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Abstract

This dissertation is concerned with a peculiar class of lyotropics: chromonic liquid crystals (CLCs).
These are formed by certain dyes, drugs, and short nuclei acid oligomers in aqueous solutions [74, 23,
120, 76, 138, 84, 36]. Dyes, drugs, and DNA oligomers are the most common examples. Since these
solutions are present where most normal biological processes take place, it is no wonder that CLCs have
become of interest for possible applications in medical sciences. But this is not the only reason that
makes them special (or rather unique). Aggregation of CLCs starts at very low concentrations and the
aggregates are columns, although with variants [74]. Some of them are stacks of single flat molecules,
others have more than a molecule in their cross-sections [92]. These might seem to be minor details, but
they may have momentous consequences at the macroscopic scale [43]. More specifically, CLC molecules
are typically plank-shaped with aromatic cores and polar groups on their peripheries [93]. They tend to
stack face-to-face and their aggregates order into a fluid nematic (N) phase or (for high concentrations
or low temperatures) even in a solid-like medium (M) phase, where columns are organised parallel to one
another with their centres arranged in an hexagonal pattern [74]. It is the variability in size and shape
of the supra-molecular columns that makes CLCs so unique: a change in the distribution of size in the
assembly affects the elastic energy term favouring twist in a way that will be clear below.

Chromonics in the nematic phase enjoy the head-tail symmetry, that is, they are non-chiral materials
with a tendency for their constitutive elements (the columns of assembled molecules described above) to
bundle together so that a director n (or, more generally, an order tensor) can be defined at a mesoscopic
scale and lacks polarity. Such a uniaxiality is also the optical signature of the material and reveals the
fascinating textures that the director can exhibit in confined geometries.
The ground state of ordinary nematic liquid crystals, that is, a configuration into which the liquid crystal
naturally relaxes when neither external actions nor anchoring conditions affect its orientation, is attained
when n is uniform in space, i.e., when the director is the same everywhere and no distortion is to be seen
at all. Central to this dissertation is that when CLCs are confined in capillary cylinders with degenerate
boundary conditions (i.e. n is bound to be tangent to the boundary, but free to orient in any direction)
that would be compatible with the uniform alignment of the director along the cylinder’s axis, then they
are instead observed to acquire a nonuniform arrangement [55, 56, 19, 86]. In particular, their ground
state in a cylindrical capillary, often referred to as the escaped twist (ET) field [19], is two-fold; it consists
of two symmetric twisted configurations (left- and right-handed), each variant occurring with the same
likelihood, as was to be expected from the lack of chirality in the molecular aggregates that constitute
these materials. Despite the clear indication that CLCs in three-dimensional space exhibit a different
behaviour from common nematic liquid crystals, the Oseen-Frank theory for nematics has been applied
to rationalize the experiments with capillary tubes and so to determine the configuration of the ET
field. This is a variational theory which posits a free-energy density quadratic in the director gradient
that penalizes all distortions of n away from a uniform alignment (in whatever direction). Four basic
distortions are classically identified, which correspond to four independent elastic constants; these are the
splay (K11), twist (K22), bend (K33), and saddle-splay (K24) constants [127], which have recently been
re-interpreted in a new light [114]. This latter reinterpretation is of interest in this thesis since it goes
beyond the usual representation of the saddle-splay contribution only in terms of surface elasticity.

Ericksen’s inequalities [30] ensure that Oseen-Frank’s energy density is positive definite, and the
spontaneous emergence of chirality in the nematic texture is not conceivable when they hold. Thus,
as expected, Oseen-Frank’s elastic theory justifies the observed configurations of CLCs under cylindrical
confinement only if the relevant Ericksen’s inequality, K22 ≥ K24, is violated, and so only if Oseen-Frank’s
free-energy functional is unbounded below in 3D Euclidean space. Indeed, the configuration they fall in
(first found in [10]) is an equilibrium one only if that inequality is violated. The alternative form of the
Oseen-Frank’s free-energy density proposed in [114] distributes the saddle-splay contribution in the other
elastic modes. In so doing, the pure twist corresponds to the elastic constant (K22−K24) (instead of only
K22) and it is termed double twist, as it has no characteristic direction in the plane perpendicular to n.
The negativity of (K22−K24) suggests that the pure double-twisted configuration, where only the double
twist mode is excited, should be the ground state of CLCs in 3D space. Unfortunately, this peculiar
director field does not belong to any of the families of uniform director fields [128], and so it cannot fill
3D Euclidean space; this ideal state is only attainable along a 1D curve and produces elastic frustration
if requested to occupy a particular geometry with particular boundary conditions. As a result, extending
the ideal double-twisted texture to a tubular region introduces by necessity a non-uniform texture which
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results from the combination of other fundamental deformation modes with pure double twist only along
the axis of the cylinder. This is precisely the ET field experimentally observed for CLCs in cylindrical
capillaries subject to degenerate boundary conditions. Taking for granted that the ground state of CLCs
is an ideal (unattainable), pure double-twist, we may say that the ET field is actually a ‘pseudo-ground
state’ since it is the result of the confinement-induced extension of the pure double twist, which induces
elastic frustration in the system. The following questions then arise: Is anything wrong in applying
Oseen-Frank’s elastic theory to these materials? Do we need a new elastic theory for CLCs?

It follows from the geometric representation in [66] for the energy termK24 when n is required to obey
planar anchoring conditions on the boundary that even when one of the Ericksen’s inequalities involving
K24 is violated, as in this case, the stored Oseen-Frank’s energy is bounded below as long as the elastic
constants K11, K22, and K33 are all non-negative. Hence, hardly confining boundary conditions could
ensure the existence of the minimum also when the free-energy functional is unbounded below. It can
thus be legitimate to apply Oseen-Frank’s theory to this particular class of materials under confinement
when K22 < K24. In particular, the local stability of ET field is established in this thesis through
a general formula for the second variation of the free-energy functional. But, does this really always
suffice? Even for free-boundary conditions? To resolve these issues, this thesis takes two converging
avenues. It studies problems of CLC drops surrounded by an isotropic liquid to illuminate the role played
by K24 in Oseen-Frank’s theory; it examines the consequences of the violation of Ericksen’s inequality
K22 ≥ K24 to ascertain whether they are all harmless. The ultimate conclusion is that Oseen-Frank’s
free-energy is not apt to describe the elasticity of CLCs because it entails paradoxes that arise if above
Ericksen’s inequality is violated.

This is not only a destructive thesis; it also proposes an amendment to the Oseen-Frank’s theory,
in the form of a quartic correction to the free-energy density, which promises to reinterpret correctly all
experimental findings without leading to any paradox.

The outline of this dissertation is as follows. The first chapter provides an introduction to the
classical Oseen-Frank’s theory intended for nematic liquid crystals and applied so far to chromonic liquid
crystals as well. It also provides the theoretical background for the subsequent explorations. The Chapter
ends with the illustration of the ET equilibrium configurations. A re-interpretation of them in terms of
characteristic distortions and elastic frustration is addressed.

Four Chapters then follow about specific projects of my research; Chapter 2 and part of Chapter 3
have already been published, [99, 100].

The variational problem of determining the optimal shape of a nematic droplet surrounded by the
nematic phase is formidable and has only been attacked in selected classes of shapes and director fields.
In Chapter 2, by considering a special class of admissible solutions for a bipolar droplet, we study how the
prevalence of a shape is affected by a dimensionless measure α of the drop’s volume and the ratios of the
saddle-splay constant K24 and the bending constant K33 to the splay constant K11. Our class of shapes
(and director fields) is sufficiently different from those employed so far to unveil a rather different role of
K24. Chapter 2 is not intended exclusively for chromonic liquid crystals, but it is primarily concerned
with bipolar tactoids and with how they prevail over other possible equilibrium shapes. Here, we focus
only on the untwisted bipolar configurations; the twist term in the elastic free-energy density vanishes
identically.

In Chapter 3 we adapt the theory presented in Chapter 2 to confined two-dimensional systems; here
too twist is suppressed by symmetry. These are chromonic drops squeezed between two parallel plates
[63, 136]. In these systems no twist can reside in the drops (neither single nor double [114]), and so Oseen-
Frank’s theory suffices. Here we solve the free-boundary variational problem that has the shape of the
drop as main unknown and try and use the solution to fit experiments and collect enough data to afford
a reliable measure of the surface tension at the interface between various CLCs and their isotropic melt,
for which there are but controversial estimates [63, 82]. This latter estimate is then employed to provide
a measure of the anchoring strength at the nematic-polymer interface, when the substrates squeezing the
drop are patterned with sub-micron scale line channels (with the bottom and the top channels parallel
to each other) and the droplet’s long axis is aligned well to the channels.

The second part of the thesis is illustrated in Chapters 4, 5 and 6. In Chapter 4 we take for granted
that Oseen-Frank’s theory is suitable to describe the elastic properties of CLCs and we start to examine
the consequences that would arise in cylindrical symmetry (in connection with Burylov’s solutions [10]) if
the relevant Ericksen’s inequality,K22 ≥ K24, is violated. The geometric frustration and the characteristic
of non-universality of the ET equilibrium configurations likely to characterize the two-fold ground state
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of CLCs within Oseen-Frank’s theory are shown to be locally stable. This is achieved through a general
formula for the second variation of the free-energy functional. We substantiate the claim that the ET
configurations arise from the elastic frustration of the ideal double-twist configuration when requested
to occupy the cylinder and to obey degenerate boundary conditions. It is the desire to relax this elastic
frustration that inspires Chapter 5. Indeed, although ET configurations realize the minimum of Oseen-
Frank’s energy in a cylinder, two paradoxes arise in cylindrical symmetry if K22 < K24. In particular
we construct a sequence of configurations (Bk,nk), where Bk is the region in space occupied by a CLC
with fixed volume, such that the limiting value of the free-energy as k →∞ diverges to −∞. Moreover,
a second paradox arises by inserting inside a given cylinder another hollow cylinder of smaller radius.
The new configuration into which the nematic director relaxes has a discontinuity on the material surface
which separates the two regions into which the larger cylinder is divided, but the minimum energy of
the resulting system is less than the energy of the original system, making one wonder where the missing
energy has gone.

The thesis ends in Chapter 6 with the proposal of a quartic free-energy which promotes a double-twist
configuration as ground state to avoid the shortcomings of the existing theory. Since this spontaneous
state is not uniform, a characteristic length a of molecular order is thus introduced in the model which
measures the extension over which the equilibrium distortion is affected. More precisely, the spontaneous
state could be attained unfortunately only in the ideal case of a cylinder subject to planar anchoring
conditions whose radius is considerably smaller than a; otherwise, the confinement prevents the realiza-
tion of the spontaneous value of the double twist. The new theory has the advantage of avoiding the
paradoxes presented in Chapter 5 and to reproduce faithfully the experiments on CLCs under cylindrical
confinements.

3



Chapter 1

Introduction to Chromonics

Liquid crystals aremesophases, that is, intermediate states of matter which may flow like a liquid,
but have also properties of solid crystals: they are constituted by basic mesogens, which may
either be molecules or molecular assemblies (that is, supra-molecular constructs), oriented in a
crystal-like way. Indeed, the existence of these mesophases is due to a particular organization
of the orientation of their constituents when they pass from a crystalline ordered arrangement,
typical of a solid, to a disordered organization, typical of a liquid. The liquid crystal phases
are characterized by orientational order of their mesogenic units with, in some cases, a limited
amount of positional order, so that liquid crystals are anisotropic fluids[127].

There are essentially two distinct ways to induce the liquid crystalline phase in a mesogenic
substance, an organic substance in which there could be the onset of a mesophase, namely by
changing its temperature or its concentration in a solvent. Systems in which an ordered phase
is induced by reducing the temperature of the isotropic fluid phase are called thermotropic. In
these materials, the mesogenic units are single molecules. There is another class of liquid crystals,
those in which the mesogenic units are molecular assemblies in a solvent, and concentration is
the driving parameter for ordering. These are called lyotropic. Thermotropic liquid crystals are
used in man-made displays, whereas lyotropic liquid crystals are found in detergents and living
organisms like [92].

This dissertation is concerned with a very peculiar class of lyotropics: chromonic liquid
crystals (CLCs). These are formed by certain dyes, drugs, and short nucleic acid oligomers in
aqueous solutions[74, 23, 120, 76, 138, 84, 36]. Since these solutions are where most biological
processes take function normally, it is no wonder that CLCs have become of interest for possible
applications in medical sciences. But this is not the only reason that makes them special (or
rather unique)1

In conventional amphiphile/water systems, the temperature/composition phase diagrams are
often complex—and can show a wide range of patterns of aggregation—spherical micelles, cylin-
drical columns, layered structures complex cubic phases—with the additional factor of there
being both oil-in-water and water-in-oil inverse structures. What perhaps distinguishes CLCs is
that aggregation starts at very low concentrations and that aggregates are columns, although
with variants [74]. Some are stacks of single molecules, others have more than a molecule in
their cross-sections [92]. These might seem to be minor details, but they may have momentous
consequences at the macroscopic scale [43].

More specifically, CLC molecules are typically plank-shaped with aromatic cores and polar
groups on their peripheries [93]: dyes, drugs, and DNA oligomers are the most common exam-
ples. They tend to stack face-to-face and their aggregates order into a fluid nematic (N) phase or
(for higher concentrations or lower temperatures) even in a solid-like medium (M) phase, where

1A number of informative, updated reviews are available on this topic [72, 73, 74, 24].
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CHAPTER 1. INTRODUCTION TO CHROMONICS 5

columns are organised parallel to one another with their centres arranged in an hexagonal pat-
tern [74]. While the former is just the analogue of the nematic phase in ordinary thermotropics,
the latter is the analogue of the columnar phase in discotic thermotropic (for this reason, it is
also termed as C phase).

It is the variability in size and shape of the supra-molecular columns that makes CLCs so
unique. The aggregation process is isodesmic, because the energy gain in adding a unit to a
pre-existing column with at least two units (typically between 5 and 10 kT ) does not depend
on the length of the column2. Equilibrium is reached by minimising the free-energy, where
entropy counteracts internal energy. The isodesmic nature of the process results in a broad
length column distribution, which is prone to the action of temperature. When the temperature
is increased, the mean length is expected to shift towards smaller values, so that the concentration
of longer assemblies decreases, while that of shorter ones increases. This is reflected by the
elastic properties of the phase, in a way that ordinary lyotropics do not exhibit [93]. Especially,
this change in the distribution of assembly size affects the elastic energy terms resisting and
favouring twist in a way that will be clear below. Further increasing the temperature results into
a first order nematic-isotropic transition with a wide coexistence region (5-10 ◦C). Conversely,
when the temperature is decreased, short, disordered columns in the isotropic phase tend to
grow and aggregate, eventually separating from the parent isotropic solution to form islands
of ordered phase. As customary, the nematic phase is described by the nematic director field
n, the mesoscopic unit vector field designating the local average orientation of the elementary
constituents of the phase. Chapters 2 and 3 address the study of free-boundary problems for
bipolar droplets of nematic phase surrounded by an isotropic environment.

The elastic vulnerability of CLCs previously described manifests itself in spontaneous injec-
tions of chirality in the nematic director texture, with its characteristic optical signature, in the
absence of molecular chirality [25]. Contrarily, in the absence of any external field the orienting
interactions would incline the average orientation of the constitutive elements of a NLC to be
uniform in space. In the classical theory of liquid crystal elasticity as formulated for general NLCs
by Oseen [97] and Frank [38], the distortional cost associated with the nematic ground state is
everywhere zero, and all other states, which have a non-vanishing gradient ∇n, are distorted.
What is wrong with the application of this theory, built on a notion of undistorted ground state,
to CLCs (as done so far) and why we do need a new theory for this class of materials? The answer
to these questions lies in the second part of this thesis, which consists in Chapters 4, 5 and 6,
with the proposal of a quartic theory to avoid the shortcomings of the existing one. The new
theory intended for CLCs describes their assumed ground state and reproduce the experiments.

1.1 Preliminaries

The continuum theory of liquid crystals is a variational theory based on the works of Oseen [97]
and Zocher [144]. A free-energy functional is posited and, since the temperature is taken as
given throughout our development, such a functional is indeed the Helmholtz free-energy. In this
first Chapter, we outline the classical Oseen-Frank’s theory intended for nematic and cholestic
liquid crystals and applied so far to chromonic liquid crystals; it has been around for some time
already [38]. This theory constitutes a solid basis for the successive investigations and represents
the framework for our subsequent development. We also recall in Sec. 1.1.2 alternative form
of Oseen-Frank’s free-energy density intended for nematics proposed in [114]; it is of interest
in this dissertation since demystifies some implications of the saddle-splay contribution, often
only considered as surface elasticity. In [128] this thread is taken up to characterize uniform

2Computer atomistic simulations [12] have shown that this is indeed an acceptable approximation.
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distortions. There exist only two families of them and any other director field would be geomet-
rically frustrated and become by necessity non uniform if requested to occupy the whole space.
Especially, the application of Oseen-Frank’s theory to CLCs suggests that the ground state of
CLCs is a characteristic double twist, a distortion field that cannot cover uniformly the whole
space and thus induces spatial frustration in the system. We recall in Sec. 1.1.3 the notion of
interfacial energy; when a droplet is surrounded by an isotropic fluid the Oseen-Frank elastic
energy, which accounts for distortions in bulk, does not suffice to describe the whole energetic
landscape. A surface energy at the interface separating the droplet from the surrounding fluid
must also be included. Chapters 2, 3 and 5 elaborate on this notion. The equilibrium equations,
in both weak and strong forms, of the free-energy functional are given in section 1.1.4 when the
region B has been taken as given in deriving them. These equations apply to most situations
that we encounter in this thesis; especially, Chapter 4 addresses questions of the stability of the
free-energy functional at an equilibrium configuration. Finally, in Sec. 1.2 we find within Oseen-
Frank theory the equilibrium configurations with opposite chirality that CLCs fall in (first found
in [10]) when they are confined in a cylindrical cavity. These configurations are re-interpreted
in terms of the distortion characteristics recalled in 1.1.2 with considerations on their elastic
frustration.

1.1.1 Frank’s Formula

In 1922 G. Friedel [39] proposed to classify liquid crystals into three wide categories according
to the molecular organization intermediate between different types of order, which he called
nematic, cholesteric and smectic. Of particular interest in this thesis is the nematic liquid
crystalline phase.

The constitutive elements of both nematic and cholesteric liquid crystals enjoy the head-tail
symmetry, which implies that if head and tail are exchanged, then their interaction with the
neighbouring molecules remain unaffected. For cholesteric liquid crystals this property cannot
be phrased in terms of mirror symmetry as for nematics, since reflections reverse the chirality
characteristic of their molecules which resemble helical springs3.

The basic mesogens of nematic and cholesteric liquid crystals possess orientational and not
positional ordering, and the crystalline phase manifests itself when the interaction between them
tends to make them parallel to one another so as to induce a partial orientational order at the
microscopic scale. We suppose that the liquid crystal occupies a region B and the nematic and
cholesteric phases are described by the vector field n : B → S2, where S2 is the unit sphere in
R3, which associates the vector n (p) to the point p, where n (p) is the average orientation of the
elementary constituents that make up the macroscopic particle at p ∈ B.

The spatial distortion of a director field n is measured by its gradient ∇n and the classical
theory takes the bulk free-energy, also called the elastic free-energy, of nematic and cholesteric
liquid crystals as given by the following functional

Fb[B,n] :=

∫
B
W (n,∇n) dV, (1.1)

where V is the volume measure and B is to be regarded as a variable when the region occupied
by the liquid crystal is unknown. W is the elastic free-energy density (per unit volume) and
it must obey a list of requirements that represent the main physical features of the materials
we intend to model. More precisely, W must be frame-indifferent, even and positive definite.
The frame-indifference states that W

(
Qn,Q∇nQT

)
= W (n,∇n) for any orthogonal tensor

Q ∈ O(3), property which ensures that the free-energy for unit volume is the same in any two
3Expressed differently, exchanging head and tail of a helix by a rotation leaves it unchanged.
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frames. The head to tail symmetry demands n to be equivalent to −n and so W is even, i.e.
W (−n,−∇n) = W (n,∇n). The latter request of positive definiteness deals with the fact that
the functional measures the cost associated with producing a distortion in a natural state, that
is a configuration into which the liquid crystal naturally relaxes when neither external actions
nor anchoring conditions affect its orientation and to which zero distortional cost is associated.
Especially, the ground state of nematics is attained when n is uniform in space, and so ∇n is
zero, while the characteristic natural orientation of cholesterics possesses a uniform twist which
can be described by the following formula4

nc := cos(q0x3 + ϕ0)e1 + sin(q0x3 + ϕ0)e2, (1.2)

where e1 and e2 are unit vectors of a frame (e1, e2, e3) such that e3 = e1 × e2 and x3 is the
coordinate along it. Here, ϕ0 is an angle in the interval [0, 2π) depending only on the frame of
reference employed, while the twist q0 is a material modulus depending on the temperature in
a way which is characteristic of each cholesteric liquid crystal. The tip of the vector in (1.2)
describes a helix which winds around the cholesteric axis e3; it rotates clockwise if q0 is positive,
counterclockwise if it is negative. The distance between any two adjacent spirals is the natural
pitch and is defined as P := 2π/|q0|. When q0 vanishes, the liquid crystal becomes nematic and
the field defined by (1.2) accordingly reduces to a constant.

The simplest formula for W (n,∇n) was put forward by Frank [38]: it is the most general
quadratic expression in ∇n invariant under rotations and complying with the nematic symmetry,
embodied by the director reversion, n→ −n. It is given by5

fOF(n,∇n) =
1

2
K11 (divn)2 +

1

2
K22 (n · curln+ q0)2 +

1

2
K33|n× curln|2+

+K24

[
tr(∇n)2 − (divn)2

]
, (1.3)

where q0 is the natural twist of cholesterics previously introduced and which vanishes for ne-
matics, while K11, K22, K33, and K24 are Frank’s elastic constants and are material moduli
characteristic of each liquid crystal. They are often referred to as the splay, twist, bend, and
saddle-splay elastic constants, respectively, since they are interpreted by producing four different
orientation fields, each with a distortion energy which is proportional to only one of the terms
present in equation (1.3) when q0 = 0. While K11, K22 and K33 can be independently excited,
the K24 elastic constant is different from the others since we can only exhibit an orientation field
whose energy density is just approximately proportional to it in a neighbourhood of a point in
space. Moreover, as we will see below, the K24 term is a null Lagrangian, which can be converted
into a surface integral over the boundary ∂B of the domain occupied by the liquid crystal, not
contributing to the equilibrium equation in the bulk for the energy functional. The constants
K11, K22 and K33 are instead genuine bulk terms. The saddle-splay term can be written in a
number of equivalent forms (see e.g. [65, Ch. 5]),6

tr(∇n)2 − (divn)2 = div
(
(∇n)n− (divn)n

)
= −div

(
(divn)n+ n× curln

)
, (1.4)

4Any other natural orientations for a given cholesteric liquid crystal is obtained by taking a different phase ϕ0

and instead of e3 Qe3 for Q a rotation.
5Here ’tr’ denotes the trace of a (second-rank) tensor: in Cartesian components, tr(∇n)2 = ni,jnj,i, with

the usual convention of summing over repeated indices. Recently, a different modal decomposition has been put
forward for fOF [114], which has also been given a graphical representation in terms of an octupolar (third-rank)
tensor [103]. Such a novel decomposition, however, is not particularly germane to the topic at hand, and so here
we shall stick to tradition.

6An instructive way to relate the saddle-splay energy to splay and twist energies was also offered by Nehring
and Saupe [87, 88]. In a Cartesian frame where n = e3 and the matrix ni,j , with n3,j = 0, represents ∇n,
(divn)2 = (n1,1 + n2,2)

2 and (n · curln)2 = (n1,2 − n2,1)
2, while tr(∇n)2 − (divn)2 = −2(n1,1n2,2 − n1,2n2,1).
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which also reveal its nature of a null Lagrangian, as an integration over the bulk reduces it to a
surface energy, ∫

B

(
tr(∇n)2 − (divn)2

)
dV =

∫
∂B

(
(∇sn)n− (divsn)n

)
· ν dA, (1.5)

where ν is the outer unit normal to ∂B, A is the area measure, ∇s denotes the surface gradient
and divs the surface divergence [29]. In particular, as pointed out in [66], (1.5) has an interesting
consequence when (as will be done in the thesis) n is required to obey the degenerate boundary
condition on ∂B7,

n · ν ≡ 0. (1.6)

Since (1.6) implies that (∇sn)Tν = −(∇sν)n, where ∇sν is the (symmetric) curvature tensor of
∂B, it follows from (1.5) that∫

B

(
tr(∇n)2 − (divn)2

)
dV = −

∫
∂B

(κ1n
2
1 + κ2n

2
2) dA, (1.7)

where κ1 and κ2 are the principal curvatures of ∂B and n1 and n2 are the components of n along
the corresponding principal directions of curvature. Thus, for K24 = 0, the saddle-splay energy
would by itself induce n to align along the direction with maximum (signed) curvature.8 We
shall see in Chapter 2 that this surface feature is key to the role played by K24 in determining
the population of different droplet shapes, while in Chapters 4, 5 and 6 it leads to an escaped
twist ground state. Equation (1.3) will often be referred to as Frank’s formula. When in (1.1)
W is given by Frank’s formula we call Fb Oseen-Frank’s energy functional.

As said above, the natural orientations in Oseen-Frank’s theory represent on the same footing
the ground state, and (1.1) attains its minimum on them, to which zero distortional cost is
associated. Thus fOF is required to be positive definite and for nematics for which q0 = 0, this
amounts to satisfy the so called Ericksen’s inequalities [30]:

(K11 −K24) > 0, (K22 −K24) > 0, K33 > 0, K24 > 0. (1.8)

1.1.2 Selinger’s Decomposition

Recently, a different modal decomposition has been put forward for fOF by J. Selinger [114]9,
who built on earlier work of T. Machon and G. P. Alexander, [75]. More precisely, the starting
point of the decomposition of fOF in independent elastic modes is a new decomposition of ∇n,

∇n = −b⊗ n+
1

2
TW (n) +

1

2
SP (n) +D. (1.9)

Here W (n) denotes the skew-symmetric tensor associated with n10 and P (n) = I − n ⊗ n is
the projector onto the plane orthogonal to n, while the vector b := −(∇n)n = n× curln is the
bend, the pseudoscalar T := n · curln is the twist, the scalar S := divn is the splay and D is
a symmetric tensor such that Dn = 0 and trD = 0. Accordingly, when D 6= 0 it can be given
the form

D = q (n1 ⊗ n1 − n2 ⊗ n2) (1.10)
7That is, when n is bound to be tangent to the boundary, but oriented in any direction.
8In [66], the curvature tensor of ∂B is defined as −∇sn, so that the principal curvatures κi have opposite signs

and (1.7) turns into orienting n along the direction with minimum (signed) curvature, see also [102].
9A graphical representation of this modal decomposition in terms of an octupolar tensor has been given in

[103]
10W (n) acts on any vector v as a cross product, i.e. W (n)v = n× v
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where q is the positive eigenvalue of D, and this choice of sign for q identifies (to within a sign)
the eigenvectors n1 and n2 orthogonal to n. Selinger [114] has proposed to call q the biaxial
splay to emphasize the similarity of this deformation mode with the symmetry of a biaxial
nematic phase11; however when the equivalence between ±n is considered, an even better term
might be tetrahedral splay [115], which represents the full symmetry of the deformation; indeed,
this deformation has the symmetry of a tetrahedron, which splays outward in one direction
with respect to n, and outward in the orthogonal direction with respect to −n. Finally, the
relation between the q mode and the symmetry properties of an octupolar potential on the
unit sphere [41, 40, 103] justifies why hereafter we call q the octupolar splay. More precisely,
an alternative representation for all modes but the double twist is offered by an even scalar-
valued function on the unit sphere. This may have either four or three directions along which it
attains a local maximum (conjugated to a local minimum in the apposite direction). The former
arrangement, with four maxima falling on the vertices of a (possibly distorted) tetrahedron,
signals the predominance of the q mode, whereas the arrangement with only three maxima
signals the depression of that mode.

In this decomposition the pure twist and pure splay are reinterpreted as local configurations
which are strictly uniaxial in the plane perpendicular to n (and therefore have only T and S
non zero among the four modes). Especially, the pure splay S is a scalar, with one degree of
freedom; it indicates how n tilts inward or outward, isotropically in the plane perpendicular to
n. Thus, a pure splay is indeed a double splay, in both directions perpendicular to n12. The
pure twist T is a pseudoscalar, with one degree of freedom and indicates how n changes in a
right- or left-handed way, isotropically in the plane perpendicular to n. Thus, a pure twist is
indeed a double twist, since it has no characteristic direction in the plane perpendicular to n.
The canonical twist structure (e.g. n given in (1.2) and winding around a single fixed axes), is
instead a mixture of pure (double) twist and biaxial splay.

The eigenvectors n1, n2, n of D are called the distortion frame. This can be defined for any
sufficiently regular director field n and it changes from point to point, thus defining a movable
frame. Since b · n = 0, the bend vector b can be decomposed in the distortion frame as follows:

b = b1n1 + b2n2. (1.11)

Thus, seen from the distortion frame, the director field is locally characterized by the scalars
(S, T, b1, b2, q), which depend on position in space and are called collectively distortion charac-
teristics of the nematic director. The following identity, inferred from trD2 = 2q2, plays an
important role in the theory,

2q2 = tr(∇n)2 +
1

2
T 2 − 1

2
S2. (1.12)

By its use we can give Oseen-Frank’s energy density for nematics the equivalent form

fOF(n,∇n) =
1

2
(K11 −K24)S2 +

1

2
(K22 −K24)T 2 +

1

2
K33B

2 + 2K24q
2, (1.13)

where B2 := b · b; the bend B indicates how n varies as one moves along the n direction. It
is a vector in the plane perpendicular to n. It has two degrees of freedom, because n may

11In this deformation mode n tips out-ward along one axis perpendicular to the local n, and tips inward along
the other axis perpendicular to the local n, and so there is a combination of positive splay along one axis and
negative splay along the other axis. The symmetry of this deformation is similar to a biaxial nematic liquid
crystal, because of the two distinct axes perpendicular to n

12It must be double splay because it is a scalar, which has no characteristic direction in the plane perpendicular
to n
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change in either of the two directions perpendicular to n. From (1.13), since (S, T,B, q) are
all independent measures of distortions, it readily follows that fOF is positive definite whenever
Ericksen’s inequalities (1.8) are satisfied. Accordingly, (1.13) admits as global minimizer the
state

S = T = B = q = 0, (1.14)

which corresponds to any constant field.
By (1.12), in (1.13), the standard K24 gets split into its constituent elements of splay, twist

and biaxial splay and in so doing, converts the free-energy density into the sum of the squared
of these four bulk modes. Thus, this not only reinterprets the notion of pure twist and pure
splay, but it also reinterprets the saddle-splay contribution, often considered as surface elasticity,
in terms of the sum of octupolar splay, double twist and double splay. Moreover, beyond its
algebraic elegance, this decomposition is of interest since, as argued in [114], it demystifies some
implications of the K24 in terms of purely elastic theory. Arguably it contributes to the stability
of the blue phase, as well as to the spontaneous chirality in chromonic liquid crystals, which
occurs for K24 > K22 (as we will see below).

Based on this decomposition of orientation gradients, new questions arise about the compat-
ibility of the Euclidean space with uniform distortions for the director field n, which intuitively
are director fields filling the whole space for which we could not tell where we are in space by
sampling their local nematic distortion. To make this idea precise, they are the possible textures
in 3D space that allow uniform gradient and thus whose distortion characteristics (S, T, b1, b2, q)
are the same everywhere although the distortion frame my change from place to place. It was
shown in [128] that there exist two families of uniform director fields: these families are realized
by tipping the directors of a cholesteric up along its pitch axis by a constant angle; they are
classified as follows and are distinguished by the sign of the twist:

S = 0, T = 2q, b1 = b2 = b, (1.15a)
S = 0, T = −2q, b1 = −b2 = b, (1.15b)

where q and b are constant assigned parameters.

1.1.3 Interfacial Energy

Like all lyotropic systems, CLCs have a large coexistence area in their phase diagram, where
the ordered component can be surrounded at equilibrium by the isotropic one. When the liquid
crystal comes in contact with the isotropic environment that surrounds it13, as for the nematic
tactoids discussed in Chapters 2 and 3, the bulk elastic energy distributed over B does not
suffice to describe the whole energetic landscape. A surface energy at the interface separating
the droplet from the surrounding fluid must also be included

Fs[B,n] = h

∫
∂B

γa dA; (1.16)

there, an anisotropic surface tension γa which depends on the orientation of n relative to the
outer unit normal ν to ∂B comes into play and we assume that for a uniaxial nematic it is
represented by the Rapini-Papoular formula [109]

γa := γ
(
1 + ω(n · ν)2

)
, (1.17)

13This could either be the isotropic melt (or vapour) of the same substance (in thermotropic materials) or the
isotropic component in phase-coexistence (in lyotropic materials).
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where γ > 0 is the isotropic surface tension of the liquid crystal in contact with the isotropic
solution and ω is a dimensionless anchoring strength.

We gave here the most elementary form of the interfacial energy; there exist symmetry allowed
terms for either chiral or biaxial nematics that do not appear in the traditional Rapini-Papoular
surface energy form, [48]. In particular, when the substrate in contact with the liquid crystal
is regarded as consisting of ‘frozen’ liquid crystal molecules, chirality leads to the deviation at
equilibrium from the rubbing direction. Generally, the alignment of the director at the interface
depends on various intermolecular forces between the nematic liquid crystal and the surrounding
melt (or the substrate), such as dispersion forces, i.e. van der Waals forces, dipolar interactions
and steric interactions [51, 94].

Here we shall assume that n obeys degenerate boundary conditions (1.6) at the nematic/isotropic
interface in agreement with the purely entropic argument of Onsager [95]. This model only ac-
counts for steric, excluded-volume interactions between the particles constituting the phase and
holds that at the interface particles would tend to lie parallel to the boundary of the droplet, as
this would enhance their mutual sliding and so increase the entropy of the interface (a proper
statistical model arriving at the same conclusion was also offered in [101]). Thus, at the ne-
matic/isotropic interface, an orientation-dependent surface tension arises that favours the (de-
generate) tangential orientation of n and we take ω to satisfy ω = 0, so that Fs is minimized
when n lies tangent to ∂B.

As also shown in [105], for sufficiently small droplets, the assumption of tangential anchoring
is untenable, as n tends to be uniform throughout B, making (1.6) impossible (see also [127,
Ch. 5]). A precise estimate that also involves the droplet’s size and ω will be presented in
Chapters 2 and 3.

The first part of the thesis assumed an axisymmetric shape for the nematic droplets in the
isotropic phase with n along the meridians on their boundaries. This configuration of the nematic
director is called bipolar and it is characterized by point defects of n at the poles. I recall that if
n is not everywhere smooth, or it is not defined in some points, we say that a defect of n occurs
in these points. A defect may be concentrated in isolated points, lines or surfaces, but only point
defects are well explained within such a theory.

1.1.4 Energy Minimization

Neglecting the work done by body forces, we write the total energy of a drop of nematic liquid
crystal surrounded by an isotropic fluid as

F [B,n] := Fb [B,n] + Fs [B,n] , (1.18)

where Fb and Fs are as in (1.1) and (1.16). The shape B is not prescribed and it is allowed to
vary like the orientation field within it; thus, the following isoperimetric constraint arises which
assigns the volume of the shape:

V (B) = V0, (1.19)

where V0 is a given positive constant. Chapters 2 and 3 concern free-boundary problems of this
type.

When B is given, the director field chooses the configuration that minimizes the free-energy
functional F [n] in (1.18) where B is no more a variable. We want to minimize the functional
in the Sobolev space W 1,2

(
B,S2

)
[7] in the case in which no anchoring condition for n are

prescribed on ∂B; the director fields that represent possible equilibria make the elastic free-
energy stationary, i.e.

δF (n) [v] :=
d

dε
F (nε) |ε=0 = 0, (1.20)
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as ε spans in the interval [−ε0, ε0], with ε0 > 0 given, and nε describes a path of configurations
about n which depend on v ∈W 1,2

(
B,R3

)
∩ L∞

(
B,R3

)14, and

nε (p) :=
n (p) + εv (p)

|n (p) + εv (p)|
(1.21)

for every p in B.
For a general isotropic and even free-energy density the weak form of the Euler Lagrange

equation of F [n] (see e.g. [127, Ch. 3]) is∫
B

[
∂W

∂∇n
· ∇ (P (n)v) +

∂W

∂n
· P (n)v

]
dV = 0. (1.22)

where v can be chosen arbitrarily in W 1,2
(
B,R3

)
∩ L∞

(
B,R3

)
and where P (n) = I− n⊗ n

is the projection onto the plane orthogonal to n. The weak natural boundary condition for n is∫
∂B

(
∂W

∂∇n
+
∂γa
∂n

)
ν · v dA = 0. (1.23)

The corresponding strong forms of (1.22) and (1.23) are, respectively,

P (n)

(
div

∂W

∂∇n
− ∂W

∂n

)
= 0, inB (1.24a)(

∂W

∂∇n
+
∂γa
∂n

)
ν = 0, on ∂B (1.24b)

where n is at least a map of class C2 and so the derivatives exist in the strong sense.
Deciding the stability of the free-energy functional in the vicinity of an equilibrium solution

presumes the analysis of its second variation at the configuration. In Chapter 4 we provide a
general formula for the second variation δ2Fb, where Fb is Frank’s free-energy functional, for a
solution n to the weak form of the Euler Lagrange equations for Fb (c.f. (1.22) and (1.23) with
W given by (1.3)).

1.2 Chromonic Liquid Crystals

CLCs in three-dimensional space have become of interest because in cylindrical capillary tubes
subject to degenerate tangential boundary conditions, (1.6), the director n has been seen to
steer away from the uniform alignment along the cylinder’s axis [55, 56, 19, 86, 54]15, unlike
any common NLC. Two symmetric twisted configurations (left- and right-handed) have been
observed in capillaries, each variant occurring with the same likelihood, as was to be expected
from the lack of chirality in the molecular aggregates that constitute these materials. Despite the
clear indication that CLCs’ ground state differs from the uniform alignment presumed in fOF,
the Oseen-Frank theory has been applied to rationalize the experiments with capillary tubes
[55, 56, 19, 86], at the cost of violating one of Ericksen’s inequalities (1.8), as we will see below.

