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Abstract—In this paper, a new modeling technique is 

proposed for extracting small-signal lumped-element 

equivalent-circuit models for microwave transistors. The 

proposed procedure is based on using an optimization 

approach that is improved by targeting a quasi-static 

behavior as additional objective function rather than only 

minimizing the error between the simulated and measured 

scattering parameters. The validity of the developed 

modeling methodology is successfully demonstrated by 

considering a 0.25x1000 m2 gallium nitride (GaN) high-

electron-mobility transistor (HEMT) as a case study. 
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I. INTRODUCTION  

The small-signal lumped-element equivalent-circuit 
modeling of microwave transistors has been much debated 
and is still being debated [1-8], since this area of research is of 
great interest but also very challenging. The large interest 
comes mostly from the fact that the small-signal lumped-
element equivalent-circuit models often act as foundation for 
large-signal and noise modeling [9-15]. However, small-
signal lumped-element equivalent-circuit modeling becomes 
more and more challenging due to the continuous increase in 
transistor operating frequencies and gate width enlargement, 
in order to enable higher-frequency and higher-power 
applications. The onset of the distributed effects [16], [17] and 
non-quasi-static (NQS) effects [18], [19] make the model 
extraction much more critical. Over the years, optimization-
based model identification has demonstrated to be a powerful 
modeling tool to accomplish this critical task [20-24]. 

As well known, the local minima are typical problems with 
this deterministic method, especially for local approaches 
including gradient and simplex methods [25]. The 
optimization process could stack in a local minimum instead 
of attaining the global solution and thus physical non-relevant 
values could be obtained [3]. The performance depends on the 
initial guess and thus many techniques have been reported to 
address this problem. One of these techniques is the hybrid 
approach based on combining the optimization and direct 
methods [23]. The direct method could be used to initiate the 
extraction process by generating reliable estimation for the 
equivalent-circuit elements, which would then be used as an 
appropriate starting point for the local optimization process 
[24]. The reliability of the initial and thus the final values 
depends on the base measurements. The direct extraction 
procedure can be critically sensitive to the measurement 
uncertainty, which is less critical for the optimization 
methods. 

In this paper, the proposed optimization-based modeling 
methodology deals with the local minima problem by using 
the global optimization approach instead of the local one. The 

global optimization techniques are based on the multiple-point 
initialization instead of the single starting point used in the 
local methods. In addition, these points are randomly 
generated to cover the whole search space and thus to avoid 
the initial guess dependency. In general, these techniques have 
no local minima problem. The efficiency of the global 
techniques to find the global optimum values depends on their 
exploration and exploitation capability [26]. Some of these 
global optimization methods, such as particle swarm 
optimization (PSO) [27], have stronger exploitation and thus 
they are faster with higher rate of convergence. However, the 
PSO exploration is poor and thus could get stuck in local 
minima, especially for a large-scale problem with higher 
number of variables [28]. On the other side, the genetic 
algorithm (GA) optimization approach has stronger 
exploration capability and thus it can be used for complicated 
problems [29]. Other global optimization techniques, such as 
artificial bee colony (ABC), are in between with respect to 
PSO and GA [30], [32]. The targeted global optimum (best 
solution) is interrelated to the objective function definition. 
This could be restricted to be the error function between the 
measured and simulated data. In this case, the extraction 
process will target the model accuracy to find the best fitting. 
However, this could not guarantee the reliability of the 
extracted values.  

In this paper, the critical problem of the model parameter 
reliability is successfully addressed by developing a new 
approach based on targeting quasi-static behavior as an 
additional objective function. This is because the NQS effects 
can be disregarded at relatively low frequencies, since they 
represent the inertia of the intrinsic transistor in responding to 
rapid voltage changes and thus, they become more evident 
with increasing frequency. As a matter of fact, at different 
parasitic networks correspond different intrinsic descriptions; 
the capability of guaranteeing the intrinsic quasi-static 
behavior at higher frequencies definitely represents an added 
value for the model. In fact, it is worth mentioning that NQS 
effects [33-35] are quite complex to model and do not scale 
with device periphery, so an intrinsic model for which NQS 
effects appear prematurely is inherently less accurate and 
scalable. The proposed technique has been validated by using 

a 0.25x1000 m2 GaN HEMT on SiC substrate but can be 
applicable to other types of field-effect transistors (FETs), 
since this approach is technology-independent. 

