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Fuzzy description logics (DLs) can be used to represent and reason with vague knowledge. 
This family of logical formalisms is very diverse, each member being characterized by a 
specific choice of constructors, axioms, and triangular norms, which are used to specify 
the semantics. Unfortunately, it has recently been shown that the consistency problem in 
many fuzzy DLs with general concept inclusion axioms is undecidable. In this paper, we 
present a proof framework that allows us to extend these results to cover large classes 
of fuzzy DLs. On the other hand, we also provide matching decidability results for most 
of the remaining logics. As a result, we obtain a near-universal classification of fuzzy DLs 
according to the decidability of their consistency problem.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Description logics (DLs) [1] are a family of knowledge representation formalisms, designed to represent the terminological 
knowledge of a domain in a formally well-understood way. They form the base language for many large-scale knowledge 
bases, like Snomed CT

1 and the Gene Ontology,2 but arguably their largest success to date is the recommendation by 
the W3C of the DL-based language OWL as the standard ontology language for the Semantic Web.3 DLs essentially allow 
to state relations between concepts, which represent subsets of a specific domain containing exactly those domain elements 
that share certain properties. Roles correspond to binary relations that allow to state connections between concepts. For 
example, the concept of a human father can be expressed as

Human � Male � ∃hasChild.�,

which describes the set of all humans that are male and have a child. Here, Human and Male are atomic concept names, 
whereas hasChild is a role name. Domain-specific relations between concepts can be expressed in axioms such as

bob :Male, Human � ∀hasChild.Human,
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saying that bob is a male individual, and that every human can only have human children, respectively. The former axiom is 
called an assertion, the latter a general concept inclusion (GCI). In DLs, various reasoning problems over a set of such axioms, 
called an ontology or knowledge base, are studied. The most fundamental one is to decide whether an ontology is consistent; 
that is, if the restrictions expressed by its axioms can actually be realized in a model. Different sets of constructors for 
expressing concepts, such as conjunctions (�) or value restrictions (∀), lead to logics of varying expressivity, resulting in 
differences between the computational complexity of their consistency problems. For example, in the inexpressive DL EL, 
consistency is trivial, whereas other reasoning problems such as subsumption have only polynomial complexity. In the more 
expressive ALC, consistency without GCIs is PSpace-complete, and is ExpTime-complete in the presence of GCIs. The very 
expressive SROIQ, the formalism underlying the OWL 2 Direct Semantics, has a 2-NExpTime-complete consistency problem.

In their classical form, however, DLs are not well-suited for representing and reasoning with the vagueness and impre-
cision that are endemic to many knowledge domains, e.g. in the bio-medical fields. For example, one of the most common 
symptoms of diseases is the presence of fever, which is characterized by a high body temperature. Clearly, it is not possible 
to precisely distinguish high body temperatures from non-high body temperatures. In order to appropriately represent this 
knowledge, it is necessary to use a formalism capable of handling imprecision. Fuzzy variants of DLs have been introduced 
as a means of handling imprecise terminological knowledge. This is achieved by interpreting concepts as fuzzy sets. In a nut-
shell, a fuzzy set associates with every element of the universe a value from the interval [0, 1], which expresses its degree 
of membership to the set. This makes it possible to express, e.g. that 38 °C is a high body temperature to degree 0.7, while 
39 °C belongs to the same concept with degree 1.

Compared to classical DLs, fuzzy DLs have an additional degree of freedom for choosing how to interpret the logical 
constructors. A standard approach, inherited from mathematical fuzzy logic [2,3], is to use a continuous triangular norm 
(t-norm) [4] to interpret conjunction. The three most commonly used t-norms, called Gödel, Łukasiewicz, and product, have 
the interesting property that all other continuous t-norms can be represented by composing copies of them in a certain way. 
From the chosen t-norm ⊗, the semantics of all other logical constructors is determined, generalizing the properties of the 
classical operators. Ontologies of fuzzy DLs generalize classical ontologies by annotating each axiom with a fuzzy value that 
specifies the degree to which the axiom holds. For example, a fuzzy assertion like 〈bob :∃hasFever.High ≥ 0.6〉 can specify 
that an individual (in this case bob) belongs to a fuzzy concept (∃hasFever.High) at least to a certain degree (e.g. 0.6).

For the last two decades, research on fuzzy DLs has covered many different logics, from the inexpressive EL [5] to 
the expressive SROIQ(D) [6], from simple fuzzy semantics [7] to ones covering all continuous t-norms [8], from acyclic 
terminologies [9] to GCIs [10]. Fuzzy reasoning algorithms were implemented [11,12] and the use of fuzziness in practical 
applications was studied [13,14]. Recently, the focus in the area changed when some tableau-based algorithms for DLs 
allowing general concept inclusions were shown to be incorrect [15,16]. This raised doubts about the decidability of the 
consistency problem in these logics, and eventually led to a plethora of undecidability results for fuzzy DLs [16–19]. In 
particular, one does not need to go beyond the expressivity of ⊗-ALC to get undecidability [18,19].

The main goal of this paper is to characterize the limits of decidability in fuzzy DLs; in other words, we want to partition 
the family of fuzzy DLs according to the decidability of consistency in them. For the cases where the problem is decidable, 
we are also interested in finding precise complexity bounds. Given the sheer number of fuzzy DLs available, identified by 
the set of constructors, types of axioms, and t-norm that they use, it is infeasible to study each of them independently. 
Instead, we develop general methods for proving (un)decidability of these logics.

Most of the known undecidability results [16,17,19] focus on one specific fuzzy DL; that is, undecidability is proven 
for a specific set of constructors, axioms, and chosen semantics. The papers [16,17] show undecidability of (extensions of) 
⊗-ALCf,≥ , where ⊗ is the product t-norm, while [19] shows the same for the Łukasiewicz t-norm. The only exception 
is [18], where undecidability is shown for ⊗-IALf,= for all t-norms ⊗ “starting” with the product t-norm. Abstracting from 
the details of each specific logic, all these proofs of undecidability follow the same basic pattern. In essence, it is shown 
that the logic satisfies a series of properties that allows it to encode the Post Correspondence Problem [20].

In the first part of this paper, we generalize these ideas and describe a set of properties that together imply undecid-
ability of a fuzzy DL. We use this general framework to strengthen all previously known undecidability results to cover all 
continuous t-norms except the Gödel t-norm, for which the problem is decidable [21]. Additionally, we present some vari-
ants on the same ideas that allow us to prove undecidability of fuzzy DLs that do not fit precisely into the main framework. 
For instance, we show that the fairly inexpressive fuzzy DL ⊗-IEL= is undecidable for any continuous t-norm ⊗ except the 
Gödel t-norm. This can be strengthened to the even less expressive ⊗-NEL if ⊗ starts with the Łukasiewicz t-norm. These 
logics are of interest since they correspond to fuzzy variants of the prototypical classical DL ALC . Indeed, they have the 
same expressivity as ALC when their semantics is restricted to the two classical truth values.

In the second part of the paper, we complement these results by considering fuzzy DLs based on t-norms that do not 
start with the Łukasiewicz t-norm, which in particular includes the product and Gödel t-norms. Under this assumption, we 
show that consistency is decidable even for the very expressive logic ⊗-SROIQf,≥ if axioms are not allowed to express 
upper bounds. We show an even stronger result: under these conditions, an ontology is consistent w.r.t. fuzzy semantics 
iff it is consistent w.r.t. crisp semantics, i.e. using only the classical truth values 0 and 1. Thus, ontology consistency in 
⊗-SHOI is ExpTime-complete, and in ⊗-SROIQ it is 2-NExpTime-complete. If these restrictions are not met, then the 
problem is undecidable, as shown in the first part of the paper.
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Table 1
Gödel, product, and Łukasiewicz t-norms.

Name x ⊗ y x ⇒ y 
x x ⊕ y

Gödel (G) min{x, y}
{

1 if x ≤ y
y otherwise

{
1 if x = 0
0 otherwise

max{x, y}

Product (Π) x · y

{
1 if x ≤ y
y/x otherwise

{
1 if x = 0
0 otherwise

x + y − x · y

Łukasiewicz (Ł) max{x + y − 1,0} min{1 − x + y,1} 1 − x min{x + y,1}

Some of the results in this paper have appeared in a preliminary form in conference papers [22,23]. Here, we not only 
combine those previous publications, but include more detailed proofs, add new undecidability results (see Section 3.5), and 
discuss (un-)decidability results for fuzzy DLs under general model semantics (see Section 5.1). In particular, we

• use the framework for showing undecidability from [22] to prove these results here in more detail;
• add some explanatory material (examples, figures) to aid understanding of these proofs;
• describe additions to the framework that allow us to show more undecidability results for fuzzy DLs of the form ⊗-IEL

(Section 3.5);
• extend the proof from [23] that shows decidability for many of the remaining fuzzy DLs to deal with ⊗-SROIQf,≥

instead of only ⊗-SHOI f,≥; and
• discuss related semantics and reasoning problems and present related work in more detail (Section 5).

2. Preliminaries

We start with a brief introduction to t-norms and mathematical fuzzy logic, which will be useful for defining fuzzy 
extensions of description logics.

2.1. Triangular norms and mathematical fuzzy logic

Mathematical fuzzy logic can be used to express imprecise or vague information [2]. It extends classical logic by in-
terpreting predicates as fuzzy sets over an interpretation domain. Given a non-empty domain D, a fuzzy set is a function 
F : D → [0, 1] from D into the real unit interval [0, 1], with the intuition that an element x ∈ D belongs to F with de-
gree F (x). The interpretation of the logical constructors is based on appropriate truth functions that generalize the properties 
of the connectives of classical logic to the interval [0, 1]. The most prominent truth functions used in the fuzzy logic litera-
ture are based on triangular norms (or t-norms) [4].

A t-norm is a binary operator ⊗: [0, 1] × [0, 1] → [0, 1] that is associative, commutative, and monotone, and has 1 as its 
unit element. The t-norm is used to generalize classical conjunction. We will only consider continuous t-norms in this paper, 
which means that they are continuous as a function, i.e. we have for all convergent sequences (xn)n≥0, (yn)n≥0 that(

lim
n→∞ xn

)
⊗

(
lim

n→∞ yn

)
= lim

n→∞(xn ⊗ yn).

The residuum of a t-norm ⊗ is a binary operator ⇒: [0, 1] × [0, 1] → [0, 1] that satisfies z ≤ x ⇒ y iff x ⊗ z ≤ y for all 
x, y, z ∈ [0, 1]. If ⊗ is continuous, then this equivalence determines the unique residuum

x ⇒ y := sup
{

z ∈ [0,1] ∣∣ x ⊗ z ≤ y
}
.

The residuum behaves like classical implication on the truth values 0 and 1 and is used to generalize the implication to 
fuzzy logics. Given a residuum ⇒, the residual negation is the unary operator 
: [0, 1] → [0, 1] defined by 
x := x ⇒ 0. As 
implied by its name, this operator generalizes classical negation. Finally, the disjunction can be fuzzified using the t-conorm
of a t-norm ⊗, which is a binary operator ⊕: [0,1] × [0,1] → [0,1] defined as x ⊕ y := 1 − ((1 − x) ⊗ (1 − y)). Like ⊗, it is 
associative, commutative, and monotone in both arguments, but its unit element is 0.

Whenever we have a continuous t-norm ⊗, then we denote by ⇒, 
, and ⊕ the corresponding residuum, residual 
negation, and t-conorm, respectively. Three important continuous t-norms are the Gödel (G), product (Π), and Łukasiewicz 
(Ł) t-norms. They are listed in Table 1 together with their induced operators. Fuzzy logics are sometimes extended with the 
involutive negation operator, defined as ∼x := 1 − x [24,25]. Observe that for ⊗ = Ł the involutive negation and the residual 
negation coincide; that is, the equality ∼x = x ⇒ 0 holds. However, for any other continuous t-norm ⊗, the involutive 
negation is not expressible in terms of ⊗ and its residuum ⇒.

The following are simple consequences of the above definitions [4].

Proposition 1. For every continuous t-norm ⊗ and x, y ∈ [0, 1],

• x ⇒ y = 1 iff x ≤ y,
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• 1 ⇒ y = y, and
• x ⊕ y = 0 iff x = 0 and y = 0.

From the three fundamental t-norms listed in Table 1, all continuous t-norms can be constructed as described next. For 
any a, b ∈ [0, 1] with a < b, we define the scaling function σa,b: [0, 1] → [a, b] by σa,b(x) := a + (b − a)x for all x ∈ [0, 1]. This 
linear function is bijective with the inverse given by σ−1

a,b (x) := x−a
b−a . Let now ((ai, bi))i∈I be a (possibly infinite) family of 

non-empty, mutually disjoint open subintervals of [0, 1] and (⊗i)i∈I be a family of continuous t-norms over the same index 
set I . The ordinal sum of (((ai,bi),⊗i))i∈I is the t-norm ⊗, defined for every x, y ∈ [0, 1] by

x ⊗ y :=
{

σai ,bi (σ
−1
ai ,bi

(x) ⊗i σ
−1
ai ,bi

(y)) if x, y ∈ [ai,bi] for some i ∈ I;
min{x, y} otherwise.

This construction always yields a continuous t-norm, whose residuum is given by

x ⇒ y :=
⎧⎨
⎩

1 if x ≤ y;
σai ,bi (σ

−1
ai ,bi

(x) ⇒i σ
−1
ai ,bi

(y)) if ai ≤ y < x ≤ bi;
y otherwise,

where ⇒i denotes the residuum of ⊗i , for each i ∈ I . Intuitively, this means that the t-norm ⊗ and its residuum “behave 
like” ⊗i and its residuum in each of the intervals [ai, bi], and like the Gödel t-norm and residuum everywhere else.

Two t-norms ⊗, ⊗′ are isomorphic if there exists a strictly increasing mapping ι: [0, 1] → [0, 1] such that ι(x ⊗ y) =
ι(x) ⊗′ ι(y). It has been shown that, up to isomorphism, every continuous t-norm can be represented as the ordinal sum of 
copies of the Łukasiewicz and product t-norms.

Theorem 2. (See [26].) Every continuous t-norm is an ordinal sum of t-norms isomorphic to the Łukasiewicz t-norm or the product 
t-norm.

In the following, let ⊗ be a continuous t-norm and (((ai, bi), ⊗i))i∈I be its (unique) representation as ordinal sum given 
by Theorem 2. For ease of presentation, we assume without loss of generality that the isomorphisms occurring in this 
theorem are the identity mapping, which means that each ⊗i is either the Łukasiewicz or product t-norm. We call the 
tuples (((ai, bi), ⊗i))i∈I the components of ⊗. We say that ⊗ (a, b)-contains Łukasiewicz or product if it has a component of 
the form ((a, b), Ł) or ((a, b), Π), respectively. Similarly, ⊗ starts with Łukasiewicz if it has a component ((0, b), Ł). Whenever 
the exact location of the interval (a, b) is irrelevant, we will omit it.

An element x ∈ [0, 1] is called idempotent (w.r.t. ⊗) if x ⊗ x = x. Note that the idempotent elements are exactly those that 
are not in (ai, bi) for any i ∈ I . In particular, 0 and 1 are always idempotent, as are ai and bi for any i ∈ I . It is easy to see 
that a continuous t-norm has infinitely many non-idempotent elements if and only if it is not the Gödel t-norm.

An element x ∈ (0, 1] is called a zero divisor (of ⊗) if there exists a y ∈ (0, 1] such that x ⊗ y = 0. Of the three fundamental 
continuous t-norms from Table 1, only the Łukasiewicz t-norm has zero divisors: every element x ∈ (0, 1) is a zero divisor 
for this t-norm since 1 − x > 0 and x ⊗ (1 − x) = 0. In fact, a continuous t-norm has zero divisors if and only if it starts with 
Łukasiewicz.

Lemma 3. (See [4].) A continuous t-norm has zero divisors iff it starts with the Łukasiewicz t-norm.

All continuous t-norms that do not start with Łukasiewicz define the same residual negation, known as the Gödel negation
(cf. Table 1).

Lemma 4. (See [4].) For any t-norm ⊗ without zero divisors and every x ∈ [0, 1],

(a) x ⇒ y = 0 iff x > 0 and y = 0; and

(b) 
x =
{

1 if x = 0,

0 otherwise.

Example 5. The continuous t-norm ⊗ defined by

x ⊗ y :=
{2xy if x, y ∈ [0,0.5],

max{x + y − 1,0.5} if x, y ∈ [0.5,1],
min{x, y} otherwise,

is the ordinal sum of the two components ((0, 0.5), Π) and ((0.5, 1), Ł). In particular, it has no zero divisors, and therefore 
its residual negation is the Gödel negation. Its only idempotent elements are 0, 0.5, and 1.

Triangular norms are the basis for defining the semantics of fuzzy description logics, which are introduced in the follow-
ing section.
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Table 2
Some relevant DLs and their expressivity.

