
July 19, 2021 17:26 WSPC/103-M3AS 2150027

OPEN ACCESS

Mathematical Models and Methods in Applied Sciences
Vol. 31, No. 7 (2021) 1323–1372
c© The Author(s)
DOI: 10.1142/S0218202521500275

Equilibrium analysis of an immersed rigid leaflet

by the virtual element method

L. Beirão da Veiga

Dipartimento di Matematica e Applicazioni,
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a rigid channel. Through a careful investigation of the properties of the domain functional
describing the angular momentum exerted by the fluid on the leaflet (which depends on
both the leaflet angular position and its thickness), we identify sufficient conditions on

the spring stiffness function for the existence (and uniqueness) of equilibrium positions.
This study resorts to techniques from shape differential calculus. We propose a numerical
technique that exploits the mesh flexibility of the Virtual Element Method (VEM). A
(polygonal) computational mesh is generated by cutting a fixed background grid with
the leaflet geometry, and the problem is then solved with stable VEM Stokes elements
of degrees 1 and 2 combined with a bisection algorithm. We prove quasi-optimal error
estimates and present a large array of numerical experiments to document the accuracy
and robustness with respect to degenerate geometry of the proposed methodology.

Keywords: Virtual elements; polygonal meshes; fluid–structure interaction; shape
calculus.

AMS Subject Classification 2020: 74F10, 65N30

1. Introduction

The Virtual Element Method (VEM) is a recent numerical technology introduced

in Refs. 10 and 11 for the discretization of problems governed by partial differential

equations. It can be regarded as a generalization of the Finite Element Method

(FEM) to meshes of general polytopes. Since its inception, the VEM enjoyed a wide

success in the mathematics and engineering communities, because of its flexibility

and robustness with respect to mesh design and handling. To cite some applica-

tive examples, VEM allows for immediate gluing of independent planar meshes in

discrete fracture network simulation,14,15,32 adding nodes to ease the enforcement

of contact conditions in solid mechanics,44 breaking of existing elements for crack

propagation problems,2,6,16,38 and reduction of directional mesh bias in topology

optimization.5,22

The class of fluid-structure and immersed boundary problems is practically rele-

vant and offers attractive possibilities and challenges to VEM and general polytopal

meshes due to the interaction of different, perhaps deforming, domains.27 A very

short list of representative papers, restricting the attention to the case of interaction

with a rigid body, is given in Refs. 43, 35 and 7. One could think, for instance, of

using a fixed background grid for the fluid domain (Eulerian description), which is

cut by a deforming solid at each time instant or iterative procedure step (Lagrangian

description). Clearly, arbitrary mesh cuttings may generate polygonal elements of

very bad quality (in terms of element anisotropy, possible non-convexity, neighbor

size ratio, etc.) and thus the numerical scheme must be reliable also in the presence

of such hazards. We refer to Ref. 3 for an application in the realm of polygonal DG.

This paper represents a first VEM study in this setting. In order to design a VEM

for an immersed boundary problem and study its robustness and accuracy, we pro-

pose a “deceivingly simple” 2D model problem inspired from the FEM analysis in

Ref. 8. The problem is that of a hinged rigid structure (a leaflet) of thickness ε with

a rotational spring attached, immersed in a stationary incompressible fluid within

a rigid channel; all data are constant in time. We consider two extreme cases: the

fat leaflet (ε > 0), which is the most physically realistic case, and the thin leaflet
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(ε = 0), which is the asymptotic limit of the former; see Fig. 1 for a cartoon geome-

try of the problem. In order to prevent interactions between the leaflet and the rigid

upper wall, which in turn are not physically relevant and would lead to additional

singularities, we introduce a positive parameter ε0 > 0 and assume ε ≤ ε0/2. We

then investigate our problem for the admissible angle range ϑ ∈ Iε0 where

Iε0 :=
[
−π
2
+ ε0,

π

2
− ε0

]
. (1.1)

The equilibrium position of the leaflet corresponds to a balance between the

angular momentum −κ(ϑ) exerted by the rotational spring on the leaflet and the

functional

τ : Iε0 → R

describing the torque exerted by the fluid on the leaflet as a function of its angular

position ϑ relative to the vertical axis; hence the torque balance reads τ(ϑ) = κ(ϑ).

This problem is nonlinear because τ depends on ϑ in an intricate nonlinear

fashion, in fact one that we decipher in this paper using shape differential calculus.

Its numerical approximation requires nonlinear iterations and thus entails solving

the fluidodynamics problem for several arbitrary leaflet positions.

This leads to various fundamental issues, both theoretical and computational,

that have to be resolved to get a reliable and accurate numerical method. We

describe them along with our contributions below.

• Structure of τ(ϑ). If (r, ω) are polar coordinates relative to the hinge, T (u, p)

is the Cauchy tensor of the fluid, written in terms of the velocity–pressure pair

(u, p), Γ = Γ(ϑ) is the boundary of the leaflet L, and nΓ is the unit normal to Γ

pointing inside L, then the force per unit of length acting on Γ due to L is given

by T (u, p)nΓ. Consequently, the torque τ(ϑ) exerted by the fluid on Γ reads

τ(ϑ) = −
∫
Γ

r e⊥ω · T (u, p)nΓ (1.2)

where e⊥ω = (cosω, sinω); see Fig. 1. Since the function τ(ϑ) is nonlinear and

non-local, because (u, p) depends on Γ, no explicit expression is available. To

study the behavior of τ , namely, show differentiability for ε > 0 and uniform con-

tinuity for ε = 0, we resort to shape differential calculus.28,40 However, this is not

straightforward because Γ is not smooth, especially for ε = 0. We rewrite (1.2) as

a sum of bulk integrals and compute its shape gradient, thereby avoiding dealing

with curvature of Γ which is not well defined. This is possible for ε > 0 but the

underlying regularity becomes borderline for ε = 0 and we content ourselves with

continuity of τ(ϑ). To accomplish this program, we represent (1.2) variationally

and use a duality argument involving an adjoint fluid system with solution (z, q).

The representation (3.6) below of (1.2) is amenable to shape differentiation: we

deform Γ rigidly preserving both its shape and fluid incompressibility. We carry

out this study in Sec. 3 and obtain explicit expressions of the derivative τ ′ε(ϑ) in
terms of (u, p), (z, q) and data for ε > 0. Moreover, we prove that τε converges
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Fig. 1. Model problem: rigid leaflet L of thickness ε > 0 (fat leaflet) or ε = 0 (thin leaflet),
immersed in a stationary incompressible viscous fluid within a rigid channel D. The fluid domain
is Ω = D \ L, the inflow (respectively, outflow) boundary ∂DD (respectively, ∂DN ) is the left
(respectively, right) side of D, and the top and bottom sides are no-slip rigid walls. The leaflet L has
a boundary Γ = ∂L, is hinged at o ∈ ∂D, and is attached to a rotational spring. Polar coordinates
(r, ω) determine a generic point x = o+reω in D, where ω is the angle with respect to the vertical
axis with origin at o and pointing straight downwards; hence, points x with |ω − ϑ| ≤ ε and
0 ≤ r ≤ R describe L, where ϑ is the angle of the bisector of L. The unit vector e⊥ω = (cos ω, sinω)
perpendicular to eω dictates the torque τ(ϑ) exerted by the fluid on L. The unit normal nΓ to
Γ pointing inside L satisfies nΓ = ±e⊥ω on the straight sides of Γ and nΓ = −eω on the curved
part of Γ.

uniformly as ε → 0 and gives rise to a continuous torque for the thin leaflet.

Existence (and uniqueness) of the nonlinear equilibrium equation

τ(ϑ) = κ(ϑ) (1.3)

follow upon making suitable assumptions on the spring angular momentum κ.

• VEM discretization. The iterative solution of (1.3) requires solving the fluidody-

namics problem for different and arbitrary positions of the leaflet Γ. We consider

the thin leaflet L = Γ, i.e. ε = 0, and let Γ cut through a background uniform

grid of quadrilaterals. When the tip of Γ falls within an element E, we extend

Γ with a straight line until it hits the boundary of E; this procedure is more

accurate than dealing with the tip within E, which is also a viable option in

the VEM context. The resulting mesh is thus geometrically conforming to Γ but

at the expense of having sometimes polygons with extremely degenerate shapes

depending on the angle ϑ: highly anisotropic elements, elements with edges that

are orders of magnitude smaller than its diameter, and elements that are orders

of magnitude smaller than their neighbors. The former are typical of small ϑ’s

whereas the latter typically occur for intermediate ϑ’s. Moreover, near certain

critical ϑ’s, even small variations of the leaflet position may yield abrupt topo-

logical changes in the mesh due to the extension procedure. We exploit the capa-

bilities of VEM to handle arbitrary polygonal elements seamlessly. We adopt the
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divergence-free VEM of degree k = 1, 2 for the Stokes fluid.4,12,13,42 We investi-

gate the approximation properties of the ensuing discrete torque τh(ϑ) and prove

a quasi-optimal first-order error estimate relative to τ(ϑ), uniform in ϑ.

• Computational study. We develop a series of numerical tests to assess and doc-

ument the performance of the VEM methodology in the setting of an immersed

rigid boundary. We illustrate the effect of degenerate elements in the inf-sup con-

stant and conditioning of the system for a wide range of angles ϑ. Geometric

degeneracy is usually associated with manageable spikes in both quantities. We

perform a study of the role of the stabilization term of VEM. To this end, we con-

sider the two main stabilizations proposed in the literature, namely, the so-called

dofi-dofi stabilization form10 and the trace stabilization44 form. It turns out

that the effect on τh(ϑ) of abrupt topological changes of the mesh is much more

pronounced for the dofi-dofi stabilization than the trace stabilization. The

former is, however, generally more accurate than the latter. We examine this

unexpected discovery in great length and present several experiments whose main

parameters are the angle ϑ and the mesh size h. From the practical perspective,

we conclude that, although there is some influence of the mesh quality on the

results, the scheme is sufficiently robust and reliable. Considering the simplicity,

and thus the efficiency, of the mesh cutting procedure when compared with other

techniques, we believe our approach is viable.

The paper is organized as follows. In Sec. 2, we present the model problem

and its adjoint along with their variational formulation. In Sec. 3, we develop the

theoretical analysis of the continuous problem: for ε > 0 we prove differentiability

of τ(ϑ) in Proposition 3.2 and Corollary 3.2, whereas for ε = 0 we show continuity

of τ(ϑ) in Proposition 3.3, both uniform in ϑ. In Sec. 4, we briefly review the VEM

method of Ref. 13 and describe the discrete torque functional τh, the mesh cutting

procedure, and the adopted iterative scheme for the thin leaflet ε = 0. We also

derive a quasi-optimal error estimate for τ − τh in Theorem 4.1. Finally, in Sec. 5,

we document the performance and accuracy of the proposed scheme relative to

degenerate elements and abrupt topological mesh transitions. Moreover, we report

on variations of the inf-sup constant and condition number with respect to the angle

ϑ and discuss robustness.

2. Problem Definition and Governing Equations

The focus of this study is to analyze the problem of a hinged thin rigid structure

L (a leaflet) with a rotational spring attached, immersed in a fluid within a rigid

channel. We assume invariance in the transversal direction z, hence we can adopt a

2D model in the xy plane. Furthermore, we consider the stationary case, that is all

problem data are independent of time, and we search for the equilibrium position

of the leaflet as well as the corresponding fluid velocity and pressure.

We assume that the channel is represented by a rectangle D aligned with the

coordinate axes, with the upper and lower edges corresponding to the rigid walls.
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The leaflet is hinged at a point o ∈ ∂D sitting on the upper wall of the channel, as

depicted in Fig. 1. Introducing a system of polar coordinates (r, ω) centered at o

with principal ray ω = 0 placed vertically and oriented downward, we let

eω := (sinω,− cosω), (2.1)

and note that a generic point x = (x, y) ∈ D reads x = o + reω. We assume that

L is axi-symmetric with respect to some axis passing through o; let ϑ ∈ Iε0 be the

angular coordinate of such axis of symmetry, where Iε0 is defined in (1.1). Thus,

the position of L is identified by the value of ϑ. We denote by Γ = ∂L the boundary

of the leaflet, and by n = nΓ the unit normal vector to Γ pointing inside L. The

region occupied by the fluid (i.e. the computational domain) is Ω := D\L, whose
boundary is ∂Ω = ∂D ∪ Γ; the fluid–structure interaction takes place on Γ.

While the formulation of the problem will be given for a generic leaflet, we will

further develop our analysis for leaflets L of the form

L := {x = o+ reω : 0 ≤ r ≤ R, |ω − ϑ| ≤ ε}, (2.2)

for some R smaller than the vertical size of the channel, and some ε satisfying

0 ≤ ε ≤ ε0/2 small enough. We further assume that the channel length is sufficient

to guarantee that the distance among L and the vertical sides of D is (uniformly)

positive for all configurations. Note that we do allow the limit case ε = 0, when the

2D leaflet degenerates into a 1D segment or, equivalently, when Γ = L.

In order to analyze the problem described above we need to define

• the equations governing the fluid motion,

• the equilibrium equation of the leaflet,

• the coupling equation between the fluid and structure at the interface Γ.

2.1. Fluid equations

In our model system, the fluid is assumed to be incompressible and Newtonian (i.e.

having constant viscosity ν), therefore the fluid motion is described by the classical

incompressible Navier–Stokes equation{−divT (u, p) + (∇u)u = f in Ω,

divu = 0 in Ω,
(2.3)

with boundary conditions ⎧⎪⎨⎪⎩
u = g on ∂DD,

T (u, p)n = h on ∂DN ,

u = 0 on Γ,

(2.4)

where u, p are the velocity and pressure fields, respectively, and T (u, p) = ν∇su+

pI is the Cauchy stress tensor. Here, div and∇ (respectively, div and∇) denote the

divergence and gradient operator for vector fields (respectively, for scalar functions),
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and ∇s is the symmetric gradient. Finally, n designates the outward unit normal

to ∂Ω, while f represents the external force and h the outflow traction. For what

concerns the conditions in (2.4) prescribed on the boundary of the channel D, we

consider a partition of ∂D into two disjoints subsets ∂DD, ∂DN such that ∂D =

∂DD ∪ ∂DN . We assume that ∂DN is not empty, so that the pressure is uniquely

defined. In our model problem, we may consider that at the top and bottom wall

of the channel (see Fig. 1) no-slip boundary conditions are applied (i.e. g = 0

therein). We denote by ∂Din := supp(g) the “inflow” part of the boundary (since

we have in mind that g ·n < 0 therein, although this condition is not needed from a

mathematical point of view); correspondingly, we call ∂DN = ∂Dout the “outflow”

part of the boundary. We also remark that different boundary conditions on ∂DN

can be treated as well.

