
Indefinite nilsolitons and Einstein solvmanifolds

Diego Conti and Federico A. Rossi

December 4, 2021

Abstract

A nilsoliton is a nilpotent Lie algebra g with a metric such that Ric =
λId +D, with D a derivation. For indefinite metrics, this determines four
different geometries, according to whether λ and D are zero or not. We
illustrate with examples the greater flexibility of the indefinite case com-
pared to the Riemannian setting. We determine the algebraic properties
that D must satisfy when it is nonzero.

For each of the four geometries, we show that under suitable assump-
tions it is possible to extend the nilsoliton metric to an Einstein solv-
manifold of the form g o Rk. Conversely, we introduce a large class of
indefinite Einstein solvmanifolds of the form goRk that determine a nil-
soliton metric on g by restriction. We show with examples that, unlike in
the Riemannian case, one cannot establish a correspondence between the
full classes of Einstein solvmanifolds and nilsolitons.

Introduction

A Riemannian solvmanifold can be defined as a solvable Lie group endowed with
a left-invariant Riemannian metric. A long-standing conjecture of Alekseevski
states that all Einstein homogeneous Riemannian manifolds of negative curva-
ture are of this type [1]; a proof of this conjecture appeared recently in [4]. The
geometry of a Riemannian solvmanifold is entirely determined by assigning the
metric at the identity, i.e. by fixing an inner product on the Lie algebra. One
then says that the Lie algebra is Einstein if so is the corresponding left-invariant
metric.

The structure of Riemannian Einstein solvable Lie algebras is well under-
stood (see the recent survey [19]). In particular, they are nonunimodular ([13])
and standard ([26]), i.e. they decompose as an orthogonal direct sum

g̃ = g⊕⊥ a,

where g is a nilpotent ideal and a an abelian subalgebra. Previous results of
J. Heber ([17]) show that a acts by normal derivations on g; more precisely, for
each X in a, one has that the metric adjoint of adX is a derivation commuting
with ad a. A result of R. Azencott and E.N. Wilson ([2]) then shows that the
Lie algebra can be modified by projecting on the self-adjoint part, giving rise to
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an isometric solvmanifold for which the abelian subalgebra a acts by self-adjoint
derivations; it is shown in [17] that a acts faithfully and contains some H such
that adH is positive definite. One then says that g is of Iwasawa type.

The restriction of the metric to the nilpotent ideal g satisfies the equation

Ric = λId +D, λ ∈ R, D ∈ Der g. (1)

Left-invariant metrics on a Lie group satisfying (1) are called algebraic Ricci soli-
tons, due to the fact that they are homothetic solitons for the Ricci flow ([24]);
an algebraic Ricci soliton on a nilpotent Lie group is called a nilsoliton. In fact,
every left-invariant Riemannian Ricci soliton metric on a nilpotent Lie group is
a nilsoliton [24]; it was proved in [21, 20] that every homogeneous Riemannian
Ricci soliton is isometric to an algebraic Ricci soliton. A nilpotent Lie alge-
bra admits at most one Riemannian nilsoliton metric up to isomorphisms and
rescaling ([24]). Several characterizations of Lie algebras admitting a nilsoliton
metric are known ([31, 29, 24]); this has led to classifications in small dimension
([34, 15, 25]).

Conversely, it was shown in [24] that every Riemannian nilsoliton g gives
rise to an Einstein solvable Lie algebra g̃ = g o R. This effectively implies
that a classification of Einstein Riemannian solvmanifolds can be reduced to a
classification of Riemannian nilsolitons.

The notions of algebraic Ricci soliton and nilsoliton carry over naturally to
the pseudo-Riemannian setting, simply by imposing (1) on an indefinite metric.
It is known (see [30]) that pseudo-Riemannian algebraic Ricci solitons are Ricci
solitons; however, a left-invariant indefinite metric on a Lie group can be a Ricci
soliton without satisfying (1), see [3, 6, 33]. The variational nature of nilsoliton
metrics as critical points of the scalar curvature for an appropriately restricted
class of metrics also carries over to the indefinite case (see [37]).

Moreover, every pseudo-Riemannian nilsoliton with λ 6= 0 and trD 6= 0
determines an Einstein solvable Lie algebra [36]. One known construction of
pseudo-Riemannian nilsolitons is a form of Wick rotation (see [18]) where the
metric of a Riemannian nilsolitons is altered by inverting the sign of the metric
on the odd eigenspaces of the derivation D (suitably normalized; see [36]). The
double extension procedure of [28] can also be adapted to the nilsoliton setting,
yielding a recipe to produce Lorentzian nilsolitons from Riemannian ones [38].
Examples of nilsolitons have been constructed in [30, 23].

A complete understanding of the relation between indefinite nilsolitons and
Einstein solvmanifolds appears to be lacking at the time of writing. This paper
takes a step in that direction; we construct several examples which show essential
differences with the Riemannian case and suggest the appropriate definitions
which enable us to extend some known results to the indefinite setting.

We start with a discussion of the correct pseudo-Riemannian analogue of
the standard condition. Indeed, the Riemannian definition has several pos-
sible formulations, which become equivalent if one assumes the metric to be
Einstein. We show with examples that the equivalence does not hold in the
pseudo-Riemannian setting, suggesting that the appropriate definition for the
indefinite case is requiring an orthogonal direct sum of a nilpotent ideal and
an abelian subalgebra, without insisting that the nilpotent ideal coincide with
either the nilradical or the derived algebra. However, we show by an example
that not all indefinite Einstein solvmanifolds are standard in this sense.
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Another striking difference with the Riemannian case is that in (1), D and
λ can be independently zero or nonzero, giving a combination of four different
geometries. In particular, we produce an example with λ = 0 and D 6= 0;
together with the known existing examples, this shows that each of the four
groups is nonempty, whilst Riemannian nilsolitons are either flat or satisfy D 6=
0, λ < 0. In addition, we observe that the derivation D, whilst self-adjoint, is not
necessarily semisimple; this can happen for both the case λ = 0 (Example 2.4)
and the case λ 6= 0 (Example 2.5). We also derive algebraic conditions on the
derivation D (Theorem 2.1) that allow us to conclude that most Lie algebras
do not admit a nonsemisimple nilsoliton metric with λ 6= 0, at least in low
dimensions (Proposition 2.7).

The Iwasawa condition also has a natural equivalent for indefinite metrics,
which we call pseudo-Iwasawa. We show that the Azencott-Wilson theorem
extends to the indefinite setting (Proposition 1.19), and therefore enables one
to obtain a pseudo-Iwasawa solvmanifold from a standard solvmanifold such
that for all X ∈ a, (adX)∗ is a derivation commuting with a. Unfortunately,
the latter condition does not hold for every indefinite Einstein solvmanifolds, as
we show with examples. Therefore, not all standard Einstein solvmanifolds can
be reduced to the pseudo-Iwasawa case, unlike in the Riemannian setting.

Nevertheless, the pseudo-Iwasawa class shows its importance in the fact that
the nilpotent ideal g is always a nilsoliton (Theorem 3.9). Conversely, the Ein-
stein extensions of a nilsoliton constructed in [38, 36] are pseudo-Iwasawa. More
precisely, we obtain a correspondence between Einstein solvable Lie algebras
with a pseudo-Iwasawa decomposition and a suitable class of nilsolitons which
resembles closely the Riemannian situation, but complicated by the fact that
four different geometries occur:

� A nonunimodular pseudo-Iwasawa solvable Lie algebra with an Einstein met-
ric of nonzero scalar curvature determines a nilsoliton metric on the nilpotent
ideal g (Corollary 3.13), with λ 6= 0 and trD 6= 0; in this case g coincides
with the nilradical (Corollary 3.11). Conversely, a nilsoliton with λ 6= 0
and D not nilpotent (or equivalently trD 6= 0) can be extended to a solv-
able nonunimodular Einstein Lie algebra go a, where a is any subalgebra of
self-adjoint derivations containing D such that the bilinear form

〈X,Y 〉tr = tr(XY )

is nondegenerate (Theorem 4.1). The correspondence is one-to-one if the
metrics are fixed. Unlike the Riemannian case, a Lie algebra may admit
more than one nilsoliton metric with λ 6= 0 and trD 6= 0; in all the cases we
know, the resulting solvable extensions are isomorphic as Lie algebras. We
do not know if this is a general fact.

� A unimodular pseudo-Iwasawa solvable Lie algebra with an Einstein metric
of nonzero scalar curvature determines an Einstein metric on the nilpotent
ideal g; also in this case g coincides with the nilradical. Conversely, an
Einstein nilpotent Lie algebra with nonzero scalar curvature can be extended
to a unimodular pseudo-Iwasawa solvable Lie algebra g̃ = g o a for any
subalgebra a of self-adjoint derivations for which 〈, 〉tr is nondegenerate.

� A nonunimodular pseudo-Iwasawa solvable Lie algebra with a Ricci-flat met-
ric g̃ gives rise to a nilsoliton metric on g with Ric = D, where D can be
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zero or not (Corollary 3.14). Conversely, a nilsoliton g with Ric = D can
be extended to a nonunimodular Ricci-flat solvmanifold if Der g contains
a subalgebra a of self-adjoint derivations, not all trace-free, on which 〈, 〉tr
is zero (Proposition 4.14, Proposition 4.18). Note that not every nilsoliton
with Ric = D 6= 0 admits such an a (Example 3.15).

� A unimodular pseudo-Iwasawa solvable Lie algebra with a Ricci-flat metric
g̃ determines a Ricci-flat metric on the nilpotent ideal g. Conversely, any
Ricci-flat nilpotent Lie algebra g can be extended to a unimodular Ricci-flat
solvmanifold; one can of course take the product g×Rk, but more generally
one can construct pseudo-Iwasawa Ricci-flat solvmanifolds go a, where a is
any subalgebra of Der g of trace-free self-adjoint derivations such that 〈, 〉tr
is zero (Proposition 4.14).

Finally, we show that the Azencott-Wilson trick allows one to extend nilsoli-
tons to Einstein solvmanifolds which are not of pseudo-Iwasawa type (Proposi-
tion 4.21).
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1 Standard Lie algebras and the Ricci tensor

In the Riemannian context, an important class of metric Lie algebras consists of
standard solvable Lie algebras, that is, solvable Lie algebras g̃ with a fixed metric
such that [g̃, g̃]⊥ is abelian. In fact, J. Lauret [26] proved that all Riemannian
Einstein solvmanifolds are standard, and the structure of standard Riemannian
Einstein solvmanifolds had been previously described by J. Heber in [17].