This paper is structured as follows. The device-under-test 
and the experiments are described in Section II, two different 
model topologies are presented in Section III, the developed 
optimization based modeling techniques and results are 
discussed in Section IV, the modified techniques and the 
achieved improvements are presented in Section V, and 
finally, conclusions are given in Section VI. 
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II. DEVICE UNDER TEST AND CHARACTERIZATION 

The analyzed device is an on-wafer interdigitated HEMT 
based on an AlGaN/GaN heterostructure grown on SiC 

substrate. This device has a gate length of 0.25 m and a gate 

width of 8x125 m. The fabrication process is the GH25-10 
technology by United Monolithic Semiconductors (UMS) 
[36]. Table I shows the maximum ratings for this technology 
whereas Fig. 1(a) shows a picture of the characterized device. 

Table I. Maximum ratings for 8x125-µm HEMT device. 

Parameter Unit Recommended Maximum 

Drain-Source Biasing 

Voltage @120 mA/mm 
V 30 55 

Gate-Source Voltage V -20 -25 

Drain-Gate Voltage V 80 120 

Gate current mA/finger 2 60 

ft GHz 30 - 

fmax GHz > 50 - 

 
Y-parameter measurements for the device at “cold” pinch-

off bias condition (VGS = -3 V and VDS = 0 V) are presented in 
Fig. 1(b). The evidence of parasitic effects is clear from the 
two resonances in the measured input and output impedances 
Y11 and Y22. The 1st resonance is due to the interaction 
between the shunt capacitances and series inductances, while 
the 2nd resonance around 15 GHz is due to the influence of 
series resistances. 

  
       (a)                                                 (b) 

Fig. 1. (a) Picture of a 0.25x1000 m2 GaN HEMT used during the 
experimental characterization. (b) Y-parameter measurements of a 0.25x1000 

m2 GaN HEMT at the “cold” pinch-off condition (VGS = -3 V and VDS = 0 

V). 

III. EQUIVALENT CIRCUIT MODEL 

Two small-signal models are investigated (see Fig. 2). The 
first model in Fig. 2(a) is the standard one that considers only 
the pad capacitances, while the other interconnection 
capacitances are absorbed in the intrinsic capacitances. 
Frequency range up to 15 GHz was used for extracting the 
extrinsic elements of the model. Higher frequency range could 
stimulate extra distributed capacitive parasitic effects and in 
this case, the other model in Fig. 2(b) has to be implemented. 
In this extended model, the additional elements Cgsi, Cdsi, and 
Cgdi are meant to consider the impact of the finger 
interconnection capacitances, which becomes more evident at 
high frequency.  

IV. OPTIMIZATION BASED METHOD 

The optimization-based extraction approach was 
developed and applied to the considered 1-mm GaN HEMT 
on SiC substrate. Three different optimization techniques 
were investigated: PSO, GA, and ABC. The following three 

subsections introduce the proposed procedures and their 
extraction results. 

 
(a) 

 
(b) 

Fig. 2. Small-signal lumped-element equivalent-circuit models: (a) the 

standard and (b) the extended configurations. 

A. PSO Optimization Based Method 

As well, know, the PSO optimization is based on 
initializing a population of candidate solutions, called swarm 
of particles [27]. These particles move within the search-space 
according to mathematical formulas. Their movements over 
the entire search-space are guided by their local and global 
best positions. The values of these parameters are updated at 
each movement of the swarm and the process is repeated till 
the best position (solution) is found. As illustrated in Fig. 3, 
our PSO-based extraction procedure starts by using an initial 
population of 200 candidate solutions. S-parameters at “cold” 
pinch-off condition (VGS = -3 V and VDS = 0 V) are used to find 
lower/upper boundaries for the extrinsic capacitances; while 
S-parameters at unbiased condition (VGS = 0 V and VDS = 0 V) 
are used to estimate lower/upper boundaries for the extrinsic 
inductances and resistances. The maximum number of 
iterations is fixed at 100; however, the program has another 
termination criterion, which is the relative error whose 
minimum value has been fixed at 10-5. The relative error is 
monitored during the optimization process. If the relative error 
is almost constant over 25 iterations (no further reduction for 
the error), then the optimization process will be stopped. The 
small-signal model elements are optimized to minimize the 
error (maximize the fitness) between the simulated and 
measured S-parameters at the “cold” pinch-off condition. The 
error is defined as follows: 

