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Abstract

Metagenomic approaches have changed the way to study biology and

biodiversity in several fields. In particular, technology advancement enables us

to determine taxa composition and to study complex biodiversity patterns in

very different environments. Nowadays, DNA metabarcoding is a standard

procedure, applied on a wide range of fields, from human health to ecology, to

industry applications.

In the last few years, 16S rRNA metabarcoding was widely used to study the

bacterial community, leading to routine analysis which created huge amounts

of data, bringing researchers to develop data mining strategies in order to

answer complex biological questions. On the other hand, DNA metabarcoding

can be applied also to study Plants, Animals or Fungi, as very different

molecular markers have been identified.

In both cases, considering the huge amount of data produced by researchers

and available in repositories, a data-driven perspective in managing and

exploring DNA metabarcoding data could be useful to collect hidden

information and potentially determine undiscovered aspects.

In this PhD dissertation, I focused the attention on a data-centered perspective

of DNA metabarcoding data, touching four main points that can enhance and

ameliorate the current strategies: i) consider the molecular information obtained

from high-throughput DNA sequencing (HTS) and available in public

repositories, ii) enhance taxonomy assignment step, iii) investigate new

methods for pattern reconstruction and iv) use data as a valuable resource for

research.

These four steps can enhance at different levels the potentials of DNA

metabarcoding applications, paving the way for standardization procedures for

non-bacterial markers and the integration of new data mining and data reuse

strategies of metabarcoding data.
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1. Introduction to the dissertation contents

1.1 Aims of the dissertation

In this work, I focused on a data-centered perspective of DNA metabarcoding

data. Starting from DNA metabarcoding as a method to track species in food

and environmental samples, I subsequently dealt with four main points: i) use

molecular information as a main source of information when non-bacterial

molecular markers are used, ii) issues related to the taxonomy assignment and

development of strategies to enhance it, iii) pattern reconstruction via data

mining methods and iv) public data as a valuable resource for meta-analysis

and data integration projects.

These four aspects can be summarized into two main sections that I will

introduce in the next paragraph (1.2 “Introduction to the dissertation”): i) issues

related to the taxonomy assignment and ii) data mining approaches particularly

focused on 16SrRNA metabarcoding data. Both can contribute to ameliorate

different phases of the metagenomics framework, such as the experimental

design, data analysis and data interpretation, with the idea to integrate new

methods that can enhance experimental strategies and reveal new aspects

extracted from DNA metabarcoding data.

1.2 Introduction to the dissertation

DNA metabarcoding is a genetic-based technique used to study a community

of organisms through a gene or a set of genes, also called molecular markers,

able to define the taxonomy of the individuals from DNA extraction,

amplification and sequencing (Porter and Hajibabaei, 2018).

Beside this, other techniques can be used. In particular i) microarrays, which

allow to detect the presence of predefined markers from an individual

specimen or a community sample; ii) quantitative or digital PCR, exploiting a

single marker; iii) organelle sequencing; iv) genome skimming, a low-coverage
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genome sequencing strategy for an individual specimen; v) whole-genome

sequencing, vi) shotgun metagenomics, where all the genes are sequenced

and then analysed with specific bioinformatics strategies (Quince et al., 2017)

and vii) metatranscriptomics, allowing the study of community “function”

thanks to RNA sequencing (Shakya et al., 2019).

Currently, gene marker surveys are the most popular method to study the

biodiversity of a sample. Thanks to the compromise obtained with costs,

scalability and coverage (Porter et al., 2018), DNA metabarcoding changed the

way of studying biodiversity in several research fields (Deiner et al., 2017;

Makiola et al., 2020; McGee et al., 2019). Supported by advances in high

throughput sequencing technologies, DNA metabarcoding introduced

surprising progresses in surveying prokaryotic and eukaryotic diversity from

any type of environments (Makiola et al., 2020; McGee et al., 2019). Due to the

implementation of multiplex protocols, highly sample parallelization is

nowadays the rule (Herbold et al., 2015) increasing data yield with costs

reduction (Cordier et al., 2020; Porter et al., 2018; Pimm et al., 2015; Thomsen

et al., 2015;  Shokralla et al., 2012).

Advancements currently allow taxa exploration at unprecedented extent, for a

time and cost-effective biodiversity tracking (Westfall et al., 2019; Ruppert et

al., 2019; Deiner et al., 2017). Moreover, several molecular markers have been

studied and used to explore biodiversity, spanning from Plant surveys to the

most studied human microbiome (HMP, 2012; Deiner et al., 2017; Nilsson et al.,

2019; Ruppert et al., 2019). As different markers, and consequently different

taxa, can be used, also pipelines and issues can be affected by the type of

marker considered (Deiner et al., 2017; Ruppert et al., 2019).

In this section, I will introduce the main and current issues related to DNA

metabarcoding data analysis, which will be discussed in the dissertation based

on the work presented. In particular, the work considers two main points: i)

issues related to markers linked to the detection of non-bacterial biodiversity
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(as 18S, for example), and ii) 16SrRNA analysis. Around these two points, both

case studies and the development of new strategies and tools will be

presented, in order to improve the current data analysis techniques of

metabarcoding data.

1.2.1 A step forward taxonomy assignment of DNA metabarcoding data

First, non-bacterial markers will be considered (Chapter 2, 3 and 4).

Considering metabarcoding investigations of non-bacterial biodiversity, which

comprehend for example ITS2, 18S, COX1 or 16S (but not only; Deiner et al.,

2017; Ruppert et al., 2019), a lack of standardization procedures is still present

(Deiner et al., 2017; Ruppert et al., 2019). Bioinformatic pipelines have now

started to be implemented for standards and reproducibility (Ruppert et al.,

2019; Wood-Charlson et al., 2020), also with the obligation to submit the raw

data to ENA or SRA (Wood-Charlson et al., 2020) during the publication

process. However, as these surveys range from ecology to food applications, a

few steps must be taken. In general, metabarcoding bioinformatic pipelines

involved four main phases: i) raw sequencing data cleaning, ii) extraction of

reliable sequences (such as OTUs or ESVs; Callahan et al., 2017; Deiner et al.,

2017), iii) taxonomy assignment and iv) data analysis, intended as

post-processing analysis of reliable sequences or assigned sequences (Deiner

et al., 2017).

Currently, the main issues related to non-bacterial markers is the taxonomy

assignment step (Ruppert et al., 2019; Porter et al., 2018; Deiner et al., 2017).

After the extraction of reliable sequences, taxonomy assignment consists in

using a reference database to give a name to the sequences obtained, where

the final results will be integrated in statistical analysis and used for data

interpretation. Beside the choice of algorithm, which is not the focus of this

work, a great importance relies on reference databases: SILVA 18S, UNITE,

BOLD or PLANITS are a few examples of specific reference database to assign,

respectively, sequences obtained from 18S, ITS Fungi, COX and ITS Plants
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surveys (Pruesse et al., 2007; Ratnasingham et al., 2007; Nilsson et al., 2019).

Specific reference databases are a resource of great value, as they often

include sequences checked by experts of the field (Pruesse et al., 2007;

Ratnasingham et al., 2007; Nilsson et al., 2019). However, some issues exist: i)

currently, reference databases exist only for few molecular markers, such as

SILVA for 16S and 18S genes (Pruesse et al., 2007), BOLD for animals and

plants (Ratnasingham et al., 2007) or UNITE for Fungi domain (Nilsson et al.,

2019); ii) information is not always updated, as the work behind the collections

is immense and often non-automatic (Pruesse et al., 2007). Consequently,

these data resources are not representative of all the genomic and taxonomic

diversity collected to date.

Recently, it has been demonstrated the potential to use NCBI as a primary

source of reference sequences (Keller et al., 2020; Ankenbrand et a., 2015;

Benson et al., 2008). Also depicted in Chapter 2, applications of ITS2

metabarcoding for food traceability and pollinator network reconstructions

were reported. In both cases, the NCBI database was used to assign the

taxonomy (Frigerio, Agostinetto et al., 2020; Frigerio et al., 2021; Tommasi et

al., 2021). In fact, GenBank still resumes the majority of genetic data and their

related metadata currently available and it can be considered a constantly

updated database of all the sequences deposited all over the world (Keller et

al., 2020; Ankenbrand et a., 2015; Benson et al., 2008). As part of the INSDC

consortium (Arita et al., 2021), NCBI is also constantly interconnected with ENA

and DDBJ databases (Harrison et al., 2019; Ogasawara et al., 2020; Sayer et

al., 2019). Thanks to the tools developed to interact with it, such as Entrez

(Kans, 2021), it has become easy to access and query. However, such

information is not always easy to access without specific bioinformatics skills,

which is a limiting factor to a large audience of scientists.

As the taxonomy assignment step remains a pivotal phase to interpret data

obtained from sequencing runs, the absence of sequences in the reference

database or the biases linked to sequencing itself, may affect the taxonomy
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assignment, leading to incorrect or imprecise results (Deiner et al., 2017;

Ruppert et al., 2019). In Chapter 3, I present a case study in which a

multi-marker strategy on two different matrices (air and water) was applied to

explore eukaryotic biodiversity at microscale level in a built environment, the

case of EXPO2015. Currently, the work is unpublished and under evaluation for

submission, but it is an interesting large-scale analysis in which the main

metabarcoding issues can be addressed and used as an example for future

research. In this work, the taxonomy assignment step was deeply explored,

with several attempts (here, only one was mentioned, but several methods were

applied). As the markers involved were 18S, ITS2 for Fungi and the intron trnL,

for some of them a reference database exists (Pruesse et al., 2007; Nilsson et

al., 2019). However, the coverage of the taxonomy was very low in all attempts.

Reaching the species level was very difficult, a lot of Unassigned sequences

remain. In Chapter 3, I demonstrated that in this case, using the reliable

sequences (in particular, ESVs; Callahan et al., 2017) achieve a good result in

the prediction of the sample area, leading the taxonomy to another level of

investigation. Here, the two phases of sample prediction and taxonomy

exploration were kept separately and deeply explored, considering the potential

of molecular information in microscale biodiversity investigation.

However, giving a name to sequences still remains crucial, also considered the

wide variety of applications in which reaching a species level investigation is

mandatory to, for example, studies of food fraud detection, diet

characterization or using DNA metabarcoding to reconstruct pollinator

networks (Frigerio, Agostinetto et al., 2020 a; Frigerio, Agostinetto et al., 2020

b; Tommasi et al., 2021; Bruno et al., 2019). For this reason, I present here the

ExTaxsI project (Chapter 4). ExTaxsI, which means “Exploring Taxonomy

Information”, is a Python project, developed with the aim to help biologists to

improve their experimental designs and to promote data exploration and

exploitation. It is linked to NCBI taxonomy database (Federhen et al., 2012) and

ETE toolkit (Huerta et a., 2016), in order to produce standard formats readable
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by most common software that deal with taxonomic information (Bolyen et al.,

2019; Rognes et a., 2016; Bengtsson et al., 2015; Mahe et al., 2015; Camacho

et al., 2009; Wang et al., 2007), such as QIIME2 platform (Bolyen et al., 2019).

The tool is available as a command line software package

(https://github.com/qLSLab/ExTaxsI) and it is under revision. Currently, my

colleagues and I are working on making a full-fledged Python library, in order to

allow its integration directly into pipelines.

To reach a wide range of researchers and applications, ExTaxsI can be used

with any molecular marker, gene name or taxonomic group, making possible to

create non-standard marker genes database usable in

metagenomic/metabarcoding taxonomic assignment tools (Bolyen et al., 2019).

Thanks to the integration of the NCBI query tool (NCBI, 2014), ExTaxsI can

reorganize personal datasets in a standardized format in order to easily

describe taxonomic variability and geographic provenance of records. In this

context, a great importance has been given to data visualization strategies,

including in the outputs several plots that not only aggregate and present the

research results, but also guide advanced investigations (Kaur et al. 2018;

Hardisty et al., 2013).

1.2.2 Enhancing data-driven strategies on 16S rRNA microbiome data

Setting aside non-bacterial markers and taxonomic issues, 16S rRNA

metabarcoding data have been widely established as the main source of

microbiome information in all the environments, including the human one

(Layeghifard et al., 2017; Kyrpides et al., 2020; Wood-Charlson et al., 2021; Su

et al., 2020; Bokulich, 2020; Knight, 2018; Gonzales et al., 2018; Mitchell et al.,

2020). Consequently, the number of researchers and developers related to this

field guaranteed a deep resource of tools and methods (e.g. QIIME2 Bolyen et

al., 2019; Greathouse et al., 2019; Bharti and Grimm, 2021; Liu et al., 2021;

Amos et al., 2020; Pollock et al., 2018; Callahan et al., 2016; Bolyen et al.,

2019; She et al., 2019). Thanks to this, best practices have been partially
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standardized, focusing the attention of microbiome research on other aspects,

such as post-processing analysis and data mining applications (Bolyen et al.,

2019; Kyrpides et al., 2020).

Bioinformatic pipelines have reached a certain uniformity: QIIME2

improvements and diffusion is an example of how the research related to

microbiome data has reached a great milestone (Bolyen et al., 2019). Beside

this, other tools and pipelines have been implemented (Greathouse et al., 2019;

Bharti and Grimm, 2021; Liu et al., 2021; Amos et al., 2020; Pollock et al., 2018;

Callahan et al., 2016; Bolyen et al., 2019; She et al., 2019). Reference

databases are few and usually updated and curated, as for example SILVA or

Greengenes (Pruesse et al., 2007; DeSantis et al., 2006).

Beside this, large amounts of data have been produced and deposited in public

databases and more is going to be produced in the near future, as the number

of sequencing experiments is exponentially growing (Kyrpides et al., 2020;

Wood-Charlson et al., 2021; Vangay et al., 2019). As a consequence, we are

facing an increasing adoption of novel large-scale data science approaches to

address challenges in microbiome science (Duvallet, 2020; Longo and Drazen,

2016), shifting the attention to post-processing analysis and data mining

strategies to districate the complexity of microbiome data (Galimberti et al.,

2021; Wood-Charlson, 2020; Ghannam et al., 2021).

One of the main topics related to microbiome research is defining the

associations and interactions between species detected with sequencing

technologies (Faust et al., 2021; Faust and Raes, 2012; Pasolli et al., 2016; Qu

et al., 2019). In the past, great efforts were undertaken to extrapolate relevant

associations that could be integrated into biological contexts (Faust et al.,

2012; Faust et al., 2021). In general, it was demonstrated that microbial

co-occurrence analysis may be an extraordinarily promising approach for

studying microbiome associations (Faust and Raes, 2012). Several works

explained how co-occurrences reveal indications about ecological processes

shaping community structure (Lima-Mendez, 2010), exploring hub species and
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potential microorganisms relationships (Berry, 2014). Further, Ma and

colleagues (2020) showed how global microbial co-occurrence analysis and

network reconstruction may be an encouraging strategy to reveal patterns and

explore new mechanisms. However, besides these promising results, transform

microbiome data into purposeful biological insights remain challenging, as also

demonstrated by different evaluations (Faust et al., 2012; Berry et al., 2014),

and open questions still remain (Faust et al., 2021; Ma et al., 2020; Layeghifard

et al., 2017; Faust et al., 2012).

Recently, association rule mining (ARM) emerged as a promising technique to

study microbiome patterns (Tandon et al., 2016; Naulaerts et al., 2015).

Specifically, Tandon and colleagues (2015) have demonstrated the potentials of

this technique on two microbiome datasets, in particular the HMP dataset

(Turnbaugh et al., 2007) and two prebiotic studies (Xiao et al., 2014; Kato et al.,

2014). Despite the apparent simplicity of use, large datasets can produce high

numbers of patterns, making their calculation and exploration difficult

(Karpinets et al., 2012; Naulaerts et al. 2015; Agrawal et al., 1993; Han et al.,

2004). In addition, considering the size and complexity of High-Throughput

Sequencing (HTS) 16SrRNA metabarcoding data, interpretation and

summarization are not straightforward (Naulaerts et al., 2015).

Due to the large amount of data constantly produced, pattern mining strategies

have become essential for researchers to disentangle the high amount of

information (Ghannam et al., 2021; Wood-Charlson et al., 2020; Kyrpides et al.,

2016). At the same time, tests to establish specific best practices of ARM

applications for 16SrRNA metabarcoding data do not exist.

In Chapter 5 I report and discuss the use of association rule mining (ARM)

strategy to study microbial associations. In particular, I implemented a new

tool, microFIM (microbial Frequent Itemset Mining;

https://github.com/qLSLab/microFim) to promote the use of ARM to explore

microbiome patterns. Currently, data mining approaches seem to be

newfangled solutions for disclosuring and understanding microbial ecosystems
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(Galimberti et al., 2021; Wood-Charlson, 2020; Ghannam et al., 2021).

Investigating patterns and exploring their role in functional and predictive

aspects are now pivotal to proxy the knowledge of microbial associations, both

disentangling interactions and niche specialization (Faust et al., 2012; Ma et al.,

2020). Recently, different works related to pattern mining applied to

microbiome studies were published, such as MITRE (Bogart et al., 2019),

MANIEA framework (Liu et al., 2019) and the work of Tandon and colleagues

(2016). Nevertheless, as also highlighted by the work of Faust (2021), applying

such an algorithm still has its limitations and, despite the efforts of recent

works, guidelines for microbiome data applications have not been completely

defined (Faust et al., 2021; Naulaerts et al., 2015).

With this work, I wanted to shed light on the strengths and weaknesses of

pattern mining strategy into the study of microbial patterns, in particular from

16SrRNA microbiome datasets. In detail, I report the key steps that must be

considered to apply ARM consciously on 16SrRNA microbiome data and

propose a user-friendly and open source Python tool that accepts as input

common microbiome file formats, such as taxa tables. In addition, microFIM

merges the results of ARM analysis with the typical microbiome outputs, aiming

at creating a bridge between microbial ecology research and ARM technique.

However, the development of new strategies and the need to make results

statistically sound are strictly dependent from the availability of data to use as

tests, both to create standard datasets and perform meta-analysis (Duvallet et

al., 2017; Bisanz et al., 2019; Kosti et al., 2020). Recent advancements in data

integration and data reuse strategies may enhance the exploration of microbial

patterns from large-scale studies (Ghannam et al., 2021; Jordan et al., 2015;

Ma et al., 2020; Su et al., 2020).

Machine learning strategies can be applied to perform powerful prediction

tasks on metagenomics data (e.g. disease-prediction based on microbiome

composition). However, these strategies require a large amount of data to train

and test models, making the integration and harmonization of multiple datasets
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a necessary step (Jordan and Mitchell, 2015; Ghannam and Techtmann, 2021).

In this way, the availability of large-scale sequencing data can enable

microbiology researchers to ask new questions and develop new strategies to

study the human-associated microbial communities (Wood-Charlson et a.,

2021; Su et al., 2020).

In detail, several research groups have been proposing different sources of

microbiome data: initiatives like the Human Microbiome and the Integrative

Microbiome Projects (Gevers et al., 2012; Proctor et al., 2019), MicrobiomeDB

(Oliveira et al., 2018), HumanMetagenomeDB (Kasmanas et al., 2021),

curatedMetagenomicData (Pasolli et al., 2017), the ML Repo (Vangay et al.,

2019), QIITA portal (Gonzales et al., 2018), or the MG-RAST portal (Wilke et al.,

2016) suggested both data management infrastructures and frameworks to

guarantee data accessibility and reuse.

However, it is hard to have a comprehensive collection of all the dataset

regarding a specific topic, as also the process of data FAIRification is still in its

infancy (Wood-Charlson et al., 2020; Vangay et al., 2019).

In Chapter 6 I report a case study related to these issues specifically focusing

on a type of microbiome data: the skin microbiome (Dimitriu et al., 2019). My

colleagues and I developed a skin microbiome collection of datasets, called

SKIOME Project, including all the sequencing datasets of 16S rRNA publicly

available and sequenced from 2012. Alongside the main objective of the work,

we provide insights related to the metadata collection and harmonization.

Through a framework that integrates different tools to access INSDC

databases, we have been working on the retrieval of metadata important to

evaluate the datasets from a biological and technical point of view.

Consequently, we noticed the inconsistencies and biases related to

microbiome data submission to public repositories.

The lack of metadata and the presence of datasets with missing or inconsistent

information can reduce the interpretability of the data generated, influencing

the understanding of microbial dynamics and ecological patterns
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(Wood-Charlson et al., 2020; Su et al., 2020; Greenhouse et al., 2019).

Moreover, this fact impact negatively on the idea of FAIR (Findable, Accessible,

Interoperable, and Reusable) principles, supported within the National

Microbiome Data Collaborative and FAIR Microbiome community

(https://www.go-fair.org/implementation-networks/overview/fair-microbiome)

(Wood-Charlson et al., 2020; Vangay et al., 2019) to promote data discovery

and reuse in the microbiome field.

Beside this, the main output of our work constitutes a valuable resource for

researchers interested in performing meta-analyses with human skin

microbiome data, who can explore our collection to find a list of datasets that

can be integrated to answer old and new biological questions.

1.3 Structure of the dissertation

This dissertation is organized into seven main chapters, of which the first is the

current introductory chapter.

Chapter 2 is focused on DNA metabarcoding applications and the current

issues related to non-bacterial markers and, separately, the application of 16S

rRNA marker, discussing two joint first-authored published manuscripts, three

published collaborative studies and a collaborative review to which I

contributed for a specific paragraph. In detail, I reported:

● Frigerio, J., Agostinetto, G., Galimberti, A., De Mattia, F., Labra, M., &

Bruno, A. (2020). Tasting the differences: microbiota analysis of

different insect-based novel food. Food Research International, 137,

109426.

● Frigerio, J., Agostinetto, G., Sandionigi, A., Mezzasalma, V.,

Berterame, N. M., Casiraghi, M., ... & Galimberti, A. (2020). The hidden

‘plant side’ of insect novel foods: a DNA-based assessment. Food

Research International, 128, 108751.
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● Bruno, A., Sandionigi, A., Agostinetto, G., Bernabovi, L., Frigerio, J.,

Casiraghi, M., & Labra, M. (2019). Food tracking perspective: DNA

metabarcoding to identify plant composition in complex and processed

food products. Genes, 10(3), 248.

● Tommasi, N., Biella, P., Guzzetti, L., Lasway, J. V., Njovu, H. K.,

Tapparo, A., …, Agostinetto, G., ... & Galimberti, A. (2021). Impact of

land use intensification and local features on plants and pollinators in

Sub-Saharan smallholder farms. Agriculture, Ecosystems &

Environment, 319, 107560.

● Frigerio, J., Agostinetto, G., Mezzasalma, V., De Mattia, F., Labra, M.,

& Bruno, A. (2021). DNA-Based Herbal Teas’ Authentication: An ITS2

and psbA-trnH Multi-Marker DNA Metabarcoding Approach. Plants,

10(10), 2120.

● Galimberti, A., Bruno, A., Agostinetto, G., Casiraghi, M., Guzzetti, L., &

Labra, M. (2021). Fermented food products in the era of globalization:

tradition meets biotechnology innovations. Current Opinion in

Biotechnology, 70, 36-41.

“The hidden ‘plant side’ of insect novel foods: a DNA-based assessment” and

“Tasting the differences: microbiota analysis of different insect-based novel

foods”. Here, we performed a DNA metabarcoding and bioinformatic pipeline to

trace both microbiome and plant species in the context of insect novel foods,

in order to explore both contaminants, frauds and determine microbial and

plant signatures related to insect species. Moreover, three collaborative studies

are discussed: “DNA-based herbal teas authentication: a ITS2 and psbA-trnH

multi-marker DNA metabarcoding approach”, “Impact of land use

intensification and local features on plants and pollinators in Sub-Saharan

smallholder farms” and “Food tracking perspective: DNA metabarcoding to

identify plant composition in complex and processed food products”. With

these works, I show the potentials of DNA metabarcoding in biomonitoring

projects and food industry applications. Finally, I report my main contribution
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for the review “Fermented food products in the era of globalization: tradition

meets biotechnology innovations”, discussing the potentials and future

perspectives of microbiome research applied to fermented foods.

Chapter 3 reports one first-authored submitted work, consisting of a

multi-marker DNA metabarcoding case study applied to a large-scale event,

the EXPO2015, in which molecular information seemed to be a better strategy

in the study of eukaryotic communities in a built environment. In detail:

● Agostinetto, G., Bruno, A., Sandionigi, A., Brusati, A., Manzari, C.,

Chiodi, A., … & Casiraghi, M. Dealing with the promise of

metabarcoding in mega-event biomonitoring: EXPO2015 unedited

data. bioRxiv. Under revision.

Chapter 4 reports one first-authored accepted manuscript updated with the

final analysis related to the exploration of molecular data to enhance taxonomy

assignment step. In detail:

● Agostinetto, G., Sandionigi, A., Chahed, A., Brusati, A., Parladori, E.,

Balech, B., ... & Casiraghi, M. (2021). ExTaxsI: an exploration tool of

biodiversity molecular data. GigaScience.

In particular, with “ExTaxsI: an exploration tool of biodiversity molecular data”, I

addressed caveats of taxonomy assignment for non standard molecular

markers. Through three main case studies, we demonstrated the potentials of

ExTaxsI to explore molecular data and visualize molecular information via a

taxonomy centered perspective, in order to both ameliorate experimental

design and data interpretation.

Chapter 5 is focused on pattern mining reconstruction, reporting one

first-authored published manuscript. In detail:

● Agostinetto, G., Sandionigi, A., Bruno, A., Pescini, D., & Casiraghi, M.

Extending association rule mining to microbiome pattern analysis: tools
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and guidelines to support real applications. Frontiers in Bioinformatics,

77.

Through this work, I introduce the potentials and caveats of association rule

mining technique (or frequent itemset mining) to extract microbiome patterns.

In addition, I present microFIM tool (microbial Frequent Itemset Mining) a

bioinformatic tool implemented to easily integrate ARM on common

microbiome pipelines.

Chapter 6 reports one first-authored submitted manuscript related to the

specific field of skin microbiome data. In detail:

● Agostinetto, G., Bozzi, D., Porro, D., Casiraghi, M., Labra, M., & Bruno,

A. (2021). SKIOME Project: a curated collection of skin microbiome

datasets enriched with study-related metadata. bioRxiv. Under revision.

In this work, I present the SKIOME Project, a collection of 16S rRNA

metabarcoding datasets obtained with a semi-automatic framework developed

in this work to reconstruct metadata of sequencing datasets. In parallel, I

introduce data reuse strategies to perform meta-analysis and data mining

approaches.

Chapter 7 is dedicated to main conclusions and future perspectives.
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2. DNA metabarcoding: applications and issues based on real

case studies

In this chapter I will introduce two main works related to DNA metabarcoding

applications into insect-novel food characterization, both considering plant and

bacterial markers (Frigerio, Agostinetto et al., 2020; Frigerio, Agostinetto et al.,

2020 ). In addition, I will discuss my contribution in three collaborative works

(Frigerio et al., 2021; Tommasi et al., 2021; Bruno et al., 2019), of which I report

the abstracts. Full papers are provided at Supplementary Data link.

For a complete list of all the works cited in this section, see Chapter 1.3

“Structure of the dissertation”.

2.1 The hidden ‘plant side’ of insect novel foods: a DNA-based

assessment

2.1.1 Introduction

Traditionally, edible insects are consumed in large parts of the world like Africa

and Asia. In the last few years, they have increased in popularity as trendy

foods in many Western countries (Sun-Waterhouse et al., 2016). Being rich in

essential nutrients, they represent an important source of energy for human

diets (Rumpold & Schlüter, 2013). Mean estimates show that the energy level of

insects is around 400–500 kcal per 100 g of dry matter, making it comparable

with other protein sources (Payne, Scarborough, Rayner, & Nonaka, 2016).

Protein is probably the most significant component of edible insects, with an

average value ranging from 30% to 65% of the total dry matter. However,

edible insects are also rich in micronutrients such as iron, zinc, and calcium

(Dobermann, Swift, & Field, 2017), and preliminary studies have shown that

insect farming has a lower environmental footprint compared to other livestock

animals (Oonincx & de Boer, 2012). Moreover, a recent study demonstrated

that edible insects could represent a potential source of antioxidants with
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positive effects on human health (Di Mattia, Battista, Sacchetti, & Serafini,

2019).

In very recent years, the use of insects in food fortification is emerging as a

means of producing nutritious and acceptable food products for human

consumption (Myers & Pettigrew, 2018). In many countries a lot of insect-based

products have recently become commercialized (e.g. pasta, biscuits, and

energy bars based on insect flour in combination with fruits, nuts, and other

ingredients), and their consumption trend is expected to grow steadily.

In Europe, edible insects are placed in the category of novel foods, and since

the beginning of 2018, the Regulation (EU) 2015/2283 entered into force in

attempt to regulate the production and safety of novel foods in Europe. This

regulation establishes the requirements that enable Food Business Operators

to bring new foods into the EU market, while ensuring high levels of food safety

to the consumers. However, concerning the possible risks for human health

caused by insect-based products, the European Food Safety Authority has

published an initial assessment (EFSA, 2015), and it concluded that attention

should be placed to the possible occurrence of biological and chemical

hazards caused by novel foods. Insects ingredients may cause allergic

symptoms (Mazzucchelli et al., 2018; Pali-Schöll et al., 2019; Van der

Fels-Klerx, Adamse, Punt, & Van Asselt, 2018), and there is a

cross-reactivity/cosensitisation between edible insects and crustaceans

(Ribeiro, Cunha, Sousa-Pinto, & Fonseca, 2018). Moreover, at the

microbiological level, the microbiota of insects is highly complex and, apart

from the body surface and the mouthparts, the maximum microorganism

diversity is in the mid-gut with poor or no data about its effect on consumer

health (Schlüter et al., 2017; Walia, Kapoor, & Farber, 2018).

Another element that can negatively impact the safety of insect-based novel

foods is the composition and quality of feed used to raise the insects and their

rearing conditions. In many cases, these feeds are composed of vegetables

and very few ingredients of animal origin, such as fishmeal and egg and milk
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based-products (EU No. 2017/893). However, to date no analytical systems are

available to control the diet of marketed insects.

In general, according to a recent review (Schlüter et al., 2017), there is a lack of

scientific knowledge about insect processing to ensure safe novel foods.

Moreover, most insect-based products are consumed as flour or processed

items (e.g. pasta and bars); therefore the insect morphological traits cannot be

used to verify the product authenticity and consequently its safety. Considering

the high price of insect flours, we cannot exclude the occurrence of deliberate

or intentional counterfeits (i.e. mix with low-cost flours, such as maize) as

happens with other high-value food products, such as saffron (Petrakis,

Cagliani, Polissiou, & Consonni, 2015).

Based on these assumptions, in this study we adopted, for the very first time, a

DNA-based approach to analyse commercial novel food products to verify the

identity of declared insect species and characterize trace amounts of plant

material occurring in the same products in order to derive the source of the

substrate, such as from insect diets and litter, with particular attention paid to

putative elements of allergenic concern. Particularly, we used a region of the

mtDNA COI marker to identify the insect species (DNA barcoding), and the

nuclear ITS2 region to characterize insect diets and the vegetal composition of

the tested products (High Throughput Sequencing HTS DNA meta-barcoding).

Moreover, the same approach can be used to verify product contamination and

counterfeiting insect flour with low cost vegetable flours. We prepared six mock

mixtures composed of wheat and soybean flours at different concentrations to

also verify the limit of detection of our approach in the context of possible

contamination of insect-based novel foods.

2.1.2 Materials and methods

2.1.2.1 Insect commercial food products

A total of 13 commercial insect-based products, namely flour (n = 3), pasta (n =

3), crackers (n = 2), protein bars (n = 4), and pet food (n = 1) were purchased
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via e-commerce from six different companies (Table 1). These categories offer

an almost complete representation of the insect novel foods available in

Europe. Based on the label information, these products contained only one

insect species each, for a total of five species belonging to the orders

Orthoptera (Acheta domesticus and Gryllodes sigillatus), Diptera (Hermetia

illucens) and Coleoptera (Alphitobius diaperinus and Tenebrio molitor).

Reference insect samples (RI) for each species were also retrieved

(Supplementary Table S1) from a certified pet shop (AGRIPETGARDEN S.r.l.,

Conselve, Italy).

Table 1. List of analysed insect-based products. For each sample, information found on the label

about the category, the species of insect, and the plant ingredients are reported. F (flour); FP (Food

Product).
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2.1.2.2 Mock mixtures

To test for the efficacy of DNA metabarcoding in characterizing the composition

of the insect-based products at the qualitative and semi-quantitative levels, six

mock mixtures were prepared (Supplementary Table S2). These were

composed of insect flour (T. molitor) mixed with wheat (Triticum aestivum) flour

(20 ppm, 200 ppm and 500 ppm of gluten) or soybean (Glycine max) flour (50

ppm, 200 ppm and 500 ppm of soybean proteins). Wheat and soybean flour

concentrations were defined based on the alert threshold for allergens

according to the EU regulation (No. 828/2014) and to Ballmer-Weber et al.

(2007), respectively.

2.1.2.3 DNA extraction

For insect-based products and mock mixtures (see Table 1 and Supplementary

Table S2), purified gDNA was obtained starting from 250 mg of samples by

using the DNeasy PowerSoil Kit (QIAGEN, Hilden, Germany) following the

manufacturer’s instructions. All samples were prepared in three replicates. For

reference insects (see Supplementary Table S1), purified gDNA was obtained

starting from 25 mg of samples by using the DNeasy Blood & Tissue Kit

(QIAGEN, Hilden, Germany) following the manufacturer’s instructions. Purified

DNA was checked for concentration and purity by using a Qubit 2.0

Fluorometer and Qubit dsDNA HS Assay Kit (Invitrogen, Carlsbad, California,

United States).