Name � � ∃ ∀ ⊥ → � ¬
EL � � �
IEL � � � � � (�)
NEL � � � (�) �
ELC � � � (�) �
AL � � � �
IAL � � � � � � (�)
NAL � � � � (�) �
ALC � � � � (�) �

2.2. Fuzzy description logics

The syntax and semantics of a fuzzy description logic ⊗-L are determined by two components: the language L and 
the t-norm ⊗. We first introduce the syntactical part L, which is determined by a choice of logical constructors and axioms, 
and usually extends the syntax of an underlying classical description logic. As there exists a large variety of constructors 
available in description logics, we start defining a generic syntax of L and later describe instantiations to more specific 
logics.

The central notion of DLs is that of concepts, which are built from atomic concepts (so-called concept names) using 
different constructors, like conjunction, implication, or existential restrictions.

Definition 6 (Concepts). Let NC , NR , and NI be mutually disjoint sets of concept names, role names, and individual names, 
respectively. The set of (complex) concepts is defined inductively as follows:

• every concept name A ∈ NC is a concept; and
• if C, D are concepts and r is a role name, then � (top concept), ⊥ (bottom concept), C � D (conjunction), C → D (im-

plication), ¬C (strong negation), �C (residual negation), ∃r.C (existential restriction), and ∀r.C (value restriction) are also 
concepts.

For n ∈N, we define Cn as the n-ary conjunction of a concept C with itself. More formally, if C is a concept, then we set

• C0 := �, and
• Cn+1 := C � Cn for all n ∈ N.

As mentioned before, different description logics L are determined by the constructors they allow. In the DL EL, con-
cepts are built using only the constructors �, �, and ∃. Extending EL with value restrictions yields the DL AL. Following 
the notation from [27], the letters C and N denote the presence of the strong negation (¬) and residual negation (�), 
respectively. The prefix I expresses that the implication (→) and bottom (⊥) constructors are allowed. Table 2 summarizes 
this nomenclature for the logics that we will investigate in this paper. Constructors that can be simulated by others in the 
same logic are indicated in parentheses. In Section 4 we further extend the set of constructors to prove decidability of more 
expressive fuzzy DLs.

The second component defining the expressivity of a fuzzy DL ⊗-L are its axioms. Axioms are the means to represent 
domain knowledge, by describing relations between individuals, roles, and concepts. In contrast to classical DLs, in fuzzy 
DLs axioms often include a lower bound for the degree to which the axiom should hold. This lower bound provides a larger 
flexibility for the interpretations that satisfy the axiom.

Definition 7 (Axioms). An axiom is either a general concept inclusion (GCI) or an assertion, where

• a GCI is an expression of the form 〈C � D ≥ p〉, where C, D are concepts and p ∈ [0, 1]; and
• an assertion is of the form 〈e :C � p〉 or 〈(d, e) :r � p〉, where C is a concept, r is a role name, d, e are individual names, 

p ∈ [0, 1], and � ∈ {≥, =}. It is an inequality assertion if � is ≥ and an equality assertion if � is =.

An axiom is called crisp if p = 1. An ontology is a finite set of axioms. It is called a classical ontology if it contains only crisp 
axioms.

For crisp axioms, we will usually remove the part “� 1”, and simply write, e.g. 〈C � D〉. As with the choice of the 
constructors, the axioms influence the expressivity of the logic. We always assume that our logics allow at least classical 
ontologies. Given a DL L, we will use the subscripts f, ≥, and = to denote that arbitrary GCIs, inequality assertions, and 
equality assertions are allowed, respectively. For instance, ELf,≥ denotes the logic EL where ontologies may contain arbitrary 
GCIs and inequality assertions, but no equality assertions. Table 3 summarizes the expressivity of these subscripts.
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Table 3
The possible subscripts of a fuzzy DL.

Subscript Crisp GCIs Fuzzy GCIs Crisp assertions ≥-assertions =-assertions

None � �
f � � �
≥ � � �
= � � (�) �

The semantics of a fuzzy DL ⊗-L is defined by interpreting concepts as fuzzy sets, and roles as fuzzy binary relations. 
Compared to classical DLs, fuzzy DLs have an additional degree of freedom in the selection of their semantics since the 
interpretation of the constructors depends on the continuous t-norm ⊗ that was chosen. The semantics of fuzzy DLs is 
usually obtained by viewing the DL part as a fragment of first-order logic [1] and lifting the first-order expression to 
the fuzzy semantics used in fuzzy predicate logics [2]. In particular, this means that existential and value restrictions are 
interpreted by suprema and infima, respectively, over the whole interpretation domain.

Definition 8 (Interpretations). An interpretation I = (ΔI , ·I) consists of a non-empty domain ΔI and an interpreta-
tion function ·I that assigns to every A ∈ NC a fuzzy set AI : ΔI → [0, 1], to every r ∈ NR a fuzzy binary relation 
rI :ΔI × ΔI → [0,1], and to every d ∈ NI an element dI ∈ ΔI of the domain. The interpretation function is extended 
to complex concepts as follows for all x ∈ ΔI :

• �I(x) = 1,
• (C � D)I(x) = CI(x) ⊗ DI(x),

• (C → D)I(x) = CI(x) ⇒ DI(x),
• (¬C)I(x) = ∼CI(x),

• (�C)I(x) = 
CI(x),

• (∃r.C)I(x) = supy∈ΔI (rI(x, y) ⊗ CI(y)),

• (∀r.C)I(x) = infy∈ΔI (rI(x, y) ⇒ CI(y)).

The interpretation I is finite if its domain is finite, and crisp if AI(x) ∈ {0, 1} and rI(x, y) ∈ {0, 1} for all concept names A, 
role names r, and domain elements x, y. We say that an interpretation I ′ is an extension of I if it has the same domain 
as I , agrees with I on the interpretation of NC , NR , and NI and additionally defines values for some new concept names 
not appearing in NC .

Notice that the semantics of existential and value restrictions require the computation of a supremum or infimum of 
the membership degrees of a possibly infinite set of elements of the interpretation domain. As is customary for fuzzy DLs, 
we therefore restrict reasoning to a special kind of models, called witnessed models [8,28]. An interpretation I is called 
witnessed if for every concept C , role name r, and x ∈ ΔI there exist y, y′ ∈ ΔI such that

• (∃r.C)I(x) = rI(x, y) ⊗ CI(y), and

• (∀r.C)I(x) = rI(x, y′) ⇒ CI(y′).

This means that the suprema and infima in the semantics of existential and value restrictions are actually maxima and 
minima, respectively. Without this restriction, the value of (∃r.C)I (x) might, e.g. be 1 without x actually having a single 
r-successor with degree 1 that belongs to C with degree 1. Such a behavior is usually unwanted in description logics, where 
an existential restriction is intended to express the existence of an adequate successor.

The main reasoning problem that we consider in this paper is (witnessed) ontology consistency; that is, deciding whether 
one can find a witnessed interpretation satisfying all the axioms of an ontology.

Definition 9 (Consistency). A witnessed interpretation I = (ΔI , ·I) satisfies the GCI 〈C � D ≥ p〉 if for all x ∈ ΔI , we have 
CI(x) ⇒ DI(x) ≥ p. It satisfies the assertion 〈e :C � p〉 (resp., 〈(d, e) :r � p〉) if CI(eI) � p (resp., rI(dI , eI) � p). It is a model
of an ontology O if it satisfies all the axioms in O.

An ontology is consistent if it has a model.

According to this semantics, the crisp GCIs 〈C � D〉 and 〈D � C〉 are satisfied iff CI (x) = DI(x) for every x ∈ ΔI . It thus 
makes sense to abbreviate them by the expression 〈C ≡ D〉, as we will do for the rest of this paper. Note that the restriction 
to witnessed interpretations is not without loss of generality since there exist ontologies that have general models, but 
no witnessed models [28]. In Section 5.1, we comment on the importance of this restriction and the consequences of 
dropping it.

We now relate some of the introduced fuzzy DLs according to their expressive power. For every choice of constructors L
and t-norm ⊗, the inequality concept assertion 〈e :C ≥ q〉 can be expressed in ⊗-L= using the two axioms 〈e : A = q〉 and 
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Fig. 1. The search tree for an instance P of the PCP.

〈A � C〉, where A is a new concept name, and thus ⊗-L= is at least as expressive as ⊗-L≥ . Furthermore, since the residual 
negation can be expressed using the implication and bottom constructors, we know that ⊗-IAL is as least as expressive as 
⊗-NAL and the same holds for ⊗-IEL and ⊗-NEL.

If we restrict the semantics to the Łukasiewicz t-norm, for which involutive and residual negation coincide, we obtain 
that Ł-ELC , Ł-NEL, Ł-IEL, Ł-ALC , Ł-NAL, and Ł-IAL are all equivalent [2]. Indeed, under this semantics value and 
existential restrictions are dual to each other ((∀r.C)I = (¬∃r.¬C)I) and the implication can be expressed by negation and 
conjunction ((C → D)I = (¬(C � ¬D))I). However, for arbitrary t-norms these equalities need not hold. For instance, if any 
t-norm different from Łukasiewicz is used, then (¬∃r.¬C)I �= (∀r.C)I .

In the next section, we describe a general framework to show undecidability of consistency in fuzzy description logics. 
Subsequently, we show that consistency in many of the logics for which we cannot show undecidability is equivalent to 
consistency in the underlying crisp description logics, and thus decidable. Intuitively, a fuzzy DL is undecidable whenever it 
can express upper bounds for the membership degrees of concepts, e.g. through the involutive negation or the implication 
constructor. On the other hand, our decidability results exploit the fact that some fuzzy DLs cannot express such upper 
bounds except for 0. At the end of this paper, we comment on reasoning w.r.t. general (non-witnessed) models and on the 
decidability of reasoning problems other than consistency.

3. Undecidable fuzzy DLs

We now describe a general approach for proving that the consistency problem for a fuzzy DL ⊗-L is undecidable. It is 
based on a reduction from a variant of the Post correspondence problem (PCP) which is known to be undecidable [20].

Definition 10 (PCP). Let P = {(v1, w1), . . . , (vn, wn)} be a finite set of pairs of words over the alphabet Σ = {1, . . . , s} with 
s > 1. The Post correspondence problem asks whether there is a finite sequence i1 . . . ik ∈ {1, . . . , n}∗ such that v1 vi1 . . . vik =
w1 wi1 . . . wik . If this sequence exists, it is called a solution for P .

Notice that in this variant of the PCP, a solution always starts with the first pair of words (v1, w1). We will abbreviate 
{1, . . . , n} by N . For ν = i1 . . . ik ∈ N ∗ , we use the notation vν := v1 vi1 . . . vik and wν := w1 wi1 . . . wik . In order to solve an 
instance P = {(v1, w1), . . . , (vn, wn)} of the PCP, we consider its search tree, which has one node for every ν ∈N ∗ , where ε
is the root, and νi is the i-th successor of ν for each i ∈N . Every node ν in this tree is labeled with the words vν , wν ∈ Σ∗ , 
as shown in Fig. 1. Obviously, the instance P has a solution iff its search tree contains a node labeled by two equal words.

Correspondingly, our reduction of the PCP to the consistency problem of a fuzzy DL consists of two parts. Given an 
instance P of the PCP, we first construct an ontology OP that describes the search tree of P , and then check whether this 
tree contains a solution for P . More precisely, we enforce that for every model I of OP and every ν ∈ N ∗ , there is an 
xν ∈ ΔI such that V I(xν) = enc(vν) and W I(xν) = enc(wν), where enc: Σ∗ → [0, 1] is an injective function that encodes 
words over Σ into the interval [0, 1] (see Theorem 12). Once we have encoded the words vν and wν using V and W , 
we add axioms that restrict the models to those that satisfy V I(xν) �= W I(xν) for all ν ∈ N ∗ . This ensures that P has a 
solution if and only if the ontology is inconsistent (see Theorem 13).

3.1. A special case

We first describe the construction on the relatively easy example of the fuzzy DL Π-IAL= . This is essentially the proof 
from [18], divided into several small steps. Later, we present a general framework that allows us to prove undecidability 
of many fuzzy DLs at the same time. This framework consists of several properties that a fuzzy DL can have, which to-
gether lead to undecidability. We label each part of the following construction by the name of the property of the general 
framework it corresponds to (see Section 3.2).
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Let in the following P = {(v1, w1), . . . , (vn, wn)} be an instance of the PCP over the alphabet Σ . Recall that Σ consists 
of the first s positive integers. We can thus view every word in Σ∗ as a natural number represented in base s + 1. On 
the other hand, every natural number n has a unique representation in base s + 1, which can be seen as a word over 
the alphabet Σ0 := Σ ∪ {0} = {0, . . . , s}. This is not a bijection since, e.g. the words 001202 and 1202 represent the same 
number. However, it is a bijection between the set ΣΣ∗

0 and the positive natural numbers. In the following, we interpret 
the empty word ε as 0, thereby extending this bijection to {ε} ∪ ΣΣ∗

0 and all non-negative integers.
In the following constructions and proofs, we view elements of Σ∗

0 both as words and as natural numbers in base s +1. It 
is usually clear from the context which interpretation is used. However, to avoid confusion, we sometimes use the notation 
u to express that u is seen as a word. Thus, for instance, if s = 3, then 3 · 22 = 30 (in base 4), but 3 · 22 = 322. Furthermore, 
000 is a word of length 3, whereas 000 is simply the number 0. We extend this notation to rational numbers, and may use, 
e.g. the expression 0.03 ·1 to denote the number 0.0001 (again, in base 4). For a word u = α1 · · ·αm with αi ∈ Σ0, 1 ≤ i ≤ m, 
we denote by ←−u the word αm · · ·α1 ∈ Σ∗

0 .
For the case of Π-IAL= , we use the encoding function enc: Σ∗ → [0, 1] given by enc(u) := 2−u to encode words as 

values from the interval [0, 1], and thus we have, e.g. enc(ε) = 2−0 = 1 and enc(2) = 2−2 = 1/4.

The initialization property The first step in constructing the ontology OP that describes the search tree of P is to initialize 
the root of this search tree. The root is represented by the individual name e0, for which we have to initialize the values 
for V and W , as well as several other auxiliary concept names. Due to the presence of equality assertions, this step is 
particularly easy in Π-IAL=:

〈
e0 : V = enc(v1)

〉
,

〈
e0 : W = enc(w1)

〉
, 〈e0 : M = 1/2〉,〈

e0 : V 1 = enc(v1)
〉
, . . . ,

〈
e0 : Vn = enc(vn)

〉
,〈

e0 : W1 = enc(w1)
〉
, . . . ,

〈
e0 : Wn = enc(wn)

〉
. (1)

The concept names V 1, . . . , Vn, W1, . . . , Wn are intended to be constants that hold the above values at every node of the 
search tree, and are used in each step to concatenate the words v1, . . . , vn, w1, . . . , wn to the words currently encoded by V
and W . Similarly, the value of M is always 1/2 throughout the search tree, and is used to compare the values of V and W
at each node.

The concatenation property The next step is to compute the values enc(v1 vi) and enc(w1 wi) for the successors i ∈ N of 
the root node. We introduce additional auxiliary concept names D V ◦vi and DW ◦wi to hold these values. We can achieve the 
correct concatenation using the equivalence

〈
D V ◦vi ≡ V (s+1)|vi | � V i

〉
(2)

for every i ∈N , and similarly for DW ◦wi . Indeed, since V has the value enc(v1) = 2−v1 and V i has the value enc(vi) = 2−vi

at e0, D V ◦vi is evaluated to 2−(v1(s+1)|vi |+vi) = 2−v1 vi = enc(v1 vi). In general, whenever V has the value enc(vν) for some 
ν ∈N ∗ , then D V ◦vi has the value enc(vνi).

The successor property We now construct the successors of the root node, which are labeled by the role names r1, . . . , rn , 
using the axioms

〈� � ∃r1.�〉, . . . , 〈� � ∃rn.�〉. (3)

Every (witnessed) model of these axioms has an ri -successor for every domain element and every i ∈N .

The transfer property To finish the construction of the search tree of P , it remains to transfer the values of D V ◦vi

to the value of V at the ri -successors. We also have to transfer the values of DW ◦wi and the auxiliary constants 
M, V 1, . . . , Vn, W1, . . . , Wn . This is accomplished using the axioms

〈∃ri .V � D V ◦vi 〉, 〈D V ◦vi � ∀ri .V 〉
〈∃ri .W � DW ◦wi 〉, 〈DW ◦wi � ∀ri .W 〉
〈∃ri .M � M〉, 〈M � ∀ri .M〉
. . . (4)

for each i ∈ N . It can be shown that the axioms in (1)–(4) restrict all their models to “embed” an encoding of the search 
tree of P . This is summarized in the canonical model property in the next section (for details, see the proof of Theorem 12).
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The solution property Finally, to ensure that V and W always encode different words, we employ the axiom〈� � (
(V → W ) � (W → V )

) → M
〉
. (5)

This ensures that at each node ν ∈ N ∗ of the search tree one of the concepts V → W or W → V has a value smaller than 
or equal to that of M , i.e. 1/2. This means that enc(vν) and enc(wν) differ by at least a factor of 2, which is equivalent to 
the fact that vν �= wν (for details, see Lemmata 14 and 19). Axiom (5) is of a simpler form than the ones used in previous 
undecidability proofs [18,19] since we consider here the variant of the PCP where all solutions must start with the first pair 
of words (v1, w1), and thus we do not need to exclude the root node ε from consideration.

