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A B S T R A C T

This paper presents a new computer code developed to solve the 1D magnetotelluric (MT) inverse problem using a
Bayesian trans-dimensional Markov chain Monte Carlo algorithm. MT data are sensitive to the depth-distribution
of rock electric conductivity (or its reciprocal, resistivity). The solution provided is a probability distribution - the
so-called posterior probability distribution (PPD) for the conductivity at depth, together with the PPD of the
interface depths. The PPD is sampled via a reversible-jump Markov Chain Monte Carlo (rjMcMC) algorithm, using
a modified Metropolis-Hastings (MH) rule to accept or discard candidate models along the chains. As the optimal
parameterization for the inversion process is generally unknown a trans-dimensional approach is used to allow the
dataset itself to indicate the most probable number of parameters needed to sample the PPD. The algorithm is
tested against two simulated datasets and a set of MT data acquired in the Clare Basin (County Clare, Ireland). For
the simulated datasets the correct number of conductive layers at depth and the associated electrical conductivity
values is retrieved, together with reasonable estimates of the uncertainties on the investigated parameters. Results
from the inversion of field measurements are compared with results obtained using a deterministic method and
with well-log data from a nearby borehole. The PPD is in good agreement with the well-log data, showing as a
main structure a high conductive layer associated with the Clare Shale formation.

In this study, we demonstrate that our new code go beyond algorithms developend using a linear inversion
scheme, as it can be used: (1) to by-pass the subjective choices in the 1D parameterizations, i.e. the number of
horizontal layers in the 1D parameterization, and (2) to estimate realistic uncertainties on the retrieved param-
eters. The algorithm is implemented using a simple MPI approach, where independent chains run on isolated CPU,
to take full advantage of parallel computer architectures. In case of a large number of data, a master/slave
appoach can be used, where the master CPU samples the parameter space and the slave CPUs compute forward
solutions.
1. Introduction

Magnetotellurics is an electromagnetic (EM) passive method that
infers the electrical conductivity of the subsurface structures by
measuring orthogonal components of electric and magnetic fields on the
Earth surface and relies on accurate data and a robust inversion algo-
rithm. Knowledge of subsurface electrical conductivity distribution also
plays a major role in exploration geophysics as well as groundwater
monitoring. Most of the recent MT inversion works explore three-
dimensional (3D) models, obtained by partitioning the subsurface in
large regions of constant electrical conductivity and solving the inverse
nd Sedimentology, University of Vien
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problem via a linearization of the forward MT equation [e.g. Kelbert
et al., 2014]. The one-dimensional (1D) MT inverse problem has been
solved following a broad range of different approaches, both linearized
and stochastic [e.g. Grandis et al., 1999]. However linearized approaches
provides weak solutions, whilst popular stochastic approaches (e.g. Ge-
netic Algorithms) rely on appropriate parameters (i.e. number of layers in
partition, model space dimension, number of iterations) chosen ad-hoc,
often not justified by the data. One way to avoid the bias in obtained
models caused by a poor selection of the inversion parameters is provided
by inverting the data within a Bayesian framework, so that the algorithm
itself can auto-adjust the parameters based on the data. For example
na, Vienna, Austria.
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Table 2
Synthetic model used in the algorithm test 2. Layers are numbered top to bottom.

Layer number Layer thickness (km) Resistivity (Ω⋅m)

1 0.60 250
2 0.40 25
3 2.00 100
4 0.25 10
5 ∞ 1000

E. Mandolesi et al. Computers and Geosciences 113 (2018) 94–105
Malinverno (2002) use Bayesian inversion to properly select an appro-
priate number of layers in a direct current EM method. More recently
Minsley (2011) solved a different EM inverse problem (frequency domain
electromagnetic–FDEM: it makes use of a loop-loop active source.) by the
adopting of a reversible jump Markov chain Monte Carlo (rjMCMC) al-
gorithm. However, despite the description of rjMCMC algorithms in
geophysics literature and the availability of several codes and libraries
for its general implementation (e.g. http://www.iearth.org.au/codes/rj-
MCMC/), is not publicly available to date (to the authors knowledge) a
rjMCMC implementation that solves the MT 1D inverse problem.

RjMCMC algorithm, developed at first by Green (1995), has been
used to invert data from very diverse geophysics methods (see Sambridge
et al. (2013) for a review). Examples exists in seismology (Bodin et al.,
2012; Piana Agostinetti et al., 2015), thermocronology (Stephenson
et al., 2006; Gallagher et al., 2009), stratigraphy (Charvin et al., 2009),
paleoclimate records (Hopcroft et al., 2007, 2009), mixture modelling in
geochronology (Jasra et al., 2006) geoacoustics (Dettmer et al., 2010,
2012; Steininger et al., 2013), marine electromagnetic inversion (Ray
and Key, 2012), mantle viscosity inversion (Rudolph et al., 2015) to cite
some works in tens.

The present paper develops a trans-dimensional Monte Carlo algo-
rithm for MT 1D inversion in a Bayesian framework, as well as its com-
puter parallel implementation. The mutual independence of the models
in the Markov chains allows the parallelization of the code with mini-
mum effort. Test are performed with either simulated data and field data
from Clare Basin (Ireland).