2.1.2.4 Insect identification by DNA barcoding

The 658 bp mtDNA COI region was used to authenticate the animal component

in the purchased insect-based products. This region was amplified and

sequenced for all 13 samples and for the reference insects by using primer

pairs described by Folmer, Black, Hoeh, Lutz, and Vrijenhoek (1994)
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(Supplementary Table S3) and the protocol described in Bellati et al. (2014).

The obtained sequences were submitted to the international GenBank through

the EMBL platform (see Supplementary Table S1 for accession numbers). Each

sequence was taxonomically assigned to the reference species (or to the

declared one in the case of food items) by looking at the nearest matches with

the BLAST algorithm using the following cut-off values/maximum identity >

99% and query coverage of 100%.

2.1.2.5 Library preparation and sequencing

To characterize the plant composition of the investigated insect-based

products and mock mixtures, the obtained gDNA extracts were sequenced at

the DNA barcode ITS2 region (Chen et al., 2010). Amplicons were obtained

using the same approach described by Biella et al. (2019) with Illumina adapter

(Supplementary Table S3) using puReTaq Ready-To-Go PCR beads (GE

Healthcare Life Sciences, Italy) following the manufacturer's instructions in a 25

μL reaction containing 1 μL 10 μM of each primer and up to 50 ng of gDNA.

PCR cycles consisted of an initial denaturation step for 5 min at 94 °C, followed

by 40 cycles of denaturation (30 s at 94 °C), annealing (30 s at 56 °C), and

elongation (1 min at 72 °C), and, hence, a final elongation at 72 °C for 10 min.

Amplicon DNA was checked for concentration by using a Qubit 2.0

Fluorometer and Qubit dsDNA HS Assay Kit (Invitrogen, Carlsbad, California,

United States) (Supplementary Table S4) and amplicon length was measured

by comparison against QX DNA Size Marker using the Qiaxcel Automatic

electrophoresis system (QIAGEN, Hilden, Germany). Samples were sequenced

by the Center for Translational Genomics and BioInformatics (Milan, Italy). The

sequencing was carried out on the MiSeq sequencing platform (Illumina, San

Diego, CA, USA) with a paired-end approach (2 × 300 bp).
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2.1.2.6 Bioinformatic analysis

Raw Illumina reads were paired and merged using the PEAR algorithm (Zhang,

Kobert, Flouri, & Stamatakis, 2013). Pre-processing was performed using

VSEARCH 2.0 algorithm (Rognes, Flouri, Nichols, Quince, & Mahé, 2016): reads

were filtered out if ambiguous bases were detected and lengths were outside

the bounds of 100 bp; moreover, an expected error = 1 was used as an

indicator of read accuracy. Sequences were then dereplicated using

–derep_fulllength. In order to decrease the false positive rate in the sequence

population, a chimera detection analysis was performed on the obtained

reference sequences. Since there is no reference database for ITS2 region for

chimera detection, we used –uchime_denovo algorithm that carries out a de

novo analysis without a reference. Plant features were obtained using

–cluster_fast algorithm with a 100% sequence identity with at least a depth of

500x for each feature. A random sequence was chosen as the representative

sequence of the cluster. Subsequently, DNA metabarcoding analysis was

performed using the plugins of the QIIME2 suite (https://docs.qiime2.org/). The

taxonomic assignment of the representative sequences was carried out using

the classify-consensusblast plugin implemented in QIIME2 (Camacho et al.,

2009) against the local database, built with downloaded ITS2 sequences

available in NCBI at 29th of January 2019, adopting a percent identity > 0.99

and a query coverage > 0.90. To evaluate the occurrence of contaminants (T.

aestivum and G. max) in insect flour (F_001) and their relative abundance, we

generated a heat map representation of the significant discriminatory features

(plant species) obtained with the bioinformatic pipeline. Sample and feature

axes were also organized using a clustering approach. The heat map was

generated with the feature-table QIIME2 plugin (McDonald et al., 2012). To

evaluate the sensitivity of the approach in detecting species based on feature

depth, we performed a qualitative analysis considering the results of the

taxonomy assignment described previously, assuming a depth of 500×, 100×,

and 25× for each OTU, respectively.
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Python script (v.3; Pandas and NumPy libraries) was used to calculate

sequence abundance weighted OTU and taxa overlap respectively (Wen et al.,

2017) among the technical replicates. To evaluate significative differences

among samples belonging to mock mixtures, a PERMANOVA test

(permutation-based ANOVA, PerMANOVA) with 999 permutation-based Bray

Curtis distance metrics (Faith, Minchin, & Belbin, 1987) was performed using

the diversity QIIME2 plugin, considering both OTUs and taxa composition.

PerMANOVA Pairwise contrast was performed through the

beta-group-significance command of diversity plugin (Anderson, 2001).

2.1.2.7 ELISA assays

The three flour samples (F001, F002 and F003) and the mock samples

prepared with T. aestivum (MT_20 MT_500) were also analysed by

RIDASCREEN® Gliadin kit (R-Biopharm AG, Darmstadt, Germany, prod. no. R

7001), a sandwich enzyme-linked immunosorbent assay (ELISA) kit for gluten

detection. The assay is based on the monoclonal antibody R5 (Méndez, Vela,

Immer, & Janssen, 2005; Valdés, Garci ́a, Llorente, & Méndez, 2003), which is

specific for gliadin-fractions from wheat. The detection limit for gluten is 3 ppm

(mg/kg). The manufacturer’s instructions were followed.

2.1.3 Results

2.1.3.1 DNA barcoding authentication of insect ingredients

Good DNA yield (20–40 ng/μl) was obtained from all the replicates of the 13

collected samples and from the reference insect samples as well (see

Supplementary Table S4). The mt COI DNA barcoding sequencing results

indicate that all the tested insect-based products were correctly labelled

concerning insect composition with the only exclusion of FP009 and FP010

(protein bars). In both cases, the DNA barcoding analysis did not find
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occurrences of Acheta domestica as expected, but the sequences matched

with the COI of the food parasite species Ectomyelois ceratoniae (Insecta:

Pyralidae).

Figure 1. Relative abundance of the plant taxa recovered in the 13 insect-based products through

ITS2 metabarcoding sequencing.
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2.1.3.2 DNA metabarcoding characterization of plant composition

The High Throughput Sequencing step produced a total of 8,142,444 raw

reads, with an average of 126,299 reads (SD = 108,789; range 334–482,500)

per sample. After the merging, quality filtering and dereplication steps, we

retrieved a total of 868,414 reads, with an average of 13,677 reads (SD =

11,453; range 5–45,066) per sample. Details on the average and standard

deviation statistics about raw and filtered reads obtained for each sample,

considering replicates, are provided in Supplementary Table S4. After chimera

detection and 100% cluster identity, with a depth of at least 500x for each

feature, we obtained 120 OTUs (Operational Taxonomic Units). Negative

controls for library sequencing were not included in the analysis since the very

low amount of DNA copies. OTUs and taxa diversity were analysed separately

for technical replicates at each sample. Both OTUs and taxa overlap (calculated

with the weight of reads per OTUs and taxa) maintained a mean of 90% for all

insect-products (with a standard deviation of 0.26).

The obtained taxonomic assignment and the distribution of the assigned taxa

among the sample data are depicted in Figure 1. Overall, 120 OTUs were

assigned to at least 26 plant species. Most of the assigned OTUs reached the

species taxonomic level, however, in some genera, such as Triticum and

Brassica, the low interspecific variability did not allow the species to be

identified.

The three flour samples were largely different. Specifically, F_001 is rich in

Daucus carota reads (93.10%) followed by Brassica sp. (1.80%) and Glycine

max (0.99%), F_002 contains mainly Cicer arietinum (43%), Triticum sp. (35%),

and Brassica sp. (4%) reads. Finally, the F_003 flour shows many reads of

Glycine max (33%), Triticum sp. (30%), and Cicer arietinum (11%). Moreover,

all the flour samples showed a variable relative read abundance of Cannabis

sativa (range 2.18–11%) and Linum sp. (range 0.76–6%).

The assigned plant taxa in the 13 samples were grouped in Expected species

(E), that include taxa listed on the product label, Rearing Substrate (RS) which
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includes the putative plant used both as feed and litter for insect farming, and

Not Expected (NE) encompassing all the remaining species. Table 2 indicates

the distribution of the assigned species among the above-mentioned

categories.

Concerning the processed insect-based products (from FP_004 FP_013), the

plant composition was clearly different among the tested categories. In the

case of pasta, the first two samples (FP_004 and FP_005) mainly consisted of

Triticum sp. (97% and 99% of reads respectively) according to the label

information (Table 1). Interestingly, reads of the NE Raphanus sp. (3% and 1%

respectively) were found. Regarding the F_005 pasta sample, two out of the

three replicates were largely dominated by reads of the expected species Cicer

arietinum (67%). Strangely, no OTUs belonging to Oryza sativa were found.

In the two cracker products, the reads of Triticum sp. were mainly detected

(range 74–92.68%), followed by several NE species such as Cicer arietinum

(range 1–6.5%), Secale cereale (range 0.19–1%), and other taxa occurring in

traces (see Table 2).

In the four protein bars (belonging to two different companies), very few OTUs

were obtained, and in most cases reads of E species were not found. Finally,

the composition of pet food was very complex, and OTUs belonging to > 12

species were detected (see Table 2).

Overall, the plant taxa distribution among the five insect-based product

categories is schematized in Figure 2. The contribution of plant diet is

appreciable in the insect flours which are the purest and least processed

products. In Pasta, Crackers, and Protein bars the HTS analysis reveals the

expected ingredient as the most abundant. Finally, in the pet food we detected

the highest percentage of rearing substrate plant species.
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Table 2. List of the detected ingredients based on DNA metabarcoding assignment. For each

insect-based product, the Expected species (E), the taxa belonging to the Rearing Substrate (RS),

and the Not Expected (NE) species are indicated. The percentage values refer to the relative

abundance of HTS ITS2 reads for each recognized ingredient.
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To better characterize the composition of the processed products (from FP_004

to FP_013), we tested the identification performance, reducing the reads

filtering parameter from 500 to 100 and 25 reads per OTU. Figure 3 shows the

distribution of plant taxa among the three categories (i.e. E, RS, and NE) at

different filtering thresholds. As expected, the whole number of assigned plant

taxa increased with the decreasing threshold. Furthermore, the number of NE

species increases dramatically compared to the increase of the Expected

species.

Figure 2. Comprehensive graphic summary of the detected plant taxa in the five insect-based

product categories (from left: Flour, Pasta, Crackers, Protein Bars and Pet Food). E: expected

species, RS: Rearing substrate species, NE: Not expected species.

2.1.3.3 DNA metabarcoding characterization on flour mock mixtures

The results of the HTS DNA metabarcoding analysis performed on the six flour

mock mixtures are shown in the heat map diagram of Figure 4. Pure insect

flours (F_001) cluster together and show the occurrence of several RS plants,

especially D. carota. In these samples, the two contaminants T. aestivum and

G. max are absent. Conversely, in both the types of flour mock mixture, the

abundance of wheat and soybean reads increases along with the amount of

the admixed contaminant flours. In the case of samples MT_200 and MT_500,

the frequency of wheat reads reaches the maximum level.
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The PerMANOVA analysis shows that there is no statistical difference between

samples belonging to the two categories of mock mixtures, both considering

OTUs and taxa composition.

Figure 3. Numbers of plant taxa recovered in the 13 insect-based products and mocks (E, RS, and

NE) through ITS2 metabarcoding sequencing using different thresholds of numbers of sequences

per OTU (500, 100, and 25, respectively).

2.1.3.4 ELISA assays

Flour samples (i.e., F_001, F_002 and F_003) and the mocks prepared with T.

aestivum flour (i.e., MT_20, MT_200 and MT_500) were analysed for gluten

detection. Sample F_002, the mock MT_200, and MT_500 were positive to

gluten content. (Details are provided in Table 3).
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Figure 4. Heat map diagram showing the abundance of plant taxa in the pure insect flours and

mock mixtures. All the replicates, with the only exception of MT_20A and MS_50A, are shown.

Color shading in the heat map indicates the abundance, expressed as log10 frequency, of each

species in the sample.
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Table 3. Results of ELISA analyses on insect flours and wheat mock mixtures.

2.1.4 Discussion

The characterization of novel food composition is essential to ensure safety

(Patel, Suleria, & Rauf, 2019) and our results suggest that the mtDNA COI

region is useful for identifying the declared insect species in flours and in

almost all the analysed insect-based products. However, this approach showed

some limitations, since in two protein bars, the COI DNA barcoding analysis

identified the parasite Ectomyelois ceratoniae instead of the declared Acheta

domestica. The occurrence of E. ceratoniae is not unexpected as its larvae

typically parasitize raw food material, especially when almond occurs as an

ingredient (Mortazavi, Samih, Ghajarieh, & Jafari, 2015). We cannot exclude

that the industrial processing steps fragmented or degraded the A. domestica

DNA in some way, making it not targetable by the used primer pair. The use of

species-specific DNA probes (Tramuta et al., 2018) or another DNA

metabarcoding approach targeting at the insect ingredients using short genetic

regions (< 400 bp), would have detected the occurrence of both the moth and

the insect species declared on product label (Frigerio et al., 2019).
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Concerning the plant components, the ITS2 region was efficient in providing

information on species composition including those taxa probably belonging to

the insect rearing substrate. There are several open questions about the

composition of the feeds used for insects farming and its influences on the

quality and safety of the final products (Magara et al., 2019; Van Broekhoven,

Oonincx, Van Huis, & Van Loon, 2015). The selection of suitable feeding

substrates is very important to enhance the nutritional characteristics of the

insects (Magara et al., 2019; Oonincx & de Boer, 2012; Oonincx, Laurent,

Veenenbos, & van Loon, 2019; Van Broekhoven et al., 2015) and can also affect

the total farming yield (Ganda, Zannou-Boukari, Kenis, Chrysostome, &

Mensah, 2019). To date, the EU regulation (EC no 1069/2009) clarifies that the

insect rearing substrate has to contain only products of non-animal origin. The

circular economy strategies support the adoption of biowaste and by-products

of different agricultural and industrial origins claiming for potential benefits in

terms of sustainability (EFSA, 2015). Therefore, the insect feeds are usually

composed of vegetable ingredients derived from different agricultural supply

chains which are likely impossible to be identified using morphological

parameters. This was confirmed by our data which highlighted that the insect

feed was almost completely characterized by horticultural plant sources, such

as carrots, cabbages, and chickpea (Magara et al., 2019). Therefore, the

proposed molecular approach offers a universal diagnostic system to identify

the composition of the rearing substrate and to verify compliance with the

current and future regulations.

In agreement with Schlüter and co-workers (Schlüter et al., 2017), insects must

be reared under a defined substrate to avoid contamination and possible food

borne outbreak for the consumer (e.g., due to pathogenic microorganisms,

toxins, and antinutrients). Our data suggest that the ITS2 barcode region was

also able to identify the plant-based substrate used for insect rearing. For

example, in the analysed flour samples, we detected DNA from hemp

(Cannabis sativa) and linen (Linum sp.), which are commonly used as litter

material (data confirmed by interviewed companies). We underline that
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Cannabis sativa is also used as an ingredient in some of the tested protein

bars. Unfortunately, our method is not able to distinguish between the two

sources.

In many processed products, we obtained most reads belonging to the

expected highly abundant species, such as wheat and chickpeas, which likely

hide the less represented OTUs. For example, the species that possibly

constitute the rearing substrate are not very evident when compared to the

analysed pure flours. Therefore, the main limitation of our analysis certainly

resides in the sensitivity to detect the less abundant species due to primer bias.

This issue has already been discussed by Bista and colleagues (Bista et al.,

2018) and Krehenwinkel and colleagues (Krehenwinkel et al., 2017). Both

studies agreed that a PCR-free whole genome sequencing could permit to

avoid this effect. Furthermore, we demonstrated that different thresholds of

OTUs size (in terms of number of reads) dramatically affect the final list of plant

taxa recovered in the analysed samples. It is important to underline that in a

context of food authentication and traceability, the adopted conservative

criteria (i.e., n° sequences/OTU > 500) is essential to preserve information on

the most representative species. Conversely, a deeper data exploration, using

fewer conservative parameters (i.e., n° sequences/OTU (500), retrieves

information on trace species but increases the risk of including false positives.

Probably, a multi-marker approach, coupled with a dedicated reference

molecular database encompassing the expected plants, as well as the most

common contaminants (or species prohibited by law) could improve the plant

characterization of insect-based products and could be useful to exclude the

false positives. Other authors (e.g., Zhang, Chain, Abbott, & Cristescu, 2018)

demonstrated that the combined use of at least two barcode markers improves

species detection. Another possible limitation of DNA metabarcoding resides in

the completeness and reliability of the reference dataset that could lead to

incorrect reads assignment (Murali, Bhargava, & Wright, 2018). In our study, we

chose the ITS2 barcode due to its higher capability of distinguishing

congeneric plant species due to a higher mutation rate (Al-Juhani, 2019; Yu et
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al., 2017). Moreover, in recent years, the ITS2 database is growing

exponentially and this improves the suitability of this locus to taxonomically

assigning DNA metabarcoding data.

2.1.4.1 DNA metabarcoding to identify and quantify allergens

In our study, we tested the ability of DNA metabarcoding to find plant

contaminants in edible insect flours. The obtained results suggested that we

are able to identify DNA of T. aestivum or G. max in the tested mock mixtures,

starting from 20 ppm and 50 ppm of allergenic proteins, respectively.

According to European regulations (EU No. 828/ 2014), these concentrations

are the maximum limits for commercial gluten and soybean-protein free

products.

Therefore, the HTS DNA metabarcoding analysis detects low amounts of

contaminant products and allergens, with a limit of detection even lower than

the ELISA analysis (i.e., 3 ppm). We underline that the three tested

insect-based flours are declared as gluten-free products, but only F_001 and

F_003 comply with the limit established by the European Commission.

Concerning the ability of DNA metabarcoding to quantify the 'putative plant

contaminants', our study seems to indicate a weak relationship between the

dry weight and the number of reads. However, there is a fervent debate about

the effectiveness of providing quantitative inferences using HTS data. Some

recent studies reported their findings in a quantitative manner where the

relative read abundance is interpreted as the relative abundance of biomass

(Lamb et al., 2019). Others use a frequency of occurrence approach, also

referred to as weighted occurrence (Deagle et al., 2018), where the proportion

of samples in which a given sequence was detected is used to infer a different

sort of quantitative measure (De Barba et al., 2014).

As already noticed in our previous paper on processed food (Bruno et al.,

2019), the amplicon DNA metabarcoding efficacy could be biased by the PCR

amplification step using “universal” markers. The occurrence of bias during
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PCR amplification may cause the inaccurate estimation of quantities, and this

was at least partially demonstrated for metazoans and plants (Balech et al.,

2018; Thudi, Li, Jackson, May, & Varshney, 2012). This bias generates a

variable number of template–primer mismatches across species, resulting in a

final amplified DNA mixture that does not always reflect the original proportion

of each species, limiting the quantitative potential of DNA metabarcoding (Bista

et al., 2018; Piñol, Senar, & Symondson, 2019). Nevertheless, our analysis

suggests that DNA metabarcoding has a relative quantitative ability, as already

demonstrated by Lamb and colleagues (Lamb et al., 2019), and this

methodology can be intended as an early warning method for allergen

detection in food products.

2.1.4.2 DNA metabarcoding of insect-based novel food: An overview

DNA metabarcoding is currently used for food authentication (Galvin-King,

Haughey, & Elliott, 2018; Prosser & Hebert, 2017; Utzeri et al., 2018). Moreover,

Haynes and colleagues (Haynes, Jimenez, Pardo, & Helyar, 2019) recommend

this approach to enhance the quality control along the food supply chain. In

order to present an overview of DNA metabarcoding applied to insect food

authentication and safety, we developed a SWOT (Strengths, Weaknesses,

Opportunities, Threats) analysis (Figure 5). The strengths are related to the high

efficiency of the technique. DNA metabarcoding can detect traces of

ingredients due to its high sensitivity and allows to obtain simultaneously

different information about food safety and quality. The main weaknesses are

the higher cost compared to the current available analytical approaches like

ELISA tests or target PCR assays. However, we cannot exclude that in the very

next future, the panel of targets required to assess authenticity and safety of

insect-based products will be so wide to make the HTS DNA metabarcoding

approach much more convenient than the use of multiple single target tests.

DNA tests indeed are related to DNA quality and quantity, so highly processed

insect products like protein bars can be challenging to analyse. Finally, the
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results depend on the database which may be incomplete with a subsequent

incorrect assignment. The opportunities are related to the novelty of insect food

products. It is possible to create new economic opportunities in the analytical

field with the goal to guarantee a safe product, stimulating the insect-based

novel food market. HTS techniques, due to the completeness of the results,

could also quickly support the compliance to forthcoming regulations. Finally,

the first threat is that information on insect feed composition is not reported on

the product label and this impedes comparing the detected composition with

the declared one. Furthermore, there is currently no scientific reference to DNA

metabarcoding applied to the quality and safety control of the new

insect-based foods. In addition to that, DNA analyses are currently not

mandatory, so this can interfere with the spread of DNA metabarcoding as a

routine analysis.
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Figure 5. Overview of the main strengths, weaknesses, opportunities and threats (SWOT analysis)

related to the use of DNA metabarcoding as a tool for insect-based novel food products.

2.1.5 Conclusions

Novel foods demand is increasing, and their consumption is expected to grow

in the next few years. This condition encourages an increase in the number of

ingredient species and enhances the risk of misidentification, contamination,

and counterfeiting. This is well documented in the case of fish, where more new
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species are available on the market, and in many countries the DNA barcoding

approach is considered an essential tool to avoid fish frauds (Fox, Mitchell,

Dean, Elliott, & Campbell, 2018).

Considering that many food products contain a mixture of species, we strongly

encourage the adoption of DNA metabarcoding to better elucidate not only the

food composition but also to assess trace elements belonging to different

steps of the food supply chains. Unfortunately, this approach does not

accurately estimate the biomass of the ingredient taxa, and although in our

case the HTS DNA meta-barcoding approach highlighted the occurrence of

allergenic species (even at limit concentration values), we cannot use this

method as an alternative to the standard ELISA test. This is also because the

presence of DNA of a species is not necessarily correlated with the occurrence

of allergens. However, we proposed the DNA metabarcoding analysis as a

preliminary screening, especially for novel foods, because this method offers

the ability to identify, at the semiquantitative level, several potential allergenic

plants with a single analysis. Therefore, DNA-based analysis can be used to

select which ELISA tests, and in general which of the more reliable toxicological

assays for the detection of plant contaminants to use. In this sense, the DNA

metabarcoding approach offers an opportunity to enhance the food safety of

novel food products, such as those based on insect ingredients.

2.1.6 Data availability statement

The dataset generated for this study was submitted to the EBI metagenomics

portal (https://www.ebi.ac.uk/metagenomics/; Study ID: PRJEB34990).

Supplementary Materials are available through the main paper

(https://doi.org/10.1016/j.foodres.2019.108751).
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2.2 Tasting the differences: microbiota analysis of different

insect-based novel food

2.2.1 Introduction

Entomophagy is an emerging and fashionable diet issue in western countries.

Insects are an important source of energy for human diets, because of their

richness in essential nutrients (Rumpold & Schlüter, 2013). They have a protein

content average value ranging from 30% to 65% of the total dry matter, and

they are also rich in micronutrients such as iron, zinc and calcium (Dobermann,

Swift, & Field, 2017). Insects like Alphitobius diaperinus and Tenebrio molitor L.

can be also used as a source for the production of fortified foods (Roncolini et

al., 2019, Roncolini et al., 2020) facing the problem of the food demand of the

growing world population (Baiano, 2020). Moreover, preliminary studies of

Oonincx and de Boer (2012) stated that, compared to other livestock animals,

insect farming has a lower environmental footprint.

Safety, traceability and quality of edible insects are of great interest both for the

producers and the consumers, heavily affecting the acceptance of edible

insects in the human diet (House, 2016). New tools for safety controls on these

food items could also benefit institutions like food agencies, customs and

health departments in the evaluation of new product development based on

processed insects. In the European Union, the regulation (Regulation EU /2015,

2283) has classified edible insects as novel foods, which follow specific rules

and require specific authorizations before allowing them to be distributed

(Klunder et al., 2012, Schlüter et al., 2017, Van Huis, 2013). Besides, food

safety authorities and the scientific community are discussing whether edible

insects can be a reliable solution or a problem to the food security (Belluco et

al., 2015, Di Mattia et al., 2019).
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The potential safety risks of edible insects are chemical hazards including

pesticides, heavy metals, allergens, toxins (mycotoxin and bacterial toxins)

(Garofalo et al., 2019). There is a risk that harmful insect microbes are

transmitted through the consumption of insect products (Van der Spiegel,

Noordam, & van der Fels-Klerx, 2013). Most of the insect microbiota are

associated with gut (e.g., the intrinsic insect symbionts in the intestinal tract

and the proximity of other anatomical compartments) or related to extrinsic

sources, such as environment and rearing conditions (substrates and feed),

handling, processing and preservation (ANSES, 2014). Especially, as stressed

recently by the European Food Safety Authority (EFSA, 2015), spore-forming

bacteria in processed edible insects (including freeze-dried, boiled and dried

varieties) can be considered a dangerous source of biological contamination as

well.

Garofalo et al. (2017) explored the microbiota of marketed processed edible

insects using culture-based methods and pyrosequencing. They described,

among others, the microbiota of whole dried small crickets (Acheta

domesticus) and whole dried mealworm larvae (Tenebrio molitor), revealing a

great bacterial diversity and variability among individual insect species: some

of the identified microbes may act as opportunistic pathogens in humans, such

as Listeria spp., Staphylococcus spp., Clostridium spp. and Bacillus spp., while

others represent food spoilage bacteria, as well as Spiroplasma spp. in

mealworm larvae. The insect diet and social behaviour have a great impact on

the composition of the gut microbial community (Tinker & Ottesen, 2018),

therefore different insect farm conditions result in different microbiological

ecosystems. Although some authors such as Stoops and co-workers (Stoops

et al., 2017) suggested that the microbial taxonomic composition varies mainly

with insect species, the additional factors such as the growing substrates or

contact with soil may play an important role in the composition of the insect

gut microbiota (Risk profile, 2015, Klunder et al., 2012, Li et al., 2016).

Considering the insect production system, industrial practices, such as
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post-harvest starvation and rinsing, can affect the microbial quality of the final

insect products too (Wynants et al., 2018). Since all food products, including

those insect-based, undergo processing, the risk for human safety should be

measured throughout the various stages, from raw materials (i.e. insect flour) to

final food products (Osimani et al., 2018). High-Throughput DNA Sequencing

(HTS) offers a standardized and sensitive method to evaluate the microbial

community changes by analysing a wide range of food products (De Filippis,

Parente, & Ercolini, 2018). The search for a microbial signature represents an

opportunity to verify both food safety and food traceability strategy, indeed the

microbial variation gives insight about rearing and processing products. The

microbial variability allows obtaining more information besides the identification

of the insect species, like the hygienic and sanitary conditions concerning the

rearing systems. Moreover, the insect microbiota can be used to identify the

geographical origin of a food product and used as a tracing signature, as

previously demonstrated by recent studies (Bokulich et al., 2016, Mezzasalma

et al., 2017). The microbial signature can then eventually be applied to

management and control systems (Galimberti et al., 2019).

In this study, we evaluated the microbiota composition of insect-based

commercial food products, applying HTS with complementary bioinformatics

analysis. The aim of this preliminary study was to analyse the microbiota

variability of different categories of insect-based products made of A.

domesticus (house cricket), T. molitor (mealworm beetle), and A. diaperinus

(lesser mealworm or litter beetle) (including commercial raw materials like flours

and processed food items), purchased via e-commerce from different

companies. We sought to define if HTS can be a useful tool for insect-based

novel food quality assessment.
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2.2.2 Materials and methods

2.2.2.1 Insect food products

A total of 12 commercial insect-based products were purchased via

e-commerce from five different companies. Referring to the label information,

these products contained only one insect species each: Acheta domesticus

(Order: Orthoptera), Alphitobius diaperinus (Order: Coleoptera), and Tenebrio

molitor (Order: Coleoptera) (S1 Table).

Four out of 12 samples were pure insect flours, belonging to the species A.

diaperinus (n = 1) and T. molitor (n = 3), and they have been categorized as

insect raw material (dried insect product without other ingredients). In the case

of T. molitor, flour samples derived from three different batches of the same

product. Eight out of 12 samples represented processed food products: pasta

(n = 3), crackers (n = 2) and protein bars (n = 3). A detailed description of the

samples can be found in Table 1.
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Table 1. List of analysed insect-based products. For each sample, the information found on the

label about the category, the species of insects, the percentage of insects present in the food

product, the other ingredients declared on the label and the company origin are reported. R (Raw

food products); FP (Processed Food product). *Different batches of the same product of T. molitor

flour.

2.2.2.2 DNA extraction

High-quality genomic DNA was obtained starting from 250 mg of each sample

of Table 1 using DNeasy PowerSoil Kit (QIAGEN, Hilden, Germany), according

to manufacturer’s instructions. Three replicates of DNA extraction were

generated for each sample plus a negative control. Purified DNA was checked

for concentration and purity by using a Qubit 2.0 Fluorometer and Qubit dsDNA

HS Assay Kit (Invitrogen, Carlsbad, California, United States).

2.2.2.3 DNA barcoding characterization of insect samples

The 658 bp mtDNA COI region was used to validate the animal species

declared on the label in the sampled insect-based products. This region was

amplified and sequenced for all 12 samples according to the primer pairs

presented by Folmer, Black, Hoeh, Lutz, and Vrijenhoek (1994) and the protocol

described in Bellati et al. (2014). Each sequence was defined as the nearest

match with the BLAST algorithm using the following cut-off values: maximum

identity > 99% and query coverage of 100%.

2.2.2.4 HTS library preparation and sequencing

To characterize the bacterial composition of the investigated insect-based

products, 16S rRNA genes (V3 and V4 hypervariable regions) of the obtained

gDNA extracts were sequenced using a High-Throughput DNA Sequencing

approach. Amplicons were generated following the protocol described by

Caporaso et al. (2012) with Illumina adapters (S2 Table), with minor

modifications as described in Frigerio et al. (2020): we used PuReTaq
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Ready-To-Go PCR beads (GE Healthcare Life Sciences, Italy) according to

manufacturer's instructions in a 25 μL reaction, containing 1 μL 10 mM of each

primer and up to 50 ng of gDNA. The amplification profile consisted of an initial

denaturation step for 5 min at 95 °C, followed by 25 cycles of denaturation (30

s at 95 °C), annealing (30 s at 55 °C), and elongation (30 s at 72 °C), and finally

elongation at 72 °C for 5 min. Amplicon DNA was checked for concentration by

using a Qubit 2.0 Fluorometer and Qubit dsDNA HS Assay Kit (Invitrogen,

Carlsbad, California, United States) and amplicon length was measured by

comparison against QX DNA Size Marker using the Qiaxcel Automatic

electrophoresis system (QIAGEN, Hilden, Germany). Samples were sequenced

by the Center for Translational Genomics and BioInformatics (Milan, Italy). The

sequencing was performed on the MiSeq sequencing platform (Illumina, San

Diego, CA, USA) with a paired-end approach (MiSeq Reagent Kit v3, 2 × 300

bp).

2.2.2.5 Bioinformatic analysis

Illumina reads were analysed with QIIME2, Quantitative Insights Into Microbial

Ecology 2 program (ver. 2019.4; https://qiime2.org/) (Bolyen et al., 2019).

Sequences were demultiplexed with native plugin and DADA2 (Divisive

Amplicon Denoising Algorithm 2) (Callahan et al., 2016) was applied to obtain

ASVs sequences (or features) (Callahan, McMurdie, & Holmes, 2017), trimming

primers and performing a quality filter with an expected error of 2.0. Chimeric

sequences were removed using the consensus method. Features with at least

10 representatives associated and detected in at least two samples were kept.

The taxonomic assignment of representative sequences was carried out using

the feature-classifier (https://github.com/qiime2/q2-feature-classifier) plugin

implemented in QIIME2, using classify-consensus-vsearch method against the

SILVA SSU non-redundant database (132 release), adopting a consensus

confidence threshold of 0.8. Taxa bar plots were generated with the QIIME2

dedicated plugin taxa (https://github.com/qiime2/q2-taxa). As ASVs assigned

to Cyanobacteria phylum (Class: Chloroplast) were considered potential plant
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contaminants, they were removed from the downstream analysis. Reads of

mitochondrial or eukaryotic origin were also excluded. Overlap among

technical replicates was calculated considering taxa at the family level

weighted for abundances (Wen et al., 2017). Alpha diversity was carried out

considering the presence/absence of ASVs and Shannon index. Statistical

differences among samples belonging to the same insect species were

calculated using alpha-group-significance plugin by QIIME2, performing also a

pairwise contrast (Kruskal & Wallis, 1952). Beta diversity, instead, was carried

out considering qualitative (Jaccard and unweighted UniFrac) and quantitative

(Bray-Curtis and weighted UniFrac) distance metrics (Lozupone, Lladser,

Knights, Stombaugh, & Knight, 2011), using QIIME2 core-metrics plugin

(https://github.com/ qiime2/q2-diversity). Statistical differences were calculated

by permutation based ANOVA (PerMANOVA) functions of

beta-group-significance plugin (Anderson, 2001), with 999 permutations,

considering insect species and sample type categories. A PerMANOVA

Pairwise contrast was performed with beta-group-significance plugin. Principal

coordinates plots (PCoA) method was used to explore the structure of microbial

communities. The phylogenetic tree necessary to calculate UniFrac distances

was built on the alignment of ASVs representative sequences using

align-to-tree-mafft-fasttree method by phylogeny plugin

(https://github.com/qiime2/q2-phylogeny). Heatmap visualization was used to

explore the abundance of bacteria families among samples and was generated

by QIIME2. Core microbiota among insect samples was calculated considering

the ceiling of the mean of species frequencies among samples and keeping a

core threshold of 0.7 (minimum fraction of samples that a species must be

observed in), performed with core-features plugin

(https://github.com/qiime2/q2-feature-table). A Venn diagram was created

starting from core microbiota results setting the threshold = 1, by calculating

the number of shared and unique taxa per insect collapsed at the genus level.