According to the problem first studied analytically in [10], when B is a cylinder of radius R
and height L, cylindrical coordinates with the unit vector ez directed along the capillary axis
are used to parametrize the director field n,

n = sinβ(ρ)eθ + cosβ(ρ)ez (1.25)
14If anchoring conditions are imposed on n, also nε must obey them, and so v perturbs n according to the

anchoring conditions prescribed by the prolem.
15Expressed differently, cylindrical capillaries have broken symmetry around the normal.
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which is assumed to depend only on how far it is from the axis, i.e. on the radial coordinate
r ∈ [0, R], through the following scaled variable

ρ :=
r

R
∈ [0, 1]. (1.26)

Here β = β(ρ) is the angle between n and the capillary axis16; the cylindrical symmetry sets
β(0) = 0, while the degenerate boundary condition (1.6) are satisfied for every value of β(1),
which is thus free to vary. Since

∇n =
1

R

(
−sinβ

ρ
er ⊗ eθ + cosββ′eθ ⊗ er − sinββ′ez ⊗ er

)
, (1.27)

the distortion characteristics result as

S =0, (1.28a)

T =
1

R

(
β′ +

cosβ sinβ

ρ

)
, (1.28b)

2q =
1

R

(
β′ − cosβ sinβ

ρ

)
, (1.28c)

b =
1

R

(
sin2 β

ρ

)
er, (1.28d)

where a prime denotes differentiation with respect to ρ. At the end of the section, the re-
interpretation of the equilibrium configurations in terms of these non-uniform distortion char-
acteristics will become fundamental to the understanding of the CLCs ground state. By the
change of variables r → ρ(r) where ρ(r) is given by (1.26), and making use of (1.28) in (1.13),
we arrive at the following reduced functional, F [β], which is an appropriate dimensionless form
of Oseen-Frank’s free-energy functional:

F [β] :=
FB[n]

2πK22L
=

∫ 1

0

(
ρβ′2

2
+

1

2ρ
cos2 β sin2 β +

k3

2ρ
sin4 β

)
dρ+

(1− 2k24)

2
sin2 β(1). (1.29)

The following scaled elastic constants have been introduced in (1.29):

k3 :=
K33

K22
, k24 :=

K24

K22
. (1.30)

We seek the orientation fields n which make Oseen-Frank’s free-energy stationary within the
class described by (1.25) subject to n|ρ=0 = ez, under the assumption that n is a map at least
of class C2. This amounts to seek the functions β = β(ρ) of class C2 in [0, 1] which satisfy the
condition at ρ = 0 and make (1.29) stationary.
Here the functional defined by (1.29) can be regarded as an instance of the functionals represented
by the general formula

I[u] :=

∫ b

a
f(t, χ(t), χ′(t)) dt+ ϕ(χ(t))|t=b (1.31)

16Actually, Davidson considers in [19] the more general case in which n = cosα(r) sinβ(r)er +
sinα(r) sinβ(r)eθ + cosβ(r)ez where α = α(r) is the angle between the director projection on the plane rθ and
er and β = β(r) is defined in the main text. The planar degenerate anchoring condition (1.6) sets α(R) = π/2,
and it is proved that the equilibrium value of α is always π/2. Moreover, in (1.25) n is assumed to depend on ρ
as suggested by the outcome of the analysis in [10] or in [19], where n was initially assumed to depend on r.
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where f and ϕ are real function of class C2 and the functions χ in the domain of I are of class
C2 on [a, b] and satisfy

χ(a) = χa, (1.32)

while χ(b) is free to vary. The equilibrium equations (1.24) reduce to(
∂f

∂χ′

)′
− ∂f

∂χ
= 0 in [a, b] (1.33a)

∂f

∂χ′
+
∂ϕ

∂χ
= 0 for t ∈ {a, b} (1.33b)

The prime always denotes the derivative with respect to the argument. In our case, (1.29) is
stationary at β = β(ρ) of class C2 if and only if

cosβ sinβ

ρ

[
1 + 2(k3 − 1) sin2 β

]
− β′ − ρβ′′ =0 ρ ∈ (0, 1), (1.34a)[

(1− 2k24) cosβ sinβ + β′
]∣∣
ρ=1

=0. (1.34b)

The trivial solution β(ρ) = 0 always solves these equations. According to the sign of (K22−K24)
other two nonuniform solutions to the problem could exist; multiplying both sides by ρβ′, we see
that (1.34a) has an integral of motion(

ρβ′
)2 − sin2 β

(
cos2 β + k3 sin2 β

)
= c, (1.35)

where c is an arbitrary constant. By the assumption of regularity, the property |β′(0)| < ∞
holds, and so the constant c must vanish. Two branches of solution are emanated from ρ = 0
depending on wheter β′(0) is positive or negative: they are obtained by integrating the equations

β′ = ±sinβ cosβ
√

1 + k3 tan2 β

ρ
. (1.36)

We focus on the increasing branch with the plus sign holding in (1.36), and we substitute its
evaluation for ρ = 1 into the boundary condition (1.34b); this yields an equation for the angle
β(1):

sinβ(1) cosβ(1)

[√
1 + k3 tan2 β(1) + (1− 2k24)

]
. (1.37)

We note that β(1) 6= 0 exists only for k24 > 1; in this case

β(1) = arctan

(
2
√
k24 − 1√
k3

)
. (1.38)

Integrating (1.36) yields

ln ρ =

∫ β

0

dη

sinβ cosβ
√

1 + k3 tan2 β
= [ln g(η)]β0 , (1.39)

where
g(η) =

1

2
− 1√

1 + k3 tan2 η + 1
. (1.40)

Taking into account the boundary value (1.38), we get an explicit solution. The same argument
is employed for its mirror image, when the minus sign holds in (1.36). To sum up, there are one
or three equilibrium solutions according to the value of k24: the uniform solution

β = 0, (1.41)
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which exists for every k24 > 0, with the director n parallel to the capillary axis, and two other
configurations

β(ρ) = β0 (ρ) := arctan

(
2
√
k24(k24 − 1)ρ√

k3 [k24 − (k24 − 1)ρ2]

)
, (1.42)

with its mirror image solution:
β(ρ) = π − β0 (ρ) . (1.43)

These last two solutions are valid only if Ericksen’s inequality K22 ≥ K24 (1.8) is violated.
They describe how the director twists around the axis and have right and left handed chirality,
respectively, according to whether the integral lines of the nematic director spiral clockwise
or not. For K24 < K22 the trivial solution is the only solution of the equilibrium equation
and it is stable; as explained in Section 4.3.1 of Chapter 4 this is guaranteed by the validity
of the Ericksen’s inequality (1.8). The non-uniform configurations represent the branches of a
bifurcation occurring at K24 = K22 where they coincide with the trivial solution. They share
the same bulk free-energy which is given by

FET = 2πK22L

[
−(k24 − 1) +

1

2

k3√
k3 − 1

arctan

(
2
√
k3 − 1(k24 − 1)

k3 + 2(k24 − 1)

)]
. (1.44)

As K24 increases beyond K22, and thus as k24 increases beyond 1, (1.44) decreases contin-
uously from zero, making the uniform configuration energetically disfavoured. This confirms
that a spontaneous chirality in the nematic director texture manifests itself in the absence of
molecular chirality, according to the experimental data. Thus, under the assumption that n is
at least a map of class C2, the non-uniform equilibrium director configurations for Oseen-Frank’s
free-energy functional, (1.42) and its mirror image (1.43) are the candidates to rationalize the
ground state of CLCs in cylindrical capillaries subject to degenerate boundary conditions, which
is termed escaped-twist (ET) ground state in [19]. Since they are valid only if the related Erick-
sen’s inequality (K22 −K24) ≥ 0 is violated, the experimental data seem to be justified only if
Oseen-Frank’s free-energy functional in 3D Euclidean space is unbounded below. The inequality
K22 < K24 in (1.13) would suggest that the pure double-twist configuration, that is, the director
configuration having only the double twist mode T non-zero among all modes, is the ground
state of CLCs. Henceforth in this dissertation we take this for a fact. This ideal mode belongs
to neither of the two families of uniform director fields (1.15) and so it is necessarily frustrated
(in a flat space) [134]; a constant T is only possible along a 1D curve. Accordingly, we may say
that the so-called escaped twist ground state is actually a ‘pseudo-ground state’ since it is the
result of the confinement-induced extension of the pure double twist when requested to occupy
the cylinder and to satisfy degenerate boundary conditions, which injects elastic frustration in
the system.

As rationalized within Oseen-Frank’s theory, this induced state has non-uniform distortion
characteristics, and only in the limit as ρ tends to 0, explicit calculations of (1.28) for the ET
solutions (1.42) and (1.43) give

S = q = b1 = b2 = 0, T ≈ ±4
√
k24 − 1

R
√
k3k24

. (1.45)

The double twist deformation mode can indeed be achieved, but only along the axis of the
cylinder.



Chapter 2

Nematic Tactoid Population

Large saddle-splay elastic constants K24 compared with twist elastic constant K22 are necessary
to justify within Oseen-Frank’s theory the spontaneous emergence of chirality recently observed in
achiral CLCs. This suggests the issue treated here connected to this elastic constant: to interpret
and to re-investigate problems of drops of nematic phase surrounded by an isotropic liquid to
document better the role played by K24 in Oseen-Frank’s theory. We focus on the untwisted
bipolar configurations; the twist term in the elastic free-energy density vanishes identically and
makes the problem well posed also for CLCs, although this Chapter is not intended exclusively for
them. What makes the saddle-splay constant K24 elusive is its being related to a surface (elastic)
energy. Heuristically, since surface evokes shape, one expects K24 to be the elastic constant that
most determines how a droplet looks like. By considering a novel class of admissible solutions
for a bipolar droplet, we study the prevalence in the population of all equilibrium shapes of each
of the three that may be optimal (tactoids primarily among them). In particular, we show how
this prevalence is affected by a dimensionless measure α of the drop’s volume and the ratios k24

and k3, which here correspond to the ratios of K24 and K33 to K11, since K22 plays no role.
Tactoids, in particular, prevail for α / 16.2 + 0.3k3 − (14.9− 0.1k3)k24. This Chapter has been
published in an article [99].

2.1 Tactoids in the Literature

Tactoids have a long and intriguing history. The name tactoid (in German, taktoid) comes from
the Greek τακτός, meaning ordered ; it was coined by Zocher and Jacobsohn [147] to designate
spindle-like aggregates of elongated colloidal particles dispersed in sols (typically aqueous). Orig-
inally, such particles were composed of monocrystals of vanadium pentoxide (V2O5) grown by
aging, first1 studied in [143] and further characterized in [130].2

Later, once Stanley [118] had succeeded in extracting tobacco mosaic virus (TMV) from
infected plants, tactoids made again their appearance in aqueous sols where TMV had been
dispersed with a concentration higher than 2% by weight [4].3 Remarkable is the evidence of
tactoids in TMV sols collected in [5], whose diagrams and pictures of pointed shapes we found
inspirational.4 Onsager himself says that explaining the formation of TMV was one motivation

1We learn, however, in the historical review [117] (which is highly recommended to the reader) that an earlier
experiment performed in 1904 by Q. Majorana had already found magnetically induced birefringence in a sol of
inorganic particles (FeOOH).

2In this connection, the reader is referred to the interesting review [98] on a class of mineral liquid crystals,
where tactoids also formed.

3A more recent study attempting to characterize this special system can be found in [37].
4The original aim of [5] was to measure inter-tactoid distances as a function of pH and ionic strength.

16
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for his seminal paper [95] on the coexistence of nematic and isotropic phases as sole consequence
of steric interactions.5 Chromonic liquid crystals,6 which are constituted by molecular aggregates
whose length distribution is affected by both temperature and concentration, have shown hosts
of tactoids [85, 123, 63, 55, 104].7

2.2 Introduction

Although there is experimental evidence showing that spherical droplets of (mostly thermotropic)
liquid crystals may have normal as well as tangential anchoring at the interface [11, 129, 67], since
the earliest works [13, 27] tactoids have been studied under the assumption that the nematic
director n is tangent to the boundary. Actually, most studies have assumed an axisymmetric
shape for tactoids with n along the meridians on their boundaries. In such bipolar configurations,
the poles are doubly singular, because both the surface normal and the nematic director have
there defects.

Williams [132] made the first systematic attempt to find both the equilibrium shape of
droplets subject to tangential surface anchoring and the equilibrium director field inside them.8

In its most general formulation, the problem soon appeared formidable. Nonetheless, analytic
estimates and numerical computations suggested that tactoids “are difficult to observe, since very
small drops and very low surface tension interface are required” [132, p. 12].9

Such a disheartening conclusion did not deter further studies. Tactoids and their mathe-
matical description have recently witnessed a surge of interest in a series of papers by several
authors [60, 105, 61, 106, 107]. Despite a number of differences, they have one feature in com-
mon: being directly or indirectly influenced by the work of Williams [132], they adopt a special
representation for both the droplet’s shape and the nematic director that makes the saddle-splay
constant of the Oseen-Frank’s energy, the most elusive to experimental detection, feature as mere
renormalization of the splay constant, thus playing a marginal role in the occurrence of tactoids.

We are primarily interested in tactoids and on how they prevail over other possible equilibrium
shapes, a notion which, borrowing from the language of demography, we describe as tactoid
population. This is precisely what this Chapter is about: to widen the class of admissible
droplet’s shapes and directors to identify the agents responsible for the growth and decay of
tactoid population. We shall show how a change in the class of admissible shapes may alter
considerably the whole scene.

2.2.1 Plan

Section 2.3 is devoted to the illustration of the class of shapes (and director fields) adopted in
this Chapter. In particular, we realize that in our class there are both genuine tactoids (those
with pointed tips) and shapes that, although perfectly smooth, look very much like sharply
pointed spindles. We introduce a full shape taxonomy that helps us navigate the configuration
space. Not all admissible shapes are convex, but it is shown in Sec. 3.3 that all optimal shapes

5Although the connection between colloidal aggregates and liquid crystals was already clear to Onsager, it took
Zocher a longer time to include what he had called nematic (and smectic) superphases [145, 148] “into the realm
of liquid crystals, though their physico-chemical nature is very different from that of relatively low molecular
organic substances exhibiting mesophases” [146, p. 178].

6Disparate materials can be classified as chromonic liquid crystals; they include dyes, drugs [23, 120], nu-
cleotides [76], and DNA oligomers [138, 84]. See also the review [74] and the thesis [139].

7Examples of tactoids in other materials can also be found in [89, 124].
8In the special case where all elastic constants in the Oseen-Frank theory are equal.
9It is perhaps for this reason that in a subsequent paper Williams [133] considered only bipolar spherical

droplets.
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are so. They can be tactoids or spheroids (or something in between), depending on the values
of two dimensionless parameters, one related to the droplet’s size and the other related to the
saddle-splay constant. In Sec. 2.5, we collect the main results of this Chapter by examining
the circumstances that determine the prevalence of one shape over the others. In Sec. 2.6,
we summarize our findings and see how Williams’ pessimistic conclusion about the scarcity of
tactoids can be mellowed. The Chapter is closed by three mathematical appendices, where we
illustrate the details of our development that in the main text could have easily hampered the
reader.

2.3 Class of Shapes

Ericksen’s inequalities (1.8) will be taken as valid throughout this Chapter. Twist instability
is suppressed for bipolar configurations, and K22 plays no role. In the present setting, Oseen-
Frank’s functional can be safely minimized.

Here we study a free-boundary problem, where a given quantity of nematic liquid crystal
occupying the volume V0 (we treat liquid crystals as incompressible fluids) is surrounded by an
isotropic fluid (which could well be its own melt) and can take on any desired shape. The shape
of the region B occupied by the material at equilibrium will be the primary unknown of our
problem. Equilibrium is attained whenever the total free-energy is minimized, that is, whenever
B minimizes the shape functional

F [B] :=

∫
B
fOF dV + γA(∂B), (2.1)

subject to the isoperimetric constraint (1.19), where fOF is as in (1.3). Minimizers of F will be
sought for in a special class of shapes and director fields, which we now describe in detail.

2.3.1 Shape Representation and Director Retraction

We shall represent B as a region in three-dimensional space axisymmetric about the z-axis of
a standard cylindrical frame (er, eϑ, ez) and mirror-symmetric relative to the equatorial plane
(er, eϑ). As shown in Fig. 2.1, the boundary ∂B is obtained by rotating the graph of a function of
class C1, R = R(z), which describes the radius of the drop’s cross-section at height z ∈ [−R0, R0].
R is taken to an even function,

R(z) = R(−z), z ∈ [−R0, R0]. (2.2)

The points on the z-axis at z = ±R0, where R vanishes, are the poles of the drop. On the
equator, which falls at z = 0, smoothness and symmetry require that R′(0) = 0, where a prime
denotes differentiation.

Whenever R′(R0) is finite, the shape B has pointed poles, it is a tactoid, which we shall call
genuine to distinguish it from similar elongated shapes with a smooth boundary. On the other
hand, whenever R′ is unbounded at the end-points of the interval [−R0, R0], B has a smooth
boundary; as shown below, its shape may appear in different forms and guises. Figure 2.1
depicts the cross-section with a meridian plane (say, at ϑ = 0) of a region B in the class we are
considering; the full shape is generated by a 2π-rotation around the z-axis.

The director field n on ∂B is taken to be oriented along the meridians. This is an additional
hypothesis, also made in [105, 106], which is expected to be justified provided that the splay
constant K11 does not exceed a combination of twist and bend constants. For spherical droplets,
Williams [133] showed that when K11 ≥ K22 +0.43K33 a twisted configuration (with the director
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Figure 2.1: Cross-section of the drop with a meridian plane. The function R(z)
represents the boundary ∂B, while the function Rt(z) = g(t)R(z) is the retraction of
R(z) described in the text. The director field n is everywhere tangent to the retracted
curves; n⊥ = eϑ × n is the orthogonal field that agrees with the outer unit normal ν on
∂B. The tangent to R(z) for z ≥ 0 makes the angle β with the z-axis; it is instrumental

to the definition of the tactoidal measure τ illustrated in Appendix 2.B.

spiraling at an angle with the meridians) is energetically more favorable than the bipolar config-
uration. Heuristically, this is understood by considering that when the splay component of the
nematic distortion becomes too energetic, it can be relaxed at the expenses of both twist and
bend distortions, if they are less energetic. As pointed out in [105], since in elongated shapes,
such as tactoids, the splay component is likely to be less prominent than in spherical droplets,
one expects that in this context the twisting instability would require even larger values of K11

compared to Williams’ original estimate.10

For any given ϑ, the boundary curve is represented by the position vector (issued from the
center of symmetry of B)

p1(ϑ, z) := R(z)er + zez, −R0 5 z 5 R0, (2.3)

which is retracted inside B as the curve

p(t, ϑ, z) := g(t)R(z)er + zez, −R0 5 z 5 R0, (2.4)

where t is the retraction parameter ranging in [0, 1] and g is any function of class C1 strictly
increasing on [0, 1] and such that g(0) = 0 and g(1) = 1 (an example would be g(t) = t). Clearly,
for t = 1, p(t, ϑ, z) reduces to p1(ϑ, z) in (2.3), whereas for t = 0 it describes the polar axis
p0(z) = zez (see Fig. 2.1). The family of retracted curves fill the whole of B by letting ϑ vary

10The fact, however, remains that a thorough stability analysis of the nematic distortions considered here is
still lacking.
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in [0, 2π). Thus, (t, ϑ, z) ∈ [0, 1]× [0, 2π)× [−R0, R0] are the new set of retracted coordinates for
the region B.

We not only retract the boundary ∂B by letting t vary in [0, 1], we also retract the meridian
director field on ∂B, which is thus defined in the whole of B as the unit vector field tangent to
the lines with given (t, ϑ) and varying z (see Fig. 2.1). The director field produced with such a
geometric construction possesses two point defects at the poles; they are two boojums with equal
topological charge m = +1. By differentiating p in (3.43) with respect to z, keeping (t, ϑ) fixed,
we easily obtain

n =
gR′er + ez√

1 + (gR′)2
. (2.5)

Letting n⊥ be the unit vector orthogonal to n in the meridian plane, oriented so as to coincide
with the outer unit normal ν on ∂B, we see form (3.44) that

n⊥ =
er − gR′ez√

1 + (gR′)2
. (2.6)

A positively oriented orthonormal frame (n,n⊥, ez) is then obtained by appending the unit
vector eϑ = n×n⊥, everywhere orthogonal to the local meridian plane. This frame, however, is
not the frame associated with the new coordinates (t, ϑ, z), as we now proceed to show.

Imagine a smooth curve in B parametrized as ξ 7→ (t(ξ), ϑ(ξ), z(ξ)). It follows from (3.43)
that

ṗ = (g′Rṫ+ gR′ż)er + gRϑ̇eϑ + żez, (2.7)

where a superimposed dot denotes differentiation with respect to the parameter ξ.11 A glance
at (3.44) suffices to show that (3.46) can also be rewritten as

ṗ = g′Rṫer + gRϑ̇eϑ +
√

1 + (gR′)2żn, (2.8)

showing that (ex,n, ez) is the (non-orthogonal) frame associated with the retracted coordinates
(t, ϑ, z).

Equation (2.8) is especially expedient to derive the elementary volume dV of B and the
elementary area dAt for the retracted boundary ∂Bt in B. For the former we have that

dV = dt dϑ dz(g′R)(gR)
√

1 + (gR′)2 er · eϑ × n = gg′R2 dt dϑ dz, (2.9)

where use has also been made of (3.44), while for the latter,

dAt = dϑ dz(gR)
√

1 + (gR′)2 eϑ × n · n⊥ = gR
√

1 + (gR′)2 dϑ dz. (2.10)

Thus, the volume of a droplet B will be expressed in terms of the function R as

V (B) =

∫ 1

0
gg′ dt

∫ 2π

0
dϑ

∫ R0

−R0

R2 dz = π

∫ R0

−R0

R2 dz = V0, (2.11)

and the area of the boundary ∂B as

A(∂B) = 2π

∫ R0

−R0

R
√

1 +R′2 dz, (2.12)

11With a slight abuse of language, here a prime denotes differentiation both with respect to t (in g′) and with
respect to z (in R′). No confusion should arise since, apart from p, no other instance will occur of a function
depending on both (t, z).
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which follows from (3.47) for t = 1.
It is shown in Appendix 2.A how to derive from (3.43) the form taken by ∇n in the orthonor-

mal frame (n,n⊥, ez); this reads as

∇n =
gR′′(

1 + (gR′)2
)3/2n⊥ ⊗ n+

(
R′

R

1√
1 + (gR′)2

− g2R′R′′(
1 + (gR′)2

)3/2
)
n⊥ ⊗ n⊥

+
R′

R

1√
1 + (gR′)2

eϑ ⊗ eϑ. (2.13)

The following expressions for the traditional measures of distortion are easy consequences of
(3.57):

divn =
R′√

1 + (gR′)2

(
2

R
− g2R′′

1 + (gR′)2

)
, (2.14a)

curln =
gR′′(

1 + (gR′)2
)3/2eϑ, (2.14b)

n · curln = 0, (2.14c)

n× curln = − gR′′(
1 + (gR′)2

)3/2n⊥, (2.14d)

tr(∇n)2 − (divn)2 = − 2R′2

R
(
1 + (gR′)2

) ( 1

R
− g2R′′

1 + (gR′)2

)
. (2.14e)

In particular, (3.58c) shows that, as expected, no twist is associated with the class of retracted
meridian fields that we are considering.

Inserting (4.89) in (1.3), we arrive at

fOF =
1

2
K11

g4R′2R′′2(
1 + (gR′)2

)3 + (K11 −K24)
2R′2

R
(
1 + (gR′)2

) ( 1

R
− g2R′′

1 + (gR′)2

)
+

1

2
K33

g2R′′2(
1 + (gR′)2

)3 , (2.15)

which shows how in our setting, at variance with [105, 107, 106, 60, 61], the saddle-splay constant
does not merely renormalize the splay constant. For given g, the function R represents here both
the shape B of a droplet and the nematic director field inside it.

Before building upon (3.3) and (2.15) the free-energy functional that we shall study in the
following, we find it useful to rescale all lengths to the one dictated by the volume constraint.
We call Re the radius of the equivalent sphere, which has volume V0, and we rescale to Re both
z and R(z), keeping their names unaltered.12 Letting

µ :=
R0

Re
, (2.16)

by use of (3.3), (2.15), (2.9), and (3.49), we arrive at the following reduced functional, F [µ;R],
which is an appropriate dimensionless form of F ,

12An abuse of notation that we hope the reader will tolerate.
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F [µ;R] :=
F [B]

2πK11Re
=

∫ 1

0
dt

∫ µ

−µ
gg′R2

[
1

2

g4R′2R′′2(
1 + (gR′)2

)3 +
2(1− k24)R′2

R
(
1 + (gR′)2

) ( 1

R
− g2R′′

1 + (gR′)2

)

+
k3

2

g2R′′2(
1 + (gR′)2

)3
]

dz + α

∫ µ

−µ
R
√

1 +R′2 dz

=

∫ µ

−µ

{
R2R′′2

4R′2

(
ln(1 +R′2)

R′2
− 1

(1 +R′2)2

)
+ (1− k24)

[(
1− RR′′

R′2

)
ln(1 +R′2) +

RR′′

1 +R′2

]
+ (k3 − 3)

R2R′′2

8(1 +R′2)2

}
dz + α

∫ µ

−µ
R
√

1 +R′2 dz, (2.17)

where the integration in t is shown to be independent of the specific function g, provided it is
monotonic and obeys the prescribed boundary conditions. The following scaled elastic constants
have been introduced in (2.17),

k3 :=
K33

K11
, k24 :=

K24

K11
, (2.18)

the former is non-negative and the latter is subject to 0 5 k24 5 1, as a consequence of (1.8).
Moreover,

α :=
γRe

K11
(2.19)

is a reduced (dimensionless) volume.13

The variational problem that we thus face can be phrased as follows: Find a positive µ and
a smooth, even function R that obeys

R(−µ) = R(µ) = 0 (2.20)

so as to minimize F subject to the isoperimetric constraint (2.11), which in the scaled variables
reads simply as ∫ µ

−µ
R2(z) dz =

4

3
. (2.21)

2.3.2 Special Family of Shapes

The variational problem just stated is rather challenging, especially if we wish to discuss the role
played by the constitutive parameters k3 and k24 and by the reduced volume α in the population
of minimizing shapes. Instead of embarking in a thorough numerical minimization of F , we
rather resort to a special family of shapes described by a small number of parameters. We shall
take the function R in the special form

R(z) = a(µ2 − z2) + b
√
µ2 − z2, (2.22)

which exhibits defects at the poles when b = 0, while it is everywhere smooth otherwise. For
b = 0, R in (2.22) reduces to the parabolic profile considered as an ansatz in [132].

We now illustrates and classify the relatively large variety of shapes that can be represented
through (2.22). We begin by considering the constraints that the parameters (a, b, µ) are subject
to.

13When we say that a drop is either small or large, we mean precisely that either α� 1 or α� 1, respectively.
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First, R(z) must be non-negative for all −µ 5 z 5 µ. It a simple matter to check that this
requirement is equivalent to the inequalities

b ≥ −µa and b2 ≥ (µa)2 or ab > 0, (2.23)

which can be represented by letting

µa = ρ cosφ and b = ρ sinφ, with ρ > 0 and 0 5 φ 5
3π

4
. (2.24)

Second, the isoperimetric constraint (5.5) requires that

µ3

(
b2 +

9π

16
(µa)b+

4

5
(µa)2

)
= 1. (2.25)

Inserting (2.24) into (2.25), we obtain ρ and conclude that all admissible values of a and b
are represented by

a =
1

µ5/2

cosφ√
h(φ)

, b =
1

µ3/2

sinφ√
h(φ)

with h(φ) := sin2 φ+
9π

16
sinφ cosφ+

4

5
cos2 φ > 0, 0 5 φ 5

3π

4
. (2.26)

Thus, (φ, µ) are the only independent parameters that describe all admissible shapes in the
special class (2.22). We now explore the qualitative features of these shapes, corresponding to
different regions in configuration space S := {(φ, µ) : 0 5 φ 5 3π

4 , µ > 0}.
We first distinguish prolate from oblate shapes, the former are characterized by having height

larger than width, that is, by the inequality µ ≥ R(0), which by (2.22) and (3.20) becomes

µ ≥ $(φ) := 3

√
(cosφ+ sinφ)2

h(φ)
. (2.27)

The graph of $(φ) is shown in Fig. 3.4: all shapes above it are prolate, all shapes below it are
oblate. The round sphere, corresponding to the point to (π2 , 1), falls on the graph of $ (it is
denoted by a circle in Fig. 3.4).

We distinguish convex from concave shapes. The latter arise whenever R′ has an extra root
in −µ 5 z 5 µ, besides z = 0. It is easily seen that such an extra root requires that

a < 0 and b < 2µ|a|. (2.28)

By (3.20), these inequalities reduce to φ > φc := arccot
(
−1

2

) .
= 2.03 rad. Thus the pink strip in

S depicted in Fig. 3.4 is where we find all concave shapes represented by (2.22). The correspond-
ing three-dimensional droplets B are axisymmetric dumbbells, with a neck that narrows as φ
approaches the boundary of S at φ = 3π

4 , where it vanishes altogether and the droplet is severed.
The strip of dumbbells is also traversed by the graph of $(φ) (see Fig. 3.4), which means that
some dumbbells are prolate (if they fall above the graph of $), while others are oblate (if they
fall below the graph of $), although here this simply means that their height is either larger or
smaller than their neck.

2.3.3 Droplet Taxonomy

Strictly speaking, as already remarked above, a three-dimensional shape B represented by (2.22)
has pointed tips at the poles only for φ = 0, which according to (3.20) is the only value of φ
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Figure 2.2: Configuration space with all admissible shapes described by (2.22). The
blue region below the graph of the function $(φ) in (3.21) represents all prolate shapes.
The pink vertical strip for φc 5 φ 5 3π

4 represents the concave shapes that we have called
dumbbells; all shapes falling on the left of this strip are convex. The sphere is represented
by the point (π2 , 1), marked by a red circle. According to the taxonomy introduced in
Sec. 2.3.3, we also call tactoids the shapes for 0 5 φ 5 π

16 (genuine tactoids, only those
for φ = 0, marked by a red line), bumped spheroids those for π

16 5 φ 5 6π
16 , simply

spheroids those for 6π
16 5 φ 5 9π

16 , and barrels those for 9π
16 5 φ 5 φc, see also Table 3.1,

and Fig. 3.5 for a fuller gallery of shapes. The barriers marking transitions from one
family of shapes to another are represented by vertical dashed lines.

that makes b vanish. We wonder whether for small enough values of φ the shape represented by
(2.22) via (3.20) can be visually distinguished from a tactoid (in accord with the etymology of
the word recalled in the Introduction). The answer to this question is vital to our “demographic”
quest. If we want to know how tactoids feature in the whole droplet population, we need to have
a clear criterion to classify as tactoids also those shapes which may not have pointed tips, but
look like they have.

In Appendix 2.B, we build a quantitative criterion on a certain qualitative observation. There,
we arrive at a tactoidal measure, which here translates into a conventional classification rule. We
propose to call simply tactoids all shapes represented by the strip 0 5 φ 5 π

16 in configuration
space S. Other strips are conventionally identified in S, which describe other shape variants. Our
full taxonomy is summarized in Table 3.1 below.

In this section, we shall be contented with illustrating our taxonomic criterion by drawing
shapes for which µ = 1. We have two good reasons to do so. First, we have drawn a number
of shapes for very different values of µ and always found our criterion qualitatively accurate.
Second, as will be clear in Sec. 3.3 below, the equilibrium shapes that minimize the free-energy
functional never fall too far away from µ = 1.

Figure 3.5 presents a gallery of meridian cross-sections of a droplet obtained from (2.22)
and (3.20) for µ = 1 and a number of values of φ falling in the different categories listed in
Table 3.1, including the transition shapes. Clearly, the shapes in Figs. 3.6a-3.6b are tactoids.
On the other hand, the shapes shown in Figs. 2.3e-2.3h are definitely not tactoidal, but they
are not completely spherical either. We call them bumped spheroids to highlight the fact that
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Table 2.1: We identify five strips in configuration space S, which correspond to five
qualitatively different shapes for a droplet B represented by (2.22) via (3.20). The names
given below are somewhat self-explanatory; a visual illustration is provided by the gallery
of shapes drawn in Fig. 3.5 for µ = 1. The transition shapes, which somehow belong to
two adjacent classes, are characterized by the following values of φ: π

16 ,
6π
16 ,

9π
16 , and

φc = arccot
(
−1

2

) .
= 2.03 rad.

Tactoids Bumped Spheroids Spheroids Barrels Dumbbells

0 5 φ 5
π

16

π

16
5 φ 5

6π

16

6π

16
5 φ 5

9π

16

9π

16
5 φ 5 φc φc 5 φ 5

3π

4

they exhibit a smooth bump where a tactoid would have a tapered tip. The difference between
tactoids and bumped spheroids is just a matter of how polar protrusions look like: pointed
in the former, smoother in the latter. Keeping increasing φ from 6π

16 to 9π
16 , the representative

shapes gradually lose their bumps, justifying calling them simply spheroids, see Figs. 2.3j,2.3k.
At φ = 9π

16 , however, spheroids evolve into something else: they start resembling cylinders; we
call them barrels, see Fig. 3.6d. Beyond the transition shape at φ = φc shown in Fig. 2.3n, the
gallery of shapes is closed by a dumbbell falling in the pink region of the configuration space in
Fig. 3.4, see Fig. 3.6e.

We shall see in the following sections where in configuration space S the free-energy functional
F in (2.15) attains its minimum, for given values of k3 and k24, and variable α. We shall learn
which among the shapes illuminated in Fig. 3.5 will be privileged as energy minimizers. In
preparation for that, here we have set the language to describe a variety of possible shape
transitions.

2.4 Optimal Shapes

Our study is confined to bipolar droplets, for which the anchoring at the interface is successfully
holding up a tangential, albeit degenerate alignment of the nematic director. It is well-known
[126] that for sufficiently small droplets the nematic orientation inside them tends to be uniform
and the anchoring at their boundary is accordingly broken, so that the equilibrium shape is
delivered by the classical Wulff’s construction [135]. We need to make sure that the parameters
are chosen in a range where such a configuration would be energetically disfavored. We shall see
that this can be achieved provided that the reduced volume α in(3.12) is sufficiently large.

2.4.1 Admissible Volumes

To identify the safeguard value of α below which it would be unwise to push our analysis, we
perform here an energy comparison based on two simple estimates.

We begin by estimating the free-energy F in (3.3) for a uniformly aligned cylindrical drop
with (constant) radius R and height L delivered by

L =
4

3

R3
e

R2
, (2.29)

for the constraint on the volume in (1.19) to be obeyed. Suppose that n is along the cylinder’s
axis; since ∇n vanishes identically, no distortion energy is stored in the body B of the drop: all
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(a) φ = 0
genuine tactoid

(b) φ = π
64

tactoid
(c) φ = π

32
tactoid

(d) φ = π
16

transition shape
(e) φ = 2π

16
bumped spheroid

(f) φ = 3π
16

bumped spheroid
(g) φ = 4π

16
bumped spheroid

(h) φ = 5π
16

bumped spheroid
(i) φ = 6π

16
transition shape

(j) φ = 7π
16

spheroid

(k) φ = 8π
16

sphere
(l) φ = 9π

16
transition shape

(m) φ = 10π
16

barrel
(n) φ = φc

transition shape
(o) φ = 11π

16
dumbbell

Figure 2.3: Gallery of shapes illustrating for µ = 1 the taxonomy introduced in
Table 3.1. In particular, the four transition shapes that somehow share features of two
adjacent categories are also shown. The color coding of the shapes is the same used in

Fig. 3.4.

the free-energy comes from the boundary ∂B; it is given by

Fc = 2πγ

(
4

3

R3
e

R
+ (1 + ω)R2

)
, (2.30)

where use has been made of (2.29) and account has been taken of the different orientation of n
relative to ν on the lateral surface and on the bases of the cylinder. It is a very simple matter
to see that Fc is minimized for

R = Re
3

√
2

3(1 + ω)
(2.31)

and that the corresponding value of Fc is

Fc = 2πγR2
e

3
√

12(1 + ω). (2.32)

This energy is to be compared with that estimated for a sphere with the bipolar director field
emanating from the poles. Letting all constants K11, K22, and K33 be equal to K in the elastic
energy computed in equation (2.18) of [133], for the total free-energy Fs of a spherical drop of
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radius Re we obtain

Fs =

(
7− π2

4

)
πKRe − 4πK24Re + 4πγR2

e . (2.33)

The demand that Fs < Fc for all admissible K24, which would make it unfavorable breaking the
tangential surface anchoring, is thus reverted into an inequality for α,

α > αs(ω) :=
7− π2

4

2( 3
√

12(1 + ω)− 2)
, (2.34)

which shows how the bipolar safeguard value αs for α depends on ω. Clearly, the larger is ω, the
smaller is αs. Estimating ω in the range14 1-10, we shall take15 α > αs(5)

.
= 1.0.

In view of (3.12), the latter inequality can be interpreted as a lower bound for the linear size
Re of the drops admissible in our theory.16 Taking K ∼ 1-10 pN as typical value for all elastic
constants17 and γ ∼ 10−5 Nm−1 as typical value for the interfacial energy of a nematic liquid
crystal in contact with its melt,18 the lower bound for α translates into Re & 0.1-1µm, which
expresses in physical terms the appropriate range of validity of the theory presented here.19

2.4.2 Mininizing Trajectories

Finding the minimum of the functional F [µ;R] in (2.17) is not a problem that can be solved
analytically, even in the class of shapes (and retracted meridian fields) described in (2.22) with
a and b expressed as in (3.20) in terms of the configuration parameters (φ, µ).

For a given choice of the elastic parameters (k3, k24), we evaluated numerically F [µ;R] for
increasing values of α > 1 as a reduced function Fα(φ, µ) on the configuration space S. Figure 2.4
illustrates the generic situation that we encountered. As shown in Fig. 2.4a, Fα has a convex
graph and attains a single minimum in S, which is easily identified through the level sets of Fα
depicted in Fig. 2.4b; the corresponding equilibrium shape, a bumped spheroid according to the
taxonomy of Sec. 2.3.3, is illustrated in Fig. 2.4c.

We performed a systematic search for the minimizer of Fα upon increasing α > 1, for given
elastic parameters (k3, k24). Each search delivered a path of minimizers in the configuration
space S, parameterized in α. These paths are shown in Fig. 2.5 for k3 = 1 and a sequence of
values of k24 in the admissible interval [0, 1]. They all have a number of features in common.

First, they reside on the µ-axis (for φ = 0) until α reaches a critical value, αc, upon crossing
which they leave the boundary of S and dive into its interior. Clearly, for 1 < α < αc, the
equilibrium shape of the drop is a genuine tactoid (with sharply pointed tips). For α > αc, the
minimizing trajectory traverses the domain of generic tactoids, until φ reaches the conventional

14See, for example, [108] and [63].
15This threshold is to some extent conventional, but cannot be “too” wrong, as for other values of ω we would

obtain αs(1)
.
= 2.6 and αs(10)

.
= 0.7.

16Thus making it clear in what sense this applies to sufficiently large drops.
17This estimate is supported by a number of contributions that span a long time interval, from early works [111,

110, 96, 58, 59, 78, 116] to more recent ones [9, 2, 50, 121, 81, 69, 70, 122, 53], both experimental and computational
in nature, for liquid crystals ranging from thermomotropic to lyotropic, with both low and high molecular weight,
see also [132] and [105]. That elastic constants are not too dissimilar for lyotropic and thermotropic liquid crystals
has also been confirmed by a recent study on chromonics [141], see also [63].

18This estimate is supported by the now classical experimental works [35, 34] on cyano-biphenyls and a number
of more recent works [15, 16, 17, 14] on other materials, see also [57, 68, 137] for further earlier sources.

19It is perhaps worth noting that such a range changes dramatically when the isotropic fluid surrounding the
drop is not its melt. For example, the early measurements of Naggiar [83] and Schwartz [113] gave γ ∼ 10−2Nm−1

for the surface tension of nematic liquid crystals in contact with its vapor. Correspondingly, an estimate for the
admissible Re would then give Re & 10−11m, which makes our theory applicable to drops of virtually all sizes in
that environment.
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(a) Graph of Fα against S for
α = 10. The red dot designates the

minimum.

(b) Contour plot of Fα, for
α = 10. The minimum is

attained at the point where
φ
.
= 0.37 and µ .

= 1.24,
marked by a red circle.

(c) Cross-section of the
equilibrium shape

corresponding through (2.22)
to the minimizer of Fα

marked in Fig. 2.4b. Since
π
16 < φ < 6π

16 , according to our
conventional taxonomy in
Sec. 2.3.3, it is a bumped
spheroid (and looks indeed

like one).

Figure 2.4: For given α > 1, the function Fα is defined in configuration space
S = {(φ, µ) : 0 5 φ 5 3π

4 , µ > 0} by reducing the functional F [µ;R] in (2.17) to the
special families of shapes in (2.22). Reduced elastic constants are k3 = 1, k24 = 1

2 .

barrier φ = π
6 . Such a crossing takes place for α = α′c; there, the equilibrium drop undergoes

a (smooth) shape transition, becoming a bumped spheroid. The whole territory of these latter
shapes is then traversed by the minimizing trajectories, which enter the realm of spheroids for
α = α′′c (where φ = 6π

11 ). Upon further increasing α, all trajectories converge towards the point
that in S represents the sphere of radius Re (marked by a red dot in Fig. 2.5).

Qualitatively, this scenario remains the same for different values of k24. As shown by the
panels in Fig. 2.5, the only appreciable difference is that the minimizing trajectory resides on
the line of genuine tactoids for a longer stretch when k24 is smaller. This feature has two
consequences. First, for a given (sufficiently small) value of α, genuine tactoids are more slender
for smaller k24. Second, the critical value αc, which marks the extinction of genuine tactoids,
decreases as k24 increases. Actually, as shown in Fig. 2.6, this is a property that αc shares with
both α′c and α′′c . This means that as k24 increases both tactoids and bumped spheroids persist
only in smaller and smaller intervals for α, giving way to larger colonies of spheroids. In brief,
we may say that k24 is an antidote to slender shapes. In particular, the tactoidal population
prospers only as k24 decreases.

Figure 2.7 shows how this characteristic is quantitatively affected by changes in k3. While
the graph of α′c against k24 is essentially the same for k3 = 1

2 , 1, 2, it moves upward for k3 = 10;
correspondingly, all four graphs of α′′c are orderly one above the other, keeping their features
unchanged. A quantitative inspection shows that the data reported in Fig. 2.7 for α′c and α′′c can
be given the following approximate linear representation,

α′c ≈ 16.2 + 0.3k3 − (14.9− 0.1k3)k24, (2.35a)
α′′c ≈ 31.6 + 3.7k3 − (21.3− 0.02k3)k24, (2.35b)

which show how k3 has but a moderate role in determining the distribution of equilibrium droplet
shapes. Thus, α and k24 remain the only effective (dimensionless) parameters of our analysis.

