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Abstract: Soil erosion represents one of the most important global issues with serious effects on
agriculture and water quality, especially in developing countries, such as Ethiopia, where rapid
population growth and climatic changes affect widely mountainous areas. The Meskay catchment is a
head catchment of the Jemma Basin draining into the Blue Nile (Central Ethiopia) and is characterized
by high relief energy. Thus, it is exposed to high degradation dynamics, especially in the lower parts of
the catchment. In this study, we aim at the geomorphological assessment of soil erosion susceptibilities.
First, a geomorphological map was generated based on remote sensing observations. In particular, we
mapped three categories of landforms related to (i) sheet erosion, (ii) gully erosion, and (iii) badlands
using a high-resolution digital elevation model (DEM). The map was validated by a detailed field
survey. Subsequently, we used the three categories as dependent variables in a probabilistic modelling
approach to derive the spatial distribution of the specific process susceptibilities. In this study we
applied the maximum entropy model (MaxEnt). The independent variables were derived from a set
of spatial attributes describing the lithology, terrain, and land cover based on remote sensing data
and DEMs. As a result, we produced three separate susceptibility maps for sheet and gully erosion as
well as badlands. The resulting susceptibility maps showed good to excellent prediction performance.
Moreover, to explore the mutual overlap of the three susceptibility maps, we generated a combined
map as a color composite where each color represents one component of water erosion. The latter
map yields useful information for land-use managers and planning purposes.

Keywords: maximum entropy model (MaxEnt); water erosion; gully erosion; Ethiopian highlands;
remote sensing; terrain analysis

1. Introduction

Erosion is a natural process levelling the relief of the landscape. Its intensity is influenced by
weather extremes and environmental conditions. In areas exposed to weather extremes, such as heavy
rainfall events followed by dry periods, sheet and gully erosion, as well as Badland formation, could
appear. These forms develop due to a complex interplay of driving forces, such as tectonics, the
nature of soils, slope characteristics, land cover, and land use, as well as the aforementioned climatic
conditions [1]. Ethiopian highlands, in particular, are subjected to huge soil losses with over 1.5 billion
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tons of topsoil lost yearly [2,3]. The region has been formed by a combination of tectonic uplift and
episodic volcanism related to the rift valley formation. Hence the actual landscape shows deeply
incised gorges characterized by over-steepened unstable slopes [4,5].

Soil erosion modeling is a promising tool for the identification of erosion-prone areas. Among
the available techniques, empirical relationships are considered a good solution to identify the source
areas of soil erosion, especially in cases of low data availability [6–8].

Physically-based models rely on the solution of fundamental physical equations describing
streamflow, sediment fluxes, and associated nutrient fluxes in a catchment [6]. Generally, the large
number of parameters involved can only be measured with appropriate quality at the small scale,
while, at the catchment or regional scales, they are estimated through best-fit solutions. Therefore,
at a large scale, the calibration procedure introduces a bias that depends on the lack of data and
on the non-uniqueness of best-fit solutions [6,9,10]. Conceptual models lie somewhere between
physically-based and empirical models. They are based on general descriptions of catchment processes.
Their calibration is site-specific, and soil mechanical properties and rainfall characteristics are only
taken indirectly into account [11]. Many useful insights related to the choice of the most appropriate
model can be found in Beven [12] and Sight [13] and references therein.

On the other hand, stochastic approaches proved to be successful for a susceptibility assessment
at the catchment and regional scale for water erosion and landslide hazards. Such methods are
commonly applied to investigate and model the response of a binary outcome (presence/absence) in
relation to a set of independent variables (predictors). Different multivariate statistical approaches
have been tested to predict the occurrence of landforms and analyze their relationships with respect
to environmental variables [14]. In particular, the most commonly employed approaches are binary
logistic regression [15–19], multiple adaptive regression splines [20,21], classification and regression
trees [22–24], stochastic gradient boosting [25–27], and maximum entropy distribution—MaxEnt [28–30],
which also proved to be successful in transferability studies [31].

Concerning the Ethiopian Highlands, there are several approaches reported in the literature to
model soil erosion. Among others, Tilahun et al. (2013) performed a detailed study on the Anjeni
catchment (~1.3 km2), which is located at the center of the Blue Nile basin [32]. In particular, they
combined a hydrological model with an erosion model to improve sediment concentration distribution;
Steenhuis et al. (2009) [33] predicted discharge and sediment for the Abay (Blue Nile). Haregeweyn
et al. (2013) predicted the absolute sediment yield and assessed the spatial distribution of erosion
in 12 catchments located in Northern Ethiopia [34]. Nyssen et al. (2008) analyzed the evolution of
geomorphic processes identifying natural and anthropogenic driving factors, as well as elaborating a
sediment budget for the May Zegzeg catchment [35]. Sima et al. (2009) evaluated the mass wasting
susceptibility at the regional scale (Jemma river basin) in an area, which includes the northern Meskay
catchment by using a scoring system [36].