ANCOM analysis (Analysis of composition of microbiomes; Mandal et al., 2015)

was performed to test differential abundances among genera distribution in the
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dataset, comparing samples with different insect composition. To avoid false

discovery rates, only features shared in at least 25% of samples were

considered.

2.2.3 Results

2.2.3.1 Sequencing output

All the replicates of the 12 collected samples showed good DNA quality (i.e.,

A260/A230 and A260/A280 absorbance ratios within the range 1.6–2.2) and

good yield (20–40 ng/μl). The DNA barcoding (mt COI) sequencing results

indicated that all the tested samples were composed of insects. Moreover, the

BLAST analysis against reference insect DNA barcoding sequences confirmed

that all samples corresponded with the declared insect species (i.e., maximum

identity > 99% with the declared species).

HTS analysis produced about 8,571,836 raw reads from the analysed samples,

with an average of 119,053.,28 reads per sample (DS = 62,045.83). After quality

filtering, merging reads, chimaera and contaminants removal, we obtained a

total of 590 ASVs (Amplicon Sequence Variants). Negative controls (deriving

from DNA extraction and amplification step) for library sequencing were not

included in the analysis since they encompassed a very low number of DNA

reads.

2.2.3.2 Microbial diversity analysis

From overlap calculations for technical replicates, family overlap resulted in a

mean of 96%, with a standard deviation of 0.06.

Both considering ASVs and Shannon metric, differences among samples

derived from different insects were observed (H = 22.13, p-value < 0.01 and H

= 29.93, p-value < 0.01, for ASVs and Shannon respectively; pairwise

comparisons are visible in Table S3).
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Samples belonging to raw material (flour) and food products (crackers, pasta

and protein bars) showed a significant difference, considering both qualitative

(Jaccard and Unweighted UniFrac) and quantitative metrics (Bray-Curtis and

Weighted UniFrac) (p-value < 0.01). Overall, we observed a significant

difference among samples belonging to different insects (Jaccard metric:

F-statistic = 10.59, p-value = 0.001; Unweighted UniFrac metric: F-statistic =

10.57, p-value = 0.001; Bray-Curtis metric: F-statistic = 16.79, p = 0.001;

Weighted UniFrac metric: F-statistic = 25.38; p-value = 0.001). Results of

pairwise comparisons are visible in Table S4.
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Figure 1. Relative abundance of bacteria families recovered in the insect-based products through

16S metabarcoding sequencing. Bacteria families are reported in gradient colors indicating relative

abundances. For each sample, the sample type is reported (pasta: red square; flour: yellow square;
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cracker: orange square; protein bar: green square). For interpretation of the references to colour in

this figure legend, the reader is referred to the web version of this article.

2.2.3.3 Taxonomic composition analysis

A total of 9 bacterial phyla, 14 classes, 34 orders, and 66 families were

identified (Figure 1, S5 Table).

Taxonomic analysis revealed that most of the sequences in all the samples

were associated with the phyla Proteobacteria (47%) and Tenericutes (26%),

followed by Firmicutes (23%). 0.13% resulted in Unassigned taxa. Looking

inside the taxonomic rank of class, the most abundant were

Gammaproteobacteria, with 47% of sequences, followed by Mollicutes (26%)

and Bacilli (22%). Enterobacteriales was the most abundant order,

encompassing 45% of the sequences, distributed across all the samples,

followed by Entomoplasmatales (26%), Lactobacillales (12%), Bacillales (10%),

and Bacteroidales (2.6%). On the whole, the remaining 29 orders covered 4.4%

of sequences. The Enterobacteriaceae family accounted for 45% of sequences,

whereas Spiroplasmataceae represented 26% of sequences.

Considering taxa distribution per insect (Figure 2), we can notice differences in

microbial composition, spanning from the phylum level to a deeper taxonomic

resolution. Considering taxonomy per insect species, at the taxonomic level of

order, we found that A. domesticusbased samples were dominated by

Bacillales (54%), followed by Bacteroidales (21.2%), and Lactobacillales

(8.9%), representing 84.1% of 28 orders. However, food products made with A.

diaperinus had most of the sequences assigned to Enterobacteriales (89.6%),

with the remaining 7% and 2.1% assigned to Lactobacillales and Bacillales,

respectively, and 1.3% of sequences distributed in 11 orders. T. molitor-based

food products showed 45.4% of sequences corresponding to

Entomoplasmatales order, 29.5% to Enterobacteriales, 14.5% to

Lactobacillales, and the remaining 10.6% to 21 different orders.
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Focusing on specific features, we observed that the most abundant feature

was assigned to an uncultured Spiroplasma (25%), reported exclusively in T.

molitor samples. The sixth most abundant feature (3%), assigned to the genus

Kurthia (Planococcaceae; Bacillales; Bacilli; Firmicutes) was detected only in A.

domesticus protein bars produced by the British company 5, but not in

samples belonging to the British company 4. Moreover, all and only the food

products deriving from British company 5 are characterized by the presence of

a specific feature assigned to Exiguobacterium (Family XII; Bacillales; Bacilli;

Firmicutes). Considering features shared between protein bars belonging to

British company 5 and French company 2, some of the most abundants were

assigned to Tannerellaceae (12,3%) (Bacteroidales; Bacteroidia; Bacteroidetes),

followed by Bacteroidaceae (6%) (Enterobacteriales; Gammaproteobacteria;

Proteobacteria), Enterobacteriaceae family (5%) (Enterobacteriales;

Gammaproteobacteria; Proteobacteria) and Lachnospiraceae (2%)

(Clostridiales; Clostridia; Firmicutes).

A feature assigned to an uncultured Parabacteroides (Tannerellaceae;

Bacteroidales; Bacteroidia; Bacteroidetes) is unique for A. domesticus samples,

whereas features assigned to Enterobacter (Enterobacteriaceae;

Enterobacteriales; Gammaproteobacteria; Proteobacteria), a different

microorganisms belonging to Enterobacteriaceae, and Enterococcus

(Enterococcaceae; Lactobacillales; Bacilli; Firmicutes) were highly prevalent in

A. diaperinus food products.

To better visualize the microbial variation among different food products, and

which family mostly contribute distinguishing food products, a heatmap based

on relative abundances was generated (Figure 3). Analyzing the sample cluster

dendrogram, two main clusters separate samples based on insect order,

composed by A. domesticus (Orthoptera) food products and T. molitor plus A.

diaperinus (both Coleoptera) food products. Subclusters differentiated raw food

products (flour) from processed food products (pasta, crackers and protein

bars): flour made by the two insects of the Coleoptera order (i.e., T. molitor and

A. diaperinus) formed a distinct cluster that separated pasta and crackers
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samples based on the same insects. Moreover, the same food products

constituted by different insects can be distinguished by family abundances in

the heatmap: A. diaperinus pasta clustered separately from T. molitor pasta.

Conversely, protein bars composed by the same insect (A. domesticus), but

produced by different companies, are scattered in two different clusters, as

also shown by microbial diversity analysis represented in the PCoA plot (Table

S4).

Figure 2. Donut charts of A. domesticus, A. diaperinus, and T. molitor microbial composition. Phyla

in the inner circle and Orders in the outer circle are reported. Abundances are expressed as log

frequency, in order to better show underrepresented taxa.
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2.2.3.4 Preliminary analysis on microbial signature

The preliminary analysis on core microbiota, defined as a group of shared

microbial taxa or genes (Hamady & Knight, 2009; Turnbaugh et al., 2007),

revealed the taxa shared by at least 70% and the 100% of amples of the

category representing the insect used in the food products. Venn diagram,

calculated from core microbiota results of the most conserved taxa (100% of

samples per insect), highlighted the presence of unique and shared taxa

considering insect species used in the food products analysed (Figure 4).

In the case of T. molitor-based food products, we observed a core microbiota

constituted by 21 taxa shared among > 70% of the samples and 10 taxa

shared by all the samples. The 10 most conserved taxa (100% of samples)

belonged to uncultured Spiroplasma sp., a taxon from Enterobacteriaceae

family, Enterococcus, Staphylococcus, Enterobacter, uncultured Lactococcus,

Pseudomonas, Bacillus, Serratia and Pantotea (S6 Table).

On the other hand, A. diaperinus-based food products showed 14 shared taxa,

both subsampling the 70% of samples or considering all the samples,

indicating a highly conserved core microbiota. In contrast to T. molitor-based

products, we reported the presence not only of Enterococcus, Staphylococcus,

Enterobacter, Lactococcus, but also of Enterococcus faecalis, Listeria,

Brevibacterium, Corynebacterium, Brachybacterium, Acinetobacter, and

Bacillus pumilus. We reported as well the absence of Spiroplasma,

Pseudomonas, Serratia and Pantotea.

Considering A. domesticus-based food products, all the samples share 29

taxa, and 44 taxa are shared by 70% of samples. Among these, all the samples

reported the presence of bacteria belonging to the family Lachnospiraceae and

the genus Parabateroides (Family: Tannerellaceae).

Venn diagram analysis showed that, if four genera are shared among all the

samples (a genus belonging to Enterobacteriaceae family, Lactococcus,

Enterobacter, Enterococcus), 28 genera were unique considering the insect

species.
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Figure 3. Heatmap diagram showing the relative abundance of families for each sample. Color

shading in the heatmap indicates the abundance, expressed as log10 frequency, of each family in

the sample. Sample type categories are flour (yellow), pasta (red), cracker (orange) and protein bar

(green). Companies are represented in fuchsia (Company 1), blue (Company 2), aquamarine

(Company 3), pink (Company 4) and light blue (Company 5). For interpretation of the references to

colour in this figure legend, the reader is referred to the web version of this article.
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In particular, twenty genera were exclusively detected in all the samples of A.

domesticus-based food products, and, among them, the three most abundant

were Parabacteroides, Bacteroides, and a genus belonging to Lachnospiraceae

family (see S6 Table for the complete list), thus confirming the explorative

analyses described in the previous section. Brevibacterium, Acinetobacter,

Brachybacterium, Listeria, and Corynebacterium were the genera unique for A.

diaperinus-based food products, whereas T. molitor-based food products

showed as unique genera Spiroplasma, Pantoea, and Serratia.

In order to explore variations in genera abundances among insect samples,

ANCOM analysis was performed. Considering features shared in at least 25%

of the dataset, the analysis comprehended a total of 31 genus. ANCOM results

showed 16 differential abundant genera among samples (S7 Table).

In particular, ten were detected as insect-specific genera, according to core

microbiome analysis. Further, for T. molitor samples, Spiroplasma,

Lactobacillus, Pediococcus and a genus belonging to the Clostridiaceae family

were identified, with a W-statistic of 30, 30, 24 and 23 respectively. Genera

Parabacteroides, two uncultured bacteria belonging to the Ruminococcaceae

family, Bacteroides, a genus belonging to Lachnospiraceae family and

Citrobacter were peculiar of A. domesticus samples, with a W-statistic of 30,

30, 28, 29, 29, and 27, respectively. Enterobacter (W-statistic = 30),

Corynebacterium (W-statistic = 25), and Listeria (W-statistic = 25) were

differentially distributed among the dataset, characterizing only A. diaperinus

and T. molitor samples. Regarding genera that were shared among all insect

species, Lactococcus (W-statistic = 25), Staphylococcus (W-statistic = 24), and

a genus belonging to the Enterobacteriaceae family (W-statistic = 23) were

differentially distributed. Further, median abundances of Lactococcus were

35.5 in A. domesticus samples, 547.0 in A. diaperinus samples and 1,917.0 in

T. molitor samples. Staphylococcus, instead, showed a median abundance of

501.0 in A. diaperinus samples and 1,475.0 in T. molitor samples, while

Enterobacteriaceae medians were 144.0, 2,108 e 11,659, for A. domesticus, A.
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diaperinus and T. molitor samples, respectively (ANCOM results and

distribution of genera among insect samples are visible in details in S7 Table).

Figure 4. Venn diagram and donut charts of A. domesticus, A. diaperinus, and T. molitor core

microbial composition. The Venn diagram in the upper part of the figure shows shared and unique

taxa per insect. Taxa identified through core microbiota analysis are reported in the lower part of

the figure. We considered the taxa found in 100% of the samples. In the case of A. domesticus and

A. diaperinus the first twelve hits are reported, according to the frequency values listed in S4 Table.

2.2.4 Discussion

In this study, we characterized through the application of HTS techniques the

microbial composition of insect-based food products made of A. domesticus,

T. molitor, and A. diaperinus, purchased via e-commerce. We selected both raw
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and processed food products, considering the availability on the market, from

different selling companies.

Our preliminary data revealed that a small number of prevalent bacteria formed

a “core microbiota” for each insect, which can potentially be used as

biomarkers to identify insect ingredient origin in food products.

A recent study (Cambon, Ogier, Lanois, Ferdy, & Gaudriault, 2018) showed that

a resident microbiota in T. molitor gut exists, thus supporting our hypothesis

tested with core microbiota analysis. In particular, this study identified a

resident T. molitor microbiota consisting of Pseudomonas, Serratia and genera

belonging to the Enterobacteriaceae family. Noteworthy, this evidence is in

accordance with the data we obtained in our study, as a further confirmation of

our results.

If there was a significant insect component, the core microbiota would reflect

the physiology of the organisms, the diet and rearing conditions. By contrast, if

the level of food processing affected the microbiota, the organism could be

difficult to identify searching for a microbial signature. Nevertheless, we

identified shared features constituting the core microbiota of specific insects. In

addition to that, despite the processing level, we found exclusive taxa in all the

samples of specific insects. Noteworthy, our results showed that in A.

domesticus processed food (i.e. protein bars and crackers) microbiota is

composed by a robust core of microorganisms that is conserved and is similar

in composition to what was reported in other studies on raw food (i.e. fresh

crickets): Vandeweyer and colleagues (Vandeweyer, Crauwels, Lievens, & Van

Campenhout, 2017) showed that A. domesticus is abundantly colonised by

(Para)bacteroides species (Johnson, Moore, & Moore, 1986), confirming the

first two hits we obtained through core microbiota analysis.

Interestingly, in this study A. domesticus core microbiota harbored bacteria

belonging to the Lachnospiraceae family too. This evidence may prove

beneficial when edible insects will be introduced in the western diet and it is

worth further studies: Lachnospiraceae are found, among others, in our

digestive tract and are involved in fibre digestion. Menni and colleagues indeed
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discovered the association between Lachnospiraceae and lower long term

weight (Menni et al., 2017). Furthermore, the exposure to antibiotics (such as

β-lactam antibiotics and fluoroquinolones) eliminates Lachnospiraceae from gut

microbiota. This lead to the gut becoming a prime target for opportunistic

infections such as the one caused by Clostridium difficile, but restoring

Lachnospiraceae into the intestines of infected patients has been shown to

help cure C. difficile infections (Lagier, Million, Hugon, Armougom, & Raoult,

2012; Seekatz et al., 2018; Segata et al., 2012; Song et al., 2013). It is

conceivable that in the processed food we found only DNA and not viable cells

and more investigations are needed, also focusing on prebiotic effects. In a

recent study, the impact of an insect-based diet (cricket) on the human gut

microbiota revealed increased levels of Bifidobacterium animalis. This could be

due to cricket chitin which may function as a prebiotic (Stull et al., 2018). T.

molitor flour in in vitro fecal models promoted the growth of Bacteroidaceae

and Prevotellaceae, but not of Clostridium histolyticum group or

Desulfovibrionales and Desulfuromonales (De Carvalho et al., 2019).

On the other hand, exclusively all the samples based on T. molitor source are

dominated by Spiroplasmataceae family (Phylum: Tenericutes; Class:

Mollicutes), in particular bacteria belonging to Spiroplasma genus. Spiroplasma

are found in the gut or hemolymph of insects where they can act as

endosymbionts, impacting on host reproduction or host defence system. These

findings are consistent with studies on fresh mealworm larvae (Vandeweyer et

al., 2017) deriving from different companies.

A. diaperinus samples are dominated by Enterobacter, both flour and pasta,

produced by different companies. These findings are in agreement with

previous studies on fresh larvae (Wynants et al., 2017) and minced meat-like

products (Stoops et al., 2016). A. diaperinus-based pasta clustered separately

from flour samples made of the same insect, but in the same main cluster

including food products belonging to Coleoptera. A similar behaviour can be

seen in the case of T. molitor pasta and flour samples.
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Concerning food safety, it is worth mentioning the presence, considering the

20 most abundant bacteria classified at the genus level, of sequences assigned

to Bacillus in most of the samples (80%). The capacity to form endospore,

resistant to heat and desiccation, deserve attention even if there is no

confirmation of viability assay. There are currently no regulations for

microbiological criteria of edible insects or their products in Europe, but a 5

Log10 (CFU/g) was defined as a safety threshold. Fasolato and colleagues

found the presence of vital Bacillus in edible processed insects. Even if median

values were lower than 4 Log10 CFU/g, some products showed higher lever

(maximum 6.6 log10 CFU/g) (Fasolato et al., 2018).

Considering differential abundances of shared genera among samples, such as

genera belonging to Enterobacteriaceae family or Lactococcus, differences

may be caused by matrix peculiarities. In particular, food treatments as freezing

or boiling processes can cause cell lysis and DNA degradation, thus affecting

High-Throughput DNA Sequencing (HTS) output (De Filippis et al., 2018;

Osimani et al., 2018). Further, high abundances of features were found in T.

molitor and A. diaperinus samples, where we have a predominance of flour

samples, a matrix obtained from only grinding treatment.

With the increasing availability of insect-based processed food products in the

market, including a higher number of samples in the analyses will help in

disentangling the microbial dynamics behind food processing, and allowing the

food products traceability at a finer scale.

Overall, our results showed that insect-based food products cluster based on

their microbial signature. Even in the case of processed food in which there is

more than one constituent (i.e., plant ingredients, see Table 1) that could

interfere with its microbial contribution in the clustering process, we identified a

shared pattern highlighted by core microbiota analysis and unique taxa that

can be used as biomarkers. We also showed that differences exist in

comparing raw vs processed food considering both qualitative and quantitative

metrics. Recent studies (Bruno et al., 2019) reported the possibility to track the

composition of plant processed food despite critical issues mostly deriving
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from the starting composition (i.e., variable complexity in taxa composition) of

the sample itself and the different processing level (i.e., high or low DNA

degradation). Other studies (Garofalo et al., 2017), investigating the microbial

composition of commercial food products based on insects, never explored if

any variability can be correlated with highly processed food such as pasta,

crackers or protein bars. Our data clearly showed that processed food can be

analysed searching for a microbial signature and that raw food products (i.e.,

flours) had a significant different microbiota compared to the processed ones

(i.e., pasta, crackers and protein bars), even if maintaining unchanged a core of

bacteria.

Highly processed food products represent one of the challenges of food

traceability because of DNA degradation during food processing and, as a

consequence, the limits in applying the common DNA barcoding techniques.

Thus, DNA metabarcoding, based on HTS techniques combined with powerful

tools for data analysis, can provide new perspectives for unveiling the

composition of processed food, to retrace food origin and food quality control

(Bruno et al., 2019; De Filippis et al., 2018; Parente, De Filippis, Ercolini,

Ricciardi, & Zotta, 2019).

The identification of a microbial signature for traceability purposes was

suggested also by forensic scientists as a natural consequence of the

application of HTS technologies in a wider perspective (Bishop, 2019): with the

globalisation of trade, food traceability is a hot topic and identifying a microbial

signature in these products can provide a deeper insight into the “food

ecosystem” (Bokulich et al., 2016; Galimberti et al., 2015, 2019; Parente et al.,

2019).

2.2.5 Conclusions and future perspectives

The application of high-throughput molecular techniques coupled with

bioinformatic analyses allowed us to detect and identify the diversity of
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microbial communities in some raw and processed novel food products

available on e-commerce. This study shows the value of the application of HTS

analysis for unveiling the composition of microbiota in processed food

containing insect ingredients. We were able to identify with our preliminary

analysis a microbial signature, depending on the insect, suggesting that a

resident microbiota is conserved despite the different food processing levels,

rearing conditions, and selling companies. We are now facing a striking

imbalance between available technologies and knowledge gaps on “food

ecosystem”: especially in the case of insect flour and insect-based products,

as a future perspective we should consider the whole food production chain,

taking into consideration that the microbial communities inhabiting surfaces,

interacting with foods and being part of food themselves are influenced all

along the supply chain, from rearing, in the case of insects, to the final

processed product. HTS approach is a valuable tool to protect food safety as

routine monitoring analysis, from the identification of insect microbiota along

the food production processing chain and characterization of the raw

ingredients to the final processed food products. This tool can be applied to a

wider range of food products to improve food source traceability too. Further

studies are needed to improve our knowledge on the influence of rearing

conditions and processing on the edible insect associated with the microbiota.

2.2.6 Data availability statement

The dataset generated for this study was submitted to the EBI metagenomics

portal (https://www.ebi.ac.uk/metagenomics/; Study ID: PRJEB35480).

Supplementary Materials are available through the main paper

(https://doi.org/10.1016/j.foodres.2020.109426).
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2.3 Additional contributions: food and ecology applications

In this chapter, abstracts of the work in which I contribute are provided. For

complete manuscripts, see Supplementary Data link.

2.3.1 DNA-Based Herbal Teas’ Authentication: An ITS2 and psbA-trnH

Multi-Marker DNA Metabarcoding Approach

Medicinal plants have been widely used in traditional medicine due to their

therapeutic properties. Although they are mostly used as herbal infusion and

tincture, employment as ingredients of food supplements is increasing.

However, fraud and adulteration are widespread issues. In our study, we aimed

at evaluating DNA metabarcoding as a tool to identify product composition. In

order to accomplish this, we analyzed fifteen commercial products with DNA

metabarcoding, using two barcode regions: psbA-trnH and ITS2. Results

showed that on average, 70% (44–100) of the declared ingredients have been

identified. The ITS2 marker appears to identify more species (n = 60) than

psbA-trnH (n = 35), with an ingredients’ identification rate of 52% versus 45%,

respectively. Some species are identified only by one marker rather than the

other. Additionally, in order to evaluate the quantitative ability of

high-throughput sequencing (HTS) to compare the plant component to the

corresponding assigned sequences, in the laboratory, we created six mock

mixtures of plants starting both from biomass and gDNA. Our analysis also

supports the application of DNA metabarcoding for a relative quantitative

analysis. These results move towards the application of HTS analysis for

studying the composition of herbal teas for medicinal plants’ traceability and

quality control.
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2.3.2 Impact of land use intensification and local features on plants and

pollinators in Sub-Saharan smallholder farms

Sub-Saharan African crop production largely relies on smallholder farms,

located both in urban and agricultural landscapes. In this context, the

investigation of plant and pollinator diversity and their interactions is of primary

importance since both these factors are threatened by land use intensification

and the consequent loss of natural habitats. In this study, we evaluated for the

first time how plant and pollinator insect assemblages and interactions in

Sub-Saharan farming conditions are shaped by land use intensification. To do

that, we complemented biodiversity field surveys in Northern Tanzania with a

modern DNA metabarcoding approach to characterize the foraged plants and

thus built networks describing plant-pollinator interactions at the individual

insect level. Moreover, we coupled this information with quantitative traits of

landscape composition and floral availability surrounding each farm. We found

that pollinator richness decreased with increasing impervious and agricultural

cover in the landscape, whereas the flower density at each farm correlated with

pollinator richness. The intensification of agricultural land use and urbanization

correlated with a higher foraging niche overlap among pollinators due to

convergence of individuals’ flower visiting strategies. Furthermore, within farms,

the higher availability of floral resources drove lower niche overlap among

individuals, while a greater flower visitors abundance shaped higher

generalization at the networks level (H2′), possibly due to increased

competition. These mechanistic understandings leading to individuals’ foraging

niche overlap and generalism at the network level, could imply stability of

interactions and of the pollination ecosystem service. Our integrative survey

proved that plant-pollinator systems are largely affected by land use

intensification and by local factors in smallholder farms of Sub-Saharan Africa.

Thus, policies promoting nature-based solutions, among which the introduction

of more pollinator-friendly practices by smallholder farmers, could be effective
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in mitigating the intensification of both urban and rural landscapes in this

region, as well as in similar Sub-Saharan contexts.

2.3.3 Food Tracking Perspective: DNA Metabarcoding to Identify Plant

Composition in Complex and Processed Food Products

One of the main goals of the quality control evaluation is to identify

contaminants in raw material, or contamination after a food is processed and

before it is placed on the market. During the treatment processes,

contamination, both accidental and economically motivated, can generate

incongruence between declared and real composition. In our study, we

evaluated if DNA metabarcoding is a suitable tool for unveiling the composition

of processed food, when it contains small trace amounts. We tested this

method on different types of commercial plant products by using tnrL marker

and we applied amplicon-based high-throughput sequencing techniques to

identify plant components in different food products. Our results showed that

DNA metabarcoding can be an effective approach for food traceability in

different types of processed food. Indeed, in the vast majority of our samples,

we identified the species composition as the labels reported. Although some

critical issues still exist, mostly deriving from the starting composition (i.e.,

variable complexity in taxa composition) of the sample itself and the different

processing level (i.e., high or low DNA degradation), our data confirmed the

potential of the DNA metabarcoding approach also in quantitative analyses for

food composition quality control.
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2.4 Main conclusions and future perspectives

2.4.1 Insights into bioinformatic frameworks of non-bacterial markers

This first chapter is dedicated to the main works in which I contributed during

the experimental design, bioinformatic analysis and paper writing phases. In

general, I observed the following issues: non-bacterial markers, such as ITS2

for Plants traceability, do not have a clear standardization into the data analysis

process. In my experience, there is a great effort to communicate the results to

non-bioinformatic people and to find solutions to correctly define the threshold

able to recapitulate the molecular information and species detected.

Considering the food industry, the abundance of a species, in terms of reads

and reliable sequences identified, assume a great importance: what is the

difference between a contamination, a bias or a fraud? Is it possible to identify

the correct threshold to discriminate between them? It is clear that answering is

not an easy task. In addition, it is a delicate point, both considering marketing

and industry implications. In our work, expertise of the field of study and the

communication between researchers and partners become fundamental to

conduct a scientifically sound, clear and useful study.

In addition, the second important step of the bioinformatic process is the

taxonomy assignment. Considering the pipelines reported above and the work

in which I contributed, taxonomy assignment was performed using NCBI as a

reference database. A smaller collection of sequences available in NCBI were

downloaded and used as reference. Further, a manual curation step was

performed by colleagues that have prepared samples and sequencing libraries.

A clear interconnection between the case study under investigation, laboratory

issues and sequencing biases exist. This leads to difficulties to guarantee a

fully standardized procedure and framework, also from the bioinformatic point

of view. Currently, the main difficulties lie on a precise standardization of

processes, both considering experimental and bioinformatic frameworks. From

primer selection to the extraction of reliable sequences, a deep work must be
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done considering the very different matrices we can analyse. Probably, tests

starting from sequencing run will be necessary to clearly disentangle the issues

described above. Of course, as DNA metabarcoding has great potentials both

in environmental and food-related projects, continuing to work will help to

propose new and better solutions. For the taxonomic assignment, for example,

I invite you to read Chapter 4.

In the following chapter, I present the potentials of omics tools into fermented

food products research area. Specifically, fermented foods can be viewed as a

subcategory where foods and microorganisms exploration are strictly

connected. I report below my contribution to two main chapters of the Review

“Fermented food products in the era of globalization: tradition meets

biotechnology innovations” (Galimberti et al., 2021), where me and my

colleagues depict the recent advancements of DNA metabarcoding in this field

and the future perspectives related with the potentiality of omic tools.

2.4.2 Fermented food products in the era of globalization: tradition meets

biotechnology innovations

Omics tools offer the opportunity to characterize and trace traditional and

industrial fermented foods. Bioinformatics, through machine learning, and other

advanced statistical approaches, are able to disentangle fermentation

processes and to predict the evolution and metabolic outcomes of a food

microbial ecosystem. By assembling microbial artificial consortia, the

biotechnological advances will also be able to enhance the nutritional value

and organoleptics characteristics of fermented food, preserving, at the same

time, the potential of autochthonous microbial consortia and metabolic

pathways, which are difficult to reproduce. Preserving the traditional methods

contributes to protecting the hidden value of local biodiversity, and exploits its

potential in industrial processes with the final aim of guaranteeing food security

and safety, even in developing countries.
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2.4.2.1 Microbial ecosystem as a valuable signature of fermented food

typicalities

The metagenomics revolution started to provide researchers with catalogues of

gene (or genome) sequences of bacteria and yeasts from many fermented food

categories (Parente et al., 2019; Pasolli et al., 2020). Metagenomics-based

approaches identified groups of functional microorganisms able to (i) enhance

the bioavailability of nutrients and the sensory quality of fermented foods, (ii)

impart bio-preservative effects, (iii) improve the safety of food products, and (iv)

provide positive effects to human gut microbiota and health conditions (Marco

et al., 2017). However, in each fermentation phase there are also

‘non-functional’ microorganisms playing a key role in maintaining the stability of

the whole microbial ecosystem. Therefore, both functional and non-functional

microorganisms are essential for providing more standardisation and precision

to the industrial biotechnological processes and for shaping the food flavour

and taste to reach the desired gold standards (Tamang et al., 2016; De Filippis

et al., 2018).

As a matter of fact, the fermented food market focuses on increasing the

sensory reward in the consumer by branding a unique microbial-mediated

signature in terms of flavour, taste, and appearance. This microbial fingerprint

permits consumers to be able to distinguish a product from others similar that

are available on the market (Van Reckem et al., 2019; Kamimura et al., 2020). In

this context, wine is one of the fermented items that has the greatest link to the

territory:its flavour (and brand) is shaped by the influence of pedoclimatic

characteristics of the vineyard and wine cellar and of their associated microbial

consortia (i.e. the microbial terroir, sensu (Bokulich et al., 2014; Bokulich et al.,

2016). Bokulich et al. (2014) also demonstrated that this microbial signature of

the zone of production and/or biotransformation also persists in the bottle,

allowing it to be traced back to the production cellar. These bacteria belong to

the soil of the vineyard but also come from the local associated
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pollinator/frugivore metazoans, pathogens, and fertilization management

(Mezzasalma et al., 2018).

Figure 1. The multiple facets of fermentation processes. Multi-omics and advanced statistical

analysis combined with ad-hoc database and data integration are the frontiers into exploring

fermented microbial worlds, with the aim of profiling food from microbial interactions to space-time

scenarios and predicting community behaviour, both considering environmental conditions and

starter culture contribution. Technology leads to harnessing the potential of autochthonous

microorganisms and driving biotechnological advances to improve not only the process efficiency

and guaranteeing safety and quality, but also preserves the ancestral intrinsic biodiversity at the

micro-scale to govern the outcomes at the macro-scale.

A similar scenario also occurs in dairy production where the autochthonous

microorganisms are overwhelmingly dominant over commercial strains,

suggesting that starter inoculation may have a limited influence on driving

cheese microbiota (Bokulich et al., 2013). Again, although relying on the same

ingredients, bread flavour and taste diversity around the globe reflect the

contribution of peculiar microbial taxa belonging not only to the used flour and
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yeast, but also to the microbial community of the baker’s hands (Reese et al.

2020). Since some flavours and tastes of fermented foods should also be

attributed to variations in spontaneous microbial consortia (Johansen et al.,

2019; Akaike et al., 2020), the current frontier in food fermentation

biotechnologies is the accurate reproduction of a traditional microbial

consortium and its dynamics that direct the entire biotransformation process in

order to obtain high-quality food products of increased nutritional value.

Moreover, both the scientific community and the consumers are paying

increasing attention to the effects of fermented food on the gut microbiome. It

has largely been established that the human gut ecosystem covers a special

interest since it deals with nutrients adsorption, energy availability, hormone

balance, immune system activation, and even behaviour. Subtle, yet persistent

signatures associated with the consumption of fermented food impact the gut

microbiota structure and enrich it with beneficial compounds (Taylor et al.,

2020). The existence of a gut–brain axis is also well documented and growing

evidence suggests that fermented foods can positively impact mood and brain

activity through a gut cross-talk mediated by microorganisms (Aslam et al.,

2020). In this context, the technological challenge is to develop suitable tools to

accurately characterize, model and mimic the complex world of food-related

microbial ecosystems (Wolfe et al., 2014). Such tools could also be used to

predict the changes occurring in the microbial consortia over time, their role in

fermentation processes, their effects on the final transformed products, and

therefore on human health.