Standard Riemannian Lie algebras decompose as

g̃ = g⊕⊥ a, (2)

with g = [g̃, g̃] nilpotent and a abelian; the notation ⊕⊥ represents an orthogonal
direct sum of vector spaces, and a acts nontrivially except when g̃ = a.

By contrast, in the indefinite case, imposing that [g̃, g̃]⊥ is abelian does not
imply a decomposition of the form (2).

Example 1.1. Take the solvable Lie algebra g̃ defined by

(e14,−e24,−2e12, 0);

here and throughout the paper, we will use the language introduced in [32], and
describe Lie algebras by giving the action of the Chevalley-Eilenberg operator
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d on the dual, which is equivalent to giving the expression for the Lie bracket.
Thus, the notation above means that g∗ has a fixed basis {e1, . . . , e4} with
de1 = e14 = e1 ∧ e4, de2 = −e24 = −e2 ∧ e4 and so on.

Consider the metric

g1e
1 ⊗ e1 + g2e

2 ⊗ e2 + g3e
3 � e4,

where e3 � e4 = e3 ⊗ e4 + e4 ⊗ e3 and g1, g2, g3 are nonzero real parameters.
Computations show that this metric is Einstein when g2 = g23/g1.

In this case, [g̃, g̃]⊥ = Span {e3} is one-dimensional, hence abelian; however
it is not possible to write the decomposition (2) because the metric restricted
to [g̃, g̃] = Span {e1, e2, e3} and [g̃, g̃]⊥ is degenerate.

The above example shows that in order for an Einstein pseudo-Riemannian
solvable Lie algebra to be decomposed as the orthogonal direct sum of a nilpotent
ideal and an abelian subalgebra, one needs to impose that the restriction of the
metric to (one of) the factors is nondegenerate.

In addition, for Riemannian Einstein solvable Lie algebras one has that [g̃, g̃]
equals the nilradical of g̃ (see [17]), but this is not always true in the pseudo-
Riemannian setting. This means that there is some freedom in the choice of
the nilpotent ideal g. Insisting that g equal either the derived algebra or the
nilradical is not appropriate, as shown by the following examples.

Example 1.2. Consider the nilpotent Lie algebra g

(0, 0, 0, e12, e13, e24, e15 + e23, e26 + e14)

and take the semidirect product

g̃ = g⊕ Span {e9} , ad e9 = e3 ⊗ e3 + e5 ⊗ e5 + e7 ⊗ e7.

For any metric of the form
∑
gie

i⊗ei, this gives an orthogonal decomposition of
g̃ as a direct sum of a nilpotent ideal (the nilradical in this case) and an abelian
subalgebra, in analogy to (2). However, the nilpotent ideal cannot be taken to
be [g̃, g̃], whose orthogonal complement Span {e1, e2, e9} is not a subalgebra. We
point out that the gi can be chosen so that the metric is Einstein (of indefinite
signature); we refer to Example 4.5 for the calculations.

Example 1.3. Consider the solvable Lie algebra (0, e12,−e13, 0) with invariant
Ricci-flat metric given by:

〈, 〉 = e1 � e4 + e2 � e3.

It is easy to verify that the metric restricted to the nilradical Span {e2, e3, e4}
is degenerate. Instead there is an orthogonal decomposition as a direct sum
of the nilpotent ideal g = Span {e2, e3} = [g̃, g̃] and the abelian Lie algebra
a = Span {e1, e4}.

Motivated by the above examples, in the attempt to generalize Heber’s re-
sults, we shall employ the following:

Definition 1.4. A standard decomposition of a metric Lie algebra g̃ is a de-
composition

g̃ = g⊕⊥ a,

where g is a nilpotent ideal and a is an abelian subalgebra.
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Thus, a standard Riemannian solvable Lie algebra g̃ admits the standard
decomposition (2). However, a Riemannian solvable Lie algebra may admit a
standard decomposition even if it not standard, as evident from Example 1.2
(although a nonstandard Riemannian Lie algebra cannot be Einstein [26]).

Remark 1.5. If g̃ admits a standard decomposition g̃ = g ⊕⊥ a, then g sits
between the derived algebra and the nilradical of g̃. Thus, if the nilradical
coincides with [g̃, g̃] (as is the case for Riemannian Einstein solvable Lie algebras,
see [17]), the only possible standard decomposition is with g = [g̃, g̃].

In the rest of this section we shall study the structure of Einstein pseudo-
Riemannian Lie algebras with a standard decomposition. We emphasize, how-
ever, that not all Einstein pseudo-Riemannian solvmanifolds are of this type.

Example 1.6. The metric Lie algebra of Example 1.1 does not admit a standard
decomposition g⊕⊥ a: by Remark 1.5, in this case the only possible choice for
g is the derived algebra Span {e1, e2, e3}, which is degenerate.

Example 1.7. Even when the derived algebra is nondegenerate, standard de-
compositions may fail to exist.

Consider the solvable Lie algebra g̃ defined by

[e1, e2] = e1, [e1, e3] = e1, [e1, e4] = e1, [e3, e4] = −2(e2 − e3);

this is isomorphic to affR×affR = (0, e12, 0, e34), as one can verify by considering
the basis {e1, e2, e2 − e3, 12 (e4 − e2)}. Fix the metric

g = e1 ⊗ e1 + e2 ⊗ e2 + e3 � e4;

computations show that this metric is Einstein with λ = −3.
In this case, the nilradical coincides with the derived algebra; we compute

[g̃, g̃] = Span {e1, e2 − e3} , [g̃, g̃]⊥ = Span {e3, e2 + e4} .

Thus, whilst nondegenerate, the orthogonal complement of [g̃, g̃]⊥ is not abelian,
and does not give a standard decomposition, since [e3, e2 + e4] = −2(e2 − e3).

Notice however, that we can write a nonorthogonal direct sum

g̃ = [g̃, g̃]⊕ Span {e2, e4} ,

with Span {e2, e4} abelian.

For the rest of this section, g̃ will denote a pseudo-Riemannian solvable Lie
algebra with a standard decomposition g̃ = g⊕⊥a. We can choose an orthogonal
basis {e1, . . . , ek} of a, 〈ek, ek〉 = εk = ±1. Let φ1, . . . , φk be the derivations of
g defined by

[v, es] = φs(v) v ∈ g,

and let φ∗s denote the adjoint with respect to the pseudo-Riemannian metric
〈, 〉, i.e. 〈X,φs(Y )〉 = 〈φ∗s(X), Y 〉 for all X,Y ∈ g̃.

With the above notation, we have the following lemmas.

Lemma 1.8. The Lie algebra structures of g and g̃ are related by

ãd v = ad v +
∑
s

es ⊗ φs(v), ãd es = −φs,
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and as a consequence

tr ãd v = 0, tr ãd es = − trφs.

For the exterior covariant derivative, we obtain

d̃v[ = dv[ −
∑
s

(φ∗s(v))[ ∧ es, d̃es = 0.

Proof. The first part is obvious; the second follows from

d̃v[(u, es) = −〈v, [u, es]〉 = −〈v, φs(u)〉 = −〈φ∗s(v), u〉.

Lemma 1.9. The Killing form of g̃ satisfies

B(v, w) = 0, B(v, es) = 0, B(es, er) = tr(φs ◦ φr),

for any v, w ∈ g, es, er ∈ a.

Proof. By [5, Chapter I, Section 5.5], the kernel of B contains every nilpotent
ideal of g̃, so in particular it contains g. The last formula holds by construction.

Recall the general formula [11, Lemma 1.1] for the Ricci tensor of a metric
Lie algebra g̃:

r̃ic(v, w) =
1

2
〈d̃v[, d̃w[〉 − 1

2
〈ãd v, ãdw〉 − 1

2
tr ãd(vy d̃w[ + wy d̃v[)] − 1

2
B(v, w).

(3)

Proposition 1.10. The Ricci tensor of the metric 〈, 〉 on g̃ and its restriction
to g are related by

r̃ic(v, w) = ric(v, w) +
∑
s

1

2
εs〈[φs, φ∗s](v), w〉 − 1

2
εs〈(φs + φ∗s)(v), w〉 trφs

r̃ic(v, es) =
1

2
〈ad v, φs〉

and

r̃ic(es, er) = −1

2
〈φs, φr〉 −

1

2
tr(φs ◦ φr).

Proof. Applying (3) to v, w ∈ g and using Lemmas 1.8 and 1.9, we compute

r̃ic(v, w) =
1

2
〈dv[, dw[〉+

∑
s

1

2
εs〈φ∗s(v), φ∗s(w)〉 − 1

2
〈ad v, adw〉

−
∑
s

1

2
εs〈φs(v), φs(w)〉+

1

2
εs(〈φ∗s(w), v〉+ 〈φ∗s(v), w〉) tr ãd es

= ric(v, w) +
1

2

∑
s

εs
(
〈φ∗s(v), φ∗s(w)〉 − 〈φs(v), φs(w)〉

)
− 1

2
εs
(
〈φs(v), w〉+ 〈φs(w), v〉

)
trφs.

The others are similar.
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Remark 1.11. Using Proposition 1.10, we deduce a formula relating the Ricci
operator R̃ic of g̃ = gnφ Re0 and the Ricci operator Ric of g, extended to g̃ by
declaring it to be zero on the R factor:

R̃ic = Ric +
1

2
ε0
(
[φ, φ∗]−(φ+φ∗) trφ+〈ad, φ〉e0−(〈φ, φ〉+tr(φ2))e0⊗e0

)
. (4)

The formula of Proposition 1.10 simplifies if we assume an additional con-
dition, namely that the φs are normal, i.e. [φs, φ

∗
s] = 0. This condition is

automatic in the case of Einstein standard Riemannian Lie algebras, due to the
following:

Theorem 1.12 ([17, Theorem 4.10, Lemma 2.1]). Let g̃ = g⊕ a be a Rieman-
nian, standard, Einstein solvable Lie algebra. Then for any X ∈ a, (adX)∗ is
also a derivation commuting with ad a.