𝜀𝑟 =
1

𝑁
‖∑ ∑ [(𝑅𝑒(𝑆𝑖𝑗,𝑛

𝑚 − 𝑆𝑖𝑗,𝑛
𝑝

))2 +𝑖=1,2
𝑗=1,2

𝑁
𝑛=1

                                       (𝐼𝑚(𝑆𝑖𝑗,𝑛
𝑚 − 𝑆𝑖𝑗,𝑛

𝑝
))2]

1

𝑊𝑖𝑗
‖           (1) 

where N is the total number of the considered frequency 

points and Sm and Sp are the measured and simulated S-

parameters, respectively. 𝑊𝑖𝑗 is a weighting factor used to de-
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emphasise data points that show high uncertainty. The impact 

of measurement uncertainty increases in the data regions with 

high reflection and/or low transmission coefficient [37]. The 

procedure was implemented in MATLAB and applied to both 

models (see Figs. 2(a) and 2(b)). A computer with 1.9 GHz 

Core-i7 processor and 16 GB RAM was used. The extraction 

results are listed in Table II for the standard model and in 

Table III for the extended one. In the same tables, information 

about the minimum error, number of iterations, and the 

execution time are also reported. Fig. 4 shows the comparison 

between measurements and model simulations at “cold” 

pinch-off condition for the frequency range going from 0.1 to 

15 GHz. 

 

Fig. 3. Flow chart for the PSO-based extraction procedure. 

Table II. Extracted circuit elements, minimum error, number of iterations, and 
execution time for the standard model for the 1-mm GaN on SiC HEMT at 
the “cold” pinch-off bias condition (VGS = -3 V and VDS = 0 V) using PSO-, 
GA-, and ABC-based methods. 

Model  

Element 

PSO GA ABC 

Cgs (fF) 908.4 888 900.5 

Cgd (fF) 438.5 426 427 

Cds (fF) 624.2 613 638.5 
Rg (Ω) 0.46 0.45 0.47 

Rd (Ω) 2.11 2.14 2.15 

Rs (Ω) 0.64 0.54 0.66 
Lg (pH) 148.8 151 151.5 

Ld (pH) 115 116 116 

Ls (pH) 8.0 7.9 8.4 
Cgp (fF) 67.5 95 6.4 

Cdp (fF) 81.6 74 64.7 

Error 1.23 
e-01 

1.7 
e-02 

1.22 
e-01 

No. of Iterations 29 60 54 

Time (s) 160 480 451 

As can be noted, at this frequency range the standard 
model cannot efficiently characterize the contributions of the 
parasitic capacitances. This could be observed from the 
overestimated values of the intrinsic capacitances in Table II. 
Typically, the intrinsic and extrinsic capacitances have 
comparable values for “cold” pinched-off devices [8]. The 
extended model is able to provide a more realistic estimation 
of the intrinsic capacitances. However, the extraction 
procedure fails to provide reliable distribution for the extrinsic 
capacitance between the pad and inter-connection 

capacitances. This is clear from the zero values of the pad 
capacitances Cgp, Cdp and Cgdp in Table III. As shown in Fig. 
4, the simulation results confirm our observation of higher 
accuracy of the extended model at this frequency range with 
respect to the standard one. However, as it is well known, the 
reliability of the model extraction is not guaranteed with 
conventional error-based optimization methods. The targeted 
error function in equation (1) relies only on the fitting of the 
measurements, which could be achieved even with zero values 
for some model elements, as we have seen in Table III. 

Table III. Extracted circuit elements, minimum error, number of iterations, 
and execution time for the extended model for the 1-mm GaN on SiC HEMT 
at the “cold” pinch-off bias condition (VGS = -3 V and VDS = 0 V) using PSO-
, GA-, and ABC-based methods. 

