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Abstract: In the present paper, we consider multigrid strategies for the resolution of linear systems
arising from the Qk Finite Elements approximation of one- and higher-dimensional elliptic partial
differential equations with Dirichlet boundary conditions and where the operator is div (−a(x)∇·),
with a continuous and positive over Ω, Ω being an open and bounded subset of R2. While the
analysis is performed in one dimension, the numerics are carried out also in higher dimension
d ≥ 2, showing an optimal behavior in terms of the dependency on the matrix size and a substantial
robustness with respect to the dimensionality d and to the polynomial degree k.
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1. Introduction

We consider the solution of large linear systems whose coefficient matrices arise from the Qk
Lagrangian Finite Element approximation of the elliptic problem{

div (−a(x)∇u) = f , x ∈ Ω ⊆ Rd,
u|∂Ω = 0,

(1)

with Ω a bounded subset of Rd having smooth boundaries and with a being continuous and positive
on Ω.

Based on the spectral analysis of the related matrix-sequences and on the study of the associated
spectral symbol [1,2], this paper deals with ad hoc multigrid techniques where the choice of the basic
ingredients, i.e., that of the smoothing strategy and of the projectors, has a foundation in the analysis
of the symbol provided in [3].

Indeed, in the systematic work in [3], tensor rectangular Finite Element approximations Qk of
any degree k and of any dimensionality d are considered and the spectral analysis of the stiffness
matrix-sequences {An} is provided in the sense of:

• spectral distribution in the Weyl sense and spectral clustering; and
• spectral localization, extremal eigenvalues, and conditioning.
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We observe that the information obtained in [3] is strongly based on the notion of spectral symbol
(see [1,2]) and is studied from the perspective of (block) multilevel Toeplitz operators [4,5] and (block)
Generalized Locally Toeplitz sequences [6,7].

We remind that a similar analysis is carried out in [8] for the finite approximations Pk for k ≥ 2
and for d = 2: the analysis for d = 1 is contained in [3] trivially because Qk ≡ Pk for every k ≥ 1, while,
for d = 2, and even more for d ≥ 3, the situation is greatly complicated by the fact that we do not
encounter a tensor structure. Nevertheless, the picture is quite similar and the obtained information in
terms of spectral symbol is sufficient for deducing a quite accurate analysis concerning the distribution
and the extremal behavior of the eigenvalues of the resulting matrix-sequences.

It is worth noticing that the information regarding the conditioning determines the intrinsic
difficulty in the precision of solving a linear system, that is the impact of the inherent error, and it is also
important in evaluating the convergence rate of classical stationary and non-stationary iterative solvers.
On the other hand, the spectral distribution and the clustering results represent key ingredients in the
design and in the convergence analysis of specialized multigrid methods and preconditioned Krylov
solvers [9] such as preconditioned conjugate gradient (PCG) (see [7], Subsection 3.7, and [10–16]).
As proven in [11], the knowledge of the spectral distribution allows explaining the superlinear
convergence history of the (PCG), thanks to the powerful potential theory.

We emphasize that in [3,8] the final goal is the analysis and the design of fast iterative solvers
for the associated linear systems. In the current note, we go exactly in this direction, by focusing our
attention on multigrid techniques.

1.1. Structure of the Paper

The outline of the paper is as follows. In Section 2, we provide the notation and we present results
regarding multigrid methods and we fix the notation for matrix-valued trigonometric polynomials,
and the related block-Toeplitz matrices. Section 3 is devoted to the analysis of the structure and of the
spectral features of considered matrices and matrix-sequences. The multigrid strategy definition and
the symbol analysis of the projection operators are given in Section 4, together with selected numerical
tests. The paper is concluded by Section 5, where open problems are discussed and conclusions
are reported.

2. Two-Grid and Multigrid Methods

Here, we concisely report few relevant results concerning the convergence theory of algebraic
multigrid methods and we present the definition of block-Toeplitz matrices generated by a
matrix-valued trigonometric polynomial.

We start by taking into consideration the generic linear system Amxm = bm with large dimension
m, where Am ∈ Cm×m is a Hermitian positive definite matrix and xm, bm ∈ Cm. Let m0 = m > m1 >

. . . > ms > . . . > msmin and let Ps+1
s ∈ Cms+1×ms be a full-rank matrix for any s. At last, let us denote

by Vs a class of stationary iterative methods for given linear systems of dimension ms.
In accordance with [17], the algebraic two-grid Method (TGM) can be easily seen a stationary

iterative method whose generic steps are reported below.
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xout
s = T GM(s, xin

s , bs)

xpre
s = Vνpre

s,pre(xin
s , bs) Pre-smoothing iterations

rs = Asxpre
s − bs

rs+1 = Pms+1
ms rs

As+1 = Pms+1
ms As(Pms+1

ms )H

Solve As+1ys+1 = rs+1
x̂s = xpre

s − (Pms+1
ms )Hys+1

Exact Coarse Grid Correction (CGC)

xout
s = Vνpost

s,post(x̂s, bs) Post-smoothing iterations

where we refer to the dimension ms by means of its subscript s.
In the first and last steps, a pre-smoothing iteration and a post-smoothing iteration are applied νpre

times and νpost times, respectively, in accordance with the considered stationary iterative method in
the class Vs. Furthermore, the intermediate steps define the exact coarse grid correction operator, which is
depending on the considered projector operator Ps

s+1. The resulting iteration matrix of the TGM is
then defined as

TGMs = V
νpost
s,postCGCsV

νpre
s,pre, (2)

