 𝜷𝒊𝒍𝒍

Scenario Model Est. Bias SE % rejec. Est. Bias SE % rejec. % rejec.* Miss-spec.
ESM1 CFrd 0.813 0.313 0.147 100.0 1.983 0.884 0.263 100.0 ✓

CFrd* 0.775 0.275 0.434 55.0 1.011 −0.088 1.100 31.5 20.5 ✓
CRr 0.468 −0.032 0.112 99.4 1.098 −0.001 0.134 100.0
CRr* 0.477 −0.023 0.116 99.3 1.033 −0.066 0.270 98.4 7.0

ESM2 CFrd 0.484 −0.016 0.127 98.2 2.663 – 0.251 100.0 ✓
CFrd* 0.525 0.025 0.379 36.2 – – – – 5.2 ✓
CRr 0.551 0.051 0.109 99.9 1.660 – 0.154 100.0 ✓
CRr* 0.487 −0.013 0.099 99.9 – – – – 84.7

ESM3 CFrd 0.879 0.379 0.119 100.0 0.895 – 0.264 92.2 ✓
CFrd* 0.755 0.255 0.890 50.4 – – – – 34.9 ✓
CRr 0.404 −0.096 0.062 100.0 0.211 – 0.130 44.8 ✓
CRr* 0.488 −0.012 0.075 100.0 – – – – 97.9

*Likelihood ratio test.
Est. = mean of the estimates, SE = standard error of the estimates, % rejec. = percentage of rejected null hypotheses, Bias = difference between the mean of the estimates
and the true value (𝛽 = 0.5, 𝛽𝑖𝑙𝑙 = 1.099), Miss-spec. = if ✓ the model is miss-specified; ESM1 = extended semi-Markov 1, ESM2 = extended semi-Markov 2, ESM3 =
extended semi-Markov 3; CFrd = clock forward model with 𝑟 and 𝑑 as covariates, CRr = clock reset model with 𝑟 as covariate; models with * = models with a flexible
effect of the intermediate event.

different times after illness. This is evident also in the flexible version of the model, CFr*. In SM1, the constant hazard ratio
𝜆12(𝑑)∕𝜆02(𝑡) for 𝑟 = 0, defined by the 𝛽𝑖𝑙𝑙 parameter, is clearly overestimated by CFr model. Results of this model in SM3 and
ESM1, ESM2, and ESM3 scenarios are omitted since they lead to similar conclusions.

CFrd and CFrd* models
CFrd and CFrd* models were used in all semi-Markov (Table 5) and extended semi-Markov (Table 6) scenarios to investigate
whether these approaches would enable to remove the spurious effect of 𝑟 due to the time after the transition 𝑑, since they include
𝑑 as covariate on top of 𝑟.

When applying CFrd model in SM1, a spurious effect of 𝑟 is still present and the constant hazard ratio 𝜆12(𝑑)∕𝜆02(𝑡) for
𝑟 = 0, defined by the 𝛽𝑖𝑙𝑙 parameter, is overestimated. The spurious effect of 𝑟 is observed also in the CFrd* model, where the
𝛽𝑖𝑙𝑙 parameter is underestimated. In SM2, the time-varying nature of 𝜆12(𝑑)∕𝜆02(𝑡), in time 𝑡 for any 𝑟, is not captured even by
the CFrd* model since the rejection fraction is only 5.8%. Of note, the spurious effect of 𝑟 disappears in both CFrd and CFrd*
and the rejection fractions of H0 ∶ 𝛽 = 0 are around the nominal value. This is due to the peculiarity of SM2 scenario, where
𝜆02(𝑡) is constant. In fact in SM3, where 𝜆02(𝑡) is decreasing, the spurious effect of 𝑟 is again observed. In this scenario, the
time-varying nature of 𝜆12(𝑑)∕𝜆02(𝑡), in time 𝑡 for any 𝑟, is captured by the CFrd* model but with a rejection fraction of only
40.5%.

In ESM1, the effect of 𝑟 and the constant hazard ratio 𝜆12(𝑟, 𝑑)∕𝜆02(𝑡) = exp(𝛽𝑖𝑙𝑙) for 𝑟 = 0 are still overestimated by CFrd
model. In ESM2, the time-varying nature of 𝜆12(𝑟, 𝑑)∕𝜆02(𝑡) for any 𝑟 is not captured even by the CFrd* model where the
rejection fraction is only 5.2%. Of note, the effect of 𝑟 is adequately estimated in both CFrd and CFrd*, again owing to the
peculiarity of ESM2 where 𝜆02(𝑡) is constant. In fact, in ESM3, where 𝜆02(𝑡) is decreasing, the spurious effect of 𝑟 is again
observed. The time-varying nature of 𝜆12(𝑟, 𝑑)∕𝜆02(𝑡), in time 𝑡 for any 𝑟, is captured by the CFrd* model but with a rejection
fraction of only 34.9%.