Model  
Element 

PSO GA ABC 

Cgs (fF) 110.2 90.1 103 
Cgd (fF) 417.4 298.5 355.2 

Cds (fF) 218.9 55.1 193.6 

Rg (Ω) 2.34 3.44 2.83 

Rd (Ω) 1.81 1.99 1.88 

Rs (Ω) 1.19 0.97 1.07 

Lg (pH) 151.7 151.7 151.8 
Ld (pH) 120.1 120.1 119.4 

Ls (pH) 8.6 8.6 8.55 

Cgp (fF) 0.0 0.0 0.0 
Cdp (fF) 0.0 2.0 9.8 

Cgdp(fF) 0.0 0.0 0.0 

Cgsi (fF) 833.1 859.4 840 
Cdsi (fF) 457 620 478 

Cgdi(fF) 0.0 122 64.9 

Error 2.2 

e-02 

1.71 

e-02 

2.19 

e-02 

No. of 

Iterations 

44 60 100 

Time (s) 230 480 733 

 

 
                               (a)                                                     (b) 

Fig. 4. Comparison between (symbols) measurements at the “cold” pinch-off 
condition (VGS = -3 V, VDS = 0 V) and (lines) simulations based on using the 

PSO optimization applied to: (a) the standard model and (b) the extended one. 

The frequency range goes from 0.1 to 15 GHz. 

B. GA Optimization Based Method 

The same procedure has been repeated using genetic 
algorithm optimization and applied to both the standard and 
extended models. GA has extra steps with respect to PSO. 
These include additional crossing (reproduction) and mutation 
processes, which significantly improve the exploration 
capability of the GA [29]. Fig. 5 presents the implemented 
GA-based extraction method. The same objective function in 
equation (1) was targeted.  

Here, the number of initial populations is increased to 
1000, which is recommended for this kind of optimization 
[38]. The other two parameters, namely the maximum number 
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of iterations and the minimum relative error, are kept as they 
were for the PSO procedure. The results of the GA procedure 
for the standard and extended models are listed in Tables II 
and III, respectively. As expected, the execution time is longer 
than for PSO and this is due to the mentioned extra operations 
of crossing and mutation. The extracted values are nearly 
equal to the ones obtained using PSO. Fig. 6 shows the model 
simulations at “cold” pinch-off condition (VGS = -3 V and VDS 
= 0 V).  

 
Fig. 5. Flow chart for the GA-based extraction procedure. 

 
                                  (a)                                         (b) 

Fig. 6. Comparison between (symbols) measurements at the “cold” pinch-off 
condition (VGS = -3 V, VDS = 0 V) and (lines) simulations based on using the 

GA optimization applied to: (a) the standard model and (b) the extended one. 

The frequency range goes from 0.1 to 15 GHz. 

As can be noted, both PSO and GA approaches provide 
almost the same accuracy with similarly low reliability. The 
cost of using PSO for this small-scale problem is lower than 
GA with lower number of iterations and faster process. For 
larger-scale problem, the GA outperform the PSO [38] and 
this is clear from the obtained value of Cgdi with respect to the 
zero-value using PSO. 

C. ABC Optimization Based Method 

For further investigation, the ABC-based optimization has 
been applied also to both the standard and extended models. 
Both PSO and ABC are swarm intelligent methods, and they 
start by generating initial candidate solutions to explore the 
whole search-space and then, by utilizing mathematical 
operators, to exploit and produce new solutions [30]. As was 
mentioned, in case of PSO the updated movements (velocity) 
and positions provide new solutions. In case of ABC, the 
whole swarm is subdivided into three groups of bees: scout, 
employed, and onlooker bees. The scouts randomly generate 
solutions (exploration), while the onlooker and employed are 
responsible for their selection and updating (exploitation), 

respectively [31]. The employed bees produce new solutions 
based on the information from the scout and onlooker bees. 
The ABC extraction procedure is illustrated by the flow chart 
in Fig. 7.  

 

Fig. 7. Flow chart for the ABC-based extraction procedure. 