CGCs = I(s) − (Pms+1
ms )H A−1

s+1Pms+1
ms As As+1 = Pms+1

ms As(Pms+1
ms )H , (3)

where Vs,pre and Vs,post represent the pre-smoothing and post-smoothing iteration matrices,
respectively, and I(s) is the identity matrix at the sth level.

By employing a recursive procedure, the TGM leads to a Multi-Grid Method (MGM): indeed,
the standard V-cycle can be expressed in the following way:

xout
s =MGM(s, xin

s , bs)

if s ≤ smin then

Solve Asxout
s = bs Exact solution

else

xpre
s = Vνpre

s,pre(xin
s , bs) Pre-smoothing iterations

rs = Asxpre
s − bs

rs+1 = Pms+1
ms rs

ys+1 =MGM(s + 1, 0s+1, rs+1)

x̂s = xpre
s − (Pms+1

ms )Hys+1

Coarse Grid Correction

xout
s = Vνpost

s,post(x̂s, bs) Post-smoothing iterations

From a computational viewpoint, it is more efficient that the matrices As+1 = Ps+1
s As(Ps+1

s )H are
computed in the so-called setup phase for reducing the related costs.
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According to the previous setting, the global iteration matrix of the MGM is recursively defined as

MGMsmin = O ∈ Csmin×smin ,

MGMs = V
νpost
s,post

[
I(s) − (Pms+1

ms )H
(

I(s+1) −MGMs+1

)
A−1

s+1Pms+1
ms As

]
V

νpre
s,pre,

s = smin − 1, . . . , 0.

Definition 1. Let Mk be the linear space of the complex k × k matrices and let f : (−π, π) → Mk be a
measurable function with Fourier coefficients given by

f̂ j :=
1

2π

∫
(−π,π)

f (θ)e−ı̂jθdθ ∈ Mk, ı̂2 = −1, j ∈ Z.

Then, we define the block-Toeplitz matrix Tn( f ) associated with f as the kn× kn matrix given by

Tn( f ) = ∑
|j|<n

J(j)
n ⊗ f̂ j,

where ⊗ denotes the (Kronecker) tensor product of matrices. The term J(j)
n is the matrix of order n whose (i, k)

entry equals 1 if i− k = j and zero otherwise. The set {Tn( f )}n is called the family of block-Toeplitz matrices
generated by f , which is called the generating function or the symbol of {Tn( f )}n.

Remark 1. In the relevant literature (see, for instance, [10]), the convergence analysis of the two-grid method
splits into the validation of two separate conditions: the smoothing property and the approximation property.
Regarding the latter, with reference to scalar structured matrices [10,15], the optimality of two-grid methods
is given in terms of choosing the proper conditions that the symbol p of a family of projection operators has to
fulfill. Indeed, consider Tn( f ) with n = (2t − 1) and f being a nonnegative trigonometric polynomial. Let θ0

be the unique zero of f . Then, the optimality of the two-grid method applied to Tn( f ) is guaranteed if we choose
the symbol p of the family of projection operators such that

lim sup
θ→θ0

|p(η)|2
f (θ)

< ∞, η ∈ M(θ),

∑
η∈Ω(θ)

p2(η) > 0,
(4)

where the sets Ω(θ) andM(θ) are the following corner and mirror points

Ω(θ) = {η ∈ {θ, θ + π}}, M(θ) = Ω(θ) \ {θ},

respectively.

Informally, it means that the optimality of the two-grid method is obtained by choosing the family
of projection operators associated to a symbol p such that |p|2(ϑ) + |p|2(ϑ + π) does not have zeros
and |p|2(ϑ +π)/ f (ϑ) is bounded (if we require the optimality of the V-cycle, then the second condition
is a bit stronger) (see [10]). In a differential context, the previous conditions mean that p has a zero of
order at least α at ϑ = π, whenever f has a zero at θ0 = 0 of order 2α.

In our specific block setting, by interpreting the analysis given in [18], all the involved symbols
are matrix-valued and the conditions which are sufficient for the two-grid convergence and optimality
are the following:
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(A) zero of order 2 at ϑ = π of the proper eigenvalue function of the symbol of the projector for Qk,
k = 1, 2, 3 (mirror point theory [10,15]);

(B) positive definiteness of ppH(ϑ) + ppH(ϑ + π); and
(C) commutativity of p(ϑ) and p(ϑ + π).

Even if the theoretical extension to the V-Cycle and W-cycle convergence and optimality is not
given, in the subsequent section, we propose specific choices of the projection operators, numerically
showing how this leads to two-grid, V-cycle, and W-cycle procedures converging optimally or
quasi-optimally with respect to all the relevant parameters (size, dimensionality, and polynomial
degree k).