2. Material and methods

The algorithm presented in this study is composed of two main codes:
a rjMcMC sampler for extracting model according to the PPD, and a MT
1D forward solver, for computing synthetic MT responses. Here we tested
our routines against two synthetic simulations, using synthetic models
previously adopted in literature, and field data recorded in Western
Ireland.

2.1. Simulation and field details

The models for simulations were selected from Malinverno (2002)
and Cerv et al. (2007). The first synthetic model is composed of a single
1 km-thick condictive layer in a relative (one fold) resistive rock matrix.
The second model, more complex, is represented by a realistic stack of
conductive layers, where a thin, very conductive layer (250m-thick with
resistivity equals to 10 Ω⋅m�1) sits at the bottom of a stack of layer with
intermediate conductivity (Cerv et al., 2007). The two models are re-
ported in Tables 1 and 2 respectively. Field data were collected in a
sedimentary basin, the Clare Basin (Co. Clare, Ireland), during summer
2014 as part of the IRECCSEM project (www.ireccsem.ie). The MT data
were recorded for three days using Phoenix Geophysics audio-
magnetotellurics and broadband magnetotellurics MTU_V5A systems.
The processing of the MT data was carried out using Egbert (1997) and
Smirnov (2003) algorithms using both the Remote Reference technique
(Gamble et al., 1979a, 1979b) and the ELICIT methodology (Campany�a
et al., 2014). The remote reference method multiplies the equations
relating the Fourier components of the electric and magnetic fields from
the local site by a component of magnetic field from the remote reference
site. By averaging the cross products obtain estimates of the impedance
tensor that are unbiased by noise, provided there are no correlations
Table 1
Synthetic model used in the algorithm test 1. Layers are numbered top to bottom.

Layer number Layer thickness (km) Resistivity (Ω⋅m)

1 1.0 1000
2 1.0 100
3 ∞ 1000
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between noises in the remote reference site and the local site. The remote
reference method is applied to reduce the influence of correlated and
uncorrelated local noise, and have the capacity to reduce bias and source
effects of correlated noise. However, one of the main issues associated
with this method is that the performance decrease for longer periods due
to the reduced number of samples used when processing the MT data.
The ELICIT method, based on the inter-station tensor relationship be-
tween electric and magnetic fields measured at different locations,
combines these inter-station tensor relationships to calculate the local
MT impedance tensor, which can be used to increase the number of
samples when processing the MT data. The dimensionality of the geo-
electrical structures was appraised evaluating the phase tensor (Caldwell
et al., 2004; Rider; Farrelly et al.). The aim of this analysis was to detect
and avoid the influence of more complex geoelectrical features on the MT
data not possible to explain with a 1-D MT approach. Frequencies be-
tween 900Hz and 0.43 Hz were selected for the inversion process,
avoiding in this way the frequencies with bigger skew values associated
with the presence of more complex geoelectrical environments, like
coastal effects. The geology of the area around the MT site is charac-
terised by five main geological formations (Farrelly et al.; Rider), from
top to bottom: (1) The Central Clare Group characterised as a thin layer of
a mix of sandstones, siltstone and mudstone; (2) the Gull Island Forma-
tion, which is divided into an upper section (primarily siltstones) and a
lower section (siltstones interbedded with bundles of sheet sandstones);
(3) the Ross Sandstone Formation, primarily composed of sandstones
(around 65%) with subordinated interbedded shale and slumped hori-
zons of mixed lithology; (4) the Clare Shale Formation, dominated by
black laminated shale containing fossiliferous marine bands within it,
and (5) the Visean Limestone. The depths and thicknesses of the different
formations are reported by the Doonbeg borehole data, located close to
the studied MT site, and are used to test the reliability and geological
consistency of the obtained 1D models (Fig. 1 b,c).
2.2. A MT forward solver for a layered isotropic earth

The MT method allows the subsurface distribution of electrical con-
ductivity (or its reciprocal, electrical resistivity) to be inferred by
measuring the horizontal variations of the electromagnetic field at the
Earth surface (Cagniard, 1953; Tikhonov). The electric and magnetic
field variations recorded at the surface are related to each other through
the MT impedance tensor Z. The impedance tensor is a second-rank
tensor function of frequency that for a uniform half space can be
expressed as the relation between orthogonal electric and magnetic field
variations.

ZðωÞ ¼ ExðωÞ
HyðωÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
iωμ0ρ

p
(1)

where ω is the angular frequency of the electromagnetic source, Ex is the
x-component of the electric field at the Earth surface, Hy is the y-
component of the magnetic field at the earth surface, i is the imaginary
unit, μ0 is the magnetic permeability in the free space and ρ is the elec-
trical resistivity of the uniform half-space. Equivalent results would be
obtained by comparing Ey and Hx.

In a layered half space, the solution of the impedance tensor can be
propagated from the bottom uniform half space (bottom layer of the
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Fig. 1. a, b: position of the MT test site and the Doonbeg borehole; c: results from Occam's inversion of the MT site data compared with the geological features
retrieved from the borehole. The models are reported also in Fig. 16 for comparison with posterior marginal distributions.
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model) to the topmost one (Kaufman, 1981). In this way, the earth
electrical impedance at the surface is effectively predicted if the thickness
and electrical resistivity of each layer of the model are known.
Numbering the layers in sequential order from the shallower to the
deeper, the impedance of the layer j depends on the reflection coefficient
Rj of the interface j

Zj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
iμ0ωρj

q 2
41� 2Rj�

Rj þ e2hj
ffiffiffiffiffiffiffiffiffi
iμ0ωσj

p �
3
5 (2)

and Rj depends on the impedance of layer jþ1

Rj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
iμ0ωρj

q 1� Zjþ1

1þ Zjþ1
; (3)

where hj is the thickness of the layer j and ρj ¼ σ�1
j its resistivity.