Photogrammetric approaches were also used to map the gully erosion in southern and northern
Ethiopia [37,38]. However, the advantages of stochastic models in assessing the probability of
geomorphic processes and their spatial distribution have already been explored for the lower Jemma
basin by [39]. Therefore, in this study, we selected the maximum entropy distribution [40] because
it is a presence-only (PO) approach and does not suffer from the bias in selecting absence of data at
certain locations where they may not be evident [40,41]. Inventories of the geomorphological processes
and related forms and features are generally carried out by field works and high-resolution remote
sensing [42].

Water erosion, as well as landslide susceptibility studies, mainly apply statistical approaches
to predict binary responses. The study cases show that the resulting erosion maps only represent
the probability of occurrence of one phenomenon, either gully erosion, sheet erosion, Badlands, or
landslides. Since water erosion produces different landforms, the evaluation of single susceptibility
maps does not give information on the spatial relationships among the different phenomena. In
this regard, a multi-label classification might help to illustrate compound water erosion mechanisms.
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Multi-label classification approaches are especially used in remote sensing for the identification of,
e.g., land-use classes [43], geological or geomorphological mapping. It may be applied following
two different approaches: (i) the problem transformation and (ii) the algorithm adaptation. The first
transforms the problem into a single-label classification task, while the second extends specific learning
algorithms to handle multi-label data [44]. Previous attempts in evaluating the susceptibility of more
than one phenomenon have been tested by applying a multi-label classification method with a problem
transformation approach [25,28,45]. In particular, the susceptibility was calculated for single classes,
and the combined water erosion susceptibility maps are based on a heuristic combination of the
binarized susceptibility maps without any information on their relative importance. Other approaches
for multi-classification usually employ regression trees or Random forest methods. In particular,
Random forest proved to be successful for landform classification [24] and soil erosion [22]. However,
regression trees are presence/absence methods that might not be suitable for superficial erosion
processes. Differently from the traditional approaches, in this study we assessed soil erosion process
susceptibilities applying a presence only algorithm (MaxEnt). Moreover, we propose a combined water
erosion map showing the prevalence of each landform in probabilistic terms. Thus, the map might be
used as a tool for landscape investigations and geomorphological risk control.

Particularly, we addressed the following three main objectives: (i) the prediction of the spatial
occurrence of sheet and gully erosion, as well as Badlands, by integrating remotely sensed data
and terrain attributes derived from digital elevation models; (ii) the analysis of the relationships
between soil erosion processes and controlling factors; (iii) the prognosis of erosion susceptibilities in a
synoptic map.

2. Regional Setting

The Meskay watershed is located in the central part of Ethiopa, in the North of Shewa province
(Amhara Region) ca. 130 km Northeast of Addis Ababa close to Debre Sina town (Figure 1). It is
situated at 39◦43′East and 9◦48′North (Figure 1a), 130 km ENE from Addis Ababa. The area covers a
surface of about 45 km2, belonging to the bigger Jemma River Basin, one of the main tributaries of
the Abay River (Blue Nile) (Figure 1a, b). The Meskay catchment is an important area for agricultural
production, and hence, soil conservation is a key issue in the region. In particular, the steep slopes
are extensively terraced but exposed to persistent erosion processes due to a strong seasonality of
precipitation and frequent heavy rainfall events. Consequently, sophisticated agricultural management
is required to maintain agricultural production levels. The Meskay watershed is located in the central
part of Ethiopia, in the North of Shewa province (Amhara Region).

The precipitation regime is characterized by three distinct seasons: the first is a dry season from
October to January, the second from February to May is responsible for variable rainfall conditions,
while the third is a long rainy season peaking in August. The mean annual rainfall ranges between 1350
and 1800 mm. Single precipitation events exceeding 100 mm are causing intense erosion. The rainfall
is influenced by topography and ESE winds [36,46,47]

The geology of the area is represented by a sequence of tertiary volcanic deposits characterized
by different geomechanical properties (Figure 1c). The tertiary volcanic (TV) units represent the
final product of the second fissure eruption, which took place from the end of Oligocene until the
Upper-middle Miocene (25–15 Ma). The sequence starts with basaltic magmas, continues with silica
magmas, and ends again with basaltic magmas. The results of such magmatic activity and magma
differentiation [48] correspond to differences in mineralogy and geo-mechanical properties, which
have been documented by Sima et al. (2009). In particular, the TV2 formation (Middle basalts) is an
alternation of highly fractured and weathered lava beds, classified as weak basalts; the TV3 formation
(Upper Basalts) is classified as medium–strong, and the TV4 formation is characterized by an alternation
of rhyolites and ignimbrites classified as strong. The TV5 formation is the result of a central type of
volcanism and is characterized by medium–strong basalts.
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Figure 1. Location of the study area: (a) Location of the study area in the African continent; (b) Location
of the study area in the Ethiopian territory; (c) Andit-Tid bedrock lithotypes and main elements of the
study area.