Our choices are in agreement with the mathematical conditions set in Items (A) and (B),
while Condition (C) is not satisfied. The violation of Condition (C) is discussed in Section 5, while,
in relation to Condition (A), we observe that a stronger condition is met, since the considered order of
the zero at ϑ = π is k + 1, which is larger than 2 for k = 2, 3.

3. Structure of the Matrices and Spectral Analysis: Qk ≡ Pk, d = 1

We report some results derived in [3] for the Lagrangian Finite Elements Qk ≡ Pk, d = 1. Let us
consider the Lagrange polynomials L0, . . . , Lk associated with the reference knots tj = j/k, j = 0, . . . , k:

Li(t) =
k

∏
j=0
j 6=i

t− tj

ti − tj
=

k

∏
j=0
j 6=i

kt− j
i− j

, i = 0, . . . , k,

Li(tj) = δij, i, j = 0, . . . , k,

(5)

and let the symbol 〈 , 〉 denote the scalar product in L2([0, 1]), i.e., 〈ϕ, ψ〉 :=
∫ 1

0 ϕψ. In the case a(x) ≡ 1

and Ω = (0, 1), the Qk stiffness matrix for Equation (1) equals the matrix K(k)
n in Theorem 1.

Theorem 1. ([3]) Let k, n ≥ 1. Then,

K(k)
n =


K0 KT

1

K1
. . . . . .
. . . . . . KT

1
K1 K0


−

(6)

where the subscripts “−” mean that the last row and column of the of the whole matrices in square brackets are
deleted, while K0, K1 are k× k blocks given by

K0 =


〈L′1, L′1〉 · · · 〈L′k−1, L′1〉 〈L′k, L′1〉

...
...

...
〈L′1, L′k−1〉 · · · 〈L

′
k−1, L′k−1〉 〈L′k, L′k−1〉

〈L′1, L′k〉 · · · 〈L′k−1, L′k〉 〈L′k, L′k〉+ 〈L
′
0, L′0〉

 ,

K1 =


0 0 · · · 0 〈L′0, L′1〉
0 0 · · · 0 〈L′0, L′2〉
...

...
...

...
0 0 · · · 0 〈L′0, L′k〉

 ,

(7)
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with L0, . . . , Lk being the Lagrange polynomials in (5). In particular, following the notation in Definition 1,
K(k)

n is the (nk− 1)× (nk− 1) leading principal submatrix of the block-Toeplitz matrices Tn( fQk
) and fQk

:
[−π, π]→ Ck×k is an Hermitian matrix-valued trigonometric polynomial given by

fQk
(ϑ) := K0 + K1eı̂ϑ + KT

1 e−ı̂ϑ. (8)

An interesting property of the Hermitian matrix-valued functions fQk
(ϑ) defined in Equation (8) is

reported in the theorem below from [3]: in fact, from the point of view of the spectral distribution, the
message is that, independently of the parameter k, the spectral symbol if of the same character
as 2 − 2 cos(ϑ), which is the symbol of the basic linear Finite Elements and the most standard
Finite Differences.

Theorem 2. ([3]) Let k ≥ 1. Then,

det( fQk
(ϑ)) = dk(2− 2 cos(ϑ)), (9)

where dk = det([〈L′j, L′i〉]ki,j=1) = det([〈L′j, L′i〉]
k−1
i,j=1) > 0 (with d1 = 1, being the determinant of the empty

matrix equal to 1 by convention) and L0, . . . , Lk are the Lagrange polynomials in Equation (5).

Furthermore, a generalization of the previous result in higher dimension is given in [8] and is
reported in the subsequent theorem.

Theorem 3. ([8]) Given the symbols fQk
in dimension d ≥ 1, the following statements hold true:

1. fQk
(0)e = 0, e vector of all ones, k ≥ 1;

2. there exist constants C1, C2 > 0 (dependent on fQk
) such that

C1

d

∑
j=1

(2− 2 cos(ϑj)) ≤ λ1( fQk
(ϑ)) ≤ C2

d

∑
j=1

(2− 2 cos(ϑj)); (10)

and
3. there exist constants m, M > 0 (dependent on fQk

) such that

0 < m ≤ λj( fQk
(ϑ)) ≤ M, j = 2, . . . , kd. (11)

4. Multigrid Strategy Definition, Symbol Analysis, and Numerics

Let us consider a family of meshes

{T2sh}s=0,...,s such that T2sh ⊆ T2s−1h ⊆ . . . ⊆ T2h ⊆ Th.

Clearly, the same inclusion property is inherited by the corresponding Finite Element functional
spaces and hence we find V2sh ⊆ V2s−1h ⊆ . . . ⊆ V2h ⊆ Vh.

Therefore, to formulate a multigrid strategy, it is quite natural to follow a functional approach
and to impose the prolongation operator ph

2h : V2h → Vh to be defined as the identity operator, that is

ph
2hv2h = v2h for all v2h ∈ V2h.