If we collect all the axioms in (1)–(5), the resulting ontology is consistent iff P has no solution. Therefore, the consistency 
problem in Π-IAL= is undecidable. For different fuzzy DLs, different steps of this construction are more or less difficult, 
depending on the t-norm and the allowed constructors. In the next section, we present a generalized description of how 
to show undecidability by a reduction of the PCP, which we then instantiate to yield undecidability results for a variety of 
fuzzy description logics.

3.2. The framework

In the following, let P be an instance of the PCP and ⊗-L be any fuzzy DL as introduced in Section 2. We first formalize 
the requirements for the encoding function enc. Recall from the previous section that we have to be able to concatenate 
constant words (i.e. vi ) to already computed encodings of words (i.e. vν ). Furthermore, we need to be able to test equality 
of words by comparing the residua of their encodings. When enc satisfies the latter property, we call it a valid encoding 
function. The former requirement is formalized later in the concatenation property.

Recall that for every p, q ∈ [0, 1], we have p = q iff p ⇒ q = q ⇒ p = 1 (see Lemma 1). Thus, to decide whether P has 
a solution, we have to check whether enc(vν) ⇒ enc(wν) < 1 or enc(wν) ⇒ enc(vν) < 1 holds for every ν ∈ N ∗ . In the 
special case in Section 3.1, it is clear that these residua are either 1 or smaller or equal to 1/2. Thus, the test simplifies 
to checking whether enc(vν) ⇒ enc(wν) ≤ 1/2 or enc(wν) ⇒ enc(vν) ≤ 1/2 holds. However, in general it is not possible 
to put a constant bound on these residua in case they are smaller than 1. Instead, we can often construct a word whose 
encoding bounds these residua. Clearly, the precise word and encoding must depend on the t-norm used. Another difference 
to the special case of Section 3.1 is that we allow a word u to be encoded by a set of values Enc(u) ⊆ [0, 1]. This simplifies 
some of the proofs, but requires us to ensure that these encodings remain unique, i.e. that no two words can be encoded 
by the same value.

Definition 11 (Valid encoding function). A function Enc: Σ∗
0 → 2[0,1] is called a valid encoding function for ⊗ if

(a) for every u ∈ {ε} ∪ ΣΣ∗
0 and every v ∈ {0}∗ , we have Enc(vu) = Enc(u),

(b) the sets Enc(u) and Enc(u′) are nonempty and disjoint for any two different words u, u′ ∈ {ε} ∪ ΣΣ∗
0 , and

(c) there exist two words uε, u+ ∈ Σ∗
0 such that for every ν ∈ N ∗ , p ∈ Enc(vν), q ∈ Enc(wν), and m ∈ Enc(uε · u+|ν|) it 

holds that uε · u+|ν| ∈ {ε} ∪ ΣΣ∗
0 and

vν �= wν iff min{p ⇒ q,q ⇒ p} ≤ m.

Condition (a) is due to the fact that we often view the words of Σ∗
0 as natural numbers in base s + 1 (cf. Section 3.1), 

and thus words that differ only in the number of leading zeros should have the same encoding. Condition (b) ensures that 
one can uniquely identify a word from its encoding, modulo leading zeros. Finally, Condition (c) requires that every value 
in Enc(uε · u+|ν|) can be used to check whether encodings of vν and wν are equal by comparing the above residua to this 
value.

In the following, Enc represents a valid encoding function for ⊗, and uε , u+ are the words required by Condition (c). 
We additionally assume that we have a function enc: Σ∗

0 → [0, 1] that chooses a representative enc(u) ∈ Enc(u) for each 
u ∈ Σ∗

0 . Such a function must always exist due to the Conditions (a) and (b) of Definition 11.
As in the previous section, we use the concept names V , W to represent the values of the words vν and wν at the nodes 

of the search tree for P . We designate the concept name M to represent the bounding word uε · u+|ν| from Definition 11, 
and M+ to represent u+ . We also use the concept names V i , W i to encode the words vi, wi from P , and the role names ri
to distinguish the different successors in the search tree, for each i ∈ N . The individual name e0 is used to distinguish the 
root node. Formally, the search tree for P is represented by the canonical model IP = (N ∗, ·IP ) of the ontology OP we 
will construct. It is defined as follows for every ν ∈N ∗ and i ∈N :

• eIP
0 := ε,

• V IP (ν) := enc(vν), W IP (ν) := enc(wν),
• V IP

i (ν) := enc(vi), W IP
i (ν) := enc(wi),

• MIP (ν) := enc(uε · u+|ν|), MIP+ (ν) := enc(u+),

• rIP (ν, νi) := 1 and rIP (ν, ν ′) := 0 if ν ′ �= νi.
i i
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Fig. 2. The canonical model IP for an instance P of the PCP.

Since every element of N ∗ has exactly one ri -successor with degree greater than 0, IP is a witnessed interpretation. This 
model is depicted in Fig. 2 and clearly represents the search tree for P (cf. Fig. 1).

The goal is to construct an ontology OP that can only be satisfied by interpretations that “include” the search tree of P . 
Given that the interpretation IP represents this tree, we want the logic to satisfy the following property. Here, we use the 
expression p ∼ q for p, q ∈ [0, 1] to denote the fact that p, q ∈ Enc(u) for some word u ∈ Σ∗

0 . By Conditions (a) and (b) of 
Definition 11, this word is unique except for the number of leading zeros. But Condition (a) ensures that leading zeros are 
irrelevant for the encoding, and thus from p ∼ q and p ∈ Enc(u) for some u ∈ Σ∗

0 , we can always infer that q ∈ Enc(u).

The canonical model property (P�)

The logic ⊗-L has the canonical model property if there is an ontology OP such that for every model I of OP
there is a mapping g: ΔIP → ΔI with

AIP (ν) ∼ AI(
g(ν)

)
for every A ∈ {V , W , M, M+} ∪ ⋃n

i=1{V i, W i}, and ν ∈N ∗ .

As in the previous section, rather than trying to prove this property directly for some fuzzy DL, we provide several 
simpler properties that together imply the canonical model property. We often motivate the following constructions using 
only the concept V and the words vν ; however, all arguments apply analogously to W , wν and M, uε · u+|ν| .

As illustrated in Section 3.1, we construct the search tree in an inductive way. First, we restrict every interpretation 
I to satisfy that AIP (ε) ∼ AI(eI0 ) for every relevant concept name. This makes sure that the root ε of the search tree 
is properly represented at the individual g(ε) := eI0 . Let now g(ν) be a node satisfying this property, and i ∈ N . We 
ensure that there is a node g(νi) that also satisfies the property in three steps: first, we force the existence of an indi-
vidual y with rIi (g(ν), y) = 1 and set g(νi) := y. Then, we compute a value in Enc(vν vi) from V I(g(ν)) ∈ Enc(vν) and 
V I

i (g(ν)) ∈ Enc(vi). Finally, we transfer this value to the previously created successor to ensure that V I(g(νi)) ∼ enc(vν vi). 
The value of V I

j (g(ν)) for every j ∈N is similarly transferred to V I
j (g(νi)).

Each step of the previous construction is guaranteed by a property of the logic ⊗-L. These properties, which are ulti-
mately used to produce the ontology OP , are described next.

The initialization property (Pini)

The logic ⊗-L has the initialization property if for every concept C , individual name e, and u ∈ Σ∗
0 there is an 

ontology OC(e)=u such that for every model I of OC(e)=u it holds that CI (eI) ∈ Enc(u).
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Assume now that ⊗-L satisfies Pini . Then, to initialize the search tree, we can set the values of V and W at e0 to valid 
encodings of v1 and w1, respectively, and the value of M to an encoding of uε . Moreover, we need that M+ encodes u+
and every V i and W i encodes the word vi and wi , respectively, for every i ∈N . We thus define the ontology

OP,ini := OM(e0)=uε ∪OM+(e0)=u+ ∪OV (e0)=v1 ∪OW (e0)=w1 ∪
n⋃

i=1

(OV i(e0)=vi ∪OW i(e0)=wi ).

This is an abstract version of the axioms (1) presented in Section 3.1 for Π-IAL= . Note that there we had u+ = ε, and thus 
the concept name M+ was not needed.

The successor property (P→)

The logic ⊗-L has the successor property if for all role names r there is an ontology O∃r such that for every 
model I of O∃r and every x ∈ ΔI there is a y ∈ ΔI with rI(x, y) = 1.

If a logic satisfies this property, then the ontology

OP,→ :=
⋃
i∈N

O∃ri

ensures the existence of an ri -successor with value 1 for every node of the search tree and every i ∈ N , corresponding to 
the ri-connections in the canonical model. For our initial example of Π-IAL= , this task was achieved by the axioms in (3).

The concatenation property (P◦)

The logic ⊗-L has the concatenation property if for all words u ∈ Σ∗
0 , and concepts C and Cu , there is an ontology 

OC◦u and a concept name DC◦u such that for every model I of OC◦u and every x ∈ ΔI , if CI
u (x) ∈ Enc(u) and 

CI(x) ∈ Enc(u′) for some u′ ∈ {ε} ∪ ΣΣ∗
0 , then DI

C◦u(x) ∈ Enc(u′u).

The goal of this property is to ensure that at every node where V I(x) ∈ Enc(u) for some u ∈ {ε} ∪ ΣΣ∗
0 , and 

CI
vi

(x) ∈ Enc(vi), then DI
V ◦vi

(x) ∈ Enc(uvi), and similarly for W , wi and M, u+ . Thus, we define the ontology

OP,◦ :=
n⋃

i=1

(OV ◦vi ∪OW ◦wi ∪OM◦u+).

To simplify the notation, we use the concept names V i, W i, M+ instead of Cvi , C wi , Cu+ in this ontology. This corresponds 
to the axioms given for Π-IAL= in (2). Note that by construction, the values of V I(x), W I(x), and MI(x) should always 
be encodings of words from {ε} ∪ ΣΣ∗

0 .

3.2.1. The transfer property (P�)

The logic ⊗-L has the transfer property if for all concepts C, D and role names r there is an ontology O
C

r�D
such 

that for every model I of O
C

r�D
and every x, y ∈ ΔI , if rI(x, y) = 1 and CI(x) ∈ Enc(u) for some u ∈ Σ∗

0 , then 
DI(y) ∈ Enc(u).

To ensure that the values of enc(uε · u+|ν|), enc(u+), enc(vνi), and enc(v j) for every j ∈N are transferred from x to the 
ri-successor yi for every i ∈N , we use the ontology

OP,� :=
⋃
i∈N

O
D M◦u+

ri�M
∪O

M+
ri�M+

∪O
D V ◦vi

ri�V
∪O

DW ◦wi

ri�W
∪

⋃
i, j∈N

O
V j

ri�V j
∪O

W j
ri�W j

.

This was accomplished by the Π-IAL=-axioms in (4).
As argued before, if we combine these four properties, then we obtain the canonical model property.
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Theorem 12. Let Enc be a valid encoding function for ⊗. If the logic ⊗-L satisfies Pini , P→ , P◦ , and P� , then it also satisfies P� .

Proof. We show that the ontology OP := OP,ini ∪ OP,◦ ∪ OP,→ ∪ OP,� satisfies the conditions of P� . For a model I
of OP , we construct the function g: N ∗ → ΔI inductively as follows.

We first set g(ε) := eI0 . The fact that I is a model of OP,ini implies that V I(g(ε)) = V I(eI0 ) ∈ Enc(v1), and thus 
V I(g(ε)) ∼ enc(v1) = V IP (ε), and likewise for W , M , M+, V i , and W i for all i ∈N .

Let now ν be such that g(ν) has already been defined, V I(g(ν)) ∼ enc(vν), and V I
i (g(ν)) ∼ enc(vi). Since Enc is a 

valid encoding function and by the definition of ∼, we know that V I(g(ν)) ∈ Enc(vν) and V I
i (g(ν)) ∈ Enc(vi) hold. Thus, 

from the fact that I is a model of OP,◦ we infer that DI
V ◦vi

(g(ν)) ∈ Enc(vνi). Since I satisfies OP,→ , for each i ∈ {1, . . . , n}
there must be an element yi ∈ ΔI with rIi (g(ν), yi) = 1. Define now g(νi) := yi . The restrictions of OP,� ensure that 
V I(g(νi)) ∼ DI

V ◦vi
(g(ν)) ∼ V IP (νi) and V I

i (g(νi)) ∼ V IP
i (νi) for all i ∈N , and analogously for W , W i and M , M+ . �

We now describe how the property P� can be used to prove undecidability of ⊗-L. Recall that the idea is to add a set 
OV �=W of axioms (as in (5)) to OP so that every model I is restricted to satisfy V I(g(ν)) � W I(g(ν)) for every ν ∈ N ∗ , 
thus obtaining an ontology that is consistent if and only if P has no solution. More formally, we have to show that (i) every 
model of OP ∪ OV �=W witnesses the non-existence of a solution for P , and (ii) if P has no solution, then we can find a 
model of OP ∪OV �=W . Part (i) uses the fact that every model of OP encodes the canonical model by P� . For part (ii), the 
idea is to show that IP can be extended to a model of OP ∪ OV �=W . However, for this to work, IP has to be a model 
of OP in the first place.

For the rest of this section, we thus assume that IP can actually be extended to a model of OP ; while OP might define 
additional concept names, it should not contradict the information about V , W , M, . . . represented by IP . It is important 
to keep in mind for the subsequent sections that this constitutes an additional condition that has to be verified before we 
can show undecidability of a given fuzzy DL ⊗-L. We also assume that ⊗-L satisfies P� , and for a given model I of OP , 
g denotes the function mapping the nodes of IP to elements of ΔI given by the property. In Section 3.3, we show that 
these assumptions actually hold for a variety of fuzzy description logics.

Recall that the key to showing undecidability of ⊗-L is to be able to express the restriction that V and W encode 
different words at every node ν ∈ N ∗ of the search tree. Since Enc is a valid encoding function and the concept name M
encodes the word uε · u+|ν| at every ν ∈ N ∗ , it suffices to check whether, for all ν ∈ N ∗ , either (V → W )IP (ν) ≤ MIP (ν)

or (W → V )IP (ν) ≤ MIP (ν) holds (see Condition (c) of Definition 11).

The solution property (P �=)

If the logic ⊗-L satisfies P� with OP , and IP can be extended to a model of OP , then ⊗-L has the solution 
property if there is an ontology OV �=W such that the following conditions are satisfied:

1. For every model I of OP ∪OV �=W and every ν ∈N ∗ ,

min
{

V I(
g(ν)

) ⇒ W I(
g(ν)

)
, W I(

g(ν)
) ⇒ V I(

g(ν)
)} ≤ MI(

g(ν)
)
.

2. If for every ν ∈N ∗ we have

min
{

V IP (ν) ⇒ W IP (ν), W IP (ν) ⇒ V IP (ν)
} ≤ MIP (ν),

then IP can be extended to a model of OP ∪OV �=W .

Notice that for any instance P of the PCP, the ontologies OP and OV �=W are both finite. We now show that if a fuzzy 
DL satisfies this property, then consistency of ontologies is undecidable.

Theorem 13. If ⊗-L satisfies P �= , then P has a solution iff OP ∪OV �=W is inconsistent.

Proof. If OP ∪ OV �=W is inconsistent, then in particular no extension of IP can satisfy this ontology. By P �= , there is a 
ν ∈N ∗ such that

V IP (ν) ⇒ W IP (ν) > MIP (ν) and W IP (ν) ⇒ V IP (ν) > MIP (ν).

By the definition of IP and Condition (c) of Definition 11, we have vν = wν , and thus P has a solution.
For the converse direction, assume that OP ∪OV �=W has a model I . By P �= , for every ν ∈N ∗ we have

V I(
g(ν)

) ⇒ W I(
g(ν)

) ≤ MI(
g(ν)

)
or W I(

g(ν)
) ⇒ V I(

g(ν)
) ≤ MI(

g(ν)
)
.
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Fig. 3. The framework for showing undecidability of consistency in a fuzzy DL ⊗-L.

By P� , the definition of IP , and Condition (c) of Definition 11, it follows that vν �= wν . Since this holds for all ν ∈ N ∗ , we 
know that P has no solution. �

Fig. 3 informally depicts the relationships between all notions introduced in this section. The existence of a valid encod-
ing function is the basic condition for all our properties. The canonical model property is implied by the conjunction of the 
smaller properties. Finally, the solution property depends on the canonical model property and guarantees undecidability of 
consistency in the given logic ⊗-L.

3.3. First results

We use the properties of the previous section to show undecidability results for consistency in numerous fuzzy DLs. In 
Sections 3.4 and 3.5, we develop extensions of the framework to prove undecidability of this problem in a wider class of 
logics. The technical proofs of the following lemmata can be found in Appendix A.

The first step is to find a valid encoding function for our continuous t-norm ⊗. We assume in the following that ⊗
is not the Gödel t-norm. The reason for this is that our encoding function and the subsequent constructions depend on 
the choice of one component ((a, b), ⊗′) of ⊗ where ⊗′ is either Ł or Π. If ⊗ is different from the Gödel t-norm, such 
a component must exist by Theorem 2. It is important that the component that we choose remains fixed throughout the 
whole construction. In the case that ⊗′ = Ł, we denote our choice by Ł(a,b) , and similarly for ⊗′ = Π. Correspondingly, we 
denote the fuzzy description logic by Ł(a,b)-L or Π(a,b)-L.