In Sec. 2.5, we shall detail such a shape distribution, which is one distinctive feature of this
work. Other works have illuminated the multiplicity of shapes exhibited by bipolar nematic
droplets. To close this section, we show how these works relate to ours.



CHAPTER 2. NEMATIC TACTOID POPULATION 29

(a) k24 = 0.1 (b) k24 = 0.2 (c) k24 = 0.3

(d) k24 = 0.4 (e) k24 = 0.5 (f) k24 = 0.6

(g) k24 = 0.7 (h) k24 = 0.8 (i) k24 = 0.9

Figure 2.5: Minimizing trajectories (solid lines) in the configuration space S for k3 = 1
and different values of k24. All trajectories are parameterized in α and start from the

configuration representing the minimum of Fα for α = 1 (marked by a red cross); they all
converge to the point representing in S the sphere of radius Re (marked by a red circle).
The dashed lines (at φ = π

6 and φ = 6π
16 ) represent the barriers introduced in Sec. 2.3.3 to

delimit different families of shapes.

2.4.3 Comparison with Previous Work

The variety of stable equilibrium shapes offered by nematic bipolar droplets has been the object
of a remarkable series of theoretical papers, inspired by the seminal work of Williams [133]. In
particular, the papers [105, 106, 107, 60, 61] have followed in the same footsteps, sharing the
original geometrical approach, which, as we shall see here, is unrelated to ours.

The class of admissible droplet shapes suggested by Williams includes spindles and spheres,
all obtained by rotating about the z-axis a circular segment hinged at the points z = ±R0 (the
poles of the drop), see Fig. 2.8. On a meridian cross-section of the drop, the integral lines of the
family of admissible director fields are Apollonian circles passing through both poles with radius
increasing on approaching the z-axis (see, for example, § 2 of [91]). Thus, in the parameterization
introduced in Sec. 3.2, the boundary ∂B of the drop is described by the function

R(z) =
√
R2

0 + x2
0 − z2 − x0, z ∈ [−R0, R0], (2.36)
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Figure 2.6: Critical values of α plotted against k24 for k3 = 1. The lowest (dashed) line,
αc, designates the extinction of genuine (sharply pointed) tactoids; the middle line, α′c,
marks the extinction of tactoids (pointed or not) and the onset of bumped spheroids; the
upper line, α′′c , marks the extinction of bumped spheroids and the onset of spheroids.

Figure 2.7: The critical values α′c and α′′c plotted against k24 as in Fig. 2.6, but for four
different values of k3, namely, k3 = 1

2 , 1, 2, 10. While the first three graphs of α′c virtually
coalesce on one another and are not discernible at this scale, the corresponding graphs of

α′′c are one above the other, ordered like the values of k3.

Figure 2.8: Apollonian family of shapes. The boundary ∂B is obtained by rotating a
circular segment about the z-axis, so that the profile R(z) is described by (2.36). The

integral lines of the director field n are a family of circles represented by Rt(z) in (2.37).
For t→∞, Rt tends to the z-axis, whereas it represents the droplet’s boundary for t = 0.
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where the point (−x0, 0) in the (er, ez) plane is the center of the bounding Apollonian circle (for
x0 = 0, the drop is spherical). Accordingly, the integral lines of the director field n are circles in
a family parameterized by t ∈ [0,+∞):

Rt(z) =
√
R2

0 + (x0 + t)2 − z2 − (x0 + t), (2.37)

where the point (−(x0 + t), 0) in the (er, ez) plane is the center of a circle passing through the
poles. The curves of this family at t = 0 and t = +∞ correspond to the boundary of the drop
and to its symmetry axis, respectively.

It is now a simple exercise to show that this family of shapes does not fall within that
introduced in Sec. 3.2, as there is no function g(t) such that Rt(z) in (2.37) could be expressed
as Rt(z) = g(t)R(z), with R(z) as in (2.36). To afford a fair comparison between our approach
and this one, we need to compare the minima of the total free-energy F [B] computed with the
two methods.

The total free-energy in (2.17) associated with a droplet described by R in (2.36) has been
computed in [107], see in particular their equation (12), which we now transliterate in our
language. Instead of µ, defined in (3.8), Prinsen and van der Schoot [107] used the aspect ratio
ε := R(0)/R0 5 1 to parameterize tactoids in their class of shapes. By letting the droplet’s
volume V0 be expressed as in (A.14) of [107] (where, incidentally, R is to be identified with our
Re), we easily arrive at the relation

µ(ε) :=
2

3

√(
1+ε2

ε

)2 (
1− 1−ε2

ε arctan ε
)
− 4

, (2.38)

which shows how µ and ε are in a one-to-one correspondence, with µ(1) = 1 and µ(ε) → ∞ as
ε→ 0. In [107], the dimensionless strength of surface energy is defined as

υ := V0

(
γω

K̃11

)3

, (2.39)

where K̃11 := K11−K24 is the reduced splay constant20 and we replaced their τ with our γ (with
the same physical meaning). Making use of (2.39), (2.38), and (3.12) in (12) of [107], having
noted that there F̃ = F/γV

2/3
0 , we arrive at the following form for the reduced total free-energy

in terms of ε,

Ft(ε) :=
F [B]

2πK11Re
=µ(ε)

{(
2(1− k24) +

3

2
k3 + α

1 + ε2

ε
µ(ε)

)(
1− 1− ε2

ε
arctan ε

)
−2k3 arctan2 ε

}
. (2.40)

It is not difficult to show that Ft is a function that diverges like 1/ε1/3 as ε → 0 and has a
single minimum for 0 < ε < 1, which approaches ε = 1 as α→∞. Moreover,

Ft(1) = 2 +

(
3

2
− π2

8

)
k3 + 2(α− k24), (2.41)

which agrees with formula (2.18) of [133] for the reduced free-energy of a bipolar sphere. Thus,
in this theory, the minimum of the free-energy is attained on a bipolar tactoid.21 Differently said,

20As already recalled, in this theory, K24 enters only through a renormalization of K11.
21Leaving aside the possibility that it undergoes the twisting instability first predicted in [133] for sufficiently

large values of K11.
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there is no critical value of α above which the equilibrium shape of the droplet becomes smooth,
although remaining elongated, which is a feature of the theory presented in this Chapter.

To ascertain whether the smoothening transition that we predict is real or not, we need
compare the minimum of Ft(ε) for ε in [0, 1] and the minimum of Fα(φ, µ) in S. Unfortunately,
we do not have a general closed-form formula for Fα(φ, µ) to be compared with (2.40), and so
generically the comparison between minima is to be performed numerically.

There are two instances worth mentioning for which we can provide closed-form expressions
for Fα(φ, µ). These are for φ = 0 and any µ, corresponding to genuine tactoids, and for φ = π

2
and µ = 1, corresponding to the sphere of radius Re. We record both formulae in Appendix 2.C,
for the reader’s convenience; the energy of the sphere in (2.51) is the one that especially interests
us here. Contrasting it with (2.41) shows that the asymptotic behavior as α→∞ of Ft(1) and
Fα(π2 , 1) is the same. Now, since the minimizing shapes for both Ft and Fα converge to the
sphere as α → ∞, we conclude that for sufficiently large α we cannot distinguish between the
two theories. But we can for finite values of α.

We computed the relative energy difference ∆F defined as

∆F (α) :=
min(φ,µ) Fα(φ, µ)−minε Ft(ε)

minε Ft(ε)
. (2.42)

The graph of ∆F against α for k24 = 0.7 and three values of k3 is plotted in Fig. 2.9; it

Figure 2.9: Plots of the relative energy difference ∆F against α, according to (2.42), for
k24 = 0.7 and k3 = 1

2 , 1, 2. The dashed straight line marks the critical value αc
.
= 3.02

(virtually identical in the three cases) where our theory predicts that the minimizing
droplet’s shape ceases to be a genuine tactoid.

shows that ∆F , although tiny in absolute value, is always negative. This property has been
confirmed for similar numerical computations performed for k24 = 0.2 and k24 = 0.4. We have
thus good reasons to hold that smooth shapes, be they generic tactoids or bumped spheroids,
are energetically more favorable than genuine tactoids. We shall substantiate this claim more
quantitatively in the following section.

2.5 Shape Populations

Typical methods for generating liquid crystal droplets produce a wide range of droplet sizes.
For simplicity, we assume that droplets are uniformly distributed in size within a certain volume
interval (V0, V0 + δV ). Correspondingly, in view of (3.12), for given isotropic interfacial tension
and elastic constants, α ranges in an interval (α0, α0 + δα).
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We have already seen in Figs. 2.6 and 2.7 how the width of the strips in (k24, α) plane
inhabited by different droplet’s shapes depends on k24. Assuming uniform distribution of droplets
in a probe volume interval (parameterized in α), we convert this information into a frequency
of occurrence in the whole equilibrium shape population of the three distinctive shapes that we
have identified as most easily recognizable, namely, tactoids (either genuine or not), bumped
spheroids, and spheroids. Formally, for given k24, the frequency of occurrence f of a shape is
defined as the ratio of the span of values of α where the selected shape occurs at equilibrium
over the whole explored range δα. These frequencies depend non-trivially on k24; they suggest
themselves as possible statistical measures for k24, based on shape recurrence.

Figure 2.10 shows the graphs of f for the three shape populations as functions of k24, for
0 < α < 100. It is clear that the population of tactoids is depleted as k24 grows; the same

Figure 2.10: Relative frequencies (in percentage) for the occurrence of tactoids (red),
bumped spheroids (green) and spheroids (blue) in the population of equilibrium shapes.
The three functions f are plotted against k24; they have been computed for k3 = 1 under

the assumption that the droplet size is uniformly distributed in a range of volumes
corresponding to 1 < α < 100.

trend (but with higher values) is exhibited by the population of bumped spheroids; the majority
always lies with spheroids when α ranges in an interval large enough to allow them to arise.
Unlike tactoids and bumped spheroids (the elongated kin), spheroids are increased in number as
k24 increases. Thus, k24 depresses slim shapes, while fostering fat ones.

In Fig. 2.11, we illustrate a finer analysis of the frequencies of shapes, performed on a se-
quence of elementary volume intervals of equal amplitude, δα = 3.5. Such a splitting of the
whole range of droplet volumes in smaller intervals around increasing values reveals different sce-
narios in shape populations. When the average volume is small, tactoids dominate over bumped
spheroids, for a wide range in k24, the equal population point being close to k24 = 1. As the
average volume increases, the equal population point decreases, until bumped spheroids displace
tactoids completely. As the average volume further increases, bumped spheroids are challenged
by spheroids, which first reach an equal population point with bumped spheroids close to k24 = 1
and then eventually dominate the scene completely, as the volume is further increased.

The simple morale of the whole story is that in bipolar nematic droplets the population of
tactoids (and elongated shapes, in general) is favored by small saddle-splay elastic constants
(compared to the splay constant), provided that the droplet (dimensionless) volume is not too
large.

To isolate the role played by the droplet’s volume in the distribution of equilibrium shapes,
in Fig. 2.12 we plot the relative frequency of the three shapes as functions of α. These graphs are
extracted from Fig. 2.6, as were those in Fig. 2.10, but assuming uniformity in the distribution of
k24. Again, we may say that small, intermediate, and large volumes promote tactoids, bumped
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(a) 1 5 α 5 3.6 (b) 3.6 5 α 5 7.1 (c) 7.1 5 α 5 10.6 (d)
10.6 5 α 5 14.1

(e) 14.1 5 α 5 17.6

(f) 17.6 5 α 5 21.1 (g)
21.1 5 α 5 24.6

(h)
24.6 5 α 5 28.1

(i) 28.1 5 α 5 31.6 (j) 31.6 5 α 5 35

Figure 2.11: Relative frequencies (in percentage) for the occurrence of tactoids (red),
bumped spheroids (green) and spheroids (blue) as functions of k24, for k3 = 1 and

increasing values of the average volume in the specified range, under the assumption of
uniform distribution in droplet size.

spheroids, and spheroids, respectively. But, perhaps, the most interesting feature shown in
Fig. 2.12 is the coexistence of all shapes for moderate volumes.

2.6 Conclusions

This Chapter took a census of all possible shapes that a bipolar droplet of nematic liquid crystal
can have upon varying its volume and the elastic constants of the material that constitutes it. In
the adopted class of shapes, we found that either tactoids (genuine or not), bumped spheroids,
and spheroids can be optimal. The prevalence in population of one shape is determined by the
volume V0 and the saddle-splay constant K24 (appropriately scaled). One may say that tactoids
prevail when both volume and saddle-splay constant are small (with the bend constant K33

acting as a moderate amplifying factor). But there is more to it: for a given average volume V0,
the prevalence in shape population changes upon increasing K24, shifting first from tactoids to
bumped spheroids, and then from the latter to spheroids, as V0 is increased. It may be a stretch
to think that our “demographic” analysis has the potential to indicate the ballpark where to find
the ratio K24/K11 of a specific material, provided we can produce droplets in a range of wide
enough volumes.

In comparing our work with others, we saw that the optimal shapes we find in our class
may have slightly less energy than shapes found in other classes, but the qualitative difference
in shapes was substantial even if the gain in energy was marginal. This adds to the difficulty of
the problem tackled here, indicating that the energy minimum is rather shallow.

Williams [133] studied the stability of a bipolar spherical droplet against twisting distortions.
This study was sharpened and extended to tactoids by Prinsen and van der Schoot [107]. As
expected, large values of the splay constant K11 (relative to K22 and K33) promote a twisting
instability in the director field, which start exhibiting a chiral pattern around the symmetry axis.
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Figure 2.12: Relative frequencies (in percentage) for the occurrence of tactoids (red),
bumped spheroids (green) and spheroids (blue) as functions of the (reduced) volume α,
for k3 = 1 and under the assumption of uniform distribution in the (dimensionless)

saddle-splay constant k24.

It would be desirable to find the critical value of K11 below which the bipolar droplets studied
in this Chapter are stable, as our conclusions are valid only in this regime. In light of the role
played by K24 in determining the optimal bipolar droplet, we expect that their range of stability
would also be affected in novel ways. This is likely to shed new light on the chiral symmetry
breaking exhibited by tactoids in some chromonic liquid crystals [123, 55, 104].

2.A Retracted Meridian Field

Our aim here is to justify the expression (3.57) for the gradient of the the retracted meridian
field n in (3.44).

First, we remark that differentiating n along the smooth curve ξ 7→ (t(ξ), ϑ(ξ), z(ξ)) intro-
duced in Sec. 2.3 we easily obtain from (3.44) that

ṅ =
g′R′ṫ+ gR′′ż

1 + (gR′)2
n⊥ +

gR′ϑ̇√
1 + (gR′)2

eϑ, (2.43)

where a superimposed dot denotes differentiation with respect to ξ and use also been made of
(3.45).

Now, ∇n must be such that
ṅ = (∇n)ṗ, (2.44)

where ṗ is as in (2.8) for arbitrary (ṫ, ϑ̇, ż). Since n is a unit vector field and we wish to express
its gradient ∇n in the orthonormal frame (n,n⊥, ez), we can write

∇n = n⊥ ⊗ a+ eϑ ⊗ b, (2.45)

where a = a1n+ a2n⊥ + a3eϑ and b = b1n+ b2n⊥ + b3eϑ, with ai and bi scalar components to
be determined. Thus, (3.52) also reads as

ṅ = (a · ṗ)n⊥ + (b · ṗ)eϑ. (2.46)

Making use of (2.8) and both (3.44) and (3.45), we readily see that

x · ṗ =
g′R(gR′x1 + x2)ṫ√

1 + (gR′)2
+ gRx3ϑ̇+

√
1 + (gR′)2x1ż, (2.47)
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for any vector x = x1n+x2n⊥+x3eϑ. Specializing (3.55) for x = a and x = b and inserting both
resulting equations in (3.54) alongside with (3.51), we obtain an identity for arbitrary (ṫ, ϑ̇, ż)
only if the components of a and b in the frame (n,n⊥, ez) are given by

a1 =
gR′′(

1 + (gR′)2
)3/2 , a2 =

R′

R

1√
1 + (gR′)2

− g2R′R′′(
1 + (gR′)2

)3/2 , a3 = 0, (2.48a)

b1 = b2 = 0, b3 =
R′

R

1√
1 + (gR′)2

, (2.48b)

which with the aid of (3.53) deliver (3.57) in the main text.

2.B Tactoidal Measure

In this Appendix, we introduce a tactoidal measure to justify the conventional choices made in
Sec. 2.3.3 to classify the different shapes that inhabit the special family represented by (2.22).

Consider the angle β that the tangent to the drop’s profile makes with the symmetry axis (see
Fig. 2.1). If for µ = 1 we draw the graph of β as a function of z, we observe a drastic difference
in the two cases φ = 0 and φ = π

2 , corresponding to a shape B that is a genuine tactoid and the
round sphere, respectively. In the former case, the graph is concave, whereas it is convex in the
latter. There is indeed more to that: as also shown in Fig. 2.13, as soon as φ > 0, the graph of
β exhibits an inflection point at z = τ > 0, which slides gradually towards z = 0 (corresponding
to the equator of the drop) as φ increases towards π

2 .
22

Figure 2.13: Graphs of β against z according to (2.49) for several values of 0 5 φ 5 π
2 .

The concave red curve corresponds to φ = 0, whereas the convex red curve corresponds
to φ = π

2 . All other (blue) curves in the pencil interpolating the red curves have an
inflection point (besides that at z = 0), which defines τ .

It is precisely τ that we take as a tactoidal measure. The closer is τ to unity, the more likely is
B to look like a tactoid (even if its outer unit normal ν is continuous throughout ∂B). Formally,

β = arctan

(
2 cosφ√
h(φ)

z +
sinφ√
h(φ)

z√
1− z2

)
(2.49)

and τ is defined as the positive root of the equation β′′(z) = 0.
Figure 2.14 illustrates how τ depends on φ. A simple asymptotic analysis shows that 1− τ =

O(φ2/5) as φ→ 0 and that a bifurcation of τ occurs out of the trivial inflection point of β at z = 0
for φ .

= 1.46 rad. It is remarkable how the graph of τ in Fig. 2.14 exhibits a nearly linear behavior
between two “knees”, the first upward and the second downward, which are approximately placed

22It is perhaps in order to remark that z = 0 is an inflection point for β(z), for all values of φ, see also (2.49).
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Figure 2.14: The graph of the tactodial measure τ against φ. The circle marks the
point at φ .

= 1.46 rad, where τ bifurcates off the trivial inflection point for β at z = 0.
The two dashed vertical (red) lines delimit the nearly linear behavior of τ between two
“knees” (one upward and the other downward); they are placed approximately at φ = π

16
and φ = 6π

16 , which are precisely the barriers conventionally introduced in configuration
space to delimit the range of bumped spheroids, see Fig. 3.4.

at φ = π
16 and φ = 6π

16 . In Sec. 2.3.3, we interpreted the former as the upper limit for a tactoidal
shape and the latter as the upper limit for what we called a bumped spheroid.

We fully appreciate that a good deal of conventionality remains attached to this choice of
ours and to the taxonomy of shapes that ensued in Sec. 2.3.3. Perhaps, the best way to convince
the reader that it has some merit is to see it at work in Fig. 3.5. In any event, here we have
recounted the (possibly meandering) path that we took to identify the barriers that delimit the
range of bumped spheroids in the configuration space shown in Fig. 3.4.

2.C The Energy of Genuine Tactoids and Sphere

Here we record the closed-form formulae that can be obtained by performing the integrals in
(2.17) for special values of the parameters (φ, µ) featuring in (2.22) via (3.20).

For genuine tactoids, corresponding to φ = 0 and any µ,

Fα(0, µ) =
√

5µ arctan

√
5

µ3

[
1

5

(
47

32
− 3

32
k3 − k24

)
µ2 +

(
1

16
(13− k3)− k24

)
1

µ
+

5

32

(
1

3
+ k3

)
1

µ4

]
+

(
1

3
ln

(
1 +

5

µ3

)
+

1

32
(3k3 − 47) + k24

)
µ+

5

32

(
1

3
+ k3

)
1

µ2

+
1

2
α

[
ln

(√
5

µ3
+

√
1 +

5

µ3

)(
1 +

1

20
µ3

)
µ2 +

√
5

2

√
µ3 + 5

(
1

µ
− µ2

10

)]
.

(2.50)

In complete analogy to formula (2.40) for Ft in the main text, this function has a unique minimum
for µ in [0,∞); it diverges to +∞ like 1/µ7/2 as µ→ 0, and like √µ as µ→∞.

For a sphere of radius Re, corresponding to φ = π
2 and µ = 1,

Fα(π2 , 1) =
1

3
ln 2 +

23

12
+

1

4
k3 + 2(α− k24). (2.51)



Chapter 3

Shape Bistability in 2D
Chromonic Droplets

The preceding Chapter provides a theory for the representation of tactoids, which here is adapted
to two-dimensional systems. These are droplets of chromonic liquid crystals squeezed between
parallel plates inducing degenerate tangential anchoring on the nematic director; in the absence
of a privileged orientation on the bounding plates, they are referred to as degenerate substrates,
while when an easy nematic axis is prescribed they are called aligning substrates. According to
the experimental observations in [63, 136], the droplets have both a shape and a director field
uniform across the gap. Twist (both single and double [114]) is thus suppressed by symmetry and
Oseen-Frank’s theory should suffice. Since K22 plays no role but splay distortion contributes to
the free-energy, we shall rescale the elastic constants to K11. The solutions of the free-boundary
problem of finding the optimal droplet shape at fixed area are put to the test by interpreting
experimental data provided by [63] and [136]; we found a fairly good quantitative agreement
between experiment and theory. Moreover, a regime of shape coexistence for larger droplets
than those in the experiments is predicted: here tactoids (pointed, zeppelin-shaped droplets)
and smooth-edged droplets are both local minima of the free-energy. The mathematical model
for degenerate substrates included in the Chapter produces what promises to be a more accurate
estimate for the isotropic surface tension at the nematic/isotropic solution interface, estimate
then employed to provide a measure of the anchoring strength at the nematic polymer interface,
when the substrates squeezing the drop are aligning.

3.1 Introduction

Like all lyotropic systems, CLCs have a large coexistence area in their phase diagram, where
droplets in the nematic phase are at equilibrium with the surrounding melt. We shall be con-
cerned with a two-dimensional problem, inspired by the experimental settings explored by Kim et
al. [63] and by Yi & Clark [136]. Most droplets reported in [63] and [136] were bipolar, with point
defects of n at the pointed poles. Especially, two-dimensional bipolar droplets of the chromonic
N nematic phase of disodium cromoglycate (DSCG) sandwiched between glass degenerate plates,
i.e. plates on which the director is bound to lie but oriented in any direction, have been the ob-
ject of a thorough experimental study [63]. This Chapter includes mainly a mathematical model
of this system, obtained by adapting to the two-dimensional setting the theory presented in the
preceding Chapter1. The model first predicts a shape bistability, which seems characteristic of

1In the two dimensional thin film context, other models reminescent of Landau de Gennes, which do not
preclude the possibility of capturing the coexistence of nematic and isotropic states, are proposed in [44, 45] in

38
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the two-dimensional setting and identifies a range of droplet’s areas where two distinct shapes
could be observed, one tactoidal, as expected, and the other discoidal (smooth), both bearing
a bipolar arrangement of n. A sort of shape coexistence thus parallels the phase coexistence
observed in these materials. This regime manifests itself for droplets larger than those reported
in [63]; to our knowledge, it has not yet been observed. Second, we use the very detailed data of
[63] to compare the observed tactoidal (spindle-like) shapes with those predicted by our theory.
We extract an estimate for the isotropic component of the surface tension at the droplet’s inter-
face, which turns out to be comparable in order of magnitude to the typical values measured for
standard thermotropic liquid crystals (∼ 10µN/m, see [65, p. 495]). All these results related to
degenerate substrates have recently been published in [100].

At the end of each section, the model employed for degenerate substrates is extended to
predict the equilibrium shapes for CLC droplets squeezed between aligning substrates, which
induce a planar anchoring with a preferred surface orientation. There, too two-dimensional
bipolar CLC droplets in the nematic phase appeared surrounded by the isotropic phase, but
the plates bounding both the droplet and the surrounding isotropic solution are patterned with
sub-micron scale line channels (with the bottom and the top channels parallel to each other) and
the droplet’s long axis is well aligned to the channels. The easy nematic axis coincides with the
direction of the channels, and the observed shapes are rectangular cuboids with hemicylindrical
ends. The regime of shape bistability for sufficiently large bipolar droplets is also predicted
for aligning substrates, with the following novelty: there is a range of droplet’s size where the
optimal shape resemble a little baton, which is in good qualitative agreement to the experimental
data. In addition, the model accounts for the elongation of the optimal drop along the channels
of the substrates when its size sufficiently increases. Finally, the data collected by fitting the
experiments through the solutions of the model, combined with the estimate extracted for the
isotropic surface tension in the case of degenerate substrates, allow us to measure the anchoring
strength at the nematic-polymer interface. The orders of magnitude of these two estimates
coincide.

At the end of the Chapter, to put the theory for degenerate substrate to the test for another
lyotropic system, the bipolar tactoids observed in solutions of F-actin filaments [89] are also
considered. For the isotropic surface tension, we estimate a value three orders of magnitude
less than for CLCs, but comparable to that measured for some phase-separated colloid-polymer
dispersions [1].

In this two-dimensional setting, we can spare the trouble of the non legitimacy of the the-
oretical treatment of chromonics through the Oseen-Frank theory. Indeed, every out of plane
distortion of the director field, including twist instability, is suppressed when the droplet is
squeezed between two substrates and so neither K22 nor K24 play a role; in the present setting
fOF is bounded from below. The legitimacy of this theoretical treatments in three-dimensional
space is considered in the second part of the thesis, namely Chapters 4, 5 and 6.

3.1.1 Plan

The Chapter is organized as follows. In Sec. 3.2, the theory presented in the preceding Chapter
is adapted to the present two-dimensional settings. The optimal shapes of bipolar droplets that
minimize the total free-energy functional are derived and discussed in Sec. 3.3, where we illustrate
in detail the bistability scenario that we envision. We show, in particular, how the critical
values of the droplet’s area that delimit the corresponding shape hysteresis depend on the elastic
constants of the material and also of the substrates in the aligning case. Section 3.4 is devoted to

order to examine the interaction between the nematic defects and isotropic-to-nematic interfaces during phase
transitions.
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the comparison with experiments. We contrast our predicted shapes to the observed ones and,
encouraged by their agreement, we estimate the isotropic component of the surface tension for
CLCs through the model proposed for the case of degenerate substrates. This latter estimate is
then employed to provide a measure of the anchoring strength at the nematic-polymer interface,
making use of the model which is fit to describe aligning substrates as bounding plates. Finally,
in Sec. 3.6, we summarize our conclusions and comment on possible further extensions of our
study. The Chapter is closed by three mathematical appendices, where we collect computational
details and auxiliary results needed in the main text, but inessential to its comprehension.

3.2 Two-Dimensional Setting

Here, we set our theoretical scene; we shall first recall the energetics of a CLC drop squeezed
between two parallel degenerate plates and we shall then describe both its outer profile and inner
director field. Separate subsections deal with the extensions needed to study the aligning case.

The region B will be a thin blob representing a droplet of CLC surrounded by the isotropic
solution, squeezed between two parallel plates at the distance h from one another.

Formally, B = R × [−h
2 ,

h
2 ], where R is a region with piecewise smooth boundary ∂R in the

(x, y) plane of a Cartesian frame (ex, ey, ez) (see Fig. 3.1).

(a) No preferred orientation is present on
the substrates and the axis of the drop
could be orientated in any direction

(b) There is a privileged orientation on the bounding
substrates, which are patterned with sub-micron scale
line channels. The anchoring energy they provide is

sufficiently large to align well the droplet long axis to the
channels.

Figure 3.1: Two-dimensional domain R with area A0 in the (x, y) plane. It represents
the cross-section of a drop squeezed between two parallel substrates h apart and

surrounded laterally by the isotropic phase. In accord with the experimental observations
in [63] and in [136], both shape and director field are uniform across the gap of thickness

h along ez.

The field n lies in the same plane as R and it is thought of as being extended uniformly
through the blob’s thickness. For a planar field of this sort, the twist term in (1.3) vanishes
identically, as curln ‖ ez, as also does the saddle-splay term (see Appendix 3.A). Thus, leaving
aside the possibly controversial issue arising in general from the violation of one of Ericksen’s
inequality, we remain assured that in the present setting the Oseen-Frank energy-density fOF is
bounded below and the free-energy Fb can be safely minimized.
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3.2.1 Energetics

We assume that a given mass of material constitute the blob B, and so its volume V0 is pre-
scribed by the incompressibility constraint (which is satisfied to a large degree of approximation).
Consequently, the area A0 of R is prescribed, as V0 = A0h. We further assume that the plates
bounding both B and the surrounding isotropic solution exert a degenerate tangential anchoring
on the nematic director n, so that, in light of the constraint on the area of R, the additional
anchoring energy can be treated as an inessential additive constant.

This is not the case for the surface energy Fs at the interface between B and the surrounding
isotropic solution, represented by (1.16) in Chapter 1. Here, this energy results as

Fs[R,n] = h

∫
∂R

γ(1 + ω(n · ν)2) d`, (3.1)

where γ > 0 is the isotropic surface tension of the liquid crystal in contact with the isotropic
solution, ω ≥ 0 is a dimensionless anchoring strength, ν is the outer unit normal to ∂R, and d`
is the length element. Thus Fs is minimized when n lies tangent to ∂R. Henceforth, we shall
enforce this minimum requirement as a constraint on n,

n · ν ≡ 0, on ∂R, (3.2)

save checking ultimately this assumption with appropriate energy comparisons (see Appendix 3.B)
which ensure that such a tangential anchoring is not broken. In short, the validity of (3.2) re-
quires that the droplet is not too small when the substrates are both degenerate and aligning,
and also not too big for the latter case. The sense of these estimates will be made precise below.

Thus, the total free-energy of the system is given by the functional

F [R,n] := h

(∫
R
fOF dA+ γ`(∂R)

)
, (3.3)

subject to (3.2) and to the isoperimetric constraint

A(R) = A0, (3.4)

where A and ` are the area and length measures, respectively.

Aligning Substrates

Here the plates bounding B and the surrounding isotropic solution are aligning: ey is the
unit vector which lies along the preferred direction, which coincides with the orientation of
the channels that patter the substrates; this means that ey is the prescribed easy axis, as all
distortions of n away from it are energetically disfavorable. Considering the isoperimentric
constraint (3.4), the anchoring energy Fσ0 for the two substrates can be defined as:

Fσ0 [R,n] := −2σ0

∫
R

(n · ey)2 dA, (3.5)

where σ0 > 0 is the anchoring strength at the N-polymer interface. In accord to the experimental
setting of [136], this contribution is sufficiently large to guarantee that the droplet long axis is
aligned well to ey. Fσ0 [R,n] is to be added to the total energy of the system when the substrates
are degenerate, (3.3), and, to sum up, the total free-energy of the system bounded by two aligning
substrates is given by

F align[R,n] := F [R,n] + Fσ0 [R,n] = h

(∫
R
fOF dA+ γ`(∂R)

)
− 2σ0

∫
R

(n · ey)2 dA. (3.6)
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3.2.2 Admissible Shapes

No preferred direction is present on the substrates that bound the drop, and so, contemplating
tactoids among the possible equilibrium shapes of R (as well as other smooth shapes), we assume
that these are mirror symmetric about two orthogonal axes, one joining the possible sharp tips
of the boundary ∂R. We denote by y the latter axis and by x the orthogonal symmetry axis.2

Thus, only half of the curve that bounds R needs to be described, the other half being obtained
by mirror symmetry. We take this curve to be represented as x = R(y), where y ranges in the
interval [−R0, R0], with R0 to be determined, and R is a smooth, even function such that

R(R0) = 0 and R′(0) = 0, (3.7)

where a prime ′ denotes differentiation with respect to y (see Fig. 3.2). The points where R

Figure 3.2: The function R(y) and its retraction Rt(y) = g(t)R(y) represent (half) the
boundary ∂R and retracted inner curves ∂Rt for generic t ∈ [0, 1]. The nematic director
n is the unit vector field everywhere tangent to the retracted curves; n⊥ = ez × n is the
orthogonal field, and ν is the outer unit normal to ∂R, where ν = −n⊥. The function R
represents half a drop; the other half is obtained by mirror symmetry about the y axis.

vanishes correspond to the poles of R. Whenever R′(R0) is finite, R represents a tactoid, as
the outer unit normal ν to ∂R is discontinuous at the poles. Smooth shapes correspond to
R′(R0) = −∞.

We call Re the radius of the equivalent disc, which has area A0, and we denote by µ the
dimensionless length of the semi-axis of the drop,

µ :=
R0

Re
. (3.8)

Hereafter, we shall rescale all lengths to Re (while keeping their names unchanged, to avoid
typographical clutter). With this normalization, the area constraint (3.4) reads simply as∫ µ

−µ
R(y) dz =

π

2
. (3.9)

2Clearly, due to the absence of a privileged orientation on the bounding substrates, the y axis could indeed be
oriented in any direction. If several drops are present, their axes would be isotropically distributed. For aligning
substrates with sufficiently high anchoring energy, their axes would be all oriented in the direction of the easy
axis, ey.
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Aligning substrates

The assumption of mirror symmetry about the orthogonal axes x and y of the shape of R is here
justified by the preferred direction present on the bounding substrates designates by ey which is
directed as the axis of the drop.

3.2.3 Director Retraction

The shape of R is unknown and needs to be determined. Since n is tangent to ∂R, following
[99] we devise a method that also derives n inside R from the knowledge of ∂R, thus reducing
the total free-energy F to a pure shape functional. This is achieved by retracting ∂R inside R
with its tangent field n.

Formally, we define a function Rt(y) := g(t)R(y), where t ∈ [0, 1] and g is an increasing
monotonic function such that g(0) = 0 and g(1) = 1. The graph of Rt, shown in Fig. 3.2,
represents the retraction of ∂R that borders an inner domain Rt ⊆ R. All domains Rt are
nested one inside the other as t decreases towards 0. For t = 0, Rt reduces to the y axis. The
advantage of this method is that it also affords to describe the inner director n as the field
everywhere tangent to the family of curves ∂Rt. All director fields obtained by this geometric
construction are bipolar, in that they have two point defects at the poles; in the language of
Mermin [79], they are boojums with topological charge m = +1 (see also [65, p. 501]).

It is shown in Appendix 3.A how to compute the area element dA in the (t, y) coordinates
and how to express ∇n in the orthonormal frame (n,n⊥), where n⊥ := ez × n, in terms of the
functions R(y) and g(t).

In the rescaled variables y and R(y), an appropriate dimensionless form of F in (3.3) is then
given by

F [µ;R] :=
F [B]

K11h
=

∫ µ

−µ

{[
R′

R
− R′′

R′
+

1

8

RR′′2

R′3
(3 + k3)

]
arctanR′ +

R′′

1 +R′2

+
1

8

RR′′2

(1 +R′2)2

[
(k3 − 5)− 1

R′2
(k3 + 3)

]}
+ 2α

√
1 +R′2 dy, (3.10)

where
k3 :=

K33

K11
(3.11)

is a reduced bend constant and
α :=

γRe

K11
(3.12)

is a reduced area. Equivalently, α = Re/ξe, where ξe is the de Gennes-Kleman extrapolation
length [65, p. 159].3

The reduced functional F in (3.10) suffers from a typical pathology of two-dimensional di-
rector theory: it diverges logarithmically to +∞ near defects. Here, the culprit is the integrand
R′

R arctanR′, which is not integrable at y = ±µ. Following a well established practice (see,
e.g.,[20, p. 171]), we imagine that the energy concentration near defects causes a localized
transition to the isotropic phase, which constitutes a defect core (whose fine structure is better
explored within Ericksen’s theory [31]). The energy associated with such a phase transition is
proportional to the core’s area and will be taken as approximately fixed. Moreover, for simplicity,
instead of considering a circular core, which in the most common choice, we take it in the shape

3Thus, a drop is either small or large, whether α� 1 or α� 1, respectively.
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of the tapering drop’s tip. Letting rc denote the core’s size, we set rc = εRe and restrict y to the
interval [−η,+η], where η is defined by

R(η) = R(−η) = ε, (3.13)

and so depends indirectly on ε (see Fig. 3.3). For Re of the order of 10µm, it is reasonable to

Figure 3.3: Isotropic defect core (in red) at the tip of a drop (only a quarter is shown).
In our dimensionless units (rescaled to Re), η is defined by (3.13). A sensible value for
the parameter ε, which here is out of scale, is ε ≈ 10−3. A similar construction also

applies to a drop with smooth poles (not shown here).

take ε ≈ 10−3, as we shall do here, which corresponds to rc of the order of 10nm. The integral
in (3.10) will hereafter be limited to the interval [−η,+η], so that it will always converge. The
extra energy stored in the defects, being approximately constant, will play no role in our quest
for the equilibrium shape of squeezed drops.

Aligning substrates

The same arguments about shape representation and director retraction could be employed
also for this case and in the scaled variables y and R(y). We compute in Appendix 3.A the
dimensionless form of the anchoring energy (3.5):

Fσ0 :=
Fσ0

K11h
= −4β̃

∫ µ

−µ

R

R′
arctanR′ dy, (3.14)

where β̃ is the dimensionless parameter defined by

β̃ =
σ0

K11h
R2

e . (3.15)

Equations (3.12) and (3.15) highlight the dependence of α and β̃ on Re and, for fixed constitutive
parameters K11, γ, σ0 and h, β̃ can be seen as a quadratic form of α:

β̃ = βα2, (3.16)

where β is the (reduced) dimensionless anchoring strength of the substrates and is defined as

β :=
σ0K11

hγ2
. (3.17)
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The scaled total free-energy of the system in the aligning case is an appropriate dimensionless
form of F align in (3.6) and is given by

F align[µ;R] :=
F align[B]

K11h
=

∫ µ

−µ

{[
(1− 4βα2)

R′

R
− R′′

R′
+

1

8

RR′′2

R′3
(3 + k3)

]
arctanR′ +

R′′

1 +R′2

+
1

8

RR′′2

(1 +R′2)2

[
(k3 − 5)− 1

R′2
(k3 + 3)

]}
+ 2α

√
1 +R′2 dy.

(3.18)

It corresponds to the sum of the contribution in the degenerate case (3.10) and that provided by
the aligning channels (3.14); it suffers from the same pathology as the two-dimensional director
field, and so the integral in (3.18) will be limited to [−η, η].

3.2.4 Special Family of Shapes

Here, we follow closely [99], albeit in a two-dimensional setting, in an attempt to restrict the
admissible shapes of drops to a special family amenable to a simple analytical treatment. The
admissible drop profiles will be described by the function4

R(y) = a(µ2 − y2) + b
√
µ2 − y2, (3.19)

where a and b are real parameters that must be chosen subject to the requirements that R(y) = 0
for all −µ 5 y 5 µ and that (3.9) is satisfied. It is a simple matter to show (see also [99]) that a
and b can be expressed in terms of the free parameters (φ, µ) that span the configuration space
S := {(φ, µ) : 0 5 φ 5 3π

4 , µ > 0}. Precisely,

a =
1

µ3

π cosφ

h(φ)
, b =

1

µ2

π sinφ

h(φ)
with h(φ) :=

8

3
cosφ+ π sinφ > 0, 0 5 φ 5

3π

4
. (3.20)

Shapes with different qualitative features correspond to different regions of S, as illustrated
in Fig. 3.4. Prolate shapes are characterized by

µ = $(φ) :=

√
π(cosφ+ sinφ)

h(φ)
, (3.21)

whereas oblate shapes are characterized by µ < $(φ). Moreover, shapes represented by (3.20)
are convex for 0 5 φ 5 φc := arccot

(
−1

2

) .
= 2.03 and concave for φc < φ 5 3π

4 . The latter
are represented by the red strip in Fig. 3.4; we call them butterflies: their waist narrows as φ
approaches the boundary of S at φ = 3π

4 , where it vanishes altogether and the droplet splits in
two.

R has pointed tips only whenever R′(µ) is finite; according to (3.20), the only value of φ that
makes b vanish is φ = 0. We call genuine these tactoids. For small enough values of φ the shape
represented by (3.19) via (3.20) cannot be visually distinguished from pointed tactoids; we find
the conventional barrier at φ = π

16 appropriate to delimit the realm of tactoids (genuine or not).
Further increasing φ, R has tips that look smoother, justifying our calling them discoids. A
conventional barrier is set at φ = 9π

16 to mark where discoids evolve into little batons, for which
we use the French word bâtonnet. The names used to identify different shapes of R and the
corresponding strips in S where they are found are recalled in Table 3.1.

Fig. 3.5 illustrates a gallery of shapes for R obtained from (3.19) and (3.20) for µ = 1 and a
number of values of φ falling in the different types listed in Table 3.1.