It is common in the MT community to display data in terms of
apparent resistivity ρa and phase ϕ, which are related to the complex

impedance Z as ρaðωÞ ¼ kZðωÞk2μ0ω and ϕ ¼ tan�1ℑ½ZðωÞ�
<½ZðωÞ�. Nonetheless in

this study the real and imaginary part of the MT impedance tensor are
plotted and analyzed, as these values can be directly compared with
values predicted by the MT forward solver.
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2.3. rjMCMC algorithms in the context of trans-dimensional bayesian
inversion

In the Bayesian approach, the solution of an inverse problem is a
probability distribution for the model parameters given the measured
data, the so-called PPD. The PPD is given by Bayes’ rule as

pðmjd; IÞ ¼ pðmjIÞpðdjm; IÞ
pðdjIÞ ; (4)

where pðÞ is a probability distribution, ⋆j⋆ denotes the conditional
dependance, d is the vector of measured data and m is the vector that
stores the model parameter values and I are the non-physical informa-
tion, such as the parameterization itself, also called nuisance parameters.
With this notation, pðmjIÞ is the prior probability distribution, pðdjm; IÞ
is the likelihood function and pðdjIÞ is a normalisation factor (the so-
called evidence) and can be written as

pðdjIÞ ¼ ∫ pðdjm; IÞpðmjIÞdm: (5)

As conductivity values in earth materials may on many orders of
magnitude (typically between 10�8 and 102 S

m (Chave and Jones, 2012))
the conductivity distribution is sampled here in log space. The
trans-dimensionality in the inversion scheme is given by the fact that the
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number of parameters from which the PPD pdf is estimated is a param-
eter itself (i.e. the layering is included as part of the posterior to be
sampled). The implicit parsimony of this approach - the algorithm pref-
erably samples models that fit the data using parameterizations that
produces the highest evidence, in relation to the data uncertainties - has
been shown by other authors (Malinverno, 2002; Piana Agostinetti and
Malinverno, 2010).

Despite the simple definition given in Equation (4), an analytical
expression of the PPD is not generally available for non-linear problems
and the PPD must be evaluated for a large number of models. A good
compromise is to sample the PPD using, e.g., a Markov chainMonte Carlo
algorithm. Moreover, the evidence term plays a major role in operating
model selection (Sambridge et al., 2006), and its evaluation can be
extremely challenging. A way to implicitly account for evidence is
through the rjMCMC (Green, 1995). In geophysics, McMC methods have
been proven to be an efficient choice to sample the PPD in both classic
(Mosegaard and Tarantola, 1995; Mosegaard et al., 1997) and recent
(Grandis et al., 2013; Ray et al., 2014) papers.

For this study we use the popular Metropolis-Hastings algorithm
(Metropolis et al., 1953; Hastings, 1970) which is an McMC imple-
mentation constituted by a two step procedure. At a first stage a candi-
date model m0 is derived by the current model m of the chain. Such a
candidate is chosen from a proposal distribution qðm0jmÞ in which the
parameters of the proposed model m0 depend at most on the parameters
of the perturbed model m. At a second stage, m0 is accepted or rejected
following the Metropolis rule, namely the probability α of acceptance of
m0 is given by

α ¼ min

2
6666641;

pðm0jIÞ
pðmjIÞ|fflfflfflfflffl{zfflfflfflfflffl}
prior ratio

⋅
pðdjm0; IÞ
pðdjm; IÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
likelihood ratio

⋅
pðmjmÞ0
pðm0jmÞ|fflfflfflfflffl{zfflfflfflfflffl}
proposal ratio

�����������
J

�����������

3
777775: (6)

It is important to bear in mind that the trans-dimensionality is hidden
in the model arrays (i.e. m and m0) given that the number of parameters
to be estimated is also a parameter and is included in the vector m as a
vector element. The term jJj makes reference to the Jacobian for the
transformation from m to m0, and it is always one if m and m0 have the
same parameterization. We implement the transition from a state with n
parameters to a state with n0 parameters, following Piana Agostinetti and
Malinverno (Piana Agostinetti and Malinverno, 2010), so that we always
have jJj ¼ 1 and its contribution cancels from the equation.