We now use the chosen component to encode the words from Σ∗
0 . For u ∈ {0}∗ (in particular for u = ε) we always use 

the encoding Enc(u) := [b, 1], i.e. all values from the upper bound of our component to 1 are valid encodings for ε. For 
these words, we define enc(u) := b. For the remaining words u ∈ Σ∗

0 ΣΣ∗
0 , we use only a singleton set Enc(u) := {enc(u)}, 

where enc(u) depends on the chosen component. For the case of Π(a,b) , we define

enc(u) := σa,b
(
2−u) ∈ (a,b),

and for Ł(a,b) we use

enc(u) := σa,b(1 − 0.
←−u) ∈ (a,b).

Recall that we defined σa,b(x) := a + (b − a)x for all x ∈ [0, 1] (see Section 2).

Lemma 14. The functions Enc described above are valid encoding functions for t-norms of the form Π(a,b) or Ł(a,b) .

Variants of these encoding functions and words uε , u+ have been used before to show undecidability of fuzzy description 
logics based on the product [18] and Łukasiewicz [19] t-norms.

We now present several results about instances of ⊗-L that satisfy the properties introduced in the previous section. 
Recall that one precondition for the property P �= is that IP can be extended to a model of OP . Thus, in the following 
constructions of OC(e)=u , O∃r , OC◦u , and O

C
r�D

, it is important keep in mind that the resulting ontology OP (as defined 
in the previous section) should not contradict information in IP . However, we are allowed to define values for auxiliary 
concept names like D V ◦vi .

First, we present several cases for ⊗-L in which the initialization property holds. For the case of the logic Ł(0,b)-NEL, 
note first that for every x ∈ (0, b] we have that x ⇒ 0 = b − x; that is, the residual negation yields a “local involutive 
negation” over the interval [0, b]. Thus, the concept �C is interpreted as the local involutive negation of the interpretation 
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of C , whenever the latter is in this interval. In this logic, we use the short-hand C ⇀ D for �(C ��D) to express a function 
similar to the residuum. In fact, for all x, y ∈ [0, 1], we have

(
x ⊗ (y ⇒ 0)

) ⇒ 0 =
{

y if y < b ≤ x
b − x + y if y < x < b
1 otherwise.

In particular, (C ⇀ D)I(x) = (C → D)I(x) holds whenever DI (x) < b for an interpretation I and x ∈ ΔI .

Lemma 15. For every continuous t-norm ⊗, the logics ⊗-EL= , ⊗-ELC≥ , and Ł(0,b)-NEL satisfy Pini .

It turns out that the successor and concatenation properties hold for all logics ⊗-L that we consider. In particular, the 
successor property only needs the constructors � and ∃ and the restriction to witnessed models, whereas the concatenation 
property only requires the constructors � and �.

Lemma 16. For every continuous t-norm ⊗, the logic ⊗-EL satisfies P→ .

For the concatenation property, it is necessary to have non-idempotent elements. Since we have assumed at the begin-
ning of this section that ⊗ is not the Gödel t-norm, this restriction is always satisfied.

Lemma 17. For every continuous t-norm ⊗ except the Gödel t-norm, the logic ⊗-EL satisfies P◦ .

This leaves only one property required for the canonical model property, namely the transfer property. We prove in 
Appendix A that this can be satisfied using existential restrictions in combination with either value restrictions, involutive 
negation, or residual negation under Łukasiewicz semantics.

Lemma 18. For every continuous t-norm ⊗ except the Gödel t-norm, the logics ⊗-AL, ⊗-ELC , and Ł(0,b)-NEL satisfy P� .

Together with Theorem 12, the previous lemmata show that the logics ⊗-AL= , ⊗-ELC≥ , and Ł(0,b)-NEL have the 
canonical model property. We will see that the last two logics also satisfy the solution property, while for ⊗-AL= we 
additionally need the implication constructor.

Recall that a necessary condition for the solution property is that the canonical model IP can be extended to a model 
of the ontology OP constructed from the individual parts in Lemmata 15 to 18. It is a simple task to verify that this holds 
in all the cases described above. We only need to assume that a unique new concept name is used for every auxiliary 
concept name appearing in the different ontologies, such as D V ◦vi . In fact, the values of these auxiliary concept names at 
each node ν are uniquely determined by the values of the concept names V , W , V i, W i, M, M+ at ν . Moreover, since every 
ν has exactly one ri -successor with degree greater than 0 for every i ∈N , it follows that IP can be extended to a witnessed
model of OP .

Lemma 19. Let ⊗ be any continuous t-norm except the Gödel t-norm. If one of the logics ⊗-IEL= , ⊗-ELC≥ , or Ł(0,b)-NEL satis-
fies P�with OP and IP can be extended to a model of OP , then this logic also satisfies P �= .

This concludes the first round of undecidability proofs using the framework presented in Section 3.2. Using Theorem 13, 
we get the following results.

Corollary 20. For every continuous t-norm ⊗ except the Gödel t-norm, ontology consistency is undecidable in the logics ⊗-IAL= , 
⊗-ELC≥ , and furthermore it is undecidable for Ł(0,b)-NEL.

Table 4 summarizes the results and distinguishes between classical ontologies, inequality assertions, and equality asser-
tions on the vertical axis, and different combinations of constructors on the horizontal axis. An entry “⊗” stands for every 
continuous t-norm except the Gödel t-norm. Note that Ł-ELC is as expressive as Ł-NEL= Ł(0,1)-NEL, and thus consistency 
Ł-ELC is also undecidable. This already subsumes the previously known undecidability results for consistency in

• Π-ALCf,≥ with strict GCIs [16],
• Π(0,b)-IALf,= [18], and
• Ł-ELCf,≥ [19].

We have strengthened the first and the last result to cover all fuzzy DLs ⊗-ELC≥ with any continuous t-norm except the 
Gödel t-norm. Moreover, consistency in Ł-ELC is undecidable even for classical ontologies. The second result was simi-
larly extended to cover (almost) all continuous t-norms. Interestingly, all logics considered so far are fuzzy extensions of 
classical ALC , and indeed equivalent to ALC when restricted to two truth values.
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Table 4
The undecidability results of Corollary 20.

NEL IAL ELC
Classical Ł(0,b) Ł(0,b) Ł
≥ Ł(0,b) Ł(0,b) ⊗
= Ł(0,b) ⊗ ⊗

We will show in Section 4 that ontology consistency is decidable in ⊗-IALf,≥ if ⊗ does not start with Łukasiewicz. 
Furthermore, for the Gödel t-norm, consistency even in G-IALC f,= is decidable [21]. Together with Corollary 20, this 
already covers many fuzzy description logics. Only two gaps remain for which the decidability status of consistency is still 
open.

The first gap concerns the fuzzy DLs above ⊗-NEL= , where ⊗ does not start with Łukasiewicz. For such t-norms, we 
show in Section 3.5 that consistency is undecidable for ⊗-IEL= . Unfortunately, we must leave open the decidability status 
of consistency in ⊗-NEL= and ⊗-NAL= if ⊗ does not start with Łukasiewicz.

The second gap is about fuzzy DLs ⊗-ELC with involutive negation over classical ontologies. In addition to the 
Łukasiewicz t-norm, in Section 3.4 we show that consistency is also undecidable for the product t-norm. However, apart 
from the fundamental t-norms, not much is known about the decidability of consistency in ⊗-ELC .

3.4. The case of Π-ELC

To prove that consistency in Π-ELC is also undecidable, we extend the framework of Section 3.2 by allowing a differ-
ent version of the PCP to be reduced. In this section, the compared words do not start with v1/w1, but with the empty 
word. More formally, we consider a solution to an instance P = {(v1, w1), . . . , (vn, wn)} of the PCP to be a non-empty 
sequence ν = i1 . . . ik ∈ {1, . . . , n}+ for which vi1 . . . vik = wi1 . . . wik holds. Correspondingly, we redefine here the abbrevi-
ations vν := vi1 . . . vik and wν := wi1 . . . wik . We call the canonical model resulting from these modified definitions IP ′ . 
It can be defined just as in Section 3.2, but the values it holds are now different. This also leads to a modified canonical 
model property P′� , which is defined exactly as before, except that IP is replaced by IP ′ . Observe that Enc, as defined in 
Section 3.3 for Π(a,b) , remains a valid encoding function, and we can use uε = 1 and u+ = ε as before.

Unfortunately, we cannot show the initialization property, and instead directly construct an ontology for the canonical 
model property. The full construction is presented in Appendix A (p. 49).

Lemma 21. The logic Π-ELC satisfies P′� .

As before, it is easily verified that IP ′ can be extended to a witnessed model ontology constructed in this proof. In the 
light of the different version of the PCP we consider here, it is clear that we also need a different solution property. It has 
to be ensured that V and W encode different words at every node of the search tree except the root node, where they both 
encode ε. We denote by P′�= the solution property in which N ∗ has been replaced by N+ to reflect this change. It is easy 
to see that Theorem 13 also holds under these changes.

Lemma 22. The logic Π-ELC satisfies P′�= .

We thus obtain the following result.

Corollary 23. Ontology consistency in Π-ELC is undecidable.

The proofs of undecidability for both Ł-ELC and Π-ELC use the fact that one can construct the constant 1/2 using the 
axiom 〈H ≡ ¬H〉. We conjecture that these proofs can be lifted to ⊗-ELC , where ⊗ is any continuous t-norm for which 1/2
is not an idempotent element. This condition ensures that 1/2 lies in a component of norm that uses either the Łukasiewicz 
or the product t-norm. Starting from this value, one can construct encodings of the words vi and wi . However, the encoding 
has to be adapted since 1/2 need not lie in the exact center of the component interval.

3.5. The case of ⊗-IEL=

We have shown so far that for every continuous t-norm ⊗, except the Gödel t-norm, ⊗-IEL= satisfies the properties Pini , 
P◦ , and P→ . By Theorem 12, we need only to show the transfer property to know that these logics satisfy P� and, due 
to Lemma 19, that consistency is undecidable. Rather than showing that ⊗-IEL= satisfies P� , in this section we strengthen 
Theorem 12 by showing that a weaker property, which we call the simultaneous transfer property, together with the other 
properties, implies the canonical model property. This extends our framework by another method to verify P� . We then 
show that for every continuous t-norm except the Gödel t-norm ⊗-IEL satisfies the simultaneous transfer property.
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Fig. 4. A new way to prove the canonical model property.

Recall that the transfer property ensures that it is possible to transfer a membership degree from any domain element 
to all its r-successors. In the reduction from the PCP, this property is used to copy several degrees. It thus makes sense to 
allow for all these degrees to be transferred simultaneously, as described in the following property.

Simultaneous transfer property (P→�)

The logic ⊗-L has the simultaneous transfer property if for every finite set {(C1, D1), . . . , (Ck, Dk)} of pairs of 
concept names there is an ontology O(C j)�(D j) such that for every model I of O(C j)�(D j) and every x ∈ ΔI , 
if for every j, 1 ≤ j ≤ m, there is a u j ∈ Σ∗

0 such that CI
j (x) ∈ Enc(u j) and u1 /∈ {0}∗ , then there exists a y ∈ ΔI

such that for all j, 1 ≤ j ≤ m, it holds that DI
j (y) ∈ Enc(u j).

Given an instance P of the PCP with words (v1, w1), . . . , (vn, wn), we can assume w.l.o.g. that v1 �= ε, and thus v1 /∈ {0}∗ . 
Then, we can choose for every i, 1 ≤ i ≤ n, the set{

(V 1, V 1), . . . , (Vn, Vn), (W1, W1), . . . , (Wn, Wn), (M+, M+), (D M◦u+ , M), (D V ◦vi , V ), (DW ◦wi , W )
}
,

which ensures the existence of the i-th successor of every node; i.e., that the concatenation with the pair (vi, wi) is 
considered. The last three pairs are used to transfer the computed concatenations to the i-th successors, while the remaining 
pairs ensure that all constants are available for the next round of concatenations. We then define the ontology OP,

→� as the 
union of the resulting ontologies O

(C (i)
j )�(D(i)

j )
to transfer all the needed values to the correct successors.

It is easy to see that any logic that satisfies P→ and P� must also satisfy P→� . Indeed, P→ ensures that there is an 
r-successor with degree 1, and P� states that each CI

j (x) can be copied to DI
j (y) if rI(x, y) = 1. Moreover, the ontology 

OP :=OP,
→� ∪OP,ini ∪OP,◦ satisfies the conditions in the definition of P� .

Theorem 24. If a logic ⊗-L satisfies the properties Pini, P◦ , and P→� , then it also satisfies P�.

Proof. The function g for a model I of OP can be constructed as in the proof of Theorem 12, with the exception that we 
define as g(νi) that element y ∈ ΔI whose existence is guaranteed by OP,

→� when we consider x = g(ν). �
Fig. 4 depicts the alternative way of showing undecidability using the simultaneous transfer property instead of the 

successor and transfer properties (cf. Fig. 3).

Lemma 25. For every continuous t-norm except the Gödel t-norm, the logic ⊗-IEL satisfies P→� .

Together with Theorem 24, this implies that ⊗-IEL= satisfies the canonical model property whenever ⊗ is not the 
Gödel t-norm.

It is also easy to see that IP can be extended to a model of the ontology OP constructed from the ontologies provided 
by the initialization, concatenation, and simultaneous transfer properties: as before, the values of the auxiliary variables are 
uniquely determined by the values of the concept names V , W , V i, W i at each node ν . By Lemma 19, we know that ⊗-IEL=
satisfies the solution property, which yields the final undecidability result of this paper.
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Corollary 26. For any continuous t-norm ⊗ except the Gödel t-norm, ontology consistency in ⊗-IEL= is undecidable.

4. Decidable fuzzy DLs

It remains to show the decidability results claimed in the previous section. We will prove that ontology consistency 
is decidable in ⊗-IALf,≥ if ⊗ has no zero divisors, i.e. it does not start with Łukasiewicz. We show this by means of a 
straightforward reduction of fuzzy to classical ontologies. We present this reduction for a much more expressive description 
logic, namely ⊗-SROIQ+

f,≥ , which extends ⊗-IALf,≥ by several concept and role constructors and complex role inclusion 
axioms.

Note that even in the classical case the syntax of SROIQ+ we introduce below leads to undecidability of consistency. 
Decidability is regained for SROIQ, which imposes several restrictions on the form of number restrictions and complex 
role inclusions [29,30]. However, our reduction also works for the more expressive logic and is easier to present without 
the restrictions of SROIQ.

4.1. Fuzzy SROIQ+

Formally, in addition to the syntax of ⊗-IALf,≥ , the fuzzy DL ⊗-SROIQ+
f,≥ allows the role constructors u (universal 

role), s− (inverse), and �s (residual negation) to build complex roles s from role names. An interpretation I is extended to 
complex roles as follows for all x, y ∈ ΔI :

• uI(x, y) = 1,

• (s−)I(x, y) = sI(y, x),

• (�s)I(x, y) = 
sI(x, y).

We also introduce the new concept constructors ∃s.Self f , {d} (nominal), C � D (disjunction), ≥n s.C (at-least restriction), 
and ≤n s.C (at-most restriction) for d ∈ NI , a complex role s, and n ∈ N. Moreover, complex roles are allowed in existential 
and value restrictions and role assertions. The new constructors are interpreted by an interpretation I as follows for all 
x ∈ ΔI :

• (∃s.Self)I(x) = sI(x, x),
• {d}I(x) = 1 if dI = x and 0 otherwise,
• (C � D)I(x) = CI(x) ⊕ DI(x),
• (≥n s.C)I(x) = sup{p ∈ [0, 1] | |{y ∈ ΔI | sI(x, y) ⊗ CI(y) ≥ p}| ≥ n},

• (≤n s.C)I(x) = sup{p ∈ [0, 1] | |{y ∈ ΔI | sI(x, y) ⇒ 
CI(y) < p}| ≤ n}.

The last two expressions are equivalent to the semantics of number restrictions used in [31]. Notice that whenever ⊗ has 
no zero divisors, the residual negation 
 is the Gödel negation (see Lemma 4) and for every interpretation I and x ∈ ΔI , it 
holds that

(≤n s.C)I(x) = (
�

(≥(n + 1) s.C
))I

(x) =
{

1 if |{y ∈ ΔI | sI(x, y) ⊗ CI(y) > 0}| ≤ n,

0 otherwise.