2.2. Structure and equilibrium equations

Let us denote by κ = κ(ϑ) the angular momentum exerted by the leaflet on the

rotational spring at angle ϑ. Recalling the definition (1.1) of Iε0 , we assume that

κ : Iε0 → R ∪ ±∞ (2.5)

is a continuous, non-decreasing, possibly nonlinear function. It vanishes at some

rest position ϑ = ϑ0, in a neighborhood of which the spring response is supposed

to be linear κ(ϑ) = κs(ϑ−ϑ0), for some constant elastic modulus κs. Note that we

measure the torque κ(ϑ) counterclockwise, whence κ(ϑ) > 0 for ϑ > ϑ0, and that

the torque exerted by the spring on the leaflet is −κ(ϑ), again counterclockwise.

The equilibrium of the leaflet is expressed by the momentum balance equation

−κ(ϑ) + τ(ϑ) = 0, (2.6)

where τ(ϑ) represents the counterclockwise torque (or total angular momentum)

with respect to the point o exerted by the fluid on the structure L. In order to

express it, let us consider any point x = o+reω ∈ Γ having polar coordinates (r, ω)

with respect to the hinge o, where eω is defined in (2.1). We note that the unit

vector e⊥ω := (cosω, sinω), orthogonal to eω and oriented counterclockwise, reads

e⊥ω =

⎧⎨⎩ nΓ for ω = ϑ− ε,

−nΓ for ω = ϑ+ ε.

Then, the angular momentum m = m(x) per unit of length of the force T (u, p)nΓ

exerted by the leaflet Γ on the fluid at x ∈ Γ relative to o is given by

m = re⊥
ω · T (u, p)nΓ.

Hence, the counterclockwise torque τ(ϑ) exerted by the fluid on Γ is given by

τ(ϑ) = −
∫
Γ

r e⊥ω · T (u, p)nΓ. (2.7)
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Note that in the limit case ε → 0, in which the leaflet L = Γ is just a segment,

formally one has

τ(ϑ) = −
∫
Γ

r e⊥ω · [[T (u, p)nΓ ]], (2.8)

where [[ · ]] denotes the jump operator across the interface Γ. This formal limit will

be justified later on.

In conclusion, view of (2.6) and (2.7), the angular momentum balance reads

κ(ϑ) +

∫
Γ

r e⊥ω · T (u, p)nΓ = 0. (2.9)

2.3. Variational formulation

We are now ready to describe the system of equations for our model problem.

Collecting the fluid motion equations (2.3), the boundary conditions (2.4), and the

balance equation (2.9), the strong formulation of the coupled problem reads as

follows: find (u, p, ϑ) such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−divT (u, p) + (∇u)u = f in Ω,

divu = 0 in Ω,

u = g on ∂DD,

T (u, p)n = h on ∂DN ,

u = 0 on Γ,

κ(ϑ) +

∫
Γ

r e⊥ω · T (u, p)nΓ = 0 on Γ.

(2.10)

We emphasize that the number of boundary conditions on Γ (last two lines of

(2.10)) is overdetermined. This is typical of free boundary problems and accounts

for the fact that the angular position ϑ of the leaflet is unknown.

The next step in the description of our fluid–structure interaction model problem

is to introduce a suitable variational formulation of system (2.10). In particular, we

need to define a weak form of system (2.10) fitting the virtual element discretization

that will be described in Sec. 4. We start by introducing the following Sobolev

spaces for vector fields (i.e. the velocity spaces):

X := [H1(Ω)]2, Xg
Γ := {v ∈ X : v|∂DD

= g,v|Γ = 0}, (2.11)

where g ∈ [H1/2(∂DD)]2. For pressures, we consider the space Q := L2(Ω). These

spaces are endowed with the natural norms

‖v‖X := ‖v‖[H1(Ω)]2 , ‖q‖Q := ‖q‖L2(Ω). (2.12)

Let us now define the following multi-linear forms

a(·, ·) : X ×X → R, a(u, v) :=

∫
Ω

∇su : ∇sv dΩ, (2.13)
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b(·, ·) : X ×Q→ R, b(v, q) :=

∫
Ω

q div v dΩ, (2.14)

c(·; ·, ·) : X ×X ×X → R, c(w; u,v) :=

∫
Ω

(∇u)w · v dΩ, (2.15)

for all u,v,w ∈ X and q ∈ Q. Furthermore, we assume that f ∈ [L2(D)]2 and

h ∈ [L2(∂DN )]2, and we denote by (·, ·)0,Ω and (·, ·)0,∂DN the L2-inner products on

Ω and ∂DN , respectively. We also denote by εΓ ∈ X the harmonic extension in Ω

of the function defined on the skeleton by

εΓ :=

{
r e⊥ω on Γ,

0 on ∂D.
(2.16)

Among the various possible variational formulations of problem (2.10), we intro-

duce the following one: find ϑ ∈ Iε0 and (u, p) ∈ Xg
Γ ×Q, such that⎧⎪⎨⎪⎩

ν a(u,v + σ εΓ) + c(u;u,v + σεΓ) + b(v + σ εΓ, p) + σκ(ϑ)

= (f ,v + σ εΓ)0,Ω + (h,v)0,∂DN ,

b(u, q) = 0,

(2.17)

for all v ∈ X0
Γ, σ ∈ R, and q ∈ Q. It is straightforward to see that, taking σ = 0

in (2.17) we obtain the weak form of the Navier–Stokes equation (coupled with the

boundary conditions on ∂Ω) associated with the strong formulation in (2.10). On

the other hand, taking v = 0, σ = 1 in (2.17) we get

ν a(u, εΓ) + c(u;u, εΓ) + b(εΓ, p)− (f , εΓ)0,Ω + κ(ϑ) = 0, (2.18)

which gives (2.9) after integration by parts. Expression (2.18) is numerically better

than (2.9) because it avoids evaluating explicitly the trace of T (u, p) on Γ.

3. Torque as a Function of Geometry

In order to assess the solvability of problem (2.17), we aim at deriving suitable

properties of the torque functional τ(ϑ) introduced in (2.7) and (2.8), as a function

of the angle ϑ. To keep the technical burden at a minimum, in this section we

assume that the velocity is so small, that the convective effects may be neglected;

in other words, we assume that (u, p) satisfies the Stokes problem{
−divT (u, p) = f in Ω,

divu = 0 in Ω,

⎧⎪⎨⎪⎩
u = 0 on Γ,

u = g on ∂DD,

T (u, p)n = h on ∂DN ,

(3.1)

that corresponds to eliminating the term c(·; ·, ·) in (2.17).

Furthermore, we assume that the leaflet has the form given in (2.2) for some

R and 0 ≤ ε ≤ ε0/2. Thus, the geometry of the fluid domain, hence the torque

functional τ , depends on the three parameters ϑ, ε and R. We restrict ϑ to satisfy

ϑ ∈ Iε0 , i.e. |ϑ| ≤ π
2 − ε0, in order to avoid the contact of the leaflet with the upper
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wall. For the analysis we have in mind, it is convenient to think the torque as a

function of the boundary of the leaflet (which in turn depends on these parameters),

i.e. we rephrase (2.7) as

τ(ϑ) = J [Γ] := −
∫
Γ

r e⊥ω · T (u, p)nΓ. (3.2)

For the moment, we consider R and ε ≥ 0 as fixed, and we just allow rigid changes

in Γ = Γ(ϑ) produced by changes in ϑ. To this end, it is convenient to rewrite J [Γ]

in terms of integrals in the bulk Ω instead of Γ. This is useful for differentiation of

J with respect to shape, because it avoids the appearance of terms involving the

curvature of Γ which is not well defined at the tip of the leaflet Γ for any ε ≥ 0.

The roadmap of this rather technical section is as follows. In Sec. 3.1, we rewrite

the domain functional J [Γ] in (3.2) so as to avoid evaluation on Γ. This leads to

(3.6) that involves the primal variables (u, p) and adjoint variables (z, q), for which

we prove stability properties uniform in ϑ ∈ Iε0 . In Sec. 3.2, we deal with the

fat leaflet ε > 0 and use shape differential calculus to derive the shape derivative

δJ [Γ;V ] in the direction V = re⊥
ω . This corresponds to rigid deformations of the

leaflet and coincide with dτ
dϑ , which is shown to be bounded in Iε0 in Corollary 3.2.

In Sec. 3.2 we tackle the thin leaflet ε = 0 and show uniform continuity of τ(ϑ) for

ϑ ∈ Iε0 . This leads to solvability of (2.9) in Theorem 3.1 for all 0 ≤ ε ≤ ε0/2.

3.1. Equivalent form of J[Γ]

The following derivation includes both cases ε > 0 and ε = 0. Let us define in D
the vector field

Φ(r, ω) := re⊥
ω , ∀ r, ω, (3.3)

which allows us to rewrite (3.2) (or equivalently (2.7)) for ε > 0

J [Γ] = −
∫
Γ

Φ · T (u, p)nΓ, (3.4)

and similarly (2.8) for ε = 0. Note that in cartesian coordinates one has Φ(x, y) =

(yo − y, x − xo), where (xo, yo) are the cartesian coordinates of the hinge o. Let

(z, q) be the solution of the adjoint problem

{
−divT (z, q) = 0 in Ω,

div z = 0 in Ω,

⎧⎪⎨⎪⎩
z = Φ on Γ,

z = 0 on ∂DD,

T (z, q)n = 0 on ∂DN .

(3.5)

This, and the boundary-value problem (3.1) satisfied by (u, p), allows us to express

J [Γ] in (3.4) as follows:

J [Γ] = −
∫
Γ

z · T (u, p)nΓ = −
∫
Ω

div(T (u, p)z) +

∫
∂DN

z · T (u, p)
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= −
∫
Ω

divT (u, p) · z −
∫
Ω

T (u, p) : ∇z +

∫
∂DN

h · z

=

∫
Ω

f · z − ν

∫
Ω

∇su : ∇sz +

∫
∂DN

h · z,

because pI : ∇z = p div z = 0. Therefore, from now on we focus on the expression

J [Γ] = −ν
∫
Ω

∇su : ∇sz +

∫
Ω

f · z +

∫
∂DN

h · z, (3.6)

which is also valid for ε = 0.

Proposition 3.1. (Boundedness of J [Γ]) There exists a constant C(f , g,h)

depending on ‖f‖[L2(D)]2 , ‖g‖[H1/2(∂DD)]2 , and ‖h‖[L2(∂DN )]2 , but uniform in ε ∈
[0, ε02 ] and ϑ ∈ Iε0 such that

|J [Γ]| ≤ C(f , g,h).

Proof. This entails a priori bounds for ‖u‖[H1(Ω)]2 and ‖z‖[H1(Ω)]2 that account

for the boundary conditions in (3.1) and (3.5) and are uniform in ε and ϑ. It is not

restrictive, in this proof, to assume that D = [−1, 1]× [0, 1] as depicted in Fig. 1.

Using polar coordinates (r, ω) with respect to the hinge o and vertical dotted line

of Fig. 1, we let Ω0 be a set that contains all admissible positions of the leaflet Γ:

Ω0 :=
{
(r, ω) : 0 ≤ r ≤ R < 1,−π

2
+
ε0
2

≤ ω ≤ π

2
− ε0

2

}
;

see Fig. 2. Hence, the set D \ Ω0 contains the U-shaped domain

Ξ := {(x, y) : |x± 1| < δ0 or y < δ0}
for any 0 < δ0 < 1−R.

We let ug ∈ [H1(Ξ)]2 solve the Stokes equation on Ξ with vanishing Dirich-

let condition on ∂Ξ except on Din where ug = g and on Dout where we assume

homogeneous Neumann conditions.

We now extend ug by zero to D \ Ξ, without relabeling, and realize that ug is

divergence free in D and ‖ug‖[H1(Ω)]2 ≤ c‖g‖
[H

1/2
00 (∂Din)]2

with c independent of ε

and ϑ.

Fig. 2. Domains Ω0 and Ξ used in proving Proposition 3.1. All admissible positions of the leaflet
L with thickness 0 ≤ ε ≤ ε0/2 are captured by Ω0, whose straight sides form an angle ε0/2 with
the top wall. The U -shaped domain Ξ is a region within the channel D uniformly far from Ω0.
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We now split u = u0 + ug with u0 vanishing on ∂Ω\∂Dout and write the

variational formulation of the momentum equation of (3.1) for the pair (u0, p),

bringing ug on the right-hand side. Choosing the divergence-free test functions u0

eliminates the pressure p and yields

‖u0‖[H1(Ω)]2 ≤ A(‖f‖[L2(D)]2 + ‖g‖
[H

1/2
00 (∂Din)]2

+ ‖h‖[L2(∂Dout)]2),

where A is independent of ε and ϑ. A similar bound is thus valid for u.

Regarding the regularity of z, we observe that the Dirichlet data Φ defined

in (3.3) is divergence-free. Let zΦ ∈ [H1(D\Ω0)]
2 solve the Stokes equation with

vanishing Dirichlet condition on ∂D and zΦ = Φ on ∂Ω0. Extending zΦ byΦ within

Ω0, without relabeling, we note that zΦ is divergence-free and ‖zΦ‖[H1(Ω)]2 ≤
c‖Φ‖[H1(Ω0)]2 . Splitting z = z0 + zΦ and arguing as before yields

‖z‖[H1(Ω)]2 ≤ B‖Φ‖[H1(Ω0)]2 ,

where B is independent of ε and ϑ. This concludes the proof.

The argument in Proposition 3.1 circumvents dealing with the pressures p and

q. However, they can also be bounded uniformly as the following lemma reveals.

This result is useful later in estimating T (u, p) and T (z, q).

Lemma 3.1. (Uniform lower bound of inf-sup constant) The inf-sup constant β =

β(Ω) of the domain Ω for the space pair (X0
Γ, Q) defined in (2.11),

β = inf
q∈Q

sup
v∈X0

Γ

∫
Ω q divv

‖q‖L2(Ω)|v|[H1(Ω)]2
,

is bounded away from 0 uniformly with respect to ε ∈ [0, ε02 ] and ϑ ∈ Iε0 .

Proof. The proof is an application of Lemma A.1; we only need to check that the

hypotheses of such lemma are satisfied uniformly in the parameters ε ∈ [0, ε02 ] and

ϑ ∈ Iε0 . We decompose the domain Ω into two subdomains upon extending the

bisector of the leaflet L starting at the hinge o until it intersects the boundary of

D. This divides Ω into two disjoint subdomains Ω1 and Ω2 with reentrant corners

separated by a straight segment S (the bisector extension); see Fig. 3. Since ε ≤ ε0
2 ,

Fig. 3. Decomposition of the fluid domain Ω into subdomains Ω1 and Ω2 separated by a straight
segment S obtained by extending the bisector of the leaflet Γ until it intersects ∂D. The domains
Ωi are star-shaped with respect to balls Bi, i = 1, 2, and have reentrant corners.
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the smallest angle made by the boundary Γ of L and the upper wall of D is bounded

below by ε0
2 ; see Fig. 2. Moreover, the distance from Γ to the lower wall of D is also

bounded below by ε0
2 . Therefore, there exist two balls B1 and B2 with radii ε0

4 and

centers within Ω1 and Ω2, depending on ϑ, such that Ω1 and Ω2 are star-shaped

with respect to B1 and B2, respectively.

