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Denote by m(G) the largest size of a minimal generating set of a finite group G. We
estimate m(G) in terms of

∑
p∈π(G) dp(G), where we are denoting by dp(G) the

minimal number of generators of a Sylow p-subgroup of G and by π(G) the set of
prime numbers dividing the order of G.
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1. Introduction

A generating set X of a finite group G is said to be minimal (or independent) if no
proper subset of X generates G. We denote by m(G) the largest size of a minimal
generating set of G. First steps towards investigating m(G) have been taken in the
context of permutation groups. An exhaustive investigation has been done for finite
symmetric groups [2,17], proving that m(Sym(n)) = n − 1 and giving a complete
description of the independent generating sets of Sym(n) having cardinality n − 1.
Partial results for some families of simple groups are in [16]: it turns out that already
in the case G = PSL(2, q), the precise value of m(G) is quite difficult to obtain.
Further Apisa and Klopsch [1] proposed a natural ‘classification problem’: given a
non-negative integer c, characterize all finite groups G such that m(G) − d(G) � c,
where d(G) is the minimal size of a generating set of G. In particular, they classified
the finite groups for which the equality m(G) = d(G) holds. During the same period
the first author started in [10,11] a systematic investigation of how m(G) can be
estimated for an arbitrary finite group G.

In 1989, Guralnick [3] and the first author [9] independently proved that, if all
the Sylow subgroups of a finite group G can be generated by d elements, then
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d(G) � d + 1. One may ask, if minded so, whether a similar result holds also for
m(G). More precisely, denote by dp(G) the minimal number of generators of a Sylow
p-subgroup of G.

Is it possible to bound m(G) as a function of the numbers dp(G), with p running
through the prime divisors of the order of G?

As customary, we denote by π(G) the set of prime divisors of the order of G. It can
be easily seen that, if G is a finite nilpotent group, then m(G) =

∑
p∈π(G) dp(G).

For simplicity, we let

δ(G) :=
∑

p∈π(G)

dp(G).

In a private communication to the first author, Keith Dennis has conjectured that
m(G) � δ(G), for every finite group G.

This conjecture is true for soluble groups.

Theorem 1.1. Let G be a finite soluble group. Then m(G) � δ(G).

Proof. In [10], it is proved that m(G) =
∑

p∈π(G) αp(G), where αp(G) denotes the
number of complemented factors of p-power order in a chief series of G. Now, an easy
inductive argument on the order of G shows that αp(G) � dp(G) (see for example
[12, lemma 4]). Therefore m(G) �

∑
p∈π(G) dp(G) = δ(G). �

Despite theorem 1.1, Dennis’ conjecture is false if G is a symmetric group. We
study the asymptotic behaviour of the function δ(Sym(n)) in § 5. We prove the
following theorem.

Theorem 1.2. For every n � 2, we have δ(Sym(n)) = log 2 · n + o(n).

Since m(Sym(n)) = n − 1 by [17], the difference m(Sym(n)) − δ(Sym(n)) goes
to infinity with n and the inequality m(Sym(n)) � δ(Sym(n)) is satisfied by only
finitely many values of n. Indeed, using the explicit upper bound on δ(Sym(n)) in
theorem 5.1 and some calculations, we have

δ(Sym(n)) = n − 1 if and only if n ∈ {1, 2, 3, 4, 5, 8, 10, 11, 16, 17, 18, 19, 25, 30, 31},
δ(Sym(n)) = n if and only if n ∈ {6, 7, 12, 13, 20, 26, 42, 43, 48},
δ(Sym(n)) = n + 1 if and only if n ∈ {14, 21, 44, 45},
δ(Sym(n)) = n + 2 if and only if n ∈ {15, 22, 23, 24, 46, 47}.

For all the other values of n, we have δ(Sym(n)) < n − 1 = m(Sym(n)).
The proof of theorem 5.1 is rather technical and uses some explicit bounds on

the prime counting function. However, in lemma 4.4 we show by elementary means
that, for every positive real number η > 1, there exists a constant cη such that
m(Sym(n)) = n − 1 � cη(δ (Sym(n))η, for every n ∈ N.

This motivates the following conjecture, which can be seen as a natural
generalization of Dennis’ conjecture.
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Independent generating sets 135

Conjecture 1.3. There exist two constants c and η such that m(G) � c · δ(G)η

for every finite group G.

Given a normal subgroup N of a finite group G, we let

m(G,N) = m(G) − m(G/N).

The main result of this paper is the following theorem.

Theorem 1.4. Let G be a finite group and assume that there exist two constants
σ � 1 and η � 2 such that m(X,S) � σ · |π(S)|η, for every composition factor S of
G and for every almost simple group X with soc X = S. Then m(G) � σ · δ(G)η.

Theorem 1.4 reduces conjecture 1.3 to the following conjecture on finite almost
simple groups.

Conjecture 1.5. There exist two constants σ and η such that m(X, soc X) � σ ·
|π(soc X)|η, for every finite almost simple group X.