The distribution of soils is closely related to the relief forms and characterized by a high
variability on the small scale due to strong management (terracing) and lithological heterogeneities [49].
The following dominant soil types occur: humic andosols, fluvisols, regosols, and lithosols. According
to the World Reference Base for Soils (WRB)classification, fluvisols and cambisols are highly erodible
soils, attributing an erodibility class equal to 5 (in the range from 1 to 6). Stony humic andosols are
considered as having very low erodibility. Lithosols and regosols show, instead, a medium erodibility.

Land use is characterized by annual crop production, such as wheat, barley, and tef [49].
The cropping period coincides with the rainy seasons, the Belg and the Kiremt [36,50]. The agricultural
activity mainly consists of rain-fed subsistence farming, based on cereals and legumes. Some small
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patches are covered by eucalyptus plantations periodically harvested to satisfy the wood demand [51].
Apart from the highest eastern part, grasslands are present and scattered within the catchment. During
the year, grassland and cropland are often alternated, respectively. The vegetation cover of the area
includes sparse patches of bushes. In the last decades, the Ethiopian Highlands have been characterized
by intense population growth leading to an increase in agricultural production on an already fragile
rural ecosystem. As a consequence, intensified erosion processes caused productivity declines and
often result in a population–poverty–land degradation cycle [2,46]. In this regard, the eastern part of
the Meskay catchment, known in the literature as Andit Tid, was introduced in the Soil Conservation
Research Program of the Ethiopian Government (SCRP) [52] (Figure 1c derived from the SCRP report).

The aforementioned program started with a series of experiments, which included the
implementation of soil and water conservation measures (SWC) in 1981–1998. Following this program,
several studies have been published dealing with runoff and soil loss estimations in the test area
(Figure 1c). It was documented that on the one hand, mechanical SWC produced a reduction in soil
loss and runoff, and on the other hand, they caused a reduction in soil productivity. Liu et al. (2008)
performed a rainfall discharge analysis and discovered that for rainfall events larger than 500 mm, 50%
of the catchment area contributes to the runoff [53]. Engda (2009) analyzed a dataset collected in the
framework of the SCRP to investigate runoff sources and to parametrize hydrologic and empirical
erosion models. His results clearly show that runoff processes and soil loss are related, and their
interplay should be considered when implementing management activities. Guzman et al. (2013)
estimated the mean suspended sediment concentration (SSC) with 5.2 t ha−1yr−1 [54]. The SSC shows
a seasonal increase until June and a decrease in the rest of the monsoon season. This relatively low
mean SSC value a result of the implementation of mechanical SWC measures [49,54]. Tezera et al.
(2016) performed a detailed study on land cover change and demonstrated that the area experienced an
increase of 11.3% of agricultural land from 1994 to 2014 with a reduction in shrubland of about 7% [55]

Although a decrease in runoff value and soil loss due to the implementation of SWC measures
is registered, mass wasting processes are still an important problem in the area. In fact, mechanical
SWC cause waterlogging, but these measures have to be accompanied by efficient drainage systems.
However, the maintenance of the agricultural terraces and drainage systems is mandatory to reduce
soil loss.

3. Materials and Methods

3.1. Geomorphological Mapping

Accurate mapping and quantitative assessment of landforms are a prerequisite to assess the
impact of erosion in an area [56]. According to Guzzetti et al. (2012), inventory maps can be
produced both using conventional and innovative methods [57]. The first includes field mapping
and photointerpretation, and the second refers to mapping operations supported by new methods
and technologies, such as multispectral images and high resolution digital elevation model (DEM)
analysis [56].

In this study, we mapped and modeled three forms of erosion: (i) sheet erosion, (ii) gully
erosion, as well as (iii) Badlands. The term sheet erosion is defined as areal rill and interrill erosion
following [58]. This type of erosion especially affects overgrazed and cultivated soils where there is
only scarce vegetation protecting the soils. It is generated by a gradual process, which removes the fine
soil aggregates and particles containing most of the available nutrients and organic matter because
of raindrop impact. When running water flows on the soil surface, at a certain point, the laminar
flow becomes turbulent and starts incising in the substrates forming deeper rills. These features are
discontinuous and can be removed by tillage actions [59].

Gully erosion occurs when the concentrated flow is large enough to form large channels that
cannot be removed by normal tillage operations. Ephemeral gullies appear at the same position on the
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landscape each year, but they are small enough to be filled in by tillage [60]. Gullies are characterized
by periodic runoff and interflow, especially after storm events [59,61].

The term Badlands refers to intensely dissected areas that are difficult to cross and are useless for
agriculture [62]. Badlands’ landscapes are characterized by sparse or no vegetation cover, steep slopes,
shallow to not-existing regolith mantle, and intensive erosion processes [63].