The importance of this result is that by [17, Proposition 2.5] (based on [17,
Lemma 2.1] and [2, Lemma 4.2]) the φs can then be assumed to be symmetric,
up to considering a different, isometric solvmanifold. In part, these arguments
apply to the pseudo-Riemannian case too (see Proposition 1.19 below). How-
ever, Theorem 1.12 itself does not extend to indefinite signatures of the metric
(nor even Lorentzian), as shown by the following:

Example 1.13. Consider the Lie algebra g̃ = R3 oD Span {e4}, with nonvan-
ishing brackets given by

[e1, e4] = −2e1, [e2, e4] = −5e2 + 6e3, [e3, e4] = e3.

The Lorentzian metric given by

e1 ⊗ e1 + e2 ⊗ e2 − e3 ⊗ e3 + e4 ⊗ e4

is Einstein with Einstein constant λ = −12; by construction, we have a standard
decomposition g̃ = Span {e1, e2, e3} ⊕⊥ Span {e4}.

We have

ad e4 =


2 0 0 0
0 5 0 0
0 −6 −1 0
0 0 0 0

 , (ad e4)∗ =


2 0 0 0
0 5 6 0
0 0 −1 0
0 0 0 0

 ;

thus, ad e4 is not normal; this implies in particular that (ad e4)∗ is not a deriva-
tion of g̃, though it is a derivation of the abelian Lie algebra Span {e1, e2, e3}.

Example 1.14. Take g̃ = (0, 2e12, e13, 3e14 + e23), with the metric

g1e
1 ⊗ e1 + g2e

2 ⊗ e2 + g3e
3 � e4.

This is an Einstein metric with λ = −12/g1. However we have

ad e1 =


0 0 0 0
0 −2 0 0
0 0 −1 0
0 0 0 −3

 , (ad e1)∗ =


0 0 0 0
0 −2 0 0
0 0 −3 0
0 0 0 −1

 .

Thus, ad e1 is normal, but (ad e1)∗ is not a derivation.
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In the first Example 1.13 the signature of the metric on g and g̃ is Lorentzian;
in the second Example 1.14 it varies according to g1, g2; this shows that the
pseudo-Riemannian version of Theorem 1.12 fails even in the indefinite signature
which is “closest” to Riemannian.

Nevertheless, if one imposes that the derivations adX are normal, a useful

consequence can be drawn. Let H be the metric dual of v 7→ tr ãd v, i.e.

〈H, v〉 = tr(ãd v), v ∈ g̃. (5)

Lemma 1.15. On a solvable Lie algebra with a standard decomposition,

H = −
∑
s

εs(trφs)es, adH =
∑
s

εs(trφs)φs. (6)

Proof. For v ∈ g, we have 〈H, v〉 = tr ad v = 0, since g is nilpotent. On the
other hand

〈H, es〉 = − trφs = tr ad es,

Hence H = −
∑
s εs(trφs)es. The expression of adH is then trivial.

As shown in [11, Remark 1.3], equation (3) can be rewritten as

r̃ic(v, w) =
1

2
〈d̃v[, d̃w[〉− 1

2
〈ãd v, ãdw〉+ 1

2

(
〈[v,H], w〉+ 〈[w,H], v〉

)
− 1

2
B(v, w).

(7)

Proposition 1.16. Let g̃ be a solvable Lie algebra with an Einstein metric and
a standard decomposition g̃ = g⊕⊥ a; assume that adX is normal for all X in
a. If b is a subspace of a containing H such that the restriction of the metric is
nondegenerate, then the subalgebra g⊕⊥ b ⊂ g⊕⊥ a is also Einstein.

Proof. We can choose the orthonormal basis {es} so that b = Span {e1, . . . , ek};
we allow k = 0 for the case in which both H and b are zero. Since H ∈ b, we
have trφs = −〈es, H〉 = 0 for s > k. Using the fact that the φs are normal, i.e.
[φs, φ

∗
s] = 0, the formulae of Proposition 1.10 simplify to

r̃ic(v, w) = ric(v, w)− 1

2

∑
r

εr
(
〈(φr + φ∗r)(v), w〉) trφr,

r̃ic(v, es) =
1

2
〈ad v, φs〉

and

r̃ic(es, er) = −1

2
〈φs, φr〉 −

1

2
tr(φs ◦ φr).

Thus, the Ricci tensor of g ⊕⊥ b coincides with the restriction of the Ricci of
g⊕⊥ a, which is a multiple of the metric; hence, g⊕⊥ b is Einstein.

Remark 1.17. In the unimodular case, i.e. for H = 0, we can choose b = {0}
in Proposition 1.16; this proves that when g̃ = g⊕⊥ a is a unimodular Einstein
solvable Lie algebra with a standard decomposition, then g is also Einstein. We
refer to Example 4.13 for such an example.

Remark 1.18. If the Lie algebra is not unimodular, 〈H,H〉 can be zero or not.
If it is zero, the subalgebra b must be taken of dimension at least two (compare
with Proposition 4.14). If if it nonzero, one obtains that g ⊕⊥ Span {H} is
Einstein, in analogy with the Riemannian case.
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The condition appearing in the statement of Theorem 1.12, namely that
each (adX)∗ is also a derivation commuting with ad a, is strictly stronger than
imposing that each adX is normal, as can be seen from Example 1.14. If this
stronger condition is imposed, it turns out that the adX can be assumed to be
symmetric.

Indeed, given a metric Lie algebra with a standard decomposition g̃ = g⊕⊥a,
for a given endomorphism f : g→ g, let f = fs + fa be the decomposition into
a self-adjoint and an anti-selfadjoint part. Define

χ : a→ gl(g), χ(X) = (adX)s.

In analogy to the Riemannian case (see [14, Section 1.8]), we have:

Proposition 1.19. Let g̃ be a pseudo-Riemannian Lie algebra with a standard
decomposition g̃ = g ⊕⊥ a, and suppose that, for every X in a, (adX)∗ is a
derivation of g commuting with ad a. Let g̃∗ be the solvable Lie algebra goχ a.
Then there is an isometry between the connected, simply connected Lie groups
with Lie algebras g̃ and g̃∗, with the corresponding left-invariant metrics, whose
differential at e is the identity of g⊕ a as a vector space.

Proof. The proof follows [14] and [2, Lemma 4.2].
Observe first that for every X in a, χ(X) = (adX)s is a derivation of g that

commutes with ad a, and therefore a derivation of g̃. In addition, the image of
χ is an abelian subalgebra and χ is a homomorphism. Therefore, the semidirect
product goχ a is well defined.

The simply connected Lie group G̃ with Lie algebra g̃ has the form G̃ =
(exp g)(exp a). Consider the group

H = Aut(G̃) n G̃,

with product law
(ψ, g̃)(ψ′, g̃′) = (ψψ′, g̃ψ(g̃′)).

The Lie algebra of H is h = Der(g̃) n g̃, with Lie bracket

[(η, Y ), (η′, Y ′)] = ([η, η′], η(Y ′)− η′(Y ) + [Y, Y ′]).

We let H act on G̃ by
ρ((ψ, g̃), g̃′) = g̃ψ(g̃′).

For X in a, write adX = (adX)a + (adX)s, where χ(X) = (adX)s is the
self-adjoint part of adX; relative to the standard decomposition g̃ = g⊕ a, we
have

(adX)a =

(
∗ 0
0 0

)
. (8)

Define

f : g̃→ Der(g̃)× g̃, f(v +X) = (−(adX)a, v +X), v ∈ g, X ∈ a.

10



The image of f is a subalgebra of h isomorphic to g oφ a: for v, v′ in g, X,X ′

in a, we have

[f(v), f(v′)] = f([v, v′])

[f(X), f(v)] = [(−(adX)a, X), (0, v)] = (0,−(adX)a(v) + [X, v])

= (0, (adX)s(v)) = f(χ(X)(v))

[f(X), f(X ′)] = [(−(adX)a, X),−(adX ′)a, X ′)]

= ([(adX)a, (adX ′)a], [X,X ′]) = 0,

where we have used (8) and the fact that

0 = [adX, adX ′]a = [(adX)a, (adX ′)a] + [(adX)s, (adX ′)s].

Call G∗ the connected subgroup of H with Lie algebra g̃∗ = f(g̃). Since
(adX)a is anti-selfadjoint and the metric is left-invariant, the action of G∗ on
G̃ preserves the metric.

Now observe that for v in g we have ρ(exp f(v), g̃) = (exp v)g̃, and for X in
a we get

ρ
(
exp f(X), g̃

)
= ρ
(
exp(−(adX)a, X), g̃

)
= ρ
(
(exp(− adX)a, expX), g̃

)
= expX exp(− adX)a(g̃),

where we use the fact that ((adX)a, 0) and (0, X) commute thanks to (8).
We claim that the action of G∗ is transitive. Since G̃ is connected, it suffices

to prove that all orbits are open. For fixed g̃ ∈ G̃, we must show the surjectivity
of the map

dρe,g̃ : TeG
∗ × {0} → Tg̃G̃.

It is clear that
dρe,g̃(f(v), 0) = Rg̃∗v, v ∈ g. (9)

In addition,

dρe,g̃(f(X), 0) = Rg̃∗

(
X +

d

dt
|t=0 exp(− ad tX)a(g̃)g̃−1

)
. (10)

We can write the general element of G̃ as g̃ = gh, with g in exp g and h in exp a;
then, using (8),

exp(− ad tX)a(g̃)g̃−1 = exp(− ad tX)a(g)hh−1g−1 = exp(− ad tX)a(g)g−1 ∈ G.

Summing up, dρe,g̃(f(X), 0) is in Rg̃∗(X+g); together with (9), this shows that
orbits are open, i.e. the action is homogeneous. Thus, we obtain a covering
map G∗ → G̃; since G̃ is simply connected, this is a diffeomorphism, inducing a
left-invariant metric on G∗.

Substituting g̃ = e in (9) and (10) shows that the differential at e of the
diffeomorphism G∗ → G̃ is the identity; therefore the pull-back metric on G∗ is
the same as the left-invariant metric determined by the metric on g̃∗ ∼= g̃.