Finally, it is immediate to check that the remaining conditions (arc-length of S

and ∂DN , and radii of Bi, i = 1, 2) are satisfied uniformly in ε, ϑ.

In the proof of Proposition 3.1 we show, in particular, uniform bounds for the

velocity solutions u and z of (3.1) and (3.5). Combining such bounds with (3.1),

(3.5) and using Lemma 3.1, deriving uniform bounds on the natural norms for the

velocity–pressure pairs (u, p) and (z, q) is immediate.

Corollary 3.1. (Uniform stability) There exists a constant C independent of ε ∈
[0, ε02 ] and ϑ ∈ Iε0 such that

‖u‖[H1(Ω))]2 + ‖p‖L2(Ω) ≤ C(‖f‖[L2(D)]2 + ‖g‖
[H

1/2
00 (∂Din)]2

+ ‖h‖[L2(∂Dout)]2) (3.7)

and

‖z‖[H1(Ω))]2 + ‖q‖L2(Ω) ≤ C‖Φ‖H1(Ω0) � C. (3.8)

3.2. Case ε > 0: Shape derivative of J[Γ]

We use rules of shape differential calculus (Reynolds theorem) to compute the rate

of variation of J [Γ] produced by an infinitesimal rotation of Γ around the hinge o.

More precisely, we consider a rotation given by the velocity

V := Φ; (3.9)

this corresponds to a flow dictated by the ODE ẋ = V (x(t)), which preserves the

rigid structure (and form) of the leaflet. Define the normal velocity on Γ by

V := V · nΓ. (3.10)

Then, the shape derivative of J [Γ] in the direction V is (formally) given by28,40

δJ [Γ;V ] := −ν
∫
Γ

∇su : ∇sz V +

∫
Γ

f · z V

− ν

∫
Ω

∇su′ : ∇sz − ν

∫
Ω

∇su : ∇sz′ +
∫
Ω

f · z′ +
∫
∂DN

h · z′,

(3.11)

where u′ = u′(Γ;V ) and z′ = z′(Γ;V ) are the shape derivatives of u and z in the

direction V , and are the solutions of the boundary-value problems{
−divT (u′, p′) = 0 in Ω,

divu′ = 0 in Ω,

⎧⎪⎨⎪⎩
u′ = −(∇u)V on Γ,

u′ = 0 on ∂DD,

T (u′, p′)n = 0 on ∂DN ,

(3.12)
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and {
−divT (z′, q′) = 0 in Ω,

div z′ = 0 in Ω,

⎧⎪⎨⎪⎩
z′ = −(∇(z −Φ))V on Γ,

z′ = 0 on ∂DD,

T (z′, q′)n = 0 on ∂DN .

(3.13)

Note that in order to give a meaning to the second integral on the right-hand side of

(3.11), we have to assume more regularity on f , so that its trace on Γ is well-defined.

This occurs, e.g. if f ∈ [W 1,1(D)]2 because then f ∈ [L1(Γ)]2.

Now, we manipulate certain integrals appearing in (3.11) and we show that

δJ [Γ;V ] only depends upon u and z on Γ, which will imply that δJ [Γ;V ] is well-

defined and finite. Let us first observe that

∇u = ∇uI = ∇u (n⊗ n+ t⊗ t) = ∂nu⊗ n on Γ, (3.14)

since u = 0 on Γ. It follows that

I1 := −ν
∫
Γ

∇su : ∇sz V = −ν
∫
Γ

∇u : ∇sz V

= −ν
∫
Γ

∂nu⊗ n : ∇sz V = −ν
∫
Γ

∂nu · (∇sz)n V. (3.15)

On the other hand, using (3.5) and (3.12), we have

I2 := −ν
∫
Ω

∇su′ : ∇sz = −ν
∫
Ω

∇u′ : ∇sz = −
∫
Ω

∇u′ : T (z, q)

=

∫
Ω

u′ · divT (z, q)−
∫
Γ

u′ · T (z, q)n =

∫
Γ

(∇u)V · T (z, q)n.

By (3.14) we obtain

ν

∫
Γ

(∇u)V · (∇sz)n = ν

∫
Γ

∂nu · (∇sz)nV

and ∫
Γ

(∇u)V · (qn) =
∫
Γ

∂nu · n q V = 0,

which easily follows by combining ∂tu = 0 and divu = 0 on Γ. Thus,

I2 = ν

∫
Γ

∂nu · (∇sz)nV. (3.16)

At last, using (3.1) and (3.13) we obtain

I3 := −ν
∫
Ω

∇su : ∇sz′ = −ν
∫
Ω

∇su : ∇z′ = −
∫
Ω

T (u, p) : ∇z′

=

∫
Ω

divT (u, p) · z′ −
∫
∂Ω

T (u, p)n · z′

= −
∫
Ω

f · z′ −
∫
∂DN

h · z′ +
∫
Γ

T (u, p)n · (∇(z −Φ))V .
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We need to examine the last term. To this end, we set w = z−Φ and note that w =

0 on Γ. Hence, as in (3.14), ∇w = ∂nw⊗n and ∇wV = ∂nw V = ∂nz V −∂nΦV .

To proceed further, let us split Γ as

Γ1 := {x = o+ r(sinω,− cosω) : 0 ≤ r ≤ R,ω = ϑ− ε},
Γ2 := {x = o+ r(sinω,− cosω) : 0 ≤ r ≤ R,ω = ϑ+ ε},
Γ3 := {x = o+ r(sinω,− cosω) : r = R, |ω − ϑ| ≤ ε}.

(3.17)

Then, since 1
r∂ω(r e

⊥
ω ) = −eω and ∂r(r e

⊥
ω ) = e⊥ω , we obtain

∂nΦ =

⎧⎪⎪⎨⎪⎪⎩
−eω on Γ1,

eω on Γ2,

e⊥ω on Γ3,

V = re⊥ω · n =

⎧⎪⎪⎨⎪⎪⎩
r on Γ1,

−r on Γ2,

0 on Γ3.

This yields∫
Γ

T (u, p)n · (∇(z −Φ))V =

∫
Γ1∪Γ2

T (u, p)n · ∂nz V +

∫
Γ1∪Γ2

T (u, p)n · eω |V |.

Since n · eω = 0 on Γ1 ∪ Γ2, we deduce∫
Γ1∪Γ2

T (u, p)n · eω |V | = ν

∫
Γ1∪Γ2

(∇su)n · eω |V |.

We conclude that

I3 = −
∫
Ω

f · z′ −
∫
∂DN

h · z′ +
∫
Γ1∪Γ2

T (u, p)n · ∂nz V + ν

∫
Γ1∪Γ2

(∇su)n · eω |V |.

Substituting this expression along with (3.15) and (3.16) into (3.11), we obtain the

following formal expression for the shape derivative of J [Γ].

Lemma 3.2. (Formal shape derivative) The shape derivative δJ [Γ;V ] of J [Γ] in

the direction V is given by

δJ [Γ;V ] =

∫
Γ1∪Γ2

T (u, p)n · ∂nz V + ν

∫
Γ1∪Γ2

(∇su)n · eω |V |+
∫
Γ1∪Γ2

f · z V.

In order to check that the integrals on the right-hand side of δJ [Γ;V ] are finite,

we must invoke regularity of u and z higher than H1, at least in a neighborhood

of Γ. Consequently, we must improve upon Lemma 3.1. This is our next task.

Proposition 3.2. (Boundedness of δJ [Γ;V ]) Let 0 < ε ≤ ε0/2 be fixed and f ∈
[W 1,1(D)]2, g ∈ [H

1/2
00 (∂Din)]

2 and h ∈ [L2(∂Dout)]
2. Then, the shape derivative

δJ [Γ;V ] is well-defined, and there exists a constant C = C(f , g,h) > 0 depending

on ‖f‖[W 1,1(D)]2 , ‖g‖[H1/2
00 (∂Din)]2

and ‖h‖[L2(∂Dout)]2 such that

|δJ [Γ;V ]| ≤ C(f , g,h). (3.18)

Furthermore, the constant C(f , g,h) is uniform with respect to ϑ ∈ Iε0 .

M
at

h.
 M

od
el

s 
M

et
ho

ds
 A

pp
l. 

Sc
i. 

20
21

.3
1:

13
23

-1
37

2.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 9

3.
35

.2
42

.4
2 

on
 1

2/
18

/2
1.

 R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



July 19, 2021 17:26 WSPC/103-M3AS 2150027

1338 L. Beirão da Veiga et al.

Proof. In order to establish local regularity estimates around Γ beyond H1, it

is convenient to adopt a reference system centered at the hinge o, with the sym-

metry axis of L as one of the coordinate axis. In this system, Ω has walls and

inflow/outflow boundaries that change with ϑ, whereas L is fixed. Since by assump-

tion f ∈ [L2(D)]2 and u = 0 on Γ and the upper wall, (u, p) has regularity H2−H1

in a neighborhood of Γ, except possibly around the hinge o and the two corners

C1 := Γ1 ∩ Γ3 and C2 := Γ2 ∩ Γ3 at the tip. Let us examine these cases.

As Γ and the upper wall of D form angles smaller than π, Ω is convex in a neigh-

borhood No,1 (respectively, No,2) of the hinge comprised between Γ1 (respectively,

Γ2) and the upper wall. Hence, (u, p) has regularity H2 − H1 in these neighbor-

hoods (see e.g. Chap. 7 in Ref. 34). In view of the restrictions on ε and ϑ, these

neighborhoods No,i cannot degenerate to segments, and the H2 − H1 norms of

(u, p) in such neighborhoods can be bounded uniformly with respect to ε and ϑ.

At the tip corners Ci, i = 1, 2, Ω forms angles of measure 3π
2 ; in this case,

according to Ref. 36 (see also Ref. 24) u can be decomposed in a neighborhood

NCi of Ci into the sum of a regular part ureg which is locally H2, and a singular

part using, which – in a polar coordinate system (, ϕ) centered at Ci – behaves like

αU(ϕ) with α  0.544484 and U smooth. Thus, (u, p) has regularity H1+s −Hs

in NCi for any s < α, and the neigborhoods NCi can be chosen independent of ϑ.

In conclusion, by localizing the analysis near Γ by a partition-of-unity argument,

we can find a tubular neighborhood NΓ of Γ and constant Cs such that (u, p) ∈
[H1+s(NΓ)]

2 ×Hs(NΓ) with

‖u‖[H1+s(NΓ)]2 + ‖p‖Hs(NΓ) ≤ Cs(‖f‖[L2( ˜NΓ)]2
+ ‖u‖[H1( ˜NΓ))]2

+ ‖p‖L2( ˜NΓ)
),

where ÑΓ is an extension of NΓ. The radius of NΓ and the constant Cs can be

chosen independent of ϑ. Combining this with (3.7) yields

‖u‖[H1+s(NΓ)]2 + ‖p‖Hs(NΓ) ≤ C(‖f‖[L2(D)]2 + ‖g‖
[H

1/2
00 (∂Din)]2

+ ‖h‖[L2(∂Dout)]2),

and ‖f‖[L2(D)]2 � ‖f‖[W 1,1(D)]2 . A similar argument, together with (3.8), applies

to the pair (z − zΦ, q), where zΦ has been defined in Proposition 3.1, and gives

‖z‖[H1+s(NΓ)]2 + ‖q‖Hs(NΓ) � ‖Φ‖[H1(Ω0)]2 � 1. (3.19)

Since the tubular neighborhoods and constants in the previous bounds are inde-

pendent of ϑ ∈ Iε0 , choosing s satisfying 1
2 < s < α we deduce that the traces of

T (u, p)n, ∇su, and ∂nz are in [L2(Γ)]2, with norms controlled by the right-hand

sides of the bound for (u, p) and (z, q). To obtain the desired estimate, we further

observe that z ∈ [H1+s(NΓ)]
2 ⊂ [L∞(NΓ)]

2 and f ∈ [W 1,1(D)]2 ⊂ [L1(Γ)]2.

Corollary 3.2. (Lipschitz property of torque) Let 0 < ε ≤ ε0/2 be fixed. Under

the regularity assumptions of Proposition 3.2, the torque functional τ = τ(ϑ) is
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differentiable for all ϑ ∈ Iε0 with

dτ

dϑ
= δJ [Γ;V ], (3.20)

and dτ
dϑ is bounded in Iε0 .

Proof. If we rotate Γ = Γ(ϑ) by an angle Δϑ, leading to Γ′ = Γ(ϑ+Δϑ), a generic

point x = o+ r eω on Γ is sent to the point x′ = o+ r eω+Δϑ ∈ Γ′. Hence,

lim
Δϑ→0

x′ − x

Δϑ
= r e⊥ω = V (r, ω).

In view of the equality τ(ϑ) = J [Γ] in (3.2), we readily deduce

lim
Δϑ→0

τ(ϑ +Δϑ)− τ(ϑ)

Δϑ
= δJ [Γ;V ],

whence τ is differentiable in Iε0 . Proposition 3.2 gives the uniform bound in Iε0 .

We point out that the Lipschitz bound in Corollary 3.2 might depend on ε. To

see this, consider the limit ε→ 0 in which the leaflet L degenerates into a segment

L = Γ and the asymptotic behavior near the tip of the functions u and z, in the

expression of δJ [Γ,V ] of Lemma 3.2, becomes

u = 1/2U(ϕ), z = 1/2Z(ϕ),

with both U and Z smooth. The first term in δJ [Γ,V ] involves the computation

of integrals of the form∫
Γ1∪Γ2

∂nu · ∂nz ≈
∫
Γ1∪Γ2

−1d = ∞,

unless special cancellation occurs and the principal value is finite. This explains

why the current technical tools at hand are inadequate to derive differentiability of

τ(ϑ) for ε = 0. We content ourselves with continuity in Sec. 3.2.

3.3. Case ε = 0: Continuity of J[Γ]

We established in Proposition 3.1 that J [Γ] is bounded for ε = 0 uniformly in

ϑ ∈ Iε0 . We now prove that J [Γ] is uniformly continuous in Iε0 .

Our departing point is the expression (3.6) for J [Γ]. Using that divu = 0 and

integrating by parts we rewrite the first term as follows:

−ν
∫
Ω

∇su : ∇sz = −
∫
Ω

∇su : T (z, q) = −
∫
Ω

∇u : T (z, q)

=

∫
Ω

u · divT (z, q)−
∫
∂Ω

u · T (z, q)n = −
∫
∂Din

g · T (z, q)n,

because divT (z, q) = 0. Consequently, we get the equivalent form of (3.6)

J [Γ] = −
∫
∂Din

g · T (z, q)n+

∫
Ω

f · z +

∫
∂DN

h · z,
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valid for 0 ≤ ε ≤ ε0
2 and linear in (z, q). We denote by J [Γε] the functional cor-

responding to the pair (zε, qε) for ε > 0, and by J [Γ0] the functional for the pair

(z0, q0) and ε = 0. The pair (w, s) = (z0 − zε, q0 − qε) satisfies the Stokes system{
−divT (w, s) = 0 in Ωε,

divw = 0 in Ωε,

⎧⎪⎨⎪⎩
w = z0 −Φ on Γε,

w = 0 on ∂DD,

T (w, s)n = 0 on ∂DN ,

where Ωε = D \ Lε,Γε = ∂Lε. We now have an explicit formula for the error

J [Γ0]− J [Γε] = −
∫
∂Din

g · T (w, s)n+

∫
Ωε

f ·w +

∫
∂DN

h ·w +

∫
Ω0\Ωε

f · z0.