The details related to the implementation of the process that brings to
the candidate model –the so-called “recipe” – define the algorithm
flavour and its performance. While many different recipes can be con-
figurated for sampling the PPD, finding an efficient recipe requests a
certain number of tentatives. In fact, if a recipe proposes a complete
change in all the parameters of model, the candidate model is likely to
produce a synthetic MT response totally different from the response
generated by the current model, giving rise to a low probability for
accepting the candidate model. In this case, the chain risks to remain
stuck in the same position for a long portion of the McMC. On the other
hand, if the candidate model only displays very minor changes with
respect to the current model, the acceptance probability is likely to be
extremely high, but the algorithm will take a long time to reach a satis-
factory exploration of the model space. Defining a reasonable acceptance
ratio of candidate models along a McMC sampling is a field of current
research. Broadly, an acceptance ratio between 20% and 40% should be
considered (Mosegaard, 2006). In our implementation the candidate
model is obtained from the current model by the mean of perturbation of
one of its parameters. A “model” is composed of a stack of k layers
separated from horizontal interfaces, and it can be described as a vector
with 2ðkþ 1Þ elements, i.e. m ¼ ðk; h1;…; hk; ρ1;…; ρkþ1Þ, where k is the
number of interfaces in the model. For each interface, one parameter hi
displays its current depth, while the second one ρi represents the
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resistivity above such interface. As expected, layers are limited by two
interfaces, or by one interface and the free-surface. An additional
parameter ρkþ1 measures the resistivity of the bottom half-space.

In our “recipe”, the possible perturbations (so called Moves) are:

1. Perturb the value of electrical resistivity associated to an interface
(i.e. within the layer above it);

2. Perturb the resistivity in the half-space;
3. Create an interface at a random position;
4. Delete an interface at random;
5. Perturb the position of one interface

The value of the resistivity in one layer is perturbed in Move 1. We
refer to Mosegaard and Tarantola (1995) and Appendix A in Piana
Agostinetti and Malinverno (Piana Agostinetti and Malinverno, 2010) for
the details of the sampling procedure. Briefly, the value of resistivity
related to a randomly-picked interface is perturbed according to a pro-
posal distribution which asympthotically samples the prior probability
distribution. Resistivity in the half-space is perturbed within the same
scheme, in Move 2.

The Move 3 and Move 4 are referred as “birth” and “death” respec-
tively, and are responsible for the variation of the number of dimensions.
These are the so called “trans-dimensional moves”. As it is possible to
step back from a model with a different number of dimensions to the
previous one, this kind of implementation is also known as reversible-
jump McMC. In our case, the amplitude of the variation of the number
of dimensions is one (i.e. only one interface can be added or deleted from
a current model to generate the candidate model). This algorithm is also
known birth-death McMC (Geyer and Møller, 1994). During the “birth
move”, a new interface is added to the model, and its depth and re-
sistivity are sampled from the prior distributions. It is important to notice
that, adopting this scheme, the proposal distribution is exactly the prior
distribution (see below). Conversely, the “death move” implies the
removal of a randomly selected interface.

The Move 5 consists in a small perturbation of the depth of one
interface of the model. This guarantees a small variation in the likelihood
between the current and the candidate models. However, to prevent the
creation of a too thin layer, if an interface is moved too close to another
interface, the move is rejected. The minimum distance is below.
Conversely, to enlarge the exploration of the model space, this move also
includes the possibility of deleting an interface and recreating it at
random in the model (i.e. operating both Move 2.3 and Move 2.3 in
sequence). This second case keeps the number of parameters at the level
of the current model (i.e. it is not a trans-dimensional move, see below),
but allows for an enlarged exploration of the model space. We observe
that the re-created interface does not keep the resistivity associated to the
removed interface. Instead, both its depth and resistivity are sampled
from their own prior disributions.

To speed-up the computation, we set a minimum distance between
the interfaces, hmin, which depends on the MT frequencies considered.
Adopting a minimum distance does not modify the retrived PPD, as far as
hmin is kept to a reasonable value (Malinverno, 2002), here set to hmin ¼
20 m: as rule of thumb hmin should be large enough to prevent extremely
thin layers and small enough to be transparent to high-frequency data.
The parameter hmin is considered during the perturbation associated to
moves 3 and 5.

The inverse problem is thus reduced, now, to the estimation of the
quantities needed to compute α. We opt to follow the approach of
Mosegaard and Tarantola (1995), namely we build a prior sampler so
that the prior and the proposal distribution are equal, and Equation (6) is
simplified as

α ¼ min
�
1;
pðdjm0; IÞ
pðdjm; IÞ

�
: (7)

The observed data dobs can be written in general as
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dobs ¼ dtrue þ ε (8)
where dtrue denotes the array of the true data and ε their relative errors. If
the assumption that εi is distributed according to a normal multivariate
distribution 8i with covariance Ce and mean E½εi� ¼ 0 is made, the like-
lihood function pðdjm; IÞ – the function that represents the goodness a
specific model with a particular set of parameters fits the observed data –
is computed as

pðdjm; IÞ ¼ e�
	
1
2e

TC
�1
e e



�ð2πÞNdet	Ce


�1
2

(9)

where N is the number of observed data, e ¼ dobs � gðmÞ is the differ-

ence between the N measured data dobs and the N data predicted by the

model m, gðmÞ, Ce is the covariance matrix for the data dobs and gð⋆Þ is
the forward operator that depends on the specific problem solved.