Lie algebras of the form g oχ a as obtained applying Proposition 1.19 will
be studied in Section 3. Notice however that not all Einstein Lie algebras
with a standard decomposition satisfy the hypotheses of Proposition 1.19 (see
Examples 1.13 and 1.14).
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Example 1.20. Take the Heisenberg Lie algebra h = (0, 0, e12) with a pseudo-
Riemannian metric e1 ⊗ e1 + e2 ⊗ e2 + g3e

3 ⊗ e3. Then

Ric =
g3
2

−1 0 0
0 −1 0
0 0 1

 ,

and for all h, k

φ =

 1 h+ k 0
h− k 1 0

0 0 2


is a derivation, whose symmetric and anti-symmetric parts are

φa =

 0 k 0
−k 0 0
0 0 0

 , φs =

1 h 0
h 1 0
0 0 2

 .

For h = 0, φ is normal and φs is again a derivation, so hoφ R and hoφs R are
isometric by Proposition 1.19.

Now assume h = 0 and, for definiteness, k = 1. Both h oφ R and h oφs R
carry the Einstein metrics

e1 ⊗ e1 + e2 ⊗ e2 ± (e3 ⊗ e3 +
1

4
e0 ⊗ e0).

Recall that a real solvable Lie algebra g is completely solvable (or split solvable)
if and only if the eigenvalues of all adX, X ∈ g, are in R (see [22, Corollary
1.30]). Hence we observe that hoφR and hoφsR are not isomorphic Lie algebras,
since only the latter is completely solvable, because the eigenvalues of φs are in
R while the eigenvalues of φ are complex.

2 Nilsolitons

A nilpotent Lie algebra g with a fixed pseudo-Riemannian metric g is a nilsoliton
if

Ric = λId +D, λ ∈ R, D ∈ Der g.

This equation forces D to be self-adjoint, but not necessarily semisimple.
Recall that gl(n,R) has a natural nondegenerate scalar product defined by

〈X,Y 〉tr = tr(X ◦ Y );

this restricts to a scalar product on Der g, which may be degenerate.
Recall from [29] that a Nikolayevsky derivation is a semisimple derivation N

such that
trX = tr (N ◦X), X ∈ Der g. (11)

It is customary to refer to N as “the” Nikolayevsky derivation (or “the” pre-
Einstein derivation), because it is unique up to Lie algebra automorphisms.

Theorem 2.1. Let g be a nilsoliton metric on a nilpotent Lie algebra g. Then
either

12



1. λ = 0 and D is a nilpotent derivation in the null space of Der g; or

2. λ 6= 0 and setting D̃ = − 1
λD, we have

tr(X) = tr(D̃ ◦X), X ∈ Der g;

relative to the Jordan decomposition D̃ = D̃s + D̃n, D̃s is a Nikolayevsky
derivation and D̃n a nilpotent derivation in the null space of Der g.

In either case, the eigenvalues of D are rational.

Proof. By [11, Theorem 3.8], we have

〈Ric, X〉tr =
1

4
〈〈Xd, d〉〉,

where 〈〈, 〉〉 is the indefinite scalar product on Λ2Rn ⊗ Rn induced by g.
In particular, for any X ∈ Der g we have 〈Ric, X〉tr = 0. Imposing the

nilsoliton condition we find

0 = 〈λId +D,X〉tr = λ tr(X) + tr(D ◦X).

So if λ = 0 we see that D is in the null space of Der g. As observed in [29,
Proof of Theorem 1], this space consists of nilpotent derivations: indeed, take
the Levi decomposition Der g = snr, with s semisimple and r the radical. Since
Der g is algebraic, by [7, Theorem 4] we can write r = an n, where a consists of
semisimple derivations, n of nilpotent derivations, and [s, a] = 0; in addition, n
is the nilradical of Der g and r is algebraic.

Since 〈, 〉tr is ad-invariant, its null space is an ideal; by Cartan’s criterion, it
is also solvable, so it is contained in r.

It is clear that 〈, 〉tr is nondegenerate on a. The restriction to r ⊗ n is zero
by Lie’s theorem. In order to prove that the null space is n, it remains to show
that the restriction to s⊗ n is also zero. For k > 0, denote by V k the space of
elements v in g such that f1 · · · fk(v) = 0 for f1, . . . , fk ∈ n, and let V 0 = {0}.
Since each f ∈ n maps V k to V k−1 and each g ∈ s preserves the V k, we see
that 〈f, g〉tr = 0.

If λ 6= 0, it is clear that D̃ satisfies (11). Therefore, if N ∈ r is a Nikolayevsky
derivation, D̃−N is in the null space of Der g; in particular, D̃ is in r. Writing
the Jordan decomposition D̃ = D̃s + D̃n in the algebraic Lie algebra r, one
sees that D̃n must belong to n, so D̃s is a semisimple derivation satisfying (11).
Thus, the eigenvalues of D̃ are also eigenvalues as N , hence rational by [29].

Corollary 2.2. On a nilsoliton the following equations hold:

trD2 = −λ trD,

tr Ric2 = λ tr Ric .

Proof. The first equation was proved in the proof of Theorem 2.1, and for the
second we have:

tr Ric2 = 〈Ric,Ric〉tr = 〈Ric, λId +D〉tr = λ tr Ric +〈Ric, D〉tr = λ tr Ric .

Thus, the indefinite nilsoliton equation corresponds to four different situa-
tions:

13



(Nil1) λ = 0, D = 0. This is the Ricci-flat case, examples of which exist in
abundance (see e.g. [9]).

(Nil2) λ = 0, D 6= 0. In this case, notice that D is not semisimple, and therefore
not a multiple of a Nikolayevsky derivation. Indeed, Theorem 2.1 forces
D to be nilpotent.

(Nil3) λ 6= 0, D = 0. This is the Einstein case, studied e.g. in [11].

(Nil4) λ 6= 0, D 6= 0. This is the case that resembles most the Riemannian
situation. In this case, if D is semisimple, it is a multiple of a Nikolayevsky
derivation. However, since we do not assume the metric to be positive
definite, there is no general reason to assume that D is semisimple.

Remark 2.3. An indefinite nilsoliton such that trD 6= 0 must belong to (Nil4).
In fact, if trD 6= 0 then D is not a nilpotent derivation, hence the nilsoliton must
correspond to the second case in Theorem 2.1, i.e. with λ 6= 0. In conclusion,
D 6= 0 and λ 6= 0 correspond to the case (Nil4).

As an example of the condition (Nil2), we have the following:

Example 2.4. Take g = (0, 0, e12, e13), with g = g1e
1⊗e1+g2e

2�e4+g3e
3⊗e3.

Then

ric =
1

2g1

(
g22
g3
− g3

)
e2 ⊗ e2 and Ric =

1

2g1

(
g2
g3
− g3
g2

)
e2 ⊗ e4,

which is a derivation.
This is a solution with λ = 0.

An example of the (Nil4) case is the Heisenberg Lie algebra [30] (see also
Example 1.20); in that case, the derivation D is semisimple.

It is natural to ask whether in case (Nil4) the derivation D is necessarily
semisimple. This turns out to be false, as shown in the following example.

Example 2.5. Consider the 7-dimensional Lie algebra

257H : (0, 0, 0, 0, e12, e34, e13 + e25),

where the label 257H refers to the classification of [16]. If we take the metric

g25
g7
e1 ⊗ e1 +

2g7
3g5

e2 ⊗ e2 + e3 � e4 + g5e
5 ⊗ e5 − 3

2
e6 ⊗ e6 + g7e

7 ⊗ e7,

we obtain

Ric =



− 1
3 0 0 0 0 0 0

0 − 2
3 0 0 0 0 0

0 0 − 1
3 0 0 0 0

0 0 − 1
2
g25
g27
− 1

3 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 1

3 0
0 0 0 0 0 0 1

3


= −Id +D,

where D is a non-semisimple derivation.
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Remark 2.6. The Lie algebra of Example 2.4 admits nilsoliton metrics of types (Nil1)
(see [9]), (Nil2) (the one in the example) and (Nil4) (see [25]).

The Lie algebra of Example 2.5 admits a nilsoliton metric of type (Nil1)
(see [9]) and a nilsoliton metric of type (Nil4), namely the indefinite one appear-
ing in the examples. Note that it cannot be a Riemannian nilsoliton (see [15]).

Kondo and Tamaru [23] constructed 6 different nilsoliton Lorentzian metrics
on the same Lie algebra (see also Example 4.20).

This shows that the uniqueness of nilsoliton metrics up to scaling and auto-
morphisms as proved in [24] does not extend beyond the Riemannian setting.

The situation of Example 2.5 turns out to be quite rare. Indeed, few Lie
algebras admit a nonsemisimple derivation D satisfying (11), i.e. trD◦X = trX
for all derivations X. This includes all Lie algebras on which all derivations have
zero trace, where every inner derivation D = ad v satisfies (11); in dimension
≤ 7, this amounts to nine Lie algebras and two one-parameter families (see
[11, Table 1]). Beside these, there are exactly eight nilpotent Lie algebras of
dimension ≤ 7 with a nonsemisimple derivation satisfying (11):

Proposition 2.7. Let g be a nilpotent Lie algebra of dimension ≤ 7 such that
not all derivations are trace-free. Then g admits a non-semisimple derivation
D such that trD ◦X = trX for all derivations X if and only if g is isomorphic
to one of the following:

12357B : (0, 0, 0, e12, e14 + e23, e15 − e34, e16 + e23 − e35)

12357B1 : (0, 0, 0, e12, e14 + e23, e15 − e34, e16 − e23 − e35)

12457B : (0, 0, e12, e13, 0, e14 + e25, e16 + e35 + e25)

12457K : (0, 0, e12, e13, e23, e24 + e15, e14 + e16 + e34)

13457G : (0, 0, e12, e13, e14, e23, e16 + e25 − e34 + e24)

1357L : (0, 0, e12, 0, e13 + e24, e14,
1

2
e34 +

1

2
e26 + e15 + e23)

147D : (0, 0, 0, e12, e23,−e13, e26 + e16 + e15 − 2e34)

257H : (0, 0, 0, 0, e12, e34, e13 + e25),

where labels refer to the classification of [16].

Proof. Arguing as in Theorem 2.1, we see that the Jordan decomposition of
a derivation D satisfying (11) is D = Ds + Dn, where Ds is a Nikolayevsky
derivation and Dn is in the null space n of 〈, 〉tr. In other words, Dn is in
Z(Ds) ∩ n, where Z(Ds) denotes the centralizer of Ds.