2.4.2.2 Predicting the microbial ecosystem dynamics of fermented food

The characterization of interactions occurring within the food microbial

community is a challenging task (Smid et al., 2013). The emerging multi-omics

(e.g. genomics, proteomics, meta-bolomics) data have highlighted the

molecular mechanisms (i.e. metabolic pathways) occurring in microorganisms

and the effects of interactions taking place among these microorganisms and
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with external factors, which usually affect the evolution of the whole microbial

community (Parente et al., 2018; Afshari et al., 2020). The application of

association network analysis in food ecosystems showed that the most

frequent interactions mainly regard co-occurrence relationships involving

starter and spontaneous microorganisms, that can vary depending on

environmental variables that are difficult to disentangle (Layeghifard et al.,

2017). In addition, mutual exclusion relationships have been observed between

beneficial and spoilage microorganisms with obvious implications in terms of

food safety (Parente et al., 2018). Combining molecular data and culture-based

methods validates the functional association networks and identifies the key

players involved in each metabolic pathway (Shetty et al., 2019). Unfortunately,

this approach does not work with the uncultivable microorganisms. These

usually constitute a predominant fraction of the microbial community and are

often responsible for unique metabolic pathways enriching foods with peculiar

flavours and aromas (Solden et al., 2016; Bruno et al., 2017). Alternatively, the

multi-omics approaches offer the opportunity to reconstruct the key metabolic

pathways of microbial ecosystems regardless of the exact taxonomic

knowledge of the involved microorganisms. Once the relevant and intermediate

metabolites have been identified through a metabolomics approach, it is then

possible to hypothesize which microorganisms are responsible for their

production or are the most likely involved. As an example, more than one

thousand microbial protein clusters were identified in bean sauce mash, a

traditional fermented soybean product. Metabolomic analysis suggested that

these were expressed mainly by members of two genera of the microbial

consortium, leaving the role of the vast remaining microbial community of the

fermented sauce almost unsolved (Xie et al., 2019 - a; Xie et al., 2019 - b). The

same approach was also used to elucidate the microbiota changes during

fermentation and their effect on the metabolite contents of some traditional

products, such as Chinese Pu-Erh tea (Zhao et al., 2019), to assess the role of

peculiar taxa other than lactic acid bacteria in the progression of fermentation

in dairy products (Afshari et al., 2020; O’Donnell et al., 2020), or to characterize
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the molecules shaping the flavour and taste of specific wine products(Sirén et

al., 2019). Concerning the definition of the roles of external inputs on the

fermentation processes, the increasing amount of biological data, including

those derived from unique local contexts, coupled with integrative data analysis

(e.g. multiple co-inertia analysis McIA; Sankaran and Holmes, 2019) are

considered promising. A virtuous case-study in this context is that by Afshari et

al. (2020) who were able to characterize the microbiota and metabolite

fingerprints involved in the ripening process of different brands of artisanal and

industrial cheddar cheeses to a deeper extent. Moving forward in this direction,

it will be possible to disentangle the complex networks, the relevant hubs, and

the bottlenecks of the whole fermentation ecosystem.

Data-driven and knowledge-based approaches are now the cutting-edge

solutions for exploring and understanding microbial ecosystems and are mainly

based on advanced statistical approaches and data mining techniques.

Ranging from classification and microbial signature prediction to interaction

and features associations (i.e. organisms, metabolites) (Pasolli et al., 2016; Qu

et al., 2019), machine learning strategies have the potential to identify hidden

structures (Noor et al., 2019) and highly intricate patterns that may help predict

biological functions (Thompson et al., 2019). These approaches pave the way

for tracking microbial landscapes and temporal dynamics and unveiling the

added value of geographical diversity and environmental contribution (Bokulich

et al., 2016). Computational simulations have become of fundamental

importance to address the difficulties of understanding complex microbial

ecosystems. Combined with machine and deep learning methods, these

approaches are emerging into discovering the microbial community structure

and dynamics, also uncovering new putative interactions among organisms

(Marsland et al., 2020). This is the case of a new inference method proposed by

Lee et al. (2020) that is able to predict microbial community interactions from

spatially distributed data. To disentangle elusive metabolic interactions among

microorganisms, Dimucci et al. (2018) combined partially known networks with

trait-level information, exploiting the potential of machine learning algorithms
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and providing an innovative procedure to find underlying associations. Great

efforts were also provided by advances in data mining research. The need to

get more information boosted the development of text mining tools to explore

microbes and take advantage of non-bacterial strategies to extract new

infra-community patterns (Tandon et al., 2016; Chaix et al., 2019).

All of these predictive systems increase their own accuracy and reliability

depending on the growing availability in data resources (Parente et al., 2019)

fed by projects cataloguing microbial life at an unprecedented vast scale (e.g.

The Earth Microbiome Project EMP, http://www.earthmicrobiome.org) and by

the contribution of crowdsourced campaigns. Citizen science projects, such as

the American Gut Project (http:// americangut.org/), the Microsetta Initiative

(https:// microsetta.ucsd.edu/) and the Global Sourdough Project

(http://robdunnlab.com/projects/sourdough/), conjugate microbiome analysis

services to general consumers, thus providing a huge and precious source of

data, with the lateral effect of filing microorganisms typical of

traditional/artisanal fermentation processes (Ryan et al., 2018) and investigating

the relationship between the consumption of fermented food and the

equilibrium of the gut microbiota.
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3. Dealing with the promise of metabarcoding in mega-event

biomonitoring: EXPO2015 data report

3.1 Introduction

Environmental degradation due to anthropic activities have increased the scale

and frequency of biodiversity assessments. Certainly, the environmental

degradation is particularly dramatic in the highly anthropogenic areas.

Governments and international organisations are issuing and thus including in

their agendas new strategies to protect and restore biodiversity, such as the

Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem

Services (IPBES 2019; Bongaarts, 2019; Lanzen et al., 2016; Baird et al., 2012).

These circumstances have required a renovation in monitoring techniques,

encouraged by the necessity to develop more rapid and accurate tools

supporting timely observations of ecosystems structure and functions (Taylor et

al., 2016; Pimm et al., 2015). In this framework, supported by Next Generation

Biomonitoring (NGB) initiatives (Makiola et al., 2020), DNA metabarcoding

introduced surprising signs of progress in surveying prokaryotic and eukaryotic

diversity from any type of environment (Makiola et al., 2020; McGee et al.,

2019). After a few years from the adoption of DNA metabarcoding, many

worldwide molecular data collection projects include DNA metabarcoding data,

as a natural progression for biodiversity assessment e.g. Earth BioGenome

Project (EBP 2021), The European Reference Genome Atlas initiative (ERGA

2021), the BIOSCAN project (BIOSCAN2021), the Vertebrate Genomes Project

(VGP) (Rhie et al. 2021), the i5k Arthropod Genomes Initiative (i5K Consortium

2013), the 10KP Plant Genomes Project (Cheng et al. 2018), and others

(Waterhouse et al 2021). DNA metabarcoding widespread adoption has also

been supported by the advances in high-throughput DNA sequencing (HTS)

technologies, increasing data yield with costs reduction (Cordier et al., 2020;

Porter et al., 2018; Pimm et al., 2015; Thomsen et al., 2015; Shokralla et al.,

2012), allowing taxa exploration at unprecedented extent, for a time and
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cost-effective biodiversity monitoring (Westfall et al., 2019; Ruppert et al., 2019;

Deiner et al., 2017).

Several studies exploited the potential of DNA metabarcoding to improve the

understanding of anthropogenic impacts (Cordier et al., 2021; Tommasi et al.,

2021; Frontalini et al., 2018; Lanzen et al., 2016), monitoring alien species

introduction (e.g., Westfall et al., 2019; Comtet et al., 2015), even in the context

of regulatory policymaking (Cordier et al., 2021; van der Heyde et al. 2020;

Pawlowski et al., 2018).

However, the DNA metabarcoding data analysis and interpretation still requires

great efforts to achieve full data exploitation and not standard procedures

could be applied for each taxa domain (Ruppert et al., 2019; Porter et al., 2018;

Deiner et al., 2017). In particular, difficulties remain related to the lack of

information in reference taxonomic databases (Curry et al., 2018; Weigand et

al., 2019), taxonomic resolution and misidentification (Bush et al., 2019),

leading also to the implementation of taxonomy free approaches (Vasselon et

al., 2017).

Nevertheless, we harnessed the advantages and the huge amount of

information that DNA metabarcoding can generate to investigate the influence

of massive human-induced activities on biological communities, also

considering the issues related to marker choice, reads processing and the

information contained in reference databases, a fundamental part of data

interpretation.

In this study, we focused on the monitoring of the World Exposition (from now

“EXPO2015”) hosted in Milan from May to October 2015. This global event was

categorized as a mega-event (Muller, 2015), which can be defined as an acute

environmental stressor, possibly generating biodiversity alteration and

disturbance.

During the six months of EXPO2015, exhibitors from more than 135 countries

and 22 million visitors insisted on a 1.1 million square meters exhibition area.
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Faced with such a massive event, a wide-range analysis of biodiversity could

be reliable for addressing biomonitoring purposes (Cordier et al., 2021;

Cristescu et al., 2018; Alberdi et al., 2018; Trebitz et al., 2017; Comtet et al.

2015). To overcome restrictions of traditional biomonitoring, which is limited to

observations on small sets of bioindicators and/or flagship species (Cordier et

al., 2021; Dequiedt et al. 2011; Magurran et al. 2010; Reavie et al. 2010;

Bonada et al. 2006), we applied a DNA metabarcoding approach targeting

three different molecular markers and involving two different sampling

strategies (i.e., water and air) to obtain a comprehensive overview of the impact

of the exhibition on environmental community assemblages. In this context,

both overall and microscale investigations were conducted. Specifically, we

monitored the water canalization system, which connects two local rivers

across the exhibition area, the two local rivers and the air biodiversity collected

at two representative sites. We chose three mini-barcode regions allowing the

assessment of a broad taxonomic spectrum of the eukaryotic community: the

V9 hypervariable region of 18S SSU rRNA (Harrison et al., 2021;

Fernández-Álvarez et al. 2018; Chariton et al. 2015; Cowart et al. 2015; Lallias

et al. 2015; Zimmermann et al. 2015; Edgcomb et al., 2011), the plastid trnL

intron (Deiner et al., 2017; Fahner et al., 2016; Quéméré et al., 2013; Taberlet et

al., 1991), and the internal transcribed spacer ITS2 of rRNA (Nilsson et al.,

2019; Blaalid et al., 2013; Toju et al., 2012; White et al., 1990).

Overall, our main intent was to validate DNA metabarcoding as a biomonitoring

strategy to understand the environmental impact of global events, such as

EXPO2015, on eukaryotic community diversity. In parallel, we tried to deepen

the following questions: i) if DNA metabarcoding can track biodiversity

communities in a mega-event context, ii) which are the pros and cons of using

multi-marker strategies, considering the absence of common procedures and

the issues related to the taxonomy assignment and iii) if machine learning

strategies can help in predicting sample origin, overcoming the uncertainty of

the taxonomy assignment.
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Our results showed that DNA metabarcoding coupled with machine learning

approach is a powerful genomic-based tool to monitor biodiversity at the

microscale, allowing us to capture exact fingerprints of specific event sites and

to explore in a comprehensive manner the eukaryotic community alteration. We

discussed in the work the crucial issues related to the generalization of the

approach and the degree of taxa identification. We provided a case-study

application of DNA metabarcoding to an urban context, monitoring biodiversity

at micro-scale, but also with a focus on the changes starting from the laying of

the first stone. As well as the great potential of genomic-based tools and data

related to genetic biodiversity are growing, machine learning approaches could

give the decisive breakthrough to the application of DNA-based monitoring 3.0

at a broader extent.

3.2 Materials and methods

3.2.1 Study area and sampling design

The EXPO 2015 exhibition site is located northwest of Milan. The site occupies

an area of   110 hectares, with approximately 250,000 m2 of vegetation, 6,000 m

of canals, more than 70 exposition pavilions, for the exhibitors coming from

more than 135 countries, built in three and a half years, and was completed just

hours before the opening ceremony (Expo Milano 2015 Official Report 1).

It had long been an industrial zone before its conversion to logistical and

municipal services and agriculture. The area is characterized by two parallel

water canals and it is crossed by two rivers, Guisa and Olona.
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Figure 1. Map of sampling sites. Blue circles indicate the two sampling points of air (S2 closer to

the exposition site). Red circles indicate the four sampling points of water canals (P1 P2 ring water

canal; C1 C2 water canal parallel).

Within the EXPO area, four main sampling points were considered (Fig. 1):

● P1: localized in the ring water canal, upstream of P2 (inlet water);

● C1: located along the water canal parallel to the area, receives

incoming water from the Guisa river and enters more times in contact

with the area;

● P2: localized in the ring water canal, downstream of P1, collects outlet

water derived from the whole area and from P1;

● C2: located along the water canal parallel to the area, receives the

water from the exhibition area and enters the river Olona.

Considering the water sampling, samples were collected using one-liter sterile

single-use bottles (LP Italia) in PET from the two rivers crossing the area of the

exhibition, Guisa and Olona, and at four sites localized within the EXPO area

(P1, P2, C1 and C2; see Figure 1). Sampling began in October 2014 and ended

in March 2016. Since the works for the construction of the exhibition site have

continued up to the days immediately prior to the opening of the event, the
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sampling of water perimeter channels was not possible in the ante operam

phase (i.e., before May 2015) in the EXPO area.

Regarding the post operam phase (i.e., after October 2015), the analyzed

samples were collected at the same sampling sites, since the exposition area

was no longer accessible. In total, Guisa was sampled six times (6 samples)

and Olona three times (3 samples) as the river was dry, once a month (for

details about sampling dates, see Supplementary S1).

The sites C1, C2, P1, and P2 were sampled monthly during the EXPO event (in

operam phase), obtaining 30 samples of P1, 18 for C1, 33 for P2 and 26 for C2.

Considering the air sampling campaign, samples were collected monthly from

October 2014 to March 2016 through two different methods: a Tauber Trap

approach (Tauber, 1974) and Lanzoni VPPS 2010 (Lanzoni, Bologna, Italy)

instrument (based on Hirst model; Hirst, 1952; Núñez et al., 2017)

Sites sampled were:

● S1, located at the company Tarenzi s.p.a, 600 meters north of EXPO (a

total 44 samples);

● S2, located on the roof of c.m.p. Poste Roserio, 100 meters south of

EXPO (a total of 47);

The S1 site was investigated using the Tauber Trap method, instead of the S2

site in which both instruments were installed. Sites were carefully selected for

their geographical position, near the exhibition area and opposite each other, in

order to collect the biological component considering wind direction. The

different distance of sampling sites from the EXPO area allowed both

short-range (100 meters) and long-range (600 meters) monitoring (c.m.p

Roserio and Tarenzi s.p.a., respectively). Overall, a total of 228 samples were

collected from water (137 samples) and air (91 samples), covering the period

from October 2014 to March 2016 (for time point list see Tables in

Supplementary S1), using three molecular markers. The sample distribution

was conducted as follows: 34 air and 47 water samples belonging to 18S V9
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region, 30 air and 45 water samples to trnL and 27 air and 45 water samples

belonging to ITS2.

3.2.2 Samples pre-processing and environmental DNA extraction

Each liter of water belonging to each site was pre-processed with serial

filtrations with the use of nitrocellulose and acetate membrane filters with 8 μm

and 0.45 μm pore sizes (Jamwal et al., 2021; Valsechi et al., 2021; Capo et al.,

2020), respectively. For the air sampling campaign, each Tauber trap sample

(composed by a solution of ethanol and glycerol) was pre-processed with serial

filtrations with the same strategy used for water samples.

Filters belonging to both media were initially crushed with Tissue-Lyser and

liquid nitrogen. Subsequently, the DNA was extracted using the EuroGold Plant

DNA Mini Kit (EuroClone). DNA extraction from samples subjected to

mechanical lysis was carried out following the protocol for dry material with the

following modifications: instead of starting from 250 mg of dry material, all the

filters obtained for each sample were processed together, so that the DNA

extracted corresponded to the volume of filtered water. DNA elution was

carried out with 100 μl of elution buffer.

Three genetic markers (i.e, the nuclear V9 region of 18S rDNA and ITS2 and the

plastid intron trnL) have been selected. The V9 region of 18S rDNA was used as

a generalist genetic marker to explore the eukaryotic community (Harrison et

al., 2021; Fernández-Álvarez et al. 2018; Chariton et al. 2015; Cowart et al.

2015; Lallias et al. 2015; Zimmermann et al. 2015; Edgcomb et al., 2011). The

plastid intron trnL and the internal transcribed spacer ITS2 were used

specifically to identify Plantae (Deiner et al., 2017; Fahner et al., 2016; Quéméré

et al., 2013; Taberlet et al., 1991) and Fungi (Nilsson et al., 2019; Blaalid et al.,

2013; Toju et al., 2012; White et al., 1990), respectively.

Raw reads were generated in an eighteen month assessment (from October

2014 to March 2016; Supplementary Files S1), collecting a total of 228 samples
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(i.e., 137 water and 91 air), sequenced at the three selected loci markers

(Supplementary Table S3).

3.2.3 Illumina library preparation and sequencing

V9 hypervariable region of 18S rRNA gene, intron trnL and ITS2 (primer details

are provided in Supplementary Table S3) libraries were generated following the

standard protocol (16S Metagenomic Sequencing Library Preparation, Part #

15044223 Rev. B). Amplicon PCRs were performed using the primer pairs used

for qPCR quantification plus the adapter sequence. Libraries were quantified

with a 2100 Bioanalyzer (Agilent Technologies) and sequenced with the Illumina

MiSeq platform (five runs, v2 chemistry, 2x150bp). Library preparation and

sequencing were carried out at IBIOM-CNR (Bari, Italy). Quantification protocol

and primer list are available in Supplementary Data S2.

3.2.4 Bioinformatic workflow, biodiversity and machine learning analysis

For each marker gene, the raw paired-end FASTQ reads were imported into the

Quantitative Insights Into Microbial Ecology 2 program (QIIME2, ver. 2020.8;

Bolyen et al., 2019) and demultiplexing native plugin. Illumina runs were

processed independently with the Divisive Amplicon Denoising Algorithm 2

(DADA2) plugin (Callahan et al., 2016). DADA2 was used to filter, trim, denoise,

merge, remove of chimeras and calculate ESVs (Exact Sequence Variants;

Callahan et al. 2017). In particular, an expected error = 2.0 was used as an

indicator of read accuracy. Primers were trimmed and low-quality bases were

removed. ESVs sequences with at least 10 representatives were taxonomically

assigned using OBITools (Boyer et al., 2015) by ecotag tool, comparing

sequences with an ecoPCR database extracted from the EMBL database

version r139 (Kanz et al., 2004).

For each marker gene, the results of the taxonomy assignment were analysed

considering the percentage of rank assigned at different levels (Kingdom,

Phylum, Class, Order, Family, Genus, Species).
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In order to estimate the biodiversity variation, we calculated alpha and beta

diversity index for each marker gene separately. In detail, differences among

sample types (water and air), sites (sampling points) and the macro category

(air: S; rivers: R; internal canals: P; external canals: C) were tested For alpha

diversity, we considered Shannon metric and presence/absence observations.

Differences were tested using the pairwise Krustall-Wallis test implemented in

the alpha-group-significance QIIME2 plugin (Kruskal and Wallis, 1952). To

assess how volatile a dependent variable (alpha diversity measured as

Shannon diversity) is over an independent variable (time) in water and air

medium, a volatility plot was generated for each marker. For beta diversity, we

calculated Jaccard metric to test differences among sample types, sites and

macro categories using a PERMANOVA analysis performed with

beta-group-significance plugin (Anderson, 2001).

Subsequently, the Random Forest classifier implemented in the

sample-classifier QIIME2 plugin (Bokulich et al., 2018) was used to classify

samples based on sites and macro categories metadata. The number of trees

to grow for estimation was set to 1,000. Overall accuracy (i.e., the fraction of

times that the tested samples are assigned the correct class) was calculated

for each factor. K-fold cross-validation was performed during automatic feature

selection and parameter optimization steps. A fivefold cross-validation was

also performed. Further, machine learning analysis was carried out considering

the genetic information of all the three marker regions, based on sites and

macro categories metadata.

Figures and plots were created through QIIME2 plugins (Bolyen et al., 2019;

Anderson, 2001; https://github.com/qiime2/q2-taxa) and ExTaxsI tool

(Agostinetto et al., 2021; Agostinetto et al., 2020;

https://github.com/qLSLab/ExTaxsI) to give an overview of biodiversity

collected during the sampling campaign, with the aim to summarize the great
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amount of data generated and help data interpretation. Raw reads were

submitted to the ENA database (PRJEB45249).

3.3 Results

3.3.1 Sequencing results

Nine Illumina MiSeq sequencing runs for the three markers selected (18S SSU

rRNA, trnL and ITS2) produced a total of 127,971,220 reads (63,985,610

pair-end reads), belonging to 228 samples. After the filtering steps, a total of

44,193,721 sequences were retained for the downstream analysis. As the

DADA2 R package implements a full amplicon workflow (Callahan et al., 2016),

we obtained a total of 19,304 ESVs (Callahan et al., 2017) for V9 raw reads,

3,630 ESVs for trnL and 8,471 ESVs for ITS2. Complete ESVs tables are

available in Supplementary S8.
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Figure 2. Resume figure showing the V9 18S results with: a) volatility plot and b) sunburst plot

representing the taxa distribution of taxonomy assignment; c) taxa-bar-plot considering only

Metazoa assignments; d) PCoA analysis based on Jaccard metric considering ESVs (left) and ESVs

assigned only to Metazoa (right) on sampling sites.
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Figure 3. Resume figure showing the ITS2 results with: a) volatility plot and b) sunburst plot

representing the taxa distribution of taxonomy assignment; c) taxa-bar-plot considering only Fungi

assignments; d) PCoA analysis based on Jaccard metric considering ESVs (left) and ESVs assigned

only to Fungi (right) on sampling sites.
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Figure 4. Resume figure showing the trnL results with: a) volatility plot and b) sunburst plot

representing the taxa distribution of taxonomy assignment; c) taxa-bar-plot considering only

Streptophyta assignments; d) PCoA analysis based on Jaccard metric considering ESVs (left) and

ESVs assigned only to Streptophyta (right) on sampling sites.
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3.3.2 Taxonomy results

V9 18S sequences resulted in 77.43 % assigned to Unicellular Eukaryotes,

13.20% to Fungi, 6.9% to Viridiplantae group, 3.58% to Metazoa and 2.54% to

Bacteria, with 20.01% Unassigned sequences. Overall, 44.28% of assignments

reached the genus level (Figure 5). Among Metazoa assignments, 39.65 % was

composed by Arthropoda, 13.60% by Nematoda and 9.26 % by Rotifera.

These taxa were followed by Platyhelminthes (7.8%), Unknown sequences

(6.80%), Gastrotricha (6.80%), Annelida (4.62%), Cnidaria (3.76%), Chordata

(2.31%), and Tardigrada (2.02%). A small fraction of assignments collected

Mollusca (1.44%), Porifera (1.15%), Bryozoa (0.28%), Ctenophora (0.28%) and

Nemertea (0.14%). Among Metazoa sequences, 45.5% of them reached a

genus level assignment.

ITS2 sequences resulted in 64.29% of Fungi assignments, followed by 17.99%

of Unclassified Eukaryotes, 11% of Unassigned sequences, 8% of Viridiplantae

and 0.36% of Metazoa sequences. Overall, 46.86% of sequences reached a

genus level assignment. Among Fungi sequences, 29.99% of them were

assigned to Ascomycota phylum and 28.54% to Basidiomycota phylum,

followed by 2.23% of Chytridiomycota, 0.56% of Mucoromycota, 0.04 % of

Zoopagomycota, 0.01% of Olpidiomycota and 0.01% of Blastocladiomycota.

Plastid trnL intron sequences resulted in 51.81% of Streptophyta assignments,

followed by 42.17% of Viridiplantae Unassigned sequences and 6% of

Chlorophyta sequences. Overall, 14.38% of sequences reached the genus level

assignment. Among Streptophyta, 63.42% remained Unassigned.

For each marker gene, the distribution of taxa among sites can be consulted

into the respective resume figures, in particular considering Metazoa for V9

18S, Fungi for ITS2 and Streptophyta for trnL (Figure 2-3-4, section “c”). In

addition, tables with the complete taxonomy assignments are available in

Supplementary S9.
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Figure 5. Percentage of sequences assigned for each marker region considering a 7 rank NCBI

taxonomy (complete data are available in Supplementary S4).

To explore the results of the taxonomic assignment for each rank, we provide in

Figure 5 a report with the percentage of sequences assigned for each marker

region (complete data are available in Supplementary S4). In detail, we

explored for each marker gene the taxa reached during the taxonomy

assignment. The trnL intron was the only marker for which we assigned the

100% of the sequences obtained, in particular to Viridiplantae Kingdom. In

addition, at least the 10% of ESVs with a complete Phylum and Order rank

lacked Class information. Considering the number of species assigned, trnL

was the marker which performed the worst.

From ITS2, we obtained the best results considering the taxonomy assignment,

since the number of assigned ranks gradually decreased without gaps between

one rank and another. Issues were found considering the Kingdom level: the

Kingdom rank was not specified for taxa belonging to the Unicellular

Eukaryotes group and a lower percentage of sequences were assigned if we

consider the Kingdom rank instead of the Phylum.
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V9 18S had the same issues of ITS2 considering Kingdom and Phylum ranks,

as sequences belonging to V9 18S were also assigned to the Unicellular

Eukaryotes group. For this reason, issues related to Class information were

observed. In general, it was the marker with the highest percentage of

Unassigned sequences.

A summarization of assignments was represented with sunburst plots in Figure

2-3-4 section “b”, accompanied by the results related to the ranks assigned in

Figure 5. In addition, for each marker we added interactive sunburst charts

obtained via ExTaxsI tool to explore dynamically the taxonomy obtained

(Supplementary S7; Agostinetto et al., 2021; Agostinetto et al., 2020).

3.3.3 Biodiversity analysis

For each genetic marker, a biodiversity analysis was performed considering the

type of sample, the sampling site and the macro category (air: S; rivers: R;

internal canals: P; external canals: C).

The data analysed consisted not only of the ESVs calculated with the

bioinformatics analysis, but also filtering the assigned ESVs considering

different taxonomic levels, based on the results of the taxonomy assignments.

In particular, for V9 18S we considered sequences assigned only to the

Metazoa group and also sequences assigned to eukaryotic taxa, overall. For

ITS2, sequences assigned to Fungi were considered. For trnL, Streptophyta

sequences and sequences excluding Chlorophyta were considered. Finally, A

PERMANOVA test was used to assess statistical significance.

Considering alpha diversity analysis, a significant difference was observed

between air and water samples of V9 18S and trnL. In addition, considering V9

18S, a difference was found between macro category samples of each group

considered, in particular between C and P. For ITS2 sequences a difference

was detected among macro category sites (C-P and C-R). A stronger difference

was detected considering Fungi sequences, also regarding water samples sites

(C2-GU; GU-P1; GU-P2). For trnL, all the three types of analysis (only ESVs,
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Streptophyta sequences and sequences excluding Chlorophyta) showed a

difference among water and air samples. For details about alpha diversity

results, see Supplementary S5a.

Considering beta diversity, sample medium (air and water), sampling sites and

macro category were analysed. A significant difference was observed between

the two different sampling media, for all the markers tested, both considering

ESVs and taxa detected. In addition, significant differences were found

comparing both macro category and sampling sites, both considering ESVs

and taxa detected. For details about PERMANOVA results, see Supplementary

Material S5b.

Overall, PCoA plots (Figure 2-3-4, section “d”) showed a significant

structuration (model results are reported in Supplementary Materials S5) based

on sampling site (different sampling point in EXPO2015 area), with the Internal

sites (P1-P2) clustering close to each other, as well as the External sites

(C1-C2) and Rivers (OL-GU). The same significant structure is also visible

considering the taxonomic information, for which we reported in the main

figures the results about Metazoa group (18S V9), Fungi (ITS2) and

Streptophyta (trnL) (Figure 2-3-4 section “d”).

3.3.4 Machine learning analysis

DNA metabarcoding monitoring studies often aim to differentiate samples

based on their biodiversity composition, a task that can be efficiently

performed by Supervised Learning methods (Knights et al., 2011, Bokulich et

al, 2018). We used a supervised machine learning approach to evaluate the

potential of DNA metabarcoding data to classify sampling sites and macro

category outcomes, considering the different types of information that we

obtained based on the taxonomy assignments results (see the section above).
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Figure 6. SL results of V9 18S marker: results were reported considering a) sequences per sites

and considering the division of sites into macro categories of b) sequences, c) Eukaryota, d)

Metazoa. The Figure shows a scatter plot of true vs. predicted values for regression results.

For all the three markers analysed, an improvement of classification was seen

passing from sites to macro category metadata prediction. This trend is visible

in Figure 6 for V9 18S and in Supplementary S10 for trnL and IT2.

Considering V9 18S marker, the set of ESVs was able to discriminate between

water sampling sites with high precision and recalling, difficulties remained in

the classification of different air sites, but without bias in defining the macro

category air site (S). Considering the use of data filtered, an optimal result was

obtained considering Eukaryota sequences (Figure 6c), obtaining a higher

recall. Using only ESVs (Figure 6b) or Metazoa sequences (Figure 6d), the
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macro category site prediction resulted in a lower performance, in particular

regarding Rivers and Air sites prediction for sequences, and P and Air sites for

Metazoa.

The trend described above was quite similar also for the other two marker

regions. In detail, ITS2 sequences and Fungi worked well considering macro

category prediction; predicting sampling sites using ESVs, instead, did not

obtain optimal results, in particular for sites belonging to Guisa and Olona and

P canals. Air sites, instead, were not correctly classified considering the

division into the two sites, but the macro category was maintained (for details,

see Supplementary S10).

Overall, machine learning analysis considering trnL markers reached good

results, both considering ESVs and data filtered by taxa. Macro category

prediction was reached. Streptophyta filtering showed difficulties in

distinguishing River and Air sites. In general, the recalling was high (for details,

see Supplementary S10).

Considering the information obtained by the three marker region sequencing,

we decided to integrate all the data obtained from the ESVs calculated and run

the machine learning classification considering all the ESVs obtained from the

nine runs. The results are shown in Figure 6, representing the scatter plots

obtained considering sampling sites and macro category prediction (Fig. 6b

and c). In addition, the heatmap with the ESVs selected was represented,

accompanied by the taxonomy at the Order rank (Fig. 6a). Also in this case, it is

possible to observe a clear distinction between water and air medium type, a

clear discrimination of canal water sites (C and P).
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Figure 7. a) scatter plot representing ESVs with the additional information of marker and taxonomy

(in particular: pink for V9 18S, green for trnL and blue for ITS2); scatter plot representing ESVs both

using macro category sites (b) and sampling sites (c).

3.4 Discussion

In this study we have tested the reliability of DNA metabarcoding in capturing

the environmental effects on eukaryotic diversity of a mega-event. Based on
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the data obtained from the study, we tried to answer the following questions: is

it possible to use DNA metabarcoding to track biodiversity communities in a

mega-event context? Which are the pros and cons of using multi-marker

strategies, considering the absence of common procedures and the issues

related to the taxonomy assignment? Lastly, can machine learning procedures

help in predicting sample origin, overcoming the taxonomic gap?

According to Bayraktarov et al. 2019, a common trend in most eDNA studies is

the accumulation of data following the widespread opinion that "the more data

there is, the better" (van Dorst et al., 2014). Nevertheless, this statement may

be true only in specific contexts, since it disproportionately prioritizes data

quantity over data quality. The value of data collected depends on how

effective they are in achieving the solution to the key problem addressed (e.g.,

improving environmental management, Field et al., 2005, Miller et al., 2019).

Currently, DNA metabarcoding is the only reliable solution to collect large scale

biodiversity data, as stated in the review paper of Cordier et al. 2021. The first

question is if it is possible to use it as a routine tool for environmental

biomonitoring. Several scientific studies demonstrated the feasibility of

applying DNA metabarcoding in monitoring strategies, implementing both wet

lab and bioinformatic pipelines in their workflows (Zafeiropoulos et al., 2020).

In this study, the event EXPO2015 provided an ideal system to test the

effectiveness of DNA metabarcoding as a biomonitoring tool to check

biodiversity variations in a critical ecosystem. The area is located in a highly

urbanized environment, close to large suburban parks. These areas are proved

to be an important reservoir of biodiversity, especially larger parks that could

contribute more to the conservation of biodiversity (Cornelis and Hermy, 2004;

McKinney, 2008; Beninde et al. 2015). Preserving these habitats is a

fundamental point in the conservation of biodiversity, especially in a fragile

context such as the urban one. For these reasons, validating eDNA

metabarcoding tools is pivotal to monitor environments exposed to changes

that could burden their equilibrium.
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Going back to our first question, the capacity of our tool to detect variations is

really powerful. Our results clearly showed a difference among the different

sites (Figure 2-3-4, section “c” and “d”), but not a strong difference among the

most distant sampling dates, considering both types of medium

(Supplementary S6).

At the same time, the data collected by air and water were very different, both

considering ESVs and taxa detected, as we can state by statistical analysis

performed for all the markers investigated (see Supplementary S5 for details).

Further, it was possible to individuate a fingerprint that made P sites different

from C sites and rivers sites. In particular, PCoA analysis (Figure 2-3-4, section

“d”) showed a clusterization among sites belonging to these three categories,

identifying patterns of biodiversity that characterized distinct regions of the

EXPO area, supported also by statistical tests and obtained considering both

ESVs and taxonomic assignment (Figure 2-3-4, section “d”).