The complexity of this technique is in between the PSO 

and GA procedures. Here only the initial population was 

changed to be 500, which could be enough for this case. The 

same objective function in equation (1) was targeted. As can 

be seen from the listed results in Tables II and III, this 

technique provides nearly similar values to the ones obtained 

using the PSO and GA procedures. Fig. 8 presents a 

comparison between the measured and simulated “cold” 

pinch-off S-parameters. As can be seen, the performance of 

the ABC technique is in between the PSO and GA procedures.  

 
                      (a)                            (b) 
Fig. 8.  Comparison between (symbols) measurements at the “cold” pinch-off 
condition (VGS = -3 V, VDS = 0 V) and (lines) simulations based on using the 
ABC optimization applied to: (a) the standard model and (b) the extended one. 
The frequency range goes from 0.1 to 15 GHz. 

For the standard model with smaller number of variables, 

GA and ABC have the same performance with same rate of 

convergence and speed of processing. For the extended model 
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with larger number of elements, GA outperforms ABC, and 

this could be noted from the lower rate of convergence and 

longer execution time of the latter. This observation has been 

reported in [32], which confirms better performance of GA in 

case of larger size problem having a higher number of 

optimization variables. 

In general, the reliability of parameter extraction could be 
investigated by comparing the intrinsic capacitances with the 
pad capacitances. This could be assessed also by the non-zero 
values of the model elements. Typically, under “cold” pinch-
off, the intrinsic capacitances, such as Cgs, show values 
comparable to the total extrinsic capacitances [8]. The 
extraction results using all three techniques show unreliable 
distribution for the total capacitances between Cgs (≈ 0.9 pF) 
and Cpg (≈ 0.1 pF) for the case of the standard model. In case 
of the extended model, all techniques show non reliable zero 
values for the pad and inter-electrode capacitances. All 
techniques target the minimum error between the measured 
and simulated S-parameters. Here it is clear that targeting only 
the fitting error is not enough to provide reliable extraction 
results.  

Table IV. Extracted intrinsic elements of lumped and extended models for 1-
mm GaN on SiC HEMT at active bias condition of VGS= -1 V and VDS=12.5 
V using PSO based method. 

Model  

Element 

Standard 

Model 

Extended  

Model 

Cgs (fF) 1700 892 

Cgd (fF) 169 162 
Cds (fF) 732 138 

Ri (Ω) 0.38 9.55 

Rgd (Ω) 33.6 12.3 
Gm (mS) 292 336.6 

Gds (mS) 10.6 12.6 

τ (ps) 0.0 3.95 
Ggsf (mS) 0.04 0.05 

Ggdf (mS) 0.0 0.0 

Error 1.11 

e-01 

2.25 

e-01 

 

The model identification procedures have been also 
evaluated in terms of their reliability when de-embedding the 
extrinsic parasitic effects. The frequency dependency of the 
intrinsic elements is an indicator of parasitic effects, which 
may not have been properly removed. This might result in a 
gradual increase or decrease of the values of the intrinsic 
elements versus frequency. Fig. 9 shows the curves of intrinsic 
elements at the active bias condition of VGS = -1 V and VDS = 
12.5 V, where the values were obtained after de-embedding 
the extrinsic elements in case of both standard and extended 
models. Here PSO based extracted values are used but the 
same frequency-dependent effect is observed with GA and 
ABC based ones. As can be seen, for both models the 
extraction procedure does not accurately characterize and then 
de-embed the parasitic effects. This of course will result in 
frequency dependency of the intrinsic part, which is violating 
the quasi-static assumption required for an accurate 
characterization of the intrinsic behavior of the transistor. The 
extracted intrinsic elements at this bias condition are listed in 
Table IV. The values of these elements are statistically 
averaged by means of linear regression [8]. The model 
accuracy is demonstrated by fitting the measured S-
parameters at the same considered active bias condition and 
the obtained results are presented in Fig. 10. The optimization-
based procedures have better performance with the standard 

model and this could be observed from its lower fitting error, 
with respect to the extended model (see Table IV).  