This means that under such a t-norm at-most restrictions are always crisp.
We additionally allow complex role inclusions to occur in ontologies, which are axioms of the form 〈s1 ◦ · · · ◦ sn � t ≥ p〉, 

where n ∈N, s1, . . . , sn, t are complex roles, and p ∈ [0, 1]. An interpretation I satisfies this role inclusion if

(
sI1 (x0, x1) ⊗ · · · ⊗ sIn (xn−1, xn)

) ⇒ tI(x0, xn) ≥ p

for all x0, . . . , xn ∈ ΔI . If n = 0, then we write 〈id � t ≥ p〉 and the semantics simplifies to tI (x0, x0) ≥ p for all x0 ∈ ΔI .
Those axioms of classical SROIQ that are not included in SROIQ+ can be simulated as follows:

• negated role assertions: 〈(d, e) :�s〉;
• inequality assertions between individual names: 〈{d} � �{e}〉;
• transitivity: 〈s ◦ s � s〉;
• symmetry: 〈s � s−〉;
• asymmetry: 〈s � �s−〉;
• reflexivity: 〈id � s〉;
• irreflexivity: 〈id � �s〉;
• role disjointness: 〈s � �t〉.
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4.2. The crisp model property

The undecidability results of Section 3 all rely heavily on the fact that one can design ontologies that allow only models 
with infinitely many truth values. We shall see that one cannot construct such an ontology in ⊗-SROIQ+

f,≥ if ⊗ has no 
zero divisors. It is even true that all consistent ⊗-SROIQ+

f,≥-ontologies have a crisp model; that is, a model using only 
the values 0 and 1.

Definition 27. A fuzzy DL ⊗-L has the crisp model property if every ontology that is consistent in ⊗-L has a crisp model.

As mentioned in the beginning of this section, we now consider only continuous t-norms without zero divisors. Our 
main result is based on the function 1 that maps fuzzy truth values to crisp truth values by defining, for all x ∈ [0, 1],

1(x) =
{

1 if x > 0
0 if x = 0.

Since ⊗ is a continuous t-norm without zero divisors, it follows from Lemma 4 that 1(x) = 
 
 x for all x ∈ [0, 1]. This 
function is compatible with the residual negation, the t-norm, the corresponding t-conorm, implication, and suprema. It is 
also compatible with minima, provided that they exist. The proofs of the following lemmata can be found in Appendix B.

Lemma 28. Let ⊗ be a continuous t-norm without zero divisors. For all x, y ∈ [0, 1] and all non-empty sets X ⊆ [0, 1] it holds that

1. 1(
x) = 
1(x),
2. 1(x ⊗ y) = 1(x) ⊗ 1(y),
3. 1(x ⊕ y) = 1(x) ⊕ 1(y),
4. 1(x ⇒ y) = 1(x) ⇒ 1(y),
5. 1(sup{x | x ∈ X}) = sup{1(x) | x ∈ X}, and
6. if min{x | x ∈ X} exists, then 1(min{x | x ∈ X}) = min{1(x) | x ∈ X}.

Notice that in general the function 1 is not compatible with the infimum. Consider for example the set X = { 1
n | n ∈ N}. 

Then inf X = 0 and hence 1(inf X) = 0, but inf{1( 1
n ) | n ∈ N} = inf{1} = 1. However, under witnessed model semantics all 

infima needed to interpret universal restrictions are minima, which eliminates this problem.
We use Lemma 28 to construct a crisp interpretation from a fuzzy interpretation by simply applying the function 1. 

Given a (witnessed) interpretation I , we construct the interpretation J over the domain ΔJ := ΔI by defining, for all 
concept names A ∈ NC , role names r ∈ NR , individual names d ∈ NI , and x, y ∈ ΔI ,

AJ (x) := 1
(

AI(x)
)
, rJ (x, y) := 1

(
rI(x, y)

)
, and dJ := dI .

We now show that J preserves the compatibility shown in Lemma 28 w.r.t. complex roles and concepts.

Lemma 29. For all complex concepts C , complex roles s, and x, y ∈ ΔI , it holds that CJ (x) = 1(CI(x)) and sJ (x, y) = 1(sI(x, y)).

With the help of this lemma, we can show that the crisp interpretation J satisfies all the axioms that are satisfied by I .

Lemma 30. If I is a witnessed model of an ontology O in ⊗-SROIQ+
f,≥ , then J is also a witnessed model of O.

Proof. Observe first that axioms with value p = 0 are trivially satisfied by J . Let now 〈e :C ≥ p〉 be a concept assertion in O
with p ∈ (0, 1]. Since it is satisfied by I , we have CI (eI) ≥ p > 0. Lemma 29 yields CJ (eJ ) = 1 ≥ p. The same argument 
can be used for role assertions.

Let now 〈C � D ≥ p〉 be a GCI in O with p ∈ (0, 1] and consider any x ∈ ΔI . As the GCI is satisfied by I , we have 
CI(x) ⇒ DI(x) ≥ p > 0. By Lemmata 28 and 29, we obtain

CJ (x) ⇒ DJ (x) = 1
(
CI(x)

) ⇒ 1
(

DI(x)
) = 1

(
CI(x) ⇒ DI(x)

) = 1 ≥ p,

and thus J satisfies the GCI.
A similar argument shows that J satisfies all complex role inclusions in O. �
Thus, by applying 1 to the truth degrees we obtain a crisp model J from any fuzzy model I of a ⊗-

SROIQ+
f,≥-ontology O.

Theorem 31. If ⊗ is a continuous t-norm without zero divisors, then the logic ⊗-SROIQ+
f,≥ has the crisp model property.

In the next section, we use this result to show that ontology consistency in sublogics of ⊗-SROIQ+
f,≥ can be decided 

using classical reasoning algorithms.
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4.3. Consistency

For a given ontology O in ⊗-SROIQ+
f,≥ , we define crisp(O) to be the classical SROIQ+-ontology that is obtained 

from O by replacing all the non-zero truth values appearing in the axioms by 1. Axioms with value 0 can be removed 
without affecting the semantics of O. For example, for the ontology

O = {〈a :C ≥ 0.2〉, 〈(a,b) :�r ≥ 0.8
〉
, 〈C � D ≥ 0.5〉, 〈r ◦ s � s ≥ 0.1〉}

we obtain

crisp(O) = {〈a :C〉, 〈(a,b) :�r
〉
, 〈C � D〉, 〈r ◦ s � s〉}.

Lemma 32. Let ⊗ be a continuous t-norm without zero divisors, O be a ⊗-SROIQ+
f,≥-ontology and I be a crisp interpretation. Then 

I is a model of O iff it is a model of crisp(O).

Proof. In the proof of both directions we can ignore axioms with truth value 0. Assume that crisp(O) has a model I
and let 〈C � D ≥ p〉 be an axiom from O with p ∈ (0, 1]. Since I is a model of crisp(O), it must satisfy 〈C � D〉; that is, 
CI(x) ⇒ DI(x) ≥ 1 ≥ p holds for all x ∈ ΔI . Thus, I satisfies 〈C � D ≥ p〉. The proof that I satisfies assertions and complex 
role inclusions is analogous. Hence I is also a model of O.

For the other direction, assume that I satisfies a GCI 〈C � D ≥ p〉 from O with p ∈ (0, 1]. As I is a crisp interpretation, 
we have CI(x) ⇒ DI(x) ∈ {0, 1} for all x ∈ ΔI . Together with CI(x) ⇒ DI(x) ≥ p > 0, this implies that CI (x) ⇒ DI(x) = 1, 
and thus I satisfies the crisp GCI 〈C � D〉. The same argument can be used for complex role inclusions and assertions. 
Thus I is also a model of crisp(O). �

In particular, a ⊗-SROIQ+
f,≥-ontology O has a crisp model iff crisp(O) has a crisp model. Together with Theorem 31, 

this shows that a ⊗-SROIQ+
f,≥-ontology O is consistent iff crisp(O) has a crisp model. The latter is a classical reasoning 

problem.
Consistency in classical SROIQ+ is undecidable in general, as the number restrictions and role axioms we in-

troduced are too powerful. However, one can use reasoning algorithms for any sublogic of SROIQ+ , for example 
SROIQ or SHOI , to decide consistency of ontologies in the corresponding fuzzy DL over a t-norm without zero di-
visors. For example, reasoning with GCIs in crisp SHOI is known to be ExpTime-complete [32], while in SROIQ it is
2-NExpTime-complete [30].

Corollary 33. If ⊗ is a continuous t-norm without zero divisors, then the complexity of deciding consistency in any sublogic of 
⊗-SROIQ+

f,≥ is the same as in the underlying classical description logic.

This result is different from previous work on reducing reasoning in finite-valued fuzzy DLs to classical reasoning [6,
31,33,34]. There, the authors simulate fuzzy concepts by using linearly many cut-concepts and -roles of the form A p and 
rp for A ∈ NC , r ∈ NR , and p ∈ [0, 1]. They then recursively translate the fuzzy ontology into a classical one, which may 
be exponentially larger. In contrast, our reduction shows that infinite-valued fuzzy DLs of the form ⊗-SROIQ+

f,≥ for a 
t-norm ⊗ without zero divisors are too weak to support actual fuzzy consistency reasoning—one can simply remove all 
fuzzy values from the input ontology. However, this is not true for other reasoning problems supported by the algorithms 
in [6,31,33,34] (see Section 5.3).

Theorem 31 and Lemma 32 still hold when we restrict the semantics to the less expressive logics ⊗-SHOf,≥ , or ⊗-SI f,≥ . 
The crisp DLs SHO and SI are known to have the finite model property [35,36], and ⊗-SHOf,≥ and ⊗-SI f,≥ inherit the 
finite model property from their crisp ancestors.

Theorem 34. If ⊗ is a continuous t-norm without zero divisors, then the logics ⊗-SHOf,≥ and ⊗-SI f,≥ and their sublogics have the 
finite model property.

At this point, we want to correct a typing error in [15, Theorem 3.8]. There, it appears to be shown that Π-AL≥ does 
not have the finite model property, contradicting the above result. However, the assertion 〈a : A ≥ 0.5〉 used in the proof 
must in fact be 〈a : A = 0.5〉 in order for the arguments to work.

5. Discussion and related work

Table 5 summarizes the results obtained in Sections 3 and 4. As in Table 4, columns describe the class of logical con-
structors allowed in the logic, while the rows denote the types of assertions allowed: classical, inequality assertions, or 
equality assertions. The content of a cell then shows the class of continuous t-norms for which consistency has been shown 
to be undecidable, where ⊗ stands for any non-idempotent t-norm; that is, any t-norm except the Gödel t-norm. Thus, 
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Table 5
Undecidability of consistency in fuzzy description logics.

NEL NAL IEL SROIQ ELC IALC
Classical Ł(0,b) Ł(0,b) Ł(0,b) Ł(0,b) Π, Ł Π, Ł(0,b)

≥ Ł(0,b) Ł(0,b) Ł(0,b) Ł(0,b) ⊗ ⊗
= Ł(0,b) Ł(0,b) ⊗ ⊗ ⊗ ⊗

for instance, the upper–left cell states that Ł(0,b)-NEL is undecidable. Cells with gray background mark logics for which 
decidability of consistency has been fully characterized, either between t-norms with or without zero divisors, or between 
the Gödel t-norm and all other t-norms. For the other logics, only the stated undecidability results are known. Regarding the 
Gödel t-norm, one could think that papers like [6,31] show decidability even for the very expressive fuzzy DL G-SROIQf,= . 
However, these papers explicitly restrict reasoning to a finite set of truth values. Thus, decidability of consistency for the 
Gödel t-norm is only known up to G-IALC f,= [21]. However, we strongly believe also G-SROIQf,= to have a decidable 
consistency problem. Notice that we have shown undecidability using only classical ontologies, while the decidability results 
hold also in the presence of fuzzy GCIs (f). Thus, the results depicted in Table 5 are independent of whether we use crisp 
or fuzzy GCIs.

In the rest of this section, we present a short survey on other kinds of reasoning problems in fuzzy DLs. We start by 
describing the known results regarding reasoning w.r.t. general models, i.e., removing the restriction to witnessed models. 
Afterwards, we briefly discuss the other standard reasoning tasks in fuzzy DLs, namely satisfiability, subsumption, and 
instance checking.

5.1. General models

The general framework for proving undecidability presented in Section 3 is independent of the class of models used for 
reasoning, and hence applies also for reasoning w.r.t. general models. However, when instantiating the general framework 
to specific fuzzy DLs, we have used the properties of witnessed models to prove the successor property. Indeed, in the 
proof of Lemma 16, we use that if (∃r.�)I (x) = 1 for some model I and x ∈ ΔI , then there must exist a y ∈ ΔI such 
that rI(x, y) = 1, which cannot be guaranteed for general models. If this assumption is dropped, it is possible to modify the 
fuzzy DL in question to show (a variant of) the successor property.

First, one can see from the proof of Lemma 16 that it is only necessary to witness existential restrictions of the 
form ∃r.�. In [22], interpretations that fulfill the witnessing condition only for this kind of existential restrictions are 
called �-witnessed. Restricting the semantics to �-witnessed interpretations thus also leads to undecidability in the logics 
of Corollaries 20 and 23. A second possibility is to allow axioms of the form crisp(r), asserting that the role name r can 
take only the values 0 or 1. Indeed, in such a logic one can use the two axioms crisp(r) and ∃r.� to show the successor 
property. The corresponding results have also been shown in [22].

Consider now a continuous t-norm ⊗ that has a component ((a, b), Ł) or ((a, b), Π) with b < 1. Using this component for 
the encoding function, it is possible to relax the successor property to only create an r-successor with value ≥ b rather than 
= 1, similar to the construction used in Section 3.5. Indeed, if we modify the successor and the transfer properties to say 
rI(x, y) ≥ b instead of rI (x, y) = 1, we can show a result analogous to Theorem 12 to obtain the canonical model property. 
For the successor property, we can still use the axiom ∃r.� since for every model I of this axiom and every x ∈ ΔI there 
must be at least one y ∈ ΔI such that rI(x, y) ≥ b, as the supremum of all these values is 1 (recall the semantics of ∃ from 
Definition 8). For the transfer property, it is often irrelevant whether rI (x, y) has the value 1 or any value ≥ b since both 
behave in the same way when combined with encodings in the interval [a, b] using ⊗ and ⇒. Unfortunately, under the 
mentioned modification we cannot show the transfer property for ⊗-ELC anymore. The reason is that we cannot guarantee 
that the involutive negation remains in the interval [a, b], and hence rI (x, y) need not behave as a neutral element when 
computing its t-norm with (¬D)I (y) (see the proof of Lemma 18).

For the special case of Ł-NEL, it is also possible to show undecidability of consistency w.r.t. general models [37], but this 
requires greater modifications. The main idea is not to encode the words u ∈ Σ+ by single values, but to allow a certain 
error bound in the encoding. Thus, the encoding Enc(u) of each u ∈ Σ+ is a subinterval of [0, 1]. To obtain a valid encoding 
function, one has to ensure that intervals encoding different words do not overlap. Since the axiom ∃r.� can only ensure, 
for each p < 1, the existence of an r-successor with value greater than or equal to p, the transfer of values using the axioms 
from the proof of Lemma 18 might incur some additional error. By always choosing p large enough, one can ensure that 
the resulting value stays inside the prescribed error bounds. A final difference is that for the solution property, instead of 
a single value M one has to use two values that keep track of the length of the words vν and wν encoded in V and W , 
respectively. For further details, see [37].

For the special case of ⊗-IEL= treated in Section 3.5, the restriction to witnessed models is fundamental in the proofs 
of the simultaneous transfer property (Lemmata 36 and 37). In this case, undecidability can still be shown if roles can be 
restricted to be crisp; unfortunately, the same is not true if we restrict only to �-witnessed models, or to t-norms containing 
a component ((a, b), Ł) or ((a, b), Π) with b < 1.

For the decidability results from Section 4, the restriction to witnessed models was only used in the proof of Lemma 29
to show that the semantics of value restrictions ∀s.C is compatible with the function 1. From this it is easy to see that, 
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under general model semantics, the result of Corollary 33 still holds for all sublogics of ⊗-SROIQ+
f,≥ that do not have 

the ∀ constructor [38].
Furthermore, the decidability result for G-IALC f,= also holds under general model semantics [39].

5.2. Satisfiability and local consistency

Given an ontology O without assertions, a concept C , and a degree p > 0, we say that C is p-satisfiable w.r.t. O if 
there is a model I of O where CI(x) ≥ p holds for some x ∈ ΔI . The undecidability results for consistency of classical
ontologies (the first row of Table 5) immediately carry over to this problem since the reduction uses only one individual 
name and consistency of a finite set O of GCIs together with the crisp assertions 〈e0 :C1〉, . . . , 〈e0 :Cn〉 is equivalent to the 
1-satisfiability of the concept C1 � · · · � Cn w.r.t. O.

For the other undecidability results of Section 3, such an adaptation is not so straightforward. The reason is that several 
concept names need to be initialized to different values. However, this shows undecidability of local consistency [40,41], 
which is a decision problem between concept satisfiability and ontology consistency that asks for a model with an individual 
that has different degrees for several concepts at the same time. In the presence of fuzzy GCIs, at least the consistency of 
inequality assertions 〈e0 :C1 ≥ p1〉, . . . , 〈e0 :Cn ≥ pn〉 can be reduced to the 1-satisfiability of a new concept name A w.r.t. 
the original GCIs and the axioms 〈A � C1 ≥ p1〉, . . . , 〈A � Cn ≥ pn〉. This shows that all undecidability results in the first row 
of Table 5 also apply to concept satisfiability w.r.t. classical ontologies. Similarly, the second row can be used to determine 
the decidability of concept satisfiability in the presence of fuzzy GCIs.