CRr and CRr* models
CRr and CRr* models were used in all semi-Markov (Table 5) and extended semi-Markov (Table 6) scenarios to investigate
whether these approaches would enable to remove the spurious effect of 𝑟, since they include the clock forward time scale only
for patients in state 0 and the clock reset time scale for patients in state 1 and 𝑟 as covariate. In all scenarios, the coefficient of
𝑟 is properly estimated: in the semi-Markov scenarios, the coefficient of 𝑟 is close to 0 with a rejection fraction for H0 ∶ 𝛽 = 0
between 3.2% and 13%, while in the extended semi-Markov scenarios the effect of 𝑟 is recognized and estimated with bias lower
than 0.096 in absolute value and very high rejection fractions. In SM1 and ESM1, the constant hazard ratio 𝜆12(𝑑)∕𝜆02(𝑡) =
exp(𝛽𝑖𝑙𝑙) is correctly estimated with very high rejection fractions, whereas in the remaining scenarios, the time-dependent nature
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T A B L E 7 Results of the subsample Poisson models to test the Markov and the semi-Markov assumptions on the data of the Danish National
Diabetes Register

Model Variable Est. SE z p-value
CFr Intercept −2.448 0.130 −18.769 <.001

𝑓 (𝑡)1 −0.626 0.245 −2.553 .011
𝑓 (𝑡)2 −2.691 0.414 −6.501 <.001
𝑓 (𝑡)3 −1.774 0.352 −5.034 <.001
Time to Ins. prescr. 0.184 0.022 8.514 <.001

CRr Intercept −2.269 0.103 −22.011 <.001
𝑓 (𝑑)1 0.146 0.318 0.459 .646
𝑓 (𝑑)2 −2.942 0.399 −7.371 <.001
𝑓 (𝑑)3 −2.123 0.624 −3.402 <.001
Time to Ins. prescr. 0.060 0.014 4.163 <.001

𝑓 (⋅) is a natural spline with 3 degrees of freedom. Ins. prescr. = second insulin prescription, Time to Ins. prescr. = time to the second insulin prescription (in years); Est.
= estimate of the coefficient, SE = standard error.

F I G U R E 4 Plot of the smoothed estimate of the hazard function in subgroups of patients with similar times to insuline prescription (according
to deciles) against time measured in the clock forward scale (a) and in the clock reset scale (b). Black curves correspond to patients with smaller
times to insuline prescription, whereas gray curves correspond to patients with larger times to insuline prescription

of 𝜆12(𝑑)∕𝜆02(𝑡) for any 𝑟 is captured. The presence of censoring (independent or dependent from a covariate) and non-monotone
hazards does not affect the validity of these considerations (see the results in the Supporting Information).

7 APPLICATION TO THE DANISH NATIONAL DIABETES REGISTER

We analyzed survival data of a random sample of 10,000 patients among those with date of diagnosis of diabetes after 1995
from the Danish National Diabetes Register, available in the Epi package of the R software (Carstensen, Kristensen, Ottosen,
& Borch-Johnsen, 2008). We considered an illness-death model with the inclusion in the register as the initial state, the second
prescription of insulin as the intermediate state and death as the final state.

First, we applied the CFr and CRr models on the subsample of patients with the second prescription of insulin (𝑛 = 1, 791)
to the test the properties of Markov and semi-Markov, respectively. Results are presented in Table 7. Since in both models
the coefficient of the time to the second prescription of insulin is statistically different from 0, we cannot assume either the
Markov or the semi-Markov property, so we can conclude that data satisfy the extended semi-Markov property. The coefficient
is positive, meaning that a delayed second insulin prescription increases the subsequent hazard of death. The Markov and semi-
Markov properties are checked also graphically by plotting a smoothed estimate of the hazard function in subgroups of patients
with similar times to insuline prescription against time in the clock forward (Figure 4a) and clock reset (Figure 4b) scales,
respectively. The curves in Figure 4a are not overlapping, so the data cannot satisfy the Markov property. Since also in Figure 4b
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T A B L E 8 Results of the full-sample Poisson models on the data of the Danish National Diabetes Register
Model Variable Est. SE z p-value
CRr Intercept −2.949 0.078 −37.689 <.001