The approach addressed above opens our discussion to another question: is

DNA metabarcoding a valid taxonomic identification tool? Several research

papers demonstrated its application in diet characterization, water

assessments, pollen identification and many other relevant fields (Porter et al.,

2018; Deiner et al., 2017; Zhang et al., 2020). The taxonomic assignment step

is still a delicate phase, as there are still no well-defined standards for each

marker used in metabarcoding studies (Porter et al., 2018). In particular, the

choice of the marker is still a compromise between two main aspects: i) the

length of the DNA region that can be sequenced and, as a consequence, the

genetic information that can be obtained; ii) the reference databases

completeness and accuracy.

The first mostly regards the fact that any kind of matrix has its own

characteristic. The key aspect to keep in mind is, usually, the DNA degradation,

that can affect the reliability of the study. Shorter fragments are more likely to

be detected, considering for example diets characterization or water
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assessments, where DNA is exposed to multiple degrading sources, like

chemical compounds (Deiner et al., 2017) and temperature (Krehenwinkel et al.,

2018). At the same time, the marker chosen will influence taxa detection

(Deiner et al., 2017): a gap of references recorded versus the known

biodiversity exists for several relevant taxa, impeding a complete and correct

taxonomic assignment (Cordier et al., 2021; Weigand et al., 2019; McGee et al.,

2019). If this aspect is not considered, important biases could be included into

experiments, leading to misinterpretations and excluding crucial information.

The markers that we evaluated as suitable for our experiments are a

compromise among all these issues. Selecting short length markers (of about

150-200 base pairs), such as 18S V9 and the intron region of trnL, allowed us

to collect a great number of information about eukaryotic and plant groups,

even considering the highly degraded matrices we collected in our sampling

campaign. Similarly, the longer region of the internal transcribed spacer ITS2

represented a good trade-off between low length variation and universality of

primer sites (Nilsson et al., 2018), thus providing an overview of the Fungi

Kingdom. In order to completely explore the potential of DNA metabarcoding,

we decided to show not only the taxonomic assignments of ESVs, but also to

include the analyses evaluating the ability of each marker to reach the taxa

group for which they are recommended (Porter et al., 2018; Deiner et al., 2017),

considering also researches already conducted (e.g. for trnL Quemere et al.,

2013; 18S V9 Fernández-Álvarez et al. 2018; ITS2 Banchi et al., 2018).

Sunburst plots of taxonomic distribution of taxa detected are shown in Figure

2-3-4 section “b”. The category of Metazoa, Plants and Fungi was extracted to

show the balance of variations across sites in Figure 2-3-4 section “c”.

Some critical issues that emerged in our study are still at the center of the

current scientific debate.

Despite the huge amount of data obtained from the sampling campaign,

taxonomy assignment remains a difficult task. In general, the most of V9 18S

sequences were assigned to unicellular eukaryotes taxa, followed by Fungi,
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Viridiplantae and Metazoa, with a 20% of Unassigned sequences. Considering

ITS2 sequences, the majority were assigned to Fungi, followed by Unicellular

Eukaryotes taxa, with 11% of Unassigned sequences. Lastly, plastid trnL intron

sequences resulted in Streptophyta assignments, with no Unassigned

sequences. Overall, exploring taxonomy results helped us to consider

sequencing outputs from different points of view. In particular, interactive

sunburst in Supplementary S7 were created to enable a correct comprehension

of the data obtained. Basically, there are issues with the standardization of

taxonomy through different taxonomic groups (in particular Unicellular

Eukaryotes and Viridiplantae). Knowing the difficulties of markers to reach

genus or species ranks, it happened to investigate diversity considering for

example families or orders gaps into the description of taxonomy that will not

allow the data to be interpreted correctly.

For this reason, we decided to evaluate both biodiversity and machine learning

analysis considering not only the taxa of interest, but also the genetic

information that we obtained. In general, the analysis was coherent considering

all the markers used, also subgrouping the ESVs based on particular taxa. But

for the sake of interpretability and standardization, we believe that a focus on

ESVs without the taxonomic assignment must be taken into account for a

reliable and correct analysis of DNA metabarcoding data.

Overall, PCoA (Figure 2-3-4 section “d”) clearly showed a significant

structuration based on sampling site, with Internal sites (P1-P2) cluster closely

as External sites (C1-C2) and Rivers (OL-GU), demonstrating that ESVs

composition could be the key to identify site types among the EXPO area

(rivers, sites C and sites P), overcoming the gap in reference databases.

Aside from the spatial information, we explored the effect of the sampling

month (see Supplementary S6 for details). We think that the effect of Site was

predominant, though samples belonging to the same site and period of

sampling were much more similar, suggesting the presence of a fingerprint due

to both spatial and period. As the difficulties related to collecting samples

during the EXPO event, we cannot ascertain the importance of sampling time.
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But, considering several previous works related to temporal biomonitoring with

DNA metabarcoding, we do not exclude time effects (Deiner et al., 2017;

Pawlowski et al., 2018; Ruppert et al., 2019; Porter et al., 2018).

In general, our strategy suggests that the molecular information collected

during the sample campaign was universally different in the sampling area and

this trend was observed for all the three genetic surveys that we performed.

The additional analysis carried out considering only the taxonomy

demonstrated the strength of information collected.

Our last evaluation took into account if the DNA metabarcoding can be applied

for predictive purpose. For this task, we used a machine learning approach

both considering ESVs and taxa assigned.

We confirmed the biodiversity analysis conducted for all the markers. In

addition, results indicated the use of sequences can be predictive, passing the

taxonomy assignment that can be misleading. At the same time, a filter based

on specific kingdoms suggests a peculiar structure for each taxa explored.

Regarding this point, we are perfectly aware of the complexity of the

communities that we analysed, but the recall is high, considering the vicinity of

sampling sites and the medium of investigation.

In general, results obtained from machine learning classification showed three

main aspects: the importance of sequences as a baseline pattern information

of sites, the strength of the patterns considering also different taxonomic levels

of analysis and, lastly, the optimization of the classification considering the

macro site category. The use of taxonomy filtering for machine learning

demonstrated the role of molecular fingerprinting, suggesting that the method

can also be applied without reaching specific taxa information. This fact

suggests two things: the first one is that DNA metabarcoding with middle-short

region can be used for finding molecular fingerprinting in large-analysis and, in

some cases, also taxonomy fingerprinting can be obtained and exploit

(unfortunately, as we mentioned above, this really depends on the molecular

marker used and the reference databases used for the assignment) (Schloss
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and Westcott, 2011). The second, instead, demonstrated the difficulties in

using DNA metabarcoding in reaching species-level information.

We think that the complexity should not be underestimated. Considering the

data that we showed and the results related, the level of investigation may be

very different, allowing researchers to answer several questions. The type of

matrices, sampling method and marker used may lead to a real selection of

communities under studies.

From the end of EXPO2015, no alien species were detected by state control

agencies (ARPA) next to the exposition area. From the biomonitoring point of

view, it is clear that advances in collecting data and contributing to public

repositories could make a difference in interpreting these results. However,

large amounts of biodiversity data may be useful for the generation of

hypotheses (Bayraktarov et al., 2019). In the last few years, an increase of

publications of ‘DNA metabarcoding’ in monitoring, biosurveillance and species

invasions was observed (Piper et al., 2019). Though the advent of new

sequencing technologies bring us the possibility to collect longer reads,

therefore more genetic information, DNA metabarcoding with mid-short marker

genes is still an important methodology in biodiversity assessment (Piper et al.,

2019). From the biomonitoring point view, traces of ESVs could be informative

alone, in order to study patterns and without focusing on specific taxonomic

groups, for which it is possible to implement taxa-specific markers (Elbrecht et

al., 2019) or classic monitoring strategies (Cordier et al., 2021).

3.5 Conclusions

DNA metabarcoding is nowadays widely used for very different purposes.

Several research papers demonstrated its applicability into the monitoring of

biodiversity. In this research paper, we wanted to highlight not only the power,

but also the limitations that have to be considered in order to manage the data
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and to give a conscious interpretation of data generated. As a genomic

approach, limitations can be due to both markers chosen and the molecular

information registered into the reference databases. Despite these issues, we

demonstrated that the power of DNA metabarcoding is related not only to the

molecular fingerprint obtained with sequencing ESVs, but also to the ability to

collect a large amount of data, achieving a sort of freeze frame of the

environment under study.

For these reasons, bioinformatics and post-processing analysis is still a pivotal

process. Mining information from genomic data is still an important task, not

without difficulties, and in this context collecting information and submitting

datasets to reference databases will only ameliorate the comprehension of

biodiversity all around the world, implementing both our current knowledge and

future research. Considering the trends related to open science and our ability

to sequence and produce data, data mining approaches (e.g. machine learning)

will become more and more important, helping in disentangling high amounts

of data, detecting biodiversity patterns and integrating additional information

that give an edge to future studies.

3.6 Data availability statement

The dataset generated for this study was submitted to the EBI metagenomics

portal (https://www.ebi.ac.uk/metagenomics/; Study ID: PRJEB45249).

Supplementary Materials are available through the main preprint paper

(https://doi.org/10.1101/2022.01.02.474438).
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4. ExTaxsI: an exploration tool of biodiversity molecular data

4.1 Introduction

In recent years, studies investigating biodiversity at large scale have started to

create and incorporate molecular data. In particular, the spread of

metagenomic studies (e.g. metabarcoding) have contributed to an exponential

increase in genomic data availability. Thanks to this large amount of new

information it is possible to expand our knowledge and enhance our scientific

investigation capacity in many fields of research (Porter et al., 2018), ranging

from macro-ecology and ecosystem monitoring, to food safety control,

forensics applications and microbiome identification (Ruppert et al., 2019;

Porter et al., 2018; Deiner et al., 2017).

Different groups of researchers emphasized the wealth of information collected

in biological and molecular databases, with the aim to improve usefulness and

reusability of data (Hampton et al., 2017; Whine et al, 2013; Michener et al,

2012). Therefore, building experimental designs that consider the totality of the

data present in such databases could certainly increase the efficiency of these

studies, and lead to more robust results (Mitchell et al., 2020; Almeida et al.,

2019).

Biodiversity data retrieval and exploration has become a big data issue, forcing

researchers to use Information Technologies (IT) tools to manage those data. In

particular, the interpretation of results derived from metagenomic experiments,

requiring computational pipelines and IT infrastructures that improve over time,

is strongly linked to the availability of pre-existing data stored in online

databases (e.g. ENA www.ebi.ac.uk/ena; and NCBI

https://www.ncbi.nlm.nih.gov/).
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In this context, data visualization represents an effective strategy not only to

aggregate and present the research results, but also to guide advanced

investigations (Kaur et al. 2018; Hardisty et al., 2013). At this moment,

reference databases, where molecular and taxonomic data are friendly

explorable and punctually updated, exist only for few molecular markers, such

as SILVA for 16S and 18S genes (Pruesse et al., 2007), BOLD for animals and

plants (Ratnasingham et al., 2007) or UNITE for Fungi domain (Nilsson et al.,

2019). However, these data resources are not representative of all the genomic

and taxonomic diversity collected to date.

On the other hand, although GenBank still resumes the majority of genetic data

and their related metadata currently available (Keller et al., 2020; Ankenbrand et

a., 2015; Benson et al., 2008), such information is not always easy to access

without specific bioinformatics skills, which is a limiting factor to a large

audience of scientists.

With the aim to help biologists to improve their experimental designs and to

promote data exploration and exploitation, we have developed a tool, ExTaxsI

(Exploring Taxonomy Information), able to facilitate the molecular data

integration with its associated metadata, eventually retrieved from

heterogeneous sources. Moreover, its ease of use interface will help

researchers and practitioners in the visualization phase. ExTaxsI can both query

the NCBI Nucleotide database for molecular data and accept data from an

external source, exploiting the standard taxonomy notation.

To our knowledge, tools that provide user-friendly instruments to download and

explore taxonomic data from NCBI have not been implemented yet. There are a

few works to cite that perform parts of this task, focusing on slightly different

goals. For example, NCBImeta (Eaton, 2020) allows querying data from NCBI

databases via command line scripts, favoring in particular the exploration of

metadata associated with records investigated, but it does not integrate scripts

or libraries to promote data visualization and exploration, neither integrates

NCBI taxonomy database data (Federhen et al., 2012). On the other hand,
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TaxonTableTools (Macher et al., 2021) integrates workflows to analyse data

produced by the user, focusing on metabarcoding common approaches.

ExTaxsI, instead, implements NCBI data retrieval, in order to create formatted

databases for taxonomy assignment and explore the results from a taxonomic

point of view. In addition, the command line script is user-friendly, as it is built

to make the tool interactive, using questions and explanations to help users

use.

ExTaxsI, in detail, is linked to NCBI taxonomy database (Federhen et al., 2012)

and ETE toolkit (Huerta et a., 2016), in order to produce standard formats

readable by most common software that deal with taxonomic information

(Bolyen et al., 2019; Rognes et a., 2016; Bengtsson et al., 2015; Mahe et al.,

2015; Camacho et al., 2009; Wang et al., 2007), such as QIIME2 platform

(Bolyen et al., 2019). The tool is applicable to any molecular marker, gene name

or taxonomic group data, where it is also possible to create non-standard

marker genes database usable in metagenomic/metabarcoding taxonomic

assignment tools (Bolyen et al., 2019). In addition, thanks to the integration of

the NCBI query tool (NCBI, 2014), ExTaxsI can reorganize personal datasets in

a standardized format in order to easily describe taxonomic variability and

geographic provenance of records.

4.2 ExTaxsI at work

ExTaxsI is a bioinformatic open-source tool aimed to elaborate and visualize

molecular and taxonomic information via a simple interface. It is developed in

Python 3.7 both as a command line and as a python library. The command line

scripts are available through a user-friendly console, as they are built to make

the tool interactive, helping the users via questions and explanations. Instead,

the Python module was built for IT advanced users to facilitate its integration

into specific analytical pipelines (e.g., genomics, metagenomics).
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As illustrated in Fig. 1, this open-source instrument starting from a list of taxa or

gene name/s, allows to i) search for taxonomic, genetic and biogeographical

data through NCBI databases, ii) create a local and formatted nucleotide

sequences (FASTA format) dataset and iii) their related taxonomy classification

paths/datasets, thanks to the integration of NCBI taxonomy data, iv) generate

genetic markers lists coming from different studies, and finally v) produce

interactive plots starting from NCBI query search results or directly from offline

taxonomic files, including representative graphs for the exploration of taxonomy

and refinement of biogeographical data by creating geographical maps with the

locations of the species analyzed (Figure 1).
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Figure 1. ExTaxsI pipeline: module 1 (orange) searches and creates files and databases; module 2

(green) processes georeferenced or taxonomic data for the creation of graphs and plots; module 3

(blue) converts taxonomic data into NCBI taxonomy ID (TaxID) and vice versa.

It is important to note that ExTaxsI outputs are compatible with other tools for

taxonomic assignment purposes (Rognes et al., 2016; Bengtsson et al., 2015;

Mahe et al., 2015; Camacho et al., 2009; Wang et al., 2007), such as the

QIIME2 platform (Bolyen et al., 2019).

The communication with NCBI server is mediated by the Entrez module (NCBI,

2014), implemented in Biopython library (Cock et al., 2009), which allows to

search, download and parse query results. To help NCBI interaction, when the

requests are less than 2500, the search key is composed by a single query,

otherwise the query will be splitted in groups of 2500 generating temporary

files, which are then merged into a single output file at the end of the process.

Regarding taxonomy handling, the ETE toolkit was exploited (Huerta et al.,

2016). In particular, ETE allows to create and maintain a local taxonomy

database up to date by extrapolating the 6 main ranks (phylum, class, order,

family, genus, and species).

If the organism is poorly described or it is an unknown species, the NCBI

taxonomy ID (i.e. TaxID) of its ancestor (known as parent TaxID) in ETE

taxonomic tree is then used and converted into its scientific correspondent

name. It is important to underline that all queries are carried out locally,

avoiding unnecessary online response delays.

Finally, the extracted data are visualized through scatter plot and interactive

sunburst chart for the taxonomy exploration, and world map plot for the

geographic metadata plotting.
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4.3 Use cases

Being a taxonomy focused data exploration tool, we designed three possible

scenarios of increasing complexity, to challenge it with increasing taxonomic

variability and dimension of accession entries.

The first scenario hypothesizes a query to explore data with i) low taxonomic

variability and a high number of expected entries (1 species, more than 300,000

entries). The second scenario provides ii) a high taxonomic variability and a

large expected number of entries (about 500 species, more than 300,000

entries). The third and more complex scenario explores a iii) complete case

study with taxonomic input intersected by molecular data.

Considering the case studies of the first two scenarios, we focused on taxa of

interest in marine fisheries: 1) the cod fish species Gadus morhua, for which a

worldwide economic interest exists, and 2) its taxonomic group at order level

the Gadiformes order which supports long-standing commercial fisheries and

aquaculture. These two case studies evaluate the capacity to explore data and

to fill the geographic distribution of a species, prospecting also the available

genes information to perform a genetic survey (e.g. in a potential DNA

metabarcoding study).

With the third use case, we aimed at demonstrating the flexibility of ExTaxsI in

different contexts: a genetic exploration of the available data in NCBI

associated to SARS-CoV-2 virus a very recent topic that involved many

research groups, leading to huge amounts of data collected and deposited in

public sources (Blomberg et al., 2020). A large-scale exploration of data related

to this topic can potentially improve the reliability of results and can provide

valuable evidence to inform decisions on public health protection, both now

and most importantly in the future.
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4.3.1 Insights into two taxonomic groups of commercial interest

The first scenario is the case of Gadus morhua species (Gadidae; Gadiformes),

also called Atlantic cod. In detail, Gadus morhua is a large, cold-adapted

teleost fish that supports long-standing commercial fisheries and aquaculture

(Jorde et al., 2018; Knudsen et al., 2019; Star et al., 2011;Kurlansky et al.,

2006; Johansen et a., 2009).

ExTaxsI retrieved a total of 367,455 accessions (18 of June, 2021) using the

Taxonomy ID through the following query: “txid8049[ORGN]” (where 8049 is the

Gadus morhua TaxID). Only 54,061 entries showed a ‘gene’ tag investigable by

ExTaxsI. As a unique species, we decided to represent the results obtained

from a gene survey (Figure 2) and the world map plot (Figure 3).

Figure 2. Gene distribution of accessions with complete ‘gene’ tag among Gadus morhua and

Gadiformes taxon.

Regarding gene distribution, the most abundant gene is CYTB cytochrome b

(with 985 accessions), followed by COI cytochrome c oxidase subunit I (455)

and ND2 (311). These results are in line with those obtained by Knudsen and
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colleagues (2019), where they personally developed specific primers for CYTB

amplification, as it is a widely used marker in fish molecular characterization.

The remaining most abundant genes are the other ND portions and

Cytochrome Oxidase fragments (COIII and COII), belonging to the

mitochondrial genome. These results show the increased effort in sequencing

"standard" barcoding markers, while moderately sequencing larger portions of

mitochondrial genomes. The remaining genes in the retrieved list and their

relative accession frequency distribution (see the complete list in Additional file

1) demonstrate that many entries of the genome were investigated.

Regarding the geographic area, the Gadidae family has a circumpolar

distribution, comprising species occurring principally in northern and cool seas

(Jorde et al., 2018). Further, as reported by Jorde and colleagues (2018), in

Norway we can recognize four distinct stocks of the Atlantic cod: (1) the

oceanic Northeast Arctic cod, (2) coastal cod north of 62°N, (3) coastal cod

south of 62°N, and (4) a North Sea/Skagerrak stock, the most densely

populated region in Norway (Jorde et al., 2018). This geographic distribution is

partly visible via the metadata extracted by ExTaxsI, as shown in the world map

plot in Figure 3b (Additional file 2).

Via ExTaxsI, this Order was explored using the following query

“txid8043[ORGN]”, yielding 389,640 accessions (where 8043 is the specific

Gadiformes TaxID; 21 of June, 2021), where 61,249 showed the ‘gene’ tag. As

a group spread on different taxonomic levels, both taxonomy and gene lists

were created. In detail, in order to explore taxa distribution and accessions

abundances across the entire order, the tool created scatter plot and sunburst

plot HTML outputs. In Figure 3a genera across families are documented in

scatter plot modality, while sunburst plot and entirely interactive plots are

available in the Supplementary Material section (Additional files 3 and 4).
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Figure 3. 3a) Scatter plot of Gadiformes accessions to represent sequence abundances among

families; 3b) World map plot of Gadus morhua distribution considering geographic metadata

extracted from records.

As shown in Figure 3a, Gadidae is the most abundant family, considering the

number of accessions available. In detail, a total of 381,460 accessions

populate this group, followed by Merlucciidae (3,252) and Macrouridae (1,673)

families. These results are in accordance with the literature, as Gadidae family
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is a primary marine, bottom-dwelling family of fishes in the Order of Gadiformes

with great commercial power (Nelson et al., 2016; Knudsen et al., 2019).

Further, considering the scatter plot in Additional file 3, the interactive

visualization allowed to visualize the taxonomy distribution among the

accessions available, changing dynamically the rank to explore. This feature

permitted to disclose that the genus Gadus is the most abundant of the entire

dataset, highlighting that Gadus morhua species corresponded to 94.3% of the

accessions in the entire dataset. This is an expected result, as Gadus morhua is

documented to be a key species both in the North Atlantic ecosystem and

commercial fisheries, with an increasing aquaculture production in several

countries (Jorde et a., 2018).

Considering the genetic information reached by ExTaxsI, a total of 28,850

unique genes were found from the 61,249 completely tagged accessions. A

classification of the most ten abundant genes is reported in Figure 2. As shown

in the figure, at the first position we can find the COI gene, a widely used

marker gene in metabarcoding projects (Knudsen et al., 2019), dealing mainly

with animals detection (Porter et al., 2018), followed by CYTB and ND2 (Porter

et al., 2018).

Concluding with these two case studies, the tool was able to accurately portrait

the state of the art of the genetic information available in NCBI. Comparing the

most abundant genes found among the records, it is possible to see a thin

discrepancy between the two taxa explored (Figure 2), highlighting the

disclosures that the survey can report. In general, the detection of

mitochondrial genes, coding for COI and CYTB, is in accordance with the

reliability of these DNA barcodes, principally used in the discrimination of

animal species (Hebert et a., 2003; Hellber et al., 2014; Mueller et al., 2015). To

date, considering the subjects of our case studies, diverse studies have used

COI or CYTB barcoding to identify seafood products and explore broad
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patterns in fish mislabelling (Fernandes et al., 2017; Cline et al., 2012; Di et al,

2013; Miller et al., 2010; Rasmussen et al., 2008; Yancy et al., 2008).

Regarding the extraction of geographic metadata from NCBI records, the

completeness and collection of data can improve drastically the biogeographic

and ecological research, allowing not only to explore sampling areas, but also

to improve phylogeography investigations, biodiversity monitoring and

environmental genomics strategies (Porter et al., 2018; Cordier et al., 2020).

The unbalance between the number of records and the number of genes

explorable is in some cases due to the incompleteness of the ‘gene’ tag. In the

very recent years genome sequences started to play a key role in public

repositories, making sequences available for sharing and reuse. Submission

process can be challenging and errors can affect the availability of the data. For

this reason, there is a wide interest to integrate standardized procedures into

the annotation process (Geib et al., 2018). The promotion of FAIR principles

and best practices can certainly avoid the error propagation in sequence

databases (Wilkinson et al., 2016; Pirovano et al., 2017), making the data fully

explorable in the future.

4.3.2 Explore biodiversity data in pandemic outbreak: the case of

SARS-CoV-2

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an

enveloped, positive-sense, single-stranded RNA virus that causes coronavirus

disease 2019 (COVID-19).

RNA and structural proteins are included into virus particles mediating host cell

invasion. After cell infection, RNA encodes structural proteins that make up

virus particles. Virus assembly, transcription, replication and host control are

mediated by nonstructural proteins (Lu et al., 2020).

The pandemic linked to SARS-CoV-2 highlighted hidden virus reservoirs in wild

animals and their potential to occasionally spillover into human populations (Lu
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et al., 2020). A detailed understanding of this process is crucial to prevent

future spillover events. As reported in the seminal paper of Andersen and

colleagues (2020) (Andersen et al., 2020), the risk of future re-emergence

events increases if SARS-CoV-2 pre-adapted in another animal species.

SARS-CoV-2 probably originated from Rhinolophus affinis bats, with pangolin

(Manis javanica) as intermediate host (Andersen et al., 2020). Recently, other

animal species were supposed to be possible intermediate hosts in between

bats and humans (Liu et al., 2020; Zhou and Shi, 2021).

To date, ACE2 (Angiotensin‐converting enzyme 2), the receptor which binds to

the receptor‐binding domain (RBD) of SARS-CoV-2 S protein (Letko et al.,

2020), is reported as crucial in host invasion.
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Figure 4. 4a) Scatter plot of ACE2 accessions representing sequence abundances among taxa at

order level; 4b) SARS‐CoV‐2 representation, from Kim et al., 2020; 4c) gene distribution across

accessions of SARS‐CoV‐2 data.

To test our approach and explore the genetic information available in NCBI, we

decided to extrapolate information of the ACE2 gene from the Vertebrata

taxonomic group, with the following query: “txid7742[ORGN] AND ACE2[gene]”

(where 7742 is the specific Vertebrata TaxID). The results show that the ACE2

gene is widely distributed throughout Vertebrata: we obtained a total of 1,391

accessions (20 of June, 2021), distributed mainly among the Mammalian Class,

with a high representation in Actinopteri and Aves groups (Figure 4a; Additional

files 5 and 6 for an interactive exploration). In detail, Chiroptera, Primates and

Rodentia are the most represented, with 126, 125 and 81 accessions

respectively. Supporting the exploitation of molecular data survey, Luan and

colleague (2020) (Luan et al., 2020) analyzed the affinity to S protein of the 20

key amino acid residues in ACE2 from mammal, bird, turtle, and snake, and

suggested that Bovidae and Cricetidae should be included in the screening of

intermediate hosts for \textit{SARS-CoV-2}. In addition, thanks to the analysis

of spike glycoprotein sequences from different animals, the study of

Dabravolski and Kavalionak (2020) suggested that the human SARS‐CoV‐2

could also come from yak as an intermediate host.

ExTaxsI has the advantage to provide the complete list of taxa, allowing an

exhaustive exploratory research. It allows downloading all the sequences

available for the query input, generating in turn the input for downstream

analyses, such as the calculation of sequence similarities among different taxa.

Further, investigating shared features with other species can have important

implications for understanding potential natural reservoirs, zoonotic

transmission, and human-to-animal transmission. Noteworthy, the survey can

give researchers an instrument to download specific data related to Covid-19

disease, with a user-friendly approach, to explore interactively the data,
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including biodiversity related information, and to design informed scientific

experiments.

Lastly, we explored the data available for SARS‐CoV‐2 (Figure 4) using the

following query “txid2697049” (where 2697049 is the specific Severe Acute

Respiratory Syndrome Coronavirus 2 TaxID). We obtained a total of 773,293

accessions (28 of June, 2021). The top ten genes retrieved are shown in Figure

4c.

In particular, the genes most represented genes are: S (59,506), the spike or

surface glycoprotein fragment, ORF1AB (58,872), followed by M (58,867),

ORF3A (58,867) and N fragments (58,865), the nucleocapsid protein. These

results are in line with the recently published scientific data highlighting the

functional aspects of viral proteins. Considering the ORF1AB, several studies

demonstrated its pivotal role among coronaviruses (Wan et al., 2020), providing

a clinical target to break down SARS‐CoV‐2 infection (Khailany et al., 2020).

Regarding the first and fifth results, the nucleocapsid phosphoprotein is

involved in packaging the RNA into virus particles and protects the viral

genome. For these reasons, it has been suggested as an antiviral drug target

(Wu et al., 2020; Gordon et al., 2020). The spike glycoprotein, instead, is

located outside the virus particle, mediating its attachment and promoting the

entry into the host cell. It also gives viruses their crown-like appearance. In the

very last research, the S protein was found as an important target for

diagnostic antigen-based tests, antibody therapies and vaccine development

(Salvatori et al., 2020; Pillay et al., 2020).

The entry of SARS‐CoV‐2 is mediated by further processes, for example the

activity of the protease TMPRSS2 (Hoffmann et al, 2020). Also in this case, the

use of ExTaxsI can unearth similar proteases in possible intermediate hosts,

revealing new insights into the mechanism of infection.
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As also documented in Khailany et al., 2020 (Khailany et al., 2020), the

emergent and huge amounts of data collected in the last few months

necessitates a large scale exploration of the data. The rapid increment of data

releases may give some important insights about SARS‐CoV‐2 behaviour in its

host species, helping in improving not only our knowledge, but also models to

predict COVID-19 outbreaks and new drug targets.

4.4 Conclusions and future perspectives

ExTaxsI provides an easy-to-use standalone tool able to interact with NCBI

databases and personal datasets, offering instruments to standardize

taxonomy information and visualize vast amounts of data distributed on

different taxonomic levels. It also provides interactive visualization plots, easily

shareable through HTML formats.

The user-oriented interrogation of NCBI databases may help researchers

involved in environmental genomics fields, from phylogeographic studies to

DNA metabarcoding surveys, and also in projects related to human health, as

demonstrated with the SARS‐CoV‐2 case study.

With this work, we hope to meet the needs of a broad group of researchers,

providing an instrument easy to install either on common laptops or on high

performance servers and directly connected with NCBI databases. In parallel to

the command-line tool, a python library containing all ExTaxsI functions has

been implemented, favoring a direct incorporation of such functions into data

analysis and exploration pipelines.

In addition, as data volume is increasing over time and NCBI databases still

have a few constraints regarding the queries results dimension and their

retrieval time required, an automatic management of large queries will be
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organized in future releases. Finally, we will also consider further data

visualization strategies and additional metadata (e.g. GBIF country information)

to enhance data interpretation and to provide comprehensive sets of relevant

scientific-focused information.

In our opinion, ExTaxsI data management ability with its visual interactive

exploration can really improve the experimental design phase and the

awareness of the information available, facilitating data examination and

sharing.

4.5 Implementation

ExTaxsI is a bioinformatic tool aimed to explore, elaborate and visualize

molecular and taxonomic information via a simple user interface without

specific bioinformatic or programming skills. The tool can be run, via command

line interface, where the user is guided by the appropriate documentation of

each script, avoiding the implementation of ad hoc python code.

ExTaxsI is developed in three separate modules, which can be used either

interconnected as workflow or independent according to the user needs. The

main modules are listed as follows: i) Database creation, ii) Visualization and iii)

Taxonomy ID converter.

ExTaxsI is also available as a python library that can be installed through pip

(package installer for Python), containing the same functions and parameters

as those of the command-line tool. A detailed description of each module is

provided below.

4.5.1 Database creation module

The module ‘Database’ allows the user to create multi FASTA files composed of

nucleotide sequences, taxonomic lists, genes names and their related
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accessions, starting from either a single or a batch query mode using csv/tsv

files (Figure 1). After indicating the type of input, the tool asks, with the

exception of the file accession, whether the user wants to integrate the query

with one or more gene name/s (or other details). This step allows to restrict the

research in NCBI if needed.

In general, the output formats are i) a multi-FASTA file (widely used format for

molecular sequences) and ii) text file in TSV format, with two columns

composed by the accessions code followed by the taxonomy path of each

accession at the six main levels separated by semicolons: phylum, class, order,

family, genus and species.

When requested by the user, the output file of genes names is provided in TSV

format consisting of a table with two columns, the first is the list of genes and

the other is the frequency values of the respective genes found in the retrieved

records.

The tool also provides a summary table containing the most popular genes

from a list of taxid, accessions or organisms. In addition, it is possible to create

a barplot with the top ten of the summary table, downloadable as a PNG file.

4.5.2 Visualization module

The module ‘Visualization’ allows the user to create interactive plots, starting

from the Database module output or from external sources (e.g., Additional files

3, 4 and 5) containing taxonomic lists. Before producing the plots, a dialogue

box will ask the user to choose a filter value on the data based on the

frequency. If the chosen filter value is 0, the tool processes all the data.

Otherwise, all the taxonomic units that have not reached the minimum value

are inserted into an additional text file, specifically created with a name

containing the filter used.

The available plots generated by ExTaxsI are i) scatter plot (Additional file 3), ii)

sunburst plot (Additional file 4) and iii) world map plot (Additional file 2). All
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figures created by the Visualization module can be downloaded as HTML

format files.

In detail, scatter plot uses taxonomy as input to produce a graph that indicates

the quantity of each individual taxonomic unit; the interactive plot enables the

user to i) choose the taxonomic level to be displayed using the buttons located

under the graph and ii) hover over points to show details, such as the number

of records within taxa, names of selected taxa and name of the higher taxon

from which they derives. The plot allows also to compare more data on

mouse-over, highlight an area of interest with zoom function and view of a

specific group or remove specific taxa from the graph.

Sunburst plot, instead, from a taxonomy input creates an expansion pie that

allows exploring taxonomy by clicking on the taxonomic group of interest and

showing the underlying taxa within a new sunburst plot. Also in this case,

hovering over points shows the number of records within taxa.