Nilpotent Lie algebras of dimension ≤ 7 are classified in [27, 16]. In order
to compute the Nikolayevsky derivation N and the space n, we used the ad-hoc
computer program [8]. The computation is straightforward for the Lie algebras
that do not depend on a parameter; some extra work is required to handle the
one-parameter families, since the space Der g may depend on the parameter.

We find that for each Lie algebra listed in the statement the centralizer of
N intersects n nontrivially, giving rise to nonsemisimple derivations D satisfy-
ing (11). Notice that N is diagonal relative to the basis in which the Lie algebra
is given. We obtain Table 1.

For all other cases the centralizer of N intersects n trivially. Since the Niko-
layevsky derivation is unique up to automorphism, this shows that every D
satisfying (11) is semisimple.
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Table 1: Lie algebras with Z(N) ∩ n nontrivial

g N Z(N) ∩ n

12357B
(0, 1, 0, 1, 1, 1, 1)

e2 ⊗ e7, e2 ⊗ e4 + e4 ⊗ e5 + e5 ⊗ e6 + e6 ⊗ e7,
12357B1 e2 ⊗ e6 + e4 ⊗ e7, e2 ⊗ e5 + e4 ⊗ e6 + e5 ⊗ e7

12457B (0, 1, 1, 1, 0, 1, 1)
e1 ⊗ e5 + e2 ⊗ (2e4 + e6) + e3 ⊗ e6, e2 ⊗ e6 + e3 ⊗ e7,

−e1 ⊗ e5 − e2 ⊗ (e4 + e6) + e4 ⊗ e7, e2 ⊗ e7,
e2 ⊗ e3 + e3 ⊗ e4 + e4 ⊗ e6 + e6 ⊗ e7

12457K (1/2, 0, 1/2, 1, 1/2, 1, 3/2) e1 ⊗ e5,−e1 ⊗ e3 + e3 ⊗ e5 + e4 ⊗ e6

13457G (0, 2/3, 2/3, 2/3, 2/3, 4/3, 4/3)
e2 ⊗ e5, e2 ⊗ e4 + e3 ⊗ e5 + 2e6 ⊗ e7,

e2 ⊗ (2e3 − e4) + e3 ⊗ (2e4 − e5) + 2e4 ⊗ e5
1357L 1/17(5, 10, 15, 10, 20, 15, 25) e2 ⊗ e4 + e3 ⊗ e6
147D (1/2, 1/2, 1/2, 1, 1, 1, 3/2) e1 ⊗ e2 − e6 ⊗ e5
257H (2/3, 1/3, 2/3, 2/3, 1, 4/3, 4/3) e3 ⊗ e4

We do not know whether the Lie algebras listed in Proposition 2.7 (except
257H) admit a nilsoliton metric of type (Nil4) with D nonsemisimple. However,
note that the Lie algebra 257H is nice, i.e. it admits a basis {ei} with dual basis
{ei} such that each [ei, ej ], eiy dej is a multiple of a basis element. Comparing
with the classification of [10], we see that 257H is the only nice Lie algebra in
the list of Proposition 2.7. We obtain:

Corollary 2.8. The Lie algebra 257H (or 731:8 in the notation of [10]) is the
only nice nilpotent Lie algebra of dimension ≤ 7 admitting a pseudo-Riemannian
nilsoliton metric of type (Nil4) with nonsemisimple derivation D.

We are not aware of any example of a nilsoliton of type (Nil4) where the
derivation D is nilpotent.

3 From Einstein solvmanifolds to nilsolitons

In this section we give a structure theorem for a class of solvable pseudo-
Riemannian Einstein Lie algebras in the spirit of [17, 35]. Since pseudo-Rie-
mannian geometry has much more flexibility than Riemannian geometry in this
respect (see the counterexamples of Sections 1 and 2), in order to obtain our
result we need to restrict the class of metrics considerably. Indeed, we will
consider a pseudo-Riemannian analogue of Iwasawa-type Lie algebras.

Given a solvable Lie algebra g̃, we will say that a standard decomposition
g̃ = g⊕⊥ a is pseudo-Iwasawa if

adX = (adX)∗, X ∈ a. (12)

Note that the self-adjoint derivation adX need not be semisimple, even if the
metric is Einstein; see Remark 4.9.

Example 3.1. Consider the solvable Lie algebra g̃ = (0, e12,−e13) with the
metric given by

e1 ⊗ e1 + g23e
2 � e3.

This metric is Einstein, more precisely Ricci-flat, and we have a standard de-
composition

g̃ = g⊕⊥ a, g = [g̃, g̃] = Span {e2, e3} , a = Span {e1} ,
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which is pseudo-Iwasawa since ad e1 is self-adjoint. This Lie algebra is unimod-
ular, so from equation (5) we have that H = 0.

The following examples show that not all standard decompositions are pseudo-
Iwasawa, even if the Einstein condition is satisfied.

Example 3.2. Consider the solvable Lie algebra g = (0,−e12+e13,−e12, 0, 0, e15)
with neutral metric

e1 � e4 − g2e2 ⊗ e2 + g2e
2 � e3 + g4e

5 � e6.

It is easy to check that this is a Ricci-flat standard metric for any g2, g4, we
have

ad e1 =


0 0 0 0 0 0
0 1 0 0 0 0
0 1 −1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 −1 0

 , (ad e1)∗ =


0 0 0 0 0 0
0 −1 0 0 0 0
0 −1 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 −1 0

 ,

contradicting (12).
Since the assumptions of Proposition 1.19 are satisfied, g is isometric to a

different Lie algebra ĝ admitting a pseudo-Iwasawa decomposition: explicitly,
since (ad e1)s = ad e1 + (ad e1)∗ = −2e5 ⊗ e6, ĝ is given by

(0, 0, 0, 0, 0, 2e16).

Notice however that there exist Einstein solvable Lie algebras with a standard
decomposition for which it is not possible to apply Proposition 1.19; see Exam-
ples 1.14 or 3.12.

Example 3.3. Consider the 9-dimensional solvable lie algebra g̃ of Example 1.2,
with the diagonal metric

∑
gie

i ⊗ ei. A standard decomposition on g̃ is deter-
mined by the choice of an abelian subalgebra Span {e9} ⊂ a ⊂ Span {e1, e2, e9}.
It is easy to see that adX is only symmetric for X a multiple of e9; there-
fore, there is only one pseudo-Iwasawa decomposition, corresponding to a =
Span {e9}.

Remark 3.4. Example 3.3 shows that the pseudo-Iwasawa condition depends
both on the metric and the standard decomposition.

Example 3.5. Consider the solvable Lie algebra g̃ = (0, 0, e13, e24) with the
metric given by

e1 ⊗ e1 − e2 ⊗ e2 + e3 ⊗ e3 + e4 ⊗ e4.

We have a pseudo-Iwasawa decomposition

g̃ = [g̃, g̃]⊕⊥ a, a = Span {e1, e2} ,

since ad e1 = (ad e1)∗ and ad e2 = (ad e2)∗. Note that tr ad e1 = −1 = tr ad e2.
We have H = −e1 + e2 and in this case 〈H,H〉 = 0. Note, however, that this
metric is not Einstein.
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Remark 3.6. Whilst the above Example 3.5 show that 〈H,H〉 can be zero in
a pseudo-Iwasawa Lie algebra, we will be mainly interested in the case where
〈H,H〉 6= 0. This condition is needed in order to apply Proposition 1.16 and
obtain a correspondence between a category of nilsolitons and a category of
solvable Einstein Lie algebras. It asserts that tr adH is nonzero; in particular,
this implies that H is not in the center and g̃ is not unimodular.

In fact, we will see in Corollary 3.13 that Einstein pseudo-Iwasawa Lie alge-
bras with nonzero scalar curvature have either H = 0 or 〈H,H〉 6= 0.

In the sequel, we will use the following:

Lemma 3.7. Let V be a vector space with a (possibly indefinite) scalar product
〈, 〉; let f, g : V → V be linear maps. Then

〈f, g〉 = 〈f, gs − ga〉tr,

with gs and ga denoting the self-adjoint and anti-self-adjoint part of g.

Proof. Let e1, . . . , en be an orthonormal basis, i.e. 〈ei, ej〉 = εiδij with εi = ±1.
Then

〈f, g〉 =
∑
i

εi〈f(ei), g(ei)〉 =
∑
i

εi〈g∗(f(ei)), ei〉

=
∑
i

ei(g∗(f(ei))) = tr(gs − ga) ◦ f.

We use Lemma 3.7 to recover the expression of the Ricci curvature on a
solvable Lie algebra with a pseudo-Iwasawa decomposition. Fix an orthogonal
basis e1, . . . , ek of a and define the derivations φs = − ad es as in Section 1. We
have:

Lemma 3.8. On a metric Lie algebra endowed with a pseudo-Iwasawa decom-
position g̃ = g ⊕⊥ a, the Ricci tensor of the metric 〈, 〉 on g̃ and its restriction
to g are related by:

r̃ic(v, w) = ric(v, w)− 〈[H, v], w〉, v, w ∈ g

r̃ic(v,X) = 0, v ∈ g, X ∈ a

r̃ic(X,Y ) = −〈adX, adY 〉tr X,Y ∈ a.

Proof. We use Proposition 1.10 to obtain all the above formulas.
For v, w ∈ g and using the pseudo-Iwasawa condition φ∗s = φs, we get:

r̃ic(v, w) = ric(v, w) +
∑
s

1

2
εs〈[φs, φ∗s](v), w〉 − 1

2
εs〈(φs + φ∗s)(v), w〉 trφs

= ric(v, w)−
∑
s

εs〈φs(v), w〉 trφs,

where
∑
s εs(trφs)φs = adH by (6) of Lemma 1.15.

The pseudo-Iwasawa condition allows us to use Lemma 3.7; we have that for
any v ∈ g, es ∈ a:

r̃ic(v, es) =
1

2
〈ad v, φs〉 =

1

2
tr ad v ◦ φs;
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this is zero because φs is a derivation, hence it preserves each term of the lower
central series g0 = g, gi+1 = [g, gi], whilst ad v maps gk to gk+1. Thus, relative
to a basis adapted to the lower central series, ad v◦φs is strictly upper triangular,
and so it has zero trace.

Finally, using again the pseudo-Iwasawa condition and Lemma 3.7, we com-
pute for any es, er in a:

r̃ic(es, er) = −1

2
〈φs, φr〉 −

1

2
tr(φs ◦ φr) = − tr(φs ◦ φr).