Conjecture 1.5 holds true, with η = 2, when soc X is an alternating group or a
sporadic simple group. Therefore, we have the following corollary.

Corollary 1.6. There exists a constant σ such that, if G has no composition
factor of Lie type, then m(G) � σδ(G)2.

Very little is known about m(G) when G is an almost simple group with socle a
simple group of Lie type. Saxl and Whiston in [16] proved that, if G = PSL(2, q)
with q = pr and with p a prime number, then m(G) � max(6, π̃(r) + 2) where π̃(r)
is the number of distinct prime divisors of r. It follows from Zsigmondy’s Theorem
that π̃(r) � π̃(q + 1) � |π(PSL(2, q))|. Therefore conjecture 1.5 holds true when
G = PSL(2, q). In his PhD thesis [6], P. J. Keen found a good upper bound for
m(SL(3, q)), when q = pr and p is odd. In preparation for this, he also investigated
the sizes of independent sets in SO(3, q) and SU(3, q), getting in all the cases a
linear bound in terms of π̃(r). These partial results lead us to conjecture that, if
soc(X) is a group of Lie type of rank n over the field with q = pr elements, then
m(X, soc X) is polynomially bounded in terms of n and π̃(r). If this were true, then
conjecture 1.5 would also be true.

The proofs of theorem 1.4 and corollary 1.6 are in § 4. These proofs require two
preliminary results, one concerning the prime divisors of the order of a finite non-
abelian simple group and the other about permutation groups, proved respectively
in § 2 and 3.

2. A result on the order of a finite simple group

For later use we need to recall some definitions and some results concerning
Zsigmondy primes.

Definition 2.1. Let a and n be positive integers. A prime number p is called a
primitive prime divisor of an − 1 if p divides an − 1 and p does not divide ae − 1
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136 A. Lucchini, M. Moscatiello and P. Spiga

for every integer 1 � e � n − 1. We denote an arbitrary primitive prime divisors of
an − 1 by an.

Theorem 2.2 Zsigmondy’s Theorem [18]. Let a and n be integers greater than 1.
There exists a primitive prime divisor of an − 1 except in one of the following
cases:

(1) n = 2, a = 2s − 1 (i.e. a is a Mersenne prime), and s � 2.

(2) n = 6, a = 2.

Lemma 2.3. [7, proposition 5.2.15] an ≡ 1 mod n.

Theorem 2.4. Let S be a simple group of Lie type. There exist two different primes
dividing |S| but not |Out(S)|.
Proof. Let S = L(q) be a simple group of Lie type defined over the field with q
elements, where q = pt and p is a prime number. From Burnside’s theorem, |π(S)| �
3. From [4], if |π(S)| = 3, then

S ∈ {A1(5), A1(7), A1(8), A1(17), A2(9), A2(3), 2A2(3), 2A3(2)},
and for these groups the theorem holds by a direct inspection. Therefore, for the
rest of the proof we may suppose

|π(S)| � 4. (2.1)

In particular, the result immediately follows when |π(Out(S))| � 2 and hence we
may suppose |π(Out(S))| � 3.

The order of L(q) has the cyclotomic factorization in terms of q:

|L(q)| =
1
d
qh
∏

m∈Λ

Φm(q)rm ,

where Φm(q) is the m-th cyclotomic polynomial and Λ, d, h and rm are listed in
tables L.1, C.1 and C.2 of [8].

Suppose that S �= D4(q) and that S is untwisted. From [13, p. 207], if l � 2 and
m � 1 are integers such that lm·t is a primitive prime divisor of (lt)m − 1, then
lm·t divides Φm(lt). From this and from Zsigmondy’s theorem, we conclude that,
except for the six cases listed below, there exist i, j ∈ Λ with 2 � i < j such that
x := pi·t and y := pj·t are distinct primitive prime divisors. In particular, x and y
are odd divisors of |S| and are relatively prime to q − 1 because i � 2. Moreover,
by lemma 2.3, x ≡ y ≡ 1 mod t and hence x and y are relatively prime to t. In
particular, x and y are our required primes. (The case S = D4(q) is special in this
argument because 3 is (potentially) an odd prime divisor of |Out(S)| not arising
from field automorphisms.)

We are going to analyse the groups for which the existence of x and y is not
ensured from the previous argument.

(1) S = A2(q) and q is a Mersenne prime: in this case |Out(S)| = 2 · (q − 1, 3) is
divisible by at most 2 different primes, contradicting |π(Out(S))| � 3.
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Independent generating sets 137

(2) S = A2(4): in this case 5 and 7 are the required primes.

(3) S = A1(q): we may assume t � 5, otherwise |π(OutS)| � 2. Now, the existence
of x = pt and y = p2·t is ensured by Zsigmondy’s Theorem.

(4) S = B2(q) with q a Mersenne prime: in this case |π(Out(S))| = 1, a contra-
diction.