As results from Eq. (9), data covariance Ce plays a key role in the
likelihood computation. In MT inversions is common practice to assume
that the data are uncorrelated, i.e. Ce is diagonal [cf. e.g. Guo et al., 2011;
Chave and Jones, 2012; Rodi and Mackie, 2001]. Nonetheless, the data
frequency-correlation is a well-known effect and has been appreciated
and investigated in several classic (Egbert and Booker, 1986; Chave et al.,
1987) and recent (Guo et al., 2014) works. Although the effect of
ignoring the data correlation in the inversion results has been investi-
gated for some few-layer models (Guo et al., 2014), it seems to lead to
underestimate the parameter uncertainties and is at the moment poorly
understood. Thus, despite debated, the assumption of uncorrelated error
in MT data (i.e. Ce is diagonal) is common practice in MT inversions and
is used in this paper. With this further assumption the argument in the
exponential function of the Equation (9) is simplified in the classic
L2-norm, and the maximum likelihood principle corresponds with the
minimisation of the residual mean square.

It is worth to note that MCMC methods were used in other works to
probabilistically adjust the error level. It is easy in theory to cast the
problem using hierarchical models using an hyper-parameter as a
multiplier that scale the values of Ce [e.g. Bodin et al., 2012] or even
sampling the likelihood in correspondence of the maximum with respect
to standard deviations [e.g. Dosso andWilmut, 2006], effectively implicit
sampling data variances. These methods in principle allow for an
improved estimation of the error statistics, but are often cause of the
introduction of complexity. In this paper the error is considered known to
avoid data over-fitting issues, these methods can be implemented as a
future work.
2.4. Parallel implementation

We develop the code following a simple parallel implementation,
running a number of parallel and independent rjMcMC samplings, one
for each CPU available in the cluster. Due to the nature of the Monte
Carlo sampling, increasing the number of chains increases the explora-
tion of the model space and reduces the length of each single chain.
However, in case of a large number of synthetic MT responses to be
computed, the algorithm can be easily structured following a master/
slave approach, where a master CPU defines the perturbation and sends
the candidate model to the slave CPUs for computing the synthetic MT
responses. In this case, for each candidate model the synthetic MT
response can be computed by a number of slave CPUs, which can be a
advisable feature if the algorithm should be exteded to, e.g. 3D MT
inversion. Due to the fact that the MT responses at different frequencies
are computed separately, the CPU-time for the forward computation
scale almost perfectly with the number of CPUs. At the end of the last
rjMcMC, inferences about the PPD of the investigated parameters are
drawn from the full ensamble of models extracted from the PPD from all
the independent chains. In our 1D implementation, the CPU-time needed
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for computing forward solutions at all frequency considered is limited, so
that all our tests run in less than 1 h on a Linux cluster (one chain, one
CPU).

Convergence of trans-D PPDmay be a slow process, and the efficiency
of the rjMCMC algorithm requires mixing of the Markov chains that
sample the space. Parallel tempering (PT) is a method that allow some
chains to collect samples from distributions ”tempered“ at different
sampling temperature T > 1. That means the likelihood function is raised
to the power T > 1, for some chains, while other chains still sample the
original PPD (T ¼ 1) (Geyer, 1991; Sambridge, 2014). The candidate
models proposed by tempered chains (T > 1) are accepted with higher
probability and concur to a better mixing of the chains. The main
drawback of PT is that the tempered chains cannot be used efficiently to
collect samples from the PPD. So, the PT algorithm increases mixing, but
require a larger number of interacting chains. In our case, given the
likelihood function and the recipe we have, chain mixing is achieved
even without PT. PT is an advanced sampling technique and, even if not
used in this work, it can improve the efficiency of trans-D algorithms in
many cases, making, for example, 2D and 3D MT trans-D inversions
feasible.

3. Results and discussion

In this section we present results obtained using the rjMcMC algo-
rithm with both synthetic dataset and field data collected in Ireland.
Since the sampler is implemented as a computer code, it is important to
run a preliminary test to ensure the programworks correctly on synthetic
data with added noise before inverting field measurements.

3.1. Sampling the prior probability distributions

First of all, a test was undertaken to study how the algorithm samples
the prior distribution used. This constitutes a crucial step to assure that
the prior ratio and the proposal ratio simplifies in the Equation (6) and
thus, that the algorithm works properly (Piana Agostinetti and Malin-
verno, 2010).

This test consists of sampling the prior probability distribution by
imposing pðdjmÞ ¼ 1 8m (which returns, with the described algorithm,
α ¼ 1 for all the proposed models which are in the prior distribution).
This constraint forces the algorithm to accept all the proposed models,
and if the final distribution converges to the prior itself, this proves that
the prior sampler is working properly.

For this test, we used uniform prior probability distributions over all
the model parameters (investigated depth, number of interfaces and
logaritmic value of the electrical resistivity). The investigated depth
range was set between 0 and 10 km. The candidate models were allowed
to have from a minimum of 1 interface to a maximum of 100 interfaces.
In other words, we considered from simple half-space models to models
composed of 100 layers (the air interface is always included). The log-
values of the electrical resistivity were allowed to vary within the in-
terval ½�2 � logρ � 5� Ωm.

Marginal probability distributions for interface depth and resistivity
are reported in Fig. 2, the distribution of the number of interfaces is re-
ported in Fig. 3. The prior has been sampled using 191 Markov chains
with 500.000 models per chain. The distribution on the number of layer
within the McMC is almost uniform, indicating that, when data are not
considered, the algorithm is not biased toward a subjective number of
layers (i.e. imposed resolution). Fig. 2 display the distribution of the
depth of the interfaces and the resistivity at depth. As expected, the in-
terfaces are inserted uniformly at each depth level, and the probability
distribution for the resistivity is uniform everywhere in the investigated
depth range.