It turns out that in the pseudo-Iwasawa context the Einstein condition is
strictly related to the existence of a nilsoliton. In particular we have:

Theorem 3.9. Let g̃ = g ⊕⊥ a be a pseudo-Iwasawa decomposition. Then the
Einstein equation R̃ic = λId on g̃ is satisfied if and only if

1. g with the induced metric satisfies the nilsoliton equation

Ric = λId +D, D = adH.

2. 〈adX, adY 〉tr = −λ〈X,Y 〉 for all X,Y ∈ a.

In this case, then
trD2 = −λ trD.

Proof. By Lemma 3.8, the Einstein condition is equivalent to

λ〈v, w〉 = ric(v, w)− 〈[H, v], w〉 = 〈Ric(v)− ad(H)v, w〉, v, w ∈ g,

λ〈X,Y 〉 = −〈adX, adY 〉tr, X, Y ∈ a.

Substituting D = adH in the first equation gives λv = Ric v −Dv, i.e. Ric =
λId +D.

The last claim follows from Corollary 2.2.

Remark 3.10. In the pseudo-Iwasawa Einstein setting we can prove explic-
itly that trD2 = −λ trD. Using equation (5), part 1 of Theorem 3.9 and
Lemma 1.15, we have

trD = tr adH = 〈H,H〉 =
∑

εs(trφs)
2.

By the expression of adH from Lemma 1.15 we have:

trD2 = tr(adH)2 =
∑
r,s

εrεs(trφs)(trφr)(trφs ◦ φr)

and by part 2 of Theorem 3.9 we get

trD2 = −
∑
r,s

εs(trφs)(trφr)δr,sλ = −
∑
s

εs(trφs)
2λ = −λ tr adH = −λ trD.

Corollary 3.11. Let g̃ be an Einstein Lie algebra of nonzero scalar curvature
with a pseudo-Iwasawa decomposition g⊕⊥ a. Then g is the nilradical of g̃.
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Proof. By construction g is contained in the nilradical; we must prove the op-
posite inclusion.

Given X ∈ a such that adX is nilpotent, we have

0 = tr(adX adY ) = −λ〈X,Y 〉, Y ∈ a.

Thus, X is necessarily zero, and the nilradical coincides with g.

As a consequence of Theorem 1.12, in the Riemannian case, standard Ein-
stein Lie algebras are isometric to solvable Lie algebras of Iwasawa type; in
particular, the derived Lie algebra g is always a nilsoliton ([17]). This does not
apply in the pseudo-Riemannian case, as shown by the following example:

Example 3.12. Take g̃ = (0, 2e12, e13, 3e14 + e23), with the Einstein metric of
Example 1.14. Since ad e1 is not symmetric, this Lie algebra does not admit a
pseudo-Iwasawa decomposition, and Theorem 3.9 does not apply. Indeed, by
Proposition 1.10 we have

Ric = −12

g1
Id− 1

2g1
(ad e1 + (ad e1)∗),

so g is not a nilsoliton; rather, it verifies a more general equation of the form

Ric = λId +D +D∗, D ∈ Der g; (13)

in the Riemannian setting, a metric satisfying (13) is known as a semialgebraic
Ricci soliton ([21]). We expect that a systematic study of Einstein solvmanifolds
which are not of pseudo-Iwasawa type would require a study of solutions of (13).

Another consequence of Theorem 3.9 is the following:

Corollary 3.13. Given a pseudo-Iwasawa solvable Lie algebra g̃ = go a satis-
fying R̃ic = λId for some nonzero λ, then either:

1. g̃ is unimodular, H = 0 and g is a nilsoliton of type (Nil3), with Ric = λId;
or

2. g̃ is not unimodular, 〈H,H〉 6= 0, g ⊕ Span {H} is also Einstein with a
pseudo-Iwasawa decomposition, and g is a nilsoliton of type (Nil4), with
Ric = λId +D and trD 6= 0.

Proof. We first show that either H = 0 or 〈H,H〉 6= 0. We have that λ−1D sat-
isfies (11), and by Theorem 2.1 the eigenvalues of D are rational. Corollary 2.2
implies that

tr(D2) = −λ tr(D);

thus trD vanishes if and only if all its eigenvalues are zero if and only if N = 0.
In other words, 〈H,H〉 = 0 is equivalent to the vanishing of the Nikolayevsky
derivation of g. This implies that all derivations are traceless; in particular, g
is unimodular, so H = 0. By Theorem 3.9, g is Einstein with Ric = λId.

If 〈H,H〉 6= 0, Proposition 1.16 implies that go Span {H} is Einstein; since
adH is self-adjoint, the decomposition is pseudo-Iwasawa. In addition, Ric =
λId+D on g, with D = adH, and by construction trD = 〈H,H〉 is nonzero.
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Corollary 3.14. If g̃ is Ricci-flat and it has a pseudo-Iwasawa decomposition
g̃ = g⊕⊥ a, then 〈, 〉tr is zero on a and either:

1. g̃ is unimodular and g is a nilsoliton of type (Nil1);

2. g̃ is nonunimodular, adH = 0 and g is a nilsoliton of type (Nil1);

3. g̃ is nonunimodular, adH 6= 0 and g is a nilsoliton of type (Nil2).

Moreover, if g̃ is nonunimodular then a contains a two-dimensional nondegen-
erate subspace Span {H,X}, with tr adX 6= 0 and tr(adX)2 = 0; the restriction
to go Span {H,X} is also Ricci-flat.

Proof. By Theorem 3.9 〈, 〉tr is zero on a and Ric = D = adH, so g is a nilsoliton
of type (Nil1) or (Nil2) according to whether adH is zero or not.

If H is nonzero, g̃ is nonunimodular. The derivation D is traceless by The-
orem 2.1, so a must contain some other X independent of H with tr adX 6= 0.
By definition of H we have

〈H,H〉 = 0, tr adX = 〈H,X〉 6= 0,

so Span {H,X} is nondegenerate. The subalgebra g o Span {H,X} is again
Ricci-flat by Theorem 3.9.

In Corollary 3.14, if a has dimension one, g̃ is unimodular and only the
geometry (Nil1) can occur. When g̃ is nonunimodular, both (Nil1) and (Nil2)
can occur, as evident from the Examples 4.17 and 4.19.

Example 3.15. The nilsoliton of Example 2.4 admits only one self-adjoint
derivation independent from D = e2⊗e4, namely X = e2⊗e2+e3⊗e3+e4⊗e4.
Since 〈X,X〉tr 6= 0, this nilsoliton cannot be obtained as a restriction of a Ricci-
flat pseudo-Iwasawa solvable Lie algebra.

4 From nilsolitons to Einstein solvmanifolds

In this section we focus on nilsolitons and describe how we can extend them to
Einstein solvable Lie algebras of the form g ⊕⊥ a. The construction is already
known for the case with a of dimension one (see [36, 38]), but we will work more
generally, and recover the one-dimensional results as a special case.

As in the Riemannian case (see [17, p. 313]), nilsolitons of type (Nil3)
and (Nil4) can be used to obtain Einstein metrics in higher dimensions:

Theorem 4.1. Let g be a nilsoliton, Ric = λId + D, λ 6= 0. Let a ⊂ Der g be
a subalgebra of self-adjoint derivations containing D, and assume that 〈, 〉tr is
nondegenerate on a. Then the metric 〈, 〉g− 1

λ 〈, 〉tr on g̃ = goa is Einstein with

R̃ic = λId and the decomposition g̃ = g⊕⊥ a is pseudo-Iwasawa.

Proof. The Lie algebra a is necessarily abelian, as the commutator of two self-
adjoint maps is skew-self adjoint; therefore, g̃ = g⊕⊥ a is a standard decompo-
sition.

By Lemma 3.7, the second condition of Theorem 3.9 reads 〈φs, φr〉tr =
−λ〈φs, φr〉; the statement follows.
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We will call the solvable Lie algebra constructed in Theorem 4.1 a pseudo-
Iwasawa extension of the nilsoliton g.

Remark 4.2. Theorem 4.1 requires nondegeneracy of 〈, 〉tr restricted to a. If ad a
consists of nilpotent elements, then 〈, 〉tr is zero on a by Engel’s theorem.

In particular, the Lie algebra g̃ is only nilpotent in the trivial case where g
is Einstein and a = 0.

Example 4.3. Consider the Lie algebra g = (0, 0, 0, e12, e13) that admits the
nilsoliton metric

〈, 〉 = e1 ⊗ e1 + e2 � e3 − 1

2
e4 � e5

satisfying Ric = Id − D where D = diag
(
1
2 ,

3
4 ,

3
4 ,

5
4 ,

5
4

)
is the Nikolayevsky

derivation of g. The generic symmetric derivation is
λ4 − λ1 0 0 0 0

0 λ1 λ2 0 0
0 λ3 λ1 0 0
0 0 0 λ4 λ2
0 0 0 λ3 λ4

 .

In order to find a nondegenerate Lie algebra of symmetric derivations, we can
for instance set λ2 = λ3, and write

a = Span {e6, e7, e8} , ad e6 = −e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3,
ad e7 = e1 ⊗ e1 + e4 ⊗ e4 + e5 ⊗ e5, ad e8 = e2 ⊗ e3 + e3 ⊗ e2 + e4 ⊗ e5 + e5 ⊗ e4.

Then g̃ = go a takes the form

(−e16 + e17, e26 + e38, e36 + e28, e12 + e47 + e58, e13 + e57 + e48, 0, 0, 0),

with the Einstein metric

e1 ⊗ e1 + e2 � e3 − 1

2
e4 � e5 − 3e6 ⊗ e6 + e6 � e7 − 3e7 ⊗ e7 − 4e8 ⊗ e8.

Inside go a, one finds the Einstein Lie algebra with a pseudo-Iwasawa decom-
position

Span

{
e1, e2, e3, e4, e5,

3

4
e6 +

5

4
e7

}
∼= go Span {D} ,

or g⊕Span {H} in the notation of Proposition 1.16. Notice that any nondegen-
erate ĝ with

go Span {D} ⊂ ĝ ⊂ go a

is again an Einstein Lie algebra with a pseudo-Iwasawa decomposition.