Thus, the matrix representing the prolongation operator is formed, column by column,
by representing each function of the basis of V2h as linear combination of the basis of Vh, the coefficients
being the values of the functions ϕ2h

i on the fine mesh grid points, i.e.,

ϕ2h
i (x) = ∑

xj∈Th

ϕ2h
i (xj)ϕh

j (x). (12)
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In the following subsections, we consider in detail the case of Qk Finite Element approximation
with k = 2 and k = 3, the case k = 1 being reported in short just for the sake of completeness.

4.1. Q1 Case

Firstly, let us consider the case of Q1 Finite Elements, where, as is well known, the stiffness
matrix is the scalar Toeplitz matrix generated by fQ1(ϑ) = 2− 2 cos(ϑ), and, for the sake of simplicity,
let us consider the case of T2h partitioning with five equispaced points (three internal points) and Th
partitioning with nine equispaced points (seven internal points) obtained from T2h by considering the
midpoint of each subinterval. In the standard geometric multigrid, the prolongation operator matrix is
defined as

Ph×2h = P7
3 =



1
2
1
1
2

1
2
1
1
2

1
2
1
1
2


. (13)

Indeed, the basis functions with respect to the reference interval [0, 1] are ϕ̂1(x̂) = 1− x̂, ϕ̂2(x̂) = x̂,
and, according to Equation (12), the ϕ2h

i coefficients are

ϕ̂2(1/2) = 1/2, ϕ̂2(1) = 1, ϕ̂1(1/2) = 1/2,

giving the columns of the matrix in Equation (13). However, we can think the prolongation matrix
above as the product of the Toeplitz matrix generated by the polynomial pQ1

(ϑ) = 1 + cos(ϑ) and a
suitable cutting matrix (see [15] for the terminology and the related notation) defined as

Kms+1×ms =


0 1 0

0 1 0
. . . . . . . . .

0 1 0

 , (14)

i.e., Pms
ms+1 = (Pms+1

ms )T = Ams(pQ1
)(Kms+1×ms)

T .

Two-grid/Multigrid convergence with the above defined restriction/prolongation operators and
a simple smoother (for instance, Gauss–Seidel iteration) is a classical result, both from the point of
view of the literature of approximated differential operators [17] and from the point of view of the
literature of structured matrices [10,15].

In the first panel of Table 1, we report the number of iterations needed for achieving the predefined
tolerance 10−6, when increasing the matrix size in the setting of the current subsection. Indeed, we use
Ams(pQ1

)(Kms+1×ms)
T and its transpose as restriction and prolongation operators and Gauss–Seidel

as a smoother. We highlight that only one iteration of pre-smoothing and only one iteration of
post-smoothing are employed in the current numerics. Therefore, considering the results of Remark 1
and the subsequent explanation, there is no surprise in observing that the number of iterations needed
for the two-grid, V-cycle, and W-cycle convergence remains almost constant when we increase the
matrix size, numerically confirming the predicted optimality of the methods in this scalar setting.
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Table 1. Number of iterations needed for the convergence of the two-grid, V-cycle, and W-cycle
methods for k = 1, 2, 3 in one dimension with a(x) ≡ 1 and tol = 1× 10−6.

k = 1 k = 2 k = 3

# Subintervals TGM V-Cycle W-Cycle TGM V-Cycle W-Cycle TGM V-Cycle W-Cycle

8 5 5 5 7 7 7 9 9 9
16 6 7 6 7 7 7 9 9 9
32 7 7 7 7 7 7 9 9 9
64 7 7 7 7 7 7 9 9 9
128 6 7 6 7 7 7 9 9 9
256 6 7 6 7 7 7 9 9 9
512 6 7 6 7 7 7 9 9 9

4.2. Q2 Case

Let us consider the case of Q2 Finite Elements, where we have that the basis functions with respect
to the reference interval [0, 1] are

ϕ̂1(x̂) = 2x̂2 − 3x̂ + 1,

ϕ̂2(x̂) = −4x̂2 + 4x̂,

ϕ̂3(x̂) = 2x̂2 − x̂.

For the sake of simplicity, let us consider the case of T2h partitioning with five equispaced points
(three internal points) and Th partitioning with nine equispaced points (seven internal points) obtained
from T2h by considering the midpoint of each subinterval.

Thus, with respect to Equation (12), the ϕ2h
1 coefficients are

ϕ̂2(1/4) = 3/4, ϕ̂2(1/2) = 1, ϕ̂2(3/4) = 3/4, ϕ̂2(1) = 0,

while the ϕ2h
2 coefficients are

ϕ̂3(1/4) = −1/8, ϕ̂3(1/2) = 0, ϕ̂3(3/4) = 3/8, ϕ̂3(1) = 1,
ϕ̂1(1/4) = 3/8, ϕ̂1(1/2) = 0, ϕ̂1(3/4) = −1/8, ϕ̂1(1) = 0,

and so on again as for that first couple of basis functions. Notice also that, to evaluate the coefficients,
for the sake of simplicity, we are referring to the basis functions on the reference interval, as depicted
in Figure 1. To sum up, the obtained prolongation matrix is as follows

Ph×2h = P7
3 =



3
4
−1

8
1 0
3
4

3
8

0 1
3
8

3
4

0 1

−1
8

3
4


(15)
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Figure 1. Construction of the Q2 prolongation operator: basis functions on the reference element.