Regarding world map plot, the initial input is processed in order to obtain

geographic data. The tool exploits the ‘Country’ metadata stored in the NCBI

records to produce a map indicating the position of each entry. In this step,

based on the type of geographic data obtained, ExTaxsI divides results into two

different arrays: i) a specific array of coordinates (if the coordinates are present

in the record) or ii) a specific array of country names (if the coordinates are not

present in the record). It is also possible to add external sources data to the

map. In each created map, the coordinates are indicated by green X signs,

while countries by red circles. Thinking of multiple taxa plotting, each symbol

can have a legend that summarizes the data downloaded with the same

country name or coordinates description. Further, it is possible to see both

genes and counts available among the represented accessions.

4.5.3 Taxonomy ID converter module

This module allows to convert TaxID to the main six ranks taxonomy and vice

versa (phylum, class, order, family, genus and species); it can convert single

manual inputs or multiple inputs from a tsv/csv file containing  a list of Tax IDs.
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4.6 Availability of source code and requirements

No specific system requirements are needed for the installation of ExTaxsI,

however for the correct functioning of the software we suggest a minimum of

4GB of RAM.

To successfully run ExTaxsI, the following python libraries must be installed:

Biopython (Cock et al., 2009), NumPy (Harris et al., 2020array), SciPy (Virtanen

et al., 2020), Matplotlib (Hunter et al., 2007), ipython (Perez et al., 2007),

Pandas (Mckinney et al., 2011), SymPy (https://www.sympy.org/en/index.html),

nose (https://nose.readthedocs.io/en/latest/), genutils

(https://pypi.org/project/genutils/), requests (Chandra et al., 2015) and Plotly

(https://plotly.com/), in addition to Plotly-Orca and ETE toolkit (Huerta et al.,

2016ete). To install all the dependencies compatible versions, we provide a

requirement list at the GitHub page https://github.com/qLSLab/ExTaxsI, with a

detailed guideline to set directly a conda environment.

The Python library extaxsi is available both in the Github page:

(https://github.com/qLSLab/ExTaxsI/tree/master/library) and in PyPI repository

(https://pypi.org/project/extaxsi/).

General information:

● Project name: ExTaxsI

● Project home page: https://github.com/qLSLab/extaxsi

● Operating system(s): Platform independent

● Programming language: Python

● License: GNU GPL version 3

● bio.tools ID (https://bio.tools/): extaxsi

● Research Resource Identification Initiative ID (RRID)

(https://scicrunch.org/): SCR_021846
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4.7 Availability of supporting data and materials

Supplementary data are available at Supporting data for "ExTaxsI: an

exploration tool of biodiversity molecular data" GigaScience Database.

http://dx.doi.org/10.5524/100959 (Agostinetto et al., 2021). In particular,

supplementary files are the following:

● Additional file 1: Gene list in TSV format obtained through ExTaxsI for

the species Gadus morhua. Gene counts were extracted by 367,455

accessions (query: “txid8049[ORGN]”; 18 of June, 2021).

● Additional file 2: World map plot in HTML format created via ExTaxsI

extracting the values of 'Country' tag contained into 367,4553

accessions of Gadus morhua (query: “txid8049[ORGN]”; 18 of June,

2021). Coordinates are indicated by green X signs, while States by red

circles.

● Additional file 3: Scatterplot in HTML format created via ExTaxsI

extracting the taxonomy of 389,640 accessions of Gadiformes Order

(txid8043[ORGN]”; 21 of June, 2021).

● Additional file 4: Sunburst plot in HTML format created via ExTaxsI

extracting the taxonomy of 388,603 accessions of Gadiformes Order

(txid8043[ORGN]”; 21 of June, 2021).

● Additional file 5: Scatterplot in HTML format created via ExTaxsI

extracting the taxonomy related to 1,391 accessions of ACE2 genes

belonging to the Vertebrata taxonomic group (query: “txid7742[ORGN]

AND ACE2[gene]”; 20 of June, 2021).

● Additional file 6: Sunburst plot in HTML format created via ExTaxsI

extracting the taxonomy related to 1,391 accessions of ACE2 genes

belonging to the Vertebrata taxonomic group (query: “txid7742[ORGN]

AND ACE2[gene]”; 20 of June, 2021).
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4.8 List of abbreviations

SILVA: High quality ribosomal RNA databases;

BOLD: Barcode of Life Data System;

UNITE: Database and sequence management environment centered on the

eukaryotic nuclear ribosomal ITS region;

ETE: Environment for Tree Exploration;

QIIME2: Quantitative Insights Into Microbial Ecology;

FASTA: Text-based format for representing either nucleotide sequences or

peptide sequences;

TAXID: Taxonomy ID;

HTML: Hyper-Text Markup Language;

COI: Cytochrome Oxidase I;

COI: Cytochrome Oxidase II;

COIII: Cytochrome Oxidase III;

CYTB: Cytochrome B;

ND2: NADH dehydrogenase 2;

ACE2: Angiotensin‐Converting enzyme 2;

RBD: Receptor‐Binding Domain;

PNG: Portable Network Graphics;

NCBI: National Center for Biotechnology Information;

ENA: European Nucleotide Archive
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5. Extending association rule mining to microbiome pattern

analysis: tools and guidelines to support real applications

5.1 Introduction

Studying microbiome patterns is now a hot-topic in different fields of

application (Kyrpides et al., 2016; Wood-Charlson et al., 2020). From ecology to

medicine, microbiomes are undoubtedly a cornerstone of research,

acknowledged as being key participants in all ecosystems, including the

human one (Layeghifard et al., 2017). In recent years, DNA sequencing

strategies have become one of the main sources for studying microbial

communities (Wood-Charlson, 2020). Further, 16S rRNA metabarcoding is

currently the preferential method to obtain great amounts of information in a

time and cost effective manner (Wood-Charlson, 2020), becoming one of the

primary sources of data regarding microbiome studies (Bokulich, 2020; Knight,

2018; Gonzales et al., 2018; Mitchell et al., 2020).

In this context, data mining approaches seem to be newfangled solutions for

disclosuring and understanding microbial ecosystems (Galimberti et al., 2021;

Wood-Charlson, 2020; Ghannam et al., 2021). Spanning from classification and

signature extraction to interaction and trait associations (Pasolli et al., 2016; Qu

et al., 2019), data mining strategies can identify hidden patterns that may help

to predict biological functions (Noor, 2019; Thomposon, 2019). Investigating

patterns and exploring their role in functional and predictive aspects are now

pivotal to proxy the knowledge of microbial associations, both disentangling

interactions and niche specialization (Faust et al., 2012; Ma et al., 2020).

Considering the size and complexity of High-Throughput Sequencing (HTS) 16S

rRNA metabarcoding data, interpretation and summarization are not

straightforward (Naulaerts et al., 2015) and, for this reason, pattern mining

strategies have become essential for researchers to disentangle the high

amount of information (Ghannam et al., 2021; Wood-Charlson et al., 2020;
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Kyrpides et al., 2016).

Recently, association rule mining (ARM) emerged as a promising technique to

study microbiome patterns (Tandon et al., 2016; Naulaerts et al., 2015).

Specifically, Tandon and colleagues (2015) have demonstrated the potentials of

this technique on two microbiome datasets, in particular the HMP dataset

(Turnbaugh et al., 2007) and two prebiotic studies (Xiao et al., 2014; Kato et al.,

2014).

From the classic application on market basket problems (Agrawal et al., 1993),

association rule mining started to be applied to answer a wide range of

biological questions. From annotation tasks (Manda et al., 2020; Manda et al.,

2013; Manda et al., 2012) to protein interaction networks (Koyuturk et al.,

2006), ARM was applied to a wide range of research fields, including genetics

(Ong, 2020; Karpinets et al., 2012; Alves, 2010; Carmona-Saez et al., 2007),

molecular biology (Boutorh et al., 2016; Agapito et al., 2015; Naulaerts et al.,

2016), and biochemical disciplines (Zhou et al., 2013; Naulaerts et al., 2016).

Noticeably, the expression ‘association rule mining' comprehends two main

phases: i) frequent itemset mining, the extraction of patterns intended as

elements often co-occur together in a dataset (Agrawal et al., 1993), and ii) rule

calculation, to identify strong association between patterns previously

extracted (Agrawal et al., 1993).

Despite the apparent simplicity of use, large datasets can produce high

numbers of patterns, making their extraction difficult (Karpinets et al., 2012;

Naulaerts et al. 2015; Agrawal et al., 1993; Han et al., 2004). Beside several

algorithms have been developed to better capture reliable patterns, as for

example Eclat (Agrawal et al., 1996), FP-Growth (Han et al., 2004) or Apriori

(Agrawal et al., 1993), avoiding uninformative or spurious information is still a

current issue (Naulaerts, 2015). Interesting measures such as support

(frequency of a pattern) or pattern length are pivotal to control the generation

and the evaluation of patterns discovered (Karpinets et al., 2012; Naulaerts et

al. 2015; Agrawal et al., 1993). Still, a few issues exist in setting these

parameters (Naulaerts et al., 2015). Considering the support, setting a low
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value leads to a high amount of patterns, difficult to explore and visualize. At

the same time, setting a high support value can be detrimental for finding rare

but informative patterns. Over and above, researchers try to identify metrics

that can be used to pinpoint patterns of interest (and so called “interest

measures”). In detail, several metrics have been implemented (Omiecinski et

al., 2003; Franceschini, 2012; Tan, 2002; Tang et al., 2012), as for example lift or

maximal entropy (Hussein et al., 2015; Tatti et al., 2010). Nevertheless,

extracting effective information is not an easy task as the definition of

interestingness is strictly associated with the biological question and the

research field under study (Karpinets et al., 2012; Naulaerts et al., 2015;

Koyutürk et al., 2006). Considering the rule calculation phase, issues regarding

the evaluation of reliable rules remain (Karpinets et al., 2012; Naulaerts et al.,

2015). In general, taking into account previous works, the most widely used

parameters to evaluate both patterns and rules are support and confidence,

where confidence is a measure that describes the strength of the association

between the two elements of the rule (Nauleaerts et al., 2015).

Recently, different works related to pattern mining applied to microbiome

studies were published, such as MITRE (Bogart et al., 2019), MANIEA

framework (Liu et al., 2019) and the work of Tandon and colleagues (2016).

Nevertheless, as also highlighted by the work of Faust (2021), applying such an

algorithm still has its limitations and, despite the efforts of recent works,

guidelines for microbiome data applications have not been completely defined

(Faust et al., 2021; Naulaerts et al., 2015). Different libraries have been

implemented, such as pyfim (Muino and Borgelt et al., 2014), mlxtend

(Raschka, 2018) and arules (Hahsler et al., 2011). A few frameworks have been

recently developed and applied on real case studies (Liu et al., 2019; Tandon et

al., 2016). However, tests to establish specific best practices for 16S rRNA

metabarcoding data do not exist.

Apart from the availability of tools, the application of pattern mining to study

microbiome patterns must consider the intrinsic biological aspect of

microbiome data (Gloor et al., 2017; Balint et al., 2016). Beside the issues
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related to species abundances that should be filtered to obtain a solid input

dataset, also metadata composition and taxonomy level should be considered.

Further, microbiome matrices can be large and complex: composed of

thousands of taxa and hundreds of samples (Faust et al., 2021; Ghannam et al.,

2021), microbiome data can affect pattern mining approaches, sometimes

obliging to set high but improper interest measures. This last point is crucial if

we consider that 16S rRNA metabarcoding data can describe putative

ecological properties and sparse microbial associations (Faust et al., 2021).

Given these premises, our work wants to shed light on the strengths and

weaknesses of pattern mining strategy into the study of microbial patterns, in

particular from 16S rRNA microbiome datasets. In detail, we show pitfalls of

ARM applied on real case studies, highlighting issues related to the type of

input and the use of metadata. Then, we identify the key steps that must be

considered to apply ARM consciously on 16S rRNA microbiome data.

Moreover, to facilitate the integration of ARM technique into microbiome

pipeline, we developed microFIM (microbial Frequent Itemset Mining), a

versatile user-friendly and open source Python tool that promotes the use of

ARM integrating common microbiome practices, such as taxa tables and

distance matrix visualizations. Besides the conventional parameters, microFIM

implements interest measures to remove spurious information. Moreover, it

merges the results of ARM analysis with the typical microbiome outputs, aiming

at creating a bridge between microbial ecology research and ARM technique.

5.2 Materials and methods

This section comprehends two main paragraphs: i) description of microFIM

(microbial Frequent Itemset Mining) tool to promote microbiome pattern

exploration with two simulated dataset and ii) microFIM analysis on real case

microbiome datasets to highlight ARM potentials and caveats. microFIM was

developed on the basis of Frequent Itemset Mining (Naulaerts et al.. 2015), in
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which patterns of elements that co-occur can be extracted from a transactional

dataset, typically (Naulaerts et al.. 2015). A pattern (or itemset) is called

frequent if its support value within the dataset is greater than a given minimal

support threshold. For an overview of the method and its translation in terms of

bacterial composition instead of elements, please see Fig. 1. A complete

description of the approach with formalized expression can be found in the

works of Naulaerts et al.. 2015, Goethals, 2005 and Tan et al., 2016 (Chapter 6).

Figure 1. Graphical overview of Frequent Itemset Mining (A) and Association Rule mining (B)

approach integrated with elements related to microbiome analysis.

5.2.1 microFIM implementation

To promote and integrate the use of ARM in microbiome studies, we developed

microFIM (microbial Frequent Itemset Mining), a versatile open-source

user-friendly tool implemented in Python (v. > 3;

https://github.com/qLSLab/microFim).

microFIM receives as input the taxa table and the metadata file used during the

microbiome bioinformatic analysis. In particular, a taxa table is composed of

rows and columns representing the taxa and their abundances for each

sample. It derives from the conversion of the BIOM file into a CSV or TSV file

137



(https://biom-format.org/). In general, considering the well-established QIIME2

microbiome platform (https://qiime2.org/; Bolyen et al., 2019), complete

frameworks and scripts to analyse and obtain taxa tables are implemented.

To promote the usage to a wider group of researchers, the tool can be used

both via Python functions and running the pre-settled scripts, which allow

interactivity through the command-line, avoiding coding implementations. To

favour easy integration in Python scripting and future implementation of

additional functions and metrics, Python functions were divided into thematic

sections.

microFIM is composed by 6 main steps: i) filtering taxa table with metadata, ii)

converting taxa table into a transactional database to be read by ARM

algorithms, iii) extract microbiome patterns, iv) calculate additional interest

measures to evaluate the patterns extracted, v) create the pattern table (a taxa

table improved with patterns, presence-absence information among samples

and interest measures) and vi) visualization of results.

Template files are provided to run microFIM scripts. Considering interest

measures, we integrated support, pattern length and all-confidence metrics,

which generates ‘hyperclique patterns’ (Agrawal et al., 1993; Xiong et al., 2006;

Tan et al., 2016; Omiecinski et al., 2003). Considering a pattern ‘X’ composed

of different items, all-confidence is calculated as the ratio between the support

of ‘X’ and the highest support retrieved from the elements of the pattern ‘X’. For

example, a pattern X is composed of 3 elements that, considering the entire

dataset, have the following support threshold: 0.3, 0.6 and 0.8. Overall, the

pattern X has a support of 0.3. All-confidence will be calculated as the ratio

between the support of X - 0.3 - and the higher support within X - 0.8, resulting

in 0.37. All-confidence, in this way, is defined as the smallest confidence of all

rules which can be produced from a pattern, i.e., all rules produced from a

pattern will have a confidence greater or equal to its all-confidence value (Tan

et al., 2016; Omiecinski et al., 2003). In detail, confidence is an indication of

how often a rule has been found to be true, so it is considered as a measure of

rule reliability (Hashler, 2005; Hashler, 2011; Naulaerts, 2015).
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In order to show the usage and the potentials of microFIM, we tested the tool

on simulated matrices (available in Supplementary Table 1 and 2) and on real

case studies. In particular, the cases selected are: i) the ECAM dataset,

(Bokulich et al., 2016), ii) the vaginal microbiome dataset of Ravel et al. (2011)

and iii) the Montassier dataset (Montassier et al., 2016). Details about the

application of microFIM on real case studies are described in the next sections.

Parameters used to run microFIM on simulated matrices are the following: 0.3

as minimum support threshold, a minimum of 2 elements and a maximum of 10

to create patterns.

In the Results section, a complete scheme of the tool is provided. microFIM is

mainly based on four Python libraries: fim (Muino and Borgelt et al., 2014),

Pandas (McKinney et al., 2010), Numpy (Harris et al., 2020), and plotly

(https://plotly.com/). It is available as a conda environment

(https://docs.anaconda.com/) and all the details about tutorials and installation

are available in our Github repository (https://github.com/qLSLab/microFim).

Python notebooks and an example of microFIM usage via scripting are also

reported in the repository. In general, beside the focus of this work, microFIM

may potentially be used for a wide range of applications. As the primary

resource input consists in a matrix describing the presence-absence of an

element (rows) in a dataset (columns, representing samples), fields of study in

which it can be applied may be various, also merely consider the analysis of

OTU (Operational Taxonomic Unit) or ESV (Exact Sequence Variants) instead of

taxa (Schloss and Westcott, 2011; Callahan et al., 2017) of 16S rRNA

metabarcoding data.

5.2.2 Real case studies analysis

To show the caveats and potentials of association rule mining, we used

microFIM on three real case studies the ECAM dataset (Early Childhood

Antibiotics and the Microbiome; Bokulich et al., 2016), the vaginal microbiome

case study of Ravel et al. (2011) and Montassier case study (Montassier et al.,

2016). Different input types were selected based on taxonomy level and
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metadata composition. In detail, the ECAM dataset collects a total of 875

samples, describing the gut microbiome of the first 2 years of life of 43 infants.

Presence-absence tables were created taking account of the taxonomic rank.

In particular, we used: i) the taxa table obtained directly from QIIME2 datasets

(Bolyen et al., 2019) in which only taxa assigned to genus level, with a relative

abundance > 0.1 % in more than 15% of samples, are considered (Input 1 -

data are available in Supplementary Table 3); ii) family table obtained from

collapsing the previous Input 1 via QIIME2 plugins

(https://github.com/qiime2/q2-taxa; Input 2 - Supplementary Table 4); iii) a taxa

table consisting only of taxa with complete taxonomy at the genus level (Input

3 - Supplementary Table 5). Metadata as type of delivery and antibiotic

exposition were considered to evaluate patterns extraction.

Considering the vaginal microbiome dataset (Ravel et al., 2011), we obtained

from MLRepo repository (Vangay et al., 2019) the taxa table obtained via the

MLRepo pipeline (Vangay et al., 2019). The dataset collects 388 samples,

investigating the vaginal microbiome of 396 asymptomatic North American

women. Additional presence-absence tables were created taking account of

the taxonomic rank, in particular from the original dataset obtained from

MLRepo, also family and genus levels were considered. Low and high nugent

score values (a scoring system for vaginal swabs to diagnose bacterial

vaginosis) were considered for the evaluation regarding metadata filtering.

Finally, the dataset of Montassier et al. (2016) was included. The dataset

collects 28 samples from patients with non-Hodgkin lymphoma undergoing

allogeneic hematopoietic stem cell transplantation (HSCT) in order to identify

microbes that predict the risk of BSI (bloodstream infection). OTU table and

taxa table obtained with MLRepo pipeline were selected (Vangay et al., 2019).

For the ECAM and Ravel et al. (2011) datasets, minimum support threshold of

0.2, minimum length of 3 and a maximum length of 15 elements were used.

Montassier et al. (2016) datasets were analysed considering a minimum

support of 0.9, a minimum length of 5 and a maximum length of 10. After
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pattern extraction, interest measures as support, pattern length and

all-confidence were calculated (Xiong et al., 2006; Tan et al., 2016; Omiecinski

et al., 2003). Distributions of number of patterns, length and support were

evaluated considering both ARM analysis and interest measures filtering. A

minimum of 0.5 and 0.8 of all-confidence were used to evaluate hypercliques

patterns (Xiong et al., 2006; Tan et al., 2016; Omiecinski et al., 2003).

Considering metadata filtering, pattern extraction was performed with the

previous settings. A minimum of 0.8 of all-confidence was used to evaluate

hypercliques patterns (Xiong et al., 2006; Tan et al., 2016; Omiecinski et al.,

2003).

Visualizations were created with plotly and pandas Python libraries. Both

datasets, results and metadata files are available in Supplementary Materials.

5.3 Results

5.3.1 microFIM tool: extending ARM to microbiome pattern analysis

Association rule mining demonstrates its useful properties in different contexts

(Tandon et al., 2016; Naulaerts et al., 2015). To promote the use of ARM in the

microbial community field, we implemented microFIM, a versatile open-source

project developed in Python and freely available at

https://github.com/qLSLab/microFim.
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Figure 2. Scheme of microFIM framework. 1) Filtering taxa table; 2) Conversion of taxa table into

transactional file; 3) Calculate patterns with template file filled with minimum support threshold,

minimum and maximum length; 4) Adding of interest measures as support, pattern length and

all-confidence (Xiong et al., 2006; Omiecinski et al., 2003); 5) Generating pattern table, composed

by presence-absence of patterns within samples and interest measures; 6) Generating

visualizations.

In this section, we explain the framework of usage, the main steps of pattern

extraction and filtering and insights of visualizations available. In addition, two

main examples are reported, in order to show the workflow of the tool. In Fig. 2

a scheme of microFIM framework is reported. In particular, microbiome data

(taxa table) can be filtered (step 1) and then converted into a transactional

dataset (step 2), in order to be read as input by association rule mining

algorithm. Subsequently, patterns can be generated setting parameters via a

template file to be filled (tutorials and templates are available at

https://github.com/qLSLab/microFim) (step 3). In detail, minimum support
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threshold, minimum and maximum length of patterns must be specified.

Pattern extraction was implemented via pyfim library (Muino and Borgelt et al.,

2014). At this stage, the default algorithm used is Eclat (Muino and Borgelt et

al., 2014), but other algorithms are available within the pyfim library (Apriori or

FP-Growth; Muino and Borgelt et al., 2014). The set of interest measures

initially calculated are ‘support’ and ‘pattern length’ (which describes the

number of elements belonging to a pattern). Further, other interest measures

are added (step 4) and can be used to filter patterns. In microFIM

implementation, all-confidence interest measure was included, in order to help

remove spurious information (Xiong et al., 2006; Omiecinski et al., 2003; Tan et

al., 2016). As described in Materials and Method section, all-confidence can be

used to set the smallest confidence of all rules that can be produced from a

pattern, i.e., all rules produced from the pattern will have a confidence greater

or equal to its all-confidence value, creating the basis for rule reliability

exploration at the pattern level (Xiong et al., 2006; Omiecinski et al., 2003; Tan

et al., 2016; Hashler, 2005; Hashler, 2011; Naulaerts, 2015).

The main result of this step is the creation of the pattern table (step 5).

Conceptually similar to the microbiome taxa table, the pattern table described

the presence of a pattern for each sample, integrating the interest measures

previously calculated (step 4). microFIM visualizations comprehend

distributions of patterns considering support, length and interest measure

values. To describe the relationships between samples considering patterns

found, a Jaccard matrix can be also obtained and visualized (step 6).
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Figure 3. a) Graphical representation of Table 1; b) Graphical representation of Table 2; c) Pattern

table generated from Table 1; d) Pattern table generated from Table 2; e) Jaccard heatmap plot of

Table 1; f) Jaccard heatmap plot of Table 2.

To better show the potentials of microFIM, we included a demonstrative
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analysis of both simulated data and data belonging to real case studies (see

the next Results section). In particular, as also described in the Materials and

Methods, simulated data are composed of two main matrices with a dimension

of 10 samples and 5 taxa. In Fig. 3a and 3b a graphical representation of the

simulated matrices is shown. Through microFIM, ARM analysis was performed.

The final output of the analysis is the pattern table, represented in Fig. 3c and

3d and available in Supplementary Tables 6 and 7, respectively. The pattern

table integrates the interest measures of length, support and all-confidence

and, as it is a dataframe, patterns can be filtered and further visualized with

Python libraries or other data analysis tools easily. In addition, results of the

pattern table can be visualized with microFIM through the following plots:

scatter plot, bar chart and heatmap. In Fig. 3e and 3f, heatmaps built on

Jaccard distance results are shown.

In detail, Dataset 1 (Fig. 3a and Supplementary Table 1) is a full-presence

dataset. This means that ARM can potentially generate all the combinations of

patterns from a length of 1 to a length of 5. All patterns will have a 1.0 of

support and a 1.0 of all-confidence, as they are all associated with each other.

In this case, considering only the pattern composed by Taxa1, Taxa2, Taxa3,

Taxa4 and Taxa5, with a length equal to 5 and a support equal to 1.0, can be

sufficient to resume the information within the dataset. In addition, these

settings can be adjusted directly by running the algorithm, avoiding the

creation of uninformative patterns and reducing calculation time. In Fig. 3e,

Jaccard heatmap shows also the 100% similarity between Dataset 1 samples.

The complete pattern list obtained by Dataset 1 is available in Supplementary

Table 6.

Considering Dataset 2 (Fig. 3b and Supplementary Table 2), instead, a different

composition can be observed. In particular, Taxa1, Taxa2 and Taxa3 co-occur

in samples 1, 2 and 3. In addition, Taxa3 is present in all the samples (Fig. 3b).

As we ran an ARM analysis considering a minimum length of 2, the pattern

composed by only Taxa3 was not detected. However, the pattern built by

Taxa1, Taxa2 and Taxa3 was detected, with a pattern length of 3 and a support
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of 0.3. Focus the attention on Taxa1-Taxa2 pattern, the value of all-confidence

is equal to 1.0, meaning that there is a strong association between them and

the rules generated from this pattern will have a minimum confidence of 1.0.

Details about patterns extracted from Dataset 2 are available in Supplementary

Table 7.

5.3.2 microFIM applied on real case studies

Association rule mining is a data mining technique widely used in very different

research fields and applications. This chapter is dedicated to the use of ARM,

in particular the pattern mining step, on real microbiome case studies . In

detail, three case studies was chosen to demonstrate the potentials of ARM

and microFIM: the ECAM dataset (Bokulich et al., 2016), the vaginal

microbiome case study of Ravel et al. (2011) and the Montassier case study

(Montassier et al., 2016) (see Material and Methods section for details).

Considering the potential of ARM to reconstruct patterns, we focused the

analysis on three main aspects: the type of input used, the filter of patterns

whose elements are highly related to each other (also called hyperclique

patterns; Xiong et al., 2006) and the use of metadata to filter and apply ARM.

To evaluate how ARM can be used on microbiome data, different types of

inputs were considered. In particular, for the ECAM case study, we used: i) the

ECAM taxa table obtained directly from QIIME2 datasets (Bolyen et al., 2019) in

which only taxa assigned to genus level, with a relative abundance > 0.1 % in

more than 15% of samples, are considered (Input 1 - data are available in

Supplementary File 3); ii) family table obtained from collapsing the original one

via QIIME2 plugins (Input 2 - Supplementary File 4); iii)a taxa table consisting

only of taxa with complete taxonomy at the genus level (Input 3 -

Supplementary File 5).

Minimum support thresholds of 0.2, minimum length of 3 and maximum length

of 15 were considered. In Fig. 4 we show the results about the number of

patterns retrieved considering three levels of analysis: output after the analysis

previously described, patterns filtered with a minimum all-confidence of 0.5 and
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patterns filtered with a minimum all-confidence of 0.8. In Fig. 4, for each filter,

the distribution of support values and pattern length are provided.

In detail, Input 1 (Supplementary File 3) generated a total of 1,844,696 patterns.

The mean support achieved by the patterns generated is 0.3 and a median of

0.2, with a minimum value of 0.2 and maximum value of 0.7. Regarding the

pattern length, the mean value is 8.45, while the median is 8, with a minimum

value of 3 and maximum value of 16.

Family table (Input 2 - Supplementary File 5) generated a total of 23,997

patterns. The mean support achieved by the patterns generated is 0.28 and a

median of 0.24, with a minimum value of 0.2 and maximum value of 0.85.

Regarding the pattern length, the mean value is 6.38, while the median is 6,

with a minimum value of 3 and maximum value of 12.

Regarding genus table (Input 3 - Supplementary File 6), ARM analysis

generated a total of 25,250 patterns. The mean support achieved by the

patterns generated is 0.25 and a median of 0.23, with a minimum value of 0.2

and maximum value of 0.85. Regarding the pattern length, the mean value is

6.14, while the median is 6, with a minimum value of 3 and maximum value of

11.

All the results are available in Supplementary Table 6, 7 and 8, respectively, and

can be visualized in Fig. 4.

In order to consider the putative informative patterns, a framework involving

hypercliques patterns (Xiong et al., 2006) was applied. In particular, the

all-confidence metric was considered at 0.5 and 0.8 thresholds for all the

datasets analysed (Input 1, 2 and 3).

Regarding the Input 1 (Supplementary File 3), a total of 2,213 patterns were

extracted considering an all-confidence of 0.5, while no patterns were obtained

with 0.8 threshold. First all-confidence threshold resulted in patterns with a

mean and a median support value was 0.43, with a minimum value of 0.21 and

a maximum of 0.72. Pattern length consisted in a mean of 3.9, a median length

of 4, with minimum and maximum of 3 and 7, respectively.
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Figure 4. For Input 1, 2 and 3, here number of patterns obtained (1a, 2a, 3a), distribution of support

values (1b, 2b, 3b) and distribution of pattern lengths (1c, 2c, 3c) are shown. In particular, three

levels of analysis are shown: no filters applied to patterns, a minimum all-confidence of 0.5 and a

minimum all-confidence of 0.8.

Regarding the Input 2 (Supplementary File 4), a total of 2,081 patterns were

extracted considering an all-confidence of 0.5. A mean support of 0.53 and a

median support was 0.51 were observed, with a minimum value of 0.21 and a

maximum of 0.85. Pattern length consisted of a mean of 4.98, a median length
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of 5, with minimum and maximum of 3 and 9, respectively. A total of 78

patterns were extracted considering an all-confidence of 0.8. A mean support

of 0.72 and a median support was 0.73 were observed, with a minimum value

of 0.51 and a maximum of 0.85. Pattern length consisted of a mean of 3.23, a

median length of 3, with minimum and maximum of 3 and 4, respectively.

Regarding the Input 3 (Supplementary File 5), instead, a total of 25,250 patterns

were extracted considering an all-confidence of 0.5, while no patterns were

obtained with 0.8 threshold. First all-confidence threshold resulted in patterns

with a mean of 0.25 and a median support value of 0.23, with a minimum value

of 0.2 and a maximum of 0.72. Pattern length consisted in a mean of 6.14, a

median length of 6, with minimum and maximum of 3 and 11, respectively.

For demonstrative purposes, a Jaccard heatmap considering samples

belonging to the first sampling date of the ECAM dataset of the Input 3 table

(Supplementary Table 5) was generated, in order to show a potential use of

Jaccard distance on pattern analysis (available in Supplementary Figure 11). In

general, results are summarized in Fig. 4 and tables are available in

Supplementary Table 8, 9 and 10, respectively.

Overall, Input 1 obtained the maximum number of patterns, achieving

1,844,696 patterns. The support distribution has a great range of values for all

the three datasets, from 0.2 to almost 0.8. Also length achieved a wide range of

values, considering patterns from 3 elements length to almost 16. In general, a

great reduction in the number of patterns was observed considering the

all-confidence filtering (Fig. 4 - sections 1a, 2a and 3a). In parallel, this filter

resulted in higher support values (Fig. 4 - sections 1b, 2b and 3b) and lower

pattern length (Fig. 4 section 1c, 2c and 3c).

Metadata filtering was applied to the genus ECAM dataset, considering two

category types: antibiotic administration and type of delivery. The complete

results of the pattern analysis are available in Supplementary Table 12. Overall,

a total of 141,480 patterns were obtained from the data belonging antibiotic

administration, while the opposite obtained a total of 8,223. Vaginal delivery

resulted in a total of 45,412 patterns, while cesarean delivery samples resulted
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in 10,288. Also in this case, the usage of all-confidence filtering drastically

reduced the number of explorable patterns, achieving the following results: 2

and 1 patterns for antibiotic administration and vaginal delivery, respectively,

and 0 patterns for the opposites.

microFIM was also applied to other two real case studies: vaginal microbiome

obtained by the work of Ravel et al. (2011) and the dataset of Montassier case

study (Montassier et al., 2016). Considering the first one, different input types

and metadata filtering were used: in particular, the dataset was obtained from

the MLRepo collection (Vangay et al., 2019). Then, family level and genus level

dataset were obtained. Dataset can be identified as Input 4 (dataset available in

MLRepo; Vangay et al., 2019 - Supplementary File 15a), Input 5 (dataset at the

family level - Supplementary File 15b) and Input 6 (dataset at the genus level -

Supplementary File 15c). As for the ECAM analysis, results are presented

considering the three main input types and the number of distribution of

patterns are evaluated as the previous scheme.

In particular, Input 4 (Supplementary File 15a) generated a total of 83 patterns.

The mean support achieved by the patterns generated is 0.2 and a median of

0.2, with a minimum value of 0.2 and maximum value of 0.5. Regarding the

pattern length, the mean value is 3.1, while the median is 3, with a minimum

value of 3 and maximum value of 4. Family table (Input 5 - Supplementary File

15b) generated a total of 226 patterns. The mean support achieved by the

patterns generated is 0.25 and a median of 0.23, with a minimum value of 0.2

and maximum value of 0.55. Regarding the pattern length, the mean value is

3.68, while the median is 4, with a minimum value of 3 and maximum value of

6. Regarding genus table (Input 6 - Supplementary File 15c), ARM analysis

generated a total of 225 patterns. The mean support achieved by the patterns

generated is 0.25 and a median of 0.24, with a minimum value of 0.2 and

maximum value of 0.46. Regarding the pattern length, the mean value is 3.77,

while the median is 4, with a minimum value of 3 and maximum value of 6. All

the results are available in Supplementary Table d, e and f, respectively, and
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can be consulted in Supplementary Table 14.