3.2. Test 1

A classic resistor–conductor–resistor model was considered for the



Fig. 2. Results for the prior sampling test. In this
test, all candidate models are accepted, without
computing the Likelihood ratio. Thus, final 1D
marginal distribution of the investigated pa-
rameters is equal to the prior probability distri-
bution. Left panel: prior probability distribution
of the depth of layer interfaces; rigth panel:
prior probability distribution for the electrical
resistivity. For this test a uniform prior distri-
bution was chosen, with resistivity values drawn
in the interval log10ðρÞ 2 ½�2; 5�log10ðΩmÞ.

Fig. 3. Prior probability distribution of the number of layers.
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first synthetic test. The model used is reported in Table 1. We chose this
3-layered Earth because the MT method can easily image the top surface
of a conductive layer since it is mainly sensitive to charges and currents
located on more conductive surfaces. Simulation responses were created
for 41 log-uniform distributed frequencies between 10�1 and 103 Hz.
Data errors were considered un-correlated (i.e. Ce is diagonal) with a 5%
relative amplitude, and this source of uncertainties has been added to the
synthetic responses.

The PPD inference was made with a set of 95 Markov parallel chains.
These chains sampled 106 models each. Results from the first 105 models
were discarded to be sure that we were sampling the PPD when the al-
gorithm was in convergence - this phase is usually called burn-in
(Mosegaard and Sambridge, 2002). The PPD sample was built collecting
one model each 1000 accepted models along the Markov chain to
99
enhance the statistical independence of accepted models and reduce the
sample autocorrelation within the chain.

For this first test, the algorithm easily recognises that three interfaces
are needed to fit the data (Fig. 4): the air-earth interface (always present)
and the two interfaces that bound the conductive layer. Their position in
depth is also well defined, as it is shown in the left panel of Fig. 5. Fig. 6
shows the fit to the data. In the right panel of Fig. 5, the PPD for the
log10ðρÞ is shown (the synthetic model is marked as dashed black line for
reference). The distribution is in agreement with the test model, clearly
marking that the conductive layer is most probable between 1 km and
2 km depth. The absolute resistivity below the conductor is most likely
between 600 and 1500 Ωm. The position of the lower interface that
bounds the conductive layer is less resolved with respect to the upper
one, and translates into a broader PPD for the resistivity in the 2� 4 km
depth range. Such feature is a common characteristic of the inversion of
MT data in presence of a strong conductive layer, where the top of the
conductor is better constrain than the position of its bottom interface [cf.
Chave and Jones, 2012].

Using the proposed approach is thus possible to successfully invert for
noisy data. Moreover, the results show that it is possible to have an
estimation of the credibility intervals on the retrieved parameters.
Although the simple structure of the model proposed is debatable, the
method is proofed to work correctly.

3.3. Test 2

The results from the previous test encouraged us to invert for a syn-
thetic dataset generated from a more complex model. In this case we
utilize a model from Cerv et al. (2007), adopting the same error statistics
and the same data structure (i.e. computing the synthetic responses for
the same frequencies). The true model is described in Table 2.

For this test, we run 95 parallel Markov chains, each constituted by
106 iterations using a uniform prior probability distribution with re-
sistivity values drawn in the interval log10ðρÞ 2 ½�0:5;3:5�log10ðΩmÞ.
As in the previous test, we accepted in the sampled models set one model
in a set of 1000 models sampled by the rjMcMC discarding the first 105

sampled models to properly burn-in.
The sampled quantities are reported in Figs. 7 and 8. In Fig. 7 is shown



Fig. 4. Test 1. Posterior probability distribution
of the number of interfaces. The dashed line
marks the true model. Due to the parsimony of
the algorithm, models with a limited number of
interfaces are sampled more frequently, even if
model with a large number of interfaces are
sampled as well.

Fig. 5. Test 1. Results for the inversion of synthetic data. Left panel: posterior
probability distribution for the depth of layer interfaces; rigth panel: poste-
rior probability distribution for the electrical resistivity. For this test a uniform
prior distribution was chosen, with resistivity values drawn in the interval
log10ðρÞ 2 ½�0:5;3:5�log10ðΩmÞ. The dashed line outlines the “true” model
used to produce the synthetic data used as input to the inversion.

Fig. 6. Test 1. Data fit: the red and black dots marks the real and imaginary
parts of the simulated impedances. The red and grey stripes marks the pred-
icated impedances from the PPD sample. (For interpretation of the references
to colour in this figure legend, the reader is referred to the Web version of
this article.)
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the distribution of the number of layer interfaces. The most probable
number of interfaces resulted to be 6 (i.e. 5 layers are needed to fit the
dataset). This number is consistent with the synthetic model.

In the left panel of Fig. 8, the distribution of layer interfaces with
depth is shown. The boundaries of the top-most conducting layer are
resolved neatly, with the deeper interfaces being depicted correctly in the
depth range of the synthetic model by the conductivity marginal. Even
this test-case, the deeper interface are not characterised by probability
peaks as neat as the near-surface ones.