Hereafter, we are interested in setting such a geometrical multigrid strategy, proposed in [17,19,20],
in the framework of the more general algebraic multigrid theory and in particular in the one driven by
the matrix symbol analysis. To this end, we represent the prolongation operator quoted above as the
product of a Toeplitz matrix generated by a polynomial pQ2

and a suitable cutting matrix. We recall
that the Finite Element stiffness matrix could be thought as a principal submatrix of a Toeplitz matrix
generated by the matrix-valued symbol that, from Equation (8), has the compact form

fQ2(ϑ) =

 16
3 − 8

3 (1 + eı̂ϑ)

− 8
3 (1 + e−ı̂ϑ) 14

3 + 1
3 (e

ı̂ϑ + eı̂ϑ)

 . (16)

Then, it is quite natural to look for a matrix-valued symbol for the polynomial pQ2
as well.

In addition, the cutting matrix is also formed through the Kronecker product of the scalar cutting
matrix in Equation (14) and the identity matrix of order 2, so that

Pms
ms+1

= (Pms+1
ms )T = Ams(pQ2

)((Kms+1×ms)
T ⊗ I2).

Taking into account the action of the cutting matrix (Kms+1×ms)
T ⊗ I2, we can easily identify from

Equation (15) the generating polynomial as

pQ2
(ϑ) = K0 + K1eı̂ϑ + K−1e−ı̂ϑ + K2e2ı̂ϑ + K−2e−2ı̂ϑ. (17)

where

K0 =

[
3
4

3
8

0 1

]
, K1 =

[
0 3

8
0 0

]
, K−1 =

[
3
4 − 1

8
1 0

]
, K2 =

[
0 − 1

8
0 0

]
, K−2 = 02×2,
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that is

pQ2
(ϑ) =

 3
4 (1 + e−ı̂ϑ) 3

8 (1 + eı̂ϑ)− 1
8 (e
−ı̂ϑ + e2ı̂ϑ)

e−ı̂ϑ 1

 .

A very preliminary analysis, just by computing the determinant of pQ2
(ϑ) shows there is a zero of

third order in the mirror point ϑ = π, being

det(pQ2
(ϑ)) =

1
8

e−2ı̂ϑ(eı̂ϑ + 1)3.

Moreover, the analysis can be more detailed, as highlighted in Section 2.
We highlight that our choices are in agreement with the mathematical conditions set in Items

(A) and (B). Condition (C) is violated and we discuss it in Section 5 and Remark 2. Nevertheless, it is
possible to derive the following TGM convergence and optimality sufficient conditions that should be
verified by f and p = pQ2

, exploiting the idea in the proof of the main result of [18]:

p(ϑ)H p(ϑ) + p(ϑ + π)H p(ϑ + π) > Ok for all ϑ ∈ [0, 2π] (18)

R(ϑ) ≤ γI2k (19)

with

R(ϑ) =

[
f (ϑ)

f (ϑ + π)

]− 1
2
(

I2k −
[

p(ϑ)
p(ϑ + π)

]
q(ϑ)

[
p(ϑ)H p(ϑ + π)H

]) [ f (ϑ)
f (ϑ + π)

]− 1
2

,

where q(ϑ) =
[
p(ϑ)H p(ϑ) + p(ϑ + π)H p(ϑ + π)

]−1, Ok is the k× k null matrix, γ > 0 is a constant
independent on n, and we denote by A > B (respectively, A ≤ B) the positive definiteness
(respectively, non-positive definiteness) of the matrix A− B. The condition in Equation (19) requires
the matrix-valued function R(ϑ) to be uniformly bounded in the spectral norm. These conditions
are obtained from the proof of the main convergence result in [18], where, after several numerical
derivations, it was concluded that the above conditions are the final requirements needed.

To this end, we have explicitly formed the matrices involved in the conditions in Equations (18)
and (19) and computed their eigenvalues for ϑ ∈ [0, 2π]. The results are reported in Figure 2 and are in
perfect agreement with the theoretical requirements.

In the second panel of Table 1, we report the number of iterations needed for achieving the
predefined tolerance 10−6, when increasing the matrix size in the setting of the current subsection.
Indeed, we use Ams(pQ2

)(Kms+1×ms)
T and its transpose as restriction and prolongation operators and

Gauss–Seidel as a smoother. Again, we remind that only one iteration of pre-smoothing and only one
iteration of post-smoothing are employed in our numerical setting.

As expected, we observe that the number of iterations needed for the two-grid convergence
remains constant when we increase the matrix size, numerically confirming the optimality of
the method.