(3.21)

This leads to the following statement.

Proposition 3.3. (Continuity of J[Γ0]) The following error estimate

|J [Γ0]− J [Γε]| � ε
1
2 |log ε| 14 (3.22)

is valid uniformly in ϑ ∈ Iε0 . Therefore, the function τ(ϑ) = J [Γ0(ϑ)] is uniformly

continuous in Iε0 .

Proof. Uniform continuity of J [Γ0(ϑ)] is a consequence of (3.22) and the uniform

continuity of J [Γε(ϑ)] from Corollary (3.2). To show (3.22), we first note that

the estimate (3.19) of Proposition 3.2 is valid for ε = 0, and so for z0, provided

0 < s < 1
2 . We thus deduce ‖z0‖[L∞(NΓ)]2 � ‖z0‖[H1+s(NΓ)]2 � 1 for 0 < s < 1

2

along with ∣∣∣∣∣
∫
Ω0\Ωε

f · z0

∣∣∣∣∣ � ‖f‖L2(Ω0)|Ω0\Ωε| 12 � ε
1
2 .

Therefore, to obtain (3.22) it suffices to prove the error estimate

‖w‖
H

1
2
00(Γε)

� ε
1
2 |log ε| 14 , (3.23)

whence the extension ofw by 0 to the rest of ∂Ωε satisfies ‖w‖
H

1
2 (∂Ωε)

� ε
1
2 |log ε| 14 .

In fact, this controls ‖w‖[H1(Ωε)]2 and takes care of the second and third terms

in (3.21). The first term is more problematic, but interpreting the integral as a

duality in H
1/2
00 (∂Din) and recalling that divT (w, s) = 0, it is sufficient to bound

‖T (w, s)‖L2(Ωε) in terms of ‖w‖[H1(Ωε)]2 . This in turn follows from Lemma 3.1.

To prove (3.23), we decompose Γε in three disjoint pieces Γi = Γε,i, the straight

sides Γ1,Γ2 and the circular arc Γ3, but omit writing a subscript ε for simplicity.

It turns out to be convenient to represent the geometry as follows: let the leaflet

Γ0 = {(x, 0) : 0 ≤ x ≤ 1} with the tip at the origin and the hinge at (1, 0), and let

Γ1 = {(x, y) : y = α(1 − x)}, Γ3 = {(x, y) : x ≈ y2},
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with α = tan ε ≈ ε. Since z0 −Φ is the solution of a Stokes equation with smooth

right-hand side and z0 −Φ = 0 on Γ0, the function w = z0 −Φ on Γε exhibits the

singular behavior of a Stokes velocity near the tip

w(r, ϕ) = r
1
2W (ϕ),

with W smooth satisfying |W (ϕ)| ≈ ϕ near ϕ = 0, plus a regular H2-

component.24,36 The proof now splits into four steps.

(1) Estimate of ‖w‖
H

1
2 (Γ1)

. Note that on Γ1 (or Γ2) we have r = (x2+α2(1−x)2) 1
2

and ϕ = arctan
(
α 1−x

x

)
, whence the following approximations are valid

r ≈
⎧⎨⎩ε 0 < x < ε,

x ε < x ≤ 1,
ϕ ≈

⎧⎨⎩1 0 < x < ε,

ε
1− x

x
ε < x ≤ 1.

We decompose the interval (0, 1) dyadically, namely, let I0 = [0, ε) and Ik =

[ε2k−1, ε2k) for all 1 ≤ k ≤ K ≈ |log ε|. Since the unit tangent vector to Γε is

t = (cos ε,− sin ε), we can estimate w and ∂tw on Ik as follows:

|w| ≈ ε(ε2k)−
1
2 , |∂tw| ≈ ε(ε2k)−

3
2 ⇒

∫
Ik

|w|2 ≈ ε2,

∫
Ik

|∂tw|2 ≈ 2−2k.

This leads to∫
Γ1

|w|2 ≈ ε2K ≈ ε2|log ε|,
∫
Γ1

|∂tw|2 ≈
K∑

k=0

2−2k ≈ 1,

and combined with space interpolation yields

‖w‖
H

1
2 (Γ1)

≈ (‖w‖L2(Γ1)‖w‖H1(Γ1))
1
2 ≈ ε

1
2 |log ε| 14 .

(2) Estimate of ‖w‖
H

1
2 (Γ3)

. Since x ≈ y2 on Γ3, we may approximate |w| ≈ |y| 12 .
This function is known to belong to H

1
2 (−1, 1) so to get its H

1
2 -norm in the

interval (−ε, ε) we simply use a scaling argument. This gives

‖w‖
H

1
2 (Γ3)

� ε
1
2 .

(3) Estimate of ‖w‖
H

1
2 (Γε)

. We have estimates for the H
1
2 -norms on the disjoint

pieces Γ1,Γ2,Γ3, but this does not give an estimate for H
1
2 (Γε) because frac-

tional norms are not subadditive with respect to domain partitions. To get

around this issue, we resort to a location result of Faermann,31 which states that

domains should overlap with an amount of overlap commensurate with their

size. The global H
1
2 -seminorm square is then bounded by the H

1
2 -seminorms of

the individual pieces plus the L2-norms on each piece scaled by the reciprocal

of the overlap.

In our case, we simply extend the domain Γ1 to the upper quarter of Γ3,

say Γu
3 , thus avoiding to include a neighborhood of the origin. We next argue
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that to compute the H1-seminorm in the extended domain it suffices to add

the new piece on Γ3 because the function w has traces that agree on both sides

of Γ1 ∩ Γ3. Therefore, since ∂tw ≈ y−
1
2 , we get∫

Γu
3

|∂tw|2 ≈
∫ ε

ε/2

|∂tw|2dy ≈
∫ ε

ε/2

y−1dy = log ε− log
ε

2
= log 2.

It remains to estimate the scaled L2-norms, namely

1

ε

∫
Γ1

|w|2 ≈ ε|log ε|, 1

ε

∫
Γ3

|w|2 ≈ ε,

because |w| � ε
1
2 on Γ3. Coupling the three steps gives the asserted estimate.

(4) Estimate of ‖w‖
H

1
2
00(Γε)

. According to Theorem 1.5.2.3 of Ref. 34, We need to

estimate the quantity
∫
Γ1

|w(z)|2dist(z, z0)−1dσ(z), where z0 = (1, 0) is the

hinge point of Γε. To do so, we simply refine the expression of w(z) for z =

(x, y) ∈ Γ1 from Step 1 in the sense that w(z) ≈ εx
1
2 (1−x). Since dist(z, z0) ≈

1− x, this yields∫
Γ1

|w(z)|2
dist(z, z0)

dσ(z) ≈
∑

0≤k≤K

∫
Ik

|w(z)|2
1− x

dx ≈ ε2K ≈ ε2|log ε|.

Adding this bound to the estimate for ‖w‖2
H

1
2 (Γε)

of Step 3 concludes the

proof.

3.4. Solvability

A simple consequence of Corollary 3.2 and Proposition 3.3 is the existence of a

solution for the problem under consideration for all ε ≥ 0, provided a suitable but

reasonable condition on the spring elastic torque is assumed. This is tackled next.

Theorem 3.1. (Existence of solution) Let the spring angular momentum κ intro-

duced in (2.5) be continuous in the interval I◦ε0 = (−π
2 + ε0,

π
2 − ε0) and satisfy

lim
ϑ→±

(
π
2 −ε0

)κ(ϑ) = ±∞. (3.24)

Then, under the regularity assumptions of Proposition 3.2, the balance equation

(2.6) (or equivalently (2.9)) has at least one solution in I◦ε0 for all 0 ≤ ε ≤ ε0
2 .

Moreover, if ε > 0 and κ is differentiable with a sufficiently large derivative depend-

ing on ε, then the solution of (2.6) is unique.

Proof. The function τ(ϑ) is bounded in Iε0 in view of Lemma 3.1 and is continuous

according to Corollary 3.2 and Proposition 3.3. Since κ(ϑ) is continuous in I◦ε0
and tends to ±∞ at the end points, there is clearly a solution of (2.6). On the

other hand, if ε > 0, then Corollary 3.2 states that τ(ϑ) is Lipschitz in Iε0 with a

constant that might depend on ε. If the derivative of κ(ϑ) exceeds this constant,
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then the function κ(ϑ) − τ(ϑ) is strictly increasing in Iε0 and thus the solution is

unique.

Note that the blow-up condition (3.24) can be interpreted as a stiffening of the

spring or as originated by a penalty approximation of the contact condition among

the leaflet and the vessel walls.

4. Virtual Element Discretization

In this section, we first briefly recall the VEM discretization of the stationary fluid

equations, then present the discrete coupled problem and finish with the proposed

nonlinear iteration scheme.

4.1. Virtual Elements for the Navier–Stokes equation

We now describe briefly various tools from the virtual element technology; we refer

the interested reader to the papers.4,12,13,42 In particular, we recall that the pro-

posed Virtual Elements family presents interesting advantages, such as its flexibility

in terms of meshes and its capability of yielding a divergence-free discrete velocity

solution. For the sake of simplicity, here we address the lowest-degree case4 that

delivers first-order accuracy for both velocity and pressure. Similar constructions

can be used for higher-order schemes.12,13,42 Let {Ph(D)}h be a sequence of parti-

tions of D into general polygonal elements E with

hE := diam(E), h := sup
E∈Ph(D)

hE .

We suppose that for all h, each element E in Ph(D) fulfils the following assumptions:

(A1) E is star-shaped with respect to a ball BE of radius ≥  hE ,

(A2) the distance between any two vertices of E is ≥  hE ,

where  is a positive constant. We remark that the hypotheses listed above are clas-

sical in the virtual element approach (see for instance Refs. 10 and 1). Assumption

(A2) can be further relaxed, as investigated in Refs. 9 and 19, allowing for more

general cases such as meshes with arbitrarily small edges (with respect to the ele-

ment diameter). In contrast, very few theoretical results about avoiding assumption

(A1) exist currently in the literature; see for instance, Ref. 20. The latter relates

to anisotropic elements.

Virtual Element Spaces

On each element E ∈ Ph(D), we define the following finite dimensional local virtual

spaces of velocities

XE
h := {v ∈ [H1(E)]2 : v|∂E ∈ B1(∂E), div v ∈ P0(E),

Δv +∇s = 0 for some s ∈ L2
0(E)}, (4.1)
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with

B1(∂E) := {v|∂E ∈ [C0(∂E)]2 : v|e · te ∈ P1(e),v|e · ne ∈ P2(e) for all e ∈ ∂E},
where ne is the outward unit normal to E and te is the tangent unit vector defined

as the counterclockwise rotation of ne by π/2. All the operators and equations

in (4.1) are to be interpreted in the distributional sense. It is easy to realize that

[P1(E)]2 ⊆ XE
h and this will guarantee the optimal approximation property of the

space. The definition of XE
h above is associated to a Stokes-like variational problem

on E; in particular we remark that all functions v ∈ XE
h are uniquely determined

by their boundary values v|∂E ∈ B1(∂E) because div v = 1
|E|

∫
∂E

v · ne ds. This

leads to the following result.4

Proposition 4.1. (Dimension and DoFs) Let XE
h be the space defined in (4.1).

Then

dim XE
h = dim B1(∂E) = 3nE

where nE is the number of vertices of E. Moreover the following linear forms DX ,

which split into two subsets (see Fig. 4), provide a set of DoFs for XE
h :

• DX1: the values of v at the vertices of the polygon E,

• DX2: the values of the normal components v · ne at the midpoint of each edge

of E.

We highlight that the degrees of freedom DX1-DX2 are directly related to

the piecewise polynomial boundary space B1(∂E): linear tangent component and

quadratic normal component on each edge e.

For what concerns pressures, we take the standard finite dimensional space

QE
h := P0(E) and the corresponding degree of freedom DQ is one per element,

given by the value of the function on the element.

Finally, we define the global virtual element spaces as

Xh := {v ∈ [H1(Ω)]2 : v|E ∈ XE
h for all E ∈ Ph(D)} (4.2)

Fig. 4. Left: velocity DoFs DX1 denoted by dots, DX2 denoted by arrows. Right: pressure DoF
DQ denoted by a square.
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and

Qh := {q ∈ L2(Ω) : q|E ∈ QE
h for all E ∈ Ph(D)}, (4.3)

with the obvious associated sets of global degrees of freedom. In view of the degrees

of freedom DX1 and DX2 from Proposition 4.1, a simple computation shows that

dim Xh = 2nV + ne and dim Qh = nP ,

where nP is the number of elements, ne, nV is the number of edges and vertices in

Ph(D). We highlight the fundamental property of the proposed virtual elements,

namely

divXh ⊆ Qh, (4.4)

a key property that will lead to a divergence-free discrete solution.

Remark 4.1. In this section, we limit ourselves to present the lowest-order VEM

(k = 1) for the Navier–Stokes equation. However, in order to compare and validate

the performance of the proposed scheme, we also show the results obtained by

employing the VEM of order k = 2 in Sec. 5. For completeness in Fig. 5 we display

the DoFs diagram for such VEM as well. For a deeper analysis of higher-order

VEMs for the Navier–Stokes equation we refer to Refs. 12 and 26.

Multi-linear forms

In what follows, we briefly recall the basic steps in the construction of discrete

versions of the bilinear forms a(·, ·) and b(·, ·) given in (2.13) and (2.14) and trilinear

form c(·; ·, ·) in (2.15). First of all, we decompose these forms as well as the norms

‖ · ‖X , ‖ · ‖Q into local contributions, by defining

a(u,v) =:
∑

E∈Ph(D)

aE(u,v) for all u,v ∈ X,

b(v, q) =:
∑

E∈Ph(D)

bE(v, q) for all v ∈ X and q ∈ Q,

c(w; u,v) =:
∑

E∈Ph(D)

cE(w; u,v) for all w,u,v ∈ X.

Fig. 5. VEM of order k = 2. Left: velocity DoFs. Right: pressure DoFs.
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and

‖v‖2X =:
∑

E∈Ph(D)

‖v‖2X,E for all v ∈ X, ‖q‖2Q =:
∑

E∈Ph(D)

‖q‖2Q,E for all q ∈ Q.