(5) S = B2(8): in this case 5 and 7 are the requested primes.

(6) S = G2(q) with q a Mersenne prime: in this case |π(Out(S))| � 2, a contra-
diction.

It remains to deal with the case S = D4(q) and with the twisted groups of Lie
type.

Suppose S = D4(q). Since 3 divides |Out(S)|, the previous argument fails exactly
when the primitive prime divisor x or y is 3. The existence of x = p2·t, y = p4·t and
z = p6·t is ensured when q /∈ {2, 8} and when q is not a Mersenne prime. When
q = 2, the result follows since |Out(S)| = 6; when q = 8, we have that t = 3 does
not divide y and z; therefore y and z are prime numbers satisfying our statement.
When q is a Mersenne prime, if q �= 3, then q and z are prime numbers satisfying
our statement; if q = 3, then 5 and 7 are prime numbers satisfying our statement.

Assume S ∈ {2B2(q), 2G2(q), 2F 4(q)}. In these cases we have |Out(S)| = t, so we
may assume that t is not a prime. Since the existence of x = pi·t and y = pj·t is
ensured by Zsigmondy’s Theorem, for two different elements i and j of Λ, we are
done.

If S = 3D4(q) and q /∈ {2, 8} and q is not a Mersenne prime, then we can take
x = p2·t and y = p6·t (notice that |Out S| divides 3 · t). When q = 2 or q = 8 or q
is a Mersenne prime, then |Out(S)| is divisible only by 3, against our assumption.

If S = 2E6(q), then we can take x = p8·t and y = p12·t (notice that |Out(S)|
divides 6 · t).

If S = 2Dn(q), then |Out(S)| divides 8 · t. So, when q = 2 or when q is a Mersenne
prime, the result holds since |Out(S)| has only one prime divisor. For the remaining
cases, we can take x = p4·t and y = p6·t.

Finally assume S = 2An(q). In this case |Out(S)| = 2 · t · (n + 1, q + 1). If n �
3 and q �= 2, then we can take x = p4·t and y = p6·t. When q = 2, we have
|π(Out(2An(2)))| � 2, which is a contradiction. We remain with the case S =
2A2(q). The group S = 2A2(3) was already analysed, so we can suppose q � 4.
Now |Out(S)| = 2 · t · (3, q + 1), so we may assume t �= 1. If (3, q + 1) = 1, we may
assume t �= 2 and we can take x = p2·t and y = p6·t. Otherwise (3, q + 1) = 3, so
(3, q − 1) = 1 and in particular x = pt �= 3. It follows that x = pt and y = p6·t are
the prime we are interested in. �

3. An auxiliary result

Lemma 3.1. Let Q be a p-group, let P be a permutation p-group with domain Δ
and let nΔ(P ) be the number of orbits of P on Δ. Then

d(QwrΔP ) = d(P ) + nΔ(P )d(Q).
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Proof. Let Δ1, . . . ,Δ� be the orbits of P on Δ.
Replacing Q by Q/Frat(Q) if necessary, we may suppose that Q is an elementary

abelian p-group. Let B be the base group of the wreath product W := QwrΔP .
Using the fact that B is an abelian normal subgroup of W and standard com-

mutator computations, we get [W,W ] = [B,P ][P, P ]. Given σ ∈ P and f ∈ B, we
have

(σf)p = σpfσp−1
fσp−2 · · · fσf

= σp(fσp−1
f−1)(fσp−2

f−1) · · · (fσf−1) ∈ P p[B,P ]

and hence

Frat(W ) = [B,P ] Frat(P ). (3.1)

Consider V , the subspace of B consisting of all functions g : Δ → Q with∏
δ∈Δi

g(δ) = 1, for every i ∈ {1, . . . , �}.

Given f ∈ B, σ ∈ P and i ∈ {1, . . . , �}, we have∏
δ∈Δi

[f, σ](δ) =
∏

δ∈Δi

(fσf−1)(δ) =
∏

δ∈Δi

f(δσ−1
)f(δ)−1 =

∏
δ∈Δi

f(δσ−1
)
∏

δ∈Δi

f(δ)−1

=

( ∏
δ∈Δi

f(δ)

)( ∏
δ∈Δi

f(δ)

)−1

= 1.

Hence, [B,P ] � V . For each i ∈ {1, . . . , �}, fix δ̄i ∈ Δi and let g ∈ V . For every
i ∈ {1, . . . , �} and δ ∈ Δi \ {δ̄i}, we let fδ : Δ → Q and hδ : Δ → Q be the mappings
defined by

fδ(δ′) =

⎧⎪⎨
⎪⎩

g(δ) if δ′ = δ,

g(δ)−1 if δ′ = δ̄i,

1 if δ′ ∈ Δ \ {δ, δ̄i},
hδ(δ′) =

{
g(δ)−1 if δ′ = δ,

1 if δ′ ∈ Δ \ {δ}.

Since g ∈ V , with a computation, we obtain

g =
∏

δ∈Δ\{δ̄1,...,δ̄�}
fδ.