The Fig. 8 presents the comparison of the retrieved resistivity
100
distribution with the true model. The synthetic model is marked as a
dashed line. Overall the true model lies close to the region of high
probability, even if, in the areas below the conductors, such interval is
moderately broad. The lack of data sensitivity below a conductor is a
well-known feature of the MT method (Chave and Jones, 2012), none-
theless the precise estimation of confidence intervals allows a better
interpretation of the physical meaning of the PPD. Moreover the PPD
shows that the resistivity is really well constrained even in the
high-resistivity values in the topmost �1000m of the model.

Note that Cerv et al. (2007), using deterministic algorithms, were not
able to resolve the thin conductive layer below the depth of 2000 m (see



Fig. 7. Test 2. Posterior probability distribution
of the number of interfaces in the sample. The
dashed line marks the true one. Even in this case,
where data support a more complex model with
respect to Test 1, the algorithm parsimoniously
sampled more frequently models with a limited
number of interfaces.

Fig. 8. Test 2. Results for the inversion of synthetic data. Left panel: posterior
probability distribution for the depth of layer interfaces; rigth panel: poste-
rior probability distribution for the electrical resistivity. For this test a uniform
prior distribution was chosen, with resistivity values drawn in the interval
log10ðρÞ 2 ½�0:5;3:5�log10ðΩmÞ. The dashed line outlines the “true” model
used to produce the synthetic data used as input to the inversion.

Fig. 9. Test 2. Data fit: the red and black dots marks the real and imaginary
parts of the simulated impedances. The red and grey stripes marks the pre-
dicted impedances from the PPD sample. (For interpretation of the references
to colour in this figure legend, the reader is referred to the Web version of
this article.)
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Figs. 1 and 3 in Cerv et al. (2007)), where our algorithm suggests a
discontinuity in resistivity that is distributed about the actual resistivity
values of the synthetic model.

For this test the data fit is correct for both the real and the imaginary
parts of the impedance tensor, as shown in Fig. 9.
3.4. Field measurements from Clare basin

We inverted the Clare Basin dataset for both polarisation using 47
Markov chains constituted of 8 � 105 iterations, discarding the first
101
2 � 105 models in the burn-in process. Due to the fact that, in this case,
the algorithm was dealing with real data, we decided to use a less
informative prior probability distribution for the resistivity, using as a
prior a continuous uniform distribution that draws resistivity values in
the interval log10ðϱÞ 2 ½�2;5�log10ðΩmÞ .

In order to compare our results (Figs. 10 and 13) with the ones pro-
vided by a standard deterministic method, we inverted the Clare Basin
data using a well tested Occam_1D algorithm (Constable et al., 1987). A
5% error floor of the MT impedance tensor was assumed during the
inversion process, in both XY and YX polarisations.



Fig. 10. Results for the inversion of field mea-
surements, XY polarisation. Left panel: 1D
marginal PPD the depth of layer interfaces; rigth
panel: PPD for the electrical resistivity. For this
test a uniform prior distribution was chosen,
with resistivity values drawn in the interval
log10ðρÞ 2 ½�2;5�log10ðΩmÞ.

Fig. 11. Results for the inversion of field measurements, XY polarisation.
Posterior probability distribution of the number of interfaces.
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Results from the 1-D inversion show geoelectrical structures with
electrical resistivity values between 0.3 Ωm and 500 Ωm. Comparing the
models obtained for XY and YX polarisation, both show similar geo-
electrical patterns although some slightly differences are observed at the
contact between the Central Clare Group and the Gull Island Formation,
and when characterising the electrical resistivity values of the Ross
Sandstone Formation. The main geoelectrical features of the 1D model is
the very low electrical resistivity values associated with the Shale For-
mation.

Results obtained using the algorithm developed in this paper are
presented in Figs. 10–12 for XY polarisation and in Figs. 13–15 for YX
polarisation. The most probable number of layers is in the interval ½5;7�,
for both polarisation, consistent with the number of layers observed in
the log data (Fig. 1). The PPD for the interface depth (Figs. 10 and 13)
presents sharp maxima at about 200 and 700m, on both polarisations,
with a clear maximum at about 150m, on YX polarisation only. The
position of the maxima for the interface depth does not match completely
the one measured in the well logs, nonetheless both the XY and the YX
modes clearly recognise the jump in resistivity associated with the Clare
Shale formation.

Even more interesting is the comparison of the retrieved resistivity
distributions with the models obtained using Occam's inversion. These
results are shown in Fig. 16.

It is straightforward to point that the two resistivity models inferred
by the Occam's inversion lye within the resistivity marginal distributions
sampled by our algorithm. The Bayesian inversion produces nonetheless
a further set of useful information about the model parametrisation. The
marginal PPD for resistivity itself appears in both cases smoother and
more regular than the correspondent Occam model. Moreover, the
Occam model requires different anomalies in resistivity for the two
polarisation to justify the data. In detail, the resistivity anomaly present
in both polarisations at 100m depth is not required and may be just a
regularisation artefact due to the smoothness imposed to the model. In
the region that connects the resistivity anomalies the Occam models
enforce a smooth transition that lay in regions of the PPD that charac-
terised by low-probability. Again, a Bayesian approach allows both dis-
continuities and smooth transitions in the probability, and this feature
102
allows to represent a broader sample of models.
Finally, we highlight two more advantages related to the use of our

algorithm. First, we stress the further information returned by Bayesian
inference in the form of precise estimations of credibility intervals (68%
credibility intervals were estimated here, reported as solid black line in
Fig. 16.). This is the main advantage of the suggested algorithm
providing a crucial information to better understand how well the
studied environment is seen by the geophysics methods. Second, we note
that we can estimate resistivity-thickness trade-offs, not avilable using
deterministic methods. Due to the possibility of collecting models from
the PPD, it can be strightforward to compute realistic estimates of cor-
relation between investigated parameters to point out the (likely) strong
trade-off between resistivity and layer thickness. We do not explore pa-
rameters correlation as this is beyond the scope of this study. We refer to