Concerning the form b(·, ·), we simply observe that for all v ∈ Xh, q ∈ Qh it holds

bE(v, q) =

∫
E

div v q dE = q|E

∫
∂E

v · ne ds, (4.5)

a quantity that is exactly computable from the degrees of freedom DX1, DX2

and DQ, therefore we do not introduce any approximation of the bilinear form.

We now define discrete versions of the forms a(·, ·) and c(·; ·, ·), that need to be

dealt with in a more careful way. First of all, we note that for an arbitrary triplet

(w, u, v) ∈ [
XE

h

]3
, the quantities aE(u,v) and cE(w; u,v) are not computable.

Therefore, following a standard procedure in the VEM framework,1,10 for every

element E ∈ Ph(D) we introduce the following useful polynomial projections:

• the H1 semi-norm projection Π∇s,E
1 : X → [P1(E)]2, defined for all v ∈ X

by ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∫
E

∇sq1 : ∇s(v − Π∇s,E
1 v) dE = 0 for all q1 ∈ [P1(E)]2,∫

∂E

x⊥ · (v − Π∇s,E
1 v) ds = 0, where x⊥ := (−y, x)T ,∫

∂E

(v − Π∇s,E
1 v) ds = 0;

(4.6)

• the L2-projection for scalar functions Π0,E
j : L2(E) → Pj(E), given by∫

E

qj(v −Π0,E
j v) dE = 0 for all v ∈ L2(E) and for all qj ∈ Pj(E), (4.7)

with obvious extension for vector functions Π0,E
j : [L2(Ω)]2 → [Pj(E)]2, and ten-

sor functions Π0,E
j : [L2(E)]2×2 → [Pj(E)]2×2 (for j = 0, 1).

Remark 4.2. (Projections and computability) The operator Π∇s,E
1 is well defined

because the last two conditions in (4.6) account for the kernel of ∇s. In Refs. 4

and 12, it has been shown that the DoFs DX are sufficient to compute exactly

Π∇s,E
1 : XE

h → [P1(E)]2, Π0,E
0 : ∇(XE

h ) → [P0(E)]2×2.

In fact, given any vh ∈ XE
h , we are able to determine the polynomials Π∇s,E

1 vh and

Π0,E
0 ∇vh using solely the information within the DoFs DXvh. Furthermore, using

a different definition of the virtual space XE
h (sharing the same DoFs), it is possible

to compute exactly the L2-projection Π0,E
1 : XE

h → [P1(E)]2 from the DoFs DX .

We avoid this technicality and refer to Refs. 1, 13 and 42 for more details.
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In the standard procedure of VEM framework, we introduce a computable dis-

crete local bilinear form

aEh (·, ·) : XE
h ×XE

h → R (4.8)

approximating the continuous form aE(·, ·) by setting

aEh (u,v) := aE(Π∇s,E
1 u, Π∇s,E

1 v) + SE((I −Π∇s,E
1 )u, (I −Π∇s,E

1 )v) (4.9)

for all u,v ∈ XE
h , where the (symmetric) stabilizing bilinear form SE : XE

h ×XE
h →

R, satisfies

α∗aE(v,v) ≤ SE(v,v) ≤ α∗aE(v,v) for all v ∈ Xh s.t. Π∇s,E
1 v = 0, (4.10)

with α∗ and α∗ positive constants independent of the element E. It is straightfor-

ward to check that Definition (4.6) and property (4.10) imply

• k-consistency: for all q1 ∈ [P1(E)]2 and v ∈ XE
h

aEh (q1,v) = aE(q1,v); (4.11)

• stability: there exist two positive constants α∗ and α∗, independent of h and E,

such that, for all v ∈ XE
h , it holds

α∗aE(v,v) ≤ aEh (v,v) ≤ α∗aE(v,v). (4.12)

Under suitable mesh assumptions,9,19 two admissible choices for SE that guarantee

(4.10) will be given below in (5.1) and (5.2).

The global approximate bilinear form ah(·, ·) : Xh × Xh → R is obtained by

simply summing the local contributions:

ah(uh,vh) :=
∑

E∈Ph(D)

aEh (uh,vh) for all uh,vh ∈ Xh. (4.13)

For what concerns the approximation of the local trilinear form cE(·; ·, ·), we set

cEh (wh;uh,vh) :=

∫
E

[(Π0,E
0 ∇uh)(Π

0,E
1 wh)] · Π0,E

1 vhdE for all wh,uh,vh ∈ Xh

and note that all quantities in the previous formula are computable, in the sense

of Remark 4.2. As usual we define the global approximate trilinear form by adding

the local contributions:

ch(wh; uh,vh) :=
∑

E∈Ph(D)

cEh (wh; uh,vh), for all wh,uh,vh ∈ Xh. (4.14)

We note that the form ch(·; ·, ·) is immediately extendable to the wholeX . Moreover

we recall from Ref. 13 that ch(·; ·, ·) is continuous on X, uniformly in h, i.e. there

exists a positive constant Ĉ, independent of h, such that

|ch(w; u,v)| ≤ Ĉ ‖w‖X‖u‖X‖v‖X , for all w,u,v ∈ X.
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Linear forms and boundary data

The last step consists in constructing computable approximations of the right-hand

side f and boundary data g,h in (2.17). We define the approximate load term fh as

fh := Π0,E
1 f for all E ∈ Ph(D), (4.15)

and consider:

(fh,vh)0,Ω =
∑

E∈Ph(D)

∫
E

Π0,E
1 f · vh dE =

∑
E∈Ph(D)

∫
E

f · Π0,E
1 vh dE. (4.16)

We observe that (4.16) can be computed from DX for all vh ∈ Xh (see again

Remark 4.2), once a suitable quadrature rule is available for polygonal domains.

Details on such an issue can be found for instance in Refs. 41, 37 and 23.

If g ∈ [C(∂DD)]2, let gh be the DoFs interpolant on ∂DD of g, i.e. let gh · t be
the continuous piecewise linear approximation of g · t and gh · n be the continu-

ous piecewise quadratic approximation of g · n. Let hh be a piecewise polynomial

interpolant of h ∈ [C(∂DN )]2 that accounts for the effect of quadrature on ∂DN .

4.2. Virtual Elements for the coupled problem

The aim of this section is to describe the Virtual Element discretization of problem

(2.17). Here, as later in Sec. 5, we assume that ε = 0, so that the thin leaflet L = Γ

can be represented by a segment. This is a good approximation for small values of ε,

and allows us to use a simple and effective mesh-cutting technique in the numerical

tests of Sec. 5.

Let {Ph(D)}h be a sequence of decompositions of the channel D into general

polygonal elements E given independently of the position of the structure Γ and

satisfying the mesh assumptions (A1) and (A2). From a mesh Ph(D) in D, we

define the conforming polygonal mesh Ph,Γ(Ω) in Ω obtained by cutting with Γ the

elements of Ph(D). In order to have a clear overview of the situation, let us consider

the simplest case when Ph(D) is a square decomposition of D (see Fig. 6).

Fig. 6. Example of a conforming polygonal mesh Ph,Γ(Ω) obtained from a square decomposition

Ph(D) of the channel by cutting its elements across the straight segment Γ suitably extended.
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Depending on the position of the cut, from a single square we may generate two

sub-polygons, possibly violating assumptions (A1) and (A2). We observe that also

in this simple situation, starting from a square decomposition, we need to handle

a general polygonal mesh containing for instance pentagons, therefore the virtual

element approach turns out to be particularly appropriate in this context. We stress

that in the presence of an internal cut, i.e. if the tip T of Γ does not belong to

an edge of the underlying decomposition Ph(D), we extend the segment Γ until

we obtain the full cut of the element containing T . In that case, with reference to

Fig. 6, the elements EN−1 and EN have to be considered as a quadrilateral and a

hexagon, respectively, since the prolongation of Γ is considered as a separate edge.

Remark 4.3. (Cracked polygon) An alternative choice to treat the case of an

internal cut is to consider the polygon containing the tip of Γ as a “cracked” ele-

ment rather than prolonging the leaflet. Indeed the virtual element technology can

handle also this type of polygons. A preliminary numerical investigation of the

schemes obtained with the “leaflet prolongation” and the “cracked polygon” strate-

gies revealed that the former approach appears more robust in terms of behavior

of the discrete torque functional τh(ϑ) defined in (4.24) below. Therefore, in the

following we focus only on the first strategy.

We now discuss the discretization of problem (2.17). In view of (4.2) and (4.3),

the discrete spaces subordinate to the partition Ph,Γ(Ω) are

Xh := {v ∈ [H1(Ω)]2 : v|E ∈ XE
h for all E ∈ Ph,Γ(Ω)},

Qh := {q ∈ L2(Ω) : q|E ∈ QE
h for all E ∈ Ph,Γ(Ω)},

and the virtual discretization of the affine manifold in (2.11) reads

Xg
h,Γ := {v ∈ Xh : v|∂ΩD

= gh,v|Γ = 0}, (4.17)

where gh is the VEM interpolant of g. In light of Proposition 4.1 (dimension and

DoFs) and the definitions above, the linear operator D̂X defined next constitutes

a set of DoFs for the virtual space X0
h,Γ: for any element E ∈ Ph,Γ(Ω) we consider

• D̂X1: the values of v at the vertices of the element that do not belong to Γ∪∂ΩD,

• D̂X2: the values of the normal components v · ne at the midpoint of each edge

of E that is not contained in Γ ∪ ∂ΩD.

In Fig. 7, we display an example of such DoFs for some sample elements adjacent to

Γ. We observe that no DoFs are given on Γ, since homogeneous Dirichlet conditions

are enforced therein.
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Fig. 7. Degrees of freedom: We denote D̂X1 by dots and D̂X2 by arrows. Leaflet Γ cutting
through an element E (left) and prolongation of Γ to the boundary of E (right). The letter T
above indicates the position of the tip of the leaflet.

We denote by εhΓ ∈ Xh the function defined by the following DoFs values:

εhΓ(p) =

{
|p− o| e⊥ϑ if p ∈ Γ,

0 otherwise
p mesh vertex,

εhΓ(p) · ne =

{
|p− o| e⊥ϑ · ne if p ∈ Γ,

0 otherwise
p midpoint of mesh edge e.

(4.18)

Note that (2.16) and (4.18) imply

εhΓ|Γ = εΓ|Γ = re⊥
ϑ = Φ. (4.19)

We are now ready to state the proposed discrete problem. Referring to (4.17),

(4.3), (4.18), (4.13), (4.14) and (4.5), we consider the virtual element problem:

find ϑh ∈ Iε0 and (uh, ph) ∈ Xg
h,Γ ×Qh, such that⎧⎪⎨⎪⎩

ν ah(uh,vh + σ εhΓ) + ch(uh; uh,vh + σ εhΓ) + b(vh + σ εhΓ, ph) + σ κ(ϑh)

= (fh,vh + σ εhΓ)0,Ω + (hh,vh)0,∂DN ,

b(uh, qh) = 0,

(4.20)

for all σ ∈ R and (vh, qh) ∈ X0
h,Γ × Qh. Finally, in view of (4.4) and what is

observed in Refs. 12 and 13, the last line in (4.20) implies that the velocity solution

uh is pointwise divergence-free.

4.3. Discrete torque functional

In this section, in accordance with Sec. 3, we modify (4.20) to get the discretization

of the (linear) Stokes model (3.1): find ϑh ∈ Iε0 and (uh, ph) ∈ Xg
h,Γ × Qh, such

that for all σ ∈ R and (vh, qh) ∈ X0
h,Γ ×Qh⎧⎪⎨⎪⎩

ν ah(uh,vh + σ εhΓ) + b(vh + σ εhΓ, ph) + σκ(ϑh)

= (fh,vh + σ εhΓ)0,Ω + (hh,vh)0,∂DN ,

b(uh, qh) = 0.

(4.21)
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In order to study the solvability of the discrete problem (4.21), it is convenient

to introduce the discrete torque functional ϑ �→ τh(ϑ). Before doing so, we recall

an equivalent expression for the continuous torque functional ϑ �→ τ(ϑ)

τ(ϑ) = −ν a(u, εΓ)− b(εΓ, p) + (f , εΓ)0,Ω, (4.22)

which hinges on (2.7), (2.9) and (2.18). Similarly, if (uh, ph) ∈ Xg
h,Γ × Qh is the

solution of the following discrete Stokes equations for a given Γ = Γ(ϑ){
ν ah(uh,vh) + b(vh, ph) = (fh,vh)0,Ω + (hh,vh)0,∂DN ,

b(uh, qh) = 0,
(4.23)

for all (vh, qh) ∈ X0
h,Γ ×Qh, we define the discrete torque ϑ �→ τh(ϑ) to be

τh(ϑ) := −ν ah(uh, ε
h
Γ)− b(εhΓ, ph) + (fh, ε

h
Γ)0,Ω. (4.24)

Taking vh = 0, σ = 1 in (4.21), we obtain the leaflet momentum balance

κ(ϑh) = τh(ϑh), (4.25)

which is the discrete analogue of (2.6). In contrast to τ , we will see in Sec. 5 that

the functional τh need not be continuous with respect to ϑ, because a small change

in the position of Γ may induce a jump in the number of degrees of freedom that

affect the definition of the stabilization form SE . However, if jumps in τh exist, they

should tend to 0 as the mesh parameter h tends to 0. This will be elucidated next.

We next quantify the torque error τ(ϑ) − τh(ϑ) for any fixed ϑ. To this end,

we need the approximation errors E(v) := I(v) + P(v) for any v ∈ X, F(f) for

f ∈ [L2(Ω)]2, G(g) for g ∈ [H
3
2 (∂Din)]

2, and H(h) for h ∈ [H1(∂DN )]2, where

I(v) := min
vh∈Xh

‖v − vh‖X , P(v) := min
vπ∈[P1,h]2

⎛⎝ ∑
E∈Ph,Γ(Ω)

‖v − vπ‖2X,E

⎞⎠1/2

,

[P1,h]
2 denotes the space of piecewise polynomials of degree one over Ph,Γ(Ω) and

F(f) := ‖f − fh‖X∗ ,

G(g) := ‖g − gh‖[H1/2(∂DD)]2 ,

H(h) := ‖h− hh‖[L2(∂DN )]2 .

The following energy error estimate, that takes into account also the influence of

the boundary data approximation, is a trivial extension of well-known results in

the literature4,12,13

‖u− uh‖[H1(Ω)]2 � E(u) + F(f) + G(g) +H(h). (4.26)

Proposition 4.2. (Approximation of torque) For a given ϑ ∈ Iε0 , let Γ = Γ(ϑ) and

(u, p) and (z, q) be the solutions of the Stokes problem (3.1) and adjoint problem

M
at

h.
 M

od
el

s 
M

et
ho

ds
 A

pp
l. 

Sc
i. 

20
21

.3
1:

13
23

-1
37

2.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 9

3.
35

.2
42

.4
2 

on
 1

2/
18

/2
1.