The difference between the above-mentioned landforms is related to the inconstant
morphodynamic conditions on the slopes. In fact, not all landscape positions are equally sensitive
to erosion, and when dealing with soil erosion susceptibility, it is important to identify the different
sources of sediments within the catchment [64]

Among the innovative methods, automatic and semi-automatic mapping are more and more
employed, especially due to the availability of high resolution multispectral remote sensing data [65–69].
However, by now, such methods still suffer from biases. Since this study aims to evaluate the
susceptibility to different erosion processes, the inventory has to be as reliable as possible. Therefore,
we used conventional consolidated methods, such as field mapping and photointerpretation supported
by visual analysis of DEM derived attributes and multispectral images. To produce a complete and
reliable soil erosion inventory, the mapping was performed in three phases as proposed and described
by Otto and Smith (2013): (i) pre-mapping; (ii) the fieldwork, and (iii) post-mapping [70]. In the
pre-mapping phase, information about the study area was collected through the consultation of a
topographical map at 1:50.000 scale (Sela Dingay 0939 B1 Ethiopian Mapping agency 1986), geological
maps at 1:50,000 scale, remote sensing data from ASTER, Kompsat-2, and RapidEye imagery and
high-resolution DEM derived from ALOS/PRISM stereoscopic images. Due to the fact, that the
vegetation cover substantially changes between the dry and wet seasons, we acquired two satellite
scenes for photointerpretation (01-11-2013 for the dry period and 11-01-2010 regarding the wet period;
©Google Earth). As a first result, a preliminary version of the geomorphological map containing
drainage network, lithology, and water erosion landforms was obtained. In this first stage, two types of
water erosion processes were distinguished: linear forms (gullies) and areal forms (sheet erosion and
Badlands). We wanted to highlight that some of the Badlands close to the riverbanks lie on pre-existing
landslides. In this case, we adhered to the Badlands definition of Alexander (1982) keeping in the
inventory only the part of landslides characterized by bare soil and high erosion rate [71]

The second phase was based on fieldwork, which was conducted in March 2015. We validated
the previously identified landforms in the field, and we identified and mapped other cartographic
information, such as geologic limits and land-use changes (Figure 2). In the last step, we produced the
final geomorphological map of the Meskay catchment by digitizing and coding the field information.
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Figure 2. Examples of mapped erosional landforms: (a) Gully erosion; (b) Sheet erosion; (c) Badland
erosion.

3.2. Explanatory Variables

3.2.1. Remotely Sensed Data

We applied a remote sensing approach to gain further predictors for the stochastic modeling
based on the physical properties of the land surface related to lithology, vegetation, and land cover.
For a general characterization of land cover and vegetation, we used multispectral satellite data from
RapidEye, which is a German satellite system comprising 5 identical sun-synchronous satellites with the
first launched in 2008. It has 6.5 m resolution, and it operates at the visible and near-infrared wavelength.
We transformed the original dataset of five spectral bands covering visible and near-infrared into three
non-correlated principal components (PCA1, PCA2, PCA3). The three components contain most of the
variation inherent in the original dataset, which leads to a reduction in input to the stochastic model.
Furthermore, we derived the normalized difference vegetation index (NDVI) using RapidEye red and
near-infrared spectral bands.

To characterize lithology from remote sensing data, a sensor also covering the short-wave infrared
(SWIR) spectra is required. We used data provided by the Japanese ASTER instrument carried onboard
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Terra satellite, which is a component of NASA’s Earth Observation program since its launch in 2000.
The instrument acquires image data in 14 spectral bands from visible to thermal infrared with spatial
resolution ranging from 15 to 90 m. We calculated the ferrous iron index as an arithmetic band ratio
of two SWIR bands denoted commonly as B5 and B4 following Cudahy (2012) [72]. This index is
useful, especially for the mapping of mafic and ultramafic lithologies rich in ferrous silicates and/or
ferrous carbonates.

Additionally, we derived land cover by applying an unsupervised image classification and
change detection approach using RapidEye cloud-free multispectral imagery dated 18.01.2010 and
29.11.2013 [73,74]. More in detail, a K-means algorithm was used to group the pixels in clusters on a
layer stack of the 2010 RapidEye scene. Subsequently, the land cover clusters were validated through
comparison with a second set of images acquired in 2013 and validations during the field campaign in
2015. The final map is representative of the land use for the period 2010/2013 and presents a satisfying
accuracy [75,76]. The five land-use classes are described in Table 1. The most important observed
feature was the presence of agricultural terraces characterizing the landscape of the northern part of
the Meskay catchment. Harvested eucalyptus plantations were detected through the use of the second
set of satellite images.

Table 1. Remote sensing derived attributes.