Fig. 12. Results for the inversion of field measurements, XY polarisation. Data
fit: the red and black dots marks the real and imaginary parts of the simulated
impedances. The red and grey stripes marks the predicted impedances from
the PPD sample. (For interpretation of the references to colour in this figure
legend, the reader is referred to the Web version of this article.)

Fig. 14. Results for the inversion of field measurements, YX polarisation.
Posterior probability distribution of the number of interfaces.
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Piana Agostinetti et al. (Piana Agostinetti et al., 2015) for a discussion
and example of how to investigate correlation using a RjMcMC
algorithm.

Despite the named advantages, the method we purpose here has the
main backdrop in the computational cost. In all the cases in which the
forward algorithm can be solved efficiently the computation cost may be
neglected, in all other cases a computational strategy must be found to
work around the prohibitive computing time a single Markov chain
would use to converge. From this perspective the MT method presents a
great test case, as the 1D forward model has an analytic solution that can
103
be computed extremely efficiently. Nonetheless we implemented a par-
allel version of our method that allow the joint exploration of different
regions of the likelihood hyper-surface, potentially exploring a broader
region of the model space.

A potential pitfall in our algorithm comes from the choice of sampling
according to the priors, following the approach described in Mosegaard
and Tarantola (1995). In this case, as detailed above, Eq. (6) reduces to
Eq. (7). However, as we can see from Eq. (6), acceptance probability is
higher when the proposal is similar to the target distribution (in our case,
the PPD, the product between prior and likelihood). Hypotetically,
acceptance probability for a candidate is equal to 1 if the proposal is
equal to the PPD (but this means that we know the PPD, which is our
target function and so it should be unknown). Clearly, the more the
Fig. 13. Results for the inversion of field mea-
surements, YX polarisation. Left panel: 1D
marginal PPD for the depth of layer interfaces;
rigth panel: PPD for the electrical resistivity
distribution. For this test a uniform prior distri-
bution was chosen, with resistivity values drawn
in the interval log10ðρÞ 2 ½�2; 5�log10ðΩmÞ.



Fig. 15. Results for the inversion of field measurements, YX polarisation. Data
fit: the red and black dots marks the real and imaginary parts of the simulated
impedances. The red and grey stripes marks the predicated impedances from
the PPD sample. (For interpretation of the references to colour in this figure
legend, the reader is referred to the Web version of this article.)
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proposal differs from the PPD, the less likely the candidate would be
accepted. Going back to Mosegaard and Tarantola (1995)’s approach,
where the proposal is the prior, this observation means that the more the
PPD differs from the prior the less efficient would be the sampling. In
other words, the more information about the investigated parameters are
present in the measured data, the less efficient would be the Mosegaard
and Tarantola (1995)’s approach in reconstructing the PPD. In our case,
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we note that MT data are not really informative when challenged by
low-conductivity values, so there are strong indication that sampling
according to the priors should not strongly reduce the efficency. Here, we
have to clarify that, following the approach depicted by Mosegaard and
Tarantola (1995), the value of resistivity related to a randomly-picked
interface is perturbed according to a proposal distribution which
asymptotically samples the prior probability distribution. This is
different from proposing a candidate model replacing the value of one
parameter and picking it randomly from its prior (which is much more
similar to a simple Monte Carlo sampling where each model is
un-correlated to the others and extracted randomly from the priors). Our
algorithm asymptotically samples the prior, but itself in one iteration it
perturbs the resistivity about the local value. However, from the
birth/death move perspective, it has been shown by Dosso et al. (2014)
that proposing parameters from the prior can be very efficient whereas
the prior wight is narrow.

4. Conclusions

Recently trans-dimensional inversion has become amore popular tool
to invert geophysical data-set. We developed a method to invert MT data
in a trans-dimensional Bayesian framework. Previous studies shown how
the Bayesian approach helps the interpretation, returning as result a
model distribution rather than a single model. Moreover, the error of the
model parameters are estimated directly by the posterior probability
distribution, and are not estimated via the linearization of the model
covariance matrix. In addition to this feature, the method we use
implicitly justifies the use of a certain number of parameters to model the
environment, justification that in linear inversions takes efforts and is
based more on ad hoc selection of parameters than on data evidences.
The developed algorithm has been implemented as a parallel computer
code, and has been successfully tested against two synthetic models and a
field dataset.
Fig. 16. Comparison of the inversion results obtained with
the Occam's inversion (red solid line) and the bayesian
inversion (background). The a) panel shows the XY polar-
isation, the b) panel shows the YX polarisation. The black
solid line represents the boundaries of the 68% credibility
intervals. (For interpretation of the references to colour in
this figure legend, the reader is referred to the Web version of
this article.)
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