 R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



July 19, 2021 17:26 WSPC/103-M3AS 2150027

1352 L. Beirão da Veiga et al.

(3.5). Let τ(ϑ) and τh(ϑ) be the continuous and discrete torque functionals satisfying

(4.22) and (4.24), respectively. Then the following error estimate holds

|τ(ϑ) − τh(ϑ)| � E(u)E(z) + (F(f ) + G(g) +H(h))(E(z) + ‖z‖X). (4.27)

Proof. We start with a simple but crucial observation: the function εΓ in (4.22)

can be replaced by any function v ∈ X with the same Dirichlet boundary condition

as εΓ on Γ∪ ∂DD because εΓ − v ∈ X0
Γ is an admissible test function for the weak

Stokes equation for (u, p); one only needs to add the Neumann boundary term

(h, ·)0,∂DN that in (4.22) is missing since εΓ vanishes on ∂DN . The same comment

applies to (4.24). To choose v, we recall that (z, q) ∈ X × Q solves the adjoint

problem (3.5), whose weak form reads{
νa(v, z) + b(v, q) = 0 for all v ∈ X0

Γ,

b(z, s) = 0 for all s ∈ Q.
(4.28)

Let (zh, qh) ∈ Xh × Qh be the corresponding VEM counterpart of Sec. 4.1, and

note that zh = εΓ = Φ on Γ, zh = εΓ = 0 on ∂DD and div zh = 0 in Ω. We thus

choose v = zh ∈ Xh ⊂ X to write

τh(ϑ) = −ν ah(uh, zh)− b(zh, ph) + (fh, zh)0,Ω + (hh, zh)0,∂DN ,

τ(ϑ) = −ν a(u, zh)− b(zh, p) + (f , zh)0,Ω + (h, zh)0,∂DN .
(4.29)

Therefore, we obtain the error decomposition τ(ϑ) − τh(ϑ) = I + II + III with

I := −νa(u− uh, zh)− b(zh, p− ph),

II := −ν[a(uh, zh)− ah(uh, zh)],

III := [(f , zh)0,Ω − (fh, zh)0,Ω] + [(h, zh)0,∂DN − (hh, zh)0,∂DN ].

The rest of the proof consists of estimating these three terms separately.

(1) Estimate of I: We utilize that b(zh, p− ph) = 0, because divzh = 0, to deduce

I = −νa(u− uh, zh).

In view of (4.28), we would like to exploit the fact that a(v, z) = 0 for v ∈ X0
Γ

and div v = 0, but we cannot take v = u−uh because this v �= 0 on ∂DD. Let

(w, s) ∈ X×Q be the solution of the Stokes problem (3.1) with data f = h = 0

and Dirichlet condition w = g − gh on ∂DD and w = 0 on Γ. Therefore, we

have

‖w‖[H1(Ω)]2 � ‖g − gh‖[H1/2(∂ΩD)]2 = G(g),
according to (3.7). Since v = u− uh −w ∈ X0

Γ and div v = 0, (4.28) implies

νa(u − uh, z)− νa(w, z) = 0,
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which added to I yields I = νa(u − uh, z − zh) − νa(w, z). We observe that

(4.26) is valid for both u and z, the latter without data approximation because

Φ ∈ Xh. Consequently, the Cauchy–Schwarz inequality gives

|I| � E(u) E(z) + (F(f ) + G(g) +H(h))(E(z) + ‖z‖X).

(2) Estimate of II: We decompose II elementwise and write for any E ∈ Ph,Γ(Ω)

ν−1IIE := aE(uh, zh)− aEh (uh, zh)

= aE(uh, zh)− aE(ΠE
1 uh,Π

E
1 zh)− SE((I −ΠE

1 )uh, (I −ΠE
1 )zh)

= aE(uh −ΠE
1 uh, zh −ΠE

1 zh)− SE((I −ΠE
1 )uh, (I −ΠE

1 )zh)

where we have used the a-orthogonality property of the projector operator

ΠE
1 := Π∇s,E

1 defined in (4.6). In view of (4.10), we infer that

|IIE | � ‖∇s(uh −ΠE
1 uh)‖L2(E) ‖∇s(zh −ΠE

1 zh)‖L2(E)

≤ ‖∇s(uh −ΠE
1 u)‖L2(E) ‖∇s(zh −ΠE

1 z)‖L2(E),

because ΠE
1 uh is a projection with respect to the operator ∇s. Adding and

subtracting u, z, and combining the Cauchy–Schwarz inequality with (4.26)

yields

|II| ≤
∑

E∈Ph,Γ(Ω)

|IIE | � (E(u) + F(f ) + G(g) +H(h))E(z).

(3) Estimate of III: We split III = III1 + III2 and recall (4.16) to find out

|III1| ≤
∑

E∈Ph,Γ(Ω)

∫
E

|(f −Π0,E
1 f) · zh| ≤ ‖f − fh‖X∗‖zh‖X � F(f)‖z‖X ,

|III2| ≤ ‖h− hh‖[L2(∂DN )]2‖zh‖X � H(h)‖z‖X ,
because ‖zh‖X � ‖z‖X . This concludes the proof.

Lemma 4.1. (Interpolation) Let the mesh Ph,Γ(Ω) satisfy (A1) and (A2). Let

v ∈ X be so that v|E ∈ [Hs+1(E)]2 for all E ∈ Ph,Γ(Ω) with 0 < s ≤ 1. Then

E(v) �
∑

E∈Ph,Γ(Ω)

hsE |v|Hs+1(E).

Proof. Use the interpolation estimate of Theorem 4.1 in Ref. 13 for I(v), and
standard polynomial approximation estimates18 for P(v).

The previous outcomes can be summarized in the following rate of convergence.

Theorem 4.1. (Torque error estimates) Let the mesh Ph,Γ(Ω) satisfy (A1) and

(A2) and let h = maxE∈Ph,Γ(Ω) hE. If f ∈ [L2(Ω)]2, g ∈ [H3/2(∂Din)]
2, and
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h ∈ [H1(∂DN )]2, then the continuous and discrete torque functionals τ(ϑ) and

τh(ϑ), given in (4.22) and (4.24), satisfy the error estimate

|τ(ϑ) − τh(ϑ)| � h|log h|. (4.30)

Proof. The regularity of u and z−Φ in Ω is dictated by the singularity at the tip of

the leaflet. Such singularity, already used in Proposition 3.3,24,36 is of the form r1/2

in polar coordinates centered at the tip provided f ∈ [L2(Ω)]2; note that Φ = re⊥
ω

is smooth. Therefore, a fractional derivative of order 1 + s is square integrable∫ 1

0

r2
(

1
2−1−s

)
+1dr =

∫ 1

0

r−2sdr =
1

1− 2s
<∞

provided s < 1
2 . Take now s = 1

2 − δ, for δ > 0 sufficiently small, to obtain

|u|
H

3
2
−δ(Ω)

� δ−
1
2 , |z|

H
3
2
−δ(Ω)

� δ−
1
2 .

Combining these estimates with Lemma 4.1, and choosing δ = |log h|−1, yields

E(u), E(z) � h
1
2h−δδ−

1
2 ≈ (h |log h|) 1

2 .

On the other hand, if f ∈ [L2(Ω)]2, g ∈ [H3/2(∂Din)]
2, and h ∈ [H1(∂DN )]2, then

F(f) � h‖f‖[L2(Ω)]2 , G(g) � h‖g‖[H3/2(∂Din)]2 , H(h) � h‖h‖[H1(∂DN )]2 .

The asserted estimate (4.30) follows from (4.27) of Proposition 4.2.

Whenever hh is constructed so that its average on each edge agrees with

that of h, the regularity requirement on h above can be easily relaxed to h ∈
[H1/2+s(∂DN )]2, s > 0, without changing the convergence rate (where the positive

s is included only to guarantee the applicability of Gauss-like integration rules,

which require pointwise evaluation).

Remark 4.4. (Optimality of (4.30)) We stress that the rate in (4.30) is twice that

associated with E(u). This is due to the use of the variational expressions (4.22)

and (4.24), which avoid evaluating the trace of T (u, p) and T (uh, ph) on Γ and

allow for additional cancellation. The numerical experiments of Test 2 in Sec. 5

confirm that the linear rate (4.30) is optimal (up to the logarithm).

Remark 4.5. (Discontinuous τh) The discrete torque τh(ϑ) might be discontinuous

according to our experiments in Sec. 5 for the dofi-dofi stabilization. Since (4.30)

is uniform for ϑ ∈ Iε0 and τ(ϑ) is uniformly continuous for ϑ ∈ Iε0 , in light of

Proposition 3.3, the triangle inequality implies that as ϑ̃→ ϑ

|τh(ϑ̃)− τh(ϑ)| � h |log h|+ o(1) ∀ϑ ∈ Iε0 .

We conclude that any possible jumps of τh must be of order O(h|log h|). Conse-
quently, we must accept that the discrete balance equation (4.25) be satisfied up

to an O(h|log h|)-error. This leads to the following solution algorithm.
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Bisection algorithm for the nonlinear system

Under the assumption of Theorem 3.1, the function ψ(ϑ) := κ(ϑ)− τ(ϑ) satisfies

lim
ϑ→±(

π
2−ε0)

ψ(ϑ) = ±∞.

Since the error estimate (4.30) is uniform in ϑ ∈ Iε0 , we deduce that the function

ψh(ϑ) := κ(ϑ)− τh(ϑ) changes sign in Iε0 . We thus apply the bisection algorithm is

a slightly smaller interval Iδ0 , with δ0 > ε0, and generate a sequence {ϑnh}n≥0. The

sequence converges to a limit value ϑ
h, which is either the exact solution of (4.25)

(if τh is continuous in ϑ
h), or satisfies

|κ(ϑ
h)− τh(ϑ


h)| = O(h|log h|) as h→ 0.

Combining the above bound with (4.30), the triangle inequality yields

|κ(ϑ
h)− τ(ϑ
h)| = O(h|log h|) as h→ 0,

that represents the asymptotic satisfaction of the equilibrium condition (2.6).

Remark 4.6. (Error estimate for ϑ) If ψ(ϑ
) = κ(ϑ
) − τ(ϑ
) = 0 dictates the

exact equilibrium angle ϑ
 and the non-degeneracy condition ψ′(ϑ) ≥ λ > 0 is valid

for all ϑ in the vicinity of ϑ∗, then

|ϑ
 − ϑ
h| ≤
h|log h|
λ

as h→ 0.

5. Numerical Tests

5.1. Stabilization

We briefly sketch the construction of the two choices of stabilizing bilinear forms

SE(·, ·) in (4.10) used in the numerical tests. We recall that condition (4.10) essen-

tially requires that the stabilizing term SE(vh,vh) scales as aE(vh,vh). The first

option for the stabilization is the so-called dofi-dofi. Let us denote with uh,

vh ∈ RNDoFs,E the vectors containing the values of the NDoFs,E local degrees of

freedom associated to uh,vh ∈ XE
h . Then, we set

SE
dofi(uh,vh) = ν uh · vh . (5.1)

The second stabilization adopted in the numerical tests is the trace stabilization

introduced in Ref. 44

SE
trace(uh,vh) = νhE

∫
∂E

∂suh · ∂svh ds. (5.2)

Using standard scaling arguments, we note that the above stabilizations yield the

correct scaling for SE(·, ·) in accordance with (4.10), at least for mesh satisfying

assumptions (A1) and (A2). An analysis under more general mesh assumptions

can be found in Refs. 9 and 19. Finally, note that we multiply both forms by ν,
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which is a standard choice for this simple material law, in order to have a correct

scaling also with respect to the material parameters.

Remark 5.1. (Stabilization) We consider the two main stabilization terms from

the literature that one should apply to the present problem. The dofi-dofi choice

is the first and main stabilizing form in Virtual Elements, adopted in the large

majority of articles and codes. The trace stabilization was specifically introduced to

deal with “small edges” (edges that are very small when compared with the parent

element diameter) and is therefore particularly suitable to the present problem.

5.2. Problem setting and adopted meshes

In the proposed tests, we consider the fluid–structure interaction problem (2.10)

posed on the square domain D = [0, 1]2 with vanishing external load f = 0 and

fluid viscosity ν = 1. We refer again to Fig. 1 for a depiction of the general problem

geometry. We take the following boundary conditions: free boundary conditions

h = 0 at the right outflow boundary edge ∂DN := {1} × [0, 1], Dirichlet boundary

conditions at the left inflow edge {0} × [0, 1], given by

u(0, y) = (ϕ(y), 0) with ϕ(y) = 0.1y(1− y).

At the top and bottom wall [0, 1]×{0, 1} of the domain, no-slip boundary conditions

are applied (i.e. u = 0). The hinged point is in position O = (0.5, 0) and the leaflet

has a length of 0.5 with the spring relaxed position ϑ0 = 0 being set as the vertical

direction (that is, when the tip is in position (0.5,0.5)). In all subsequent tests,

we assume a linear response κ(ϑ) = κsϑ of the spring, where the constant elastic

modulus κs will be specified in each test.

For what concerns mesh generation, in the numerical tests we use a sequence

of underlying square meshes {Ph(D)}h (where h is the length of the edges of the

squares) and we cut them with Γ. In order to avoid machine precision issues, we

collapse two vertices of the associated cut mesh Ph,Γ(Ω) if the distance between

them is less then 1e-14 with respect to the mesh size. We investigate the results

obtained with the VEM schemes of order one and two (denoted with k = 1 and

k = 2, respectively); see Remark 4.1.

Note that in the setting under investigation two possible situations can occur: if

1/h is even the hinged point O is a vertex of the underlying mesh, while if 1/h is odd

the point O corresponds to the midpoint of an edge. Since this two situations may

yield different mesh configurations, we analyze both cases in the following numerical

tests. As a consequence of the mesh cutting procedure, anisotropic elements can be

generated when the absolute angle value |ϑ| is very small or near π/2 (this latter

configuration being outside our scope since it would require to include a contact

condition among the vessel walls and the leaflet). Furthermore, note that the mesh

cutting procedure can generate very small elements and edges, that is elements with

a diameter that is much smaller than h and elements of diameter comparable to h

having edges that are much smaller.
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5.3. Numerical experiments

We now conduct three comprehensive numerical tests with the proposed VEM.

Test 1: Study of the τh functional. In the present test, we assess the robustness

of the VEM technology for fluid–structure interaction problems, in particular, we

evaluate the qualitative behavior of the discrete torque functional τh in terms of

continuity and monotonicity with respect to ϑ, the condition number of the resulting

linear system and the discrete inf-sup constant βh

βh := inf
qh∈Qh/{0}

sup
vh∈Xh/{0}

b(vh, qh)

‖vh‖X‖qh‖Q .

For the sake of simplicity, in the present test we consider the Stokes version of

(2.10) (that is, without the convective term) with spring modulus κs = 1 and the

data described above.

In Figs. 8 and 9, we plot the function τh obtained in the “odd case” and in

the “even case” for two levels of refinements (1/h = 15, 31 and 1/h = 16, 32,

respectively) for k = 1, 2 and the aforementioned choices of the stabilization forms.