Moreover, we notice that also the V-cycle and W-cycle methods possess optimal convergence
properties. Although this behavior is expected from the point of view of differential approximated
operators, it is interesting in the setting of algebraic multigrid methods. Indeed, constructing an
optimal V-cycle method for matrices in this block setting might require a specific analysis of the
spectral properties of the restricted operators (see [18]).
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Figure 2. Check of conditions for Q2 prolongation: (left) the plot of the eigenvalues of p(ϑ)H p(ϑ) +
p(ϑ + π)H p(ϑ + π) for ϑ ∈ [0, 2π]; and (right) the plot of the eigenvalues of R(ϑ) for ϑ ∈ [0, 2π].

4.3. Q3 Case

Hereafter, we briefly summarize the case of Q3 Finite Elements, following the very same path we
already considered in the previous section for P2 Finite Elements. The basis functions with respect to
the reference interval [0, 1] are

ϕ̂1(x̂) = −9
2

x̂3 + 9x̂2 − 11
2

x̂ + 1,

ϕ̂2(x̂) =
27
2

x̂3 − 45
2

x̂2 + 9x̂, (20)

ϕ̂3(x̂) = −27
2

x̂3 + 18x̂2 − 9
2

x̂,

ϕ̂4(x̂) =
9
2

x̂3 − 9
2

x̂2 + x̂.

For the sake of simplicity, let us consider the case of T2h partitioning with seven equispaced points
(five internal points) and Th partitioning with 13 equispaced points (11 internal points) obtained from
T2h by considering the midpoint of each subinterval.

Thus, with respect to Equation (12) (see also Figure 3), the ϕ2h
1 coefficients are

ϕ̂2(1/6) = 15/16, ϕ̂2(1/3) = 1, ϕ̂2(1/2) = 9/16,
ϕ̂2(2/3) = 0, ϕ̂2(5/6) = −5/16, ϕ̂2(1) = 0,

while, the ϕ2h
2 coefficients are

ϕ̂3(1/6) = −5/16, ϕ̂3(1/3) = 0, ϕ̂3(1/2) = 9/16,
ϕ̂3(2/3) = 1, ϕ̂3(5/6) = 15/16, ϕ̂3(1) = 0,

and the ϕ2h
3 coefficients are

ϕ̂4(1/6) = 1/16, ϕ̂4(1/3) = 0, ϕ̂4(1/2) = −1/16,
ϕ̂4(2/3) = 0, ϕ̂4(5/6) = 5/16, ϕ̂4(1) = 1,
ϕ̂1(1/6) = 5/16, ϕ̂1(1/3) = 0, ϕ̂1(1/2) = −1/16,
ϕ̂1(2/3) = 0, ϕ̂1(5/6) = 1/16, ϕ̂1(1) = 0.
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Thus, the obtained prolongation matrix is as follows:

Ph×2h = P11
5 =



15
16

− 5
16

1
16

1 0 0
9

16
9

16
− 1

16
0 1 0

− 5
16

15
16

5
16

0 0 1
5

16
15
16

− 5
16

0 1 0

− 1
16

9
16

9
16

0 0 1
1

16
− 5

16
15
16



. (21)

Thus, taking into consideration that the stiffness matrix is a principal submatrix of the Toeplitz
matrix generated by the matrix-valued function

fQ3(ϑ) =


54
5 − 297

40
27
20 −

189
40 eı̂ϑ

− 297
40

54
5 − 189

40 + 27
20 eı̂ϑ

27
20 −

189
40 e−ı̂ϑ − 189

40 + 27
20 e−ı̂ϑ 37

5 −
13
40 (e

ı̂ϑ + e−ı̂ϑ)

 , (22)

we are looking for the matrix-valued symbol pQ3
as well. By defining

Pms
ms+1

= (Pms+1
ms )T = Ams(pQ3

)((Kms+1×ms)
T ⊗ I3)

it is easy to identify the generating polynomial as

pQ3
(ϑ) = K0 + K1eı̂ϑ + K−1e−ı̂ϑ + K2e2ı̂ϑ + K−2e−2ı̂ϑ, (23)

where

K0 =

 0 1 0
− 5

16
15
16

5
16

0 0 1

, K1 =

 0 0 5
16

0 0 0
0 0 − 1

16

, K−1 =

 15
16 − 5

16
1

16
1 0 0

9
16

9
16 − 1

16

,

K2 =

 0 0 0
0 0 1

16
0 0 0

, K−2 = 03×3,

that is

pQ3
(ϑ) =

 15
16 e−ı̂ϑ 1− 5

16 e−ı̂ϑ 1
16 e−ı̂ϑ + 5

16 eı̂ϑ

e−ı̂ϑ − 5
16

15
16

5
16 + 1

16 e2ı̂ϑ

9
16 e−ı̂ϑ 9

16 e−ı̂ϑ 1− 1
16 (e

ı̂ϑ + e−ı̂ϑ)

 . (24)

A trivial computation shows again shows there is a zero of fourth order in the mirror point
ϑ = π, being

det(pQ3
(ϑ)) =

1
64

e−3ı̂ϑ(eı̂ϑ + 1)4.