PREDICTOR CODE Mean Source

Remote Sensed Attributes
Mineralogic index FERRSILICI 90.21 ASTER
Normalized difference vegetation index NDVI 0.09263 ASTER

Principal components
PCA1 11609 RAPID EYE
PCA2 3165 RAPID EYE
PCA3 2768 RAPID EYE

Land-Use %
Plantation and or secondary vegetation LUSE 1 19% RAPID EYE
Rainfed agriculture LUSE 2 29% RAPID EYE
Degraded pastures and rainfed
agriculture LUSE 3 42% RAPID EYE

Complex cultivation pattern LUSE 4 9% RAPID EYE
Agricultural abandonment LUSE 5 1% RAPID EYE

To facilitate terrain analysis on a sufficiently detailed spatial scale, an image triplet from
ALOS/PRISM was processed. ALOS-1 was a Japanese remote sensing satellite for the exploration
of natural resources operating from 2006–2011. PRISM is an optical instrument consisting of three
panchromatic cameras allowing along-track stereo-scanning of the Earth’s surface in panchromatic
mode with a spatial resolution of 1.25 m. An image triplet of the study area acquired by the PRISM
instrument in 2008 was processed using stereo-photogrammetric software packages. The resulting
DEM contained noisy areas due to low contrast or a lack of homologous features amongst the triplet
scenes essential for feature matching. Median filtering was applied to smooth the model surface.
The resulting DEM has a pixel size of 10 m and contains detailed morphological features.

3.2.2. Topographic Indices

The effects of water erosion depend on slope position, energy of the relief, and water distribution
along the slope. To define the morphological properties of the catchment, a set of 13 topographic
predictors were applied in the model, such as elevation (ELEV) together with northness (NORTH) and
eastness (EAST). Components of the slope aspect were chosen as indicators of topographic position
in turn. They are often used in water erosion or landslide modeling because they are correlated
with vegetation and rainfall as well as temperature [20]. The slope steepness (SLO) is related to the
relief energy, and together with the catchment area (CAREA), they can be used to discriminate areas
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susceptible to water erosion ([77], and references therein). Plan curvature (C_CROSS) and longitudinal
curvature (C_LONG) indicate the distribution of concavity and convexities, which regulates the
overland flow distribution. The topographic wetness index (WETNESS) is a proxy variable directly
related to the soil moisture [78]. The topographical indices were calculated using the 10 m DEM using
SAGA GIS 2.1.1 [79]. Further details are presented in Table 2.

Table 2. List of digital elevation model (DEM) derived attributes.

PREDICTOR CODE Mean Units References

Topographic attributes
Elevation ELEV 2887 m Planchon and Darboux (2001)
Slope SLO 0.3217 Rad Zevenbergen and Thorne (1987)
Longitudinal curvature C_LONG −1.32 × 10−4 Rad/m Zevenbergen and Thorne (1987)
Cross Section curvature C_CROSS 0.00012 Rad/m Zevenbergen and Thorne (1987)
Northness NORTH 0.1185 dimensionless Bunyan et al. (2015)
Eastness EAST −0.1674 dimensionless Bunyan et al. (2015)
Topographic wetness index WETNESS 5.6024 dimensionless Beven and Kirby (1979)
Catchment area CAREA 76857 m2 Gruber and Peckham (2008)

3.3. Predictive Modeling Approach

Presence-only methods were developed to model phenomena when the knowledge of their absence
is inadequate or unavailable [80]. This is normally the case in soil erosion susceptibility modeling.
In fact, depending on the temporary conditions, such as seasonal changes in vegetation cover or
agricultural practices, areas exposed to soil erosion can be masked and hence, are hardly recognizable.

The method applied in this research was a presence-only (PO) algorithm called maximum
entropy [40,41,80]. The maximum entropy (MaxEnt) is a very popular tool for studies on habitat
suitability and environmental modeling, and recently it also has been successfully applied to assess
landslides and gully erosion susceptibility [29,30,81]. Its popularity is likely for two reasons: (i) MaxEnt
typically outperforms other methods based on predictive accuracy and performance [80,82], (ii) the
software is particularly easy to use and is implemented in a statistical software package (dismo).

The MaxEnt algorithm calculates the relative occurrence rate (ROR), which is the relative probability
that a cell in the study area belongs to a sample of presence cases as a function of environmental
variables ROR (P ∗ (z(xi))) and is expressed as:

P∗(z(xi)) = exp(z(xi)λ)/
∑

i

exp(z(xi)λ),

where z is the vector of the predictors at the location xi, λ is the vector of regression coefficients.
Therefore, the above formula can be rewritten as:

P∗(z(xi)) = exp(z1(xi)λ1 + z2(xi)λ2 + . . .

+zJ(xi)λJ
)
/
∑
i

exp(z1(xi)λ1 + z2(xi)λ2 + . . .+ zJ(xi)λJ),

where J is the number of predictors at the position xi. Since the denominator is the sum of the RORs
values across the dataset, the calculated occurrence rates are normalized, and their sum over the dataset
is equal to 1. The probability of presence is then calculated, transforming the ROR in susceptibility by
means of a function called logistic output.

The validation process in MaxEnt is performed contrasting the presences with the background
locations where the value of presence/absence is unknown. These cases are called pseudo-absences,
and they are only selected to sample the set of conditions available in the region under study [82].
Every modification in the pseudo-absence sample size affects the results of the model in terms of the
probability distribution, variable selection, and prediction skills.
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In this study, the pixels containing, respectively, sheet erosion (11.692), Badlands (11.087), and
gullies (22.486) were chosen as samples of presences. Phillips and Dudík (2008) demonstrated that the
number of 10,000 background points is enough to ensure the good performance of the models [83].
However, more samples can be requested in case of big presence data samples. In this case, the
presence dataset consists of 10.000 samples, so we decided to choose a pseudo-absence sample that is
around 5 times larger (35.076 for sheet erosion, 33.261 for Badlands, and 67.458 for gullies) to ensure an
efficient calibration of the model. Each dataset was replicated 100 times to evaluate the robustness of
the resulting models. We calculated the three final susceptibility models for gullies, sheet erosion, and
Badlands as averages of the 100 replicates.