4For b = 0, R in (3.19) reduces to the parabolic profile considered in [132].
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Figure 3.4: Configuration space S with the admissible shapes described by (3.19). All
prolate shapes are represented by the blue region below the graph of the function $(φ) in
(3.21). The concave shapes that we call butterflies are represented by the red strip for
φc 5 φ 5 3π

4 ; all shapes falling on the left of this strip are convex. The circular disc is
represented by the point (π2 , 1) (red circle). We also call tactoids the shapes for
0 5 φ 5 π

16 (genuine tactoids, only those for φ = 0—red line), discoids those for
π
16 5 φ 5 9π

16 , and bâtonnet those for 9π
16 5 φ 5 φc, see also Table 3.1, and Fig. 3.5 for a

fuller gallery of shapes. Vertical dashed lines represent the barriers marking transitions
from one family of shapes to another.

Aligning Substrates

As will be clear in Section 3.3.2, the equilibrium drops are strongly elongated in the direction
of the channels and their optimal value for µ is nearly 2 for the relevant values of α. Fig. 3.6
presents a gallery of droplets obtained from (3.19) and (3.20) for µ = 2 and for the values of φ
used in Figure 3.5. It is worth mentioning that the barriers conventionally introduced in S to
delimit the ranges of qualitatively different shapes do not suffer noticeable changes by changing
µ.

3.3 Optimal Shapes

This section is devoted to the study of the minimizers of the free-energy functional in (3.10) for
the degenerate case and in (3.18) for the aligning case. Our major result will be the prediction
of a shape bistability, which has not yet been observed in this setting. Before describing this
phenomenon, however, we need to make sure that the droplets we consider are of the right
dimensions for the tangential anchoring condition in (3.2) to be valid; for degenerate substrates,
droplets only need to be not too small, while for aligning substrates also an upper bound on
their size is to be determined.
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Table 3.1: We identify four strips in configuration space S, which correspond to four
qualitatively different shapes for a region R represented by (3.19) via (3.20). Here

φc = arccot
(
−1

2

) .
= 2.03.

Tactoids Discoids Bâtonnet Butterflies

0 5 φ <
π

16

π

16
< φ <

9π

16

9π

16
< φ < φc φc < φ 5

3π

4

(a) φ = 0
genuine tactoid

(b) φ = π
32

tactoid
(c) φ = π

4
discoid

(d) φ = 10π
16

bâtonnet
(e) φ = 11π

16
butterfly

Figure 3.5: Gallery of shapes illustrating for µ = 1 the taxonomy introduced in
Table 3.1. The color coding of the shapes is the same used in Fig. 3.4.

3.3.1 Admissible Drop Sizes

It is known [126] that drops sufficiently small in three-dimensional space tend to break the
director’s tangential anchoring on their boundary, favouring the uniform alignment of n in their
bulk. A simple heuristic argument tells us that a similar breaking would also take place in the
present two-dimensional setting.

The elastic cost of the bulk deformation scales as Kh, where K is a typical elastic constant,
while the surface anchoring energy scales as γωhRe, and so α in (3.12) estimates the ratio of the
latter to the former. Thus, when α is sufficiently small, the bulk energy becomes dominant and it
is minimized by the uniform alignment of n, which breaks the tangential anchoring, undermining
our analysis. In Appendix 3.B, we perform an energy comparison that provides an estimate for
the safeguard value αs of α, above which tangential anchoring is expected to remain unbroken.
We obtained the following explicit formula for αs,

αs :=
π
4 (k3 − 1− k3 ln 2− ln ε) + ε

j(ω)−
(
π
2 − ε

)
− ω

2πε
, (3.22)

where j(ω) is the function defined in (3.63). For ω = 5, which is a choice supported by some
evidence,5 αs ≈ 0.2k3 − 0.5(1 + ln ε). In particular, for k3 = 1 and ε = 10−3, αs ≈ 3, which will
be our reference choice henceforth. Taking K ∼ 1-10 pN as typical value for all elastic constants6

and γ ∼ 10µN/m as typical value for the surface tension of a chromonic liquid crystal in contact
with the isotropic solution,7 by (3.12) taking α > 3 means taking Re & 0.3-3µm, which provides
a lower bound on the admissible size of the droplets that can be treated within our theory.

5See, for example, [108] and [63].
6This estimate is supported for example by [142] for material such as DSCG, SSY, and PBG.
7Discordant estimates of γ have been given in the literature [63, 82, 123]. Here we take the average order of

magnitude found in these works (see also Sec. 3.4.1 below for an independent justification of this choice).
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(a) φ = 0
genuine tactoid

(b) φ = π
32

tactoid
(c) φ = π

4
discoid

(d) φ = 10π
16

bâtonnet
(e) φ = 11π

16
butterfly

Figure 3.6: Gallery of shapes illustrating for µ = 2 the taxonomy introduced in
Table 3.1. The color coding of the shapes is the same used in Fig. 3.4.

Aligning Substrates

It would be unwise to push our analysis beyond a further critical threshold of α. Indeed, for
large values of α the anchoring term of the energy due to the aligning substrates (3.14), which
is multiplied by α2, prevails over the others and needs to be minimized by a uniform orientation
of the director field along ey.

In Appendix 3.B we prove that, to ensure the planar alignment of the nematic director at
the interface, the following quadratic function of α must be positive for the given values of k3,
ω, ε and β:

fα =− 2βα2 δ
2

6
+ α

[
4j(ω)− 4δ

(π
2

+ ε
)
− π

δ

(
1− δ2

)
− 2ωδπε

]
− 4

[π
4

(k3 − 1− k3 ln(2)− ln(ε)) + ε
]
≥ 0, (3.23)

where j(ω) is the function of ω in (3.66) and δ ∈ (0, 1] is a parameter to be determined to make
the interval of α in which the tangential surface anchoring is mantained as big as possible.

This function has two real roots, α1
s and α2

s, and the condition (3.23) is equivalent to require:

α1
s 5 α 5 α2

s, (3.24)

with α2
s considerably affected by η (see Fig.3.22b).

For β = 10−2 and for the choices of parameters made in the preceding section, i.e. k3 = 1,
ε = 10−3 and ω = 5, it is shown in Appendix 3.B, through the graph in Fig. 3.22b, that α1

s ≈ 6
and α2

s ≈ 6057.
By considering as in preceding Section K11 ∼ 1-10 pN and γ ∼ 10−5 Nm−1, in view of the

definition of α in (3.12) the inequalities for the admissible values of α can be interpreted as
lower and upper bounds for the linear size Re of the drops which are admissible in the theory:
(0.6− 6)mm & Re & (0.6− 6)µm.

3.3.2 Shape Bistability

Finding analytically the minima of the reduced free-energy Fα(φ, µ), the function defined on the
configuration space S by computing the functional F [µ;R] in (3.10) on the special family of
shapes in (3.19), is simply impractical. Thus, for a given choice of the elastic parameter k3, we
evaluated numerically Fα and we sought its minimizers in S for increasing α > αs.

We found out that there are two critical values of α, α1 and α2 > α1, such that for either
α < α1 or α > α2, Fα attains a single (absolute) minimum in S, whereas it attains two (relative)
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Figure 3.7: Bifurcation diagram for the parameter φ that describes the equilibrium
profile (3.19) as a function of the bifurcation parameter α. For every k3, there are three
critical values of α, namely, α1, αb, and α2. Solid lines represent global minima, while

broken lines represent local minima. Open circles mark the appearance or disappearance
of a local minimum at α = α1 and α = α2. Two green lines delimit the coexistence

interval [α1, α2]. At α = αb, both local minima are also global minima; two black dots
mark the jump of the global minimum from one branch to the other. Here k3 = 1,
α1 = 172, αb = 221, and α2 = 305. Droplet’s equilibrium shapes are drawn for the

critical values α1 and α2.

minima for α1 5 α 5 α2. There is a third critical value, αb ∈ (α1, α2), such that for α = αb

the two minima of Fα are equal and its absolute minimizer abruptly shifts from one point in S
to another. Were the points of S to represent the different phases of a condensed system, this
scenario would be described as a (first-order) phase transition. In our setting, it more simply
describes the (local) stability of two equilibrium shapes for a squeezed drop: for α1 < α < α2,
both a tactoid and a discoid are local energy minimzers, the global minimum shifting from the
former to the latter at α = αb. For α < α1, the only equilibrium shape is a tactoid, whereas it
is a discoid for α > α2. The shape bistability exhibited by this two-dimensional system will now
be documented in more detail.

We start by representing the equilibrium landscape in the language of bifurcation theory.
Taking α as a bifurcation parameter and φ as an equilibrium shape representative, in Fig. 3.7
we illustrate the minima of Fα for k3 = 1: one falls in 0 < φ < π

16 (blue line), and so it is a
tactoid, while the other falls in π

16 < φ < π
2 (red line) and is a discoid. Solid lines represent

global minima, while broken lines represent local minima. Two separate local minima are also
global minima for α = αb, where a perfect bistability is established between the two equilibrium
branches. The tacoidal branch can be further continued, as it is locally stable, until α reaches
the critical value α2, where it ceases to exist altogether. Similarly, as soon as α exceeds α1, the
discoidal branch comes first into life as a locally stable equilibrium, which then becomes globally
stable for α > αb. For α ∈ [α1, α2], tactoids and discoids coexist as optimal shapes; both are
metastable, one or the other is globally stable, according to whether α < αb or α > αb.

The dimensionless parameter α is ultimately related through (3.12) to the amount of material
trapped in the drop. So the coexistence interval [α1, α2] corresponds to a window of areas A0 for
which two different shapes could be observed, more likely (and frequently) the one corresponding
to the global minimum. If, ideally, one could gently pump material into a tactoidal drop, so as
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to follow the blue branch in Fig. 3.7, the drop would continue to grow as a tactoid until the
critical volume corresponds to α2, where a dynamical instability would presumably prompt the
transition towards a discoid. Conversely, if material could be gently removed from the latter,
this would keep its discoidal shape until the critical volume corresponds to α1, where it would
dynamically evolve into a tactoid. The green lines in Fig. 3.7 delimit such a hysteresis loop.

Figure 3.8 illustrates the energy landscape for α < α1; Fα is convex, and so it attains a single

(a) Graph of Fα against S; the red dot
designates its single minimum.

(b) Contour plot of Fα. The
minimum is attained for
φ
.
= 0.01 and µ .

= 1.11 (red
circle).

(c) Equilibrium tactoidal
shape corresponding through
(3.19) to the minimizer of Fα.

Figure 3.8: For α < α1, the reduced free-energy Fα is convex on the configuration space
S and attains a single minimum in 0 < φ < π

16 . Here, k3 = 1, α = 170, α1 = 172.

minimum, which falls in 0 < φ < π
16 , corresponding to a tactoid. The scene changes in Fig. 3.9,

where α = αb and Fα attains two equal minima, corresponding to a tactoid and a discoid. For

(a) Graph of Fα against S.
Fα is no longer convex: it
attains two equal minima
designated by red dots.

(b) Contour plot of Fα.
One minimum is attained
for φ .

= 0.025 and µ .
= 1.11

(tactoid), while the other is
attained for φ .

= 1.2 and
µ
.
= 1.04 (doscoid); both

are marked by red circles.

(c) Tactoidal
equilibrium shape.

(d) Discoidal
equilibrium shape.

Figure 3.9: For α = αb, the reduced free-energy Fα has two (equal) global minima, one
for 0 < φ < π

16 (tactoid) and the other for π
16 < φ < π

2 (discoid). Here, k3 = 1 and
αb = 221.

α > α2, Fα is again convex, with a single minimum on a discoid, which gets closer and closer to
the round disc, represented by the point (π2 , 1) in S, as α grows indefinitely.

We have computed the three critical values, α1, αb, and α2 for several values of k3. Fig. 3.11
shows that, to within a good approximation, they all grow linearly with k3. The best linear fit
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(a) Graph of Fα against S; the red dot
designates its single minimum.

(b) Contour plot of Fα. The
minimum is attained for
φ
.
= 1.34 and µ .

= 1.02 (red
circle).

(c) Equilibrium discoidal
shape corresponding through
(3.19) to the minimizer of Fα.

Figure 3.10: For α > α2, the reduced free-energy Fα is gain convex on the configuration
space S and attains a single minimum for π

16 < φ < π
2 . Here, k3 = 1, α = 307, α2 = 305.

Figure 3.11: Critical values of α for different values of k3. To within a good
approximation, they all depend linearly on k3. Red and blue ranges refer to discoids and
tactoids, respectively, according to the same color coding adopted in Fig. 3.7.The broken

lines represent the best linear fits in (3.25).

is provided by the following functions,

α1 ≈ 157 + 15k3, (3.25a)
αb ≈ 205 + 16k3, (3.25b)
α2 ≈ 289 + 19k3. (3.25c)

Aligning Substrates

For a given choice of the elastic paramenters (k3, β) and upon increasing values of α1
s < α <

α2
s, we evaluate numerically Falign

α [φ, µ], defined on the configuration space S by reducing the
functional F align [µ;R] in (3.18) to the special families of shapes in (3.19). Through the systematic
search for the minimizers of this functional, the three critical values α1, αb and α2 are also in the
case of aligning substrates; this system too exhibits a regime of shape coexistence. We document
this phenomenon through the language of bifurcation analysis as in the preceding section; figures
3.12a and 3.12b illustrate the bifurcation diagram for k3 = 1 and β = 10−2 where α is the
bifurcation parameter; φ and µ are taken, respectively, as the parameters which represent the
minima of the functional Falign

α [φ, µ], one for φ < π
16 (blue lines) and the other for φ > π

16 (red
lines). φ as a function of α suggests how equilibrium shapes are classified. In both Figures 3.12a
and 3.12b, solid lines refer to the stable solution, while dashed lines represent the metastable
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(a) Bifurcation diagram of the the
representation parameter φ, which concerns the
classification of the equilibrium profile (3.19),
as a function of lnα. Second order transitions

of the equilibrium drop, identified by the
second minimum (for φ > π/16), from coins to
bâtonnet and vice versa occur when the graph

in figure crosses the conventional barrier
φ = 9π/16.

(b) Bifurcation diagram of the the
representation parameter µ, which refers to the
length of the long-axis of the equilibrium profile
(3.19) scaled to Re, and so to the area of the
drop, as a function of lnα. A growth of the
optimal µ of the first and of the second

minimum of Falign
α [φ, µ] occurs when α is great

enough.

Figure 3.12: For each k3, there are three characteristic values of α1
s 5 α 5 α2

s(marked
by a red crosses): α1, αb and α2. Heavy lines refer to the stable solution, while the region

of metastability is indentified by dashed lines. Black circles delimit the interval of
coexistence of the two minimizers, since they mark the rise of the second minimum at
α = α1 and the disappearance of the first one at α = α2. Precisely at these two last
values, the green lines represent the hysteresis limits. For k3 = 1 and β = 10−2, the

values provided by the model for aligning substrates
are α1 = 90, αb = 112 and α2 = 157, while the range in which the equilibrium drops are

bâtonnet is [141, 1308].

one. The green lines delimit the hysteresis loop. Moreover, figure 3.13 illustrates the situation
we encounter for α = αb, when the two corresponding equilibrium shapes share the same energy.

A different scenario appears as soon as α is large enough. Figure 3.12b illustrates that
the anchoring term due to the substrates in (3.18) begins to play an important role in the
minimization problem and induces a growth of the optimal value of µ of both the minima; it
starts to increase monotonically with increasing α. This accounts for the elongation of the optimal
drops along the channels of the substrates when their size increases sufficiently. In addition, not
only the coins are the equilibrium shapes priviledged by the second minimum of the energy,
but for a range of values of α the trajectory of the second minimum crosses the domain of the
bâtonnet. For these values of α, the graph of the optimal value of φ in Fig. 3.12a is indeed above
the barrier φ = 9π

16 . Especially, the equilibrium drop undergoes two smooth shape transitions
from a coin to a bâtonnet and vice versa. The energy landscape when α ranges in this special
range is illustrated in figure 3.14.

Upon further increasing α2 < α < α2
s, the unique minimum of Falign

α [φ, µ] does not converge
towards the point representing in S the disk of radius Re, but crosses the region of coins becoming
more and more elongated as α increases. Figure 3.15 shows this characteristic for a large enough
value of α.
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(a) Graph of Falign
α [φ, µ]

against S for αb = 112. The
red dots designate the

minima.

(b) Contour plot of
Falign
α [φ, µ], for αb = 112.
The first minimum is

attained at the point where
φ
.
= 0.025 and µ .

= 1.317,
while the second minimum
at the point where φ .

= 1.67
and µ .

= 1.17, marked by
red circles.

(c) Equilibrium
shape corresponding
through (3.19) to
the first minimizer

of Falign
α [φ, µ]

marked in
Fig. 3.13b. Since

φ < π
16 , according to

our conventional
taxonomy, it is a

tactoid

(d) Equilibrium
shape corresponding
through (3.19) to

the second
minimizer of

Falign
α [φ, µ] marked

in Fig. 3.13b. Since
π
16 < φ < 9π

16 ,
according to our
conventional

taxonomy, it is a
coin.

Figure 3.13: Bistability phenomenon: the two minima, the former for φ < π
16 (tactoid)

and the latter for φ > π
16 , minimize Falign

α [φ, µ]. Here a first-order transition takes place.
For k3 = 1 and β = 10−2 it occurs at αb = 112.

(a) Graph of Falign
α [φ, µ] against S for

α = 250. The red dot designates the
unique minimum.

(b) Contour plot of
Falign
α [φ, µ], for α = 250.

The minimum is attained at
the point where φ .

= 1.87
and µ .

= 1.25, marked by a
red circle.

(c) Equilibrium shape
corresponding through (3.19)
to the minimizer of Falign

α [φ, µ]
marked in Fig. 3.14b. Since
φ > 9π

16 , according to our
conventional taxonomy in
Sec. 3.2.4, it is a bâtonnet.

Figure 3.14: For a given α > α2, the reduced function Falign
α [φ, µ] on S has a convex

graph and attains a single minimum for φ > π
16 . For this particular α the minimum is

attained in the region of the bâtonnet.
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(a) Graph of Falign
α [φ, µ] against S for

α = 1600. The red dot designates the
unique minimum.

(b) Contour plot of
Falign
α [φ, µ], for α = 1600.

The minimum is attained at
the point where φ .

= 1.728
and µ .

= 1.857, marked by a
red circle.

(c) Equilibrium shape
corresponding through (3.19)
to the minimizer of Falign

α [φ, µ]
marked in Fig. 3.15b. Since
π
16 < φ < 9π

16 , according to our
conventional taxonomy, it is a

coin.

Figure 3.15: For a given α > α2, the reduced function Falign
α [φ, µ] on S has a convex

graph and attains a single minimum for φ > π
16 . For this particular α the minimum

returns to be attained in the region of the coins.

3.4 Comparison With Experiments

Amajor motivation for this Chapter was offered by the experiments conducted in [63] for degener-
ate substrates and in [136] for aligning substrates with water solutions of disodium cromoglycate
(DSCG). By applying our theory to interpret the experiments of Kim et al. in [63], we show how
to extract from them an estimate for the isotropic surface tension γ at the interface between the
nematic phase of a DSCG solution at a given concentration and its isotropic liquid phase. With
this estimate, we are then in position to interpret the experimental observations of [136] within
the extended model proposed for the case of aligning substrates; we then achieve an estimate of
the anchoring strength at the Nematic-Polymer interface.

To illustrate the generality of our method, we shall also apply it in Section 3.5 to estimate
γ at the interface between the tactoids formed in an F-actin solution at equilibrium with the
isotropic phase [89].

3.4.1 DSCG Solution

Among many other things, Kim et al. [63] explored water solution of DSCG at concentration
c = 16 wt% confined between two parallel glass plates at a distance ranging in the interval 1-5µm;
the plates were spin-coated with a polymide layer, SE-7511, which exerts a degenerate tangential
anchoring on the nematic director. This system can be treated as two-dimensional since the
bounding plates suppress the out-of-plane distortions in the observed samples, as required by
our theory.

Upon quenching the system from the isotropic phase into the coexistence regime, tactoidal
droplets were observed, surrounded by the parent isotropic phase. In particular (see, Fig. 6a of
[63]), a tactoid with bipolar nematic orientation was observed more closely, for which the area
A0 = 200µm2 and the aspect ratio ∆ = 1.3± 1 were measured at the temperature T = 37.5 ◦C,
which we read off from Fig. 2c of [63]. We wish to make use of these data to validate our theory.
To this end, we need to estimate the elastic constants K11 and K33 at T = 37.5 ◦C.

Interpolating the curves representing in [142] the temperature dependence of the elastic con-
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stants of the nematic phase of DSCG at c = 16 wt%, we readily arrived at

K11 = 4 pN, K33 = 9 pN, at T = 37.5 ◦C and c = 16 wt%, (3.26)

and so we take k3
.
= 2.25. We can also obtain α from the measured aspect ratio ∆. It follows

from (3.19) that in our theory ∆ can be given the form

∆ :=
µ

R(0)
=
µ2
(

8
3 cosφ+ π sinφ

)
π(cosφ+ sinφ)

, (3.27)

where use has also been made of (3.20). The plot of ∆ computed on the minima of Fα over S is
drawn against α in Fig. 3.16 for k3 = 2.25. It shows the typical behaviour also found in other

Figure 3.16: The droplet’s aspect ratio ∆ computed on the minima of Fα, plotted
against α for k3 = 2.25. The broken horizontal line designates the level ∆ = 1.3, which is
attained for α = 17.2. Local and global minima are marked with the same symbols as in
Fig. 3.7. The critical values of α are α1 = 192, α2 = 330, and αb = 243. Equilibrium

tactoids are genuine for α / 137.

theoretical studies [105, 106]: the aspect ratio of a bipolar droplet decreases as its linear size
increases. We see that the value ∆ = 1.3 is attained by the tactoidal branch (as expected) for
α
.
= 17.2; the corresponding coordinates in S of the minimum of Fα are φ .

= 0 and µ
.
= 1.24,

and so the equilibrium shape is a genuine tactoid (with pointed tips). For k3 = 2.25, equilibrium
tactoids cease to be genuine at α ≈ 137.

Since the equivalent radius Re is known from the isoperimetric constraint (3.4), Re ≈ 8µm,
we readily obtain for the long axis l of the droplet l = 2R0 = 2µRe ≈ 20µm. The equilibrium
tactoid predicted by our theory is plotted in Fig. 3.17 against the observed shape. Our expected
value for l also agrees quite well with the measurement performed in [63] on the reconstructed
shape, as does the cusp angle τN marked in Fig. 3.17. In our formalism, for a genuine tactoid,
the latter can be expressed as

τN = −2 arctan(R′(µ)) = 2 arctan

(
3π

4µ2

)
, (3.28)

which for µ = 1.24 delivers τN
.
= 1.99. The value of τN reported in [63] for the shape in Fig. 3.17

is τN = 1.05± 0.05, whereas a direct measurement on Fig. 3.17 would suggest that this value is
indeed τN/2, in good agreement with our theoretical prediction. Moreover, by use of equation
(3.12), we can give the following estimate for the surface tension at the nematic/isotropic interface
of an aqueous DSCG solution at 16 wt%,

γ ≈ 8.9µN/m. (3.29)
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Figure 3.17: The droplet’s equilibrium shape (in red) corresponding to α = 17.2, φ = 0,
and µ = 1.24 is contrasted against the shape observed in [63] (see their Figs. 6a and 6b).
Our estimate for the long axis is l ≈ 20µm. On the left: PolScope image. On the right:

reconstructed shape.

Different, discordant estimates have been given in the literature for the order of magnitude
of γ. For example, in [82] they estimate γ ∼ 1µN/m, whereas in [63] they give γ ∼ 102 µN/m,
an estimate obtained by applying the pendant drop technique [16, 17]. We trust that the mea-
surements based on the theory presented in this Chapter might be more accurate. The value in
(3.29) is closer to that found in [33] at the nematic-isotropic interface of 5CB (see also [34, 35]).

The critical values of α corresponding to k3 = 2.25 are α1 = 192, α2 = 330, and αb = 243,
while the observed droplet shown in Fig. 3.17 corresponds to α = 17.2. According to our theory,
one would then expect coexistence of tactoids and discoids for Re in the range 90µm / Re /
153µm, that is, for an area A0 in the range 0.3 mm2 / A0 / 0.7 mm2, a regime of large drops,
for which no data are available in [63].

Aligning Substrates

The sample setting of [136] consists in two replicas of 250nm line channels with 250nm spacing
overlaid with 7µm spacers between them, such that the bottom and the top channels are parallel.
A DSCG solution (11wt%) or a SSY solution (27wt%), prepared by dissolving the chromonic
liquid crystal in deionized water, are injected into the assembled cell.

At T = 25◦C Yi et al. experimentally detect N sandwiched tactoids, that is, flat-sided
droplets whose shape is a rectangular cuboid with hemi cylindrical ends and their director field
n has a bipolar configuration with only in plane components. They are well aligned to the
channels. Especially, the study of a DSCG cell with initial concentration of 11wt% distinctly
shows a droplet with this particular geometry and we read off from [136, Fig.12a] its area A0

and aspect ratio ∆:
A0 = 3217µm2, ∆ = 2.4. (3.30)

As before, we interpolate the curves in [142] which represents the temperature dependence of the
elastic constants of the nematic phase of DSCG at c = 11wt%, and we readily arrive at

K11 = 1.5pN, k3 = 4.1, at T = 25◦C and c = 11%. (3.31)

Here, we resort to the estimate of the surface tension at the nematic/isotropic interface of an
aqueous DSCG solution found in Sec 3.4.1 through the model presented for degenerate substrates.
This estimate combines with the equivalent radius Re ≈ 32µm, known from the isoperimetric
constraint (3.4), and the value of K11 in (3.31) and gives by (3.12):

α = 193. (3.32)
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(a) Comparison with the experiment in [136]
in a 11wt% DSCG cell; the metod for aligning
substrates agrees with the experimental data

available.

(b) Graph of the aspect ratio ∆ of the two
minima of F βα against α for ε = (10)−3,

k3 = 4.1, β = 3.3× 10−2. The colors, the style
of the lines and the symbols are those used in

Figures 3.12a and 3.12b

Figure 3.18: Comparison with the experiment in [63] in a 16wt% DSCG cell; the
equilibrium cross-section obtained with the metod for degenerate substrates fits the

experimental picture.

For the values of the elastic pararmeter (k3, α) fixed by the experimental setting as in (3.31)
and (3.32), we sougth the value of β at which the functional Falign[µ,R] has minimum in S of
aspect ratio experimentally observed (3.30). This value of ∆ is attained by the discoidal branch
for

β = 3.3× 10−2; (3.33)

coordinates in S for this minimum are µ = 1.52 and φ = 1.8, and so the equilibrium shape
is a bâtonnet. The comparison between the predicted shape and the experimentally observed
droplet is reported in Fig. 3.19. A fairly good qualitative agreement between experiments and
theory is found. By the use of the definition of β (3.33) as a function of σ0, we can provide the
following estimate for the anchoring strength at the nematic/polymer interface of an acqueous
DSCG solution

σ0 = 1.21× 10−5J/m2. (3.34)

We note that γ and σ0 have the same order of magnitude. Different discordant estimate have been
given in literature also for the order of magnitude of σ0. For example, in [62] σ0 ∼ 10−4J/m2 is
estimated using secondary sputtering lithography (SSL), whereas in [18] σ0 ∼ 10−6J/m2 results
on different rubbed polyimide alignment layers.

The sistematic search for the minimizer of Falign for increasing α when β is given by the
estimated value (3.33) and k3 is as in (3.31) leads to the following three critical values: α1 = 80.3,
αb = 98.6, and α2 = 127.5, while the equilibrium shape is a bâtonnet when α ranges in [131, 321].

According to the model proposed for aligning substrates, one would then expect coexistence
of tactoids and discoids for Re in the range 13µm / Re / 21µm, a regime of small drops, for
which no data are available in [136]. For Re ≥ 21.18µm, only smooth shapes are observed; they
are coins except for 21.7µm 5 Re 5 53.3µm, where they are bâtonnet. The shape transitions
from coins to bâtonnet and vice versa are smooth. Beyond Re = 3µm and Re = 15µm.

When ω = 5 and the parameters of the model are as in (3.31) and (3.33), the safeguard
values of α are in α1

s ≈ 7 and α2
s ≈ 1853; in accord with experiments, for α in (3.32) the uniform

configuration is energetically disfavored.
The plot of ∆ computed on the minima of Fα over S is drawn against α in Fig. 3.16 for

k3 = 4.1.
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Aligning Substrates: SSY Solution

In [136, Fig.10b] a N sandwiched tactoid with a in-plane bipolar director field is experimentally
observed in a 29wt% SSY cell at the room temperature T = 25◦C. Its aspect ratio is ∆ = 2.5,
while its linear dimension Re ≈

√
A0
π = 80µm is known from the isoperimetric constraint (3.4).

The value of σ0, (3.34), for the interface between the substance and the nematic phase of
DSCG, could be employed when the liquid crystal in the cell is SSY instead; the experimental
cell is precisely the same as in [63] and σ0 follows from the action of a dense substrate (polymer)
on a liquid crystal solution, and so depends more on the source of the interaction. According to
the measuraments in [142] for a SSY solution, we have

K11 = 4.3pN, k3 = 1.42, at T = 25◦C and c = 29%. (3.35)

Substituting (3.35) and the given values of Re and h in (3.15), we get

β̃ = 2573µm, (3.36)

and the model for aligning substrates provides α = 502. As above, by (3.12) we provide an
estimate for the surface tension at the nematic/isotropic interface of SSY at 29wt%:

γSSY = 2.72× 10−5J/m2. (3.37)

Fig. 3.19 illustrates a comparison between the observed droplets and the equilibrium shape
for α = 550.

Figure 3.19: Comparison with the experiment in [136] in a 29wt% SSY cell; The
droplet’s equilibrium shape (in red) corresponding to α = 550, φ = 1.84 and µ = 1.53 is
constrasted against the shape observed in [136]. The metod for aligning substrates agrees

with the available experimental data.

3.5 F-actin Solution

Highly concentrated solutions of short (/ 2µm) F-actin filaments form liquid crystal phases
which may coexist with their isotropic liquid phase [89].8 The two-dimensional islands of ordered
phase are bipolar tactoids, just like those considered in this Chapter. Although it is suggestive
to use liquid crystal theory to interpret the spindle shape exhibited in the process of cellular
mitosis [8], to our knowledge no direct proof is available that this actually applies to physiological
conditions [131]. Typical 2D tactoidal shapes have been observed in solutions of F-actin filaments
at equilibrium with the isotropic phase in the presence of physiological cross-linkings (filamin)

8For longer filaments, the ordering transition is continuous and no coexistence has been observed [125].
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at concentration 100-fold lower than in the case of free filaments [131]. However, contrary to the
hypotheses of our theory, these tactoids, which are presumably closer to physiological conditions,
were seen with a homogeneous alignment of the director throughout the droplets. For this reason,
we shall use for a comparison the experimental observations of two-dimensional bipolar tactoids
in [89].

To apply our theory to the F-actin solutions studied in [89], we need to estimate the elastic
constants K11 and K33 at the appropriate concentration; unlike chromonics, direct experimental
determinations are lacking for them. Here we shall resort to rigid-rod theory. For filament lengths
less than 2µm, as in this case, good agreement with rigid-rod theory is found in [125], and as
highlighted in [131], short actin filaments (average length between 180nm and 2µm) behave as
rigid rods because they are appreciably shorter than the persistence length of F-actin polymers,
which is approximately 15-18µm [52, 42].

The bare excluded volume theory,which treats filaments as rigid cylinders of diameter d and
height `, predicts the following expressions for the elastic constants [90],

K11 =
7

8π

kT

d
q, K33 =

4

3π2

kT

d
q3, (3.38)

where k is the Boltzmann constant, T is the absolute temperature and q is the dimensionless
concentration, defined as

q := bc` = η
`

d
, (3.39)

where c` and η are the filament’s number density and volume fraction, respectively, and b :=
π`2d/4 is the average isotropic excluded volume.

F-actin filaments are charged; the extra mutual repulsion that they feel affects the elastic
constants. As already observed by Onsager [95], this effects can be taken into account in a purely
steric theory by replacing d with an effective diameter de > d. Thus, in (3.38) d needs to be
replaced by de and q by qe := qbe/b, where be := bde/d is the effective average excluded volume.
It is easily seen that these corrections leave K11 unchanged, while increasing K33:

K11 =
7

8π

kT

d

(
η
`

d

)
, K33 =

32

21π
K11q

2
e , with qe = η

`

d

de

d
, (3.40)

so that
k3 =

K33

K11
=

32

21π
q2

e . (3.41)

As first pointed out in [119], the electrostatic repulsion among filaments also affects the critical
concentration q∗ at which the isotropic phase becomes unstable (which is a good estimate of the
coexistence region), in a way that depends on the ratio κ of the Debye screening length to the
effective diameter. Thus, from q∗ = 4 for κ = 0 [69], q∗ may increase up to q∗ ≈ 6 for κ = 0.5
[119]. Taking as in [80] qe ≈ 6 in (3.41), we estimate k3 ≈ 17.5 for F-actin filaments.

To obtain K11, we need to estimate η, `, and d. From [22], we get d ≈ 8 nm. As for ` and
η, we rely on the data of [89]: they estimate ` ≈ 1.2µm and produce solutions with a mass
density ρ = 10.8 mg/ml = 10.8 Kg/m3. Since the molecular mass of a monomer of actin is
M = 4.2 Kg/mol and its volume is vm = 50.1 nm3 [22], the molar concentration of the solution is
cM = ρM ≈ 259×10−3 mol/m3, which gives η = cMNAvm ≈ 7.8×10−3 (where NA = 6.02×1023

is the Avogadro number) and, by (3.40), de/d ≈ 5. Thus, again by (3.40), we obtain that at
room temperature K11 ≈ 0.17 pN and K33 ≈ 2.93 pN.

With these data we are now in a position to interpret within our theory the observations of
[89]. Their Fig. 7 collects a number of tactoids by their aspect ratio ∆ and axial length l. We
select as a representative observation one around which most data seem to be clustered, namely
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∆ = 2.7 and l = 50µm. Following the same steps as in Sec. 3.4.1, for the estimated k3 we find
that α ≈ 3.9. To extract finally γ from this, we only need to estimate the equivalent radius Re

of the representative tactoid. Taking this as the region bounded by two symmetric arcs of circle,
equation (3.71) from Appendix 3.C delivers A0 ≈ 634µm2 for its area. Thus, Re ≈ 14.2µm and

γactin =
αK11

Re
≈ 46 nN/m, (3.42)

which is an order of magnitude less than the value (γactin ≈ 300 nN/m) estimated experimentally
in [131] with a dynamical relaxation method for tactoids formed at a concentration 100-fold lower
(in the presence of a cross-linking physiological ligand), but consistent with the measurements at
the interfaces of some phase-separated colloid-polymer dispersions [1]. For a further comparison,
we note that our estimate for γactin is appreciably less than the surface tension reported for other
protein-based liquid droplets, which ranges from γ ∼ 1µN/m [6] to γ ≈ 100µN/m [28].

As for the regime of coexistence between tactoids and discoids as equilibrium shapes, which is
the main object of this Chapter, for k3 = 17.5 equations (3.25) deliver α1 ≈ 420 and α2 ≈ 622 as
delimiters of the coexistence window (with perfect bistability at αb ≈ 485). They correspond to
the following values of the equivalent radius, Re ≈ 1528µm and Re ≈ 1768µm, respectively, more
than two orders of magnitude larger than for the observed tactoids. According to our theory, this
makes it highly unlikely the observation of equilibrium shapes of condensates of F-actin filaments
other than tactoids, at least at the given concentration.

3.6 Conclusion

We studied chromonic droplets in two space dimensions. Our major motivation was the thor-
ough experimental investigation both in [63] and in [136] of thin cells with degenerate tangential
anchoring for the nematic director in the first case and with a tangential anchoring inducing a
preferred direction in the second case. In particular, a solution of DSCG in water was quenched
in the temperature regime where nematic and isotropic phases coexist in equilibrium, the former
forming islands with a peculiar shape. We introduced a wide class of two-dimensional shapes for
the equilibrium droplets, which includes tactoids, discoids, bâtonnet, and butterflies, the latter
of which are concave, whereas the former three are convex. For the first case of degenerate
substrates, our analysis revealed that upon increasing the droplet’s area a tactoidal equilibrium
branch gives way to a discoid branch, while neither bâtonnet nor butterflies can ever be equi-
librium shapes. Bâtonnet can be observed when the substrates are aligning. Moreover, there
is a regime of shape coexistence, where a tactoid and a discoid are both local minima of the
free-energy, the global minimum shifting from one to the other at a critical value of the droplet’s
area, where perfect bistability is established. This shows another, possibly less usual incarnation
of a phenomenon broadly present in physics (think of optical bistability, for example). A typical
bifurcation diagram with hysteresis describes the situation, reminiscent of a first-order phase
transition with super-heating and super-cooling temperatures (replaced here by corresponding
values of the area).

We put our theory to the test by interpreting experimental data provided by [63] and [136].
We found a fairly good quantitative agreement between experiment and theory, although further
data should be collected to establish on firmer grounds the degree of confidence of the theory.
In particular, we could extract from the data available in [63] an estimate for the isotropic
component γ of the surface tension at the interface between coexisting nematic and isotropic
phases of DSCG in 16 %wt aqueous sol. An estimate of the measurement of the anchoring
strength at the nematic/polymer interface for a DSCG in 11 %wt aqueous sol is provided by
the model proposed for aligning substrates. Both the estimates seems to promise more accuracy



CHAPTER 3. SHAPE BISTABILITY IN 2D CHROMONIC DROPLETS 61

than the rough evaluation of order of magnitude available in the literature for this material and
its chromonic siblings. We hope that the theory proposed here could be used for a systematic
determination of γ and σ0 for different temperatures and concentrations.

To illustrate the generality of our method, we also used it to estimate the isotropic surface
tension γactin for tactoids shown in solutions of F-actin filaments [89]. We estimated the elastic
constants for the nematic phase of F-actin filaments taking them as charged, rigid cylinders;
we obtained a value of γactin comparable to the one measured for some phase-separated colloid-
polymer dispersions [1].

The data available for both systems do not cover the range of predicted bistability. We
estimated the area that a droplet should reach to display an abrupt transition from tactoid to
discoid. It remains to be seen whether a controlled growth in the droplet’s size can be realized
to observe neatly this transition.

We have shown that the critical values of the area that delimit the shape hysteresis are
(increasing) linear functions of the ratio K33/K11 between bend and splay elastic constants.
If this critical phenomenon could be explored experimentally, our theory would also offer an
independent way to measure K33/K11. This might be especially welcome for non conventional
new lyotropic phases.

3.A Retracted Tangential Field

In this Appendix, we justify the expression for the free-energy functional (3.10) associated with
the bipolar director field n defined as the unit vector field tangent to the lines with given t and
varying y (see Fig. 3.2). A generic curve in that family is represented by the position vector

pt(y) := g(t)R(y)ex + yey, −R0 5 y 5 R0, (3.43)

where g is any function of class C1 strictly increasing on [0, 1] and such that g(0) = 0 and
g(1) = 1. For given t ∈ [0, 1], the tangent vector field n is given by

n =
gR′ex + ey√

1 + (gR′)2
, (3.44)

where a prime denotes differentiation. The unit vector field

n⊥ := ez × n =
−ex + gR′ey√

1 + (gR′)2
(3.45)

is everywhere orthogonal to n and such that n⊥|∂R = −ν, where ν is the outer unit normal to
∂R (see again Fig. 3.2).