Example 4.4. In the construction of Theorem 4.1, the choice of a is not unique.
For instance in Example 4.3 we could for instance have chosen

ad e8 = e2 ⊗ e3 − e3 ⊗ e2 + e4 ⊗ e5 − e5 ⊗ e4.

The resulting Lie algebras g̃ are not isomorphic, as only one is completely solv-
able.
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However, a is not allowed to contain the self-adjoint nilpotent derivation
D̂ = e2 ⊗ e3 + e4 ⊗ e5, because 〈D̂, φ〉tr = 0 for any self-adjoint derivation
φ commuting with D̂. Indeed, in this case we can choose for a any space of
self-adjoint derivations which contains D but not D̂.

Thus, among the possible choices for a there is a minimal subalgebra, namely
Span {D}, but not a maximal one.

Example 4.5. Consider the 8-dimensional nice Lie algebra:

(0, 0, 0, e12, e13, e24, e15 + e23, e26 + e14)

which admits the nilsoliton metric

〈, 〉 =
1

10
3

√
3

2
e1 ⊗ e1 +

1

10
3

√(
3

2

)2

e2 ⊗ e2 + g3e
3 ⊗ e3 +

9

100
e4 ⊗ e4

− g3 3

√
3

2
e5 ⊗ e5 − 9

125
3

√(
3

2

)2

e6 ⊗ e6 + g3
3

√(
3

2

)2

e7 ⊗ e7 +
27

250
3

√
3

2
e8 ⊗ e8,

satisfying
Ric = Id−D D = e3 ⊗ e3 + e5 ⊗ e5 + e7 ⊗ e7.

Since trD2 = trD = 3 6= 0, we can apply Theorem 4.1 to obtain an Einstein
metric on the solvable Lie algebra g̃ = g oD Span {e9}. This Lie algebra was
also considered in Examples 1.2 and 3.3.

Notice that in this case all symmetric derivations are multiples of D.

Corollary 4.6. Let g̃ = g ⊕⊥ a be an Einstein solvable Lie algebra of pseudo-
Iwasawa type of nonzero scalar curvature. Up to isometric isomorphisms, g̃ is
a pseudo-Iwasawa extension of g.

Proof. The map ad: a→ Der g is injective by Theorem 3.9, as we are assuming
λ 6= 0. This effectively identifies a with an algebra of symmetric derivations.
The metric is determined by Theorem 3.9.

Recall from Corollary 3.13 that a nilsoliton of type (Nil4) with trD = 0
cannot be extended to an Einstein pseudo-Iwasawa Lie algebra. If we impose
trD 6= 0 and specialize to the case with a of dimension one, we recover the
result of [36, Theorem 4.7]:

Corollary 4.7. Let g be a nilpotent Lie algebra with a metric 〈, 〉 satisfying
Ric = λId +D, with D a derivation with nonzero trace. Setting

g̃ = goD Span {e0} , 〈̃, 〉 = 〈, 〉+ (trD)e0 ⊗ e0

defines an Einstein pseudo-Iwasawa extension of g with R̃ic = λId.

Proof. By Theorem 2.1 λ is nonzero, so g is indeed a nilsoliton of type (Nil4). By
Corollary 2.2 we have 〈D,D〉tr = −λ trD 6= 0, and D = Ric−λId is self-adjoint.
Applying Theorem 4.1 with ad e0 = D we obtain the Einstein metric

〈, 〉 − 1

λ
〈D,D〉tre0 ⊗ e0 = 〈, 〉+ (trD)e0 ⊗ e0.
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Remark 4.8. In Corollary 4.7, trD and λ have opposite signs; indeed trD is
nonzero, so the Nikolayevsky derivationN is nonzero; therefore, by Theorem 2.1,
trD2 = trN2 > 0 and Corollary 2.2 gives trD = − trD2/λ. Therefore, if the
nilsoliton metric has signature (p, q), the Einstein metric on g̃ has signature
(p + 1, q) when the nilsoliton is shrinking (λ < 0) and (p, q + 1) when it is
expanding (λ > 0). We will see in Example 4.20 that for a fixed Lie algebra and
signature we can have both expanding and shrinking nilsolitons.

Remark 4.9. Unlike in the Riemannian case, on a pseudo-Riemannian Einstein
solvmanifold with a pseudo-Iwasawa decomposition, the derivation adH is not
necessarily semisimple. An example can be obtained by applying Corollary 4.7
to Example 2.5.

Remark 4.10. Passing from a nilsoliton to its Einstein extension does not gener-
ally preserve reducibility: given irreducible nilsolitons g1, . . . , gk of type (Nil4),
the pseudo-Iwasawa extension g̃ = (g1 ⊕ · · · ⊕ gk) o R is generally irreducible.
See next example.

Example 4.11. Consider the Heisenberg Lie algebra g1 = (0, 0, e12) with the
nilsoliton metric g1e

1 � e2 + 2
3g

2
1e

3 ⊗ e3, for which

Ric = Id +D1, D1 = −2

3
(e1 ⊗ e1 + e2 ⊗ e2 + 2e3 ⊗ e3),

and the Lie algebra g2 = (0, 0, ê12, ê13) with the metric ĝ1ê
1 ⊗ ê1 + ĝ2ê

2 ⊗ ê2 −
2
3 ĝ1ĝ2ê

3 ⊗ ê3 + 4
9 ĝ

2
1 ĝ2ê

4 ⊗ ê4, which is a nilsoliton with

Ric = Id +D2, D2 = −1

3
(ê1 ⊗ ê1 + 2ê2 ⊗ ê2 + 3ê3 ⊗ ê3 + 4ê4 ⊗ ê4).

Notice that λ has been normalized to one for both metrics.
Then, using Remark 4.10 we can construct an irreducible Einstein solvable

Lie algebra g̃ = (g1 ⊕ g2) o e0R by setting [e0, X1 + X2] = D1(X1) + D2(X2)
for Xi ∈ gi, together with the left-invariant metric given by:

− 6e0 ⊗ e0 + g1e
1 � e2 +

2

3
g21e

3 ⊗ e3

+ ĝ1e
4 ⊗ e4 + ĝ2e

5 ⊗ e5 − 2

3
ĝ1ĝ2e

6 ⊗ e6 +
4

9
ĝ21 ĝ2e

7 ⊗ e7,

where êi is identified with e4+i.

An explicit construction similar to Corollary 4.7 applies in the case (Nil3),
i.e. for Einstein nilpotent Lie algebras with non-zero scalar curvature (compare
with [38, Theorem 1.2]):

Corollary 4.12. Let g be a nilpotent Lie algebra with an Einstein metric 〈, 〉,
with Ric = λId, λ 6= 0, and let ψ be a self-adjoint derivation of g with trψ2 6= 0.
Setting

g̃ = goψ Span {e0} , 〈̃, 〉 = 〈, 〉 − 1

λ
(trψ2)e0 ⊗ e0

defines a unimodular pseudo-Iwasawa extension of g with R̃ic = λId.

Proof. By [11, Theorem 4.1], all derivations of g are tracefree, so in particular
tr Ψ is zero; this implies that H is zero, thanks to (6). The extension g̃ is
Einstein by Theorem 3.9, and unimodular by the definition of H.
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An application of this construction can be obtained using diagonal deriva-
tions, as we see in the next example.

Example 4.13. Consider the 9-dimensional nilpotent Lie algebra

g = (0, 0, 0, 0, e13 + e24,−e12, e34, e15 + e23 + e46, e14 + e27 + e35).

This admits two diagonal Einstein metrics with λ = 1/2 (see [12, Example 4.6]),
consider for example the diagonal metric 〈, 〉 =

∑
gie

i ⊗ ei:

g1 = 1, g2 = − 3

16

(√
249 + 9

)
, g3 =

731− 47
√

249

2205
,

g4 =
131253− 8321

√
249

463050
, g5 =

1

735

(
47
√

249− 731
)
,

g6 =
9

16

(
5
√

249 + 73
)
, g7 =

16
(
333103

√
249− 5256379

)
170170875

,

g8 =
2

105

(
183− 11

√
249
)
, g9 =

4
(
131253− 8321

√
249
)

231525
.

Diagonal derivations are spanned by diag(−1,−2, 1, 2, 0,−3, 3,−1, 1). If we fix

ψ =
1√
60

diag(−1,−2, 1, 2, 0,−3, 3,−1, 1), trψ2 =
1

2

we can apply Corollary 4.12 and obtain a solvable Lie algebra g̃ = goψR with an
Einstein metric. Explicitly, setting ade10 =

√
60ψ for simplicity, the structure

constants of g̃ are(
−e1,10,−2e2,10, e3,10, 2e4,10, e24 + e13,

− 3e6,10 − e12, 3e7,10 + e34, e46 + e15 + e23 − e8,10, e27 + e35 + e14 + e9,10, 0
)
.

The metric 〈̃, 〉 on g̃ is given by the previous equations (i.e. by 〈, 〉 on g) and

˜〈e10, e10〉 = −
tr(ad2

e10)

λ
= −60. Notice that g̃ is unimodular, so in this case H =

0 and the nilsoliton metric induced on the nilradical according to Corollary 4.12
is actually Einstein.

In particular, this example shows that a nilpotent Einstein manifold can be
the nilradical of an Einstein solvmanifold.

For nilsolitons of type (Nil1), i.e. Ricci-flat metrics, we have the following:

Proposition 4.14. Let g be a nilpotent Lie algebra with a Ricci-flat metric 〈, 〉.
Let a ⊂ Der g be a subalgebra of self-adjoint derivations and assume that 〈, 〉tr
is zero on a.

1. If all elements of a are trace-free,

g̃ = go a, 〈̃, 〉 = 〈, 〉g + 〈, 〉a

defines a Ricci-flat Lie algebra with a pseudo-Iwasawa decomposition for
any metric 〈, 〉a on a.
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2. If not all elements of a are trace-free, for any metric 〈, 〉a on a which
restricts to a nondegenerate metric on the subspace a0 ⊂ a of trace-free
elements,

g̃ = go (a⊕ Span {H}), 〈̃, 〉 = 〈, 〉g + 〈, 〉a + 〈, 〉H

(where ãdH = 0 and 〈X,H〉H = trX) defines a Ricci-flat Lie algebra
with a pseudo-Iwasawa decomposition.

Proof. In the first case g̃ is unimodular; the statement follows from Theorem 3.9.