 
(a) 

 
(b) 

Fig. 9. Intrinsic elements versus frequency for a 1-mm GaN on SiC HEMT at 

the active bias condition of VGS = -1 V and VDS = 12.5 V using PSO-based 

method applied to: (a) the standard model and (b) the extended one.  

 
                             (a)                                        (b) 

Fig. 10. Comparison between (symbols) measurements at the active bias 

condition of VGS = -1 V, VDS = 12.5 V and (lines) simulations based on using 
the PSO optimization applied to: (a) the standard model and (b) the extended 

one. The frequency range goes from 0.1 to 20 GHz. 

V.  IMPROVED OPTIMIZATION BASED METHOD 

The same optimization procedures have been repeated 
with an improved formulation for the objective function. Here, 
the quasi-static behavior of the intrinsic transistor has been 
targeted in addition to the fitting error. Thus, the error 
objective function in equation (1) is extended by adding the 
normalized standard deviation of the intrinsic elements at 
typical active operating bias conditions on a 50-Ω dynamic 
load line (see Fig. 11). The lower frequency-dependence 
(deviation) of the intrinsic parameters is a measure for 
accuracy on characterizing and de-embedding the device 
parasitic effects. The error function is defined as: 

𝜀 = 𝜀𝑟 + 𝑘1𝜎𝐶𝑔𝑠 + 𝑘2𝜎𝐶𝑔𝑑 + 𝑘3𝜎𝐶𝑑𝑠 + 𝑘4𝜎𝐺𝑚       (2) 
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where, 𝜎𝐶𝑔𝑠 , 𝜎𝐶𝑔𝑑 , 𝜎𝐶𝑑𝑠 , and 𝜎𝐺𝑚  are the normalized mean 

standard deviations of Cgs, Cgd, Cds, and Gm, respectively, at 
different bias conditions and 𝜀𝑟 is the original error function 
in (1).  

 
Fig. 11. Illustration of three typical active operating bias conditions on (red) a 

50-Ω dynamic load line in conjunction with (blue) the measured DC IV 

characteristics of the studied 0.25x1000 m2 GaN HEMT on SiC substrate. 

Typical bias conditions of A, AB, and B classes of operation 
were included (see Fig. 11) and thus, 
𝜎𝐶𝑔𝑠 , 𝜎𝐶𝑔𝑑 , 𝜎𝐶𝑑𝑠, 𝑎𝑛𝑑 𝜎𝐺𝑚 are calculated as follows: 

𝜎𝐶𝑔𝑠 = √
1

3
[(

𝜎𝐶𝑔𝑠,𝐴

µ𝐶𝑔𝑠,𝐴
)

2

+ (
𝜎𝐶𝑔𝑠,𝐴𝐵

µ𝐶𝑔𝑠,𝐴𝐵
)

2

+ (
𝜎𝐶𝑔𝑠,𝐵

µ𝐶𝑔𝑠,𝐵
)

2

]  (3) 

𝜎𝐶𝑔𝑑 = √
1

3
[(

𝜎𝐶𝑔𝑑,𝐴

µ𝐶𝑔𝑑,𝐴
)

2

+ (
𝜎𝐶𝑔𝑑,𝐴𝐵

µ𝐶𝑔𝑑,𝐴𝐵
)

2

+ (
𝜎𝐶𝑔𝑑,𝐵

µ𝐶𝑔𝑑,𝐵
)

2

] (4) 

𝜎𝐶𝑑𝑠 = √
1

3
[(

𝜎𝐶𝑑𝑠,𝐴

µ𝐶𝑑𝑠,𝐴
)

2

+ (
𝜎𝐶𝑑𝑠,𝐴𝐵

µ𝐶𝑑𝑠,𝐴𝐵
)

2

+ (
𝜎𝐶𝑑𝑠,𝐵

µ𝐶𝑑𝑠,𝐵
)

2

] (5) 

𝜎𝐺𝑚 = √
1

3
[(

𝜎𝐺𝑚,𝐴

µ𝐺𝑚,𝐴
)

2

+ (
𝜎𝐺𝑚,𝐴𝐵

µ𝐺𝑚,𝐴𝐵
)

2

+ (
𝜎𝐺𝑚,𝐵

µ𝐺𝑚,𝐵
)