Imagine now a smooth curve in R parameterized as ξ 7→ (t(ξ), y(ξ)); it follows from (3.43)
and (3.44) that

ṗ = g′Rṫex + ẏ(gR′ex + ey) = g′Rṫex +
√

1 + (gR′)2ẏn, (3.46)

where a superimposed dot denotes specifically differentiation with respect to ξ. Thus, the ele-
mentary area dA is

dA = dt dyg′R
√

1 + (gR′)2ex × n · ez = g′R dtdy, (3.47)

and the elementary length d`t on the retracted curve ∂Rt, for given t, is

d`t =
√

1 + (gR′)2 dy. (3.48)
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In particular, the area of R and the length of its boundary are given by

A(R) = 2

∫ 1

0
g′ dt

∫ R0

−R0

R dy = 2

∫ R0

−R0

R dy (3.49)

and

`(∂R) = 2

∫ R0

−R0

√
1 +R′2 dy. (3.50)

Differentiating n in (3.44) along the smooth curve ξ 7→ (t(ξ), y(ξ)), we find that

ṅ = −g
′R′ṫ+ gR′′ẏ

1 + (gR′)2
n⊥. (3.51)

Assuming that n is differentiable in R, ṅ and ṗ must be related through

ṅ = (∇n)ṗ. (3.52)

Since n is a unit vector field, (∇n)T annihilates n, and so there exists a vector a = a1n+ a2n⊥
such that

∇n = n⊥ ⊗ a. (3.53)

To determine the scalar components ai of a, we observe that, by (3.53), (3.52) also reads as

ṅ = (a · ṗ)n⊥. (3.54)

Making use of (3.46) and both (3.44) and (3.45), we readily see that

a · ṗ =
g′R(gR′a1 + a2)ṫ√

1 + (gR′)2
+
√

1 + (gR′)2a1ẏ, (3.55)

and inserting this into (3.54) alongside with (3.51), we obtain an identity for arbitrary (ṫ, ẏ) only
if

a1 = − gR′′

[1 + (gR′)2]3/2
, a2 =

R′

R

1√
1 + (gR′)2

− g2R′R′′

[1 + (gR′)2]3/2
, (3.56)

which leads us to

∇n = − gR′′

[1 + (gR′)2]3/2
n⊥ ⊗ n+

(
R′

R

1√
1 + (gR′)2

− g2R′R′′

[1 + (gR′)2]3/2

)
n⊥ ⊗ n⊥. (3.57)

The following expressions for the traditional measures of distortion then follow from (3.57),

divn =
R′√

1 + (gR′)2

(
1

R
− g2R′′

1 + (gR′)2

)
, (3.58a)

curln = − gR′′

[1 + (gR′)2]3/2
ez, (3.58b)

n · curln = 0, (3.58c)

n× curln =
gR′′

[1 + (gR′)2]3/2
n⊥, (3.58d)

tr(∇n)2 − (divn)2 = 0. (3.58e)
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We found it useful to rescale all lengths to the radius Re of the disc of area A0. Letting µ as
in (3.8) and using (3.3) and (3.49), we arrive at the following reduced functional,

F [µ;R] :=
F [B]

K11h
=

∫ µ

−µ
dy

∫ 1

0
g′

[
g4RR′2R′′2(
1 + (gR′)2

)3 +
R′2

R

1(
1 + (gR′)2

) − 2
g2R′2R′′(

1 + (gR′)2
)2

+k3
g2RR′′2(

1 + (gR′)2
)3
]

dt+ 2α

∫ µ

−µ

√
1 +R′2 dy, (3.59)

where k3 and α are as in (5.8) and in (3.12). The integration in t, which delivers (3.10) in the
main text, is independent of the specific function g, provided it is monotonic and obeys the
prescribed boundary conditions.

Retracted Tangential Field

By rescaling all lengths to the radius Re of the disc of area A0, letting µ as in (3.8) and using
(3.49), we obtain the following dimensionless form of Fσ0 in (3.5)

Fσ0 [µ;R] :=
Fσ0 [B]

K11h
= −4β̃

∫ µ

−µ
dy

∫ 1

0

g′R

1 + (gR′)2
dt, (3.60)

where β̃ is the dimensionless parameter defined by (3.15). The integration in t is shown in (3.14)
to be independent of the specific function g, provided it is monotonic and obeys the prescribed
boundary conditions.

3.B Preventing Anchoring Breaking

Here, we perform an energy comparison to identify the safeguard value αs of α, that is, the lower
bound that should be exceeded for a drop to be bipolar at equilibrium. It is known that for α
sufficiently small the tangential anchoring favored by the interfacial energy (3.1) is bound to be
broken, so that the nematic alignment becomes uniform throughout the droplet. Uniform and
bipolar alignments will indeed be the terms of comparison for our estimate of αs.

For drops with uniform alignment, the total free-energy reduces to (3.1), subject to the area
constraint (3.9). The optimal shape is delivered by the classical Wulff’s construnction [135]
(see also [65, p. 490]). Assuming that n ≡ ey and that R is mirror-symmetric with respect
to both axes ex and ey, one needs only determine the equilibrium shape of R in the positive
(x, y) quadrant. We let y = yW(x) = 0 represent the profile of R and define λ > 0 by setting
yW(λ) = 0. Here, as in the main text, all lengths are scaled to Re. The method illustrated in
[127, Ch.5] and [105] delivers Wulff’s shape through the following explicit function

yW

(
xλ−1

)
λ−1 =

1 + ω
(
1− ξ2

)
− ξxλ−1√

1− ξ2
, (3.61a)

where ξ is given in terms of x by solving the algebraic equation

ωξ3 + (1− ω)ξ − xλ−1 = 0 (3.61b)

and λ is determined by the isoperimetric constraint (3.9), which here reads as

4

∫ λ

0
yW(x) dx = 4λ2

∫ 1

0
yW

(
xλ−1

)
λ−1 d

(
xλ−1

)
= π. (3.61c)
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Correspondingly, by computing the free-energy in (3.1) on Wulff’s shape, we obtain that

FW = 4K11hαj(ω), (3.62)

where the function j, defined by

j(ω) :=
1

2

√
π∫ 1

0 yW dx

∫ 1

0

√
1 + y′2W dx+ ω

∫ 1

0

1√
1 + y′2W

dx

 , (3.63)

is computed on the solution yW of (3.61), renormalized so that yW(1) = 0. Figure 3.20 illustrates
the Wulffian shape obtained with this method for ω = 5 and the graph of j for 0 5 ω 5 10.

(a) Wulffian shape obtained by
solving equations (3.61) for ω = 5.
With lengths scaled to Re, λ = 0.51.

(b) Graph of the function j in (3.63) plotted
against ω.

Figure 3.20: Shape and (scaled) energy for the fully aligned droplet.

We now compare this energy to that of a disc with an in-plane bipolar director field whose
integral lines are Apollonian circles passing through the poles (see, for example, § 2 of [91]); their
radius increases to +∞ upon approaching the y-axis, as shown in Fig. 3.21, which represents a
quadrant of the disc. Adapting the computations in bipolar coordinates (ξ, η) of Williams [133]

Figure 3.21: A quarter of a unit disc described in bipolar coordinates (ξ, η). Apollonian
circles correspond to different values of η; they are orthogonal to the coordinate lines

with ξ constant. As in Fig. 3.3, also here ε is out of scale.
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to the present two-dimensional setting, we arrive at

Fbip := K11h

{
4

∫ π
2

ε
dξ

∫ π
2

0
dη

[
1

2

cos2 ξ

sin ξ

1

(1 + sin ξ cos η)2
+
k3

2

sin2 η sin ξ

(1 + sin ξ cos η)2

]
+ 2απ

}
= 4hK11

{[π
4

(k3 − 1− k3 ln 2− ln ε) + ε+ α
(π

2
− ε
)]

+
αωπε

2

}
, (3.64)

where the defect core has been identified with the region 0 5 ξ 5 ε. The estimate in (3.22)
follows from requiring that Fbip < FW.

Aligning Substrates

The aim of this Appendix is to perform an energy comparison to identify the two safeguard
values of α which delimit the range of α for which the breaking of the tangential anchoring is
prevented.

For drops with an homogeneous director field oriented along ey no distortion is produced in
the bulk, and the total free-energy (3.3)9 results as the sum of the contributions of the interfacial
energies:

Fh = Fs − 2σ0A(B) = Fs − 2σ0A0, (3.65)

where Fs is given here by (3.1). The anchoring energy due to the substrates does not contribute
to the minimization process since A0 is fixed, and the optimal shape is delivered with the help
of the classical Wulff’s construnction [135], as for the degenerate case in Appendix 3.B.

Thus, by computing the free-energy in (3.65) on Wulff’s shape, we obtain that

Fh = 4K11h
[
αj(ω)− 2βα2π

]
, (3.66)

where the function j is defined by (3.63).
As pointed out in the main text, as soon as α is great enough the equilibrium drop starts to

elongate along the channels of the substrates and the surface free-energy, given by the sum of
(1.16) and (3.5), is no more minimized by a disk. Thus, here we compare (3.66) to the energy
of a droplet of area A0 whose shape is made up by a rectangle, inside which the director field is
uniform along ey, equipped with two semi-disk ends, where the vector lines mimic those of the
disk previously introduced in Section 3.B, and so join the poles along Apollonian circles filling
the whole of the semi-disks with radius increasing on approaching the y-axis. This shape is
physically plausible, since it resembles that experimentally oserved in [136], and it is illustrated,
together with the associated in-plane bipolar director field associated, in Figure 3.22a.
We can choose the radius of the semi-disks on the top of the rectangle which could grow until it
reaches Re, value at which our shape returns a disk of radius Re. Thus, we define the radius of
the hemi-disks by Rδe := δRe , where δ is an arbitrary parameter ranging in (0, 1], and the length
L of the vertical side of the rectangle is automatically identified by the isoperimetric constraint
(3.4):

L =
πRe

2δ

(
1− δ2

)
, δ ∈ (0, 1]. (3.67)

The free-energy associated with the hemi-disks is obtained adapting the argument of Williams
to a disk of radius Rδe, and the total free-energy (3.3) comprising also the free-energy associated
to the rectangle with a uniform director field results, with the aid of (3.67), as:

9We perform an energy comparison between droplets subject to the isoperimetric constraint, and so we compare
their shape functional (3.3), where all the terms which take the same value for all shapes and fields with planar
degenerate anchoring on ∂BN−I, (1.6), are not considered.
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(a) Drop of fixed area A0 whose shape is physically
plausible, [136]. The n field, which forms two boojums

at the poles, has only in-plane components and is
everywhere tangent to the retraced curves in figure to

allow the angle between the director n and the y−axis to
be zero for a variable portion of the region.

(b) Graph of the two safeguard values of
α as functions of ω ∈ [1, 10] obtained for
the optimal value of δ and which delimit
the range of α for which the director field

inside the drop is bipolar.

Figure 3.22: In the main text we find the optimal value of δ ∈ [0, 1], with Rδe = δRe,
which maximizes α2

s to render the energy of this bipolar configuration energetically
favourable in the greatest range of α.

Fbip := K11h

{
4

∫ π
2

0
dξ

∫ π
2

0
dη

[
1

2

cos2 ξ

sin ξ

1

(1 + sin ξ cos η)2
+
k3

2

sin2 η sin ξ

(1 + sin ξ cos η)2

−2βα2 sin ξ(sin ξ + cos η)2

(1 + cos η sin ξ)4

]
dη + α

[
2δπ +

π

δ
(1− δ2)

]
− 2βα2(1− δ2)

}
. (3.68)

As above, the splay term diverges logarithmically for the defect points ξ ∈ {0, π} and we
exclude from the nematic domain a core of critical radius rc = εRe around them to make their
energy finite.

F εbip ≈
{

4
[π

4
(k3 − 1− k3 ln(2)− ln(ε)) + ε

]
+ α

[
4δ
(π

2
− ε
)

+
π

δ

(
1− δ2

)]}
+ 2αδωπε− 2βα2π

(
1− δ2

6

)
. (3.69)

The demand that F εbip < Fa is reverted into the request that the quadratic function of α in
(3.23) is positive for the given values of k3, ε, and β. This function has two rooths, α1

s and α2
s

and the positivity of fα in (3.23) is ensured whenever α1
s ≤ α ≤ α2

s. For k3 = 1, ε = 10−3,
ω = 5 and β = 10−2 as in the main text, α1

s is not considerably affected by changes in δ ∈ (0, 1]
and we aim at the optimal value of δ which maximizes α2

s to make the range of α for which it
is unfavorable breaking the tangential surface anchoring as big as possible. In Fig 3.22b it is
illustrated the two graphs of this safeguard values of α obtained by the optimal value of δ as a
function of ω ∈ [1− 10].
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3.C Spindle Area

In the bipolar coordinates (ξ, η) adopted by Williams [133], a spindle is the region between two
Apollonian circles symmetrically located relative to the axis joining the poles (Fig.3.21 shows
quarters of the members in a single family of such Apollonian circles). Half a spindle is described
by letting ξ range in [0, π] and η in [0, η0], where η0 is related to the aspect ratio δ > 1 by
η0 = 2 arctan(1/δ). Denoting by l the distance between the poles, the area element is given by

dA =

(
l

2

)2 sin ξ

(1 + sin ξ cos η)2
dξ dη. (3.70)

The area of a spindle will then be expressed as

A0 = 2

(
l

2

)2 ∫ π

0
dξ

∫ η0

0
dη

sin ξ

(1 + sin ξ cos η)2
=

(
l

2

)2 (1 + δ−2)2 arctan δ + δ−3 − δ−1

δ−2
, (3.71)

which is the formula used in Sec. 3.5 to estimate the area of a tactoid representing a cluster of
observations in [89].



Chapter 4

Second Variation
of Oseen-Frank’s Free-Energy

Since the divergence to −∞ of Oseen-Frank’s free-energy when K22 − K24 < 0 is prevented
in confined geometry subject to degenerate boundary conditions, we can apply here Oseen-
Frank’s theory to CLCs. We provide a general formula for the second variation of Oseen-Frank’s
functional, through which we learn that an exchange of stability is expected in the system at
K22 = K24. For K24 > K22 the trivial solution becomes unstable and two ET solutions sharing
the same energy arise, which are stable. They thus characterize the two-fold ‘pseudo’ ground
state of CLCs within Oseen-Frank’s theory. We substantiate the claim that they are spurred up
by the adjustment of the double twist mode to fit the cylinder with the imposed boundary. The
local stability of the ET configurations explored in this Chapter seems to support the legitimacy
of this theoretical treatment.

4.1 Introduction

CLCs in cylindrical capillaries subject to degenerate tangential boundary conditions (1.6) have
been observed in [55, 56, 19, 86, 54] to exhibit chiral director configurations in the absence of
intrinsic chirality. A theoretical treatment of this class of materials through Oseen-Frank’s theory
for nematic is not entirely justified, since it is built on a notion of undistorted ground state; it
posits a free-energy density which measures the cost associated with producing a distortion in the
nematic natural state, which is attained when n is constant in space, and so ∇n = 0. As a result,
under the assumption that n is at least a map of class C2, the ET equilibrium configurations,
(1.42) and its mirror immage (1.43) (first found in [10]), likely to rationalize configurations of the
chromonics’ confinement-induced ground state, are valid only if Ericksen’s inequality K22 ≥ K24

is violated. Such a violation would make Oseen-Frank’s free-energy unbounded below in 3D
Euclidean space, but boundary conditions could still ensure the existence of a minimum; for
planar anchoring, it follows from the geometric representation in terms of the principal curvatures
(1.7) for the energy term K24 that even when one of Ericksen’s inequalities involving K24 is
violated, as in this case, Oseen-Frank’s energy stored in the cylinder is bounded below as long
as the elastic constants K11, K22 and K33 are all non-negative. It is thus legitimate to apply
Oseen-Frank’s theory to this particular class of materials under cylindrical confinement when
K22 < K24.

In this Chapter we thus take for granted that this theory is suitable to describe the elastic
properties of CLCs and we start to examine the consequences that would arise in cylindrical
symmetry (in connection with Burylov’s solutions [10]) if the relevant Ericksen’s inequality,

68
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K22 ≥ K24, is violated.
As pointed out in Chapter 1, the non-uniform double twist configuration is the ground state

of CLCs in 3D space. According to the locality of this ideal mode, ET configurations rather
characterize a ‘pseudo’ ground state of CLCs. The geometric frustration and the characteristic
of non-uniformity [77] of these equilibrium configurations give rise to the following questions:
does the uniform state still have the characteristics of a local minimizer of the free-energy?
Are the two nonuniform equilibrium configurations for Oseen-Frank’s free-energy functional at
least locally stable? The study of local stability of the critical points thus becomes a tool for
identification of the minimum.

Here, the problem tackled in [10, 19] of seeking the orientation fields n at least of class C2

which make Oseen-Frank’s free-energy stationary, is reduced to an analogous infinite horizon
variational problem, whose analysis resorts to Weierstrass’ theory for the dynamics of a one-
dimensional Lagrangian conservative system. The new bulk free-energy density is mechanically
interpreted as the Lagrangian of this peculiar dynamical system given by the sum of a kinetic and
a potential energy. The first section illustrates the features of these motions through the phase
diagram of the system. This infinite horizon system admits a conservation law and the orbits
all have an explicit representation on the phase space; they all are solutions to the equation of
motion in the bulk departing from a curve of natural conditions. When K22 < K24 there are two
non-trivial trajectories in the phase space departing from the curve of natural conditions that
possess finite energy. One of them evolves toward the origin and reaches it in an infinite time,
while the other orbit corresponds to its mirror image. They are the dynamical analogues of the
ET solutions (1.42) and (1.43).

Deciding the stability of the free-energy functional in the vicinity of an equilibrium solution
presumes the analysis of its second variation at the configuration. We thus provide a general
formula for the second variation δ2Fb, where Fb is Oseen-Frank’s free-energy functional, for n
a solution to the weak form of the Euler-Lagrange equations for Fb (c.f. (1.22) and (1.23) with
W given by (1.3) and γa = 0). It is a quadratic functional in the perturbation v of n, where v
is constrained to obey v · n. Here v is assumed to be absolutely continuous and to perturb n
according to the anchoring conditions prescribed by the problem. This formula for the second
variation is then applied to the uniform configuration which results unstable whenever one of the
Ericksen’s inequalities is violated (1.8).

The aim of the second section is to explore the local stability within Oseen-Frank’s theory of
the ET configurations when the CLC is confined in a cylinder. It is found that when perturbations
are assumed to preserve the cylindrical symmetry of the problem, the second variation functional
at these equilibrium configurations can be regarded as a sum of two independent functionals: one
is associated with azhimutal perturbations, the other with radial ones. Sections 4.4.1 and 4.4.2
are devoted to the study of their positivity whenever k1, k3 ≥ 1 (according to the experimetal
investigations reported for ordinary CLCs), which ensures the local stability of the escaped twist
configurations with respect to these two types of perturbations within Oseen-Frank’s theory. For
completeness, the argument in Appendix 4.C involves the values of k3 ∈ (0, 1).

Escaped twist (ET) solutions are valid only if the Ericksen’s inequality K22 ≥ K24 (1.8) is
violated. For K24 < K22 the trivial solution is the only solution of the equilibrium equation
and it is stable; as explained in Section 4.3.1 this is guaranteed by the validity of the Ericksen’s
inequality (1.8). The ET configurations represent the branches of a bifurcation occurring at
K24 = K22 where they coincide with the trivial solution. They share the same bulk free-energy
given by (1.44), which decreases continuously from zero as K24 increases beyond K22: this makes
the uniform configuration unstable with respect to generic perturbations and the system settles
in one of the two locally stable configurations with the same probability, (1.42) or (1.43).
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4.2 Dynamical Problem

As first found in [10], when B is a capillary of radius R and height L, then Oseen-Frank’s free-
energy functional within the class of orientation fields described by (1.25) is given by (1.29). We
reduce this functional to an analogous autonomous dynamical problem by the change of variables

t (ρ) := − ln (ρ) , (4.1)

where t has the meaning of artificial time and maps [0, 1] onto [0,+∞]. In particular, the axis
of the cylinder at ρ = 0 is approached in the new variable when t is sent to infinity, while t = 0
corresponds to the surface of the cylinder at ρ = 1. Moreover β becomes a function on [0,∞),
which is defined by

b(t(ρ)) := β(ρ), (4.2)

and inserting (4.2) into (1.29), by use of

dt = −1

ρ
dρ, (4.3)

we give F in (1.29) the following dimensionless form:

F [b] :=
Fb

2πK22L
=

∫ ∞
0

(
ḃ2

2
+ φ(b)

)
dt− ϕ0(b(0)), (4.4)

for which we have employed the notations

φ(b) :=
sin2 b cos2 b

2
+
k3 sin4 b

2
. (4.5)

ϕ0(b) := −(1− 2k24)

2
sin2 b (4.6)

Our analysis will resort here to Weierstass’ theory for one dimensional Lagrangian conserva-
tive motions; the functional in (4.4) is quadratic in ḃ and bounded for b ∈ [0, b(0)], and the bulk
free-energy density is interpreted as the Lagrangian of this peculiar dynamical system given by
the sum of a kinetic and a potential energy,

L :=
ḃ2

2
+ φ(b). (4.7)

Here, b = b(t) is the single Lagrangian parameter which describes the configuration of the
Lagrangian system under the assumptions that the holonomic constraints acting upon it do not
depend explicitly on time and that the active force exerted on the system is conservative and
can be derived from the potential φ = φ(b). The kinetic energy of this system is T (ḃ) = ḃ2/2.

We call orbits all solutions to the equation of motion

d

dt

∂L
∂ḃ

=
∂L
∂b
, (4.8)

which here reads as
b̈ = φ′(b), (4.9)

and which obey the natural condition at the boundary obtained through vanishing the conjugate
moment in order to have no moment flow at both initial ti and final tf instants(

∂L
∂ḃ

+
∂ϕ0(b)

∂b

)
= 0 for t ∈ {ti, tf} ; (4.10)
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making use of the formulae (4.7), (4.5) and (4.6), (4.10) gives

ḃn = ḃn(b) := (1− 2k24) sin b cos b, for t ∈ {0,∞} . (4.11)

At first, the surface term ϕ0(b0) in (4.4), which is an additive constant depending only on the
initial condion q0, is not taken into account. Multiplying both sides of (4.9) by ḃ and integrating,
we arrive at the conservation law

ḃ2

2
= φ(b) +

c

2
, (4.12)

where c is an integration constant. Here, the integral of energy given by the difference of the
kinetic and the potential energies evaluated on the orbits takes throughout the motion one and
the same value, Ec = c/2, which depends on the particular level curve for the value of c selected.

The first qualitative feature of the motion we learn from (4.12) is that, since the kinetic
function is a positive function vanishing only if ḃ = 0, the motion is confined to the regions
where φ(b) ≥ −E, or, equivalently, to the regions where φ(b) ≥ −c/2. When c ≤ 0 the range of
the values of the parameter b may attain splits into allowed and prohibited intervals, separated
by barriers, that is configurations b̄ such that φ(b̄) = −c/2. When c > 0 and due to the non-
negativity of φ in (4.5), no barriers exists and the system is not confined to the interval of b
where the initial condition happens to lie.

We read the equations (4.9) and (4.11) in the phase space (b, ḃ); the phase diagrams of these
system for the representative values k3 = 30, k24 = 7.5 [32] is depicted in Figure 4.1. We restrict
to values of b which spans [0, π] and the b-axis, being angular, wraps onto itself after π radians.
Moreover, we overlook for a moment (4.11), by taking a generic initial condition b0 := b(0)
away from a barrier, if there are any. In this case, two branches of solutions depart from b0,
depending on whether ḃ0 := ḃ(0) is positive or negative. Through the conservation law (4.12),
these solutions are obtained by solving by separation of variables

ḃ := ±
√

2φ(b) + c, (4.13)

with φ as in (4.5). For a fixed value of c, the two curves in the phase space given by (4.13) are
symmetric under reflections about the axis ḃ = 0. We suppose, for sake of argument, that ḃ0 < 0
and by (4.13) the time needed to reach a generic configuration b < b0 is given by the inverse of
function b = b(t), which is delivered by

t = −
∫ b

b0

1√
2φ(η) + c

dη. (4.14)

We note that the integrand of (4.22) can diverge only at the barriers, if there are any, where its
denominator vanishes.

After this brief introduction, we recall that the orbits verify the natural boundary conditions
at t = 0 and so they must depart from a point (b0, ḃn(b0)) on the curve (4.11) in the phase space
(red line in Fig 4.1). Whenever k24 > 1, if b0 spans [0, π/2), then ḃn(b0) is negative and the orbit
starts following the negative branch of the solution (4.13). We confine attention to this case.

The admissible values of c are always greater than −k3 in order to ensure the positivity of
the radicand in (4.13), while not all values of c > 0 guarantee an initial value b0 at which the
corrisponding orbit crosses the curve of the natural conditions. As illustrated in Figure 4.1,
trajectories for c < 0 always intersect the curve (4.11) in

b1 := arcsin

√
2k24(k24 − 1) +

√
4k2

24(k24 − 1)2 − c[k3 + 4k24(k24 − 1)]

k3 + 4k24(k24 − 1)
, (4.15)
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Figure 4.1: Reduced elastic constants are k3 = 30 and k24 = 7.5; phase portrait for
b ∈ [0, π] of the dynamical system generated by the minimized Lagrangian. The b-axis
wraps onto itself after π radians. Here, the orbits for c = −20 (dark green line), c = 0

(blue line) and c = 20 (black line) have been underlined, with attention to the
orientation. Generally, an orbit, which follows the level curve for an admissible value of c,
departs from a point on the curve of the natural conditions (4.11) (red line). When c > 0,

there are four possible orbits. When c < 0, the motion is periodic and the more c
decreases towards −k3, the more the corresponding orbit embraces the point (π/2, 0) in

the phase space. Finally, for c = 0, the blue orbits are the unique solutions to the
equation of motion which depart from and reach the manifold (4.11) in an infinite time
and with a finite energy. By considering t = − ln ρ, these latter orbits coincide with the

ET configuration in (1.42) and (1.43)

while whenever c ≥ 0 another intersection is attained between the manifold and the negative
branch of solutions (4.13)

b2 := arcsin

√
2k24(k24 − 1)−

√
4k2

24(k24 − 1)2 − c[k3 + 4k24(k24 − 1)]

k3 + 4k24(k24 − 1)
. (4.16)

These intersections could exist when the range of the admissible values of c is bounded above by

cmax :=
4k2

24(k24 − 1)2

[k3 + 4k24(k24 − 1)]
. (4.17)

When c = 0, b2 in (4.16) degenerates into 0 and the trajectory for c = 0 separates orbits with
qualitatively different features: for c < 0 the orbits are periodic, while for c > 0 they are open.
This is achieved by the following property: by expanding the potential φ(b) in Taylor series about
a barrier b̄, the Weierstrass theory for one-dimensional Lagrangian motion shows that the time
needed to arrive at the barrier is finite when φ′(b̄) 6= 0, and so when there is no generalized force
exerted on the system in b̄, whereas it is infinite when φ′(b̄) = 0. Here φ′ is given by

φ′(b) = 2 cos b sin b
[
cos2 b+ (2k3 − 1) sin2 b

]
, (4.18)

and whenever k3 > 1 and b ∈ [0, π] it vanishes at b ∈ {0, π/2, π}. We now restrict attention to
the non-positive values of c, for which barriers b̄ at which 2φ(b̄) = c correspond through (4.13)
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to the values of b at which the orbits cross the b- axis as c ≤ 0 varies, and so to the equilibrium
configurations of the system with ḃ = 0. Whenever c < 0, by evaluating (4.9) for the barrier
b̄, we obtain that b̈ = φ′(b̄) 6= 0 and the system cannot remain in the equilibrium configuration
b̄; since ḃ = 0 there, the solution jumps from the equation in (4.13) for ḃ < 0 to the other,
without suffering discontinuity in b or ḃ. Thus, ḃ reverses its sign while b traverses the same
values attained before, until it takes again the initial value b0 for ḃ > 0. Then, the analysis of
the equation of motion is essentially the same illustrated above, but now applied to the equation
with positive sign in (4.13); b reaches the other barrier at π− b̄ in a finite time since φ′(π− b̄) 6= 0
and the motion is one more time reversed and evolves again towards b0. This is the reason why
every barrier as b̄ or π − b̄ for c < 0 is called inversion point. The evolution of b follows this
pattern just described in a finite time T and repeats it over and over again. Thus the motion
is periodic with a period T . The more c decreases, the more the corresponding orbits embrace
b = π/2 without degenerate into it.

A different situation arises when c ∈ (0, cmax]; b(t) decreases towards b = 0 in a finite time,
since by (4.13) ḃ = −

√
c and the denominator of (4.22) does not vanish although b̈ = 0. Since

b = 0 is not a barrier when c > 0, the motion will continue for b < 0 following the same periodic
pattern but driven forward to π radians, and so on for all the other windows.

Finally, the barrier of the level curve for c = 0 falls in 0 and φ′(0) = 0 by (4.18); this means
that b(t) approaches this barrier indefinetly at a steadily decreasing speed. Every barrier where
φ′ vanishes is called asymptotic limit.

The smooth optimal orbits of the infinite horizon problem minimize the dimensionless func-
tional (4.4) among all admissible orbits of the Lagrangian system (4.13) starting from the curve
of natural conditions (4.11). Making use of (4.12) in (4.4), the scaled free-energy functional
evaluated on the the solutions to the equation of motion is expressed as

Fc :=
F

2πK22L
=

∫ ∞
0

[
2φ(b) +

c

2

]
dt+ ϕ0(b0). (4.19)

There are three possible situations according to the value of c which ranges in the interval
(−k3, cmax]. When c < 0, the equilibrium paths in the phase space exist only if φ(b) > −c/2 =
|c|/2 and so (4.19) is

Fc<0 ≥
∫ ∞

0

|c|
2

dt+ ϕ0(b0), (4.20)

which diverges to +∞. When c > 0, the positivity of the function φ(b) leads to the conclusion
reached above.

This analysis shows that for the initial configuration b0 ∈ (0, π/2) there is only one solution
departing from (4.11) with a finite energy, that is the orbit corresponding to c = 0. (the same
arguments holds for the mirror trajectory when b0 is assumed to be > π/2). The negative branch
in the phase space given by (4.13) for the minus sign, departs from (b01, ḃn(b01)) where by (4.16)

b01 := arctan

(
2
√
k24(k24 − 1)√

k3

)
, (4.21)

and approaches the asymptotic limit b = 0, while the positive branch starting from (π−b10, ḃn(b10))
evolves towards the asymptotic limit b = π. For k3 = 30 and k24 = 7.5, in fig 4.2 blue lines
represent the optimal orbits in the window [0, π] of the phase space, while the red line represents
the curve of the natural condition. These two orbits, as we will see below, correspond to the ET
configuration and its mirror image found in [10, 19], respectively (1.42) and (1.43).

We specialize the analysis to the negative branch of (4.13) when c = 0. This orbit exists only
if k24 > 1, since its slope in the origin of the phase space is −1, while that of the curve of the
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Figure 4.2: Reduced elastic constants are k3 = 30 and k24 = 7.5; whenever k24 > 1 and
b ∈ (0, π/2), the level curve for c = 0 crosses the curve of the natural conditions (4.11)
(red line) at b 6= 0 besides b = 0, the asymptotic limit. When b ∈ (π/2, π) the same

argument holds for b = π instead of 0. The negative branch in the phase space given by
(4.13) for the minus sign, departs from (b01, ḃn(b01)) and approaches b = 0 in an infinite
time, while the positive branch starting from (π − b01, ḃn(π − b01)) evolves toward b = π,

and it will never arrive at it.

natural condition (4.11) is (1− 2k24). When k24 = 1 the two curves are tangent at b = 0 and the
equilibrium configuration coincided with the trivial one, while whenever k24 > 1 an additional
intersection in b 6= 0 verifies. Thus, the two solutions for c = 0 represent the branches of a
bifurcation occurring at k24 = 1, where they coincide with the trivial solution b = 0 or b = π
respectively. The time lapse needed for b to go backwards from b̃01 to a generic configuration
b > 0 is delivered by (4.22) when c=0

t = −
∫ b

b01

dη√
2φ(η)

= −
∫ b

b01

dη

sin η cos η
√

1 + k3 tan2 η
= − [ln g(η)]bb01

= − ln g(b)+ln g(b01), (4.22)

where
g(b) =

1

2
− 1√

1 + k3 tan2 b+ 1
. (4.23)

By truncating the expansion about b = 0 of the second term of (4.22), the time lapse exhibits
the following asymptotic behaviour

Tc=0 ≈ − ln

(
k3

8
b2
)
. (4.24)

and diverges logarithmically as b approaches 0. Thus b(+∞) = 0 when c = 0 and by interpreting
(4.22) for c = 0 as a change of variables, we express the energy (4.19) of this orbit as an integral
of a bounded and monotone function over the bounded interval [0, b01]:

F0[b] =

∫ b01

0

√
2φ(b) db =

∫ b01

0

(
sin b cos b

√
1 + k3 tan2 b

)
db. (4.25)

This scales functional is finite and gives precisely (1.29) found before. Moreover, by solving
(4.22) we get the explicit solution

b(t) := arctan

(
2
√
k24(k24 − 1)e−t√

k3 [k24 − (k24 − 1)e−2t]

)
(4.26)
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which exactly coincides with β0(e−t) for β0 as in (1.42).

4.3 Second Variation of Oseen-Frank’s Free-Energy: General For-
mula

We write Oseen-Frank’s free-energy intended for nematic and cholesteric liquid crystals as

F [n] =

∫
B

{
1

2
K11(divn)2 +

1

2
K22(n · curln+ q0)2 +

1

2
K33|n× curln|2

+K24

[
tr(∇n)2 − (divn)2

]}
dV (4.27)

where B is the region in space occupied by the material. We provide a general formula for the
second variation δ2F at a solution n to the weak form of the Euler-Lagrange equation for F in
(4.27).

The mapping t → np(t) defines for each p ∈ B a trajectory in S2, which for t = 0 crosses
n|p, i.e. it satisfies np(0) = n|p. Thus, as t spans [0,∞), we define the vector field n(t) on B
defined by the instantaneous realizations in time of the collection of the trajectories np(t) for
every point p ∈ B. It describes a path of configurations about the director field n prescribed in
B, with the property that

n(0) = n. (4.28)

Moreover, the constraint of unimodularity on n(t), i.e.

n(t) · n(t) = 1 (4.29)

must be respected as time elapses and differentiating both sides of (4.29) with respect to t, we
get

ṅ(t) · n(t) = 0, (4.30)

where a dot denotes differentiation with respect to t. The vector field defined by

v := ṅ(t)|t=0 (4.31)

is orthogonal to n thanks to the equation (4.30) evaluated at t = 0 and perturbs n in order
to hold valid the unimodularity constraint. In order to satisfy the latter constraint even at the
second order, we further differentiate (4.30) with respect to t arriving at

n̈(t) · n(t) + |ṅ(t)|2 = 0 for every t. (4.32)

Here n̈(t)|t=0, named n̈, fulfills the role of the perturbation of the second order of n. By the
equation (4.32) evaluated at t = 0, we write n̈ as

n̈ = w − v2n, (4.33)

introducing this new arbitrary vector field w with the property of being orthogonal to n. Here
v2 denotes v ·v. In particular, we say that v and w are outer variations (of n) since they perturb
the trajectories np for every p from the outside.

Considering t as a perturbation parameter and making use of

d

dt

[
tr (∇n(t))2

]
=

d

dt

[
I · ∇n(t)2

]
= I · d

dt
∇n(t)2 =I · ˙(∇n(t))∇n(t) + I · ∇n(t) ˙(∇n(t))

=2I · ∇ṅ(t)∇n(t), (4.34)
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and of

d2

dt2

[
tr (∇n(t))2

]
= 2

d

dt
[I · ∇ṅ(t)∇n(t)] = 2I ·

[
∇n̈(t)∇n(t) + (∇ṅ(t))2

]
, (4.35)

we evaluate the first and the second derivatives of the free-energy density (1.3) with respect to
t as

Ẇ (t) =K11 divn(t) div ṅ(t) +K22 [n(t) · curln(t) + q0] · [ṅ(t) · curln(t) + n(t) · curl ṅ(t)]

+K33 [n(t)× curln(t)] · [ṅ(t)× curln(t) + n(t)× curl ṅ(t)]

+2K24 [I · ∇ṅ(t)∇n(t)− divn(t) div ṅ(t)] (4.36)

and

Ẅ (t) = K11

[
div ṅ(t)2 + divn(t) div n̈(t)

]
+K22

{
[ṅ(t) · curln(t) + n(t) · curl ṅ(t)]2

+ [n(t) · curln(t) + q0] [n̈(t) · curln(t) + 2ṅ(t) · curl ṅ(t) + n(t) · curl n̈(t)]}

+K33

{
|ṅ(t)× curln(t) + n(t)× curl ṅ(t)|2

+ [n(t)× curln(t)] · [n̈(t)× curln(t) + 2ṅ(t)× curl ṅ(t) + n(t)× curl n̈(t)]}
+ 2K24

{
I · [∇n̈(t)∇n(t)] + I · ∇ṅ(t)2 − div ṅ(t)2 − divn(t) div n̈(t)

}
. (4.37)

The director field chooses the configuration that minimizes the Oseen-Frank’s energy func-
tional (1.1) in the admissible class

A(n0) =
{
n ∈ H1(B, S2) : n0 ∈ H1(B,S2) is the trace of n on ∂B

}
. (4.38)

We give the name first variation of F at the configuration n to the functional linear in v

δF (n)[v] :=
d

dt
F [n(t)]|t=0 =

∫
B
Ẇ (n(t),∇n(t)) |t=0 dV, (4.39)

and the director fields that represent possible equilibria make the elastic free-energy stationary
at t = 0, i.e. make its first variation (4.39) identically zero. With the aid of (4.28) and (4.31) we
evaluate (4.36) at t = 0 and by (4.39) we derive the weak form of the Euler-Lagrange equation
solved by an equilibrium director field:

∫
B
{K11 divndiv v +K22 (n · curln+ q0) · (v · curln+ n · curlv)

+ K33 (n× curln) · (v × curln+ n× curlv) + 2K24

[
(∇n)t · ∇v∇n− divndiv v

]}
dV = 0

(4.40)

where v is assumed to be sufficiently regular and to perturb n according to the anchoring
conditions prescribed by the problem. This equation coincides with formula (1.22) when W is
Oseen-Frank free-energy density (1.3).

Deciding the stability of F [n] in the vicinity of an equilibrium solution of (4.40) presumes
the analysis of its second variation at that configuration, i.e. of

δ2F (n)[v] :=
d2

dt2
F [n(t)]|t=0 =

∫
B
Ẅ (n(t),∇n(t)) |t=0 dV, (4.41)
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where

Ẅ (n(t),∇n(t)) |t=0 = +K11

[
(div v)2 + divndiv n̈

]
+K22

[
(v · curln+ n · curlv)2 + (n · curln+ q0) (n̈ · curln+ 2v · curlv + n · curl n̈)

]
+K33

[
|v × curln+ n× curlv|2 + (n× curln) · (n̈× curln+ 2v × curlv + n× curl n̈)

]
+ 2K24

[
I · (∇n̈∇n) + I · (∇v)2 − (div v)2 + divndiv n̈

]
. (4.42)

We note that Ẅ (n(t),∇n(t)) |t=0 is linear in n̈ and since the latter is of the form (4.33) the
parts in w and in −v2n are decoupled. Effectively, the integral over B of the part in w vanishes
as it corresponds exactly to (4.40) for n an equilibrium solution and w orthogonal to n. Thus,
the second variation of δ2F [n] is the quadratic functional in the perturbation v of n delivered
by

δ2F (n)[v] =

∫
B

{
(K11 − 2K24)

[
(div v)2 − v2 (divn)2 − (divn)n · ∇v2

]
+K22 (v · curln+ n · curlv)2

+2K22 (n · curln+ q0)
(
−v2n · curln+ v · curlv

)
+K33 |v × curln+ n× curlv|2

+K33 (n× curln) ·
(
n̈× curln− 2v2n× curln−∇v2

)
+2K24

[
tr (∇v)2 − v2 tr (∇n)2 + (n× curln) · ∇v2

]}
dV, (4.43)

where use has been made of the identities in Appendix 4.A (see, e.g., [127, Ch. 2])

4.3.1 Application

We put on test the general formula (4.43) found in the preceding section. In Sec. 4.3.1, when
q0 = 0 the study of δ2F for a constant director field provides the stability of the undistorted
configuration if and only if Ericksen’s inequalities (1.8) are satisfied. In the special case of the
radial hedgehog, treated in Sec. 4.3.1, (4.43) reduces to formula (2.3) of Kinderlehrer & Ou in
[64] when q0 = 0, K24 = 0 and B is the unit ball B in R3.

Uniform Director

For nematic liquid crystals q0 = 0 and Ericksen’s inequalities (1.8) require W (n,∇n) in (1.3) to
attain its minimum on an undistorted configuration, which makesW (n,∇n) identically 0. Thus,
Ericksen’s inequalties imply a positive distortional cost (1.1) associated with any distortion of
the natural state, which also ensures the positivity of the second variation of F at any constant
vector field n. Here, we prove that also the reverse is true. To this aim, we apply the formula
found in (4.43) to the constant director field n0 taken as to coincides with the unit vector ez of
a standard Cartesian frame (ex, ey, ez)

1; the second variation of F at n0 reduces to

δ2F (n0)[v0] =

∫
B

{
(K11 − 2K24) (div v0)2 +K22 (n · curlv0)2 +K33 |n× curlv0|2

+2K24 tr (∇v0)2
}

dV. (4.44)

1We recall that W (n,∇n) is frame-indifferent and the case presented in this Section covers all the other cases
of possible constant vector fields.
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The gradient of the perturbation v0 of n0, whose transpose annihilates n0 to satisfy the constraint
v0 · n0 = 0, is expressed as

∇v0 := ex ⊗ a+ ey ⊗ b, (4.45)

with a and b arbitrary vector fields2. We get from (4.45)

divn0 = ax + by; (4.46a)
n0 · curlv0 = bx − ay; (4.46b)
n0 × curlv0 = −azex − bzey; (4.46c)

tr (∇n0)2 = a2
x + 2aybx + b2y; (4.46d)

where ai and bi for i = x, y, z are the components of a and b in the frame (ex, ey, ez), and so
we arrive at the following form of (4.44):

δ2F (n0)[v0] =

∫
B

{
K11

(
a2
x + b2y

)
+ 2 (K11 −K22 −K24) axby

+K22

(
a2
y + b2x

)
+ 2K24aybx +K33

(
a2
z + b2z

)}
dV. (4.47)

The right-hand side of (4.47) is the sum of three independent quadratic functions, and so
δ2F (n0)[v0] is positive whenever all these functions are not negative. The last one is so if,
and only if, the Ericksen’s inequalities (1.8) are satisfied.