In the second case, H satisfies (5) and ãdH = 0, so again we conclude using
Theorem 3.9.

Remark 4.15. Unlike the situation of Remark 4.2, the derivation ψ is allowed
to be nilpotent in Proposition 4.14. Thus, nilpotent Ricci-flat Lie algebras may
admit nilpotent Ricci-flat extensions.

We will explain this procedure in the following example.

Example 4.16. Consider the Heisenberg Lie algebra h = (0, 0, e12) with the
Ricci-flat metric e1�e3+e2⊗e2 and consider the derivationsD1 = e1⊗e2+e2⊗e3
and D2 = e1 ⊗ e3. These derivations commute, are self-adjoint with respect to
〈, 〉 and satisfy tr(Di ◦ Dj) = 0 = trDi. Thus Proposition 4.14 applies and
setting ad e4 = D1, ad e5 = D2 on the nilpotent Lie algebra

g̃ = (0, e41, e42 + e51 + e12, 0, 0)

we have a 3-parameter family of Ricci-flat metrics given by:

〈̃, 〉 = e1 � e3 + e2 ⊗ e2 + g4e
4 ⊗ e4 + g45e

4 � e5 + g5e
5 ⊗ e5.

Note that the extension of Proposition 4.14 may be solvable nonnilpotent:
e.g. on the nilpotent Lie algebra (0, 0, e12, e12) with the Ricci-flat metric e1 �
e3 + e2 � e4 one can consider the self-adjoint derivation

D′ = −e1⊗ e1 + e1⊗ e2− e2⊗ e1 + e2⊗ e2− e3⊗ e3− e3⊗ e4 + e4⊗ e3 + e4⊗ e4,

obtaining a unimodular solvable nonnilpotent extension goD′R with a Ricci-flat
metric that extends the Ricci-flat metric on g.

Example 4.17. Consider R3 o a, with

ad e4 = e1 ⊗ e2 − e2 ⊗ e1 +
√

2e3 ⊗ e3, ad e5 = 0.

Choose
〈, 〉 = e1 � e2 + e3 ⊗ e3 + e4 � e5.

Then H =
√

2e5. This is a nonunimodular extension of a Ricci-flat metric.

Similarly, for nilsolitons of type (Nil2), we have the following:

Proposition 4.18. Let g be a nilpotent Lie algebra with a nisoliton metric 〈, 〉
of type (Nil2), Ric = D. Let a ⊂ Der g be a subalgebra of self-adjoint derivations
containing D and assume that 〈, 〉tr is zero on a. Then for any metric 〈, 〉a on
a such that 〈D,X〉a = trX for all X,

g̃ = go a, 〈̃, 〉 = 〈, 〉g + 〈, 〉a
defines a Ricci-flat Lie algebra with a pseudo-Iwasawa decomposition.

Moreover dim a ≥ 2 and g̃ is nonunimodular.
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Proof. The first part is as in Proposition 4.14; here we only prove the last part.
Since 〈, 〉a is non degenerate and 〈D,D〉a = trD = 0, there must exist at least
another derivation X in a such that trX = 〈D,X〉a 6= 0, so dim a ≥ 2 and g̃ is
nonunimodular.

Example 4.19. Consider the 5-dimensional nilpotent Lie algebra g = h⊕R2 =
(0, 0, e12, 0, 0) with the metric

〈, 〉g = g1e
1 ⊗ e1 + g2e

2 ⊗ e2 + 2g1g2e
3 � e4 + g5e

5 ⊗ e5, Ric = D = e4 ⊗ e3

which is a nilsoliton of type (Nil2), for any gi. Consider also the derivation given
by

X = e1 ⊗ e2 − 2e2 ⊗ e1 + 2e5 ⊗ e5,
which commutes with D, and satisfies trX = 2 6= 0, trX2 = 0. Choosing in the
metric g2 = −2g1, the derivation X is also selfadjoint. Hence, we can construct
a non unimodular solvable Lie algebra g̃ = g o a where a contains the vector
e6 = H such that adH = D and a vector e7 such that ade7 = X. Considering
the pseudo-Riemannian metric on g̃ given by:

〈, 〉g̃ = 〈, 〉g +2e6�e7 = g1e
1⊗e1−2g1e

2⊗e2−4g21e
3�e4 +g5e

5⊗e5 +2e6�e7,

we have found a Ricci-flat metric on g̃. Explicitly the Lie algebra g̃ is given by:

(2e72,−e71, e12 − e64, 0,−2e75, 0, 0).

Example 4.20. Kondo and Tamaru proved in [23] that for any n ≥ 4, there
are exactly 6 left-invariant Lorentzian nilsoliton metrics (up to automorphisms
and rescaling) on the product of the Heisenberg Lie algebra h and Rn−3, namely
on the Lie algebra gn = (0, 0, . . . , 0, e12). Those 6 metrics gλ,ξ can be written
explicitly with respect to the basis {ei} as

n−3∑
i=1

ei⊗ei−ξe1�en−1−λe1�en+(1+ξ2)en−1⊗en−1+λξen−1�en+(λ2−1)en⊗en,

and depend on two parameters (λ, ξ) ∈ {(0, 0), (1, 0), (1, 1), (2, 0), (2,
√

3), (2, 2)}.
A direct computation, using the formula for the Ricci in [23, Section 5], allows
us to classify those nilsolitons according to their type. Moreover, we can use
the results of this section to determine whether an Einstein pseudo-Iwasawa
extension exists.

1. The metric associated to (1, 0) is Ricci-flat (i.e. (Nil1)). We see that,
depending on the dimension of n, there are many choices of subalgebras
a of trace-free self-adjoint derivations and such that 〈, 〉tr is zero. For
example, we can choose the derivation X = e1 ⊗ en−1 − en−1 ⊗ en and
applying Proposition 4.14 obtain a Ricci-flat metric on the nilpotent Lie
algebra g̃n = gn oX R, with signature (n, 1) or (n− 1, 2) according to the
sign chosen for 〈X,X〉.

2. The metrics associated to (1, 1) and (2,
√

3) are nilsolitons of type (Nil2).
However, a straightforward computation shows that in both cases there
are no self-adjoint derivations X commuting with D such that trX2 = 0
and trX 6= 0, so no extension to a pseudo-Iwasawa Einstein solvmanifold
can be found.
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3. The metrics associated to (0, 0), (1,
√

3) and (2, 2) are nilsolitons of type (Nil4);
with reference to (1), the coefficients λ are respectively 3

2 , 27
2 and − 9

2 .
Corollary 4.7 allows the construction of a pseudo-Iwasawa extension g̃n =
gn oD R, with signature (n− 1, 2) in the first two cases and (n, 1) in the
last, according to Remark 4.8.

Since gn admits derivations with nonzero trace, there are no metrics of type (Nil3)
(see [11, Theorem 4.1]).

In light of Proposition 1.19, it is not surprising that the methods of this sec-
tion can also be used to obtain Einstein solvable Lie algebras that do not admit
a pseudo-Iwasawa decomposition. The idea is that a pseudo-Iwasawa Einstein
solvable Lie algebra determines a pseudo-Riemannian manifold which generally
admits other simply transitive actions of a solvable Lie group, not necessarily
of pseudo-Iwasawa type. A similar technique was used in [21] to obtain solvable
Lie algebras with a Ricci soliton metric which are not solvsolitons.

Given a Lie algebra g with a metric 〈, 〉, choose a such that

a ⊂ Der g, [a, a] = 0, as := {fs | f ∈ a} ⊂ Der g, [a, as] = 0. (14)

We can define a scalar product on a by

〈f, g〉s = 〈fs, gs〉tr .

Proposition 4.21. Let g be a nilsoliton, Ric = λId+D, and let a be a subspace
of Der g satisfying (14).

1. If λ 6= 0, D ∈ as and 〈, 〉s is nondegenerate on a, then the metric 〈, 〉g −
1
λ 〈, 〉s on g̃ = go a is Einstein with R̃ic = λId.

2. If λ = 0, D 6= 0, D = Hs for some H ∈ a and 〈, 〉s is zero, then for any
metric 〈, 〉a on a such that 〈H,X〉a = trX for all X, the metric 〈, 〉g +〈, 〉a
is Ricci-flat on the Lie algebra g̃ = go a.

3. If λ = 0, D = 0, elements of a are trace-free and 〈, 〉s is zero, then for
any metric 〈, 〉a on a the metric 〈, 〉g + 〈, 〉a is Ricci-flat on the Lie algebra
g̃ = go a.

4. If λ = 0, D = 0, elements of a are not all trace-free and 〈, 〉s is zero, then
for any metric 〈, 〉a on a which restricts to a nondegenerate metric on the
subspace a0 ⊂ a of trace-free elements, the metric 〈, 〉g + 〈, 〉a + 〈, 〉H is

Ricci-flat on the Lie algebra g̃ = go (a⊕ Span {H}), where ãdH = 0 and
〈H,X〉H = trX.

Proof. In case 1, the condition that 〈, 〉s is nondegenerate implies that the pro-
jection a→ as is injective. By Proposition 1.19, the solvmanifold defined in the
statement is isometric to a solvmanifold go as with a pseudo-Iwasawa decom-
position, which is Einstein by Theorem 4.1.

In case 2 we cannot assume that the projection a → as is injective, so we
proceed by a direct application of Proposition 1.10. Since H satisfies (5), it acts
on g by (6), i.e. H =

∑
r εr(φr) trφr. As elements of a are normal, for v, w ∈ g

we have

r̃ic(v, w) =
〈
D(v)−

∑
r

εr(φr)
s(v) trφr, w

〉
= 〈D(v)− (adH)s(v), w〉 = 0.
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Arguing as in Lemma 3.8 we see that 〈ad v,D〉tr = 0 for every derivation D, so

〈ad v,X〉 = 〈ad v,Xs〉tr − 〈ad v,Xa〉tr = 0, X ∈ a.

This implies r̃ic(v,X) = 0.
Finally, for X,Y ∈ a, we have

〈X,Y 〉tr = 〈Xs, Y s〉tr + 〈Xa, Y a〉tr = 〈Xa, Y a〉tr = 〈X,Y a〉tr = −〈X,Y 〉,

where we have used Lemma 3.7; this implies that r̃ic(X,Y ) = 0.
Cases 3 and 4 are proved in the same way.
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