For each i ∈ {1, . . . , �} and δ ∈ Δi \ {δ̄i}, since δ and δ̄i are in the same P -orbit,
there exists σ ∈ P with δσ = δ̄i. For each δ′ ∈ Δ, we have

[hδ, σ](δ′) = h−1
δ (δ′)hσ

δ (δ′) = hδ(δ′)−1hδ(δ′σ
−1

) =

⎧⎪⎨
⎪⎩

g(δ) if δ′ = δ,

g(δ)−1 if δ′ = δ̄i,

1 if δ′ ∈ Δ \ {δ, δ̄i}.
It follows fδ = [hδ, σ] ∈ [B,P ] and hence g ∈ [B,P ]. So, V � [B,P ]. Therefore

V = [B,P ]. (3.2)

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/prm.2020.6
Downloaded from https://www.cambridge.org/core. UNIMIB Università degli Studi di Milano Bicocca, on 18 Jan 2022 at 15:45:16, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/prm.2020.6
https://www.cambridge.org/core


Independent generating sets 139

From (3.1), (3.2) and from the fact that |B : V | = |Q|�, we obtain

|W : Frat(W )| = |BP : V Frat(P )| = |P : Frat(P )||B : V | = pd(P )|Q|�

= pd(P )pd(Q)� = pd(P )+nΔ(P )d(Q). �

Given a permutation group X on Ω and ω ∈ Ω, we let Xω := {x ∈ X | ωx = ω}
the stabilizer of ω in X. Let K be a transitive permutation group on a set Ω and let
ω ∈ Ω. We define tΩ(K) to be the maximum number t ∈ N of subgroups U1, . . ., Ut

of K with

(1) Kω = U1 ∩ · · · ∩ Ut, and

(2) Kω �= ⋂j∈J Uj , for each proper subset J of {1, . . ., t}.

When (1) and (2) are satisfied (even if t is not necessarily the maximum), we say
that U1, . . ., Ut are independent subgroups of K. Moreover, let S be a finite non-
abelian simple group and let us denote by π∗(S) the set of primes dividing |S| but
not |Out(S)|.

Theorem 3.2. Let K be a transitive permutation group on Ω, let S be a non-abelian
simple group and let G be a group with SwrΩK � G � (Aut S)wrΩK. Then

∑
p∈π∗(S)

dp(G) > tΩ(K).

Proof. For every p ∈ π∗(S), we have dp(G) = dp(SwrΩK) and hence, without loss
of generality, we may assume G = SwrΩK. For simplicity, we write

f(S,Ω,K) :=
∑

p∈π∗(S)

dp(G).

We argue by induction on t := tΩ(K). When t = 1, from theorem 2.4 we deduce

f(S,Ω,K) � π∗(S) � 2 > 1 = t.

Suppose then t > 1. Let ω ∈ Ω and let U1, . . ., Ut be t independent subgroups of K
with

t⋂
i=1

Ui = Kω.

For each i ∈ {1, . . . , t}, we define

Ūi to be the intersection
⋂

j∈{1,...,t}\{i} Uj ; (as Kω � Ūi, the orbit ωŪi := {ωx |
x ∈ Ūi} is a block of imprimitivity for the action of K on Ω.)

Ωi to be the system of imprimitivity determined by the block of imprimitivity ωŪi ;
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K̂i to be the permutation group induced by K on Ωi; (we also denote by σi : K →
K̂i the natural projection, so K̂i = σi(K).)

Gi to be the wreath product Gi := SwrΩi
K̂i.

Let i ∈ {1, . . . , t}. Since the point stabilizer σi(Ūi) of ωŪi ∈ Ωi in K̂i is defined as
the intersection of the t − 1 independent subgroups {σi(Uj) | j ∈ {1, . . . , t} \ {i}},
we have tΩi

(K̂i) � t − 1. Moreover, from our inductive argument, we have∑
p∈π∗(S)

dp(Gi) = f(S,Ωi, K̂i) > tΩi
(K̂i) � t − 1. (3.3)

For each prime p ∈ π∗(S), let Πp be a Sylow p-subgroup of S and let P be a
Sylow p-subgroup of K. In particular, P̂i := σi(P ) is a Sylow p-subgroup of K̂i.
From lemma 3.1, for every i ∈ {1, . . ., t}, we have

f(S,Ωi, K̂i) =
∑

p∈π∗(S)

(
d(P̂i) + nΩi

(P̂i)d(Πp)
)

, (3.4)

where nΩi
(P̂i) = nΩi

(P ) denotes the number of orbits of P on Ωi. Observe that
d(P ) � d(P̂i).

In particular, using (3.3) and (3.4), we deduce

f(S,Ω,K) > t,

unless, for each i ∈ {1, . . . , t} and for each p ∈ π∗(S),

(a) d(P ) = d(P̂i),

(b) nΩ(P ) = nΩi
(P ).