To validate the performances of the proposed numerical scheme, we compute a

“reference torque” τ manufactured in the following way: for any angle ϑ we build

an ad-hoc (shape regular) very fine triangular mesh in the domain Ω = D \ Γ(ϑ).
The output torque functional τ(ϑ) is thus computed employing the well-known

Crouzeix–Raviart Stokes finite element ([P2 ⊕ B]2, disc. P1) on such a mesh (with

Fig. 8. Test 1. τh obtained with 1/h = 15 (left) and 1/h = 31 (right) for k = 1, 2, trace and
dofi-dofi stabilizations.

Fig. 9. Test 1. τh obtained with 1/h = 16 (left) and 1/h = 32 (right) for k = 1, 2, trace and
dofi-dofi stabilizations.
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diameter h = 0.02). Obviously, this is a very expensive procedure in practice, but

is acceptable to generate a reference solution.

The plots show the qualitative behavior for the discrete functions τh, in partic-

ular we can observe the following facts:

• the graphs of the functions τh approach that of the reference function τ when h

decreases. As expected, the case k = 2 yields better result than the case k = 1.

Furthermore, we note that, at least for the present data, the dofi-dofi stabi-

lization produces discrete functions τh closer to the reference function τ ;

• the graph of the function τh exhibits small jumps (or bumps) of amplitude

decreasing with h, that appear when the leaflet tip (or its prolongation) crosses

a vertex of the background mesh. This phenomenon is more evident for the

dofi-dofi stabilization, whereas the trace stabilization has better performances

in terms of continuity of the associated discrete function τh. An investigation of

this aspect is presented below;

• the function τh has, roughly speaking, a decreasing monotone trend with respect

to ϑ, that is only perturbed by the aforementioned small jumps or bumps. This is

in agreement with the physical intuition. Also note that the approximation gets

better as ϑ increases.

In order to investigate the small jump/bump phenomenon detected above, in

Figs. 10 and 11 , we depict a zoom of the τh graph for some critical ranges of the

angle ϑ. We note, as expected, that the jumps and bumps are related to a change

in the topology of the mesh. In order to better appreciate this, in both graphs

Fig. 10. Test 1. τh obtained with 1/h = 15 for k = 1, 2, trace and dofi-dofi stabilizations
near ϑ = 0 (upper). Mesh configurations at the critical angles (lower). case A: leaflet prolongation
crossing a mesh vertex; case B: leaflet tip crossing a mesh edge; case C: leaflet crossing a mesh

vertex. case B generates the more evident bump/jump of the function τh.
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Fig. 11. Test 1. τh obtained with 1/h = 16 for k = 1, 2, trace and dofi-dofi stabilizations near
ϑ = π

4
(upper). Mesh configurations at the critical angles (lower). case A: leaflet crossing a mesh

vertex; case B: leaflet tip crossing a mesh edge; case C: leaflet and leaflet prolongation crossing
a mesh vertex; case D: leaflet tip crossing a mesh edge. case B and case D generate the more
evident bumps/jumps of the function τh.

we plot dashed vertical lines that mark the angle values associated to the mesh

configurations shown in the lower part of the figure. For example, in Fig. 10 the

jumps/bumps of cases A and C are generated by the leaflet (or its prolongation)

crossing a mesh vertex; case B is instead generated by the leaflet tip crossing a

mesh edge (which creates a big change in the local mesh configuration due to the

leaflet prolongation procedure). Analogous observations can be made for Fig. 11,

cases A, B, C, D. The difference between the two figures is that in Fig. 10 the

considered angles ϑ are very small (thus yielding anisotropic elements in addition

to small edges/elements) while in Fig. 11 the considered angles are large (thus

anisotropic elements are ruled out but small edges/elements can still be present).

Some observations are in order.

• By comparison of Figs. 10 and 11, one can immediately appreciate that the

absence of anisotropy yields a much milder jump/bump phenomenon.

• At the critical angles, the dofi-dofi stabilization may generate jumps in the

functional, with decreasing amplitude as h tends to zero. The presence of such

jumps appears to be related to the particular form of this stabilization. Indeed,

for the dofi-dofi stabilization a change in topology may modify the number

of edges (and thus nodes) in an element thus leading to a smaller or larger sum

in (5.1), which can justify the jumps in the τh graph. For instance, the small

anisotropic triangle appearing in subfigure B of Fig. 10 has four edges before the
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leaflet tip touches the vertical line (due to the leaflet prolongation procedure),

that become 3 edges after the tip has crossed such line.

• Contrary to the dofi-dofi case, the trace stabilization generates bumps instead

of jumps at the critical angles. Therefore, only the function monotonicity, but

not its continuity, is broken. This preferable behavior of the trace stabilization

may be partially associated to its known robustness in the presence of small

edges.9,19,44

• The changes in the mesh topology that happen at the critical angles yield abrupt

modifications also for the corresponding pressure space. In order to check the

influence of this pressure changes on the jumps/bumps previously mentioned,

we ran an analogous problem with a (vector) Laplace model problem (that is,

without the divergence-free constraint and the corresponding pressure space).

Since the same jumps/bumps were found also in the new test problem, although

with a smaller amplitude, we deduce that the incompressibility constraint is not

alone the cause of such phenomena.

As a final remark, we must underline that all the above numerical perturbations

of the τh functional get smaller as h→ 0 and, if one considers the strong local mesh

topological changes in action, the scheme is still surprisingly robust. In a practical

situation, one would not adopt coarse meshes such as those previously presented:

in Fig. 12, we plot the graph of τh for a fine mesh with h = 1/128 in the angle

range [0, 0.5]. The smoothness can be clearly appreciated compared with the same

angle range in Figs. 8 and 9.

We now consider the linear system arising from the discrete scheme (4.23).

The condition number of the resulting matrix, after applying a diagonal scaling,

is reported in Fig. 13 as a function of the angular coordinate ϑ. We note that

the condition number suffers from the anisotropy of the elements (small angles ϑ

and 1/h = 32). Nevertheless as observed above (compare Figs. 8 and 9) the ill-

conditioning of the problem seems not to affect the computation of τh, at least for

the direct solver adopted here. Furthermore, we observe that for the dofi-dofi

stabilization the condition number is always smaller, and the jumps are less pro-

Fig. 12. Test 1. τh obtained with 1/h = 128 for k = 1, 2, trace and dofi-dofi stabilizations.

Focus on the interval [0, 0.5].
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Fig. 13. Test 1. Condition number with 1/h = 31 (left) and 1/h = 32 (right) for k = 1, 2. The
condition number suffers from the anisotropy of the elements (small angles ϑ and 1/h = 32). The
condition number for the dofi-dofi stabilization is more stable in comparison with the trace

stabilization.

nounced, with respect to the one for the trace stabilization, in the presence of

elements or edges with diameter/length that is orders of magnitude smaller than h.

The different behavior of the condition number can be qualitatively motivated by

considering a generic element of size hE with a “small” edge of length he and

vertices ν, ν′. It is easy to check that the nodal basis function ϕ ∈ Xg
h,Γ (taking

value one at the vertex ν and vanishing at all remaining degrees of freedom) satis-

fies SE
trace(ϕ, ϕ) ∼ hE/he. Therefore, the presence of large ratios hE/he >> 1 may

negatively influence the condition number of the ensuing stiffness matrix.

At last, Table 1 shows the stability of the discrete inf-sup constant βh with

respect to the anisotropy and different sizes of the elements, for both k = 1 and

k = 2, and both the adopted stabilizations. For the computation of βh, we use the

algebraic argument in Ref. 21. We pick small angles ϑ in order to assess the perfor-

mance of the scheme with respect to anisotropy. Table 1 clearly indicates that the

inf-sup constant βh is robust with respect to the anisotropy of the mesh elements.

Test 2: Validation of the nonlinear scheme for the Stokes equations. In

the present test, we numerically explore the convergence of the VEM scheme for

the “benchmark problem” described in the following, with the aim of validating the

Table 1. Test 1. Inf-sup constant βh for k = 1, 2. Even and odd case, trace
and dofi-dofi stabilizations. The inf-sup constant is robust with respect to
the anisotropy of the mesh elements.

trace dofi-dofi

ϑ k = 1 k = 2 k = 1 k = 2

h=1/15 1e-8 1.75014e-01 1.77600e-01 2.21828e-01 1.84007e-01

1e-6 1.75014e-01 1.77600e-01 2.21828e-01 1.84007e-01

1e-4 1.75011e-01 1.77601e-01 2.21825e-01 1.84008e-01

1e-2 1.74655e-01 1.77662e-01 2.21448e-01 1.84085e-01

h=1/16 1e-8 1.86731e-01 6.24530e-02 2.24419e-01 1.81699e-01

1e-6 1.86731e-01 5.63922e-02 2.24419e-01 1.82237e-01

1e-4 1.86735e-01 5.62713e-02 2.24415e-01 1.82234e-01

1e-2 1.86933e-01 6.49363e-02 2.24960e-01 1.83015e-01
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proposed discretization scheme and the associated nonlinear algorithm. We consider

again the linear (Stokes) version of (2.10) with the data described above. Since no

exact solution is explicitly available, we build a reliable reference numerical solution

as follows. The idea is to fix an angle ϑ∗ of the leaflet, compute the corresponding

torque τ(ϑ∗) by a highly accurate numerical scheme, and find the value κ∗s of the

spring elastic modulus by imposing that ϑ∗ is the equilibrium position of the leaflet.

To be precise, we choose the angle ϑ∗ := π/6 − 0.01, since this angle yields a

complex mesh configuration with small elements and edges (see Fig. 14), thereby

representing a severe test for the robustness of the VEM technology. The torque

τ(ϑ∗) is expensively, yet accurately computed as in Test 1 by the Crouzeix–Raviart

method on a fine triangular mesh of diameter h = 0.01 in the domain Ω = D\Γ(ϑ∗).
Finally, κ∗s := τ(ϑ∗)

ϑ∗ is obtained by enforcing the balance condition κ∗sϑ∗ = τ(ϑ∗).
The value ϑ∗ is approximated by the VEM scheme (4.20) (without the convective

term ch), solving the resulting nonlinear equation κ∗sϑ = τh(ϑ) by the bisection

algorithm discussed in Sec. 4.3; let ϑ∗h denote the output of this procedure.

Table 2 reports the errors |ϑ∗ − ϑ∗h| for different choices of the discretization

parameter and for the two considered stabilizations. We observe that in both the

even and odd cases, the method converges to the exact solution. The conver-

gence trend is more evident for the trace stabilization. However the dofi-dofi

Fig. 14. Test 2. Examples of mesh elements for ϑ = π/6 − 1e-2. case A: small prolongation of
the leaflet Γ (even case). case B: elements with different sizes. case C: small edges.

Table 2. Test 2. Error |ϑ∗ − ϑ∗
h| obtained k = 1, 2, with different

values of the mesh size h for the proposed benchmark problem; trace
stabilization and dofi-dofi stabilization.

trace dofi-dofi

1/h k = 1 k = 2 k = 1 k = 2

5 9.619392e-02 5.263332e-02 4.155839e-02 2.687218e-03

9 6.693311e-02 3.913659e-02 3.640182e-02 1.051568e-02

17 3.371117e-02 1.796874e-02 1.337427e-02 1.278502e-03

33 1.762575e-02 9.453033e-03 6.364691e-03 5.301562e-04

65 8.237521e-03 5.364761e-03 2.894178e-03 1.170867e-04

4 1.506788e-01 7.799135e-02 5.773616e-02 1.766750e-02

8 6.917897e-02 4.419630e-02 2.872391e-02 1.710762e-02

16 3.555107e-02 1.816131e-02 8.238265e-03 3.096882e-03

32 1.826239e-02 1.015554e-02 8.238265e-03 1.808767e-03

64 1.000000e-02 6.112618e-03 3.313301e-03 1.449026e-03
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stabilization yields, at least for this test, better results. We note that, as expected,

the method obtained with k = 2 produces better performances in comparison with

the k = 1 scheme, nevertheless both schemes exhibit a linear rate of convergence.

This is consistent with Theorem 4.1 (see also Remark 4.6) and the low Sobolev

regularity of the exact solution.

Test 3: Performance with respect to ϑ and h for the Navier–Stokes equa-

tions. The aim of this test is to check the actual performance of the virtual element

method for the full Navier–Stokes equations, using again the data given above and

assuming as in Test 2 a linear law κ(ϑ) = κsϑ for the spring angular momentum.

We vary κs by several orders of magnitude, and we consider different refinements

of the computational mesh.

Tables 3 and 4 display the angular coordinates ϑh obtained by the virtual ele-

ment discretization (4.20) and the bisection algorithm described in Sec. 4.3, for odd

Table 3. Test 3. Angular coordinates ϑh of the leaflet for degree of approximation k = 1,
2 with different values of the mesh size h and different values of the spring torsional
elastic modulus κs. trace and dofi-dofi stabilizations. Odd case.

trace dofi-dofi

1/h κs = 0.01 κs = 1.00 κs = 100 κs = 0.01 κs = 1.00 κs = 100

k=1 5 1.38151 0.27635 0.00363 1.31711 0.15212 0.00156

9 1.31213 0.22939 0.00280 1.28624 0.16258 0.00175

17 1.29514 0.20351 0.00238 1.29035 0.17198 0.00187

33 1.29036 0.18982 0.00219 1.29184 0.17562 0.00194

65 1.28991 0.18404 0.00209 1.29423 0.17673 0.00197

k=2 5 1.28454 0.23737 0.00266 1.29268 0.16902 0.00185

9 1.28992 0.20421 0.00232 1.29927 0.17469 0.00192

17 1.28888 0.19438 0.00216 1.29863 0.17336 0.00196

33 1.28992 0.18592 0.00208 1.29593 0.17845 0.00198

65 1.29066 0.18147 0.00204 1.29497 0.17804 0.00199

Table 4. Test 3. Angular coordinates ϑh of the leaflet for degree of approximation k = 1,
2 with different values of the mesh size h and different values of the spring torsional
elastic modulus κs. trace and dofi-dofi stabilizations. Even case.

trace dofi-dofi

1/h κs = 0.01 κs = 1.00 κs = 100 κs = 0.01 κs = 1.00 κs = 100

k=1 4 1.40724 0.28031 0.00398 1.33317 0.13095 0.00167

8 1.34711 0.23448 0.00277 1.28593 0.15314 0.00185

16 1.29678 0.20533 0.00233 1.29009 0.16813 0.00193

32 1.29056 0.19373 0.00215 1.29179 0.17434 0.00197

64 1.28945 0.18642 0.00208 1.29534 0.17652 0.00198

k=2 4 1.28581 0.23224 0.00273 1.29015 0.16291 0.00205

8 1.29103 0.20582 0.00228 1.29583 0.17134 0.00203

16 1.28910 0.19288 0.00213 1.29706 0.17447 0.00201

32 1.28998 0.18740 0.00207 1.29590 0.17619 0.00200

64 1.29029 0.18222 0.00203 1.29492 0.17800 0.00200
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and even values of 1/h, using both the trace and the dofi-dofi stabilizations.