2

] (6) 

 
where σ and µ are the standard deviation and mean values of 
the intrinsic element, respectively. k1, k2, k3, and k4 in (2) are 
experimentally found scaling factors to insure proper 
weighted summation for the error and the standard deviations. 
Initially, the optimisation process is started by just including 
𝜀𝑟 to monitor its range. Then, the scaling factors are selected 
to have the same range of 𝜀𝑟 and the process is reaped to 
minimize the whole error ε defined by (2). The results of the 
model extractions with the modified objective function for the 
three optimization techniques are listed in Tables V and VI for 
the standard and extended models, respectively. The 
extraction results for the standard model are similar to the 
previously extracted ones and listed in Table II. Adding more 
restrictions to the objective function did not provide further 
improvement for the model accuracy. The reliability of 
extraction has not been improved either and this could be 
attributed to the simplicity of the model topology. However, it 
is interesting to see that the rate of convergence for both GA 
and ABC was improved with the modified objective function. 
This could be observed from the shorter execution times in 
Table V with respect to the presented values in Table II. This 
could be attributed to the multi-objective formulation of the 
error function, which, as it was reported in [39], improves the 
rate of convergence. For this multi-finger device with a large 
size periphery, the standard model cannot provide reliable 
modeling even with improved formulation of the error 
function. This justification is supported by the results in Table 

VI for the extended model. The optimization procedures with 
the improved error function work definitely well with the 
extended model. This could be observed from the non-zero 
values of the inter-electrode capacitances Cgsi, Cdsi, and Cgdi. 
Their values are also realistic to reflect their stronger impact 
for this device of ten inter-connected fingers. The value of Cdsi 
with respect to Cgsi is higher and this of course is because of 
the wider area of the drain manifold. This improved model 
procedure showed more accurate fitting for the measurements 
(see Figs. 12-14) and lower error (see Table VI) with respect 
to the listed fitting error in Table III.     

Table V.  Extracted circuit elements, minimum error, number of iterations, 
and execution time for the standard model for the 1-mm GaN on SiC HEMT 
at the “cold” pinch-off bias condition (VGS = -3 V and VDS = 0 V) using 
improved PSO-, GA-, and ABC-based methods. 

Model  
Element 

Mod. 
PSO 

 Mod. 
GA 

 Mod. 
ABC 

Cgs (fF) 908  907.9  908 
Cgd (fF) 439.5  439.5  439.5 

Cds (fF) 622  622  622 

Rg (Ω) 0.47  0.47  0.47 
Rd (Ω) 2.1  2.1  2.1 

Rs (Ω) 0.63  0.63  0.63 

Lg (pH) 148.8  148.8  148.8 
Ld (pH) 114.7  114.7  114.7 

Ls (pH) 8.0  8.0  8.0 

Cgp (fF) 66.7  66.6  66.7 

Cdp (fF) 86.4  87.0  86.9 

Error 1.39 

e-01 

 1.39 

e-01 

 1.39 

e-01 

No. of 
Iterations 

39  27  27 

Time (s) 302  245  292 

   

 
                            (a)                                                       (b) 

Fig. 12.  Comparison between (symbols) measurements at the “cold” pinch-

off condition (VGS = -3 V, VDS = 0 V) and (lines) simulations based on using 

the improved PSO optimization applied to: (a) the standard model and (b) the 

extended one. The frequency range goes from 0.1 to 15 GHz. 

 
                           (a)                                                          (b) 

Fig. 13.  Comparison between (symbols) measurements at the “cold” pinch-
off condition (VGS = -3 V, VDS = 0 V) and (lines) simulations based on using 

the modified GA optimization applied to: (a) the standard model and (b) the 

extended one. The frequency range goes from 0.1 to 15 GHz. 
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The optimization-based procedure with modified objective 

function has been also validated in terms of the reliable 

modeling under active bias condition. The extrinsic elements 

for both models have been de-embedded to access the intrinsic 

part of the device. Then, the intrinsic elements are extracted 

by means of curve fitting. Fig. 15 shows intrinsic elements 

versus frequency for both models. 