𝑓 (𝑢)1 0.157 0.113 1.393 .164
𝑓 (𝑢)2 −0.378 0.198 −1.904 .057
𝑓 (𝑢)3 0.057 0.178 0.321 .748
Ins. prescr. −0.120 0.073 −1.654 .098
Time to Ins. prescr. 0.089 0.016 5.575 <.001
Sex (female vs. male) −0.100 0.044 −2.288 .022

CRr* Intercept −3.078 0.091 −33.998 <.001
𝑓 (𝑢)1 0.178 0.121 1.467 .142
𝑓 (𝑢)2 0.004 0.226 0.017 .986
𝑓 (𝑢)3 0.322 0.186 1.734 .083
Ins. prescr. 0.435 0.174 2.501 .012
𝑓 (𝑢)1*Ins. prescr. −0.060 0.345 −0.173 .862
𝑓 (𝑢)2*Ins. prescr. −2.055 0.538 −3.819 <.001
𝑓 (𝑢)3*Ins. prescr. −2.114 0.677 −3.121 .002
Time to Ins. prescr. 0.065 0.017 3.903 <.001
Sex (female vs. male) −0.098 0.044 −2.236 .026

𝑓 (⋅) is a natural spline with 3 degrees of freedom; 𝑢 is equal to the time from inclusion in the register (clock forward scale) before the transition to the second insulin
prescription and equal to the time from the second insulin prescription (clock reset scale) after that transition, Ins. prescr. = second insulin prescription, Time to Ins.
prescr. = time to the second insulin prescription (in years); Est. = estimate of the coefficient, SE = standard error; models with * = models with a flexible effect of the
intermediate event.

the curve are far from being overlapping, an effect of the time to insuline prescription can be hypothesized, therefore the extended
semi-Markov property is reasonable. From the analysis of the Schoenfeld residuals in the clock reset time scale, the proportional
hazards assumption is reasonable (𝑝 = .125). Slight deviations from the log-linearity are also apparent in the martingale residuals
(not shown). This would suggest the inclusion of a flexible effect of 𝑟 instead of the simple linear effect we included.

Following our strategy, we then applied the CRr full-sample model to investigate simultaneously the impact of the second
prescription of insulin and again the time to this intermediate event on the incidence of mortality. Results are reported in Table 8.
In the CRr model, the coefficient of insulin prescription is negative and marginally significant (𝑝 < .1), suggesting an overall
protective effect of the treatment. Confirming the results of the CRr subsample model, the effect of the time to second insulin
prescription is significantly greater than zero. In order to obtain a better model fitting, one can implement the analogous CRr*
model with a time-varying effect of insulin prescription. This was achieved by applying a spline function of time to the coefficient
of the intermediate event. Although the interpretability of the effect of the intermediate event becomes difficult, we have a better
estimate of the impact of the time to second insulin prescription, which is again significantly positive and very similar to the
subsample CRr model estimate. In both full-sample models, sex has an estimated similar impact on the hazard of death.

8 DISCUSSION

In this work, we proposed a strategy (described in the flowchart of Figure 5) to model hazard functions for illness-death data
with the aim of quantifying the impact of time to illness, and the transition to illness, on the subsequent hazard of the absorbing
event. The strategy involves two phases: (1) investigate whether the data will reflect the Markov, semi-Markov, or extended
semi-Markov properties using subsample models; (2) quantify the impact of the transition to illness on top of the impact of time
to illness in a full-sample model. We discuss in detail the two phases.

About phase 1, it can be noticed that often in multistate literature, for sake of simplicity, the Markov property is commonly
assumed (Andersen & Perme, 2008; Lauseker et al., 2015; Putter et al., 2007). From the clinical point of view, however, it is
difficult to justify that the hazard a patient experiences after illness is neither influenced by the time to illness (semi-Markov)
nor by the time after illness (extended semi-Markov) (Andersen et al., 2000; Eulenburg et al., 2015; Meira-Machado, de Una-
Alvarez, Cadarso-Suarez, & Andersen, 2009). From the methodological point of view, it is clearer to start from the Markov
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F I G U R E 5 Graphical representation of the strategy to use when analyzing illness-death data. Plot = plot of the smoothed estimate of the
hazard function in subgroups of patients with similar times to illness against time in the clock forward scale (to check the Markov property) or in the
clock reset scale (to check the semi-Markov property)

assumption as a reference model. If the assumption is violated, we then suggest to check if either the semi-Markov or the
extended semi-Markov property holds.