3.4. Model Evaluation

A usual statistical approach for erosion and landslide susceptibility models is to evaluate the
models’ results in terms of the predictors’ contribution and prediction skills. The predictors’ contribution
refers to the importance and the role of each covariate in the resulting model. It is here evaluated by
means of percent contribution (PC), permutation importance (PI), and response curves (RC). The first
represents the increase in regularized gain added by each new variable, the second represent the drop
in gain due to the permutation of the variables, and the third represents the partial relation between
the predictors and the probability of occurrence. The predictors’ contribution analysis is often used
to evaluate the geomorphological consistency of the models [27,30,84]. Since the different modeled
landforms are driven by different predisposing factors in the present study, it is expected that such
difference is highlighted by the predictor contribution analysis.

We validated the accuracy of the predictive performance of the three susceptibility models using
two indexes: (i) the receiver operative curves and the corresponding area under the curve (ROC-AUC)
as independent threshold indices, and (ii) the sensitivity (TPR) as threshold dependent index.

Since MaxEnt is a presence only (PO) method, the ROC-AUC test indicates how the model
separates between presence and background samples containing both presence and absence. Therefore,
the ROC-AUC value, in this case, was lower than the one calculated for presence–absence (PA) models.
Moreover, its estimation depends on the number of background points chosen for the validation, and,
for this reason, the AUC should only be compared in models resulting from the same dataset and
comparable sample size [40,41,80,83]. The ROC/AUC test was here calculated 100 times for each model
through a cross folded validation procedure in which 80% of the dataset was chosen as calibration and
20% as validation data. For a full interpretation of the resulting susceptibility maps, it is necessary to
introduce a probability threshold. Therefore, the 100 ROC-AUC tests were used to calculate the same
number of Youden Indices [85], whose average value was used to derive probability thresholds for
“Low” and “High” classes of susceptibility. The three contingency tables resulting from the binarization
of the susceptibility maps were used to calculate the true positive rate (TPR). The other indexes based
on specificity were not used because the background points did not correspond to absence, and their
use was not recommended [80].

The three susceptibility maps were finally combined in a layer stack and visualized as an RGB
composite. We generated this further map because the visualization of the separate susceptibility maps
did not give enough importance to the coalescence of different erosion landforms. Moreover, when
two or more landforms were present in the same place, the individual susceptibility maps did not give
any information on the prevalence of one phenomenon on the others. This visualization allows for
proper identification of areas where a phenomenon prevails on the others and/or where two or more
landforms are contemporarily existing.

4. Results

The analysis of erosional forms (Figure 3) revealed that an area of about 11% of the watershed
shows erosional processes (~4.5 km2). Among this percentage, gully erosion prevails on the other two
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landforms covering a total of ~2.25 km2, while the remaining part was almost equally covered by sheet
erosion and Badlands.
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Figure 4 shows the PC and the PI for the three classes of erosion models: Badlands, gully, and
sheet erosion. The results show that ELEV highly influences the three models presenting a PC > 20%
and a PI > 25%. It is the most important variable for Badlands and sheet erosion models. Gully
erosion models are mainly influenced by CAREA (PC = 48%, PC = 42%), which had a low influence
in the Badlands models and nearly no influence in sheet erosion models. SLO was the second most
influencing variable for Badlands models, and it also had a high influence on gully and sheet erosion
models. Land-use (LUSE), NORTH, PCA1, and mineralogic index (FERRSIL) (PI and PC = ~10%)
were important for Badlands and sheet erosion models while they did not influence the gully erosion
models particularly. The remaining predictors did not contribute significantly to the model.