Table VI.  Extracted circuit elements, minimum error, number of iterations, 
and execution time for the extended model for the 1-mm GaN on SiC HEMT 
at the “cold” pinch-off bias condition (VGS = -3 V and VDS = 0 V) using 
improved PSO-, GA-, and ABC-based methods. 

Model  

Element 

Mod. 

PSO 

 Mod. 

GA 

 Mod. 

ABC 

Cgs (fF) 672  591  672 

Cgd (fF) 414  381  414 

Cds (fF) 282  295.1  282 
Rg (Ω) 0.72  0.91  0.74 

Rd (Ω) 2.1  2.1  2.1 

Rs (Ω) 0.74  0.73  0.74 
Lg (pH) 148  148.5  148.4 

Ld (pH) 116  116.2  116.2 

Ls (pH) 8.9  8.9  8.9 
Cgp (fF) 49  50  49.0 

Cdp (fF) 34  34.3  34.6 
Cgdp(fF) 22  21.8  21.8 

Cgsi (fF) 242  323.3  241.8 

Cdsi (fF) 372  359.1  372.1 

Cgdi(fF) 22  55.3  21.8 

Error 7.67 

e-027 

 7.7 

e-02 

 7.68 

e-02 

No. of 
Iterations 

36  39  52 

Time (s) 327  292  539 

 

 
                           (a)                                                          (b) 

Fig. 14. Comparison between (symbols) measurements at the “cold” pinch-

off condition (VGS = -3 V, VDS = 0 V) and (lines) simulations based on using 

the modified ABC optimization applied to: (a) the standard model and (b) the 

extended one. The frequency range goes from 0.1 to 15 GHz. 

Table VII. Extracted intrinsic parameters of standard and extended models for 
the 1-mm GaN on SiC HEMT at active bias condition of VGS = -1 V and VDS 
= 12.5 V using the improved PSO procedure. 

Model  
Element 

Standard 
Model 

Extended  
Model 

Cgs (fF) 1697 1489 

Cgd (fF) 169 137 

Cds (fF) 726 294 

Ri (Ω) 0.4 1.68 
Rgd (Ω) 33 17.5 

Gm (mS) 291.9 298.1 

Gds (mS) 10.5 10.8 
τ (ps) 0 2.3 

Ggsf (mS) 0.04 0.04 

Ggdf (mS) 0.0 0.0 

Error 1.1 

e-01 

1.61 

e-01 

 
                                               (a) 

 
(b) 

Fig. 15. Intrinsic elements versus frequency for a 1-mm GaN on SiC HEMT 
at the active bias condition of VGS = -1 V and VDS = 12.5 V using modified 

PSO applied to: (a) the standard model and (b) the extended one. 

There is no further improvement for the standard model 
because of almost the same extrinsic elements. Instead, there 
is a significant improvement for the extended model, which 
shows lower frequency dependency. This could be also 
observed from listed error in Tables IV and VII. It means that 
the improved procedure is more efficient in charactering and 
removing parasitic effects with respect to the standard error-
fitting based approach. As can be seen also in Fig. 16, a more 
accurate fitting with the measurements is obtained. This also 
noted from presented error in Tables IV and VII. Table VII 
lists extracted intrinsic elements at active bias condition in 
saturation region. The results are realistic and reflect the 
unsymmetrical capacitance distribution at this bias condition. 
Also, reliable values are obtained for Ri, Rgd and τ.  

 
                          (a)                                                        (b) 

Fig. 16. Comparison between (symbols) measurements at the active bias 

condition of VGS = -1 V, VDS = 12.5 V and (lines) simulations based on using 
the modified PSO optimization applied to: (a) the standard model and (b) the 

extended one. The frequency range goes from 0.1 to 20 GHz. 

VI. CONCLUSION 

 A reliable optimization method for small-signal 
equivalent-circuit model extraction has been theoretically 
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developed and experimentally applied to the GaN HEMT 
technology. The improvement of the proposed technique is 
achieved by targeting not only the maximization of the fitting 
with S-parameter measurements but also a quasi-static 
behavior of the intrinsic device as an objective function for 
parameter determination. This allows making the modeling 
results more reliable. As the modeling methodology is 
technology-independent, it can be applied to different types of 
FETs.     
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