However, the main goal is to verify the conditions in Equations (18) and (19): we have explicitly
formed the matrices involved and computed their eigenvalues for ϑ ∈ [0, 2π]. The results are in perfect
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agreement with the theoretical requirements (see Figure 4). This analysis links the geometric approach
proposed in [17,19,20] to the novel algebraic multigrid methods for block-Toeplitz matrices.

In the third panel of Table 1, we report the number of iterations needed for achieving the
predefined tolerance 10−6, when increasing the matrix size in the setting of the current subsection.
Indeed, we use Ams(pQ3

)(Kms+1×ms)
T and its transpose as restriction and prolongation operators and

Gauss–Seidel as a smoother (one iteration of pre-smoothing and one iteration of post-smoothing).
As expected, we observe that the number of iterations needed for the two-grid convergence

remains constant when we increase the matrix size, numerically confirming the optimality of the
method. As in the Q2 case, we also notice that the V-cycle and W-cycle methods possess the same
optimal convergence properties.

Comparing the three panels in Table 1, we also notice a mild dependency of the number of
iterations on the polynomial degree k. In addition, we can see in Tables 2 and 3 that the optimal
behavior of the two-grid, V-cycle, and W-cycle methods for k = 2, 3 remains unchanged if we test
different tolerance values.

Table 2. Number of iterations needed for the convergence of the two-grid, V-cycle, and W-cycle
methods for k = 2 in one dimension with a(x) ≡ 1 and tol = 1× 10−2, 1× 10−4, and 1× 10−8.

tol = 1× 10−2 tol = 1× 10−4 tol = 1× 10−8

# Subintervals TGM V-Cycle W-Cycle TGM V-Cycle W-Cycle TGM V-Cycle W-Cycle

8 3 3 3 5 5 5 8 8 8
16 3 3 3 5 5 5 9 9 9
32 3 3 3 5 5 5 9 10 9
64 3 3 3 5 5 5 9 10 9

128 3 3 3 5 5 5 9 10 9
256 3 3 3 5 5 5 9 10 9
512 3 3 3 5 5 5 9 10 9

Table 3. Number of iterations needed for the convergence of the two-grid, V-cycle, and W-cycle
methods for k = 3 in one dimension with a(x) ≡ 1 and tol = 1× 10−2, 1× 10−4, and 1× 10−8.

tol = 1× 10−2 tol = 1× 10−4 tol = 1× 10−8

# Subintervals TGM V-Cycle W-Cycle TGM V-Cycle W-Cycle TGM V-Cycle W-Cycle

8 3 3 3 6 6 6 12 12 12
16 3 3 3 6 6 6 12 12 12
32 3 3 3 6 6 6 12 12 12
64 3 3 3 6 6 6 12 12 12
128 3 3 3 6 6 6 12 12 12
256 3 3 3 6 6 6 12 12 12
512 3 3 3 6 6 6 12 12 12

Remark 2. In the cases analyzed in this section, we notice that, even though p(0) and p(π) do not commute,
the two-grid method is still convergent and optimal. The latter commutation property, along with Conditions
(A) and (B) reported in Section 2, is sufficient to have optimal convergence of the two-grid method. This analysis
reveals that commutativity is not a necessary property. Indeed, in our examples, we show that the operator R(ϑ)
is uniformly bounded in the spectral norm.

However, we notice that in all cases the commutator SQk
(ϑ) = pQk

(ϑ)pQk
(ϑ + π)− pQk

(ϑ)pQk
(ϑ + π)

computed in 0 is a singular matrix. In particular, computing our commutator matrix SQk
(ϑ) in ϑ = 0, we obtain:

SQ2
(0) =

1
2

(
−1 1
−1 1

)
, SQ3

(0) =
1

256

−462 330 132
−438 354 84
−378 270 108

 ,

which are indeed singular matrices.
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Figure 3. Construction of the Q3 prolongation operator: basis functions on the reference element.
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Figure 4. Check of conditions for Q3 prolongation: (left) the plot of the eigenvalues of p(ϑ)H p(ϑ) +
p(ϑ + π)H p(ϑ + π) for ϑ ∈ [0, 2π]; and (right) the plot of the eigenvalues of R(ϑ) for ϑ ∈ [0, 2π].

Remark 3. It is worth stressing that the results hold also in dimension d ≥ 2. In fact, interestingly, we observe
that the dimensionality d does not affect the efficiency of the proposed method, as well shown in Table 4 for
the case d = 2. We finally remind that the tensor structure of the resulting matrices highly facilitates the
generalization and extension of the numerical code to the case of d ≥ 2. Indeed, the prolongation operators in the
multilevel setting are constructed by a proper tensorization of those in 1D.
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Table 4. Number of iterations needed for the convergence of the two-grid, V-cycle, and W-cycle
methods for k = 1, 2, 3 in dimension d = 2 with a(x) ≡ 1.

k = 1 k = 2 k = 3

# Two V- W- # Two V- W- # Two V- W-
Nodes Grid Cycle Cycle Nodes Grid Cycle Cycle Nodes Grid Cycle Cycle

72 5 5 5 152 6 6 6 232 7 7 7
152 5 6 5 312 6 6 6 472 7 7 7
312 5 6 5 632 6 6 6 952 7 7 7
632 5 6 5 1272 6 6 6 1912 7 7 7
1272 5 6 5 2552 6 6 6 3832 7 7 7

Furthermore, we highlight that the presented analysis for a ≡ 1 can be easily extended to
the case on non-constant coefficients a(x) 6= 1 in 1D and a(x, y) 6= 1 in 2D, since, following a
geometric approach, the prolongation operators for the general variable coefficients remain unchanged.
In Tables 5 and 6, we show the number of iterations needed for the convergence of the two-grid,
V-cycle, and W-cycle methods for k = 2 in one and two dimensions for different values of a 6≡ 1.