Figure 5 shows the response curves calculated between the predictors and the mean value of
the susceptibility for gullies, Badlands, and sheet erosion. In general, the most important predictive
variable ELEV had different influences on the three models: it presented a general positive influence
for Badlands and sheet erosion and a negative influence for gully erosion. The predictor C_AREA had
a different behavior for the three sets of models: a negative influence for sheet erosion models with a
positive influence for lower values, which turns into negative ones for gully erosion. It had no relevant
response for Badlands. The predictor SLO had a positive influence on Badlands and gully erosion
models, while its influence changed from positive to negative in the sheet erosion model for values
higher than 0.5 Rad. The predictor FERRSIL had the same positive trend for the three models up to a
threshold value of 83. Thereafter, its influence became negative for Badlands, slightly negative for
sheet erosion, and slightly positive for gully erosion. The predictor C_CROSS was the variable that
showed a higher variability among the three landforms. It had a marked negative influence for gully
erosion in the range of −0.03–0 Rad/m, while its distribution did not show an important response for
the other two models.
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The distribution of the three susceptibilities in the area reflects the different contributions of
the predictors. Figure 6 shows the mean susceptibility values over 100 replicates (Figure 6a,c,e)
together with the corresponding ROC/AUC tests calculated in a cross-folded validation procedure.
The susceptibility distribution of the gully erosion model reflects a strong influence of the predictor
C_AREA: it was higher in the drainage lines and lower in the remaining parts of the slope. It shows
good performances both in calibration and validation. The sheet erosion susceptibility distribution was
higher on the open slope areas, while the drainage lines showed values close to zero. The results of the
cross-folded validation showed AUC > 0.8 for both calibration and validation. The high susceptibility
classes for Badland were mainly situated on the highest part of the slopes and in correspondence to
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the steep river banks. This model presents the best accuracy and prediction skills with AUC = 0.88 in
calibration and AUC = 0.87.Geosciences 2020, 10, 248 14 of 24 
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Figure 6. Susceptibility map and corresponding results of cross folded validation: (a) Mean susceptibility
of 100 gully erosion models; (b) receiver operative curves and area under the curve (ROC-AUC)
distribution over 100 replicates for gully erosion models; (c) Mean susceptibility of 100 sheet erosion
models; (d) ROC-AUC distribution over 100 replicates for sheet erosion models; (e) Mean susceptibility
of 100 Badland models; (f) ROC-AUC distribution over 100 replicates for Badlands models.

Figure 7 shows the results of prediction skills evaluated by means of threshold-based indices.
In particular, as already mentioned in the previous section, the three susceptibility maps (Figure 6)
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were binarized using the mean Youden index calculated over the 100 replicates, as represented in
Figure 6. In addition, Figure 7 shows the contingency table and three indices: prevalence, sensitivity,
and percentage of presence introduced in the model in the first place. Among the three models, the one
with the best prediction skill was the Badland susceptibility model presenting a TPR of 0.83, followed
by the sheet erosion model with a TPR of 0.76, and the gully erosion model with a TPR of 0.55. In
all the cases, the prevalence was remarkably higher than the number of presences introduced in the
model. In particular, the presences against the prevalence were from 9% to 27% for the gully erosion
model, from 3% to 29% for the sheet erosion model, and from 3% to 24% for the Badlands model.Geosciences 2020, 10, 248 16 of 24 
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To understand the spatial variability of different erosion phenomena and their mutual overlap, we
visualized all three susceptibilities as components of an RGB composite. We followed the approach of
Kropacek et al. (2010), who proposed RGB synthesis as an effective visualization tool for the analysis
of snow cover distribution [86]. The susceptibility values exceeding the Youden index threshold were
visualized in an RGB image without any contrast manipulation to preserve the true relations among the
three susceptibility values. An inversion of susceptibility values was applied to improve an intuitive
perception, where black represents a susceptibility of 100% in all three components. Areas with low
susceptibilities in the range of 0% to 40% are regarded as areas not susceptible to water erosion and are
shown in white. As a result of the inversion, the three components are represented in complementary
colors (CMY) and combinations of two components in RGB colors (see the legend in Figure 8). A
decrease in susceptibility is then represented by a higher brightness and saturation of a certain hue,
which is given by a combination of the two components, whereas high susceptibilities are shown
in dark colors. The advantage of this visualization approach is an integrated representation of all
three components of water erosion in a single image allowing the study of their spatial relationships
and distribution.

Figure 8 illustrates that gullying, when present, was the principal water erosion mechanism
in the study area. It was only associated with Badlands in correspondence with riverbanks in the
north-eastern part of the catchment (Figure 8b,c). The prevalence of red color in the image shows that
areal phenomena (Badlands and sheet erosion) were mostly coalescent, and discrimination was barely
possible (Figure 8d,e). The remaining combinations, gullies and Badlands or gullies and sheet erosion,
were rare, which corresponds well to the fact that different terrain, substrate, and vegetation settings
were predisposing these phenomena. The white color close to the water divide (southeast part of the
study area) shows a large area of no susceptibility. This is likely due to a combination of lower slope
inclination, the presence of grassland as vegetation cover, as well as small contribution areas.
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5. Discussion

Most predictors used in this study describing terrain or surface properties rely on high-resolution
remote sensing data. Apart from the land cover based on the clustering of a multispectral dataset, we
used non-categorized data, which limits the bias introduced by an arbitrary setting of thresholds or the
selection of a limited number of abstract classes. This approach is also less laborious and benefits from
the use of continuous ranges rather than discrete variables [87].

The present study demonstrates that MaxEnt is suitable for the evaluation of water
erosion susceptibility and produced models with satisfying accuracy and predictive performances.
The differences among the three susceptibility models reflected the different dynamics and evolution
stages of gullying, sheet erosion, and Badlands. The differences were analyzed based on the relationships
between variables and susceptibilities and were related to predictive performances.