On the other hand, the decidability results of Section 4 also hold for concept satisfiability since C is p-satisfiable w.r.t. 
O iff O ∪ {〈a :C ≥ p〉} is consistent, where a is a fresh individual name. Furthermore, it follows from the construction of 
Section 4 that the best satisfiability degree of a concept C , i.e. the supremum over all p for which C is p-satisfiable, is always 
either 0 or 1 (for details, see [23]).

Also note that in the smaller logics ⊗-EL and ⊗-AL, both consistency and satisfiability are trivial problems since all 
ontologies written in these logics are consistent.

5.3. Subsumption and instance checking

Little is known about subsumption, another fundamental reasoning problem for fuzzy DLs, in the presence of GCIs. 
Formally, for p ∈ [0, 1], a concept C is p-subsumed by a concept D w.r.t. an ontology O if the fuzzy GCI 〈C � D ≥ p〉
is satisfied in every model of O. A related problem is to find the best subsumption degree of C and D w.r.t. O, i.e. the 
supremum over all p for which C is p-subsumed by D w.r.t. O.

Even though ⊗-SROIQ+
f,≥ has the crisp model property, p-subsumption in this logic cannot be decided using only 

crisp models. In fact, the GCI 〈� � A ≥ p〉 for p ∈ (0, 1) forces the best subsumption degree of � and A to be p, whereas �
is even 1-subsumed by A when only crisp models are considered. Thus, in every fuzzy DL of the form ⊗-Lf , p-subsumption 
cannot be decided using only crisp models. A similar example is used in [23] to show the same for all fuzzy DLs ⊗-L
where ⊗ has no zero divisors and L contains the residual negation. If ⊗ is the product t-norm, then p-subsumption cannot 
even be decided over the class of all finite models [23].

The listed negative results also hold for the related problem of deciding p-instances, i.e. whether an assertion 〈a :C ≥ p〉
holds in every model of a given ontology [23].

On the positive side, p-subsumption in G-EL can be decided in polynomial time in the size of the input ontology [5]. 
However, p-subsumption is co-NP-hard in ⊗-EL whenever ⊗ contains the Łukasiewicz t-norm [42].

5.4. Related work

Fuzzy description logics were first considered in [43], where a sublanguage of ALC was fuzzified using the so-called 
Zadeh semantics. This approach has its origin in fuzzy set theory [24] and uses the Gödel t-norm and t-conorm, but the 
S-implication ∼x ⊕ y rather than the residuum x ⇒ y. In fact, the first algorithms for deciding consistency and entailment 
in fuzzy variants of ALC were based on the Zadeh semantics [9,44,45]. Later, it was discovered that reasoning in this logic 
can be restricted to the finitely many values occurring in the input ontology (and their negations). Based on this idea, 
a reduction to reasoning in classical DLs was presented [7].

As later noticed by Hájek [28], all the previously developed tableau algorithms implicitly restricted reasoning to wit-
nessed models, without making this assumption explicit. In that paper, Hájek also introduced general t-norm based fuzzy 
semantics for fuzzy ALC and proved that 1-satisfiability and 1-subsumption under these semantics are decidable if the 
background ontology is empty. For the Łukasiewicz t-norm, this is true even without the restriction to witnessed models 
since in this case the two semantics coincide. In [46], it is proved that 1-subsumption is also decidable in Π-ALC without 
a background ontology. If one restricts reasoning to so-called quasi-witnessed models, satisfiability is also decidable in this 
setting. In [47], the framework from [28] is extended to include ontologies, and axiomatizations of t-norm based fuzzy DLs 
are investigated.

After the introduction of t-norm based semantics for fuzzy DLs, several tableau algorithms were developed to decide 
consistency and subsumption in these new logics. The main idea is that the tableau rules generate a system of constraints 
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that has to be solved at the end. The variables in these constraints are either binary variables or range over [0, 1]. The 
constraints themselves are either linear or quadratic, depending on the t-norm used. Such tableau algorithms are presented 
in [48] for an extension of Π-ALC f,= , and in [49] for an extension of Ł-ALC f,= . In [50], the latter algorithm is extended to 
deal with qualified cardinality restrictions (denoted by Q). In [51], a tableau algorithm for ⊗-SI= is developed for arbitrary 
continuous t-norms ⊗, as long as the fuzzy operators can be expressed by finite systems of quadratic equations. Finally, 
in [52] the authors propose a tableau algorithm for ⊗-ALC f,= , but using S-implications instead of residua, and even allow 
for truth values from an arbitrary complete lattice instead of [0, 1].

However, all of the above tableau algorithms were shown to be incorrect in the presence of (crisp) GCIs [15,16]. The 
reason is that the blocking conditions employed by these algorithms are too greedy, and might lead to a satisfiable set 
of constraints, even though the given ontology has no model. A sound, complete and terminating tableau-based algo-
rithm for consistency of ⊗-ALC f,≥ was proposed in [53,54]; however, it requires the solution of a finitely-represented, 
but infinite, system of (linear or quadratic) inequalities. Following these revelations, many t-norm based fuzzy description 
logics were shown to have an undecidable consistency problem, e.g. Π-ALCf,≥ with strict GCIs [16], Π(0,b)-IALf,= [18], 
and Ł-ELCf,≥ [19]. In [22], a first version of the framework presented in Section 3 was described, which subsumed all 
previously known undecidability results.

Restricting to Zadeh semantics, decidability of consistency has been shown even for very expressive description logics 
like SHOIN [7,55]. The main reason for these results is that reasoning can be limited to the values occurring in the 
input ontology (and their negations). Under Gödel semantics, consistency is ExpTime-complete in G-IALC f,= w.r.t. both 
witnessed [21] and non-witnessed semantics [39]. Here, one additionally needs to keep track of the order between the 
values of concepts, but not the values themselves. Moreover, we first proved in [23] that in ⊗-SHOI f,≥ for any t-norm ⊗
without zero divisors, the values in the input ontology do not have any effect in the consistency of the ontology, and can 
simply be removed (see Section 4). The inexpressive DL EL also keeps its polynomial complexity for subsumption under 
Gödel semantics [5].

Some work has also considered fuzzy DLs that are restricted a priori to finitely many degrees of truth. The idea to 
reduce consistency to consistency in classical DLs has been used for arbitrary finite chains of truth values with combination 
functions similar to ordinal sums of the Gödel and Łukasiewicz t-norms, and even for very expressive DLs such as SROIQ
[33,34]; however, the reduction often increases the size of the input ontology by an exponential factor. In contrast, tight 
complexity bounds were shown for consistency and subsumption in fuzzy DLs below SHOI over an arbitrary finite lattice 
using a combination of automata-based constructions [40,56] and tableaux rules [41].

6. Conclusions

We have studied the limits of decidability of ontology consistency in fuzzy DLs. On one hand, we have presented several 
undecidability results that strengthen all previously-known cases of fuzzy DLs with an undecidable consistency problem. To 
do this, we have developed a general framework for proving undecidability, which is based on a set of relatively simple 
properties. Using this framework, we were able to show, for instance, that consistency is undecidable in the very simple 
DL NEL if the semantics are based on a t-norm with zero divisors. Extensions of this framework with different ways to 
prove the canonical model property also allowed us to prove that the problem is undecidable in Π-ELC and ⊗-IEL= for 
any t-norm different from the Gödel t-norm. All of these logics are equivalent to classical ALC when their semantics is 
restricted to two truth values.

An analysis of these results suggests that the culprit for undecidability of a fuzzy DL is the capacity of expressing specific 
upper bounds within a non-idempotent component of the t-norm. Indeed, fuzzy GCIs usually provide a lower bound for the 
interpretation of a concept. If the involutive negation is allowed, then a lower bound for the concept ¬C corresponds to an 
upper bound for C . Similarly, the implication constructor can be used to propagate upper bounds through concepts, and the 
residual negation defines a “local” involutive negation in every t-norm that contains zero divisors. Conversely, our proofs of 
decidability exploit the fact that for any continuous t-norm ⊗ without zero divisors, upper bounds different from 0 cannot 
be expressed in ⊗-SROIQf,≥ . If I is a witnessed model of an ontology O, then mapping all the positive truth degrees 
given by I to 1 yields a crisp model of O (see Lemma 30). If this intuition is correct, then it suggests that for any t-norm 
without zero divisors, consistency in ⊗-NEL= and ⊗-NAL= is decidable.

Our analysis of the limits of decidability for fuzzy DLs is almost complete. As can be seen from Table 5, there are only a 
few remaining gaps, which we plan to cover in future work. In this work, we consider mainly standard constructors studied 
for classical DLs. Other fuzzy constructors like hedges [44,57–59], or aggregation operators [60,61] may require a different 
analysis. Note also that we have considered here only the ontology consistency problem. The decidability and complexity 
of other standard reasoning tasks, such as subsumption or instance checking, are other topics for future research. We also 
intend to find the precise complexity, and optimal algorithms, for reasoning in light-weight fuzzy DLs, such as ⊗-EL and 
⊗-DL-Lite, over arbitrary continuous t-norms ⊗.

As has been noted by several authors [13,14], the ability to manage vague and imprecise knowledge is a desired feature 
of intelligent systems to be used in the biological and medical domains, among many others. Studying the complexity of 
reasoning with different fuzzy DLs allows us to discern which of these may be suitable formalisms for implementing a fuzzy 
knowledge representation and reasoning system. It is clearly desirable to stay in the decidable part of Table 5. However, 
the decidability results of Section 4 are also not helpful since they show that consistency can be decided using classical 
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reasoners without any modification of the input ontology. This leaves only the Gödel t-norm as a promising candidate for 
an implementation. As an alternative, one could use many-valued DLs that support only a finite set of truth values, arranged 
in a residuated lattice or a total order [31,33,34,40,41]. The complexity of reasoning in such logics is often the same as for 
the underlying classical DLs. Sometimes, highly-optimized reasoners [62,63] for classical reasoning problems can be reused 
after a suitable reduction.
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Appendix A. Proofs for Section 3

Lemma 14. The functions Enc described above are valid encoding functions for t-norms of the form Π(a,b) or Ł(a,b) .

Proof. In both cases described in Section 3.3, the encodings of different words u, u′ ∈ ΣΣ∗
0 are different, and in particular 

smaller than b, and thus are not included in Enc(ε). Furthermore, the encodings do not depend on the number of leading 
zeros. Thus, the first two conditions of Definition 11 are satisfied. For Condition (c), we analyze the two cases of Π(a,b)

and Ł(a,b) separately.
For Π(a,b) , consider two different words v, w ∈ Σ∗ and assume w.l.o.g. that v < w . Then v + 1 ≤ w and hence 

2−w ≤ 2−(v+1) = 2−v/2. If v �= ε, this implies that

enc(v) ⇒ enc(w) = σa,b
(
2−w/2−v) ≤ σa,b(1/2) = enc(1) < 1.

For v = ε, we similarly have p ⇒ enc(w) = enc(w) ≤ enc(1) < 1 for any p ∈ Enc(ε) = [b, 1]. Conversely, if v = w , then 
enc(v) ⇒ enc(w) = 1 = enc(w) ⇒ enc(v). Thus, the words uε := 1 and u+ := ε satisfy Condition (c) of Definition 11.

For the case of Ł(a,b) , let k = max{|vi |, |wi | | i ∈ N } be the maximal length of a word occurring in P . Then, for every 
ν ∈N ∗ , we have |vν | ≤ (|ν| +1)k and |wν | ≤ (|ν| +1)k. If vν �= wν , these words must differ in one of the first 
 := (|ν| +1)k
letters. Thus, if vν �= ε and wν �= ε, then either enc(vν) > enc(wν), and thus

enc(vν) ⇒ enc(wν) = σa,b
(
min{1,1 + 0.

←−−vν − 0.
←−−wν})

= min
{

b,σa,b(1 + 0.
←−−vν − 0.

←−−wν)
}

≤ σa,b
(
1 − (s + 1)−(
+1)

)
= σa,b

(
1 − 0.

←−−−−
1 · 0


)
= enc

(
1 · 0


)
< 1,

or, similarly, enc(vν) < enc(wν) and enc(wν) ⇒ enc(vν) ≤ enc(1 ·0
) < 1. Note that again this also holds if vν = ε, since wν

also differs from 0
 in one of the first 
 letters, and similarly if wν = ε. Conversely, if vν = wν , then both residua yield 1 as 
result, which is greater than enc(1 · 0
). Thus, setting uε := 1 · 0k and u+ := 0k satisfies Condition (c) of Definition 11. �
Lemma 15. For every continuous t-norm ⊗, the logics ⊗-EL= , ⊗-ELC≥ , and Ł(0,b)-NEL satisfy Pini .

Proof. In the case of ⊗-EL= , we can use the simple ontology OC(e)=u := {〈e :C = enc(u)〉} to enforce that CI(eI) = enc(u) ∈
Enc(u) is satisfied by every model I .

In ⊗-ELC≥ , the two axioms 〈e :C ≥ enc(u)〉 and 〈e :¬C ≥ 1 − enc(u)〉 express the same restriction. The first axiom 
ensures that CI(eI) ≥ enc(u), while the second requires that 1 − CI(eI) ≥ 1 − enc(u), i.e. CI(eI) ≤ enc(u), holds.

For the logic Ł(0,b)-NEL, a more involved construction is necessary. We first ensure that a fresh auxiliary concept name A
has a value from Enc(u) at all domain elements, and then require that C and A have the same value at e. For the first part, 
we use the two axioms〈

H (s+1)|u| ≡ �H (s+1)|u| 〉
,

〈
A ≡ H2←−u 〉

.

Observe that, whenever HI(x) ∈ [0, b] for some interpretation I and x ∈ ΔI , then for every m ∈ N we have by linearity 
of σ0,b that(

Hm)I
(x) = σ0,b

(
max

{
0,m

(
σ−1(HI(x)

) − 1
) + 1

}) = max
{

0,m
(

HI(x) − b
) + b

}
.
0,b
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Let now I be an interpretation that satisfies these axioms and x ∈ ΔI . If u ∈ {0}∗ , then the second axiom enforces that 
AI(x) = �I(x) = 1 ∈ Enc(u) holds. If u /∈ {0}∗ , then by the first axiom we have

max
{

0, (s + 1)|u|(HI(x) − b
) + b

} = b − max
{

0, (s + 1)|u|(HI(x) − b
) + b

}
.

This shows that −b = 2(s + 1)|u|(HI(x) − b), and thus HI(x) = b − b
2(s+1)|u| . From the second axiom it follows that

AI(x) = max

{
0,2←−u

(
− b

2(s+1)|u|

)
+ b

}
.

Since 
←−u

(s+1)|u| = 0.
←−u < 1, we obtain AI(x) = b − b(0.

←−u) = σ0,b(1 − 0.
←−u) = enc(u).

For the second part, we use the axiom〈
e :(C ⇀ A) � (A ⇀ C)

〉
.

If u ∈ {0}∗ , the semantics of ⇀ and the fact that AI (eI) ∈ Enc(u) = Enc(ε) = [b, 1] imply that CI (eI) ∈ [b, 1] = Enc(u). If 
u /∈ {0}∗ , then AI(eI) = enc(u) < b, which implies that CI (eI) < b, and thus CI (eI) = AI(eI) = enc(u). �
Lemma 16. For every continuous t-norm ⊗, the logic ⊗-EL satisfies P→ .

Proof. Consider the ontology O∃r := {〈� � ∃r.�〉}. Any model I of this axiom satisfies (∃r.�)I (x) = 1 for every x ∈ ΔI . 
Since reasoning is restricted to witnessed models, there must exist a y ∈ ΔI with rI(x, y) = 1, as required for the successor 
property. �
Lemma 17. For every continuous t-norm ⊗ except the Gödel t-norm, the logic ⊗-EL satisfies P◦ .

Proof. By assumption, ⊗ must contain either the product or the Łukasiewicz t-norm in some interval. We divide the proof 
depending on the representative chosen for the encoding function.

For the case of Π(a,b)-EL, observe that for every u ∈ Σ∗
0 and u′ ∈ ΣΣ∗

0 , we have u′(s + 1)|u| + u = u′u. Given u ∈ Σ∗
0 , we 

define the ontology

OC◦u := {〈
DC◦u ≡ C (s+1)|u| � Cu

〉}
.

Observe that for every interpretation I and x ∈ ΔI , if CI(x) = σa,b(p) and m ∈N, then(
Cm)I

(x) = σa,b
(

pm)
.

Let now I be a model of OC◦u , x ∈ ΔI , and u′ ∈ {ε} ∪ ΣΣ∗
0 such that CI

u (x) ∈ Enc(u) and CI (x) ∈ Enc(u′). If u /∈ {0}∗ and 
u′ �= ε, then we have

DI
C◦u(x) = σa,b

(
2−(u′(s+1)|u|+u)

) = enc
(
u′u

)
.

If u ∈ {0}∗ and u′ �= ε, we have CI
u (x) ∈ [b, 1], and thus

DI
C◦u(x) = (

C (s+1)|u|)I
(x) = σa,b

(
2−(u′(s+1)|u|+0)

) = enc
(
u′u

)
.

Similarly, for u /∈ {0}∗ and u′ = ε we get (C (s+1)|u|
)I(x) ∈ [b, 1], which implies that

DI
C◦u(x) = CI

u (x) = enc(εu).