In particular, for the rest of the proof we may assume that (a) and (b) hold.
Since |π∗(S)| � 2, we may choose p ∈ π∗(S) and i ∈ {1, . . ., �} such that |Ūi : Kω|

is not a power of p. Let δ̂1, . . ., δ̂s be a set of representatives of the orbits of P on
Ωi, where s := nΩi

(P ). In other words, this means that

Ωi =
s⋃

j=1

{δ̂x
j | x ∈ P}

and that this union is disjoint. For each j ∈ {1, . . ., s}, let δj ∈ δ̂j . As δ̂j ⊆ Ω is a
block of imprimitivity for the action of K on Ω, the union

s⋃
j=1

{δx
j | x ∈ P} ⊆ Ω (3.5)

is made by pairwise disjoint P -orbits and hence nΩ(P ) � s = nΩi
(P ). Moreover,

nΩ(P ) = nΩi
(P ) if and only if the equality in (3.5) is attained, which in turn hap-

pens, if and only if, for each j ∈ {1, . . ., s}, the points in δ̂j ⊆ Ω are in the same
P -orbit.
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Independent generating sets 141

Since we are assuming that nΩ(P ) = nΩi
(P ), the previous paragraph shows that

the stabilizer Pδ̂j
of the block δ̂j is transitive on the points in δ̂j . Since P is a

p-group, we deduce |δ̂j | = |Ūi : Kω| is a power of p, contradicting our choice of i
and p. �

4. Proofs of theorem 1.4 and corollary 1.6

If N is a normal subgroup of a finite group G, we denote by m(G,N) the difference
m(G) − m(G/N). We recall in the first part of this section some results proved
in [10,11], estimating the value of m(G,N) when N is a minimal normal subgroup
of G.

Lemma 4.1. If N is an abelian minimal normal subgroup of G, then m(G,N) is
either 0 or 1 depending on whether N � Frat(G) or not.

Proof. If follows from [10, lemmas 11 and 12]. �

Lemma 4.2. Assume that N is a non-abelian minimal normal subgroup of a finite
group G. There exist a non-abelian simple group S and a positive integer r such
that N = S1 × · · · × Sr, with S ∼= Si for each 1 � i � r. Let K be the transitive
subgroup of Sym(r) induced by the conjugacy action of G on the set {S1, . . ., Sr} of
the simple components of N . As in the previous section, let t(K) := t{1,...,r}(K) be
the largest positive integer t such that the stabilizer in K of a point in {1, . . ., r} can
be obtained as an intersection of t independent subgroups. Moreover let X be the
subgroup of AutS1 induced by the conjugation action of NG(S1) on the first factor
S1. Then

m(G,N) � m(X, soc X) + t(K).

Proof. If follows from [10, lemma 13] and [11, theorem 1]. �

Lemma 4.3. Let N be a minimal normal subgroup of a finite group G. If N ��
Frat(G), then δ(G) � δ(G/N) + |π(N)|.
Proof. It suffice to prove that dp(G) > dp(G/N) whenever p ∈ π(N). This is clear
when N is abelian. Assume that N is non-abelian. Let p ∈ π(N) and let P be
a Sylow p-subgroup of G. If P ∩ N � Frat(P ), then Tate’s Theorem [5, p. 431]
shows that N has a normal p-complement. However, this is impossible because
N is a direct product of non-abelian simple groups. Thus P ∩ N �� Frat(P ), and
consequently dp(G/N) + 1 � dp(G). �

Proof of theorem 1.4. Clearly the statement is true if G is simple. Thus we suppose
that S is not a simple group and we proceed by induction on the order of G. We may
assume Frat(G) = 1. Let N be a minimal normal subgroup of G. If N is abelian,
using lemma 4.3 and the inductive hypotheses, we have

m(G) = m(G/N) + 1 � σ (δ(G/N))η + 1 � σ · (δ(G) − 1)η + 1 � σ · δ(G)η.

(In the last inequality, we used the fact that σ � 1 and η � 2.) Assume that N is
non-abelian. Let K,X and S be as in the statement of lemma 4.2. By theorem 3.2,
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we have

t(K) <
∑

p∈π∗(S)

dp(G) � δ(G).

Combining this with lemmas 4.2 and 4.3, we conclude that

m(G) � m(G/N) + m(X,S) + t(K) � σ · δ(G/N)η + σ · |π(S)|η + δ(G)

� σ · δ(G/N)η + σ · |π(S)|η + σ · δ(G) � σ (δ(G/N)η + |π(N)|η + δ(G))

� σ((δ(G/N)η + (δ(G) − δ(G/N))η + δ(G/N) + (δ(G) − δ(G/N)))

� σ · δ(G)η.

The last inequality follows from the fact that xη + yη + x + y � (x + y)η, for every
positive integers x and y and for every η � 2. �

In order to prove corollary 1.6, we first need the following lemma.

Lemma 4.4. For every positive real number η > 1, there exists a constant cη such
that n � cηπ(n)η, where π(n) is the number of prime numbers less than or equal
to n.