Minimum all-confidence of 0.5 and 0.8 were considered to evaluate

hypercliques patterns.

Regarding the Input 4 (Supplementary File 15a), 16 patterns were extracted

considering an all-confidence of 0.5, while no patterns were obtained with 0.8

threshold. First all-confidence threshold resulted in patterns with a mean of

0.23 and a median support value was 0.21, with a minimum value of 0.2 and a

maximum of 0.48. Pattern length consisted in a mean of 3.06, a median length

of 3, with minimum and maximum of 3 and 4, respectively.

Input 5 (Supplementary File 15b) obtained 2 patterns were extracted

considering an all-confidence of 0.5, while no patterns were obtained with 0.8

threshold. The 0.5 all-confidence threshold resulted in patterns with 0.46 and

0.55 support values. Both patterns have a length of 3.

Regarding the Input 6 (Supplementary File 15c), 15 patterns were extracted

considering an all-confidence of 0.5, while no patterns were obtained with 0.8

threshold. First all-confidence threshold resulted in patterns with a mean and a

median support value was 0.3, with a minimum value of 0.25 and a maximum

of 0.38. Pattern length consisted in a mean of 3.13, a median length of 3, with

minimum and maximum of 3 and 4, respectively.

Overall, the support distribution has a low range of values for all the three input

files, from 0.2 to almost 0.5. Length is around 3 elements per pattern. In

general, also in this case a great reduction in the number of patterns was

observed considering the all-confidence filtering (Supplementary Table 14).

Metadata filtering was applied to the dataset, considering the nugent category,

low and high levels. The complete results of the pattern analysis are available in

Supplementary Table 14. Overall, a total of 15,836 patterns were obtained from

the data belonging to high nugent score value, while the opposite obtained a

total of 21. The usage of all-confidence filtering drastically reduced the number

of explorable patterns, obtaining 16 patterns for high nugent score value.

Finally, Montassier dataset (Montassier et al., 2016) was tested considering the

OTU table and taxa table obtained from MLRepo pipeline (Vangay et al., 2019).

151



A minimum support threshold of 0.9 was considered, with a minimum length of

5 and a maximum length of 10. A total of 446 patterns were obtained

considering the taxa table, while 9 patterns were obtained considering the OTU

table.

Distributions of pattern and length are similar between the two input files. In

particular, a mean support of 0.93 and a mean length of 5.1 (5-6) were

detected.

5.4 Discussion

Pattern mining strategies are now newfangled solutions for disclosure of

microbial patterns (Tandon et al., 2015; MANIEA et al., 2021). However, besides

the power of these techniques, great efforts must be undertaken to extrapolate

relevant patterns that can be integrated into biological contexts (Naulaerts et

al., 2015; Faust et al., 2021).

Basically, the strategy consists of two main phases: i) extraction of patterns

(also known as ‘frequent itemset mining’) and ii) rules calculation. In this work,

we focused in particular on the first phase, as great potential can be achieved

considering the exploration of patterns at any length and subsequently be

filtered to create reliable associations.

In detail, our Discussion section will touch two main topics: i) considerations

about parameter settings to perform pattern mining strategies in the context of

16S rRNA metabarcoding data and ii) guidelines and future perspectives to

support real applications. In order to present an overview of frequent itemset

mining as a tool for microbiome pattern analysis, we developed a SWOT

(Strengths, Weaknesses, Opportunities, Threats) analysis (Fig. 5).
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Figure 5. Overview of the main strengths, weaknesses, opportunities and threats (SWOT analysis)

related to the use of frequent itemset mining as a tool for microbiome pattern analysis.

5.4.1 Run ARM could not be enough without care in setting parameters

As described above, pattern mining strategies can be powerful to get insights

from large and complex datasets (Naulaerts et al., 2015). However, pattern

analysis may have limitations (Faust et al., 2021). In this work, we provide ARM

analysis on both simulated and real datasets and propose microFIM

(https://github.com/qLSLab/microFim), a Python tool specifically suited for

microbiome pattern analysis. Our results will consider the pattern composition

obtained through our framework (Material and Methods section) without
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considering their biological implications, as it is beyond the scope of this work.

Considering the application of ARM on simulated datasets, we showed that

initial settings can reduce the amount of information retrievable, both

considering interest measures as support or length and all-confidence metric.

Regarding the application on the real case studies, a few considerations can be

made. First of all, the type of input can change the reliability of results: different

numbers of patterns have been generated considering different input types. In

particular, both considering aspects related to data visualization and

interpretation, the taxonomy level of investigation must be considered.

A second point that arises is the minimum support threshold to choose. The

choice can be both related to biological questions, as for example which is the

minimum number of samples to retain a pattern interesting, but also on

technicalities. In detail, exploring all the potential patterns cannot be reliable

and useful, as the number of patterns can be very high, related also to great

computational efforts and visualization issues (Naulaerts et al., 2015). For this

reason, we started using a support of 0.2, that means that only the taxa that

co-occur in at least the 20 % of samples were considered (up to 175 of 875 for

the ECAM dataset and up to 77 of 388 for the Ravel case study). However, this

is a case-specific threshold as no guidelines exist to set a correct support

threshold in this research field. The wrong value can potentially hide

information and, at the same time, create spurious patterns. In addition, it can

generate misleading results without taking into account the Simpson’s paradox

(Tan et al., 2016), a phenomenon in which a pattern appears frequently but

disappears or drastically changes when the data are combined differently, as

for example considering only a set of samples (Tan et al., 2016).

Nevertheless, once patterns are generated, filtering steps can be added, in

order to both reduce the information and better evaluate specific patterns, with

peculiar characteristics. Filters can include the length of patterns or additional

interest measures (Karpinets et al., 2012; Naulaerts et al. 2015; Agrawal et al.,

1993).

Pattern length, in particular, can be also included before running the analysis,

154



as algorithms take into account a minimum and a maximum value of pattern

length, in order to reduce the number of explorable patterns (Agrawal et al.,

1993). However, this choice must be done before exploring the results. Of

course, it is possible to reduce the number of patterns after extraction, but

computational efforts and running time must be considered (Naulaerts et al.

2015; Agrawal et al., 1993). Pattern length can also vary based on the research

field of application and the biological questions. In the ECAM case study, for

example, we observed different median values of pattern length, from minimum

values of 3 to maximum of 16, suggesting also different levels of analysis.

However, other metrics can be included to filter patterns (Omiecinski et al.,

2003; Franceschini, 2012; Tan, 2002; Tang et al., 2012). Usually they are called

‘interest measures’ and are generally used to evaluate a set of peculiar

patterns, in order to filter the interesting ones (Naulaerts et al., 2015; Hussein et

al., 2015; Tatti et al., 2010). Also in this case, the biological question can guide

how to properly set the filtering step. In this work, we used all-confidence

metrics, which generate hyperclique patterns (Omiecinski et al., 2003; Xiong et

al., 2006). The application of this metric helps to find groups of items (in this

case species or taxa) where items belonging to the same pattern are highly

affiliated with each other and can generate rules with the minimum threshold

chosen. Using this approach reduces drastically the number of patterns and, in

addition, allows to filter only strong associated groups. In this case, the amount

of information was drastically reduced considering the two thresholds of

all-confidence considered (0.5 and 0.8). This reduction can promote a manual

exploration of results and pave the way for exploring strong associations and

putative rules.

Clearly, other interest measures can be applied. All-confidence may not be the

only interest measures useful for microbiome analysis. Other metrics can be

selected to filter patterns, but they must be identified based on specific

questions related to the research field of application (Naulaerts et al. 2015).
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5.4.2 Fitting ARM for microbiome studies: guidelines to support real

applications

Frequent itemset mining and, subsequently, association rule mining, is a

pattern mining technique able to explore items that co-occur with a certain

frequency, as sets of commercial products that customers buy together in the

classic supermarket basket problem (Naulaerts et al. 2015; Agrawal et al.,

1993). The flexibility of frequent itemset mining techniques is demonstrated by

the wide range of bioinformatics applications, from for example SNPs

association studies to annotations and motif association exploration (Manda et

al., 2020; Manda et al., 2013; Manda et al., 2012; Koyuturk et al., 2006; Ong,

2020; Karpinets et al., 2012; Alves, 2010; Carmona-Saez et al., 2007; Boutorh

et al., 2016; Agapito et al., 2015; Naulaerts et al., 2016; Zhou et al., 2013). It is

a powerful instrument to explore patterns from large and complex data sets

(Karpinets et al., 2012; Naulaerts et al. 2015; Agrawal et al., 1993), providing

different algorithms and a wide range of parameters to filter patterns of interest.

Besides the most used, as support (frequency of a pattern or a rule in the

dataset) or length (the number of species contained in a pattern), other metrics

can be included in the pattern analysis (Naulaerts et al. 2015; Agrawal et al.,

1993; Hashler, 2005). Beside its potentials, great efforts have to be made to

perform pattern mining strategies on microbiome data and obtain reliable and

interpretable results, with sound biological implications. As mentioned above, a

few points raised from the works done. From threshold choices to input data

types, setting pattern analysis is not an easy task. Considering the peculiarities

of microbiome data and the flexibility of the technique, here we propose five

statements to guide researchers before starting ARM analysis.

Setting the input data. This point highlights the importance of the type of

pattern to be considered. In the microbial ecology field, a lot of interest

probably regards the investigation of species patterns, in order to evaluate

community patterns and putative ecological processes. However, this is not

straightforward if we consider 16S rRNA metabarcoding data: taxonomy does
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not always reach a species level and this uncertainty can negatively impact

pattern reconstruction. In addition, noise derived from contamination or

sequencing biases can be present (Faust et al., 2012; Faust et al., 2021; Gloor

et al., 2017; Balint et al., 2016). However, precautions can be taken: removing

uncertain taxa or cleaning the table based on abundance thresholds or

statistical methods is possible (Faust et al., 2012; Gloor et al., 2017; Balint et

al., 2016). Different levels of taxonomy can be used as input, as we also

demonstrated in the previous sections. Of course, choices must be taken with

conscience as they will impact on the final result and therefore the

interpretation must be correctly contextualized.

Consider the use of metadata. The inclusion or filtering considering metadata

information can improve the reliability of the method, both looking for specific

patterns linked to metadata and also to better explore the dataset. In this way,

we can reduce the information to be explored, lowering the support value,

retaining rare or patterns related to specific metadata, and preventing

Simpson's paradox issues (Naulaerts et al. 2015; Agrawal et al., 1993).

Individuate what is interesting for the specific case study. The definition of what

is interesting depends on the biological context at issue. No simple guidelines

exist, as the application of pattern mining on microbiome data is still in its

infancy (Naulaerts et al. 2015). Testing and developing new metrics is an

important field of research and can make a difference to track reliable patterns

that can be further used for classification tasks or functional analysis. In this

work, we applied the all-confidence metric (Omiecinski et al., 2003; Xiong et al.,

2006). However, we believe that other interest measures can be applied and a

wide variety of them are available in other tools already developed (Hahsler et

al., 205; Hahsler et al., 2011). In general, this step allows to drastically reduce

the number of explorable patterns (Tan et al., 2016; Omiecinski et al., 2003;

Xiong et al., 2006).

Basically, length can be used to clean the information extracted via ARM. As

ARM can generate patterns at any length, single items or only pairs of items

can be pruned, in order to find interesting associations composed by 3 or more
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elements. From a biological point of view, exploring longer microbial patterns

can enhance microbial community investigations and pave the way for

high-order interactions exploration (Faust et al., 2021).

Consider computational time. As fully described in previous works, data

dimensions and density drastically increase time calculation and memory

usage (Naulaerts et al. 2015; Agrawal et al., 1993). Reducing input data can

make ARM more reliable and faster to be performed (Naulaerts et al. 2015;

Agrawal et al., 1993). In addition, beside the common concept of pattern,

closed and maximal patterns exist. Both result in a faster extraction, but with a

reduction of information (Naulaerts et al. 2015; Agrawal et al., 1993).

Overall, the inclusion of interest measures directly into the ARM framework may

favour the development of new faster algorithms, leading the technique directly

to the exploration of specific patterns (Omiecinski et al., 2003; Xiong et al.,

2006; Naulaerts et al. 2015).

Tools and visualization strategies. To better suit pattern mining for microbiome

data applications, tools and visualization techniques are essentials (Naulaerts

et al. 2015). In detail, in this work we tried to concept a new pattern mining

output combining the common microbiome output with pattern analysis. The

pattern table can be an important resource to perform and visualize pattern

results in a microbial perspective. In addition, it allows further statistical

analysis that is usually performed for microbiome data. Considering the

visualization process, we set up different plots to have an overview of pattern

distributions and create a Jaccard matrix to show the distance between

samples. However, different visualization methods exist, based on tables,

matrices and graphs (Naulaerts et al. 2015). Here we cite the R packages

arulesviz, FPViz and WiFIsViz (Hashler, 2005; Hashler, 2011; Naulaerts, 2015).

Even though these visualizations allow different strategies to explore data,

issues related to high dimensional dataset remain and none of them are

conceptualized for microbiome analysis. At the same time, collecting human

readable information can facilitate data visualization strategies and

interpretation (Naulaerts et al. 2015), but of course interesting measures must
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be considered. Finally, considering practicality of use, several ARM

implementations can be utilized (Nauleaerts, 2015). Moreover, frameworks have

been implemented, often accompanied by GUI (Graphical User Interface) or

interactivity components (Naulaerts, 2015). However, a deepening in the

microbiome field has not been established yet.

Evaluation and benchmarking strategies. From a computational point of view,

the complexity and dynamics of microbial communities leads to difficulties in

developing and testing methods to evaluate them. In general, it was

demonstrated that microbial co-occurrence analysis may be an extraordinarily

promising approach for studying microbiomes (Faust and Raes, 2012). Several

works explained how co-occurrences reveal indications about ecological

processes shaping community structure (Lima-Mendez, 2010), exploring hub

species and potential microorganisms relationships (Berry, 2014). Further, Ma

and colleagues (2020) showed how global microbial co-occurrence analysis

and network reconstruction may be an encouraging strategy to reveal patterns

and explore new mechanisms. However, besides these results, transform

microbiome data into purposeful biological insights remain challenging, as also

demonstrated by different evaluations (Faust et al., 2012; Berry et al., 2014),

and open questions still remain (Faust et al., 2021; Ma et al., 2020; Layeghifard

et al., 2017; Faust et al., 2012). The use of ARM on microbiome data models or

datasets created in-silico will be necessary to disentangle the potentials of

ARM in the microbiome research field, also considering the range of

microbiome aspects that can be considered (Faust et al., 2021; Hosoda et al.,

2020; Weiss et al., 2016). In particular, tests should examine how the technique

is affected by noise signals, both related to sequencing and laboratory

protocols (Weiss et al., 2016). In addition, as microbiome data may potentially

describe a complex and intricate ecological community, several ecological

aspects can be evaluated with ARM, both describing the generation of

redundant information and the difficulty associated with extracting patterns due

to specific ecological behaviors, as for example competition, exclusion or

symbiosis (Faust et al., 2021; Weiss et al., 2016; Faust and Raes, 2012).
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In general, recent advancements in data integration and data reuse strategies

may enhance the exploration of microbial patterns from large-scale studies

(Ghannam et al., 2021; Jordan et al., 2015; Ma et al., 2020; Su et al., 2020).

Microbiome simulators and in vitro studies can be a great instrument for

benchmarking works and improve guidelines to apply ARM (Faust et al., 2021).

Beside the potential of ARM on large scale analysis, giving a great overview of

data under investigation (Naulaerts et al. 2015), these advancements may

contribute to developing tests and benchmarking strategies in order to set ARM

for microbial pattern research looking at biological implication, specifically.

5.5 Conclusions

Concluding, all the challenges mentioned above can disentangle ARM analysis

for microbiome pattern exploration. As the output of the analysis can be

extensive and redundant, results should be interpreted with caution. The

associations extracted do not necessarily imply causality. Instead, it suggests a

strong co-occurrence relationship between species. Causality, on the other

hand, requires knowledge about the causal and effect attributes in the data

(Tan et al., 2016). There are several approaches to evaluate the robustness of

an output. In this first work, pattern length, support and all-confidence were

explored and included in the microFIM tool. From a biological perspective,

filtering results with these parameters could help to highlight meaningful

patterns, but may not be enough. Further, we tried to depict issues that we

think must be considered before using an ARM approach for specifical

biological traits. As there is an interest in research to exploit data mining

techniques, citing for example the works of Srivastava et al., 2019 or

Zakrzewski et al., 2016, we also think that suiting ARM for microbiome analysis

will be a great resource in the future. Considering the huge amount of data

available and produced with the advent of High-Throughput DNA Sequencing

(HTS) technologies, an increasing selection of large-scale data science
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strategies seems to have enormous potential in resolving challenges in

microbiome pattern exploration (Kypides et al., 2020; Jordan et al., 2015).

Association rule mining and microFIM tools may have great potential not only

with 16S rRNA metabarcoding data, but also in a wide range of applications.

As also supported by Naulaerts et al. (2016), ARM analysis is a versatile

technique: the integration of files such as taxa tables guarantees the usage also

on a wide variety of datasets belonging from different sources, as for example

the QIITA platform (https://qiita.ucsd.edu/; Gonzales et al., 2018) or the MLrepo

(https://knights-lab.github.io/MLRepo/; Vangay et al., 2019), but not only.

Beside the main focus of this work and microFIM development, very different

types of data can be analysed and integrated with ARM framework. From gene

associations to merely metabarcoding projects, whose output has the same

structure of 16S rRNA taxa table, microFIM may potentially pave the way for

multiple usages, creating a bridge with several research fields and applications.

5.6 Supplementary

Supplementary data are available in the main paper

(https://doi.org/10.3389/fbinf.2021.794547). In particular, supplementary files

are the following:

● Supplementary material 1: Table describing a simulated dataset 1

composed of 5 taxa and 10 samples (CSV format).

● Supplementary material 2: Table describing a simulated dataset 2

composed of 5 taxa and 10 samples (CSV format).

● Supplementary material 3: ECAM taxa table obtained directly from

QIIME2 datasets (Bolyen et al., 2019) in which only taxa assigned to

genus level, with a relative abundance > 0.1 % in more than 15% of

samples, are considered (TSV format).

● Supplementary material 4: Family ECAM taxa table obtained collapsing

the ECAM dataset (Supplementary Table 3; Bolyen et al., 2019) to the
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family level via QIIME2 plugins (https://github.com/qiime2/q2-taxa)

(TSV format).

● Supplementary material 5: Genus ECAM taxa table obtained collapsing

the ECAM dataset (Supplementary Table 3; Bolyen et al., 2019)

consisting only of taxa with complete taxonomy at the genus level (TSV

format).

● Supplementary material 6: Pattern table generated performing

microFIM on simulated dataset 1 (Supplementary Table 1) with the

minimum support of 0.3, a minimum length of 2 and a maximum length

of 10 (CSV format).

● Supplementary material 7: Pattern table generated performing

microFIM on simulated dataset 2 (Supplementary Table 2) with the

minimum support of 0.3, a minimum length of 2 and a maximum length

of 10 (CSV format).

● Supplementary material 8: Table generated performing microFIM on

ECAM dataset (Supplementary Table 3) with a minimum support of 0.2,

a minimum length of 3 and a maximum length of 15 (CSV format).

● Supplementary material 9: Pattern table generated performing

microFIM on ECAM dataset at family level (Supplementary Table 4) with

a minimum support of 0.2, a minimum length of 3 and a maximum

length of 15 (CSV format).

● Supplementary material 10: Pattern table generated performing

microFIM on ECAM dataset at genus level (Supplementary Table 5)

with a minimum support of 0.2, a minimum length of 3 and a maximum

length of 15 (CSV format).

● Supplementary figure 11: Heatmap representing Jaccard distance

matrix was generated via microFIM visualization phase on the ECAM

dataset, considering Input 3 and samples belonging to the first

sampling date.
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6. SKIOME Project: a curated collection of skin microbiome

datasets enriched with study-related metadata

6.1 Introduction

Directly in contact with the environment, the skin microbiome is a tangled and

dynamic ecosystem that interacts with both the host and its surroundings

(Dimitriu et al., 2019). It is characterized by diverse ecological niches, where the

microbiota, the host skin cells and the host immune system are involved in the

maintenance of skin health. In the last decade, numerous studies have

investigated the composition of the human skin microbiome under very

different conditions (Swaney et al., 2021; Luna et al., 2020; Callewaert et al.,

2020; Sa et al., 2015).

The advent of high-throughput DNA sequencing (HTS) technologies has

revolutionized numerous research fields, and the study of the human

microbiome was no exception. Following the introduction of HTS technologies,

the number of studies investigating the human microbiome has increased,

expanding our knowledge about its implications for human health. In particular,

it was demonstrated its pivotal linkage with diet and age (Sa et al., 2015;

Leyden et al., 1975) and specific microbiome patterns were shown to relate to

the body region sampled (Capone et al., 2011; Bouslimani et al., 2015).

Geography and ethnicity have also been shown to affect the skin microbiome

(Gupta et al., 2017) and numerous diseases have been associated with an

altered microbial state (Byrd et al., 2018), as in the cases of atopic dermatitis

(Williams et al., 2015) and psoriasis (Langan et al., 2018).

Since their adoption, the new sequencing strategies have been getting cheaper

and cheaper, becoming available for researchers and companies on a global

scale. In recent years, large amounts of data have been deposited in public
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databases and more is going to be produced in the near future, as the number

of sequencing experiments is exponentially growing.

There are three major databases used to store nucleotide sequence data: the

NCBI’s Sequence Read Archive (SRA) (Sayer et al., 2019), the EBI’s European

Nucleotide Archive (ENA) (Harrison et al., 2019), and the DDBJ Sequence Read

Archive (DRA) (Ogasawara et al., 2020). These three databases are brought

together by the International Nucleotide Sequence Database Collaboration

(INSDC) and are constantly synchronized to share their data (Arita et al., 2021).

The publicly available datasets deposited in these databases represent a

valuable resource for the microbiome research community. Public available

data can be now accessed and downloaded to be re-analysed or integrated to

perform meta-analysis studies (Duvallet et al., 2017; Bisanz et al., 2019; Kosti

et al., 2020).

As a consequence, in the last few years, we are facing an increasing adoption

of novel large-scale data science approaches to address challenges in

microbiome science (Kyrpides et al., 2020). For example, machine learning

strategies can be applied to perform powerful prediction tasks on

metagenomics data (e.g. disease-prediction based on microbiome

composition). However, these strategies require a large amount of data to train

and test models, making the integration and harmonization of multiple datasets

a necessary step (Jordan and Mitchell, 2015; Ghannam and Techtmann, 2021).

In this way, the availability of large-scale sequencing data can enable

microbiology researchers to ask new questions and develop new strategies to

study the human-associated microbial communities (Wood-Charlson et al.,

2021; Su et al., 2020).

However, this huge amount of microbiome data still lacks harmonization and is

far from being completely exploited to its full potential. Guidelines have been

proposed and tools have been developed to promote the standardization of

sample processing, sequencing and data analysis across the microbiome field
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(Greathouse et al., 2019; Bharti and Grimm, 2021; Liu et al., 2021; Amos et al.,

2020; Pollock et al., 2018; Callahan et al., 2016; Bolyen et al., 2019; She et al.,

2019) but achieving global standardization is not an easy task. Initiatives such

as the Human Microbiome (Turnbaugh et al., 2007) and the Earth Microbiome

Projects (Gilbert et al., 2014) have favored the development of standardized

procedures. In addition, important field-specific databases were created, such

as the Human Oral Microbiome Database (Chen et al., 2010) or the GMrepo, a

database of curated and consistently annotated human gut metagenomes (Wu

et al., 2020).

Several research groups have been proposing different sources of microbiome

data: initiatives like the Human Microbiome and the Integrative Microbiome

Projects (Gevers et al., 2012; Proctor et al., 2019), MicrobiomeDB (Oliveira et

al., 2018), HumanMetagenomeDB (Kasmanas et al., 2021),

curatedMetagenomicData (Pasolli et al., 2017), the ML Repo (Vangay et al.,

2019), QIITA portal (Gonzales et al., 2018), or the MG-RAST portal (Wilke et al.,

2016) suggested both data management infrastructures and frameworks to

guarantee data accessibility and reuse.

Despite the contribution of groups involved in this field, the lack of metadata

and the presence of datasets with missing or inconsistent information can

reduce the interpretability of the data generated, influencing the understanding

of microbial dynamics and ecological patterns (Wood-Charlson et al., 2020; Su

et al., 2020; Greenhouse et al., 2019). Inconsistency and uncontrolled metadata

filling were demonstrated by Gonçalves and Musen (2019), revealing the

necessity of standardized metadata compilation (Bernasconi, 2021).

FAIR (Findable, Accessible, Interoperable, and Reusable) principles are

supported within the National Microbiome Data Collaborative and FAIR

Microbiome community

(https://www.go-fair.org/implementation-networks/overview/fair-microbiome)

(Wood-Charlson et al., 2020; Vangay et al., 2019) to promote data discovery
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and reuse in the microbiome field, and allow for broader dissemination of

knowledge and compliance for both humans and machines.

Thus, making microbiome data and metadata accessible is a key aspect to

guarantee a concrete opportunity to perform meta-analyses and data reuse

(Vangay et al., 2019; Ching et al., 2018; She and Schloss, 2016). In this context,

well-curated and FAIR microbiome datasets are now a necessity to explore

microbiome patterns, apply data science techniques and promote data

reusability (Duvallet, 2020; Longo and Drazen, 2016).

In order to help researchers interested in performing meta-analyses with human

skin microbiome data and exploring the context-specific information related to

potentially useful datasets, we focused our work on published human skin

microbiome datasets, creating a curated skin microbiome collection

accompanied by a state-of-the-art analysis of the last 10 years of the skin

microbiome field.

In particular, during the last decade, most of the studies have relied on

amplicon sequencing approaches, where different regions of the 16S rRNA

gene are amplified and sequenced to identify the microbial taxa present in a

sample (Bokulich et al., 2020; Knight et al., 2018). For this reason, we built a

comprehensive human skin microbiome collection enriched with detailed

metadata information, focusing on existing 16S rRNA amplicon-sequencing

microbiome datasets from the human skin biome.

To achieve our goal, we first collected datasets from the INSDC, which store

the majority of the publicly available nucleotide sequencing datasets together

with their associated metadata (Arita et al., 2021). As the availability of these

metadata and the possibility of recovering them is crucial for ensuring the

reusability of the available datasets (Gonçalves and Musen, 2019), we

dedicated special attention to maximize the amount of metadata information

that can be recovered. To do so, we combined different metadata retrieval

approaches enriched with a manual curation step. Then, we generated
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explorable data frames at different curation levels containing all the retrieved

datasets together with the associated metadata. Further, we highlighted some

of the shortcomings of the current approaches for data and metadata retrieval

and we called attention to some of the issues that currently aict the re-usability

of the deposited data. Overall, the output of our work constitutes a valuable

resource for researchers interested in performing meta-analyses with human

skin microbiome data, who can explore our collection to find a list of datasets

that can be integrated to answer old and new biological questions.

6.2 Materials and methods

6.2.1 Metadata retrieval and manual curation procedures

To obtain a comprehensive list of skin microbiome studies derived from

amplicon approaches with the associated metadata, we built a three-step

framework (Figure 1) based on:

● Step 1: dataset retrieval from INSDC;

● Step 2: metadata retrieval and enrichment;

● Step 3: output curation with the removal of redundant and spurious

information.

In the sections below, all the steps are described together with the methods

and strategies used.

6.2.1.1 Step 1: dataset retrieval from INSDC

To generate a comprehensive list of datasets of human skin microbiome

derived from 16S rRNA amplicon sequencing available on the INSDC public

databases, we decided to rely on two different approaches: i) an automatic
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search, which allows querying the INSDC databases automatically using

keywords and ii) a manual approach on the SRA and ENA portals.

Figure 1. Schematic representation of the three-step framework adopted in the study to collect

datasets and metadata and generate three differently curated data frames.

The automatic search of the datasets was performed with the R package

“SRAdb” (Zhu et al., 2013). SRAdb relies on a SRAdb SQLite database, a

regularly updated database of metadata associated with the raw reads

deposited on SRA and its interconnected databases (ENA, DRA). The SRAdb
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database (up to 36 Gb) was downloaded and stored locally on the 17 of June,

2021. We performed a full-text search with the following query: “human skin

microbiome OR human skin microbiota OR human skin metagenome”.

For the manual approach, instead, we performed a search on the NCBI’s SRA

and EBI’s ENA databases with the following criteria: datasets coming from 16S

rRNA amplicon sequencing, containing only human skin samples that were

deposited from 2012 onwards and that presented an associated publication.

6.2.1.2 Step 2: metadata retrieval and enrichment

An enrichment step was performed on both automatic and manual outputs in

order to recover the largest amount of metadata associated with the datasets

previously found. For this step, we integrated three different strategies: i)

SRAdb was used to collect all the possible information from the retrieved list of

studies and samples; ii) for some run-associated metadata that could not be

retrieved with SRAdb, we used the Entrez Direct (EDirect) tool (Kans, 2021); iii)

for the list of manually recovered studies, we collected study-specific metadata

from the associated publication, including information that cannot be found on

the INSDC databases. We focused our attention on the sample origin, the

laboratory and bioinformatics strategies and the data related to the context in

which the studies were performed. In particular, we retrieved study-specific

information related to the collection method used, the 16S rRNA gene

hypervariable region sequenced, the clustering method used (OTUs,

ASVs/RSVs), the number of recovered units/variants reported in the study, the

database used for taxonomic assignment and its version, the disease condition

investigated (if any), the location of the sampling, the presence of a MGnify

analysis (Mitchell et al., 2020), the DOI and the year and journal of publication.

In addition, a bibliometric analysis of published papers related to the datasets

retrieved was performed. Research areas and categories from the Web of

Science (WoS) collection and Elsevier’s Scopus classifications were added to

each publication. Notably, since Scopus reported multiple subject areas for

each publication, we included multiple columns in the data frame to keep all

169



the information. We further generated a column categorizing a scientific journal

as a medicine-related journal (Medicine_Journal) or not depending on the

presence of ‘Medicine’ among the Scopus subject areas. Lastly, an additional

column containing any useful notes related to the study was added. A

comprehensive list of the manually curated metadata with description is

available in Supplementary File 1., also available in our Github repository

(https://github.com/giuliaago/SKIOMEMetadataRetrieval).

6.2.1.3 Step 3: outputs curation and metadata correction

Once all the information was stored into three data frames that differed in the

way the datasets and the metadata were retrieved, we proceeded to reorganize

them by removing redundant metadata and NA-inflated columns. For the

smallest and most refined data frame, we further inspected the data frame rows

to remove undesired samples and to correct wrongly assigned metadata. In

detail, we removed samples that were not obtained from amplicon sequencing

and corrected metadata by double-checking with the related publications.

6.2.2 Script and data availability

For all the steps of datasets and metadata retrieval, a list of studies and

associated metadata were kept (Dataframe 1, Dataframe 2 and Dataframe 3).

All the outputs will be available in our Github repository

(https://github.com/giuliaago/SKIOMEMetadataRetrieval), accompanied by the

scripts used for the retrieval framework. In particular, scripts describe the use

of SRAdb, Edirect tool, the entire R pipeline to obtain the final outputs and

codes for plot creation and data frame exploration.

6.3 Results

Following the three steps presented in the Methods section (dataset retrieval

from INSCD; metadata retrieval and enrichment; data frame curation), we first
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tested two approaches to retrieve datasets of the human skin microbiome from

the INSCD databases (Step 1): a manual search of the datasets and an

automatic search with SRAdb (Zhu et al., 2013). We then collected metadata

information for the retrieved datasets (Step 2) using three different approaches:

automatic search with SRAdb (Zhu et al., 2013), EDirect (Kans, 2021) and a

manual search from the associated publication for the manually retrieved

studies. In this way we obtained three data frames:

● Data Frame 1, containing only datasets retrieved with SRAdb and

metadata collected automatically with SRAdb and EDirect;

● Data Frame 2, containing all the datasets identified with both the

strategies (manual and automatic) together with all the metadata that

could be recovered with SRAdb, EDirect and manual inspection of the

publication;

● Data Frame 3, a subset of Data Frame 2, containing only the manually

retrieved datasets together with all the metadata that could be

recovered both manually and automatically with SRAdb and EDirect.

Data Frame 2 and Data Frame 3 both contain 61 metadata columns (from

manual and automatic metadata search), while Data Frame 1 only contains 37

metadata columns obtained from the automatic search. All three data frames

were curated to remove redundant columns and NA-inflated columns (Step 3).

Among the redundant metadata, we observe columns containing the IDs of

Run, Experiment, Submission, Sample/BioSample and Study/BioProject. Other

metadata recovered by both methods were the spots, the bases, the library

strategy, the sequencing platform used and the Taxon ID. Data Frame 3 was

further curated to remove undesired samples coming from whole-genome

sequencing experiments and to correct wrongly assigned metadata.

The following sections will show the results, starting from a comparison

between the data collection approaches used and then moving to describe the

state-of-the-art of metadata related to the submission process and the
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metadata obtained from our manual curation step, in particular regarding the

bioinformatic strategies used and the skin data characteristics retrieved directly

from the published studies.