Since the Markov, semi-Markov, and extended semi-Markov properties concern the behavior of the hazard function after
illness, it is natural to investigate them by analyzing the subsample of patients who experienced illness with the sequential use
of the CFr (or CFd) and CRr models we presented. The use of a model-based approach, however, relies on the proportionality
of the hazards and on a possible log-linear effect of 𝑟. These assumptions could be checked both through residuals analysis and
naive graphical methods, as presented in Section 3. Violations of these assumptions could lower the power on testing the model
coefficients, where the null hypothesis of the coefficient equal to zero represents the presence of Markov or semi-Markov data.
The graphical check we described enables also to verify directly if the Markov property is tenable and, in negative case, if the
semi-Markov property is tenable.

In the case of Markov data, the use of the clock forward time scale is the natural way to measure the follow-up time. The clock
reset scale should be considered in case of non-Markov data, since forcing to use the clock forward scale will result in a spurious
effect of the time to illness, due to the time after illness and not to a different shape of the hazard function after illness. One may
note that it is only in an extended semi-Markov scenario that time to illness has an influence on the subsequent hazard, which
is kept by the use of the clock reset time scale in the CRr model. The motivating data on the Danish National Diabetes Register
were consistent with an extended semi-Markov scenario with proportionality of the hazards but deviated from the assumption
of log-linear effect. These deviations were not accounted for the sake of simplicity.

In phase 2, the choice of the full-sample model is guided by the results of phase 1. The model in the clock forward scale with
the time-varying covariates representing the transition to illness and the time to illness is suitable to be used in Markov data and,
as we expected, it will not reveal an impact of time to illness. Nonproportionality between the hazards may be handled through
a time-varying effect of the transition to illness. The use of a model involving the clock forward scale after the transition to
illness in non-Markov data will result again in a spurious effect of the time to illness due to the time after illness. In addition,
the estimate of the impact of the transition to illness is biased even in simple scenarios (e.g., SM1 in Table 5). One may note
that this issue holds even for the more complex CFrd model, where the time after illness is used as a time-varying covariate
in a model involving the clock forward time scale as background. In fact, a model including the clock reset time scale for the
follow-up time after illness on top of the original time scale, which will be still considered as baseline, will necessarily imply
that the time to illness is included as a time-varying covariate. By contrast, if the original time scale is not considered in the
model formulation to measure the follow-up time after illness, the time to illness can be included as a fixed covariate. Given its
flexibility, the CFrd model may be used for prediction purposes, such as in Rebora et al. (2015).

In the case of non-Markov data, when the goal is to estimate the impact of time to illness on the hazard from state 1 to state 2,
only the CRr model, which uses the clock forward scale to measure time before illness and the clock reset scale for time after
the intermediate event, should be considered. This was done in our motivating data. This approach captures the real effect of the
time to illness, which is null if data satisfy the semi-Markov property, on the subsequent hazard. It is worth to note that, even in
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this scenario, the inclusion in the model of the fixed time to illness covariate could be useful to relax the censoring assumption
(i.e., the model is valid even under censoring dependent on covariates). In addition, the impact of the transition to illness is
correctly quantified, also in complex scenarios (e.g., ESM3 in Table 6).

Finally, we point out that even under totally independent censoring (e.g., administrative), the CRr model induces a more strict
censoring assumption. In fact, adopting the clock reset scale to measure time after illness implies that censoring is dependent
from time to illness. However, the problem is tackled by simply including in the model the fixed time to illness covariate, even
when it has no effect (semi-Markov scenario).
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APPENDIX
In M1 and M2 scenarios, we simulated the time after illness 𝐷 as follows.
T A B L E A 1 Details on the simulation protocol of the Markov, semi-Markov and extended semi-Markov scenarios (𝛽𝑖𝑙𝑙 = log3, 𝛽 = 0.5)