Finally, if u ∈ {0}∗ and u′ = ε, then DI(x) = (C (s+1)|u| � Cu)I(x) ∈ [b, 1] = Enc(εu).
For the case of Ł(a,b)-EL, we define the ontology

OC◦u := {
C ′(s+1)|u| ≡ C, DC◦u ≡ C ′ � Cu

}
.

Let I be a model of OC◦u , x ∈ ΔI , and assume that CI
u (x) ∈ Enc(u) and CI(x) ∈ Enc(u′) for some u′ ∈ {ε} ∪ ΣΣ∗

0 . If u′ �= ε, 
then from the first axiom it follows that(

C ′(s+1)|u|)I
(x) = CI(x) = σa,b

(
1 − 0.

←−
u′) ∈ (a,b).

Since ⊗(a, b)-contains Łukasiewicz, this implies that C ′I(x) ∈ (a, b). Thus,

σa,b
(
max

{
0, (s + 1)|u|(σ−1(C ′I(x)) − 1

) + 1
}) = CI(x) = σa,b

(
1 − 0.

←−
u′),
a,b
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which shows that

C ′I(x) = σa,b
(
1 − (s + 1)−|u|0.

←−
u′).

If u /∈ {0}∗ , then it follows that

DI
C◦u(x) = σa,b

(
max

{
0, (1 − 0.

←−u) + (
1 − (s + 1)−|u|0.

←−
u′) − 1

})
= σa,b

(
1 − 0.

←−u − (s + 1)−|u|0.
←−
u′) = enc

(
u′u

)
.

If u ∈ {0}∗ , then CI
u (x) ∈ [b, 1], and thus

DI
C◦u(x) = C ′I(x) = σa,b

(
1 − (s + 1)−|u|0.

←−
u′) = enc

(
u′u

)
.

It remains to consider the case that u′ is the empty word, and thus CI(x) ∈ [b, 1]. By the first axiom, we also have 
C ′I(x) ∈ [b,1]. If u /∈ {0}∗ , then

DI
C◦u(x) = CI

u (x) = enc(u) = enc(εu).

On the other hand, if u ∈ {0}∗ , then we have DI
C◦u(x) ∈ [b, 1] = Enc(εu). �

Lemma 18. For every continuous t-norm ⊗ except the Gödel t-norm, the logics ⊗-AL, ⊗-ELC , and Ł(0,b)-NEL satisfy P� .

Proof. Let I be an interpretation and x, y ∈ ΔI such that CI(x) ∈ Enc(u) for some u ∈ Σ∗
0 and rI(x, y) = 1. Regardless of 

whether we have chosen Π(a,b) or Ł(a,b) , if u /∈ {0}∗ , then the goal is to have DI(y) = CI(x). On the other hand, if u ∈ {0}∗ , 
then CI(x) ≥ b, and we only need to ensure that DI (x) ≥ b.

In all fuzzy DLs based on EL, we can formulate the axiom 〈∃r.D � C〉. If I satisfies this axiom, then

DI(y) = rI(x, y) ⊗ DI(y) ≤ (∃r.D)I(x) ≤ CI(x).

We now add an axiom ensuring that also DI (y) ≥ CI(x) holds if u /∈ {0}∗ , and DI(y) ≥ b holds if u ∈ {0}∗ . The precise 
form of this axiom depends on the expressivity of the logic used.

In ⊗-AL, we can use the axiom 〈C � ∀r.D〉 to restrict I to satisfy

CI(x) ≤ (∀r.D)I(x) ≤ rI(x, y) ⇒ DI(y) = DI(y),

and thus also DI (y) ≥ CI(x) ≥ b if u ∈ {0}∗ .
In the case of ⊗-ELC , if I is a model of 〈∃r.¬D � ¬C〉, then

1 − DI(y) = rI(x, y) ⊗ (
1 − DI(y)

) ≤ (∃r.¬D)I(x) ≤ 1 − CI(x),

and thus CI(x) ≤ DI(y) as in the previous case.
Finally, for Ł(0,b)-NEL, we use the axiom 〈∃r.�D � �C〉, similar to the one for ⊗-ELC . If I satisfies this axiom, then


DI(y) = rI(x, y) ⊗ (
DI(y)
) ≤ (∃r.�D)I(x) ≤ 
CI(x).

If u /∈ {0}∗ , then DI(y) ≤ CI(x) < b, which shows that b − DI(y) ≤ b − CI(x), and thus CI (x) ≤ DI(y). If u ∈ {0}∗ , then 

DI(y) ≤ 
CI(x) = 0, and thus DI(y) ≥ b as required. �
Lemma 19. Let ⊗ be any continuous t-norm except the Gödel t-norm. If one of the logics ⊗-IEL= , ⊗-ELC≥ , or Ł(0,b)-NEL satis-
fies P�with OP and IP can be extended to a model of OP , then this logic also satisfies P �= .

Proof. For ⊗-IEL= , we define the ontology

OV �=W := {〈� � (
(V → W ) � (W → V )

) → M
〉}

.

For every model I of OP ∪OV �=W and every ν ∈N ∗ , we have(
V I(

g(ν)
) ⇒ W I(

g(ν)
)) ⊗ (

W I(
g(ν)

) ⇒ V I(
g(ν)

)) ≤ MI(
g(ν)

)
.

Since at least one of the two residua must be 1, this implies

min
{

V I(
g(ν)

) ⇒ W I(
g(ν)

)
, W I(

g(ν)
) ⇒ V I(

g(ν)
)} ≤ MI(

g(ν)
)

as required.
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For the second condition, assume that IP cannot be extended to a model of OP ∪OV �=W . Since there is an extension I
of IP that satisfies OP , we know that I must violate OV �=W . This means that there is a ν ∈N ∗ such that

1 = �IP (ν) >
((

(V → W ) � (W → V )
) → M

)IP (ν).

This implies that

MIP (ν) <
(

V IP (ν) ⇒ W IP (ν)
) ⊗ (

W IP (ν) ⇒ V IP (ν)
)

= min
{

V IP (ν) ⇒ W IP (ν), W IP (ν) ⇒ V IP (ν)
}
.

For ⊗-ELC≥ , consider the ontology

OV �=W := {〈X � X � X〉, 〈� � ¬(X � ¬X)
〉
, (A.1)

〈X � V � X � W � M〉, (A.2)

〈¬X � W � ¬X � V � M〉}. (A.3)

For every model of the axioms in (A.1) and every x ∈ ΔI , we know that XI(x) ≤ XI(x) ⊗ XI(x) and hence, XI(x) must 
be an idempotent element w.r.t. ⊗. Recall that XI (x) can thus not lie in any component of ⊗, which implies that ⊗ behaves 
like the Gödel t-norm on XI(x). In particular, we get 0 ≥ (X � ¬X)I(x) = min{XI(x), 1 − XI(x)}, and thus XI(x) ∈ {0, 1}.

Let now I be a model of OP ∪ OV �=W and ν ∈ N ∗ . If XI(g(ν)) = 1, then axiom (A.2) states that V I(g(ν)) ≤
W I(g(ν)) ⊗ MI(g(ν)). We consider which representative was chosen for the encoding function:

Π(a,b): Since W I(g(ν)) ∈ Enc(wν), we know in particular that W I(g(ν)) > a. Furthermore, since MI(g(ν)) = enc(1) < b
and product is a strict t-norm,4 for every z > MI(g(ν)), we have that W I(g(ν)) ⊗ z > W I(g(ν)) ⊗ MI(g(ν)) ≥
V I(g(ν)).

Ł(a,b): If wν �= ε, then since the length of wν is bounded by 
 := (|ν| + 1)k and

W I(
g(ν)

) ⊗ MI(
g(ν)

) = σa,b
(
max

{
0,1 − 0.

←−−wν − (
0.0
 · 1

)})
,

we have

W I(
g(ν)

) ⊗ MI(
g(ν)

) = σa,b
(
1 − 0.

←−−wν − (
0.0
 · 1

)) ∈ (a,b).

For wν = ε, it also follows that

W I(
g(ν)

) ⊗ MI(
g(ν)

) = MI(
g(ν)

) = σa,b
(
1 − (

0.0
 · 1
)) ∈ (a,b).

Thus, by the properties of the Łukasiewicz t-norm we again have that for any z > MI(g(ν)), W I(g(ν)) ⊗ z >

W I(g(ν)) ⊗ MI(g(ν)) ≥ V I(g(ν)) holds.

In both cases, we get

W I(
g(ν)

) ⇒ V I(
g(ν)

) = sup
{

z ∈ [0,1] ∣∣ W I(
g(ν)

) ⊗ z ≤ V I(
g(ν)

)}
= inf

{
z ∈ [0,1] ∣∣ W I(

g(ν)
) ⊗ z > V I(

g(ν)
)}

≤ inf
{

z ∈ [0,1] ∣∣ z > MI(
g(ν)

)}
= MI(

g(ν)
)
.

On the other hand, if XI(g(ν)) = 0, then we know that V I(g(ν)) ⇒ W I(g(ν)) ≤ MI(g(ν)) by similar arguments, using 
axiom (A.3) instead of (A.2). Thus, we always have

min
{

V I(
g(ν)

) ⇒ W I(
g(ν)

)
, W I(

g(ν)
) ⇒ V I(

g(ν)
)} ≤ MI(

g(ν)
)
.

To show the second point of P �= , assume that

min
{

V IP (ν) ⇒ W IP (ν), W IP (ν) ⇒ V IP (ν)
} ≤ MIP (ν) < 1

and consider an extension I of IP that satisfies OP , which exists by assumption. We show that I can be further extended 
to a model of OV �=W .

4 A continuous t-norm is strict if it is strictly monotone [4].
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To find the values for X , consider any element ν ∈ N ∗ . By assumption, exactly one of the residua V IP (ν) ⇒ W IP (ν)

and W IP (ν) ⇒ V IP (ν) is equal to 1. If V IP (ν) ⇒ W IP (ν) = 1, we set XI(ν) := 1, which trivially satisfies axiom (A.3)
at ν . By assumption, we must then have W IP (ν) ⇒ V IP (ν) ≤ MIP (ν). By the definition of the residuum, we know 
that W IP (ν) ⊗ m′ > V IP (ν) for all m′ > MIP (ν). Since ⊗ is continuous and monotone, this means that V IP (ν) ≤
W IP (ν) ⊗ MIP (ν), i.e. axiom (A.2) is also satisfied at ν .

If the other residuum is equal to 1, we set XI (ν) := 0 and can use dual arguments to show that axioms (A.2) and (A.3)
are satisfied at ν . We have thus constructed an extension of IP that satisfies both OP and OV �=W .

The last case is that of Ł(0,b)-NEL, for which we can use the ontology

OV �=W := {〈� � (
(V ⇀ W ) � (W ⇀ V )

)
⇀ M

〉}
,

which is similar to the one for ⊗-IEL= . In any model I of OP ∪ OV �=W it holds that for every ν ∈ N ∗ ,
(((V ⇀ W ) � (W ⇀ V )) ⇀ M)I(g(ν)) ≥ 1.

If V I(g(ν)) ≤ W I(g(ν)), then ((W ⇀ V ) ⇀ M)I(g(ν)) ≥ 1. This can only be the case if MI (g(ν)) ≥ b or MI(g(ν)) ≥
(W ⇀ V )I(g(ν)). The former is impossible since MI (g(ν)) = enc(1 · 0(|ν|+1)k) < b by construction of OP . By the definition 
of ⇀, the latter implies that V I(g(ν)) < b, and thus

W I(
g(ν)

) ⇒ V I(
g(ν)

) = (W ⇀ V )I
(

g(ν)
) ≤ MI(

g(ν)
)
.

Similarly, if W I(g(ν)) ≤ V I(g(ν)), then V I(g(ν)) ⇒ W I(g(ν)) ≤ MI(g(ν)). In both cases, we have

min
{

V I(
g(ν)

) ⇒ W I(
g(ν)

)
, W I(

g(ν)
) ⇒ V I(

g(ν)
)} ≤ MI(

g(ν)
)
.

To show the second condition of P �= , assume that IP cannot be extended to a model of OP ∪OV �=W . Since there is an 
extension I of IP that satisfies OP , we know that I violates OV �=W . This means that there is a ν ∈N ∗ such that

((
(V ⇀ W ) � (W ⇀ V )

)
⇀ M

)IP (ν) < 1,

and thus

(V ⇀ W )IP (ν) ⊗ (W ⇀ V )IP (ν) > MIP (ν).

As above, the value (V ⇀ W )IP (ν) ⊗ (W ⇀ V )IP (ν) is either V IP (ν) ⇒ W IP (ν) or W IP (ν) ⇒ V IP (ν), depending on 
which of the values V IP (ν) and W IP (ν) is greater. Thus, both V IP (ν) ⇒ W IP (ν) and W IP (ν) ⇒ V IP (ν) must be 
greater than MIP (ν), showing that

min
{

V IP (ν) ⇒ W IP (ν), W IP (ν) ⇒ V IP (ν)
}

> MIP (ν). �
Lemma 21. The logic Π-ELCsatisfies P′� .

Proof. We use the following modified ontology instead of OP from Section 3.3:

OP ′ := OP,◦ ∪OP,→ ∪ {〈e0 : V 〉, 〈e0 : W 〉} ∪
n⋃

i=1

O
D V ◦vi

ri�V
∪O

DW ◦wi

ri�W
∪

{〈M ≡ ¬M〉, 〈M+ ≡ �〉} ∪
n⋃

i=1

{〈
V i ≡ M vi

〉
,
〈
W i ≡ M wi

〉}
.

Here, OP,◦ , OP,→ , and O
C

r�D
are as defined in Section 3.2 and in the proofs of the corresponding lemmata in Section 3.3. 

As before, the values of the concept names V and W are initialized at e0 to an encoding of vε = wε = ε, namely 1. But 
instead of initializing all the constants M , M+ , V i , W i at e0 and then transferring their values to all successors, we define 
the values to be constant at all domain elements and need to transfer only the new values of V and W . In particular, 
M always has the value enc(1) = 1/2, while M+ is always enc(ε) = 1. The axioms for V i and W i ensure that they get the 
values (1/2)vi = 2−vi = enc(vi) and enc(wi), respectively, at all domain elements.

It can now be shown similarly to Theorem 12 that this ontology satisfies the conditions of the canonical model prop-
erty. �
Lemma 22. The logic Π-ELC satisfies P′ .
�=
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Proof. The proof is essentially the same as that of Lemma 19; we only describe the differences here.
The ontology OV �=W is similar to the one used for ⊗-ELC≥ , with the addition of a flag Y to distinguish the root node ε

of IP ′ . We define

OV �=W := {〈∃ri .¬Y � ¬�〉 ∣∣ 1 ≤ i ≤ n
} ∪{〈X � X � X〉, 〈� � ¬(X � ¬X)

〉
, 〈e0 :¬Y 〉,

〈Y � X � V � Y � X � W � M〉,
〈Y � ¬X � W � Y � ¬X � V � M〉}. (A.4)

Every model of the axioms in (A.4) has to satisfy that every ri -successor with degree 1 must belong to Y with degree 1, 
for every i ∈N . In particular, because of the construction of OP,→ (see the proof of Lemma 16), this means that for every 
model I of OP ′ ∪ OV �=W and every ν ∈ N+ , we have YI(g(ν)) = 1. On the other hand, YI(g(ε)) must be 0. The role of 
X is the same as before. The remainder of the first condition of P′�= can thus be shown as in the proof of Lemma 19, but 
using N+ instead of N ∗ .

For the second condition of P′�= , consider an extension I of IP ′ that satisfies OP ′ . To extend I to a model of OV �=W , 
we first set YI(ν) := 1 for every ν ∈N+ and XI(ε) := YI(ε) := 0. The remaining values XI(ν) for ν ∈N+ can be chosen 
exactly as in the proof of Lemma 19. Again, the proof is the same as before, with N+ instead of N ∗ . �
Lemma 25. For every continuous t-norm except the Gödel t-norm, the logic ⊗-IEL satisfies P→� .

The proof is divided into the following three lemmata. The first one provides an auxiliary result that is similar to the 
successor property.

Lemma 35. Let ⊗ be a continuous t-norm of the form Π(a,b) or Ł(a,b) . In ⊗-EL, for every role name r and all concept names C, D, 
there is a classical ontology O

C
r→D

such that for every model I of this ontology and every x ∈ ΔI with CI(x) ⊗ CI(x) ∈ (a, b) there 
is a y ∈ ΔI such that rI(x, y) ≥ b and CI(x) = DI(y).

Proof. We can use the ontology O
C

r→D
:= {〈C � ∃r.D〉, 〈∃r.(D � D) � C � C〉} to achieve this behavior. To see this, consider 

a model I of this ontology and some x ∈ ΔI with CI(x) ⊗ CI(x) ∈ (a, b). Since I is witnessed, the first axiom ensures that 
there is an element y ∈ ΔI such that

CI(x) ≤ sup
z∈ΔI

rI(x, z) ⊗ DI(z) = rI(x, y) ⊗ DI(y),

while the second axiom implies that

rI(x, y) ⊗ DI(y) ⊗ DI(y) ≤ sup
z∈ΔI

rI(x, z) ⊗ DI(z) ⊗ DI(z) ≤ CI(x) ⊗ CI(x).