Proof. By [14, theorem 29], if n � 55, then π(n) > n/log n + 2, so if suffices to
notice that limn→∞ nη−1/(log n + 2)η = ∞. �

Lemma 4.5. There exists a constant ρ such that, if X is an almost simple group
and S = soc(X) is not a simple group of Lie type, then m(X,S) � ρ · |π(S)|2.

Proof. First assume that S = Alt(n). By [17, theorem 1], m(X,S) � n − 1. By
lemma 4.4, there exists a constant c2 such that m(X,S) � c2π(n)2 = c2 · |π(S)|2.
Clearly there exists a constant c such that m(X,S) � c · |π(S)|2, for every sporadic
simple group S. Taking ρ = max{c, c2}, the result follows. �

Proof of corollary 1.6. It follows from theorem 1.4 and lemma 4.5. �

5. Estimating δ(Sym(n))

In this section, we aim to bound, from above and from below, δ(Sym(n)) as
a function of n. By [17, theorem 1], m(Sym(n)) = n − 1 while, by Kalužnin’s
Theorem, if

a�(p,n)p
�(p,n) + a�(p,n)−1p

�(p,n)−1 + · · · + a1p + a0

is the p-adic expansion of n, then

dp(Sym(n)) = a�(p,n)�(p, n) + a�(p,n)−1(�(p, n) − 1) + · · · + a1.

In order to make the notation less cumbersome, we set

dp(n) := dp(Sym(n)) = a�(p,n)�(p, n) + a�(p,n)−1(�(p, n) − 1) + · · · + a1
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and

δ(n) :=
∑

p prime

dp(n) = δ(Sym(n)).

As in the previous sections we denote by π : R → N the prime counting function,
that is, π(x) is the number of prime numbers less than or equal to x. As dp(n) � 1
for every prime p � n, we have

π(n) � δ(n).

From the Prime Number Theorem, π(n) is asymptotic to n/ log n (that is, the ratio
π(n)/(n/ log n) tends to 1 as n tends to infinity) and hence n/ log n ∈ O(δ(n)). In
this section, we actually prove that δ(n) is asymptotic to a linear function.

Theorem 5.1. For every n � 2, we have

n log 2 − 12n

log n
� δ(n) � n log 2 +

19n

2 log n
+

137n

2 log2 n
+

4
√

n

log n

+
3
√

n

2
log n � n log 2 +

112n

log n
.

In particular, δ(n) = n log 2 + O(n/ log n).

Proof. We start by collecting some basic inequalities that we use throughout this
proof. From theorems 1 and 2 in [15], we have

π(x) � x

log x

(
1 +

3
2 log x

)
, ∀x > 1, (5.1)

π(x) � x

log x − 1/2
, ∀x � 67. (5.2)

Given a prime number p with p � n, �(p, n) � �logp n and hence

dp(n) � (p − 1)(�(p, n) + (�(p, n) − 1) + · · · + 2 + 1)

= (p − 1)
�(p, n)(�(p, n) + 1)

2
� (p − 1)

logp n(logp n + 1)
2

. (5.3)

We define the two auxiliary functions

d′(n) :=
∑

p�√
n

dp(n); d′′(n) :=
∑

√
n<p�n

dp(n).

We aim to obtain explicit bounds on d′(n) and d′′(n) as functions of n. We start
with d′(n).
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From (5.3), we get

d′(n) � log2 n

2

∑
p�√

n

p − 1
log2 p

+
log n

2

∑
p�√

n

p − 1
log p

. (5.4)

For every k ∈ N with k � 1, we denote by pk the kth prime number. Using [15,
corollary, p. 69], we have

k log k < pk < k(log k + log log k),

where the first inequality is valid for every k � 1 and the second inequality is valid
for every k � 6.

This shows that, for every k � 6,

pk − 1
log pk

� k(log k + log log k)
log(k log k)

= k. (5.5)

An explicit computation yields that (5.5) is also valid when k ∈ {2, 3, 4, 5}.
Therefore, for n � 11, (5.1) and (5.5) yield:

∑
p�√

n

p − 1
log p

=
1

log 2
+

∑
2<p�√

n

p − 1
log p

=
1

log 2
+

π(
√

n)∑
k=2

pk − 1
log pk

� 1
log 2

+
π(

√
n)∑

k=2

k

=
1

log 2
+

π(
√

n)(π(
√

n) + 1)
2

− 1 =
1

log 2
− 1 +

π(
√

n)2

2
+

π(
√

n)
2

� −1 +
1

log 2
+

1
2

( √
n

log
√

n

(
1 +

3
2 log

√
n

))2

+
√

n

2 log
√

n

(
1 +

3
2 log

√
n

)

= −1 +
1

log 2
+

1
2

(
4n

log2 n
+

36n

log4 n
+

24n

log3 n

)
+

√
n

log n
+

3
√

n

log2 n

� 2n

log2 n
+

24n

log3 n
.