We observe, as expected, that bigger rotation angles ϑ correspond to smaller values

of κ, and larger values of the spring elastic modulus generate less pronounced dis-

placements of the leaflet. We do not have a reference solution for the present test,

but we can appreciate that, for each choice of κs, the values of ϑh for different h

and k = 1, 2 are in mutual agreement and seem to converge to a common value.

We note that the cutting procedure previously described may generate strongly

anisotropic elements, particularly in the even case. For instance in the last case

with κ = 100 and k = 2 we get a solution ϑh = 0.002000, for the last refinement.

Fig. 15. Test 3. Velocity and pressure for the mesh size 1/h = 17 and κs = 0.01 with k = 1.

Fig. 16. Test 3. Velocity and pressure for the mesh size 1/h = 17 and κs = 0.1 with k = 1.

Fig. 17. Test 3. Velocity and pressure for the mesh size 1/h = 17 and κs = 1 with k = 1.
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Nevertheless, we note that the results in the given tables demonstrate the robustness

of Virtual Element technology in this respect. We also observe that, at least for the

proposed test, the trace stabilization yields a monotone trend of convergence to

the solution.

Finally, in Figs. 15, 16 and 17 we show the plots of the numerical velocity field

and pressure field for κs = 0.01, 0.1, 1 obtained for the even case 1/h = 17 with

the first-order VEM scheme with dofi-dofi stabilization.

6. Conclusions

We have investigated the equilibrium of a hinged rigid leaflet with an attached

rotational spring, immersed in a stationary incompressible fluid within a rigid chan-

nel; we have assumed invariance in the transversal direction, leading to a two-

dimensional geometry. Any equilibrium position corresponds to a balance between

the spring angular momentum and the torque exerted by the fluid on the leaflet.

Our problem essentially depends upon two parameters, namely, the angle ϑ of rota-

tion of the leaflet around the hinge, and the thickness ε of the leaflet, which is

allowed to take the value 0, thus reducing the leaflet to a segment.

The results in this paper concern the mathematical properties of the model on

the one hand, and its numerical treatment on the other hand. Both theory and

numerics rely on a variational formulation of the equilibrium problem, that we

have derived first. Along the same lines, we have expressed torque in terms of bulk

integrals involving an adjoint problem.

Next, having in mind to assess the existence of equilibria by topological argu-

ments, we have proven that the torque functional is continuous with respect to the

angle ϑ, in the whole interval of definition; this key result holds for both ε > 0 and

ε = 0. In the former case (the “fat” leaflet), we have even established the differen-

tiability of torque, by explicitly computing the shape derivative of the functional

with respect to a rigid rotation, and showing its boundedness; this is a non-standard

task, as we admit the presence of corners in the leaflet. These arguments do not

extend to the case ε = 0 (the “thin” leaflet), although we are inclined to conjec-

ture that differentiability of torque holds as well, and might be proven by different

techniques. Nonetheless, we have established the continuity of the torque functional

for the thin leaflet by relying on the uniform convergence of the continuous torque

functionals for fat leaflets, as their thickness tends to 0. With these results at hand,

we have identified sufficient conditions on the spring angular momentum for the

existence (and uniqueness) of equilibrium positions.

On the numerical side, we have proposed a family of Galerkin discretizations

based on the VEM for the Stokes equations; the schemes differ in the choice of

the polynomial degree and the definition of the stabilization terms. Our idea has

been to exploit the capability of the VEM to handle arbitrary polygonal elements

seamlessly, since elements of this type are precisely created when a thin leaflet

cuts a background uniform grid of quadrilaterals. This feature is quite relevant for
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the design of an efficient computational method, as the search for an equilibrium

requires to evaluate the torque for many different positions of the leaflet.

We have derived quasi-optimal error estimates for the discrete torque functional,

in which the rate of decay is twice the one of the approximation error for the

solution, and we have proposed a bisection algorithm for solving the discrete non-

linear equation. Grounded on these results, we have performed an extensive and

detailed testing of our numerical methods. First of all, we have studied the discrete

torque functional τh as a function of the angle ϑ for different discretization parame-

ters (mesh size, polynomial degree, stabilization choice), in order to investigate the

robustness of the scheme to the abrupt topological mesh changes that may hap-

pen at certain critical angles due to the leaflet prolongation. It turns out that the

effect of such topological changes is more pronounced for the so-called dofi-dofi

stabilization form than for the trace stabilization form (the former is, however,

generally more accurate than the latter). Increasing the degree and/or refining the

mesh, the jumps and bumps that appear in the graph of τh(ϑ) at the critical angles

are significantly reduced; for a fine mesh, as one would expect to use in applica-

tions, such features almost disappear. We studied also numerically the convergence

of discrete equilibrium point to the exact one, for an ad-hoc problem with known

equilibrium position. The experimental rates are consistent with theory given the

irregular nature of the solution. Finally, we illustrated the effect of degenerate ele-

ments in the inf-sup constant and conditioning of the system for a wide range of

angles ϑ. Geometric degeneracy is usually associated with manageable spikes in

both quantities, with a better behavior of the dofi-dofi stabilization in terms of

condition number.

From the practical perspective, we conclude that, although there is some influ-

ence of the mesh quality on the results, the scheme is sufficiently robust and reliable.

Considering the simplicity, and thus the efficiency, of the mesh cutting procedure

when compared with other techniques, we believe our approach is viable. The exten-

sion to more complex problems will be the topic of future research.

Appendix A. Inf-Sup Property via Domain Decomposition

Let {Ωi}Ni=1 be a disjoint decomposition of a domain Ω. We present a simple pro-

cedure to prove a global inf-sup condition in Ω from local inf-sup conditions in Ωi

provided the subdomains share a significant part of their boundaries. The proof

proceeds similarly to Ref. 17 and Sec. 1.4 of Ref. 33 but we were unable to find it in

the literature. We present the result for two subdomains in Lemma A.1, as is used

in Lemma 3.1, and then explain how to extend it to N subdomains. This statement

and construction may have independent interest.

Lemma A.1. Let the open domain Ω ⊂ R2 be the union of two (disjoint) domains,

Ω = Ω1 ∪ Ω2, each of them being star-shaped with respect to a ball Bi ⊆ Ωi. We

denote by S a connected subset of the interface Ω1 ∩Ω2 and introduce also an open

non-empty subset of the boundary Σ ⊆ ∂Ω. We indicate with V the space of vector-
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valued functions in [H1(Ω)]2 that vanish on ∂Ω\Σ. Furthermore, we indicate with

c the best possible constant such that all the following lengths are c-comparable (we

write that a ∈ R+ is c-comparable to b ∈ R+ if c−1a ≤ b ≤ ca) : the diameter of

both subdomains Ωi, the radii of the balls Bi, the arclengths of S and the largest

connected component of Σ. Then, denoting Q = L2(Ω), the inf-sup constant

β = inf
q∈Q

sup
v∈V

∫
Ω q divv

‖q‖L2(Ω)|v|[H1(Ω)]2
> 0

only depends on c.

Proof. As a preliminary observation, we note that a domain of diameter d and

star-shaped with respect to a ball B of radius r is always uniformly Lipschitz with

a constant proportional to d/r (which in our setting means proportional to c). To

see this note that the cone joining the ball B with any point at the boundary

is contained in Ω by definition of star-shaped property. On the other hand, the

opening of this cone is bounded below by the ratio r/d.

In order to prove the lemma, we first show a uniform global inf-sup constant in

[H1
0 (Ω)]

2. Afterwards, we extend the inf-sup to the space V of velocities that vanish

only on ∂Ω\Σ. We proceed in several steps.

(1) Local inf-sup constants in [H1
0 (Ωi)]

2. We start by noting that the inf-sup con-

stant in each Ωi, i = 1, 2, is the reciprocal of the stability constant of the

right inverse of the operator div : [H1
0 (Ωi)]

2 → L2
0(Ωi) for i = 1, 2, where

L2
0(Ωi) stands for functions in L

2(Ωi) with vanishing mean.29,30,33 According to

Remark 3.1 of Ref. 29, for star-shaped domains such constant is bounded above

by r|log r|, where r is the ratio between the radius of a uniform ball containing

Ωi, and the radius of the internal ball Bi irrespective of the location of Bi

within Ωi; the logarithm was later removed in Ref. 25. Due to our assumptions

above, this shows the existence of an inf-sup constant β0 for Ωi, i = 1, 2, with

uniform lower bound solely depending on c.

(2) Global inf-sup constant in [H1
0 (Ω)]

2. We now follow Ref. 17 and Sec. 1.4 of

Ref. 33 to glue Ω1,Ω2 together. Given q ∈ L2
0(Ω), we decompose it as q = q̃+ q,

where in Ωi the function q̃ has zero mean whereas q is constant and given by

the mean value of q within Ωi. We thus have the L2-orthogonal decomposition

‖q‖2L2(Ω) = ‖q̃‖2L2(Ω) + ‖q‖2L2(Ω).

In view of Step 1 and Ref. 33, we can associate ṽi ∈ [H1
0 (Ωi)]

2 to q̃i = q̃|Ωi so

that ∫
Ωi

q̃i divṽi = ‖q̃i‖2L2(Ω), |ṽi|[H1(Ωi)]2 ≤ 1

β0
‖q̃i‖L2(Ωi).

Let ṽ ∈ [H1
0 (Ω)]

2 be so that ṽ|Ωi = ṽi and note that |ṽ|[H1(Ω)]2 ≤ 1
β0
‖q̃‖L2(Ω).

Since q ∈ L2
0(Ω) yields q1|Ω1| + q2|Ω2| = 0, we deduce that q1 = q|Ω1 and
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q2 = q|Ω2 have opposite signs. Let σ = ±1 be the sign of q1. Due to the star-

shaped property of Ωi (which we recall implies the Lipschitz regularity of ∂Ωi),

i = 1, 2, it is easy to check that one can find w ∈ [H1
0 (Ω)]

2 satisfying∫
S

w · n1 = σ, |w|[H1(Ω)]2 ≤ C/|S|,

where n1 is the unit outer normal to Ω1 and the constant C = C(c). Conse-

quently, integrating by parts gives∫
Ω

q divw =

∫
S

(q1 − q2)w · n1 = |q1|+ |q2| ≥ ‖q‖L∞(Ω).

Noting that, due to our assumptions, the quantities |Ω1|1/2, |Ω2|1/2, |S| are com-

parable, the above bound yields∫
Ω

q divw ≥ (C′/|S|)‖q‖L2(Ω)

with the constant C′ = C′(c). Combining the above equations and by an obvi-

ous scaling

v = (|S|/C′)‖q‖L2(Ω)w,

we get that v ∈ [H1
0 (Ω)]

2 satisfies∫
Ω

q divv = ‖q‖2L2(Ω), |v|[H1(Ω)]2 ≤ 1

γ0
‖q‖L2(Ω),

where γ0 = γ0(c).

To prove the inf-sup property in Ω, we construct a velocity v = ṽ+αv with

α > 0 to be determined. We observe that a direct calculation yields∫
Ω

q divv = ‖q̃‖2L2(Ω) + α‖q‖2L2(Ω) + α

∫
Ω

q̃ divv.

Since ‖divv‖L2(Ω) ≤ |v|[H1(Ω)]2 , in view of Lemma 2.1 of Ref. 39, the Cauchy–

Schwarz and Young inequalities imply∫
Ω

q divv ≥
(
1− α

2γ0δ

)
‖q̃‖2L2(Ω) + α

(
1− δ

2γ0

)
‖q‖2L2(Ω)

≥ 1

2
min{1, γ20}‖q‖2L2(Ω),

provided δ = γ0 and α = γ20 , along with

|v|[H1(Ω)]2 ≤ 1

β0
‖q̃‖L2(Ω) +

α

γ0
‖q‖L2(Ω) ≤

(
1

β2
0

+ γ20

) 1
2

‖q‖L2(Ω).

The uniform inf-sup constant in [H1
0 (Ω)]

2 is thus β1 = 1
2 min{1, γ20}(β−2

0 +

γ20)
− 1

2 .
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(3) Global inf-sup constant in V. Let q = q̃ + q ∈ Q = L2(Ω) be given, with

q̃ ∈ L2
0(Ω) and q being the mean-value of q. We let ṽ ∈ [H1

0 (Ω)]
2 satisfy∫

Ω

q̃ divṽ = ‖q̃‖2L2(Ω), |ṽ|[H1(Ω)]2 ≤ 1

β1
‖q̃‖L2(Ω),

in light of Step 2. We now proceed as in the previous part of the proof. Let

Σ′ ⊂ Σ ∩ ∂Ωj for j = 1, 2 be the largest connected component of Σ within

either Ω1 or Ω2. Again recalling the star-shaped property of Ωj we can build

w ∈ [H1(Ωj)]
2, vanishing on ∂Ωj\Σ′, satisfying

∫
Σ′ w · n = 1 and |w|H1(Ω) ≤

C/|Σ′| with C = C(c), possibly different from the previous occurrence. It is

trivial to check that the extension by zero of w to the whole Ω satisfies w ∈ V
and∫

Ω

divw =

∫
∂Ω

w · n =

∫
Σ

w · n =

∫
Σ′

w · n = 1, |w|H1(Ω) ≤ C/|Σ′|.

Arguing as in the previous part of the proof, we can choose v ∈ V an appropriate

scaling of w such that∫
Ω

q divv = ‖q‖2L2(Ω), |v|[H1(Ω)]2 ≤ 1

γ1
‖q‖L2(Ω).

with γ1 = γ1(c). A straightforward calculation shows that the function v =

ṽ + γ21v ∈ V satisfies∫
Ω

q divv ≥ 1

2
min{1, γ21}‖q‖2L2(Ω), |v|[H1(Ω)]2 ≤

(
1

β2
1

+ γ21

) 1
2

‖q‖L2(Ω),

which is the asserted inf-sup property with β = 1
2 min{1, γ21}(β−2

1 + γ21)
−1/2.

Remark A.1. (Inf-sup constant for N subdomains) Lemma A.1 can be trivially

extended to the general situation of N subdomains by an induction argument. The

basic assumption is that {Ωi}Ni=1 is a disjoint decomposition of a domain Ω, with

the subdomains Ωi, i = 1, . . . , N , star-shaped with respect to a ball Bi. Given an

open non-empty subset Σ ⊆ ∂Ω (used to define V), we denote by Σ′ the largest

connected subset of Σ ∩ ∂Ωi for one i ∈ 1, 2, . . . , N . We further suppose that, for

each j ∈ 1, . . . , N − 1, the interface between ∪j
i=1Ωi and Ωj+1 contains a non-empty

connected component, denoted by Sj . Then, the inf-sup constant of Ω only depends

on N and c, where c is the best possible constant such that the following lengths

are c-comparable: |Σ′|, {|Sj|}Nj=1, the diameters of all subdomains Ωi and the radii

of all balls Bi.
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