For the frame-indifference of W (n,∇n), there is no loss in restricting the admissible per-
turbations v0 to those with bz = 0, and we note that in the special case in which the gradient
of the perturbation v0 of n0 is assumed to be constant, that is when a and b in (4.45) are
arbitrary constant vectors in V, the second variation of F at any constant vector fields, (4.44),
corresponds to the quadratic form (15) in [30] obtained by Ericksen by defining a local distortion
of the ground state.

Hedgehog

In the special case of the radial hedgehog, nr = er, curln = 0, and divn = 2r, so that (4.43)
reduces to

δ2F (nr)[v] =

∫
B

{
(K11 − 2K24)

[
(div v)2 − 2

r2
v2

]
+K22 (n · curlv)

+2K22q0v · curlv +K33 |n× curlv|2

+2K24

[
tr (∇v)2 − 2

r2
v2

]}
dV, (4.48)

which when q0 = 0, K24 = 0 and B is the unit ball B in R3 coincides with formula (2.3) of
Kinderlehrer & Ou in [64]. Here, they prove that if

8 (K22 −K11) +K33 ≥ 0, (4.49)

then the second variation (4.48) is positive in the class of perturbations v ∈ H1
(
B,R3

)
∩

L∞
(
B,R3

)
with compact support and satisfying v · nr = 0. This ensures the local stability of

nr when (4.49) holds.
2Especially, a and b correspond to ∇(v0)x and ∇(v0)y, respectively, where (v0)i is the component along ei of

v0 for i = x, y.



CHAPTER 4. SECOND VARIATION OF OSEEN-FRANK’S FREE-ENERGY 79

4.4 Local Stability of ET Equilibrium Solutions

As said above, both solutions (1.42) and (1.43) exist only if k24 > 1. Detailed experimental
investigations of the elastic properties were reported for ordinary chromonic liquid crystals in
[141, 140, 142] and it was found that K22 is smaller than both K11 and K33. We thus restrict
attention to k1 ≥ 1 and k3 ≥ 13. This means that K11 is allowed to be smaller than K24 and so
to violate a further Ericksen’s inequality4, but it is always greater than K22.

As K24 increases beyond K22, and thus as k24 increases beyond 1, (1.44) decreases contin-
uously from zero, making the uniform configuration energetically disfavoured and unstable (as
proved in Sec. 4.3.1). The aim of this Section is to explore the stability within the Oseen-Frank’s
theory of the ET configurations when the CLC is confined in a cylinder, though the free-energy
functional (1.1) is unbounded below when a Ericksen’s inequality is violated. Hereafter we re-
strict attention to the increasing branch of the solution given by (1.42), though the outcome of
our analysis would not be different for (1.43). Let nB be the equilibrium director field defined
by

nB = sinβ0(ρ)eθ + cosβ0 (ρ) ez, (4.50)

where β0 = β0(ρ) is the strictly increasing branch of the equilibrium solution as in (1.42). The
study of the stability of the ET configuration is based on the analysis of the second variation of
F at nB, whose expression is found in Section 1.2 and is given by (4.43). We take the vector
field v which perturbs nB to preserve the cylindrical symmetry of the problem; it depends on ρ
in (1.26) and it is given by

v := v(ρ) = f(ρ)er − g(ρ) cosβ0(ρ)eθ + g(ρ) sinβ0(ρ)ez, (4.51)

where the functions f = f(ρ) and g = g(ρ) are absolutely continuous on [0, 1]. We note that v
in (4.51) satisfies v · nB = 0. Degenerate planar anchoring conditions at the capillary surface
(1.6) let g(1) free to vary and prevent v from having a component along er, so

f(1) = 0. (4.52)

The requirement of integrability sets

f(0) = g(0) = 0. (4.53)

It is shown in Appendix 4.B how to derive the following reduced functional which is an
appropriate dimensionless form of δ2F (nB)(v) in the class of orientation fields and perturbations
described by (4.50) and (4.51):

δ2F(nB)[v] =
δ2F (nB)(v)

2πLK22
=

=2

∫ 1

0

{[
−2 cos2 β0 sin2 β0 +

(
− sin2 β0 + cos2 β0

)2
2

+ k3

(
− sin2 β0 + 3 cos2 β0

)
sin2 β0

]
g2

ρ

+
ρg′2

2

}
dρ+ (1− 2k24)

(
− sin2 β0 + cos2 β0

)
g2(1)

+

∫ 1

0

{[
k1 − 2

(
ρβ′0 + cosβ0 sinβ0

)2
+ k3

(
ρ2β′20 + sin2 β0 + 4 cosβ0 sinβ0β

′
0 − 2 sin4 β0

)] f2

ρ

+k1ρf
′2} dρ. (4.54)

3For completeness the argument in Appendix 4.C also covers the values of k3 ∈ (0, 1).
4The material parameters of SSY are K11 = 4.3pN, K22 = 0.7pN and K33 = 6.1pN [141], and so k1 = 6 and

k3 = 8.7. Davidson [19] gave a remarkable value of k24 = 22.5. The obtained value of K24 is at odds with both
Ericksen’s inequalities involving it.
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Integrations by parts have been performed in (4.54) by considering that f(ρ) vanishes at both
end-points of the interval [0, 1] and g(ρ) vanishes at ρ = 0.

In (4.54) the pairs (g, g′) and (f, f ′) are decoupled and δ2F(nB)[v] can be regarded as a sum
of two independent functionals of one of the two pairs. The former functional associated with
the pair (g, g′) corresponds to the second variation δ2F at nB for azimuthal perturbations

vθz := g(ρ) [− cosβ0(ρ)eθ + sinβ0(ρ)ez] , (4.55)

while the latter deals with radial perturbations

vr := f(ρ)er. (4.56)

Sections 4.4.1 and 4.4.2 are devoted to their illustration and to the study of their positivity,
which guarantees the local stability of the ET configuration with respect to these two types of
perturbations. This ensures the local stability of the ET configuration.

4.4.1 Azimuthal Perturbations

The stability of the ET solution for azimuthal perturbations of the type (4.55) is guaranteed by
the non-negativity of the following functional which depends on the pair (g, g′):

δ2Fθz(nB)(vθz) =
δ2F (nB)(v)

2πLK22
=

=2

∫ 1

0

{[
−2 cos2 β0 sin2 β0 +

(
− sin2 β0 + cos2 β0

)2
2

+ k3

(
− sin2 β0 + 3 cos2 β0

)
sin2 β0

]
g2

ρ

+
ρg′2

2

}
dρ+ (1− 2k24)

(
− sin2 β0 + cos2 β0

)
g(1)2, (4.57)

where the functions g = g(ρ) in the domain of δ2Fθz(nB)(vθz) are absolutely continuous functions
on [0, 1] and satisfy g(0) = 0, (4.53). The function β0(ρ) defined by (1.42) is strictly increasing
on [0, 1] and induces a change of variables which maps [0, 1] onto [0, β1

0 ], where

β1
0 := β0(1) = arctan

(
2
√
k24 (k24 − 1)√

k3

)
. (4.58)

In the new variable, g = g(ρ), which is an arbitrary function of ρ, can be regarded as an absolute
continuous function ĝ on [0, β1

0 ] defined by

ĝ (β0(ρ)) := g(ρ), (4.59)

with ĝ(0) = 0, since (4.53) holds. With the aid of (4.59) and of

dρ =
ρ

sinβ0

√
cos2 β0 + k3 sin2 β0

dβ0 (4.60)

the functional in (4.57) can be given the form

δ2Fθz(nB)(vθz) =

∫ β1
0

0

{
1

sinβ0

√
cos2 β0 + k3 sin2 β0

[
(− sin2 β0 + cos2 β0)(cos2 β0 + (2k3 − 1) sin2 β0)

+4(k3 − 1) cos2 β0 sin2 β0

]
ĝ2 + sinβ0

√
cos2 β0 + k3 sin2 β0ĝ

′2
}

dβ0

+ (1− 2k24)
[
− sin2 β1

0 + cos2 β1
0

]
ĝ(β1

0)2, (4.61)
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where the prime denotes differentiation with respect to β0. As is clear from (4.58), the extreme
of integration β1

0 depends on k3 and on k24 and to resettle this dependence into the integrand,
we define another change of variables β0 → u(β0) as follows

u(β0) :=
sinβ0

A
, (4.62)

which is increasing for β0 ∈ [0, β1
0 ] with β1

0 < π/2 and where the parameter A ∈ (0, 1) is related
to both k3 and k24 through

A := sinβ1
0 = sinβ0(1) =

2
√
k24(k24 − 1)√

k3 + 4k24(k24 − 1)
. (4.63)

We do not consider both values A = 0 and A = 1, since the former corresponds to k24 = 1 for
which Ericksen’s inequalities still hold and the ET configuration coincides with the trivial one,
while the latter is reached by k24 = ∞ when k3 > 0. The change of variables (4.62) maps the
interval [0, β1

0 ] onto [0, 1] and, in the new variable, ĝ becomes a function on [0, 1], which is defined
by

U(u(β0)) := ĝ(β0), (4.64)

and belongs to the class
AUθz := {U ∈ AC[0, 1] : U(0) = 0} . (4.65)

Inserting (4.64) into (4.61) and by use of

dβ0 =
A√

1− (Au)2
du, (4.66)

we give δ2Fθz(nB)(vθz) the following form:

δ2Fθz(nB)(vθz) =

∫ 1

0

{
1

u
√

1− (Au)2
√

1 + (k3 − 1)(Au)2

[(
1− 2(Au)2

) (
1 + 2(k3 − 1)(Au)2

)
+4(k3 − 1)(1− (Au)2)(Au)2

]
U2 + u

√
1− (Au)2

√
1 + (k3 − 1)(Au)2U ′2

}
du

+ (1− 2k24)(1− 2A2)U(1)2, (4.67)

where a prime now denotes differentiation with respect to the variable u.
We wish to discuss the role played by the constitutive parameters k3 ∈ [1,∞) and k24 ∈ (1,∞)

in determining the non-negativity of (4.67). To this end the structure of the second variation
(4.67) suggests to study the problem through the independent parameters (k3, A) ranging in the
strip S := {(k3, A) : 1 ≤ k3 <∞, 0 < A < 1}. Indeed, by regarding k24 as the strictly increasing
function of A given by

k24 =

√
1−A2 +

√
1 + (k3 − 1)A2

2
√

1−A2
, (4.68)

that k3 is independent of A follows from the one-to-one correspondence between the pairs
(k3, k24) ∈ [1,∞) × (1,∞) and (k3, A) ∈ S ensured by the non vanishing Jacobian determinant
of the coordinate conversion

J :=
k3

2

A

(1−A2)3/2
√

1 + (k3 − 1)A2
. (4.69)

By (4.68) we easily express (4.67) in terms of (k3, A) ∈ S as

δ2Fθz(nB)(vθz) =

∫ 1

0

[
ϕ(k3, A, u)

γ(k3, A, u)
U(u)2 + γ(k3, A, u)U ′(u)2

]
du+ q0(k3, A)U(1)2, (4.70)
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where, we have employed the following notations

ϕ = ϕ(k3, A, u) :=
(
1− 2(Au)2

) (
1 + 2(k3 − 1)(Au)2

)
+ 4(k3 − 1)(1− (Au)2)(Au)2, (4.71a)

γ = γ(k3, A, u) :=u
√

1− (Au)2
√

1 + (k3 − 1)(Au)2, (4.71b)

q0 := q0(k3, A) :=−
(1− 2A2)

√
1 + (k3 − 1)A2

√
1−A2

. (4.71c)

A condition for the positivity of the functional (4.70) arises when we treat U and U ′ as
independent variables. In this case, the coefficients of U2, U ′2 and U(1)2 are required to be
positive, i.e. γ(k3, A, u), ϕ(k3, A, u) and q0(k3, A) must be so. Since γ(k3, A, u) is non-negative
for every (k3, A, u) ∈ S× [0, 1] and q0(k3, A) > 0 whenever A ≥ 1/

√
2 and vanishes at A = 1/

√
2,

the non-negativity of (4.70) is ensured for those values of (k3, A) ∈ [1,∞) × [1/
√

2, 1) whereby
ϕ(k3, A, u) is positive for every u ∈ [0, 1]. This happens whenever

A ≤ Ap(k3) :=

√
3k3 − 4 +

√
(3k3 − 4)2 + 8(k3 − 1)

8(k3 − 1)
, for k3 ≥ 1, (4.72)

and, since Ap(1) = 1/
√

2, the stability of the ET solution is trivially guaranteed for

(k3, A) ∈ [1,∞)×
[

1√
2
, Ap(k3)

]
. (4.73)

This region of the strip S is illustrated in Figure 4.3.

Figure 4.3: The blue region between the graph of Ap against k3 for k3 ≥ 1 and the
horizontal line A = 1/

√
2 (the first curve crosses the second one at k3 = 1) represents the

values of k3 and A for which both functions ϕ and q0 are positive. This is a trivial
condition which ensures the positivity of (4.70).

The stability of the ET solution is proved for every (k3, A) ∈ S through [71, Lemma 2.1] for
c = p = 2. This Lemma is stated below in the form needed to our development:

Lemma 1. [71, Lemma 2.1] Suppose [a, b] interval in R. Let Ũ = Ũ(u) ∈ AC[a, b] and there
exists two functionals Q(u, t) and G(u, t) satisfying the following conditions:

• t is in the range of the function Ũ = Ũ(u);
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• Q(u, Ũ(u)) is integrable for u ∈ [a, b];

• G(u, Ũ(u)) is absolutely continuous for u ∈ [a, b].5

Then∫ b

a
Q(u, Ũ(u))Ũ ′(u)2 du ≥ −

∫ b

a

[
Q(u, Ũ(u))−1G2

Ũ
+ 2Gu

]
du+ 2

[
G(b, Ũ(b))−G(a, Ũ(a))

]
,

(4.74)
where G

Ũ
= ∂G(u, Ũ)/∂Ũ and Gu = [∂G(u, t)/∂u] |

t=Ũ
.

Since
[
√
γU ]′ =

γ′

2
√
γ
U +

√
γU ′, (4.75)

the integration over [0, 1] of the term γU ′2 in (4.70) yields∫ 1

0
γU ′2 du =

∫ 1

0

{[
(
√
γU)′

]2 − γ′2

4γ
U2 − γ′UU ′

}
du (4.76)

where the dependence of U and U ′ on u and of γ and γ′ on k3, A and u has been omitted.
The functions

Ũ =
√
γU, Q(u, Ũ) = 1, G(u, Ũ) =

3

4

γ′

γ
Ũ2 =

3

4
γ′U2, (4.77)

obey the conditions (i), (ii) and (iii) of Lemma 1 when U ∈ AUθz and γ is as in (4.71b), and so
the lower estimate (4.74) applies to the first addend on the right-hand side of (4.77);∫ 1

0

[
(
√
γU)′

]2
du ≥ −

∫ 2

0

[
3

4

γ′2

γ
+

3

2
γ′′
]
U2 dU +

3

2
γ′|u=1U(1)2. (4.78)

Making use of (4.78) in (4.75) and integrating by parts its third addend with the boundary
condition U(0) = 0 for U ∈ AUθz, the following inequality holds:∫ 1

0
γU ′2 du ≥

∫ 1

0

[
−γ
′2

γ
− γ′′

]
U2 du+ γ′|u=1U(1)2. (4.79)

This shows that for all values of (k3, A) ∈ S the scaled functional (4.70) which represents the
second variation δ2F at nB for azimuthal perturbations is bounded from below in AUθz as follows:

δ2Fθz(nB)[vθz] ≥
∫ 1

0

[
ϕ(k3, A, u)

γ(k3, A, u)
− γ′(k3, A, u)2

γ(k3, A, u)
− γ′′(k3, A, u)

]
U(u)2 du

+
[
q0(k3, A) + γ′(k3, A, 1)

]
U(1)2. (4.80)

Consequently, δ2Fθz(nB)(vθz) is certainly positive when the coefficient of U2 and the surface
term are positive, and so when both of the following inequalities hold

ϕ(k3, A, u)

γ(k3, A, u)
− γ′(k3, A, u)2

γ(k3, A, u)
− γ′′(k3, A, u) ≥ 0, q0(k3, A) + γ′(k3, A, 1) ≥ 0. (4.81)

5If p − 1 is not a quotient of two positive odd integers, then G(u, t) is assumed to be also increasing with
respect to t. Here p− 1 = 2− 1 = 1 and this condition can be omitted.
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Substituting the expression given in (4.71) for ϕ, γ and q0 we get that this happens whenever

7A2u√
1 + (k3 − 1)(Au)2

√
1− (Au)2

[
4

7
+ (k3 − 1)(Au)2

]
≥ 0, (4.82a)

A2(1−A2)√
1 + (k3 − 1)(Au)2

√
1− (Au)2

(k3 − 1) ≥ 0, (4.82b)

i.e. for every (k3, A) ∈ S. Thus, the ET solutions given by (1.42) and (1.43) are locally stable
for the Oseen-Frank’s free-energy F with respect to azimuthal perturbations for every value of
(k3, k24) ∈ [1,∞)× (1,∞), which are all the admissible values of the scaled elastic constants for
CLCs. In this range, δ2Fθz(nB)(vθz) is strictly positive for all functions U 6= 0 in AUθz and, only
in the limiting case when A = 0, i.e. when K24 = K22, there can exists functions U 6= 0 that
make it vanish (e.g. U(u) =

√
3u). This complies with the validity of the Ericksen’s inequalities

when A = 0; this value marks the onset of the bifurcation of the ET solutions from the trivial
one and the minimum of the free-energy is zero.

Only values of k3 characteristic of CLCs have been taken into account in our discussion. In
Appendix 4.C the local stability of the ET configurations is explored through spectral methods.

4.4.2 Radial Perturbations

Following the same lines of thought outlined in Section 4.4.1, we deduce the local stability of the
ET solution for radial perturbations of the type (4.56) by proving that the scaled functional in
(4.54) associated with the pair (f, f ′)

δ2Fr(nB)[vr] =

∫ 1

0

{[
k1 − 2

(
ρβ′0 + cosβ0 sinβ0

)2
+ k3

(
ρ2β′20 + sin2 β0

+4 cosβ0 sinβ0β
′
0 − 2 sin4 β0

)] f2

ρ
+ k1ρf

′2
}

dρ (4.83)

is not negative for any absolutely continuous function f = f(ρ) satisfying (4.53) and (4.52). The
terms in (4.83) multiplied by k1 are positive and we can lower Fr(nB)[vr] if we replace k1 by the
lower admissible value for ordinary LCLCs, i.e. 1. We then apply the change of variables (4.66)
employed in Section 4.4.1, and for k1 = 1 (4.83) can be rewritten as

δ2Fr(nB)(vr) =

∫ 1

0

[
ϕr(k3, A, u)

γ(k3, A, u)
Ur(u)2 + γ(k3, A, u)U ′r(u)2

]
du. (4.84)

The functions admissible for (4.84) are members of the class

AUrr := {Ur ∈ AC[0, 1] : Ur(0) = Ur(1) = 0} . (4.85)

Here, γ = γ(k3, A, u) coincides with the function found for azimuthal perturbation whose
expression is given in (4.71b), while ϕr accords with

ϕr = ϕr(k3, A, u) :=1 + 2(k3 − 2)(Au)2 + (k3 − 4)(k3 − 1)(Au)4

+4(k3 − 1)(Au)2
√

1− (Au)2
√

1 + (k3 − 1)(Au)2. (4.86)

Here the trivial condition for the positive definiteness of the density of (4.83), which arises
when U and U ′ are treated as independent variables, amounts to the positivity of the term
multiplied by U2, and so of ϕr = ϕr(k3, A, u). Whenever k3 < 2.61, the values of (k3, A) ∈ S
for which this function is positive for every u ∈ [0, 1] corresponds to region below the graph in
Figure 4.4 , while whenever k3 ≥ 2.61 this happens for every A ∈ (0, 1).
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Figure 4.4: The blue region below the graph represents the values of k3 and A for which
the positivity of (4.84) is ensured by the positivity of the function ϕ̃ which is the trivial
condition for the positivite definiteness of the density of (4.70). The function illustrated
here reaches 1 at k3 = 2.61 and whenever k3 > 2.61 δ2Fr(nB)(vr) is positive for every

A ∈ (0, 1).

Following the same lines described above, where the pivotal role is played by [71, Lemma
2.1], the same lower bound (4.80) found in Section 4.4.1 for the second variation holds also when
the perturbations are radial, and so when Ur belongs to AUrr , (4.85). Thus (4.84) is lowered by

δ2Fr(nB)(vr) ≥
∫ 1

0

[
ϕr(k3, A, u)

γ(k3, A, u)
− γ′(k3, A, u)2

γ(k3, A, u)
− γ′′(k3, A, u)

]
Ur(u)2 du. (4.87)

and to make δ2Fr(nB)(vr) positive in the appropriate class of perturbations, the following in-
equality, where use has been made of (4.86) and (4.71b), is requested to be satisfied

ϕr
γ
− γ′2

γ
− γ′′ = 4A2u√

1− (Au)2
√

1 + (k3 − 1)(Au)2

[
(k3 − 1)

√
1− (Au)2

√
1 + (k3 − 1)(Au)2

+
1

4
(Au)2(k3 + 11)(k3 − 1)− k3 + 2

]
≥ 0. (4.88)

This happens whenever for every (k3, A) ∈ S. The values of k3 ∈ (0, 1) are considered in
Appendix 4.C.1

4.A Mathematical Tools

Here I recall all the mathematical tools that are extensively employed in deriving the general
formula for the second variation of Oseen-Frank’s free-energy.

div (αn) = α divn+ n · ∇α, (4.89a)
curl (αn) = α curln+∇α× n, (4.89b)

a× (b× c) = b (a · c)− c (a · b) , (4.89c)
∇ (αn) = α∇n+ n⊗∇α, (4.89d)
tr(αA) = α trA, (4.89e)

tr(a⊗ b) = a · b, (4.89f)

which hold for every α ∈ R, a and b in the translation space V andA in L (V) := {L : V → V : L is linear} .
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4.B Distortions

In this Appendix, we justify the expression for the reduced functional (4.54) which is an ap-
propriate dimensionless form of δ2F (nB)(v) in the class of orientation fields and perturbations
described by (4.50) and (4.51). It follows from (4.50) and (4.51) that

∇nB =
1

R

(
−sinβ0

ρ
er ⊗ eθ + cosβ0β

′
0eθ ⊗ er − sinβ0β

′
0ez ⊗ er

)
, (4.90a)

divnB = 0, (4.90b)

nB · curlnB =
1

R

(
β′0 +

cosβ0 sinβ0

ρ

)
, (4.90c)

nB × curlnB =
1

R

(
sin2 β0

ρ

)
er, (4.90d)

tr (∇nB)2 =
1

R2

(
−2 cosβ0 sinβ0β

′
0

ρ

)
, (4.90e)

∇v =
1

R

[
f ′er ⊗ er +

g cosβ0

ρ
er ⊗ eθ +

(
g sinβ0β

′
0 − cosβg′

)
eθ ⊗ er

+
f

ρ
eθ ⊗ eθ +

(
sinβ0g

′ + g cosβ0β
′
0

)
ez ⊗ er

]
, (4.91a)

div v =
1

R

(
f ′ +

f

ρ

)
, (4.91b)

v · curlv =
1

R

[
g2

(
β′0 −

sinβ0 cosβ0

ρ

)]
, (4.91c)

v2 = f2 + g2, (4.91d)

∇v2 =
1

R2

(
2ff ′ + 2gg′

)
, (4.91e)

tr (∇v)2 =
1

R2

[
f ′2 +

f2

ρ2
+

2g cosβ0

ρ

(
g sinβ0β

′
0 − cosβ0g

′)] , (4.91f)

v · curlnB =
1

R

(
g sinβ2

0

ρ

)
, (4.92a)

n · curlv =
1

R

[
−g′ − g cos2 β0

ρ

]
, (4.92b)

v × curlnB =
1

R

[
−g
(
β′0 +

sinβ0 cosβ0

ρ

)
er − f

(
sinβ0

ρ
+ cosβ0β

′
0

)
eθ

+f sinβ0β
′
0ez
]
, (4.92c)

nB × curlv =
1

R

[
g

(
β′0 −

sinβ0 cosβ0

ρ

)
er

]
, (4.92d)

(v × curlv) · er =
1

R

(
gg′ +

g2 cos2 β0

ρ

)
, (4.92e)

where a prime denotes the differentiation with respect to ρ. By the change of variables r → ρ(r)
where ρ = ρ(r) is given by (1.26) and making use of (4.90), (4.91) and (4.92) in (4.43), we arrive
at the reduced functional in (4.54).
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4.C Legendre Polynomials for k3 < 1

We rewrite the functional δ2Fθz(nB)(vθz) given by (4.70) in Section 4.4.1, i.e. the dimensionless
form of the second variation at nB for azimuthal perturbations vθz, in a form which is especially
expedient to the application of the principal results of [47, Ch. 6] for the class of singular
Sturm-Liouville Eigenvalue Problems-II with separated boundary conditions:

δ2Fθz(nB)(vθz) =

∫ 1

0

[
q(k3, A, u)U(u)2 + p(k3, A, u)U ′(u)2

]
du+ q0(k3, A)U(1)2, (4.93)

where we have employed the following notations

q(k3, A, u) =
ϕ̃(k3, A, u)

u
, where ϕ̃(k3, A, u) :=

(
1− 2(Au)2

) (
1 + 2(k3 − 1)(Au)2

)√
1− (Au)2

√
1 + (k3 − 1)(Au)2

, (4.94a)

p(k3, A, u) = uγ̃, where γ̃(k3, A, u) :=
√

1− (Au)2
√

1 + (k3 − 1)(Au)2, (4.94b)

and q0 = q0(k3, A) as in (4.71c). The prime denotes differentiation with respect to u and we
note that ϕ̃ and γ̃ reads in the notation introduced in (4.71) as uϕ/γ and γ/u, respectively. The
Euler-Lagrange equations of (4.93) subject to the constraint that the L2-norm of the admissible
functions U = U(u) in the class Aθz is held fixed to 1, i.e.∫ 1

0
U(u)2 du = 1, (4.95)

corresponds to the eigenvalue problem for a Sturm-Liouville differential equation, which here is
in the form

−
[
p(k3, A, u)U ′(u)

]′
+ q(k3, A, u)U(u) = λU(u) for u ∈ (0, 1), (4.96a)

U(0) = 0, (4.96b)
p(k3, A, 1)U ′(1) + q0(k3, A)U(1) = 0. (4.96c)

Here, λ is an arbitrary scalar field defined in [0, 1] which can be interpreted as the Lagrange
multiplier associated with the isoperimetric constraint (4.95).

The functions ϕ̃ and γ̃ in (4.94), U ∈ AUθz and q0 in (4.71c) obey the steading assumptions of
the singular Sturm-Liouville Eigenvalue Problems-II stated in [47, Ch. 6] for [a, b] = [0, 1] and
r(u) = 1 (for every u ∈ [0, 1]); indeed, ϕ̃ is real valued and continuous on [0, 1] and do not vanish
at u = 0, γ̃ is positive and continuous on [0, 1], |U(0)| <∞ and |γ(1)|+ |q0| 6= 0.

We reproduce below the main results (c.f. [47, Lemma 176, Theorem 182, Theorem 184])
of [47, Ch. 6] concerning the classification of the eigenvalues λ of (4.96) and the regularity of
the corresponding eigenvectors U = U(u) 6= 06.

Theorem 1. [47, Lemma 176, Theorem 182, Theorem 184] If U(u) is an eigenfunction of
(4.96), then U(u) is continuous on [0, 1], U(0) = 0, limu→0 p(k3, A, u)U ′(u) = 0 and U(u) is
continuously differentiable on 0 < u ≤ 1 and satisfies the Sturm-Liouville differential equation
(4.96a) there. In particular, the Sturm-Liouville eigenvalue problem (4.96) has an infinite se-
quence of real eigenvalues {λn}∞n=0 and a corresponding sequence of real-valued eigenfunctions
{Un}∞n=0 with the following properties:

(i) Each eigenvalue is simple (has both algebraic and geometric multiplicity 1). Moreover,
6U = U(u) is the eigenfunction corresponding to λ if (4.96) is satisfied for the pair λ and U .
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– if p(k3, A, 1)q0 ≥ 0, i.e. if A ≥ 1/
√

2 by (4.94b) and (4.71c), at most a finite number
of the eigenvalues are negative and the sequence of eigenvalues is unbounded; hence,
the eigenvalues can be listed as λ0 < λ1 < .. < λn < .., with λn →∞ as n→∞,

– p(k3, A, 1)q0 < 0, i.e. if 0 < A < 1/
√

2, the preceding property is established in
the weaker form that the eigenvalues are real, simple, and can be listed by increasing
absolute value as |λ0| < |λ1| < .. < |λn| < .., with |λn| → ∞ as n→∞;

(ii) The corresponding eigenfunctions can be chosen real-valued and orthonormal with weight
function 1, ∫ 1

0
Uj(u)Uk(u) du = δj,k, (4.97)

where δj,k is the Kronecker delta. If, in addition to the standing assumptions, the singular
Sturm-Liouville eigenvalue problem (4.96) satisfies p(k3, A, 1)q0 ≥ 0, i.e. A ≥ 1/

√
2, the

eigenfunctions {Un}∞n=0 can be chosen such that they form a Tchebycheff system on [0, 1]
for each n. Consequently, the following oscillatory and approximation properties hold:

– Un has n nodal (counted once) zeros in (0, 1) and no other zeros there.

– The zeros of Un−1 and Un strictly interlace on (0, 1).

The smallest eigenvalue λm of the singular eigenvalue problem (4.96) satisfies the minimum
of the second variation functional (4.93) over all functions U 6= 0 satisfying the isoperimetric
constraint (4.95), (4.96b) and the Robin condition at u = 1 (4.96c). This minimum is achieved
by the eigenfunction Um corresponding to the smallest eigenvalue λm. The instability of the
Burylov solution against azimuthal perturbations occurs whenever (4.93) is negative for some
functions in the class AUθz, and thus, within the Sturm-Liouville theory, whenever the sign of
λm is negative. To determine the smallest eigenvalue λm of (4.96), we study a Sturm-Liouville
Problem with a finite spectrum. We regard the possible eigenfunction U = U(u) corresponding
to λm as the sum of n odd Legendre harmonics P2i−1(u) for i = 1 . . n,

U(u) =
n∑
i=0

c2i−1P2i−1(u), (4.98)

in order to satisfy the requirements posited on U , i.e. (4.95), (4.96b) and (4.96c) above. This
argument is justified within the Sturm-Liouville theory, since Theorem 1 concerns the lower
bound on the sequence of eigenvalues at least when A ≥ 1/

√
2 and ensures the regularity of the

eigenfunctions of (4.96) (c.f. properties (ii) and (iii)). Each of the P2i−1(u) vanishes at u = 0 to
make sure that U(u) = 0 and is taken to be subject to the isoperimetric constraint (4.95); thus
it can be expressed as

P2i−1 = P2i−1(u) :=

√
4i− 1

22i−1(2i− 1)!

d2i−1

du2i−1

[
(u2 − 1)2i−1

]
. (4.99)

To satisfy the Robin condition at u = 1 (4.96c) a linear constraint on the constants c2i−1 for
i = 1 . . n arises

n∑
i=0

c2i−1

√
4i− 1i(2i− 1) =

1− 2A2

1−A2

n∑
i=0

c2i−1

√
4i− 1 (4.100)

where use has been made of the expression for p = p(k3, A, u) and q0 = q0(k3, A) given by (4.94b)
and (4.71c).
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By (4.99), the constraint on the L2-norm of U = U(u) (4.95) results in a non-linear condition
on the c2i−1

n∑
i=0

(c2i−1)2 = 1. (4.101)

Equilibrium is attained whenever the functional δ2Fθz(nB)(vθz) in (4.93) subject the con-
straints on the length of U = U(u) (4.95) and on its boundary condition at u = 1 (4.96c) is
minimized. To this end, let δ2F∗θz(nB)(vθz) be the functional defined by

δ2F∗θz(nB)(vθz) = δ2Fθz(nB)(vθz)− λ
[∫ 1

0
U(u)2 du− 1

]
− µ

[
p(1)U ′(1) + q0U(1)

]
(4.102)

where λ and µ are the Lagrange multipliers associated with the two constraints, respectively.
Since, as obtained in Section 4.3, the second variation is a quadratic functional in the perturbation
v of n, substituting for U = U(u) the function given by (4.98) in (4.102) leads us to a quadratic
form of the constants c2i−1 for i = 1 . . n, whose differentiation with respect to them gets n + 1
linear equations in the c2i−1. Hence, we consider the extended linear homogeneous system
constituted by those n− 1 equations and by the Robin condition (4.100) in the n+ 1 unknowns
c2i−1 for i = 1 . . n and µ. Considering λ as a parameter of the system, the finite number of
eigenvalues of the Sturm-Liouville problem posed above is found through the request that the
system is underdetermined to enable non trivial solutions in addiction to the trivial one where
all the unknown c2i−1 for i = 1 . . n and µ are zero. Thus, the eigenvalues are the roots of
the polynomial in λ defined by the determinant of the augmented matrix which represents the
system. The smallest root λm corresponds to the minimum eigenvalue of δ2Fθz(nB)(vθz) in
(4.93) and we study its sign by varying (k3, A) ∈ S0 := {(k3, A) : 0 < k3 ≤ 1, 0 < A < 1}. Figure
4.5 represents the trend of the minimum eigenvalue computed numerically for n = 6 for which
Legendre armonics up the the degree 11 are considered. When A = 0, i.e. k24 = 1, the ET
solutions (1.42) and (1.43) correspond to the uniform solution and we expect that the minimum
eigenvalue is 0.

Figure 4.5: n = 6: graph of the smallest eigenvalue against S0, obtained by seeking the
smallest root of the polynomial in λ defined by the determinant of the augmented matrix
which represents the linear system considered in the main text and here composed by 7

equations in the in the 7 unknowns c2i−1 for i = 1 . . 6 and µ.

We intend to give a qualitative picture of the features of λm for small values of the parameter
A for which the outcome of the numerical exploration are uncertain. Thus, we carry out an
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asymptotic analysis to arrive to an explicit formula of the smallest eigenvalue at least when
n = 3.

For A = ε� 1, we write the functional (4.93) as a formal series in ε truncated at the second
order

δ2Fθz(nB)(vθz) ≈ δ2Fεθz(nB)[vθz] :=

∫ 1

0

[
U(u)2

u
+ uU ′(u)2

]
du− U(1)2

+ε2

{∫ 1

0

u

2

[
u2(k3 − 2)U ′(u)2 + (11k3 − 14)U(u)2

]
du− k3 − 4

2
U(1)2

}
. (4.103)

When n = 2 in (4.98), (4.99) and in (4.100), the eigenfunction U = U(u) for (4.103) can be
approximated by

U(u) = c1

√
3u+ c3

√
7

2
u
(
5u2 − 3

)
+ c5

√
11

8
u
(
63u4 − 70u2 + 15

)
(4.104)

and obey the Robin condition at u = 1 only if

5c3

√
7 + 14c5

√
11 + ε2

(
c1

√
3 + c3

√
7 + c5

√
11
)

= 0. (4.105)

Substituting (4.104) for U = U(u) in (4.103) and making use of (4.105) and (4.95) lead us
to express the formal series of (4.102) in ε in the form

δ2F∗θz(nB)(vθz) ≈
175

6
c2

3 +
32879

240
c2

5 +
245
√

7
√

11

24
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√
11
)
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{
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2
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7

16
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64
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√
7√
3

(k3 + 5)c1c3

−
√

11

24
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[
−15
√
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3

]
− µ

(
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3 + c3

√
7 + c5

√
11
)}

. (4.106)

Thus, the extended linear homogeneous system in the unknowns c1, c3, c5 and µ is constituted
by the three equations obtained through the partial derivatives of (4.106) with respect to c1, c3

and c5, respectively, and by the Robin condition (4.105):
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√
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(4.107)
Here, the determinant of the augmented matrix which represents (4.107) results to be a

polynomial in λ whose expansion in ε truncated at the second order is

det := 9324λ2 − 509355

4
λ+ ε2

[
1512λ2 +

(
−641655

8
k3 +

713097

16

)
λ+

1528065k3

4

]
. (4.108)

The series expansion about ε = 0 of the smallest root for (4.108) exhibits the following asymptotic
behaviour near 0:
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λn=3
m ≈ 3k3ε

2. (4.109)

This means that the smallest eigenvalue of δ2Fθz(nB)[vθz] is always positive for small values of
A and decreases to 0 as A approaches 0. Numerical explorations show that also for higher order
or n, in the limit as A = ε > 0 tends to 0, the smallest eigenvalue is asymptotically equivalent
to (4.109).

4.C.1 Radial Perturbations

The same conclusions based on the Sturm-Liouville analysis carried out in Section 4.C are reached
for the dimensionless form of the second variation at nB for radial perturbations vr, (4.84) in
Section 4.4.2, since it is a simplified form of (4.70), since, here, U ∈ AUr is subject to strong
anchoring conditions on the end-points of the interval [0, 1], at which it vanishes.

The trend of smallest eigenvalue λm of δ2Fθz(nB)(vr) computed numerically for n = 6 is
illustrated in Figure 4.6. Here, when A = 0, i.e. k24 = 1, the minimum eigenvalue λm is not 0
as in 4.C, since U is constrained at u = 1, but it exhibits the following asymptotic behaviour as
A tends to 0:

λm ≈ 7.08 + (3.82k3 − 5.76)A2. (4.110)

Figure 4.6: n = 6: graph of the smallest eigenvalue of δ2Fθz(nB)(vr), i.e. the
dimensionless form of the second variation at nB for radial perturbations vr, against S0.



Chapter 5

Paradoxes for Chromonics

We learned in the preceding Chapter that Oseen-Frank’s free-energy stored in a cylinder subject
to planar degenerate anchoring attains its minimum at the ET configurations (1.42) and (1.43).
This fact is a result of boundary conditions and confinement, which cannot accommodate a
double-twist configuration. It is for free-boundary problems or when material surfaces inside
the confinement lead to jump discontinuities of the nematic director that the frustration of the
system could be relaxed (at least partially) and cause paradoxes within Oseen-Frank’s theory.

5.1 Introduction

Despite the apparent justification of the applicability of Oseen-Frank’s theory to CLCs provided
by the local stability of escaped twist solutions (1.42) and (1.43) explored in Chapter 4, a number
of mathematical issues tackled in this Chapter show that Oseen-Frank’s free-energy is not suitable
to describe the elasticity of CLCs. Indeed, two paradoxes arise in cylindrical symmetry if the
relevant Ericksen’s inequality K22 > K24 is violated.