From these two inequalities and the monotonicity of ⊗, we then have

rI(x, y) ⊗ DI(y) ⊗ DI(y) ≤ CI(x) ⊗ CI(x) ≤ rI(x, y) ⊗ rI(x, y) ⊗ DI(y) ⊗ DI(y). (A.5)

Since CI(x) ⊗ CI(x) ∈ (a, b), from this it follows that rI(x, y) ⊗ DI(y) ⊗ DI(y) is also in (a, b). This means that rI(x, y)

must be greater than or equal to b since otherwise we would have

rI(x, y) ⊗ (
rI(x, y) ⊗ DI(y) ⊗ DI(y)

)
< rI(x, y) ⊗ DI(y) ⊗ DI(y),

by the definitions of ordinal sums and the product and the Łukasiewicz t-norms, in contradiction to (A.5). This implies that 
DI(y) ⊗ DI(y) ∈ (a, b), and thus (A.5) can be simplified to DI (y) ⊗ DI(y) = CI(x) ⊗ CI(x).

If ⊗ contains the product t-norm in (a, b), then we obtain (DI(y))2 = (CI(x))2, i.e. DI(y) = CI(x). On the other hand, if 
⊗ contains the Łukasiewicz t-norm in (a, b), then the fact that CI (x) ⊗ CI(x) > a implies that CI (x) must be strictly greater 
than a+b

2 , and similarly for DI(y). We obtain 2 · DI(y) − b = 2 · CI(x) − b, which again shows that DI (y) = CI(x). �
We divide the main proof of Lemma 25 in two cases, depending on whether ⊗ contains the product or the Łukasiewicz 

t-norm.

Lemma 36. Π(a,b)-IEL satisfies P→ .
�
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Proof. We know that for every word u ∈ Σ∗
0 , enc(u) = σa,b(2−u) > a. In particular, for every interpretation I , x ∈ ΔI , and 

j, 1 ≤ j ≤ k, we have CI
j (x) > a. We define the ontology O(C j)�(D j) as follows:

O(C j)�(D j) := O
H

r→H ′ ∪{〈
H ≡ C2

1 � · · · � C2
k

〉} ∪ (A.6){〈∃r.D j � C j〉,
〈∃r.

(
D j → H ′) � C j → H

〉 ∣∣ 1 ≤ j ≤ k
}
, (A.7)

where r is a fresh role name, H and H ′ are fresh concept names, and O
H

r→H ′ is the ontology given by Lemma 35.
We show that this ontology satisfies the conditions for the simultaneous transfer property. Let I be a model of this 

ontology and x ∈ ΔI . By assumption, we know that there exists a word u ∈ Σ∗
0 \ {0}∗ such that CI

1 (x) = enc(u) ∈ (a, b), 
and furthermore, CI

j (x) ∈ (a, 1] for all j, 2 ≤ j ≤ k. Using the axiom from (A.6), we get HI(x) ∈ (a, b). Since ⊗ behaves as 
the product t-norm in (a, b), this implies HI(x) ⊗ HI(x) ∈ (a, b), and thus by Lemma 35 there exists an element y ∈ ΔI

with rI(x, y) ≥ b and H ′I(y) = HI(x).
We need only show that, for every j, 1 ≤ j ≤ k, DI

j (y) = CI
j (x) = enc(u j) if u j /∈ {0}∗ and DI

j (y) ≥ b if CI
j (x) ≥ b. 

Let j be an arbitrary index 1 ≤ j ≤ k and suppose first that CI
j (x) ≥ b holds. Since HI(x) < b, then it also follows that 

CI
j (x) ⇒ HI(x) = HI(x) < b. The second axiom from (A.7) ensures that

rI(x, y) ⊗ (
DI

j (y) ⇒ H ′I(y)
) ≤ (∃r.

(
D j → H ′))I(x) ≤ CI

j (x) ⇒ HI(x) = HI(x) < b.

Since rI(x, y) ≥ b and H ′I(y) = HI(x), this implies a < DI
j (y) ⇒ HI(x) ≤ HI(x) < b, and thus by the definition of the 

residuum ⇒of an ordinal sum, it must be the case that DI
j (y) ≥ b.

For the other case, suppose now that CI
j (x) = enc(u j) < b for some u j ∈ Σ∗

0 \ {0}∗ . We show that the two axioms 
from (A.7) ensure that DI

j (y) = CI
j (x). The first axiom restricts I to satisfy

rI(x, y) ⊗ DI
j (y) ≤ CI

j (x) < b,

and since rI(x, y) ≥ b, it follows that DI
j (y) ≤ CI

j (x). Analogously, from the second axiom, we derive that

DI
j (y) ⇒ H ′I(y) ≤ CI

j (x) ⇒ HI(x). Recall that a < H ′I(y) = HI(x) < b, and thus by the axiom in (A.6) we have 
CI

j (x) > HI(x). We can infer that DI
j (y) ⇒ HI(x) ≤ CI

j (x) ⇒ HI(x) < b, and thus we also have DI
j (x) > HI(x). From 

the definition of the residuum of an ordinal sum, we obtain

σ−1
a,b (HI(x))

σ−1
a,b (DI

j (y))
≤ σ−1

a,b (HI(x))

σ−1
a,b (CI

j (x))
,

and since HI(x) > a and σa,b is a strictly monotone bijection between [0, 1] and [a, b], we get σ−1
a,b (HI(x)) > 0 and 

DI
j (y) ≥ CI

j (x). As this holds for every j, it is possible to transfer all the values simultaneously. �
The novel idea in this construction is to exploit the fact that the residuum is antitone in its first argument to pro-

vide a lower bound for DI
j (y). For this construction to work, it is necessary that a < HI(x) < CI

j (y) since otherwise the 
implication CI

j (x) ⇒ HI(x) will simply be a or 1. This restriction is ensured by the axiom in (A.6).
For the case in which ⊗ contains the Łukasiewicz t-norm in the interval (a, b), we use the same idea for showing 

that the simultaneous transfer property holds. However, in this case we cannot ensure that H , which is interpreted as the 
conjunction of all the concepts C2

j , has a degree strictly greater than a. Thus, we need to add some additional restrictions 
to handle the case where HI(x) = a.

Lemma 37. Ł(a,b)-IEL satisfies P→� .

Proof. Define the ontology O(C j)�(D j) as follows:

O(C j)�(D j) := O
G

r→G ′ ∪O
E

r→E ′ ∪{〈
H ≡ C2

1 � · · · � C2
k

〉
, 〈H ≡ G � G〉, 〈H ′ ≡ G ′ � G ′〉 (A.8)

〈C1 ≡ E � E〉, 〈∃r.H ′ � H
〉
,
〈∃r.

((
E ′ → H ′) → H ′) � E

〉} ∪ (A.9){〈∃r.D j � C j〉,
〈∃r.

(
D j → H ′) � C j → H

〉 ∣∣ 1 ≤ j ≤ k
}
, (A.10)
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where r is a fresh role name, H, H ′, G, G ′, E , and E ′ are fresh concept names, and O
G

r→G ′ , OE
r→E ′ are the ontologies given 

by Lemma 35.
Let I be a model of this ontology and x ∈ ΔI . It is easy to see that HI(x) ≤ CI

j (x) holds for all j, 1 ≤ j ≤ k. Addition-

ally, we know that HI(x) ∈ [a, b). Using Lemma 35, we first show that there exists a y ∈ ΔI such that rI(x, y) ≥ b and 
HI(x) = H ′I(y). The proof is divided in two cases: (1) if HI(x) > a and (2) if HI(x) = a.

Case (1) If HI(x) > a, then from the second axiom in (A.8) we get GI(x) ⊗ GI(x) = HI(x) ∈ (a, b). Thus, Lemma 35 yields 
the existence of an element y ∈ ΔI with rI(x, y) ≥ b and G ′I(y) = GI(x). The third axiom in (A.8) then implies that 
H ′I(y) = G ′I(y) ⊗ G ′I(y) = GI(x) ⊗ GI(x) = HI(x).

Case (2) If HI(x) = a, then we use the axioms from (A.9). By assumption, EI(x) ⊗ EI(x) = CI
1 (x) ∈ (a, b), and hence as 

before Lemma 35 shows the existence of an element y ∈ ΔI such that rI(x, y) ≥ b and EI(x) = E ′I(y). The second axiom 
in (A.9) states that rI(x, y) ⊗ H ′I(y) ≤ HI(x) = a. Since rI(x, y) ≥ b, it follows that H ′I(y) ≤ a. From the third axiom we 
then have that(

E ′I(y) ⇒ H ′I(y)
) ⇒ H ′I(y) ≤ EI(x) < b.

In particular, this means that E ′I(y) ⇒ H ′I(y) > H ′I(y) since otherwise the residuum would be 1 ≥ b. But since 
E ′I(y) > a and by the definition of the residuum of an ordinal sum, this can only be the case if H ′ I(y) = a = HI(x).

In both cases, we have shown the existence of a y ∈ ΔI with rI(x, y) ≥ b and HI(x) = H ′I(y) ∈ [a, b). As in Lemma 36, 
we need to show that, whenever CI

j (x) ≥ b, then also DI
j (y) ≥ b, and if u j /∈ {0}∗ , then DI

j (y) = CI
j (x) = enc(u j). The 

former case can be shown as in the proof of Lemma 36. In the latter case, the first axiom from (A.10) again ensures that 
DI

j (y) ≤ CI
j (x) since CI

j (x) < b and rI(x, y) ≥ b. From the second axiom and the fact that H ′I(y) = HI(x) it similarly 
follows that DI

j (y) ⇒ HI(x) ≤ CI
j (x) ⇒ HI(x) < b. We now know that HI(x) < CI

j (x) < b and HI(x) < DI
j (y) < b, and 

therefore

1 − σ−1
a,b

(
DI

j (y)
) + σ−1

a,b

(
HI(x)

) ≤ 1 − σ−1
a,b

(
CI

j (x)
) + σ−1

a,b

(
HI(x)

)
.

Thus, we have DI
j (y) ≥ CI

j (x), which finishes the proof.
This concludes the proof of Lemma 25.

Appendix B. Proofs for Section 4

Lemma 28. Let ⊗ be a continuous t-norm without zero divisors. For all x, y ∈ [0, 1] and all non-empty sets X ⊆ [0, 1] it holds that

1. 1(
x) = 
1(x),
2. 1(x ⊗ y) = 1(x) ⊗ 1(y),
3. 1(x ⊕ y) = 1(x) ⊕ 1(y),
4. 1(x ⇒ y) = 1(x) ⇒ 1(y),
5. 1(sup{x | x ∈ X}) = sup{1(x) | x ∈ X}, and
6. if min{x | x ∈ X} exists, then 1(min{x | x ∈ X}) = min{1(x) | x ∈ X}.

Proof. It holds that 1(
x) = 


x = 
1(x), which proves 1. Since ⊗ does not have zero divisors, it holds that x ⊗ y = 0
iff x = 0 or y = 0. This yields 1(x ⊗ y) = 0 iff 1(x) = 0 or 1(y) = 0. Because there are no zero divisors, this shows that

1(x ⊗ y) = 0 iff 1(x) ⊗ 1(y) = 0.

Since both 1(x ⊗ y) and 1(x) ⊗1(y) can only have the values 0 or 1, this is sufficient to prove the second statement. Since 0
is a unit for ⊕, we have x ⊕ y = 0 iff x = y = 0, and thus 1(x ⊕ y) = 0 holds iff 1(x) ⊕ 1(y) = 0. This suffices to prove 3. 
We use Proposition 4 to prove 4:

1(x ⇒ y) =
{

1 if x = 0 or y > 0
0 if x > 0 and y = 0

=
{

1 if 1(x) = 0 or 1(y) = 1
0 if 1(x) = 1 and 1(y) = 0

= 1(x) ⇒ 1(y).

To prove 5, observe that sup X = 0 iff X = {0}, which yields

1(sup X) = 0 ⇔ sup X = 0 ⇔ X = {0} ⇔ {
1(x)

∣∣ x ∈ X
} = {0} ⇔ sup

{
1(x)

∣∣ x ∈ X
} = 0.



S. Borgwardt et al. / Artificial Intelligence 218 (2015) 23–55 53
Assume now that min X = xmin exists. Then we have

1(min X) = 0 ⇔ xmin = 0 ⇔ 0 ∈ {
1(x)

∣∣ x ∈ X
} ⇔ min

{
1(x)

∣∣ x ∈ X
} = 0,

which proves 6. �
Lemma 29. For all complex concepts C , complex roles s, and x, y ∈ ΔI , it holds that CJ (x) = 1(CI(x)) and sJ (x, y) = 1(sI(x, y)).

Proof. We first prove the claim for complex roles by induction over the structure of s. For role names, this follows directly 
from the definition of J . If s is the universal role u, then uJ (x, y) = 1 = 1(1) = 1(uI(x, y)) holds for all x, y ∈ ΔI . If 
s = t− , then we have sJ (x, y) = tJ (y, x) = 1(tI(y, x)) = 1(sI(x, y)) by induction. Finally, if s = �t , then (�t)J (x, y) =

tJ (x, y) = 
1(tI(x, y)) = 1((�t)I(x, y)) by Lemma 28.

For the complex concepts, we also use induction over the structure of C . The claim obviously holds for C = ⊥ and C = �. 
For C = A ∈ NC it follows immediately from the definition of J . It also holds for C = {a} with a ∈ NI , because {a}I(x) can 
only take the values 0 or 1 for all x ∈ ΔI . Furthermore, we have (∃s.Self)J (x) = sJ (x, x) = 1(sI(x, x)) = 1((∃s.Self)I(x)) by 
the claim for complex roles.

Assume now that the concepts D and E satisfy DJ (x) = 1(DI(x)) and EJ (x) = 1(EI(x)) for all x ∈ ΔI . For the case of 
C = D � E , Lemma 28 yields that for all x ∈ ΔI

CJ (x) = DJ (x) ⊗ EJ (x) = 1
(

DI(x)
) ⊗ 1

(
EI(x)

)
= 1

(
DI(x) ⊗ EI(x)

) = 1
(
CI(x)

)
.

Likewise, the compatibility of 1 with the t-conorm, residuum, and residual negation entails the result for the cases 
C = D � E , C = D → E , and C = �D .

For C = ≥n s.D , where s is a complex role and n ∈ N, we obtain

1
(
CI(x)

) = 1
(
sup

{
p ∈ [0,1] ∣∣ ∣∣{y ∈ ΔI ∣∣ sI(x, y) ⊗ DI(y) ≥ p

}∣∣ ≥ n
})

= sup
{
1(p)

∣∣ p ∈ [0,1], ∣∣{y ∈ ΔI ∣∣ sI(x, y) ⊗ DI(y) ≥ p
}∣∣ ≥ n

}
=

{
1 if |{y ∈ ΔI | sI(x, y) ⊗ DI(y) > 0}| ≥ n
0 otherwise

=
{

1 if |{y ∈ ΔI | sJ (x, y) ⊗ DJ (y) = 1}| ≥ n
0 otherwise

= sup
{

p ∈ [0,1] ∣∣ ∣∣{y ∈ ΔI ∣∣ sJ (x, y) ⊗ DJ (y) ≥ p
}∣∣ ≥ n

}
= CJ (x)

from Lemma 28 and the claim for complex roles. The claim for existential restrictions follows from rewriting ∃r.C as ≥1 r.C
and observing that the restriction to witnessed models is irrelevant in this situation.

If C = ≤n s.D , we have

1
(
CI(x)

) = 1
(
sup

{
p ∈ [0,1] ∣∣ ∣∣{y ∈ ΔI ∣∣ sI(x, y) ⇒ 
DI(y) < p

}∣∣ ≤ n
})

= 1
(
sup

{
p ∈ [0,1] ∣∣ ∣∣{y ∈ ΔI ∣∣ sI(x, y) ⊗ DI(y) > 
p

}∣∣ ≤ n
})

=
{

1 if |{y ∈ ΔI | sI(x, y) ⊗ DI(y) > 0}| ≤ n
0 otherwise

=
{

1 if |{y ∈ ΔI | sJ (x, y) ⊗ DJ (y) > 0}| ≤ n
0 otherwise

= sup
{

p ∈ [0,1] ∣∣ ∣∣{y ∈ ΔI ∣∣ sJ (x, y) ⊗ DJ (y) > 
p
}∣∣ ≤ n

}
= sup

{
p ∈ [0,1] ∣∣ ∣∣{y ∈ ΔI ∣∣ sJ (x, y) ⇒ 
DJ (y) < p

}∣∣ ≤ n
}

= CJ (x)

by the same arguments.
Finally, if C = ∀s.D , we have

1
(
CI(x)

) = 1
(

inf
y∈ΔI

sI(x, y) ⇒ DI(y)
)
.

Since I is witnessed, there must be some y0 ∈ ΔI such that



54 S. Borgwardt et al. / Artificial Intelligence 218 (2015) 23–55
sI(x, y0) ⇒ DI(y0) = inf
y∈ΔI

sI(x, y) ⇒ DI(y);

that is, miny∈ΔI sI(x, y) ⇒ DI(y) exists. Thus, as in the above cases, we can apply Lemma 28 and the claim for complex 
roles to derive that 1(CI(x)) = CJ (x). �
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