The analysis of the PC and PI showed that the main controlling factors change by modeling
different phenomena. In particular, gully erosion was mainly controlled by topographic variables
(C_AREA, ELEV, C_CROSS, and SLO). Differently, the Badlands and sheet erosion models were
primarily influenced by ELEV and SLO, but also by anthropogenic activities (LUSE), type of soil (whose
proxy is represented by PCA1), and lithology (FERRSIL).

The response curves also highlighted differences in the structure of the three models. The trends
of morphologic variables (ELEV, SLO, CAREA, C_CROSS) were very different among the three models.
On the other hand, Badlands and sheet erosion models shared some similarities in the LUSE, FERRSIL,
and PCA1 responses, which were not relevant for gully erosion. The geomorphological interpretation
of such behavior is that the gully erosion develops in very specific morphological contexts, which can
be mainly identified with catchment area, elevation, and slope curvature. Sheet erosion and Badlands
are similarly related to land-use conditions, type of soil, and lithology, but they develop in different
morphological contexts.

The prediction skills of the three models were evaluated using ROC-AUC and sensitivities.
The results showed that sheet erosion and Badlands susceptibility models are characterized by excellent
AUC both in calibration and validation. On the other hand, the ROC/AUC of the gully erosion model
is limited to good predictive performances and is able to predict only 55% of the positive cases. These
results seem to be anomalous if we consider that the predictor importance gives geomorphological
interpretable results. In the opinion of the authors, the drop in prediction skills of the gully model
is related to different evolution mechanisms of this landform: one is mainly connected to a natural
geomorphological evolution, while the other evolves as a consequence of dynamic anthropogenic
activity [88], such as changes in land-use and animals’ passage. Although proxy variables of land-use
were used, no proxies of animal migration or land-use changes were introduced into the models, and,
therefore, the results were affected by a drawback in predictive performances. This interpretation
also agrees with the findings of Nyssen et al. (2008), who identified human-induced environmental
changes as the main cause of gully development in the Ethiopian Highlands [35].

Another important point regards the possible use of the susceptibility maps for the prediction of
landscape evolution. In Figure 7, the percentage of the area affected by water erosion was compared to
the prevalence (percentage of the susceptible area). In particular, according to our inventory, the areas
mapped as water erosion features (gullies and sheet erosion as well as Badlands) represent ~15% of the
total catchment area. The calculated highly susceptible areas were 27%, 29%, and 24%, respectively,
for gullies, sheet erosion, and Badlands. This result cannot be considered intrinsically as predictive
scenarios for landscape evolution. However, they should be taken into consideration when planning
SWC measures and their respective maintenance.

The final integrative water erosion susceptibility map illustrates a combination of the three
different susceptibility maps. To the knowledge of the authors, it is the first time this visualization
method has been applied for a susceptibility map of water erosion. In fact, the combination of binarized
maps proposed by Lombardo et al. (2018) and Angileri et al. (2016) offers the main advantage of
being clearly legible because it shows only a limited number of susceptibility classes [25,81]. On the
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other hand, classifying susceptibility maps introduces biases because the threshold method might
be arbitrary. Moreover, when combining high susceptible classes, it is not possible to identify which
erosion mechanism prevails on the other. The map attached here overcomes these problems. In fact,
no bias due to thresholds are introduced, and complex situations with coalescent and overlapping
phenomena are shown in a range of continuous values corresponding to the prevalent mechanism.

6. Conclusions

The present study demonstrates that MaxEnt is a suitable model to assess water erosion
susceptibilities. Moreover, it allowed the production of models with satisfying accuracy and predictive
performances. The differences among the three susceptibility models reflected the different dynamics
and evolution stages of gully erosion, sheet erosion, and Badlands. These differences were analyzed
concerning the relationships between variables and susceptibility as well as concerning the predictive
performances. The Maximum Entropy model was successfully applied to evaluate single susceptibility
maps for gullies, sheet erosion, and Badlands using a set of predictors derived from high-resolution
remotely sensed data. The three single susceptibility maps were integrated into a combined map,
illustrating the spatial probability of occurrence of the three phenomena using a continuous scale.

We show that the true color composite of the water erosion models is a suitable tool to identify
target areas to apply and focus soil conservation measures. Moreover, it constitutes a possible landscape
evolution scenario, which can be useful in further studies aimed at evaluating soil erosion hazard and
risk, especially in the light of climate change.

Most predictors used in this study, whether those describing terrain or surface properties, rely on
high-resolution remote sensing data. Apart from the land cover based on the clustering of multispectral
datasets, we used non-categorized data, which limits the bias introduced by the arbitrary setting of
thresholds or selection of a limited number of abstract classes. This approach is also less laborious and
benefits from the use of continuous ranges rather than discrete variables. Our results demonstrate
that the utilization of predictors derived from high-resolution satellite data, such as ALOS/PRISM and
RapidEye, allows for proper modeling of water erosion susceptibilities at a detailed scale, such as
small drainage basins. Susceptibility maps at such scale may be helpful for planning concerted erosion
prevention measures, which might result in a higher effectivity and lower costs.
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