Scenario 𝑻𝟎𝟐 𝑫
M0 Exp(0.1) Exp(0.1𝑒𝛽𝑖𝑙𝑙 )
M1 Weib(0.6, 0.7) Weib(0.6𝑒𝛽𝑖𝑙𝑙∕0.7, 0.7)*
M2 Exp(0.4) Weib(0.6𝑒log3∕0.7, 0.7)*
SM1 Weib(0.6, 0.7) Weib(0.6𝑒𝛽𝑖𝑙𝑙∕0.7, 0.7)
SM2 Exp(0.4) Weib(0.6𝑒log3∕0.7, 0.7)
SM3 Weib(0.4, 0.5) Weib(0.6, 0.7)
ESM1 Weib(0.6, 0.7) Weib(0.6𝑒𝛽𝑖𝑙𝑙∕0.7𝑒𝛽⋅𝑟∕0.7, 0.7)
ESM2 Exp(0.4) Weib(0.6𝑒log3∕0.7𝑒𝛽⋅𝑟∕0.7, 0.7)
ESM3 Weib(0.4, 0.5) Weib(0.6𝑒𝛽⋅𝑟∕0.7, 0.7)

*The time after illness 𝐷 is simulated from a Weibull distribution as described below.
M0 = Markov 0, M1 = Markov 1, M2 = Markov 2; SM1 = semi-Markov 1, SM2 = semi-Markov 2, SM3 = semi-Markov 3; ESM1 = extended semi-Markov 1, ESM2 =
extended semi-Markov 2, ESM3 = extended semi-Markov 3.

Since patients can die because of the development of illness only after the development of illness, the survival function was
calculated, accounting for the delayed entry at time 𝑟, integrating the hazard function on the time interval [𝑟, 𝑡], where 𝑡 is the
time at which the risk is evaluated. The hazard at time 𝑡, given that the patient visited the intermediate event, follows a Weibull
distribution. The survival function of a generic time 𝑇 ∼ Weibull(𝜆, 𝑝), given an initial time 𝑅 = 𝑟, is

𝑆(𝑡) = 𝑃 (𝑇 > 𝑡|𝑅 = 𝑟) = 𝑃 (𝑇⋅|𝑅 > 𝑡)

= exp
(
−∫

𝑡

𝑟
𝜆(𝑢)𝑑𝑢

)

= exp
(
−∫

𝑡

𝑟
𝑝𝜆𝑝𝑢𝑝−1𝑑𝑢

)

= exp(−(𝜆𝑝𝑡𝑝 − 𝜆𝑝𝑟𝑝))

= exp(−𝜆𝑝(𝑡𝑝 − 𝑟𝑝)).

From 𝑆(𝑡), we can calculate the cumulative distribution function 𝐹 (𝑡) and solve for 𝑡
𝐹 (𝑡) = 1 − 𝑆(𝑡) = 1 − exp(−𝜆𝑝(𝑡𝑝 − 𝑟𝑝))

𝑙𝑜𝑔(1 − 𝐹 (𝑡)) = −𝜆𝑝(𝑡𝑝 − 𝑟𝑝)
(
− 𝑙𝑜𝑔(1 − 𝐹 (𝑡))

𝜆𝑝
+ 𝑟𝑝

)1∕𝑝
= 𝑡. (A1)

With the inversion method proposed by Bender et al. (2005), we simulated the 𝐹 (𝑡) from a uniform distribution [0,1] and
substituted the obtained value in the formula (A1). We found a value for the time of interest 𝑇⋅|𝑅. Finally, the time after the
transition 𝐷 is calculated as a difference between the time 𝑡 and the time to illness 𝑅 previously generated in order to account
for the delayed entry and the dependence of the time after illness from the time to illness.
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F I G U R E A 1 Hazards 𝜆02(𝑡) (dashed line)
and 𝜆12(𝑡) (solid line) in all scenarios for three
patients with times to illness 𝑟 = 0, 1, 2. On the
𝑥-axis is represented the time from origin 𝑡 (clock
forward time scale), and on the 𝑦-axis the
transition hazard to the absorbing state. M1 =
Markov 1, M2 = Markov 2; SM1 = semi-Markov
1, SM2 = semi-Markov 2, SM3 = semi-Markov
3; ESM1 = extended semi-Markov 1, ESM2 =
extended semi-Markov 2, ESM3 = extended
semi-Markov 3

F I G U R E A 2 Hazard ratio between 𝜆12(𝑡)
and 𝜆02(𝑡) for 𝑡 ≥ 𝑟 in all scenarios for three
patients with times to illness 𝑟 = 0, 1, 2. On the
𝑥-axis is represented the time from origin (clock
forward time scale), and on the 𝑦-axis the hazard
ratio. M1 = Markov 1, M2 = Markov 2; SM1 =
semi-Markov 1, SM2 = semi-Markov 2, SM3 =
semi-Markov 3; ESM1 = extended semi-Markov
1, ESM2 = extended semi-Markov 2, ESM3 =
extended semi-Markov 3