In fact, we only require n to be at least 11 for the last inequality above. Thus, using
this, together with direct inspection for the cases 2 � n � 10, we have:

∑
p�√

n

p − 1
log p

� 2n

log2 n
+

24n

log3 n
, (5.6)

for every n > 1.
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Arguing in a similar manner, for every k � 6, we obtain

pk − 1
log2 pk

� k(log k + log log k)
log2(k log k)

=
k

log k + log log k
. (5.7)

An explicit computation yields that (5.7) is also valid when k ∈ {2, 3, 4, 5}.
Therefore, using (5.7), we have

∑
p�√

n

p − 1
log2(p)

� 1
log2(2)

+
π(

√
n)∑

k=2

k

log k + log log k
.

For every t ∈ N with t � 2, write f(t) :=
∑t

k=2 k/(log k + log log k). When k > 2,
we have k/(log k + log log k) � k. Moreover, when k �

√
t, we have

k

log k + log log k
� k

log
√

t + log log(
√

t)
=

k

log t/2 + log(log t) − log 2

� 2k

log t
,

where the last inequality holds for t � 8. Therefore, for every t � 8, we have

f(t) =
2

log 2 + log log 2
+

∑
2<k�√

t

k

log k + log log k
+

∑
√

t<k�t

k

log k + log log k

� 2
log 2 + log log 2

+
∑

2<k�√
t

k +
∑

√
t<k�t

2k

log t

� 2
log 2 + log log 2

+
√

t(
√

t + 1)
2

− 3 +
t(t + 1)

log t
� t2

log t
+ t,

where the last inequality follows with some elementary computations. A direct com-
putation with 2 � t < 8 shows that the same upper bound for f(t) holds. Therefore,
applying this upper bound with t := π(

√
n), we get

∑
p�√

n

p − 1
log2(p)

� 1
log2 2

+ f(π(
√

n)) � 1
log2 2

+
π (

√
n)2

log π (
√

n)
+ π

(√
n
)
. (5.8)

Now, for every n � 672, using (5.1) and (5.2), we see that the right-hand side of (5.8)
is bounded above by

1
log2 2

+

( √
n

log
√

n

(
1 + 3

2 log
√

n

))2

log
( √

n
log

√
n−1/2

) +
√

n

log
√

n

(
1 +

3
2 log

√
n

)
. (5.9)

The second summand of (5.9) is at most

4n
log2 n

(
1 + 3

log n

)2

log(
√

n/ log
√

n)
.
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Now, we have log(
√

n/ log
√

n) > log n/4. Thus the second summand of (5.9) is at
most

16n

log3 n
+

96n

log4 n
+

144n

log5 n
� 16n

log3 n
+

114n

log4 n
,

where the last inequality follows with a computation using the fact that n � 672.
For the first and third summand of (5.9), we have

1
log2(2)

+
2
√

n

log(n)
+

6
√

n

log2(n)
<

3
√

n

log(n)
,

where this inequality follows again with some elementary computations using the
fact that n � 672. Summing up, for every n � 672, we have

∑
p�√

n

p − 1
log2 p

� 16n

log3 n
+

114n

log4 n
+

3
√

n

log n
. (5.10)

A direct inspection shows that this bound is also valid for the natural numbers n
with n � 672.

Summing up, from (5.4), (5.6) and (5.10), we get

d′(n) � 8n

log n
+

57n

log2 n
+

3
2
√

n log(n) +
n

log n
+

12n

log2 n

=
9n

log n
+

69n

log2 n
+

3
2
√

n log n. (5.11)

We now start working on the function d′′(n) =
∑√

n<p�n dp(n). Here we are
interested in a lower bound and in an upper bound for d′′(n). First we obtain
an upper bound for d′′(n). As p >

√
n, the p-adic expansion of n is simply n :=

a1(p, n)p + a0 and hence dp(n) = a1(p, n). Now we refine further d′′(n). For every
i ∈ {1, . . . , �√n − 1}, we let

gi(n) :=
∑

n/(i+1)<p�n/i

a1(p, n)

and we let

g�√n	(n) :=
∑

√
n<p�n/�√n	

a1(p, n).

When i ∈ {1, . . ., �√n}, we have a1(p, n) = i and hence gi(n) equals i times
the number of prime numbers in the interval (n/(i + 1), n/i]. Therefore, when
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i ∈ {1, . . ., �√n − 1},
gi(n) = i(π(n/i) − π(n/(i + 1)))

and

g�√n	(n) = �√n(π(n/�√n) − π(
√

n)).