To highlight the deficiencies of Oseen-Frank’s theory when it is used to rationalize the exper-
imental results of confined CLCs, Section 5.2 concerns a free boundary problem, where a given
quantity of CLC occupying the volume V0 (liquid crystals are to be regarded as incompressible
fluids), can take any desired shape, while the director field within it is free to vary in a class of
cylindrically symmetric orientations which satisfy planar degenerate boundary conditions (1.6),
as when the confinement was a cylinder. We construct a sequence of configurations (Bk,nk)
along which the limiting value of Oseen-Frank’s free-energy functional diverges to −∞ as soon
as the ratio between K24 and K22 exceeds a value greater than 1, but which is still lower than
that observed experimentally [32]. Especially, B belongs to a family of tactoidal droplets subject
to the isoperimetric constraint (1.19) and parametrized in µ given by (3.8), that is, the ratio
between the length of the semi-axis and the linear dimension of the droplet. According to the
value of this parameter, prolate from oblate shapes are distinguished. The director field inside
the droplet, which also depends on the value of µ (when µ diverges to ∞ the corresponding con-
figuration is (1.42) or (1.43) adjusted to accomplish the strong boundary conditions), solve the
equilibrium equation for Oseen-Frank’s free-energy associated with these tactoidal shapes within
a special class of cylindrically symmetric orientation satisfying strong anchoring conditions. It
possesses two point defects at poles (boojums with equal topological charge m = ±1). When
K24/K22 is lower than this critical value, but still greater than 1, a regime of shape bistability is
predicted; prolate and oblate shape coexist in equilibrium. We find that in the limit as µ tends
to∞, the free-energy evaluated on the given configuration of the sequence diverges to −∞. This
means that in the indefinite space, when the droplet is free to adjust its shape to the surrounding
environment, it would stabilize as a spindle-shape droplet with an infinite height related to the
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linear dimension of the droplet without changing its volume and with a double-twist arrange-
ment inside which prevents the elastic frustration of the system. The paradox arises thanks to
the unboundedness of the domain. Confining the droplet between two plates may turn the ill
posed problem into a problem which admits an energy minimizer. Section 5.2.2 is devoted to
this issue; since the double twisted configuration can be constructed only locally around the axis
of the drop, the director will be geometrically frustrated away from the axis. The energy cost
associated with the distortion of the director from the ground state can be always reduced by
disassembling the drop into an appropriate multitude of subdroplets whose overall volume is V0.
In this resulting situation, despite the admissible region is confined between two plates, every
droplet consists, in the limit, in its axis inside which the director field degenerates in the ground
state; the energy of the resulting system diverges to −∞.

In Section 5.3 we relax the assumption of strong anchoring conditions to let the director field
be tangent to the boundary and oriented in any direction. By considering the droplet’s profile
described by the optimal function of the problem in the preceding section, the failure of Oseen-
Frank’s free-energy in describing the elasticity of CLCs is proved whenever Ericksen’s inequality
K22 ≥ K24 is violated.

A second paradox arises by inserting inside the starting cylinder a new hollow cylinder of
smaller radius. The new configuration into which the nematic director relaxes has a discontinu-
ity on the material surface which separates the two regions into which the starting cylinder is
divided and the resulting system has less energy than the original one.

5.2 Free-boundary Problems: Strong Anchoring Conditions

In this section we construct a family of droplets and associated director fields where the free-
energy does not attain a minimum for sufficiently high value of k24 in (1.30). We assume that
the boundary ∂B is obtained by rotating the graph of a function of class C1, R = R(z), which
describes the radius of the drop’s cross section at height z ∈ [−R0, R0]. R is taken to be an even
function and to vanish on the z axis at the points z = ±R0 (the poles of the drop).

In analogy with Burylov case in Section 1.2 when the droplet is confined in a cylinder, we
seek the minimizers of the bulk free-energy functional within the class of orientation fields n of
the form (1.25), where β is assumed here to depend on the dimensionless coordinate1(it does not
vary along the meridian of the droplet):

ρ =
r

R(z)
. (5.1)

Here, unlike the case of the cylinder, er and the unit normal ν to the boundary do not coincide
on the whole of ∂B; to accomplish the anchoring conditions and to prevent the director from
having a component along er inside the drop, we require that n and eθ coincide on the boundary
through

β(1) =
π

2
, (5.2)

which causes the director field to possess two point defects at the poles. The cylindrical symmetry
sets

β(0) = 0, β (1) =
π

2
, (5.3)

and the director field produced with such a geometric construction possesses two point defects
at the poles; they are two boojums with equal topological charge m = ±1.

1With an abuse of language we keep the name unaltered when R does not depend on z, as in the cylindrical
confinement previously considered.
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The case where n has a component along er in order to be tangent to the boundary but free
to orient in any direction orthogonal to ν will be considered in Sec. 5.3.

We call Re the radius of the equivalent sphere, which has volume V0, and we rescale to
this length r, z and R(z), keeping their names unaltered. Letting as in Chapters 2 and 3 the
dimensionless length of the semi-axis of the drop

µ :=
R0

Re
> 0, (5.4)

it is shown in Appendix 5.A that for any given function β = β(ρ) satisfying (5.3) and (5.2),
the optimal dimensionless shape of the drop subject to the isoperimetric constraint in scaled
variables, ∫ µ

−µ
R2(z) dz =

4

3
, (5.5)

belongs to the family of tactoids, or spindle-shaped droplets, parametrized in µ:

Rm(z) =
2√
3µ

cos

(
πz

2µ

)
. (5.6)

As also illustrated in Appendix 5.A, the variational problem we thus face can be phrased as
follows: find a positive µ > 0 and a function β = β(ρ) which obeys (5.3) and (5.2) so as to
minimize the following reduced functional which is an appropriate dimensionless form of Oseen-
Frank’s functional Fb associated with the equilibrium shapes (5.6):

Fµ [β] (k24) =
FB

2πK22Re
=

1

µ2

∫ 1

0

π2

6
ρ3β′2

(
k1 sin2 β + k3 cos2 β

)
dρ

µ

[∫ 1

0

(
ρβ′2 +

1

ρ
cos2 β sin2 β +

k3

ρ
sin4 β

)
dρ+ (1− 2k24)

]
. (5.7)

The following scaled elastic constant have been introduced in (5.7),

k1 :=
K11

K22
, (5.8)

while k3 and k4 are given in (1.30). Oseen-Frank’s theory applied to chromonics requires k24 > 1
(which violates Ericksen’s inequalities (1.8)), while k1 and k3 are non negative. In [32] it has
been considered a cylindrical cavity with degenerate planar anchoring filled with 14.0% (wt/wt)
nematic disodium cromoglycate (DSCG) at 21.5◦C, and the estimation of the twist angle at
the capillary wall β(1) allows, through (1.42) or (1.43) for ρ = 1, the measurement of k24. In
particular, assuming k3 = 30 [142], they found k24 = 7.5. Hereafter we also take k1 = k3,
conforming the measurements of the elastic constants in lyotropic chromonic liquid crystals
[142, 26] which provide K11 and K33 of the same order. Qualitatively, this scenario remains the
same for different values of k1 and k3.

The limiting vatiational problems when µ =∞ and µ = 0 consist in the minimization of the
terms of (5.7) multiplied by µ and 1/µ2, respectively, among the functions β = β(ρ) satisfying
the strong anchoring conditions (5.3) and (5.2). When µ = +∞ the functional to be minimized
corresponds to the dimensionless form of the bulk free-energy (1.29) found when the confinement
was a cylinder but scaled to Re instead of L. Its equilibrium configuration which obeys (5.3)
and (5.2) is the ET configuration (1.42) adjusted to accomplish the strong boundary conditions
(5.3) (By taking β(1) = −π/2, the equilibrium configuration which obeys (5.3) when µ = +∞ is
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the mirror image of (5.9)). The case for µ = 0 is treated Appendix 5.A. Here we recall that the
equilibrium configurations subject to (5.3) for the cases mu =∞ and µ = 0 are, respectively,

β∞m = β∞m (ρ) := arctan

(
1√
k3

2ρ

1− ρ2

)
, (5.9)

and when k1 = k3

β0
m (ρ) =

{
0 ρ = 0
π

2
ρ ∈ (0, 1]

. (5.10)

The director field n in (1.25) which corresponds to is oriented in the same direction of eθ and
has a disclination line along the axis of the droplet.

For any given value of µ ∈ (0,+∞) we numerically find the solution βµm = βµm(ρ) of the Euler
Lagrange equation for the functional Fµ [β] (k24) (see (5.50) in Appendix 5.A) which satisfies
the prescribed boundary conditions (5.3) (see Figure 5.1). For the limiting cases µ = +∞ and
µ = 0 the solution coincides with β∞m (5.9) and β0

m (5.2), respectively, and we expect that when
µ is close to 0, βµm closely resembles a smooth approximation of β0

m, whereas the more µ exceeds
0, the more βµm appreciably deviates from β0

m and tends to β∞m . This argument is supported by
the graphs of βµm shown in Fig. 5.1 for a sequence of values of µ2.

Figure 5.1: Equilibrium solutions βµm(ρ) for k3 = k1 = 30 for different values of µ,
namely µ = 0.2, 0.4, 0.7, 1, 1.5, 2.5,+∞ (according to the arrow)

We evaluate numerically the functional (5.7) on the above configurations βµm(ρ) as a reduced
function:

F(µ, k24) := Fµ[βµm](k24) (5.11)

on T := {(µ, k24) : 0 < µ <∞, k24 > 1} . Fig. 5.2 illustrates the graph of (6.38) for k1 = k3 = 30
and different fixed values of k24 > 1, where we express the dimensionless functional as a function
of ξ := 1/µ ∈ (0,+∞):

F̂(ξ, k24) := F (1/ξ, k24) . (5.12)

There exists a value of k24 > 1, i.e. k∞24 (e.g. for k1 = k3 = 30, k∞24 = 4.86), that could be
interpreted to mark the value of k24 above which the energy becomes negative. This critical value
of k24 distinguishes two situations qualitatively different from one another. For every k24 < k∞24,
the reduced functional F(µ, k24), (6.38), diverges to +∞ as µ approaches both 0 and ∞ (as ξ
goes to ∞ and 0) and it possesses two minima, one for µ > 1.1 (ξ < 0.9) and the other for
µ < 1.1 (ξ > 0.9), whose corresponding equilibrium shapes are prolate and oblate, respectively3.

2The same argument holds for the mirror images of βµm, β0
m and β∞m when β(1) is assumed to be equal to −π/2.

3The prolate shapes are characterized by having height larger than width. i.e. by µ ≥ R(0). By (5.6) this
inequality becomes µ ≥ 1.1, i.e. ξ ≤ 0.9.
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Figure 5.2: Graph of F̂(ξ,24 ) in (6.39), corresponding to the dimensionless functional
(5.7) evaluated numerically on the equilibrium configurations βµm(ρ) and expressed as a
function of ξ = 1/µ ∈ (0,∞) for k1 = k3 = 30 and a sequence of values of k24 > 1, namely
k24 = 1.3, 2.5, kb

24 = 3.86, 4.36, k∞24 = 4.86, 5.3, 7.5 (according to the arrow). The graphs
do not overlap and approach the midway graph for k24 = k∞24 as ξ tends to ∞, i.e. as µ
approaches 0. Whenever k24 > k∞24, F̂ is not bounded from below and diverges to −∞ as
ξ tends to 0 while for 1 < k24 < k∞24 it has an opposite tendency in 0 and goes to +∞.

The barrier marking transitions from prolate to oblate shapes is represented by a vertical
dashed line.

Upon decreasing values of k24 < k∞24 the minimum for µ > 1.1 (ξ < 0.9) corresponds to the
minimum value of F(µ, k24) and so remains stable until decreasing k24 crosses kb

24, for which
a bistability phenomenon occurs and the two minima have the same value of the energy. The
critical value kb

24 marks a first-order transition of the absolute minimum of F , which jumps from
a value of µ > 1.1 (ξ < 0.9) to a value of µ < 1.1 (ξ > 0.9). The corresponding optimal shapes
are illustrated in Fig. 5.3.

In the limiting case for k24 = k∞24, F attains its absolute minimum at µ = ∞ (ξ = 0) where
it vanishes, and so the optimal drop is a filament of infinite length and volume V0 inside which
the orientation of the director (1.25) is given in terms of the angle β as in (5.9).

For every k24 > k∞24 in the limit as µ tends to ∞ (ξ tends to 0), the free-energy evaluated
on the equilibrium solutions βµm does not attain its minimum for µ > 1 (ξ < 1), but diverges to
−∞. The metastable minumum for ξ > 1 is still attained.

This means that for every k24 ≥ k∞24 the problem is ill-posed and shows the deficiencies of
Oseen-Frank’s theory in studying CLCs. The local stability of escaped twist solutions (1.42) and
(1.43) explored in Chapter 4 confirms that these solutions rationalize the configurations of the
confinement-induced ground state of CLCs and so they manifest the elastic frustration of the
ideal double twisted configuration when requested to occupy the cylinder and to obey degenerate
boundary conditions. The paradox hidden in the theory arises when the droplet of CLC is free
to adjust its shape to the surrounding environment. In this case, we proved that Oseen-Frank’s
free-energy does not attain a minimum on the class of selected configurations (R, β) taken at the
beginning of the Section, where R describes the profile of the droplet and β is the angle between
n and its axis. Indeed, we find the family of configurations (Rm, β

µ
m) generated by letting µ vary

in (0,+∞); the functional F(µ, k24) evaluated on this family (5.7) is not bounded from below in
the limit as µ tends to infinity. Hence, we have constructed a sequence of configurations along
which the limiting value of Oseen-Frank’s free-energy diverges to −∞.



CHAPTER 5. PARADOXES FOR CHROMONICS 97

(a) Cross-section of the prolate equilibrium
shape corresponding through (5.6) to the
minimizer of F̂ for ξ < 0.9, i.e. µ > 1.1. In
particular ξ = 0.19, for k3 = k1 = 30 and

k24 = kb24 = 3.86

(b) Cross-section of the oblate equilibrium shape
corresponding through (5.6) to the minimizer of F̂
for ξ < 0.9, i.e. µ > 1.1. In particular ξ = 9.1, for

k3 = k1 = 30 ans k24 = kb24 = 3.86

Figure 5.3: Bistability phenomenon: the two minima, the former for ξ < 0.9 and the
latter for ξ > 0.9 minimize F̂ . For k1 = k3 = 30, it occurs at k24 = kb

24 = 3.86.

5.2.1 Surface Contribution to the Free-Energy

Actually, the drop comes in contact with the isotropic environment that surrounds it and the bulk
free-energy must be supplemented by a Rapini Papoular -type interfacial energy concentrated on
the boundary ∂B due to the I −N interface (1.16).

The normalized surface free-energy associated with the family of equilibrium shapes (5.6)
reads as

Fαs [µ] :=
Fs

2πK22Re
= α

[
2µ2

π2
ln

(
π +

√
3µ3 + π2

−π +
√

3µ3 + π2

)
+

4

3πµ

√
3µ3 + π2

]
, (5.13)

where
α :=

γRe

K22
(5.14)

is the reduced (dimensionless)4 volume and γ > 0 is the isotropic surface tension. For any
given value of Re, which corresponds to a fixed volume, Fαs in (5.13) diverges to +∞ like √µ as
µ → +∞, which means that the surface contribution coud be responsible for the shape of the
drop, but only moves the pathology to larger values of µ. Indeed, the energy functional remains
unbounded from below whenever k24 > k∞24, since for these values of k24 F(µ, k24) diverges to
−∞ as µ→ +∞.

5.2.2 Crumbling Paradox

We confine attention to the values of k24 > k∞24 for which the paradox in the preceding section
occurs.

When the drop is confined between two plates, 2R̄0 apart, a new constraint on the semi-axis
of the drop arises because it could not be longer than R̄0, and so it never reaches an infinite

4Here the normalization elastic constant is K22 instead of K11 as in Chapters 2 and 3.
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length as would be preferred whenever k24 > k∞24. This results in a barrier in µ, (5.4), which can
not be overcome:

µ̄ =
R̄0

Re
. (5.15)

Although this avoids the degeneration of the drop into a filament of infinite height, we now
show that the problem is nevertheless ill-posed and that the director field will tend to fill the
available region with an infinity of pure double twisted configurations whose associated energy
is unbounded below.

As previously found in Sec. 5.2, the drop of volume V0 acquires at equilibrium a tactoidal
shape (5.6) with a dimensionless height µ that here depends on the barrier µ̄ imposed by the
constraint (5.15) as illustrated in in Figure 5.4 for k1 = k3 = 30 and k24 = 7.5([32]); the scaled
functional F(µ, k24) is unbounded below and we identify two characteristic values of µ: µrel

corresponding to the metastable minimum of F(µ, k24) for µ < 1.1 and µ̃ at which the functional
reaches again the same value of the energy attained at µrel upon further increasing values of µ.
For every barrier µ̄ > 0 the minimizer of F(µ, k24) is to be found in the admissible range (0, µ̄);
according to whether the barrier µ̄ ranges in (0, µrel], or (µrel, µ̃) or [µ̃,∞), the minimizer is the
barrier, i.e. the biggest value of µ available, or µrel or again the barrier (as suggested by the
arrows in Figure 5.4).

Then, according to the minimizing value of µ the director field inside the droplet relaxes in
the configuration corresponding to βµm = βµm(ρ). When the given barrier µ̄ coincides with µ̃ there
are two equilibrium configurations which could arise with the same probability, i.e. βµrel

m and βµ̃m.

Figure 5.4: For k1 = k3 = 30 and for k24 = 7.5, according to the measurements in [32],
the crumbling paradox occurs. Here the graph of F̂ , (6.39), against ξ for k24 = 7.5 and
k1 = k3 = 30. The arrows suggest where the functional attains its minimum according to
if the barrier ξ̄ = 1/µ̄, for µ̄ as in (5.15), is placed after 1/µrel(7.5), between 1/µ̃(7.5) and

1/µrel, or before 1/µ̃(7.5).

However, despite the shape and director configuration found minimize the functional F(µ, k24)
when the drop is subject to the constraint (5.15), there is always a strategy to split the initial
drop into subdroplets whose overall volume is V0 which lowers the energy of the starting system.

We start by splitting the initial drop into two sub droplets whose total volume is V0, and so
by changing the single domain’s volume occupied by the CLC. The barriers (5.15) of the two
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resulting drops shift towards larger values of µ, since their volumes, and so their equivalent radii,
are reduced; for clarity, the starting drop is broken into two subdroplets of volume V1 = V0/2
and equivalent radii R1 such that

R1 = 2−1/3Re. (5.16)

Hence, making use of (5.16) in (5.15), the barriers of the two subdroplets result ats

µ̄1 =
R̄0

R1
= 21/3 R̄0

Re
= 21/3µ̄, (5.17)

and so at a value greater than µ̄, the barrier of the starting droplet. Accordingly, the total free-
energy of the new system is expressed as the sum of the free-energies associated with the two
resulting sub-droplets whose equivalent radii and barriers in µ are given by (5.16) and (5.17):

F 1 = 2πK22

[
2R1minµ∈(0,µ̄1]F(µ, k24)

]
= 2πK22Re

[
22/3minµ∈(0,µ̄1]F(µ, k24)

]
(5.18)

where we recall that F(µ, k24) in (6.38) corresponds to the functional (5.7) evaluated on the
equilibrium configurations βµm(ρ) obtained for the given value of µ.

Equilibrium is attained whenever F(µ, k24) is minimized among the value of µ < µ̄1 and since
µ̄1 > µ̄, the equilibrium value of F associated with the resulting drops is always lower than or
equal to that of the starting droplet

minµ∈(0,µ̄1]F(µ, k24) ≤ minµ∈(0,µ]F(µ, k24). (5.19)

According to the graph in Fig. 5.4, the equality holds only when the equilibrium of the starting
and the resulting droplets is attained at µ = µrel, and so only if µ̄ and µ̄1 belong to the range
[µrel, µ̃]. Making use of (5.19) in (5.18), we get

F 1 ≤ 2πK22Re

[
22/3minµ∈(0,µ̄]F(µ, k24)

]
. (5.20)

According to the graphs in Figure 5.2, for every given value of k24 > k∞24, F(µ, k24) is strictly
decreasing in (µ̃,+∞), it reaches the µ−axis at µ = µ0 > µ̃ and diverges to −∞ as µ goes to
+∞. Thus, when the barrier µ̄ is placed at a greater value than µ0, the inequality in (5.20) is
strict, and the minimum value of F(µ, k24) is negative. Thus

F 1 < 2πK22Re

[
minµ∈(0,µ̄]F(µ, k24)

]
= F 0 µ̄ > µ0 (5.21)

Then, whenever µ̄ > µ0, the recursive application of the above procedure to every resulting
droplet always leads to an energetic gain, which is preserved for all the subsequent divisions.
Indeed, employing n times the split procedure described for the starting drop to every droplet
in the configuration at each step, the starting drop results crumbled into 2n tactoidal droplets
of radius Rn and barrier µ̄ whose overall volume is V0. We prove in Appendix 5.B that the total
free-energy of this new system obey:

Fn ≤ 2πK2222/3
[
2n−1Rn−1minµ∈(0,µ̄n−1]F(µ, k24)

]
. (5.22)

Provided that the barriers µ̄n shift towards larger values of µ than µn−1 (see (5.60)) and that
quilibrium value of F(µ, k24) is always negative, the free-energy of the system is lowered at every
step.

According to the graphs in Figure 5.2, for every given value of k24 > k∞24, F(µ, k24) is strictly
decreasing in (µ̃,+∞), it reaches the µ−axis at µ = µ0 > µ̃ and diverges to −∞ as µ goes to
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+∞. When µ̄ < µ0 the split of the initial drop could entail a waste of energy and the initial
droplet may appear in apparent equilibrium. When µ̄ < µ0, the crumbling paradox occurs at
least when n is great enough, which means that we need to split the starting drop into a sufficient
number of sub droplets, before they start to spontaneously crumble. This is shown in Appendix
5.B and the argument resides on the fact that the functional F(µ, k24) evaluated on the family
(Rm, β

µ
m) generated by letting µ vary in (0,+∞) is not bounded from below in the limit as µ

tends to infinity.
The droplet confined between two plates can not lead its dimensionless height to an infinite

value without changing its volume. The double twist can be constructed only locally around the
axis of the drop, and the director will be geometrically frustrated away from the axis; this causes
an energy cost associated with this distortion from the ground state which can be reduced by
disassembling the drop into a multitude of subdroplets whose equilibrium dimensionless height µ
is ∞. Thus, despite the admissible region is confined between two plates, every droplet consists
in an axis inside which the director field degenerates in its ground state.

5.3 Degenerate Planar Anchoring Conditions

When β(1) is subject to the strong anchoring condition in (5.3), the crumbling paradox happens
only for k24 > k∞24. Actually, by letting β(1) free to vary in order to ensure a planar degenerate
anchoring at the boundary ∂B, the unsuitableness of Oseen-Frank’s energy in describing the
elasticity of CLCs is proved whenever the Ericksen’s inequality K22 −K24 ≥ 0 is violated, i.e.
whenever k24 > 1.

To this end, we consider here the class of orientation fields n that are represented, in term
of β = β(ρ) and the angle between the director projection on the plane rθ and er 5α = α(z), in
the form

n = cosα(z) sinβ(ρ)er + sinα(ρ) sinβ(ρ)eθ + cosβ(ρ)ez. (5.23)

The only requirement for the optic axis n at the free surface of the drop is to fulfil

n · ν|ρ=1 = 0, (5.24)

where ν is the outer unit normal to ∂B

ν =
er −R′ez√

1 +R′2
. (5.25)

The boundary conditions (5.24), with the aid of (5.25), are satisfied by (5.23) only if

α(z) = arccos

(
R′

tanβ(1)

)
(5.26)

and a new constraint on R′ arises:

− tanβ(1) ≤ R′ ≤ tanβ(1). (5.27)

By the change of variables (1.26) and by rescaling to Re both R(z) and z, keeping their name
unaltered, we get the dimensionless form of bulk free-energy is

5To guarantee that n could rotate freely on the local tangent plane at the drop’s surface without flip out of
it, we need to consider a component of n along er besides those along eθ and ez in (1.25). Since the admissible
droplet’s profiles R = R(z) are functions of the height z ∈ [−R0, R0], the angle α in (1.25) must also depend on
the coordinate z when the droplet taken into account is not a cylinder. For simplicity, however, α is assumed to
not depend on ρ.
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Fµp [R, β](k24) =
F

2πK22Re
=

∫ µ

−µ
R′2 dz

∫ 1

0

{
1

tan2 β(1)

[
β′2

2

(
k1 cos2 β + k3 sin2 β − 1

)
+

1

2ρ2

(
k1 sin2 β − cos2 β sin2 β + k3 sin4 β

)
+
β′

ρ
cosβ sinβ(k1 − 1)

]
+

1

tanβ(1)

[
ρ cosβ sinββ′2(k1 − k3) + sin2 ββ′(k1 − 1) +

1

ρ
cosβ sin3 β(k3 − 1)

]
+
ρ2β′2

2

(
k1 sin2 β + k3 cos2 β

)}
ρ dρ

+

∫ µ

−µ

R′′2R2

tan2 β(1)−R′2
dz

∫ 1

0

sin2 β

2

(
k3 sin2 β + k3 cos2 β

)
ρdρ

+ 2µ

{∫ 1

0

[
β′2

2
+

1

2ρ2
cos2 β sin2 β +

k3

2ρ2
sin4 β

]
ρdρ+

(1− 2k24)

2
sin2 β(1)

}
. (5.28)

We assume that the drop’s profile is described by the optimal function Rm = Rm(z) in (5.6)
obtained when β(1) = π/26, and we consider the reduced functional (5.28) associated with this
family of shapes:

Fµp,m[β](k24) = Fµp [Rm, β](k24). (5.29)

For every k3 > 0, only the null solution satisfies the Euler-Lagrange equations for the functional
(5.29) when the Ericksen’s inequalityK22−K24 > 0, holds. As soon asK24 increases beyondK22,
i.e. k24 > 1, two equilibrium double-twisted configurations with their mirror images of opposite
handednesses arise at µ0 = µ0(k24) and persist for all the subsequent values of µ. The two
solutions with the same chirality coincide at µ0 = µ0(k24) and upon further increasing values of
µ they split into two branches whose value in ρ = 1 progressively decreases in modulus (red lines
in Fig 5.5a) or increases in modulus (blue lines in Fig 5.5a), respectively, from that characterizing
the case µ = µ0(k24). Especially, the more µ exceeds µ0(k24), the more the two branches tend
respectively to the uniform solution or to the escaped twist solution ((1.42) or (1.43) according
to the chirality).

For k24 < 1 the trivial solution is the only equilibrium solution and it is necessarily stable.
As soon as k24 > 1 an exchange of stability occurs at µ = µ0(k24) where the four twisted director
field configurations share the same energy (5.29) which is negative. Whenever µ > µ0(k24) the
equilibrium solutions which converge to the ET configurations with the corresponding handedness
(1.42) (1.43) are always stable and the dimensionless functional Fµp,m (5.29) evaluated on them
diverges to −∞ as µ tends to +∞, as is clear by the graph in Figure 5.5 (blue lines). The
energy associated with the other double twisted configurations converging to the trivial solution
is strictly decreasing and approaches zero as µ goes to +∞.

6Finding the optimal function R = R(z) for each feasible function β = β(ρ) satisfying planar degenerate
anchoring at the interface is not straightforward as in the preceding case where β(1) was fixed equal to π/2. We
are interested in highlighting the instability of the system whenever k24 > 1, and so in the large values of the
dimensionless height µ for which we expect that functional (5.28) is minimum mainly if the term multiplied by µ
is. This term appears also in (5.7) when the anchoring is strong, and its stable equilibrium configurations subject
to (5.24) are the ET solutions (1.42) and (1.43), to which the optimal solutions of (5.28) closely resemble when µ
is great enough. Therefore, for the values of µ we are interested in, the optimal values in ρ = 1 are close to π/2
as that of the ET solutions, and we assume that the drop’s profile is described by the optimal function.
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(a) Right handed equilibrium solutions
for k24 = 7.5 and different values of
µ ≥ µ0(7.5) ≈ 3, i.e. 3, 3.5, 3.7, 4.5,∞.
These solution coincide at µ > µ0 and
upon further increasing values of µ, one
of them(blue lines) converges to the ET

solution with the same chirality,
according to the arrow pointing upwards,
while the other (red lines) converges to
the trivial solution according to arrow

pointing downwards.

(b) Graphs of the dimensionless functional in
(5.29) evaluated numerically on the equilibrium

configurations as a function of ξ = 1/µ, for
k1 = k3 = 30 and a sequence of values of k24 > 1,
namely k24 = 1.3, 2.5, 3.3, 5.3, 7.5 (according to the

arrow). The energies of the four equilibrium
double-twisted solutions are always negative and

coincide when the solutions do at µ = µ0(k24). The
energies of the two solutions which converge to the
ET solutions (blue lines) are unbounded from below

as µ goes to ∞.

Figure 5.5: Whenever k24 > 1 two equilibrium solutions for the functional (5.29) with
their mirror images with opposite chirality arise at µ > µ0(k24), where they coincide, and

persist for every µ > µ0(k24).

5.4 Coaxial Cylinders

We adopt a new model, where a hollow cylinder of radius R0 is introduced inside the starting
hollow cylinder with radius R > R0 so that their axes, taken parallel to the ez-axis, coincide.
The director field inside the two portions of B is free to vary in a class of cylindrical symmetric
orientations which satisfy planar degenerate conditions at all the surfaces. The total free-energy
is given by the sum of the elastic free energies distributed over the inner cylinder of radius R0

and the outer cylinder with inner and outer radius R0 and R.
Whenever k24 > 1, the director field inside the inner cylinder relaxes in a ET configuration

with right or left handed chirality, as this case can be regarded as that studied in [10] with
R = R0. Thus, the free-energy stored in the inner cylinder is exactly that given in (1.44), since
it depends linearly on the length L and not on its radius.

For the outer cylinder we extend the analysis in Chapter 4 slightly. The class of admissible
mappings for F are described by (1.25), where here the dimensionless coordinate ρ corresponds
to the radial coordinate r scaled to the major radius R and spans [η, 1], where

η :=
R0

R
. (5.30)

The degenerate anchoring conditions at the inner and outer surfaces of the outer cylinder allow
β(η) and β(1) to be free to vary. The bulk free-energy of the orientation field described by (1.25)
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over the outer capillary is obtained by analogous considerations just applied to F in (1.29)

F η = 2πK22L

{∫ 1

η

[
β′2

2
+

1

2ρ2
cos2 β sin2 β +

k3

2ρ2
sin4 β

]
ρ dρ+

(1− 2k24)

2
sin2 β(1)

}
, (5.31)

which is reduced to the analogous autonomous dynamical problem by the change of variables
t(ρ) := − ln(ρ):

F η = 2πK22L

{∫ Tη

0

(
ḃ2

2
+ φ(b)

)
dt+

(1− 2k24)

2

[
sin2 b(0)− sin2 b(Tη)

]}
, (5.32)

where Tη := − ln(η). Here, we have employed the notation given in (4.5).

φ(b) :=
sin2 b cos2 b

2
+
k3 sin4 b

2
. (5.33)

The orbits are obtained by solving (4.13) by separation of variables, where c is an integration
constant, and obey the natural boundary conditions (4.11) at both initial al final times {0, Tη}.
We read the equations (4.13) and (4.11) in the phase space (b, ḃ); the phase diagram of this
system for the representative values k3 = 30 and k24 = 7.5 is illustrated in Figure 5.6.

Figure 5.6: Reduced elastic constants are k3 = 30 and k24 = 7.5; phase portrait for
b ∈ [0, π/2] of the dynamical system generated by the minimized Lagrangian. Here, the

orbits for c = 0 (blue line) and c = 0.5, 8, 15.5, 23, 30.5, cmax = 42.5 (black lines
according to the arrow) have been underlined, with attention to the orientation. For a
outer cylinder of inner and outer radius R0 and R with η = R0/R ∈ [0, 1], the optimal

solution of the dynamical problem is the orbit corresponding to c = cη such that the time
lapse T in (5.36) needed to traverse the contour line from one point of intersection with

(4.11) to the other one is exactly Tη = − ln η. This orbit departs from the curve of
natural condition (4.11) for b(0) = b

cη
i and reaches again the curve (4.11) at b(Tη) = b

cη
f .

Especially, when η takes the value 0, Tη → +∞ and the optimal orbit of the infinite
horizon variational problem is that individuated in Chapter 4 for c = 0 (blue line); it is
exactly the right-handed ET-configuration by the change of variables t = − ln ρ and

b(t) = β(e−t).

To ensure the validity of (4.11), the motion follows the level curves in the phase space (4.13)
departing at t = 0 from a point (bci , ḃn(bci )) on the curve (4.11) and arriving at T = Tη to
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another point (bcf , ḃn(bcf )) on the same curve. We assume that the initial configuration bci ranges
in (0, π/2) and thus that ḃn(bci ) < 0 and the minus sign initially holds in (4.13); the restrinction
of bci to this interval excludes the mirror symmetric solutions, which could be retrieved by taking
bci ∈ (π/2, π). When c ∈ (−k3, 0), the corresponding orbits cross again the curve of the natural
conditions only if b traverses the same values attained before crossing the b−axis. To avoid these
cases of non-injectivity, we restrict attention to non negative values of c; actually not all values
of c ≥ 0 guarantee the existence of an initial value bci at which the corresponding orbit crosses
two times the natural conditions. Indeed, the intersections between the manifold (4.11) and the
negative branch of solution (4.13) are respectively

bci := arcsin

√
2k24(k24 − 1) +

√
4k2

24(k24 − 1)2 − c[k3 + 4k24(k24 − 1)]

k3 + 4k24(k24 − 1)
, (5.34a)

bcf := arcsin

√
2k24(k24 − 1)−

√
4k2

24(k24 − 1)2 − c[k3 + 4k24(k24 − 1)]

k3 + 4k24(k24 − 1)
(5.34b)

and they exist when the range of the admissible values of c is bounded from above by

cmax :=
4k2

24(k24 − 1)2

[k3 + 4k24(k24 − 1)]
. (5.35)

When c = 0, b0f degenerates into 0, while for c = cmax the initial and the final configurations
coincide.

By (4.13), the time lapse needed for b to go backwards from bci to b
c
f is delivered by

T := −
∫ bcf

bci

1√
2φ(η) + c

dη. (5.36)

Thus, (5.36) is infinite when the denominator vanishes at bcf and φ′(bcf ) = 0; this happens only
for c = 0, while for every c ∈ (0, cmax] it is finite and equals zero when c = cmax. We call cη the
value of c ∈ [0, cmax] ensuring T = Tη in (5.36); this defines a bijective correspondence between
η ∈ [0, 1] and cη ∈ [0, cmax], which associates η to the orbit corresponding to c = cη which departs
from the curve of natural condition (4.11) for b(0) = b

cη
i and reaches again the curve (4.11) at

b(Tη) = b
cη
f . In particular, for the inner cylinder η takes the value 0 which corresponds to the

level curve for c0 = 0, which is exactly the right-handed ET-configuration7. Thus, the elastic
free-energy stored in a outer cylinder with inner and outer radius R0 and R corresponds through
the dynamical analogy to (5.32) evaluated on the equilibrium solution for c = cη with η as in
(5.30):

Fη := 2πK22L

{∫ b
cη
i

b
cη
f

[√
2φ(b) + cη −

cη

2
√

2φ(b) + cη

]
db

+(1− 2k24)

√
4k2

24(k24 − 1)2 − cη[k3 + 4k24(k24 − 1)]

k3 + 4k24(k24 − 1)

}
, (5.37)

where use has been made of (4.13) in (5.32). As we expected, when η is 0, i.e. the inner
surface degenerates into the axis of the cylinder, then c0 = 0 and F0 is exactly (1.44) for the
ET configuration. Whenever η 6= 0, Fη is always greater than F0 and decreases towards it as

7By taking the initial configuration b(0) ∈ (π/2, π) we obtain the mirror image solution.
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(a) Graph of Fη versus cη ∈ [0, cmax]. For
η = 0, i.e. c0 = 0, F0 coincides with (1.44),

while for η = 1, i.e. c = cmax, it equals 0. The
red line corresponds to the straight line
y = F0 + cη/(4k24): it is the asymptotic

behaviour of Fη as η, and thus cη, approaches
0.

(b) We find that, at equilibrium, the director field
suffers a jump discontinuity on this material surface
which separates two regions. Making use of ρ = e−t

and b(t) = β(e−t), we reproduce the configuration
into which the director relaxes as a function of the
radial coordinate. Here η is taken equal to 1/2 and

the dot line at r = R0 represents the material barrier.

Figure 5.7: k3 = 30 and k24 = 7.5, according to the measurement in [32]; the insertion
of a cylinder of radius R0 < R such that η = R0/R from (5.30) corresponds to the

appearance of a material surface, which separate the initial initial cylinder of radius R
into two regions; an inner cylinder of radius R0 and an outer cylinder of inner and outer

radius R0 and R.

η approaches 0; indeed, the series expansion about cη = 0 truncated at the first order of the
difference between the free-energy functionals evaluated on the solutions corresponding to cη 6= 0
and cη = 0 exhibits the following asymptotic behaviour:

Fcη −F0 ≈
cη

4k24
> 0. (5.38)

This result has been obtained by the help of the mean value theorem. A graph of Fη versus
cη ∈ [0, cmax] for k3 = 30 and k24 = 7.5, [32] is illustrated in Fig. 5.7a. When cη is sufficiently
small, the graph of Fη is very similar to the red line corresponding to y = F0 + cη/(4k24); this
confirms its good agreement with the asymptotic behaviour studied in (5.38).

The free-energy of the total configuration is given by

F := F0 + Fcη < F0 (5.39)

and since Fη is always negative whenever cη < cmax the insertion of a new cylinder in the starting
system allows the director to suffer a jump discontinuity on the material surface which separates
two regions and this lowers the total free-energy (see Fig. 5.7b)8. Now, work is required in
inserting the material cylinder into the starting one since this process requires the displacement
of the liquid crystal molecules that previously occupied the place now taken by the new cylinder.
In the absence of dissipation one would expect an increase in the internal energy, Here, however,
the internal energy further decreases: a paradoxical phenomenon which we ascribe to the lack of
boundedness from below of the elastic free-energy density.

8The stability of the ET configuration has been proved against AC perturbations.
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5.4.1 Additional Remark

We employ n times the procedure described above to the innermost cylinder at every step in
order to ensure η = Ri−1/Ri for every i = 0 . . n where R0 is the radius of the inner cylinder and
Rn = R is that of the starting one. Then, the total free-energy at the step n is given by

Fn := F0 + nFη = Fη + Fn−1 < Fn−1; (5.40)

it decreases of the quantity Fη with respect to the step before, and this energetic gain is preserved
for all the subsequent iterations until the free-energy of the resulting system diverges to −∞.

Actually, inserting a new cylinder leads to an increase of the surface exposed to the liquid
crystal, and we should ask whether the surface contribution to the bulk energy of the configu-
ration at every step could inhibit the paradox. For every inserted cylinder of radius R0, both
sides of the surface ∂B0 of the cylinder have to be taken into account and the additional surface
contribution is proportional to their area, i.e.

F add
s = 2γA(∂B0) = 2 (2πLγR0) = 2πK22L

[
2α
R0

R

]
= 2πK22L [2αηn] . (5.41)

where use has been make of the relation between the radii of the cylinders in the interior of the
starting one

R0

R
=
R0

R1

R1

R2
. .
Ri−1

Ri
. .
Rn−1

R
= ηn. (5.42)

In (5.41), γ > 0 is the nematic-nematic isotropic surface tension, while α is the dimensionless
volume define by

α :=
γR

K22
. (5.43)

Thus, the surface free-energy at the step n is given by the sum of all the contributions originating
by the exposed surfaces of the n inserted cylinders, i.e. by

Fn
s = 2πK22L

[
2α
(
1 + η + η2 + . . ηn

)]
. (5.44)

For η ∈ (0, 1), in the limit as n tends to ∞, (5.44) does not prevail over the bulk free-energy of
the resulting system, since it converges to the finite value

Fn
s = 2πK22L

(
2α

1− η

)
< +∞. (5.45)

5.A Strong Anchoring Conditions: Variational Problem

This technical Appendix concerns the mathematical details relative to the variational problem
stated in Section 5.2 when a strong anchoring is imposed on the boundary of the region B that
is given by a 2π rotation around the z- axis of the smooth function R = R(z) vanishing at the
extremes z = ±R0.