Table 5. Number of iterations needed for the convergence of the two-grid, V-cycle, and W-cycle methods
for k = 2 in one dimension with a(x) = ex, a(x) = 10x + 1, a(x) = |x− 1/2|+ 1, and tol = 1× 10−6.

a(x) = ex a(x) = 10x + 1 a(x) = |x− 1/2|+ 1

# Subintervals TGM V-Cycle W-Cycle TGM V-Cycle W-Cycle TGM V-Cycle W-Cycle

8 7 7 7 11 11 11 7 7 7
16 7 7 7 9 12 8 7 7 7
32 7 8 7 7 14 7 7 7 7
64 7 8 7 7 14 7 7 7 7
128 7 8 7 7 15 7 7 7 7
256 7 8 7 7 15 7 7 7 7
512 7 8 7 7 14 7 7 7 7

Table 6. Number of iterations needed for the convergence of the two-grid, V-cycle, and W-cycle
methods for k = 2 in two dimensions with a(x, y) = e(x+y), a(x, y) = 10(x + y) + 1, a(x, y) =

|x− 1/2|+ |y− 1/2|+ 1, a(x, y) = 1 if x ≤ 1/2 and y ≤ 1/2, 5000 otherwise, and tol = 1× 10−6.

a(x, y) = e(x+y) 10(x + y) + 1 |x− 1/2|+ |y− 1/2|+ 1
{

1 x, y ≤ 1/2
5000 otherwise

# Two V- W- Two V- W- Two V- W- Two V- W-
Nodes Grid Cycle Cycle Grid Cycle Cycle Grid Cycle Cycle Grid Cycle Cycle

72 6 6 6 6 6 6 6 6 6 6 6 6
152 6 6 6 6 6 6 6 6 6 6 6 6
312 6 6 6 6 6 6 6 6 6 6 6 6
632 6 6 6 6 6 6 6 6 6 6 6 6

1272 6 6 6 6 6 6 6 6 6 6 6 6

5. Concluding Remarks

In the present paper, we consider multigrid strategies for the resolution of linear systems arising
from the Qk Finite Elements approximation of one- and higher-dimensional elliptic partial differential
equations with Dirichlet boundary conditions and where the operator is div (−a(x)∇·), with a
continuous and positive over Ω, Ω being an open and bounded subset of Rd. While the analysis has
been given in one dimension, the numerics are shown also in higher dimension d ≥ 2, showing an
optimal behavior in terms of the dependency on the matrix size and a substantial robustness with
respect to the dimensionality d and to the polynomial degree k (see Remark 3).
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We mention the fact that our analysis might be of interest for several variations on the problem
in Equation (1). Indeed, if we impose different boundary conditions, our procedure can be applied
with slight changes. In fact, the resulting stiffness matrices differ from the ones analyzed in the present
paper, of a small rank correction matrix. Therefore, they share the same asymptotic spectral properties,
which means we only have to take care of possible outliers, affecting the choice of the proper smoother.

By interpreting the analysis given in [18] in our specific block setting, we provide a study of
the relevant analytical features of all the involved spectral symbols, both of the stiffness matrices fQk
and of the projection operators pQk

, k = 1, 2, 3. While the two-grid, V-cycle, and W-cycle procedures
show optimal or quasi-optimal convergence rate, with respect to all the relevant parameters (size,
dimensionality, polynomial degree k, and diffusion coefficient), the theoretical prescriptions are only
partly satisfied. In fact, our choices are in agreement with the mathematical conditions set in Items (A)
and (B), while Condition (C) is violated. Here, by quasi-optimal convergence rate, we mean that the
convergence speed does not depend on the size (optimality with respect to the this parameter) and it
is mildly depending on the other relevant parameters such as dimensionality, polynomial degree k,
and diffusion coefficient. By looking at the mathematical derivations in [18], we observe that the latter
condition indeed is a technical one. In reality, we believe that Condition (C) is not essential and the
commutation request can be substituted by a less restrictive one, possibly following the considerations
in Remark 2. Such a point is in our opinion important for widening the generality of the theory and it
will be the subject of future investigations.

In conclusion, regarding the computational cost of the proposed algorithm, we highlight that the
choice of the optimal smoother from a computational viewpoint is beyond the scope of the present
paper. Indeed, in the case where the matrices possess a tensor structure, a further analysis will be
performed to devise a more competitive method.
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