Since every prime p, with
√

n < p � n, lies in one of the intervals (n/(i + 1), n/i],
for some i ∈ {1, . . . , �√n − 1}, or in the interval (

√
n, n/�√n], we have

d′′(n) =
�√n	∑
i=1

gi(n) =
�√n	−1∑

i=1

i(π(n/i) − π(n/(i + 1)))+ �√n(π(n/�√n) − π(
√

n))

=
�√n	∑
i=1

π(n/i) − �√nπ(
√

n). (5.12)

Using (5.1), we have

�√n	∑
i=1

π(n/i) �
�√n	∑
i=1

n/i

log(n/i)

(
1 +

3
2 log(n/i)

)

=
�√n	∑
i=1

n/i

log(n/i)
+

3
2

�√n	∑
i=1

n/i

log2(n/i)
. (5.13)

The function x �→ (n/x)/ log(n/x) is decreasing in the interval (0, �√n] and hence
we obtain for the first summand the estimate

�√n	∑
i=1

n/i

log(n/i)
=

n

log n
+

�√n	∑
i=2

n/i

log(n/i)
� n

log n
+
∫ �√n	

1

n/x

log(n/x)
dx

=
n

log n
+ [−n log(log(n/x))]�

√
n	

1

=
n

log n
− n log log(n/�√n) + n log(log n). (5.14)

For the second summand observe that the function x �→ (n/x)/ log2(n/x) is
decreasing in the interval (0, �√n] and hence we obtain the estimate

3
2

�√n	∑
i=1

n/i

log2(n/i)
=

3n

2 log2 n
+

3
2

�√n	∑
i=2

n/i

log2(n/i)

� 3n

2 log2 n
+

3
2

∫ �√n	

1

n/x

log2(n/x)
dx

=
3n

2 log2(n)
+

3
2

[
n

log(n/x)

]�√n	

1

=
3n

2 log2(n)
+

3n

2 log(n/�√n) − 3n

2 log n
. (5.15)
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Further, for n � 672, we get

�√nπ(
√

n) � (
√

n − 1)
√

n

log
√

n − 1/2
=

2n

log n − 1
− 2

√
n

log n − 1

=
2n

log n
+ 2n

(
1

log n − 1
− 1

log n

)
− 2

√
n

log n − 1

� 2n

log n
+

2n

log n(log n − 1)
− 2

√
n

log n/2

� 2n

log n
+

2n

log2 n
− 4

√
n

log n
. (5.16)

Thus, from (5.12), (5.13), (5.14), (5.15) and (5.16), for every n � 672, we have that

d′′(n) � n log(log n) − n log(log(n/�√n)) − n

2 log n
+

3n

2 log2 n
+

3n

2 log(n/�√n)

− 2n

log n
− 2n

log2 n
+

4
√

n

log n
.

First of all, as n/�√n � √
n, we get log(n/�√n) � log

√
n = log(n)/2 and hence

− n

2 log n
+

3n

2 log(n/�√n) − 2n

log n
�
(
−1

2
+ 3 − 2

)
n

log n
=

n

2 log n
.

Moreover,

n log(log n) − n log(log(n/�√n)) � n log log n − n log log(
√

n)

= n log
(

log n

log
√

n

)
= n log 2.

Summing up, for every n � 672,

d′′(n) � n log 2 +
n

2 log n
− n

2 log2 n
+

4
√

n

log n
. (5.17)

An explicit computation with the positive integers n with 2 � n < 672 shows that
the same upper bound remains true when n � 672.

Using the upper bounds (5.11) and (5.17), for every n � 2, we deduce

δ(n) = d′(n) + d′′(n) � n log 2 +
19n

2 log n
+

137n

2 log2 n
+

4
√

n

log n

+
3
√

n

2
log n � n log 2 +

112n

log n
,

where the last inequality follows with some computation.
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Now, we use the argument above to obtain also a lower bound for d′′(n) and
hence for d′′(n). Using (5.2) and (5.12), we have

d′′(n) =
�√n	∑
i=1

π(n/i) − �√nπ(
√

n) �
�√n	∑
i=1

n/i

log(n/i) − 1/2
− �√nπ(

√
n)

�
�√n	∑
i=1

n/i

log(n/i)
−√

nπ(
√

n).

The function x �→ (n/x)/ log(n/x) is decreasing in the interval (0, �√n] and hence
we obtain the estimate

�√n	∑
i=1

n/i

log(n/i)
�
∫ �√n	

1

n/x

log(n/x)
dx = [−n log(log(n/x))]�

√
n	

1

= −n log log(n/�√n) + n log(log n) = n log
(

log n

log(n/�√n)
)

= n log
(

log n

log n − log(�√n)
)

= n log
(

log n

log n − log
√

n − log(�√n/√n)

)

= n log
(

log n

(log n)/2 − log(�√n/√n)

)
� n log 2,

where in the last inequality we used the fact that �√n/√n � 1 and hence
log(�√n/√n) � 0. Furthermore, from (5.1), we have

√
nπ(

√
n) � n

log
√

n

(
1 +

3
2 log

√
n

)
=

2n

log n

(
1 +

3
log n

)
� 12n

log n
,

where the last inequality follows from an easy computation. Summing up,

δ(n) = d′(n) + d′′(n) � d′′(n) � n log 2 − 12n

log n
. �
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