Frank’s free-energy density associated with the particular class of distortions described by
(1.25) reads as

fOF =
K22

R2

[
R′2β′2ρ2

2

(
k1 sin2 β + k3 cos2 β

)
+

1− k24

2

(
β′ +

1

ρ
sinβ cosβ

)2

+
k24

2

(
β′ − 1

ρ
sinβ cosβ

)2

+
k3

2ρ2
sin4 β

]
, (5.46)
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where the scaled elastic constants k1, k3, k24 are as in (5.8).
We rescale the lengths r, z and R(z), keeping their name unaltered, to the length dictated

by the isotropic constraint (1.19) Re, and by the use of (5.46), (5.3) and the change of variables
(5.1), we arrive at the following reduced functional, Fµ[R, β]

Fµ[R, β] :=
FB

2πK22Re
=

∫ µ

−µ
R′ (z)2 dz

∫ 1

0

ρ2β′2

2

(
k1 sin2 β + k3 cos2 β

)
ρ dρ

+2µ

{∫ 1

0

[
β′2 +

1

ρ2
cos2 β sin2 β +

k3

ρ2
sin4 β

]
ρdρ.+ (1− 2k24)

}
. (5.47)

For any given function β = β(ρ) satisfying (5.3), the optimal shape of the drop which minimizes
Fµ[R, β] in (5.47) subject to the isoperimetric constraint in scaled variables (5.5) is obtained by
minimizing the unique term of (5.47), which depends on R among the smooth functions that
obey:

R(−µ) = R(µ) = 0. (5.48)

These hypothesis on R allow the use of Wirtinger’s Inequality, which with the aid of (5.5) gives∫ µ

−µ
R′ (z)2 dz ≥ π2

(2µ)2

∫ µ

−µ
R (z)2 =

π

3µ2
, (5.49)

and the minimum is reached by (5.6) in the main text.
Thus, the normalized free-energy (5.47) associated with the family of the equilibrium shapes

(5.6), Fµ [β] (k24), reads as in (5.7) in the main text. For any given value of µ ∈ (0,+∞) its
Euler Lagrange equation for ρ ∈ (0, 1) reduces to

1

µ2

π2

6

[
ρ2β′2 sinβ cosβ(k1 − k3) + (3ρβ′ + ρ2β′′)

(
k1 sin2 β + k3 cos2 β

)]
+ µ

{
β′′ +

1

ρ
β′ − 1

ρ2
sinβ cosβ

[
1 + 2 (k3 − 1) sin2 β

]}
= 0, ρ ∈ (0, 1) (5.50)

and it is subject to the conditions at the end-points of the interval [0, 1] (5.3).
We consider in the following two subsections the two limiting problems µ = ∞ and µ = 0,

which are slightly easier to solve than the general equilibrium problem proposed in the main
text.

µ = 0

In the limit as µ tends to 0 the term of the energy multiplied by 1/µ2 prevails over the other
term, and for µ = 0 the free-energy is minimized only if

F0 [β] =

∫ 1

0

π2

6
ρ3β′2

(
k1 sin2 β + k3 cos2 β

)
dρ (5.51)

is minimized among the functions β = β(ρ) satisfying the strong anchoring conditions (5.3).
The Euler Lagrange Equation for the free-energy functional (5.51) in the bulk is

ρ2β′2 sinβ cosβ (k1 − k2) +
(
3ρβ′ + ρ2β′′

) (
k1 sin2 β + k3 cos2 β

)
= 0, (5.52)

and, multiplying both sides by ρ4β′, (5.52) has an integral of motion (has a first integral):
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1

2
ρ6β′2

(
k1 sin2 β + k3 cos2 β

)
= const. (5.53)

The Euler Lagrange equation in the strong form does not admit a regular solution in the
interval (0, 1) subject to the strong anchoring conditions (5.3).

Conforming to the experimental data in [32] and more generally to the recent measurements
of the elastic constants in lyotropic chromonic liquid crystals as in [142] or in [26], we assume
k1 = k3 and we confine the problem just stated to the interval (a, b) for 0 < a < b ≤ 1 with the
following conditions at the end points of this interval

β(a) = 0, β(b) =
π

2
. (5.54)

The Euler Lagrange equation (5.52) in the interval (a, b), making use of (5.53) and taking
into account the boundary conditions (5.54), are solved by:

βa,b (ρ) =
π

2

b2
(
ρ2 − a2

)
ρ2 (b2 − a2)

, ρ ∈ (a, b) . (5.55)

We consider a new family of variational problems phrased as follow: Find a and b, which
satisfy 0 < a < b ≤ 1, so as to minimize the free-energy (5.51) associated to the family of
absolute continuous solutions parametrized in a and b (see e.g. Fig. 5.8):

β0
a,b (ρ) =


0 ρ ∈ [0, a)

π

2

b2
(
ρ2 − a2

)
ρ2 (b2 − a2)

ρ ∈ [a, b]

π

2
ρ ∈ (b, 1]

(5.56)

which reads:

F0
[
β0
a,b

]
= k1

π2a2b2

2 (b2 − a2)
. (5.57)

Figure 5.8: An example of AC solutions β0
a,b, for a = 0.2 and b = 1.3.

For any a ∈ (0, b), F0
[
β0
a,b

]
(5.57) is a strictly decreasing functions of b, and, taking b = 1,

we construct the sequence of functions {β0
a,1}a along which the value of the functional (5.57)

tends to 0 as a approaches 0. The limiting solution to which the sequence converges when a goes
to 0 is given by (5.2) in the main text and it is not an AC function due to the discontinuity in
ρ = 0 with β′ (ρ) = δ{0}

(
β (0)+ − β (0)−

)
.
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5.B Crumbling Paradox

Employing n times the split procedure described for the starting drop in Section 5.2.2 to every
droplet in the configuration at each step, the starting drop results crumbled into 2n tactoidal
droplets of equal volume and whose overall volume is V0. If Vn−1 and Rn−1 are the volumes and
the equivalent radii of all the 2n−1 drops at the step n− 1, the volumes and the radii of the two
sub-droplets into which every drop is splitted at step n (keeping the total volume unchanged)
are, respectively

Vn = Vn−1/2 (5.58)

and
Rn = 2−1/3Rn−1. (5.59)

Then, by (5.59) the equivalent radii corresponding to each of the two subdroplets at the step
n are lowered with respect to that of the generating droplets at the step n−1, and so the barriers
shift towards larger values of µ relative to µn−1, where the barriers of the drops at the step n−1
are placed. Making use of (5.15) and (5.59), the new barriers will be placed in

µ̄n =
R̄0

Rn
= (2)1/3 R̄0

Rn−1
= (2)1/3µ̄n−1 > µ̄n−1. (5.60)

Accordingly, the free-energy at step n expressed as the sum of the free-energies associated to the
resulting 2n sub-droplets whose equivalent radii and barriers in µ are given by (5.59) and (5.60)
results:

Fn = 2πK222n
[
Rnminµ∈(0,µ̄n]F(µ, k24)

]
= 2πK222n21/3Rn−1

[
minµ∈(0,µ̄n]F(µ, k24)

]
(5.61)

where we recall that F(µ, k24), (6.38), is the functional (5.7) evaluated on the equilibrium con-
figurations βµm(ρ) obtained for the given value of µ.

Equilibrium is attained whenever F(µ, k24) is minimized among the value of µ < µ̄n and
since µ̄n > µ̄n−1 by (5.60), the value of F associated with the i-th drop at the step n − 1 at
equilibrium is always greater than or equal to that of the generating droplets associated with
every resulting drops at the step n is always lower than or equal to that of the

minµ∈(0,µ̄n]F(µ, k24) ≤ minµ∈(0,µn−1]F(µ, k24). (5.62)

According to the graph in Fig. 5.4, the equality holds only when the equilibrium of the generating
and the resulting droplets is is attained at µ = µrel, and so only if µ̄n and µ̄n−1 belong to the
range [µrel, µ̃]. Making use of (5.62) in (5.61), we get (5.22) in the main text. According to
the graphs in Figure 5.2, for every given value of k24 > k∞24, F(µ, k24) is strictly decreasing in
(µ̃,+∞), it reaches the µ−axis at µ = µ0 > µ̃ and diverges to −∞ as µ goes to +∞. When
µ̄ < µ0 the split of the initial drop could entail a waste of energy and the initial droplet may
appear in apparent equilibrium. When µ̄ < µ0, the crumbling paradox occurs at least when n
is great enough, which means that we need to split the starting drop into a sufficient number of
sub droplets, before they start to spontaneously disaggregate. By (5.60) there exist a step n̄ at
which the barriers of each of the droplet in the configuration are placed at a greater value than
µ0, i.e. µ̄n̄ > µ0 and by (5.22) the total free-energy of the system at the step n̄+ 1 obeys:

F n̄+1 ≤ 2πK2222/3
[
2n−1Rn̄minµ∈(0,µ̄n̄]F(µ, k24)

]
. (5.63)
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The minimum value of F(µ, k24) in (0, µ̄n) is negative and so by (5.63)

F n̄+1 < 2πK22

[
2n̄Rn̄minµ∈(0,µ̄n̄]F(µ, k24)

]
= F n̄ (5.64)

By (5.62) and (5.60) this happens for every n ≥ n̄. Indeed for every subsequent splitting, the
barriers increases and the equilibrium value of F(µ, k24) is always negative.



Chapter 6

Quartic Theory

We propose a quartic theory to avoid the shortcomings of the existing one. The new quartic free-
energy density is minimized by the (non uniform) local double-twist ground state, the assumed
ground state of CLCs, and it turns out to be suitable to reproduce the experiments.

6.1 Introduction

The unboundedness below of Oseen-Frank’s free-energy in 3D Euclidean space when K22 < K24

seems to be the only responsible for the paradoxes shown in Chapter 5. Taking for a fact
that the ground state of CLCs is a characteristic double twist, a continuum model for these
particular materials should primarily cure that pathology. We do so by resorting to a higher-
order theory. There are essentially two avenues towards a higher-order theory, that is, to allow
either for higher spatial derivatives of n in the elastic free-energy density or for higher powers of its
spatial gradient. Here, to stabilize the free-energy so that it cannot decrease without limit when
K22 < K24 we introduce a quartic power of the spatial gradient of n. Examples of fourth-order
densities were proposed in [3, 128, 21]. The idea here is to justify the occurrence of non-uniform,
modulated nematic phases as ground states. Other theories are known as “quartic”, [46], but they
owe this name to an elastic term globally quartic in the order tensor and its derivatives, added
to the commonly considered version of the Landau de Gennes theory. This version is capable of
recovering the full Oseen-Frank’s energy-density, avoiding the degeneracy K11 = K33 typical of
the original theory.

In Section 6.2 we look for a minimalistic free-energy density that agrees with Oseen-Frank’s
at the lower order and is minimized by a characteristic double-twist configuration.

In Section 6.3 we put to the test the ability of the new theory to reproduce the experiments
with CLCs under confinement. A scale length a is introduced in the model which measures
the extent of the distortions. This characteristic length, which we estimate of the order of
10 − 100nm and the radius of the cylinder of the experiments are well separated and the non
trivial solutions of the Euler Lagrange equations for the new functional have opposite chirality
and closely resemble the ET solution (1.42) or its mirror image (1.43). Despite the new theory
describes the assumed ground state of CLCs, this state could be attained in 3D space only in
the non physical case of a cylinder whose radius is considerably smaller than a. Otherwise, the
confinement prevents the realization of the spontaneous value of the double twist away from the
axis.

Also the study of the extended phase space of a dynamical system associated with the quartic
free-energy density shows in Section 6.4 a good agreement between the new theory and Oseen-
Frank’s in rationalizing the experimental investigations of CLCs confined in cylindrical geometry.

111
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Section 6.5 illustrates that for the sequence of configurations (Bk,nk) leading to the free-
boundary paradox described in Chapter 5, the limiting value of the new functional as k → ∞
does not diverge to −∞.

6.2 Quartic Formula

Since the ground state of CLCs is not the uniform field, as in classical nematics, but a characteris-
tic double-twist, a well-posed elastic theory for chromonics should penalize distortions departing
from the (non-uniform) local state characterized by

S = 0, T = T0, B = 0, 2q = 0. (6.1)

We posit a quartic energy density promoting a double-twist configuration and penalizing all
departures from it

Wchr(n,∇n) =
1

2
κ1S

2 +
1

2
κ2T

2 +
1

2
κ′2(2q)2 +

1

2
κ3B

2 +
1

4
κ4T

4. (6.2)

The leading terms in (6.2) are the only terms that need to be positive definite, and since
(S, T,B, q) are all independent measures of distortions, it readily follows that we shall take
κ1, κ′2, κ3, κ4 all positive. The sign of κ2 could be arbitrary.

Comparing Wchr in (6.2) and the form of fOF given in (1.13), one can easily see quadratic
theory agrees with Oseen-Frank’s energy at lower order. In particular:

κ1 = K11 −K24 > 0, κ2 = K22 −K24 ∈ R, κ3 = K33 > 0, κ′2 = K24 > 0, κ4 > 0. (6.3)

It is worth noting that this choice makes Wchr depend only on five elastic constants, just one
more than in Oseen-Frank’s formula. While K11, K22, K33 and K24 have physical dimensions of
force, κ4 has dimension of force times length squared. We shall set

k4 = K22a
2, (6.4)

where a is a characteristic length (possibly of molecular origin). Indeed, since the ground state for
the quartic energy is not uniform, this scale length is introduced into the model and measures the
locality of the distortion1; it could be closely related to the persistence length of the molecular
order, which characterizes the flexibility of CLC aggregates2. We estimate a on the order of
tens-hundreds of nm [139].

Whenever the inequalities in (6.3) hold, the free-energy density intended here for chromonics
(6.2) would induce a double-twist distortion characterized by (6.1), which realizes the the state of
minimum energy. The unboundedness below of Oseen-Frank’s free-energy which was responsible
for the paradoxes found in Chapter 5, is here prevented by the positive definiteness of the leading
terms in (6.2) and the problem of minimizing (6.2) with respect to the double-twist pseudoscalar
reduces to

T 2 = T 2
0 := −k2

k4
= −K22 −K24

K22

1

a2
= −1− k24

a2
> 0 (6.5)

where use has been made of (6.3) and (1.30). Thus, the free-energy has a minimum at T = ±|T0|,
provided that k24 in (1.30) is greater than 1, which is also the range of validity of the escaped
twist solutions in the quadratic theory.

1It is perhaps worth noting that also in the elastic model proposed in [128], whose quadratic free-energy can
admit as ground state either of the two families of uniform director fields (1.15), i.e. two conjugated heliconical
fields with opposite chirality, a length scale is hidden in the theory from the start; it will reappear in the equilibrium
pitch and the distortion state characterized by this preferential length is the same everywhere.

2The persistence length of self-assembled flexible aggregates is a length over which unit vectors tangential to
the aggregates lose correlation.
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6.3 Minimization Problem

We write the elastic free-energy functional for CLCs as

Fchr[B,n] :=

∫
B
Wchr(n,∇n) dV = Fb[B,n] + Fk4 [B,n], (6.6)

where Fb is Oseen-Frank’s free-energy functional and

Fk4 [B,n] :=
K22a

2

4

∫
B

(n · curln)4 dV (6.7)

is the higher-order contribution.
The length a is characteristic of the material and it is thus held fixed; R is the radius of the

cylinder confining the CLC and on physical grounds it is expected to range in the interval [a,∞).
With a physicist’s mind, one could reason by saying that if R � a, the quartic term in (6.2)
does not broadly contribute to energy density of the quadratic theory, and so to the equilibrium
equations. We thus expect the minimizers of the new energy functional (6.6) to be either 0 or
two solutions with opposite chirality which closely resemble the ET solution (1.42) or its mirror
immage (1.43). To study the intermediate regime in which R and a are comparable is also of
interest.

We follow the same line of thought outlined in Chapter 1 when Oseen-Frank’s free-energy
was employed to rationalize the configuration of the confinement-induced ground state. Thus,
the region B occupied by the CLCs in the N phase is a cylinder of radius R and height L; the
director field is defined by (1.25), where β = β(ρ) describes how the directors twist along a
radius of the cylinder and it is assumed to depend only on r through ρ = r/R in (1.26). This
angle obeys β(0) = 0 for the integrability of the energy density, while β(1) is free to vary, since
n in the form (1.25) can always accommodate degenerate boundary conditions. By the change
of variable r → ρ and making use of the distortion characteristics (1.28) in the new free-energy
functional for CLCs (6.6), we arrive at the following reduced functional, which is an appropriate
dimensionless form of Fchr[n] in (6.6) and agrees with that found within Oseen-Frank’s theory,
F [β] in (1.29), at lower order

Fchr[β] :=
Fchr

2πK22
= F [β] + Fk4 [β] (6.8)

where

Fk4 [β] := ε2

∫ 1

0

ρ

4

(
β′ +

1

ρ
sinβ cosβ

)4

dρ, (6.9)

and
ε :=

a

R
. (6.10)

As before, we seek the orientation fields n which make the elastic free-energy stationary within
the class described by (1.25) subject to n|ρ=0 = ez, under the assumption that n is at least a
map of class C2. This amounts to seek the functions β = β(ρ) of class C2 in [0, 1] which satisfy
the condition at ρ = 0 and make (1.29) stationary. The strong forms of the Euler Lagrange
equations reduce here to

1

ρ2
cosβ sinβ

[
1 + 2(k3 − 1) sin2 β

]
− β′

ρ
− β′′

+ ε2

(
β′ +

sinβ cosβ

ρ

)2 [4 sin2 ββ′

ρ
− 3β′

ρ
− 3β′′ +

sinβ cosβ

ρ2

(
3− 2 sin2 β

)]
= 0, (6.11)
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and [
(1− 2k24) cosβ sinβ + β′ + ε2

(
β′ +

sinβ cosβ

ρ

)3
]∣∣∣∣∣
ρ=1

= 0. (6.12)

When ε equals 0 the quartic term is neglected and this theory effectively reduces to Frank’s; the
non-uniform equilibrium configurations for the free-energy functionals subjects to the boundary
conditions are the escaped twist solutions (1.42) and (1.43). Whenever ε > 0, (6.11) has not a
first integral and the solutions of (6.11) and (6.12) fail to be made explicit. Thus, for a given
choice of the parameter ε and of the elastic parameters (k3, k24) we numerically find the solutions
of (6.11) and (6.12), which satisfies β(0) = 0. We consider one or three equilibrium solutions
according to the value of k24: the uniform solution β(ρ) = 0 (1.41) which exists for every k24 > 0,
with the director n parallel to the capillary axis, and two other non-uniform configurations βε(ρ)
and π − βε(ρ) with right- and left- handed chirality according to whether the integral lines
of the nematic director spiral clockwise or counter-clockwise. By evaluating numerically the
functional Fchr[β] in (6.8) on these last two equilibrium configurations, we find that the uniform
configuration is always energetically disfavoured; this justifies the spontaneous emergence of
chirality in the nematic director texture in the absence of molecular chirality. Actually, director
equilibrium configurations in which the director winds around the radial direction a larger number
of times than these latter also exist. They are both energetically disfavoured and lacking in
physical meaning; we neglect them.

Though equation (6.11) is too complicated to lend itself to analytic solutions, we can still
explore the asymptotic behaviour near ρ = 0 of the solutions branching off the trivial one. We
take in (6.11)

β(ρ) = Aρα, (6.13)

where A is an arbitrary constant and α > 1/2 makes (6.9) compatible with the requirement of
integrability. In the limit as ρ tends to 0, (6.11) can be given the following asymptotic form:

3A2(α− 1)(α+ 1)ρ4α−3ε2 + (α− 1)(α+ 1)ρ2α−1 +O(ρ6α−3, ρ4α−1) = 0, (6.14)

where O(ρ6α−3, ρ4α−1) means that 6α−3 is the lower order in ρ for α ∈ (1/2, 1), 4α−1 otherwise.
For every A ∈ R and ε > 0, α = 1 solves equation (6.14) at the lowest order and the non trivial
solutions of (6.11) shows the following asymptotic behaviour as ρ tends to 0

β(ρ) ≈ β′(0)ρ. (6.15)

6.3.1 Cylindrical Symmetry and Extensions

Hereafter we restrict attention to the positive branch of the solution β = βε(ρ). Since the
extrapolation length a is kept fixed, the family of solutions {βε(ρ)}ε is thus generated by letting
R vary in the admissible interval [a,∞), which corresponds through (6.10) to the interval [0, 1]
spanned by ε.

We first explore the ability of the new free-energy functional (6.2) to reproduce the exper-
iments on CLCs under cylindrical confinement. Good agreement with Oseen-Frank’s theory is
also expected.

In [19, 32], the experimental study of CLCs confined in cylinders are carried out for radii R of
the order of tens-hundreds micrometers, R ∼ 10− 100µm, and since we consider a of molecular
order, the corresponding value of ε is � 1. We take as reference value ε = 10−2. Figure 6.1
illustrates than when ε is around this value, the equilibrium solution with right-handed chirality
closely resembles the ET configuration with the same chirality, as expected. The same argument
holds for the mirror image with left-handed chirality. They share the same energy and are likely
to characterize the two-fold pseudo ground state of CLCs within the new theory.
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Figure 6.1: Right-handed equilibrium solutions for k3 = 30, k24 = 7.5 [32] for different
values of ε, namely ε = 10−2, 6× 10−2, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8, 0.9, 1(according to

the arrow). Red line represents the ET solution with positive chirality, (1.42).

The minima ±T0 (T0 > 0) of the free-energy in (6.5) are determined by the value of a. To
explore the core of a size around the axis of the cylinder, we find it useful to introduce the new
scaled variable

ξ :=
r

a
∈
[
0,

1

ε

]
. (6.16)

As ξ spans the interval [0, 1], we remain within the molecular distance a from the axis. Here ξ
is related to ρ ∈ [0, 1] in (1.26) through the formula

ξ(ρ) =
ρ

ε
, (6.17)

providing a change of variables which maps [0, 1] onto [0, 1/ε]. In the new variable βε becomes
a function on [0, 1/ε] defined by

bε(ξ(ρ)) := βε(ρ), (6.18)

and such that
b′ε(ξ) := εβ′ε(ρ) = εβ′ε(εξ), (6.19)

where ′ always denotes differentiation with respect to the argument. Inserting (6.18) and (6.19)
(with T > 0) in (1.28), we give the distortion characteristics of the right-handed equilibrium
solution the following dimensionless form as function of ξ:

aSε =0, (6.20a)

aTε =b′ε(ξ) +
cos bε(ξ) sin bε(ξ)

ξ
, (6.20b)

2aqε =b′ε(ξ)−
cos bε(ξ) sin bε(ξ)

ξ
, (6.20c)

aBε =
sin2 bε(ξ)

ξ
. (6.20d)

In particular, the ratio between Tε and +T0 does not depend on a and is given by

Tε
T0

=
1√

k24 − 1

(
b′ε(ξ) +

cos bε(ξ) sin bε(ξ)

ξ

)
. (6.21)

When a � R, and so ε � 1, the confinement is placed at a great distance from the cylinder of
molecular radius a. The ideal state with T = T0 is sought for away from the cylinder’s axis (see
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Fig. 6.2a) for different values of ε. The spontaneous value of the double-twist is prevented from
being attended along the axis.
The distortion characteristics for bε = bε(ξ) near the axis are justified by the asymptotic analysis
carried out for the non trivial equilibrium solutions in Section 6.3. Making use of (6.15) in (6.18),
we arrive at the following explicit formula for bε when ξ is near 0

bε(ξ) ≈ εβ′(0)ξ, (6.22)

from which it readily follows that both 2aq in (6.20c) and aB in (6.20d) vanish at ξ = 0. The
value of Tε/T0 along the axis of the is given by

Tε
T0

∣∣∣∣
ξ=0

=
2εβ′(0)√
k24 − 1

, (6.23)

which, by (6.18) and (6.19), vanishes only for ε = 0. As soon as ε differs from 0, Tε/T0 along
the axis starts to increase toward 1, reaching only a fraction of it for ε = 1. In particular, the
computed values for (6.23) as a function of ε ∈ [0, 1] when k3 = 30 and k24 = 7.5 [32] are reported
in Fig. 6.3. For the physically meaningful values of ε, the equilibrium double-twist Tε never

(a) Tε/T0 in (6.20b) plotted
against ξ ∈ [0, 1].

(b) 2aqε in (6.20c) plotted
against ξ ∈ [0, 1].

(c) aB in (6.18) plotted
against ξ ∈ [0, 1].

Figure 6.2: k3 = 30, k24 = 7.5 and increasing values of ε, namely
ε = 10−2, 6× 10−2, 10−1 0.2, 0.3, 0.4, 0.5, 0.6, 0.8, 0.9, 1(according to the arrow). These
graphs investigate how the elastic mode of the right-handed equilibrium solution behave
within the cylinder of molecular radius a enclosing the axis of the confinement. They are

expressed in terms of the auxiliary variable ξ ∈ [0, 1] in (6.16).

reaches the spontaneous value T0, a clear sign of elastic frustration. It should be noted that the
value predicted here for the double twist T at equilibrium along the cylinder’s axis is in stark
contrast with that read off from (1.45) within Oseen-Frank’s theory. Consider now, at curiosity,
the case R < a: the confinement of the CLC becomes virtual as it enters the cylinder of radius
a. Thus the auxiliary variable suitable for the study of the virtual situation is ρ ∈ [0, 1] in (1.26),
and the dimensionless distortion characteristics of the right-handed equilibrium solution are:

aSε =0, (6.24a)

aTε =ε

(
β′ε(ρ) +

cosβε(ρ) sinβε(ρ)

ρ

)
, (6.24b)

2aqε =ε

(
β′ε(ρ)− cosβε(ρ) sinβε(ρ)

ρ

)
, (6.24c)

aBε =ε
sin2 βε(ρ)

ρ
. (6.24d)
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Figure 6.3: The value of the ratio Tε/T0 at the origin is plotted against ε ∈ [0, 1].
Reduced elastic constants are k3 = 30, k24 = 7.5.

As ε increases beyond 1, we notice in Fig. 6.4 that an increase of ε is associated with a reduction
of the frustration in the confined system and to a tendency to uniformity of the confinement-
induced ground state. Indeed, the graphs in Figures 6.4c and 6.4b show a reduction of both bend
and octupolar splay. Moreover, Fig 6.4a represents the trend toward uniformity of the double
twist, which converges to the minimum T0 in (6.5) of the free-energy.

(a) Tε/T0 in (6.24b) plotted
against ρ ∈ [0, 1].

(b) 2aqε in (6.24c) plotted
against ρ ∈ [0, 1].

(c) aB in (6.24d) plotted
against ρ ∈ [0, 1].

Figure 6.4: k3 = 30, k24 = 7.5. For increasing values of ε > 1, a trend toward a
double-twist configuration (6.1) with T0 given by the positive minimum of the quartic
free-energy (6.5) is observed. Here, the dimensionless distortion characteristics are

plotted against ρ ∈ [0, 1] for increasing values of ε, namely ε = 1, 3, 5, 7, 9 (according to
the arrow).

6.4 Dynamical Analogy

Here the problem tackled in the previous Section is reduced to an analogous infinite horizon
variational problem. Contrary to the case for ε = 0 in Chapter 4, the dynamical system is not
autonomous. The new bulk free-energy density is mechanically interpreted as the Lagrangian
of this peculiar dynamical system given by the sum of a kinetic and a potential energy and the
features of these motions are illustrated through the extended phase diagram of the system, with
the time as third coordinate. We thus extend the analysis in Chapter 4 slightly.
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Since Wchr in (6.2) agrees with Oseen-Frank’s energy density at lower order, we study only
the contribution of the term of higher order which supplements those just found in Chapter 4.

The functional (6.9) is reduced to the analogous dynamical problem by the change of variables
t (ρ) := − ln (ρ) in (4.1), where t has the meaning of artificial time and maps [0, 1] onto [0,+∞].
Moreover β becomes a function on [0,∞), which is defined by b(t(ρ)) := β(ρ) and we give Fk4 [β]
the following dimensionless form:

Fk4 [b] :=
1

4

∫ ∞
0

(
εet
)2 (−ḃ+ sin b cos b

)4
dt (6.25)

This functional is to be added to F [b] in (5.47), and the dynamical analogous of Fchr[β] in (6.8)
results in:

Fchr[b] := F [b] + Fk4 [b] =

∫ ∞
0

[
ḃ2

2
+ φ(b) +

1

4

(
εet
)2 (−ḃ+ sin b cos b

)4
]

dt− ϕ0(b(0)), (6.26)

where φ(b) and ϕ0(b) are given as in (4.5) and (4.6), respectively. Unlike the quadratic case, this
dynamical problem is not autonomous and the Lagrangian of this peculiar system is given by

Lchr :=
ḃ2

2
+ φ(b) +

1

4

(
εet
)2 (−ḃ+ sin b cos b

)4
. (6.27)

Here, the equation of motion (4.8) for Lchr reads as

b̈+ (εet)2(−b+ sin b cos b)2
[
3b̈+ 4ḃ sin2 b+ sin b cos b(2 sin2 b− 3)

]
= φ′(b) (6.28)

while the natural condition at the boundary (4.10) is given by

ḃ− (εet)2(−ḃ sin b cos b)3 − (1− 2k24) sin b cos b = 0. (6.29)

The phase diagram of this system for the representative values k3 = 30 and k24 = 7.5 is illustrated
in Figure 6.5.

The phase space, although the problem is no longer autonomous, has the same structure of
that for ε = 0 in Chapter 4. The intersection of orbits does not contradict the theorem of existence
and uniqueness of the solutions of dynamical systems as the system is non autonomous and time
makes these trajectories not self-intersecting in the extended phase space. This confirms that the
quartic theory as long as ε is small is exactly superimposable to Oseen-Frank’s theory; indeed,
the orbits on the phase space for the quadratic and the quartic theories are only quantitatively
(but not qualitatively) different.

6.5 Chromonic Droplets

The aim of this section is to prove that the quartic theory proposed here prevent the shortcomings
of Oseen-Frank’s theory highlighted in Chapter 5. As an example, we illustrate that for the
sequence of configurations (Bk,nk) leading to the free-boundary paradox we have constructed
in Chapter 5, the limiting value of the new functional as k →∞ does not diverge to −∞.

We recall the setting of the paradox. The drop’s boundary ∂B is obtained by rotating the
graph of a function of class C1, R = R(z), which describes the radius of the drop’s cross-section
at height z ∈ [−R0, R0]. R is taken to be an even function and to vanish on the z axis at the
points z = ±R0 (the poles of the drop). Orientation fields n are of the form given in (1.25),
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Figure 6.5: Reduced elastic constants are k3 = 30 and k24 = 7.5. ε = 10−2, value taken
as representative of the experiments on CLCs under cylindrical confinement; phase

portrait for b ∈ [0, π] of the dynamical system generated by the minimized nemerically
Lagrangian. The optimal solution of the infinite dynamical problem is the orbit

corresponding to c = 0.

where β is assumed to depend on the dimensionless coordinate ρ = r/R(z) in (5.1)3(it does not
vary along the meridian of the droplet). Moreover β = β(ρ) obeys strong anchoring conditions
(5.3) and (5.2).

More precisely, the incriminated sequence corresponds to the family of configurations (Rµm, β
µ
m)

generated by letting µ vary in (0,+∞), where Rµm = Rµm(z) is the family of tactoids parametrized
in µ and given by (5.6) and βµm = βm(ρ) is the equilibrium solution of the Euler Lagrange equa-
tion for the functional Fµ[R, β] in (5.6) and satisfying the strong anchoring conditions. Here the
functions βµm will be the equilibrium configurations for the appropriate dimensionless form of the
functional Fchr in (6.6) over the special family of shapes (5.6).

Since Wchr in (6.2) agrees with Oseen-Frank’s energy density at lower order, we study only
the contribution of the term of higher order which supplements those just found in Chapter 5.
By rescaling the length r, R and z to that dictated by the volume constraint Re, the appropriate
dimensionless form of Fk4 in (6.7) associated with the particular class of distortions under
condideration is given by

Fµk4
[R, β] :=

Fk4

2πK22Re
= ε2

∫ µ

−µ

1

R(z)2
dz

∫ 1

0

ρ

4

(
β′ +

sinβ cosβ

ρ

)4

dρ. (6.30)

This functional is to be added to Fµ[R, β] in (5.47), and the variational problem we thus face
can be phrased as follows: find a positive and even function R = R(z) vanishing at z = ±µ
and a function β = β(ρ) which obeys (5.3) and (5.2) so as to minimize the following reduced
functional which is an appropriate dimensionless form of Fchr[B,n] in (6.6) associated with the
equilibrium shapes (5.6):

3With an abuse of language we keep the name unaltered when R does not depend on z, as in the cylindrical
confinement treated in [10] or in [19].
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Fchr[R, β] :=
Fchr

2πK22Re
=

∫ µ

−µ
R′ (z)2 dz

∫ 1

0

ρ2β′2

2

(
k1 sin2 β + k3 cos2 β

)
ρdρ

+ ε2

∫ µ

−µ

1

R(z)2
dz

∫ 1

0

ρ

4

(
β′ +

sinβ cosβ

ρ

)4

dρ

+ 2µ

{∫ 1

0

[
β′2 +

1

ρ2
cos2 β sin2 β +

k3

ρ2
sin4 β

]
ρ dρ.+ (1− 2k24)

}
.

(6.31)

Here k1, k3 and k4 are given in (5.8) and (1.30). The new theory requires k24 > 1 (which violates
Ericksen’s inequalities (1.8)), while k1 and k3 are non negative.

In the new theory the defects at the poles of the director field (1.25) subject to strong
anchoring conditions (5.3) and (5.2) possess infinite energy. Here the culprits are the twist and
the splay contributions; at least one of the two integrands R′(z)2 or 1/R(z)2 is not integrable at
z = ±µ. This is seen by the following inequality, which is built on Hölder’s inequality:

|lnR(z) |µ0 | =
∣∣∣∣∫ µ

0

R′(z)

R(z)
dz

∣∣∣∣ ≤ ∫ µ

0

∣∣∣∣R′(z)R(z)

∣∣∣∣dz ≤ (∫ µ

0
R′(z)2 dz

)1/2 (∫ µ

0

1

R(z)2
dz

)1/2

.

(6.32)
Especially, the contribution of the splay distortion to the functional (6.31) diverges for smooth
shapes, while twist contribution becomes unbounded for pointed shapes.

We thus resume the argument of Chapter 3 for two-dimensional droplets and we imagine
that the energy concentration near defects causes a localized transition to the isotropic phase,
which constitutes a defect core. Moreover, for simplicity, instead of considering a circular core,
which is the most common choice, we take it in the shape of the tapering drop’s tip. Letting rc
denote the core’s size letting rc, we set rc = εRe, where ε is the dimensionless parameter defined
in (6.10), and restrict z to the interval [−η, η] where η is defined by

R(η) = R(−η) = ε. (6.33)

The integral in (6.31) will hereafter be limited to the interval [−η, η], so that it will always
converge. The extra energy stored in the defects, being approximately constant, will play no
role.

We investigate the value of (6.31) evaluated on the family of tactoids parametrized in µ
whose profile is given by Rm = Rm(z) in (5.6). Thus, making use of (5.6) in (6.33), η results as
a decreasing function of ε whose expression is given by

η =
2µ

π
arccos

(√
3µ

2
ε

)
. (6.34)

The admissible value of µ are thus bounded above by

µmax := 4/(3ε2), (6.35)

value at which the energy concentration near defects would cause the transition to the isotropic
phase of all the droplet. This limiting value of µ is thus forbidden.
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Making use of (5.6) and (6.34) in (6.31) (the integral has been limited to the interval [−η, η]),
we arrive at

Fµchr[R, β] =2

{
− π

12µ2

[√
3µε
√

4− 3µε2 − 4 arccos

(√
3µε

2

)]
A [β]

+ε
µ3/2

2π

√
3
√

4− 3µε2B [β] + η C [β] (k24)

}
, (6.36)

where use has been made of the notation:

A [β] :=

∫ 1

0

ρ3

2
β′2
(
k1 sin2 β + k3 cos2 β

)
dρ, (6.37a)

B [β] :=

∫ 1

0

ρ

4

(
β′ +

1

ρ
sinβ cosβ

)4

dρ, (6.37b)

C[β](k24) :=
1

2

{∫ 1

0

[
ρβ′2 +

1

ρ
cos2 β sin2 β +

k3

ρ
sin4 β

]
dρ+ (1− 2k24).

}
, (6.37c)

C[β](k24) is negative whenever k24 > k∞24 as inferred in Chapter 5. Following the same argument
illustrated in Chapter 5, for any given value of µ ∈ (0, µmax) we numerically find the solution
β = βµm(ρ) of the Euler Lagrange equation for the functional Fµchr [β] (k24) in (6.36) which satisfies
the prescribed boundary conditions (5.3) and (5.2). We then evaluate numerically the functional
(6.36) on these configurations as a reduced function:

Fchr(µ, k24) := Fµchr[β
µ
m](k24) (6.38)

on T := {(µ, k24) : 0 < µ < µmax, k24 > 1} . Fig. 6.6 illustrates the graph of (6.38) for k1 = k3 =
30 and different fixed values of k24 > 1, where to confine attention to large values of µ we express
the dimensionless functional as a function of ξ := 1/µ ∈ (0, 1/µmax):

F̂chr(ξ, k24) := Fchr (1/ξ, k24) . (6.39)

Figure 6.6: Graph of F̂chr(ξ, k24) in (6.39), corresponding to the dimensionless
functional (5.7) evaluated numerically on the equilibrium configurations βµm(ρ) and

expressed as a function of ξ = 1/µ ∈ (0,∞) for k1 = k3 = 30 and a sequence of values of
k24 > 1, namely k24 = 1.3, 2.5, k∞24 = 4.86, 5.3, 7.5 (according to the arrow). For every

k24 > 1, F̂chr has a minimum that always occurs at µ < µmax.

Whenever k24 > k∞24, F̂chr is no more unbounded below, but the quartic term gives rise to a
minimum in the functional of the energy that always occurs at µ < µmax.
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6.5.1 Conclusions and Future Explorations

Strictly speaking, above we have only proved the non-occurrence of the free-boundary paradox
for the special sequence of configurations on which Oseen-Frank’s theory failed. In order to
effectively cure the paradox, we should be able to guarantee that the new theory attains a
minimum on the whole class of configurations parametrized by (R, β) where the even function
R describes the profile of the droplet and β is the angle between n in (1.25) and its axis and
depends on ρ in (5.1). The subject of a future study will be the attempt to establish the existence
of minimizers for the functional Fchr introduced in (6.6).

Furthermore, a quartic theory raises intriguing regularity issues, such as the following. What
type of defects would be compatible with the new theory? What would be the optimal dimension
of the singular set? We briefly recall two results proved in [112] and [49] on the space dimension of
defects in the minimizers of Oseen-Frank’s energy functional. In the one-constant approximation
K11 = K22 = K33 and K24 = 0 any minimizer for the energy functional is an harmonic mapping
of A(n0), where

A (n0) :=
{
n ∈ H1

(
B, S2

)
| n0 is the trace of n on ∂B

}
, (6.40)

and is smooth in B except possibly for a finite number of point defects [112] at points x0 ∈ B
with degree +1 or −1. In the vicinity of them

n(x) ≈ Rx0nx0 , (6.41)

where Rx0 is an orthogonal tensor depending on x0, and nx0 is the radial hedgehog located at
x0

nx0 =
x− x0

|x− x0|
. (6.42)

For general elastic constants it is not known whether minimizers can only have a finite number
of point defects, though by the partial regularity result in [49] the set of singularities has one-
dimensional Hausdorff measure zero.
There is no indication as to whether the conclusions about the regularity of energy minimizers
reached above apply also when the free-energy density is given in the form (6.6), where an higher
order term is added. Surely the noteworthy results of Hardt, Kinderlehrer and Lin [49] are to
be revisited and possibly extended to the newly envisaged setting. There could exist defects
successfully explained within Oseen-Frank’s theory, but incompatibly with the quartic theory. If
this is the case, to validate our theory, we have to contrast these defects to the experimentally
observed ones.

To posit the quartic free-energy in an achiral scenario, basic invariants under central inver-
sion and complying with the nematic symmetry are built in [128] starting from the measures of
distortion (S, T, b,D); they are listed below:{

S2, T 2, B2, trD2, Sb ·Db, Tb ·D(n× b)
}
. (6.43)

Their multiplication up to the fourth power of ∇n forms a general quartic theory. In this case,
T 4 is the only genuine quartic contribution needed to accommodate (6.1) as local ground state.

Given the nature of a null Lagrangian of the saddle-splay term (1.5), geometrical confinements
with finite principal curvatures inducing degenerate tangential anchoring on the nematic director
inhibit the divergence of Oseen-Frank’s free-energy to −∞ when K22 < K24 or K11 < K24

and turn an ill-posed problem into a problem which admits an energy minimizer. This is the
case for CLCs in cylinders first studied within Oseen-Frank’s theory by Burylov [10]; the ET
configurations (1.42) and (1.43) realize the minimum of the free-energy. Thus, according to
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the boundedness below of the quadratic energy and to the perturbative nature of the quartic
term in Wchr when a � R, the equilibrium solution for the quartic functional with right- or
left-handed chirality closely resemble the ET configuration with the same chirality. However, it
has to be noted that the relevant feature which makes the difference between the two theories in
rationalizing the experimental data is the value of the double twist along the axis of the cylinder;
this cannot be detected experimentally.

On the other hand, as we learned in Chapter 5, problems where the region in space is
allowed to vary may accommodate an ET configuration, but the associated quadratic energy
is not bounded from below. An higher order term can be used to overcome the deficiencies of
Oseen-Frank’s free-energy density for CLCs when the saddle-splay constant exceeds the twist
constant.

We still lack the solution of this free-boundary problem within the quartic theory. On the
other hand, the corrections to Oseen-Frank’s formula when the boundary conditions prevent the
onset of pathologies are negligible in all practical situations. To really see the difference between
the two theories, we must conceive an experimentally attainable situation where the violation of
the inequality K22 > K24 entails the existence of minimizers only within the new theory, while
those for Oseen-Frank’s functional fail to exist.
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