6.3.1 Comparison of datasets collection approaches and metadata

retrieval

The automatic search with SRAdb recovered a total number of 97,182 samples

from 203 studies (Data Frame 1) with 8,492 samples that were uploaded before

2012. The manual search, instead, recovered a total of 21,958 samples from 68

studies (Data Frame 3) starting from 2012.

We compared the ability of the two approaches in identifying the desired

datasets. Notably, the automatic search failed to identify 47 studies that were

recovered by the manual search, indicating that SRAdb does not perform an

exhaustive search of the available datasets. The automatic search identified

182 studies not found by the manual search. Based on these observations we

generated a data frame (Data Frame 2) that comprised both automatically

retrieved and manually identified studies. This data frame contains 108,207

rows (samples) coming from 250 different studies and a total of 61 columns

containing the metadata.

The metadata associated with the datasets can be differentiated into three

major categories: i) metadata related to dataset submission (obtained by the

automatic search), ii) metadata associated with the laboratory procedures and

bioinformatic pipelines (obtained by automatic and manual searches) and iii)

manually collected context metadata describing other relevant aspects of the

study (e.g. disease/condition investigated or sample origin).

The automatic search for metadata with SRAdb and EDirect was performed for

all the datasets, both manually and automatically retrieved, to collect metadata

related to dataset submission (i). After the curation step, we conserved a total

of 37 metadata columns that were included in all three data frames.

These 37 columns contain information related to:
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● the study with BioProject, Study_ID, Study_description and

Study_abstract;

● the submission and its date with the Year_of_release, Release_Date

and Load_Date;

● the experiment with the Library Strategy used (Library_Strategy),

specification on if it was performed a pair-end or a single-end

sequencing (Library_Layout) and the library Insert size (Insert_Size);

● the sequencing platform and the model used (Platform, Model);

● the run with the average sequence length (AvgLength), the spots, the

bases, the size of the file (Size_MB) and the path for the download

(Download_path);

● the experiment title (Experiment_title);

● a description of its design (Design_description);

● the name of the library (Library_name) and attributes of the experiment

(Experiment_attribute);

● the sample with BioSample, Sample_ID, Sample_alias, Sex, Body_Site,

Description and Sample_attribute and

● the associated Taxonomic ID with the scientific name (TaxID,

Scientific_Name).

A comprehensive description of all the 37 metadata is available in

Supplementary File 1.

In Data Frame 2 and 3 we also included 23 additional columns that contain

metadata not available on INSDC and obtained from the manual inspection of

the publication. These metadata were recovered only for the manually retrieved

datasets and contained information on the laboratory procedures and

bioinformatic pipelines (ii) together with other relevant metadata describing the

context of the study (iii).

In the next sections, all the categories of metadata and their distribution are

outlined. A full description of the metadata included in the data frames is given
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in Supplementary File 1, also available in our Github repository

(https://github.com/giuliaago/SKIOMEMetadataRetrieval).

6.3.2 Distribution of metadata related to dataset submission and library

preparation

By comparing the distribution of the number of datasets released over the

years among the three different data frames (Figure 2b), we observed that Data

Frame 1 showed a peak in 2015 when 17,551 datasets were released.

Differently, Data Frame 2 showed a peak in 2017 with 19,041 datasets released

during that year. For Data Frame 3, we observed two peaks: one in 2013 with

4,841 datasets released and one in 2017 with 7,293 datasets released.

However, if we look at the number of studies, the peak was reached in 2019

with 16 studies investigating the human skin microbiome (Figure 2a).

After removing datasets with a value equal to zero for the following metadata,

we calculated the median number of spots (sequencing clusters that generated

sequence), bases (nucleotides), average read length and insert size (size of the

amplicon without sequencing adapters) for Data Frames 1, 2, and 3. The

median number of spots were respectively 23,590, 24,564, 22,560.5 (Figure

2e), while the median number of bases were 4,114,610, 4,364,032 and

7,270,396 (Figure 2f). The mean of the datasets’ average read length in Data

Frame 1 is 227.0235 bp, while for Data Frame 2 is 254.0603 bp and for Data

Frame 3 is 440.2783 bp. The median values are 150 bp for Data Frame 1 and 2,

and 502 bp for Data Frame 3 (Figure 2g and Figure 2i). The median insert size is

500 in Data Frame 1 and 2 and 300 in Data Frame 3 (Figure 2h and Figure 2i).

Mean values are 455.5963, 440.2783 and 349.0783, respectively.

Information about the sex of the individuals can be collected for 36,231 out of

97,182 samples in Data Frame 1 (20,011 females; 16,220 males), 37,340 out of

108,207 samples in Data Frame 2 (20,234 females; 17,106 males), and 3,461

out of 21,958 samples in Data Frame 3 (1,276 females; 2,185 males).
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We recognized 66 different descriptions (more or less accurate), defining the

sampled region of the body. However, metadata on the body site is absent in

most of the datasets. In detail, a total of 42,489 empty metadata information

were found for Data Frame 1, 52,972 for Data Frame 2 and 18,061 for Data

Frame 3.

In our data frames, we have observed the use of different Taxon IDs to describe

the samples. Data Frame 3, which contains only samples of human skin

microbiome, presents 11 different taxon IDs, which correspond to the following

scientific names: "human skin metagenome", "Homo sapiens", "metagenome",

"metagenomes", "human metagenome", "skin metagenome", "Staphylococcus

aureus", "clinical metagenome", "gut metagenome", "human gut metagenome"

and "bacterium". The number of Taxon IDs increases in the other two data

frames so that in Data Frame 2 we observe 173 different Taxon IDs.
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Figure 2. a) Number of studies and samples from Data Frame 3 released every year starting from

2012. b) Comparison of the number of samples released each year for the three Data Frames (Data

Frame 1 in blue, Data Frame 2 in black and Data Frame 3 in red). Data Frames 1 and 2 contain
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samples starting from 2008, while Data Frame 3 only from 2012. c) Distribution of the variable “sex”

in the three Data Frames. In all three cases, the majority of the samples don’t have such information

reported. d) The number of Taxon ID/Scientific names used in the three Data Frames (barplot) and

relative abundance (as a logarithm) of the Taxon ID/Scientific names used for the samples in Data

Frame 3 (pie chart). e-h) Comparison of the median number of spots (e), bases (f), reads average

length (g) and insert size (h) in the three Data Frames. i) Read length distribution in the three Data

Frames. j) Distribution of the insert size in the three Data Frames.

6.3.3 Methodological pipeline insights and context-metadata of skin

microbiome datasets

For the 68 manually retrieved studies we further collected other metadata from

the associated publications. Based on these manually collected metadata, we

observed that most of the studies had used swabs to collect samples (53

studies; 19,928 samples), with only a few relying on other methods like

biopsies (5 studies; 257 samples), scrubs buffer washes (1 study; 1,358

samples) or a combination of swabs and other methods (7 studies; 311

samples).

Considering the marker gene used, the most commonly sequenced

hypervariable regions of the 16S rRNA gene have been the V1-V3 (6,176

samples), followed by the V4 (5,694) (Figure 3a). However, if we consider the

number of studies, we observed that most of them relied on the V1-V3 (24

studies) and V3-V4 (21 studies) regions (Figure 3a). The Illumina sequencing

platforms were the most used (88,295 samples in Data Frame 2), particularly

the Illumina Miseq platform (49,297 samples in Data Frame 2), followed by

Roche 454 platform (19,777 samples in Data Frame 2). A total of 11,412

samples have no specific platform model assigned  (Figure 3c).

Regarding the bioinformatic pipeline used, most of the manually inspected

studies have clustered reads into Operational Taxonomic Units (OTUs) (56

studies), only a few (6 studies) relied on Amplicon Sequence Variants (ASVs) or
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Ribosomal (35) Sequence Variants (RSVs). For 6 studies this information was

not reported in the article methods  (Figure 3d).

Taxonomy assignment was mainly performed with Greengenes database

(McDonald et al., 2012) (29 studies), followed by SILVA (Quast et al., 2013) (15

studies). Other works relied on different databases, including RDP (Cole et al.,

2014) (3 studies), EzTaxon-e (Kim et al., 2012) (3 studies), NCBI (1 study), and

HOMD (1 study). Strikingly, many studies did not report this information in the

articles’ method section (16 studies)  (Figure 3e).

Our analysis also comprehended a detailed inspection of skin and disease

conditions related to the microbiome analysis. Among our list, we identify 42

studies investigating 26 different diseases/conditions of the skin (Figure 3b).

The most commonly investigated disease in our curated dataset is atopic

dermatitis (8 studies), followed by psoriasis and parapsoriasis (5 studies), while

7 studies investigated skin injuries of different kinds. Among the other

diseases/conditions investigated, we observed acne (3 studies), skin

pathogenic infections, such as bacterial, fungal and parasitic infection (3

studies), allergic traits and atopic individuals (3 studies), dandruff (2 studies),

leprosy (2 studies), hidradenitis suppurativa condition (2 studies), autoimmune

bullous disease (1 study), dystrophic epidermolysis bullosa (1 study), vitiligo (1

study), squamous cell carcinoma (1 study), filaggrin-deficient human skin (1

study), and other conditions such as obesity and low birth weight (2 studies).

Overall, 26 studies collected samples from healthy human skin (in Data frame 3,

column 43 ‘disease/condition’).

Looking at the geographic distribution of the studies, we observed that most of

them were conducted in the USA (22 studies), followed by European countries

(19 studies) and China (11 studies). Other countries that featured more than

one study were South Korea (4 studies), Brazil (3 studies) and India (2 studies)

(in Data frame 3, column 44 ‘Location’)  (Figure 3.g).

Finally, the 68 manually retrieved studies were published in 40 different
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scientific journals from 17 different WOS research areas. According to Scopus

classification, 36 studies were published in medicine-related scientific journals

(Research Subject = Medicine). Figure 3f shows how often specific WOS

Research areas and Scopus Research Subjects are associated with the

Scopus research subject “Medicine” in the present dataset.
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Figure 3. a) Number of samples (pink) and studies (purple) that used specific 16S rRNA

hypervariable regions in Data Frame 3. b) The number of studies and samples for each

disease/condition investigated in Data Frame 3. c-e) Frequency of use of the different sequencing

platforms (c), clustering methods (d) and taxonomic databases (e) in Data Frame 3. f) Table

showing the Web Of Science research areas (blue) and Scopus Research Subjects (red) that

described the scientific journals in which the studies of Data Frame 3 have been published. The

research areas/subjects are divided into three boxes depending on how often they were associated

with the Scopus research subject “Medicine”. Going from left to right are shown the research

areas/subjects that were always (left), sometimes (center) and never (right) associated with the

Scopus research subject “Medicine”. g) Geographical distribution of the studies included in Data

Frame 3.

6.4 Discussion

In this section we discuss the results obtained from our work, in particular

focusing the attention on three main aspects: i) outcomes related to dataset

collection, ii) caveats related to metadata retrieval and data reuse and, finally, iii)

the importance of having a curated collection of a microbiome dataset for

advancing the microbiome research field through data-driven approaches and

powerful meta-analysis.

6.4.1 Skin microbiome data retrieval: dataset collection is not an easy task

The INSDCs databases are the source of an enormous amount of publicly

available datasets which can be accessed and downloaded to perform powerful

meta-analyses (Arita et a., 2021). The field of microbiome research can greatly

benefit from the availability of this large amount of data (Wood-Charlson et al.,

2020). However, the reusability of a dataset strictly depends on the possibility of

retrieving it and on the amount of information (metadata) deposited by the

authors at the time of submission (Gonçalves and Musen, 2019; Miron et al.,

2020).

If the number of datasets available is limited (such as for poorly studied

environments), a manual search will consent to gather all the studies available
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in a relatively fast way. However, for well-studied environments, the number of

datasets can be very large and it becomes more convenient to rely on automatic

approaches (Baumgartner et al., 2007). The automatic approach allows for a

fast and comprehensive search of datasets of interest, but at the same time, it

lacks a curation step that validates the recovered datasets. Moreover, the

automatic search does not permit the retrieval of important information that was

not deposited in the INSDC databases together with the raw data. Conversely,

the manual search is more accurate and allows a researcher to retrieve a

well-validated list of studies together with other information by inspecting the

associated publication. Its drawbacks are that it is time-consuming and

presumably less comprehensive than the automatic search. Moreover, it does

not consent to retrieve sample-specific information.

Our results showed that the automatic search did find a greater number of

datasets than the manual (97,182 samples from 203 studies vs 21,958 samples

from 68 studies). Many can be the reasons that explain this difference. First, the

automatic search tends to be more exhaustive than a manual one if the number

of available datasets is large. Second, the list of studies is not inspected to

remove undesired studies that do not match some of the desired criteria but

might be retrieved by the searching tool. Third, the manual search was limited to

the dataset deposited in the last 10 years, starting from 2012, while the

automatic search recovered studies starting from 2008. Indeed, 8,492 samples

found by the automatic search were uploaded before 2012. Despite these

observations, neither the manual nor the automatic search with SRAdb, were

capable of recovering all the studies, highlighting the importance of combining

the two approaches.

Together, our results indicated that SRAdb was not exhaustive in its search, and

to maximize the number of datasets retrieved, a combination of manual and

automated approaches might represent the optimal strategy. We observe that

the larger the number of available datasets, the less feasible an extensive

manual search, favoring an automated approach for the dataset retrieval step.
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Conversely, for topics with a particularly small number of datasets available, the

manual search still remains the most accurate way of recovering them.

6.4.2 Caveats of metadata retrieval and data reuse

Depending on the topic, a researcher interested in performing a meta-analysis

can decide to rely on different approaches to retrieve metadata associated with

the datasets of interest, both directly through the INSDC data portal (Arita et al.,

2021) or with specific tools (Zhu et al., 2013; Kans, 2021; Eaton, 2020). In this

work, we decided to combine three approaches, based on SRAdb (Zhu et al.,

2013), Entrez (Kans, 2021) plus a manual search from the publication, with the

aim of generating a comprehensive data frame containing all the datasets from

the human skin microbiome amplicon sequencing available on INSDC

databases. As for the search of the datasets, also for metadata retrieval, we

observed that the combination of automatic and manual approaches is capable

of gathering a larger amount of information than the two approaches alone.

However, while with a manual search it is possible to recover much information

related to a dataset if a publication is available, this approach is not feasible if

the number of datasets is high (Baumgartner et al., 2007). Moreover,

sample-specific information for large datasets can only be collected using

automatic approaches, making an automatic search a necessity.

Automatic approaches of metadata retrieval (such as those used in this study)

collect the metadata deposited on the INSDC databases. As such, they are

capable of accessing only the metadata that were made available by the

researchers during the data submission. Failing in accessing specific metadata

can aect the re-usability of a given dataset, highlighting the importance of

proper and extensive metadata storage.

We recognized three major causes that aect the reusability of publicly available

microbiome datasets: 1) Missing metadata. A lot of essential metadata are

simply not available either because not included among the requested metadata

or because not mandatory and hence not compiled by the submitter. One

example is the absence of metadata specifying the 16S rRNA hypervariable
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region amplified and sequenced for most of the studies, which seriously

compromise data harmonization eorts. Another information that is often not

reported is the presence of an associated publication. The availability of the raw

reads on public databases is a requirement for publication in many scientific

journals. During the raw reads submission, the researcher is required to provide

metadata associated with the dataset, including the presence of a publication.

As such, since this step predates the publication itself most of the datasets are

uploaded without specifying this information. 2) Metadata wrongly assigned.

Sometimes metadata can be wrongly assigned to the samples. This can also be

the result of mandatory metadata fields that are ambiguous and can lead a

researcher inexperienced in the submission process to compile the field in an

incorrect way. Wrong metadata can cause the inclusion of wrong datasets into

an analysis, potentially aecting the results and leading to incorrect biological

conclusions, or, conversely, they can cause the exclusion of datasets from

analyses in which they would have fitted. As an example, by comparing the

metadata deposited on INSDC with what was reported in the publication we

were able to identify studies that wrongly assigned the library strategy as

“RNA-Seq” and “WGS” instead of “AMPLICON”.

3) Inconsistency of the used terminology. Some metadata fields can be filled

with multiple correct metadata leading to inconsistency in the terminology used

and aecting the possibility of automatizing the search and filtering of datasets

based on these metadata. Good examples are the numerous Taxon ID and

scientific names associated with the samples, which are not necessarily wrong,

but the lack of consistency in the terms used compromises the usefulness and

value of this metadata.

Different works demonstrated the caveats of metadata retrieval and its

consequences (Gonçalves and Musen, 2019; Bernasconi, 2021; Jurburg et al.,

2020). Researchers have undertaken different approaches to ameliorate this

step, in particular using a manual or automated/semi-automated curation (Klie

et al., 2021), or developing tools specific for the download of metadata

information (Hoarfrost et al., 2019). Most of the automated or semi-automated
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methods are based on Natural Language Processing (NLP) techniques, used to

recognize predefined entities in unstructured text, in order to retrieve metadata

from the text associated with the samples. Others try to normalize metadata

information by grouping or mapping to ontologies (Bernstein et al., 2017; Hu et

al, 2017; Martinez-Romero et al., 2019). These methods still need a revised

step of manual curation and sometimes cannot reconstruct the totality of the

metadata associated (Klie et al., 2021). As we demonstrated before, manual

curation seems the most accurate solution (Klie et al., 2021; Wang et al., 2019)

if data remains human-readable.

Considering the microbiome field, the INSDC significantly contributed with a

recent perspective paper describing the steps that the microbiome research

community should take to favor data FAIRification and metadata incorporation

(Vangay et al., 2021). As microbiome samples are particularly related to the

context in which they were collected, data describing measurements or

variables related to the context are critical (Vangay et al., 2021). Two main

subject areas were indicated by the INSDC to improve data standards: i)

promote microbiome data sharing and ii) try to remove obstacles and diculties

related to data and metadata submission. Some of their observations and

proposals are currently applied by the research community, as for example the

“Minimum Information about any (x) Sequence” (MIxS) packages (Yilmaz et al.,

2011) or the incorporation of DOIs for datasets (Cousijn et al., 2018).

Unfortunately, some work is still needed to establish standard procedures and a

universal set of ontologies that are easily accessible by the entire community

(Vangay et al., 2021; Buttigieg et al., 2016).

In this context, this work also wants to disclose the situation of a sub-field of the

microbiome data world: the skin microbiome. The issues revealed by our results

show that the search and secondary use of the datasets is still not easy to

achieve. Since different studies can rely on different methodologies, different

datasets might not be directly comparable and precautions must be taken

before combining multiple datasets in a meta-analysis. Without some metadata,

a potentially valid dataset can not be included in a meta-analysis. Therefore it is
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essential for a researcher that wants to valorize a dataset to upload as much

information as possible together with the raw reads so as to make the dataset

reusable. To motivate researchers in uploading more information, the

submission procedure should be made as simple and guided as possible, also

to avoid misinterpretations and wrong metadata assignments. To reduce the

missingness of metadata, more fields should be made mandatory, such as

those referred to the 16S rRNA region sequenced, and new metadata should be

included, such as a field that easily discriminates biological samples from

negative controls. It also urges the need for standardization of the Taxon ID

used in microbiome studies. Guidelines should be given to avoid the use of

imprecise Taxon IDs. Efforts should also be made to associate a link to the

publication whenever it becomes available, to allow for easier and

straightforward access to this resource.

As we have stated, numerous are the aspects related to data and metadata

submission that can be improved. Some relate to the submission process itself

which can be refined to favor microbiome data reusability, while others strictly

depend on the commitment of the researcher performing the submission, who

should not overlook the relevance of this step and its importance for the whole

scientific community.

6.4.3 The value of a curated skin microbiome collection

Over the past decade, researchers have explored the intricate ecosystem of the

skin microbiome (Byrd et al., 2018), unveiling the interactions between the

microbiome players (bacteria, archaea, fungi and viruses), the skin cells, and

the host immune cells that act as barriers, constituting a defense against

pathogens invasion and inflammation (Byrd et al., 2018; Prescott et al., 2017).

Perturbations in the skin ecosystem can cause an unbalance that can even lead

to the rising of immune disorders, like allergies, dermatitis or eczema, or chronic

injuries, like ulcers. Determining the causes and eects of these processes is not

an easy task. Traditional approaches to study skin microbiome mechanisms

relies on culture-based techniques, leading to an underestimation of the actors
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and a bottle-neck selection due to the strict range of cultivable species. The

case of Staphylococcus genus can serve as an example. Being more easily

cultivable than microorganisms belonging to Corynebacterium spp. or

Propionibacterium spp., it would dominate a microbiome dataset, leading to an

underestimation of the real biodiversity (Kong and Segre, 2021). It became

obvious that to overcome culture-dependent bottlenecks and to explore the skin

microbiome as a whole, a sequencing method must be applied (Byrd et al.,

2018).

In this context, large-scale sequencing data enable microbiology researchers to

obtain deep insights in genetic and functional profiling (Byrd et al., 2018) and,

nowadays, grand challenges in microbiome science rely on large-scale data

science approaches (Kyrpides et al., 2016). Secondary analysis can be full of

potential and by-passing the need of generating new large datasets can

enormously reduce the costs associated with this kind of study. Impactful

meta-analyses have already contributed to advancing the microbiome field, as

demonstrated by numerous studies (Duvallet et al., 2017; Bisanz et al., 2019;

Kosti et al., 2020).

From the more applied and clinically relevant studies of skin health and disease

to the more theoretical works investigating microbial ecology and the holobiont

evolution, all these sub-fields of microbiome research will benefit from the

adoption of data-driven approaches based on large-datasets integration (Ross

et al., 2018). The availability of a curated collection of microbiome datasets

represents the required starting point to make this transition possible and

scalable (Wood-Charlson et al., 2020; Vangay et al., 2021).

Currently, numerous research teams around the world have put eorts in trying to

collect and harmonize data from different microbiome fields and various curated

collections of microbiome datasets have been published, like the

TerrestrialMetagenomeDB (Correa et al., 2020), the HumanMetagenomeDB

(Kasmanas et al., 2021), or the Planet Microbe (Ponsero et al., 2021). Each one

of these collections is focused on a specific topic and sometimes on a specific
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type of data and aims at providing each microbiome research sub-field with a

valuable resource to perform data-driven meta-analyses.

Based on these premises and focusing on the skin microbiome sub-field, our

work resulted in a comprehensive list of human skin microbiome datasets

enriched with metadata information related to the methodological pipelines and

the context of the dataset under study.

Skin research produces large quantities of data using a wide range of methods

and equipment that require large collaborative eorts. These research endeavors

span a broad range of disciplines and are critical to investigating the skin

physiology, functions, interactions and health status, from a broad perspective.

This can be seen in the bibliometric analysis of published papers related to the

datasets retrieved. Research areas and categories from the Web of Science

collection and Elsevier’s Scopus classifications showed a scattered distribution

of publications in different research areas, but with a higher proportion related to

the medicine-related area. As the number of studies grows, it clearly appears

that crossing the boundary between medicine and microbial ecology is the

lynchpin for a deep understanding of skin health (Callewaert et al., 2020;

Prescott et al., 2017). Indeed, a consistent proportion of the data collected is

dedicated to disease conditions, providing valuable material for clinical

researchers, but also for microbial ecologists and researchers from other fields

of research interested in studying the microbial dynamics in the skin ecological

niche. Moreover, taken together, more than half of the studies in our Data

Frame 3 collected microbiome data from healthy subjects, providing an

invaluable source of information. One of the main challenges for data

harmonization is to link the phylogenetic diversity of host-associated microbes

to their functional roles within the community and with the host. Much remains to

be learned about us as holobionts and much of the information is still kept inside

the data.

The curated list we generated can serve as a most comprehensive collection of

datasets that can be searched and queried to identify datasets of interest.
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Researchers interested in conducting meta-analyses with human skin

microbiome datasets can use these data frames as a starting point to recover

the dataset more suited for their analyses. As demonstrated by the presence of

errors in the metadata, these data frames require a curation step. Here, we

reported a curated data frame (Data Frame 3) in which we manually corrected

errors in the metadata. We also reported two non-curated data frames obtained

with the automatic search (Data Frame 1) and with a combination of manual

and automatic search (Data Frame 2). These two data frames contain a greater

number of studies and samples, however, a careful inspection of these datasets

is advised before including any one of those into a meta-analysis.

6.5 Conclusions

The aim of our effort was to help accelerate human skin microbiome research

by reducing the amount of time needed to search for datasets and metadata of

interest and at the same time favoring data reuse by maximizing the amount of

information associated with each dataset. Here we report three data frames

containing a comprehensive collection of human skin microbiome datasets

enriched with metadata recovered from different sources. The data frames are

easily explorable and can be useful for researchers interested in conducting

meta-analyses with human skin microbiome amplicon data.

Furthermore, we demonstrated that the reusability of a dataset depends on the

amount of information that can be gathered on the dataset itself, that is the

amount of metadata deposited by the authors at the time of submission. We are

aware that data sharing is increasing throughout the microbiome community, but

there are still barriers to making microbiome data truly FAIR. Metadata

standards exist, but their proper adoption by the research community is still

lagging, as also demonstrated by the NMDC community.

Skin microbiome sampling has the advantage of being non-invasive, easily

accessible, and able to provide a huge amount of meaningful information. A
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curated collection of skin microbiome datasets, enriched with study-related

metadata, could be used to investigate health-related phenotypes, oering the

potential for non-invasive diagnosis and condition monitoring. Our framework

sets the stage for new analyses implementing AI approaches focused on

understanding the complex relationships between microbial communities and

phenotypes, to predict any condition from microbiome samples. Indeed,

considering the skin microbiome topic, a few, very recent works included data

integration strategies and AI applications (Marcos-Zambrano et al., 2021;

Jaiswal et al., 2021; Carrieri et al., 2021), showing the potential held by these

approaches in advancing skin microbiome research.

As the microbiome research field is headed to become a science founded on

big-data, the necessity of developing standardized procedures to generate and

analyze data acquires importance. The adoption of standard methodologies will

help future data integration efforts for the benefit of the whole research

community. For this reason, we advocate for a concerted effort to favor

standardized microbiome research and exhaustive data sharing.

Further, with this work we want to build a foundation that places microbiome

research at the nexus of many subdisciplines within and beyond biology, as for

example dermatology, medicine and microbial ecology.

For this reason, this project has the potential to accelerate the development of

microbiome-based personalized medicine and non-invasive diagnostics.

6.6 Supplementary

Github repository will be available upon request. The pipeline is available in my

Github repository (https://github.com/giuliaago). In particular, here I provide the

list of the files with a description:

● Supplementary_file_1.csv: Comprehensive list of the manually curated

metadata with description
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● README.txt: README of our Github repository

● skiome_workflow-01.png: Figure representing the metadata retrieval

workflow

● SKIOME_pipeline.Rmd: Complete pipeline for dataset and metadata

retrieval

● Human_Skin_Datasets_Manual_Search.csv: Result of the manual

search for the datasets and metadata

● data_frames.7z: Compress file containing the three dataframes

obtained from our work
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7. Conclusions

DNA metabarcoding has great potential in several research fields of

application. However, some steps must be disentangled to exploit it fully. As I

described within Chapter 1, the reason beyond its success is the great

compromise between costs and benefits: DNA metabarcoding is still the best

approach to collect wide amount of data at several depth of investigation and

transferability on lot of matrices, from food, water, pollens, besides of course to

human samples. In this dissertation, I presented four main issues that can be

ameliorated: i) use molecular information as a main source of information when

non-bacterial molecular markers are used, ii) issues related to the taxonomy

assignment and development of strategies to enhance it, iii) pattern

reconstruction via data mining methods and iv) public data as a valuable

resource for meta-analysis and data integration projects. All the work done

keeps in mind an important message and a way of strategy: a data-centered

perspective and application.

Considering the taxonomy assignment, NCBI is still the widest collector of

molecular data, as also depicted in Chapter 2. Of course, specific reference

databases exist, but are not always updated and easily available. With ExTaxsI

(Chapter 4), we provide an easy-to-use standalone tool able to interact with

NCBI databases and personal datasets, offering instruments to standardize

taxonomy information and visualize vast quantities of data distributed on

different taxonomic levels. Visualization plots are also included, easily

shareable through HTML formats. ExTaxsI may help researchers involved in

environmental genomics fields, from phylogeographic studies to DNA

metabarcoding surveys, and also in projects related to human health, as

demonstrated with SARS‐CoV‐2 case study.

In our opinion, ExTaxsI data management and its visual interactive exploration

can really improve the experimental design phase and the awareness of the
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information available, facilitating the work and incentivizing data exploration

and sharing.

The issues related to taxonomy assignment were also depicted through the

case study of EXPO2015 (Chapter 3). Limitations in managing data were

considered and, in addition, both markers chosen and the molecular

information registered into the reference databases were discussed. Despite

these issues, I demonstrated that the power of DNA metabarcoding is related

not only to the molecular fingerprint obtained with sequencing features, but

also to the ability to collect large amounts of data, achieving a sort of freeze

frame of the environment under study. Moreover, I firmly believe that collecting

new information and submitting datasets to reference databases is mandatory

to ameliorate the comprehension of biodiversity all around the world,

implementing both our current knowledge and future research.

This last point introduces another topic of this dissertation: the data reuse

strategy. With the SKIOME Project (Chapter 6), we demonstrated that the

reusability of a dataset depends on the amount of information that can be

gathered on the dataset itself. Considering microbiome data, specifically, data

sharing is increasing throughout the microbiome community, making them

reusable, ensuring meta-analysis and data integration practices. The main

results of this work were three data frames containing a comprehensive

collection of human skin microbiome datasets enriched with metadata

recovered from different sources. Moreover, issues related to metadata

enrichment were highlighted: we still observed pitfalls to make microbiome data

truly FAIR. Metadata standards exist, but their proper adoption by the research

community is still lagging, as also demonstrated by the NMDC community. Of

course, in recent years the microbiome community made a great effort, and for

some research areas great results can be observed. However, a lot of work

must be done to fully organize and exploit microbiome data.
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Besides this, microbiome data analysis has acquired more and more

standardized procedures, so that researchers shifted the focus towards

post-processing analysis, demonstrating the potentials that 16S rRNA

metabarcoding data may offer to answer complex biological questions.

One of the areas most under investigation is the identification of species

association and interaction. Moving towards the co-occurrence reconstruction,

several tools and methods have been developed to study microbiome patterns.

Association Rule Mining is a famous and widely used supervised machine

learning technique to calculate patterns and rule between them. With the work

of microFIM (Chapter 5), I tried to disentangle this type of analysis for

microbiome pattern exploration. In particular, I depicted issues that I think must

be considered before using an ARM approach on 16S rRNA metabarcoding

data, specifically. To report them briefly: i) consciously setting the input data to

be analysed, ii) consider the use of metadata to filter the data before starting,

iii) define what is interesting for the specific case study, iv) consider

computational time, v) use suited tools and visualization strategies and, finally,

vii) setting evaluation and benchmarking strategies to retrieve sound results.

This last point is also strictly connected to make associations an evidence of

causality, an important step forward for the microbiome pattern research field.

All the works presented in this dissertation explore different aspects of

metabarcoding data. In this work, data can be used to create new knowledge,

to perform new and meta-analyses and to define biological associations.

In the last years, metagenomic and sequencing approaches have drastically

changed the way to study any type of biological problem. We collect any type

of data and we integrate different information to answer biological questions.

The future goals of these fields will not only be how to collect and analyse, but

also how to extrapolate, to integrate, to enhance the value of the data that we

have accumulated over the years.
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To really exploit these potentials we will surely have to implement the following

steps: i) the development of new strategies that ameliorate the visualization of

high intricate data; ii) the creation of user-friendly interfaces as important

resources to transfer new technologies to a wider audience; iii) the integration

of metabarcoding data, in particular from microbiome, as it has the greater

audience and the most standardized framework, to functional properties, in

order to fully exploit the metabarcoding technique; iv) the organization of data

to guarantee a fluid and direct investigation of data collections, in order to pave

the way for reproducibility, re-analysis, meta-analysis and data integration

projects; and v) great efforts to make also other molecular markers a standard

to be fully exploited. In this PhD dissertation, some steps have been taken,

depicting new solutions and potential obstacles that must be overcome.

However, other efforts are needed: interdisciplinarity and cooperation will be

fundamental to address the issues discussed and create new synergies.

One of the points that has not been addressed here but certainly of significant

importance is to transfer this knowledge to citizens, patients and companies:

the dissemination of the use of techniques such as DNA metabarcoding will be

fundamental to expand their usage and, consequently, develop stronger

frameworks that would ensure transferability and reproducibility.

Moreover, as also demonstrated by the COVID-19 pandemic that we have just

faced, data has a great value in all the research contexts. With the work of

ExTaxsI, in which we analysed the availability of information of genes related to

SARS-CoV-2 virus, data may reveal new insights and the use of metadata

associated with it may integrate important information to the data acquired.

However, interpreting data with awareness is now fundamental, especially

considering the way in which data are collected and submitted. The access

and availability of data and metadata associated is fundamental to organize the

information in our repositories. With the SKIOME Project, issues related to

metadata accessibility were presented and, currently, only with a manual
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curation approach the access was guaranteed. Of course, other automatic

strategies can be implemented, but the path is not straightforward, as several

tests and benchmarks must be done to reconstruct metadata associated when

they are not available.

In general, as sequencing technologies have great potential in several research

fields, showing and integrating a data-centered perspective in biological

projects will be essential to make researchers and partners aware about the

complexity of all the work behind the world of data. Thanks to dissemination

and education, both citizens and researchers would foster future data

collection, thus making the researchers' work fully useful and usable,

expanding real and concrete applications.
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