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A comparison between nonparametric estimators for finite 
population distribution functions 

Leo Pasquazzi and Lucio de Capitani1 

Abstract 

In this work we compare nonparametric estimators for finite population distribution functions based on two types 
of fitted values: the fitted values from the well-known Kuo estimator and a modified version of them, which 
incorporates a nonparametric estimate for the mean regression function. For each type of fitted values we consider 
the corresponding model-based estimator and, after incorporating design weights, the corresponding generalized 
difference estimator. We show under fairly general conditions that the leading term in the model mean square 
error is not affected by the modification of the fitted values, even though it slows down the convergence rate for 
the model bias. Second order terms of the model mean square errors are difficult to obtain and will not be derived 
in the present paper. It remains thus an open question whether the modified fitted values bring about some benefit 
from the model-based perspective. We discuss also design-based properties of the estimators and propose a 
variance estimator for the generalized difference estimator based on the modified fitted values. Finally, we 
perform a simulation study. The simulation results suggest that the modified fitted values lead to a considerable 
reduction of the design mean square error if the sample size is small. 

 
Key Words: Finite population sampling; Distribution function estimator; Fitted values; Kuo estimator. 

 
 

1  Introduction 
 

Since Chambers and Dunstan’s seminal paper Chambers and Dunstan (1986), several estimators for 
finite population distribution functions have been proposed. Most of them are based either on different types 
of fitted values or on different ways to combine them into an estimator. The estimator proposed by Chambers 
and Dunstan (1986), for example, is based on fitted values derived from a superpopulation model where the 
study variable and an auxiliary variable are linked by a linear regression model with independent error 
components whose variances are assumed to be known. Substituting the fitted values to the unobserved 
indicator functions in the definition of the population distribution function of the study variable yields the 
Chambers and Dunstan estimator. Rao, Kovar and Mantel (1990) incorporate design weights into the fitted 
values of Chambers and Dunstan and use them in a generalized difference estimator. Kuo (1988) uses 
nonparametric regression to estimate directly the regression relationship between the indicator functions 
and the auxiliary variable and obtains fitted values that accommodate virtually any superpopolation model. 
Like Chambers and Dunstan, she substitutes the unobserved indicator functions with their corresponding 
fitted values and obtains a model-based estimator. Chambers, Dorfman and Wehrly (1993) combine the 
fitted values of Chambers and Dunstan (1986) and of Kuo (1988) and propose still another model-based 
estimator that aims to be more efficient than the Kuo estimator if the linear superpopulation model assumed 
by Chambers and Dunstan is true, and that does not suffer from model misspecification bias otherwise. 
Following these early works there has been quite a large number of subsequent proposals with the aim to 
achieve some gain in efficiency with respect to the Horvitz-Thompson estimator, while preserving 
robustness and sometimes also one or both of the following desirable properties shared by the Horvitz-
Thompson estimator: (i) the fact that it is a linear combination of the sample indicator functions with 
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coefficients that do not depend on the study variable and (ii) the fact that it gives always rise to 
nondecreasing estimates for the distribution function. 

The present work originates from the idea to improve upon the fitted values proposed by Kuo (1988) 
through incorporation of an estimate for the mean regression function (see Section 2). This idea has been 
put forward in a recent textbook of Chambers and Clark (2012) and it is based on the assumption of an 
underlying superpopulation model with smooth regression relationship between the study variable and an 
auxiliary variable and with smoothly varying error component distributions. According to this idea, the 
fitted values are the outcome of a two-step procedure: at the first step the mean regression function is 
estimated through either parametric or nonparametric regression, and at the second step, using the regression 
residuals from the first step, the distribution functions of the error components are estimated using 
nonparametric regression in order to accommodate the possibility of smoothly varying error component 
distributions. Combining both estimates one may compute fitted values for the indicator functions in the 
definition of the finite population distribution function of the study variable. Chambers and Clark (2012) 
analyze the model-based estimator that is obtained by substituting the unobserved indicator functions by 
their corresponding fitted values and they sketch a proof that leads to an expression for the model variance 
of the resulting estimator. In that proof they assume that the mean regression function is estimated by a 
consistent estimator and that the contribution from its estimation error to the model variance of the final 
distribution function estimator can be neglected. In the present work we consider local linear regression for 
estimating both the model mean regression function and the error component distributions. We provide 
asymptotic expansions for the model bias and the model variance of the resulting estimator and compare 
them with those corresponding to the Kuo estimator based on local linear regression. It turns out that the 
leading terms in the model variances are the same and that, for appropriately chosen bandwidth sequences, 
the squared model bias of both estimators goes to zero faster than the model variance. To establish which 
estimator is asymptotically more efficient from the model-based perspective thus requires knowledge of the 
second order terms of the model variances. The latter however depend on more specific assumptions than 
those considered in the present work and, at least for the estimator based on the modified fitted values, it 
seems no easy task to determine the second order terms of the model variances. Which estimator is more 
efficient from the model-based perspective remains thus an open question. 

In addition to the above model-based estimators, we analyze also the generalized difference estimators 
based on both types of fitted values in their design weighted versions. The results in Section 3 show that the 
convergence rates of their model biases and their model variances are the same as those of their model-
based counterparts. As for design-based properties, they are discussed to some extent in Section 4 along 
with the issue of variance estimation. It would of course be of interest to derive and compare asymptotic 
expansions for the design biases and the design variances. Breidt and Opsomer (2000) derive under mild 
conditions a general expression for the first order term in the design mean square error of local polynomial 
regression estimators, of which the generalized difference estimator based on the fitted values of Kuo is a 
special case. The generalized difference estimator based on the modified fitted values does however not fall 
into this class. In line with Särndal, Swensson and Wretman (1992), we conjecture that under broad 
conditions the first order term of its design mean square error is the same as the one of the generalized 
difference estimator based on the fitted values of Kuo. Formal proofs could perhaps be obtained by adapting 
and extending some of the results in Wang and Opsomer (2011). To test this conjecture and to compare the 
performance of the generalized difference and the model-based estimators in various settings, we performed 
a simulation study whose results are presented in Section 5. 
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2  Definition of the estimators 
 

Let  ,i iy x  denote the values taken on by a study variable Y  and an auxiliary variable X  on unit i  of 
a finite population  := 1,2, , .U N  Suppose that  

  = , ,i i iy m x i U   (2.1) 

where  m x  is a smooth function and where the ’si  are independent zero mean random variables whose 
distribution functions    =i iP G x    depend smoothly on .ix  Let s U  be a sample chosen from 
the population U  according to some sample design. As usual in the context of complete auxiliary 
information we assume that the ix  values are known for all population units, while the iy  values are 
observed only for the population units which belong to the sample .s  

To estimate the unknown population distribution function  

    
1

:= ,N i
i U

F t I y t
N 

   

Kuo (1988) proposes the estimator given by  

      ,

1ˆ := ,j i j j
j s i s j s

F t I y t w I y t
N   


   

 
   (2.2) 

where in place of ,i jw  she suggests to use either the local constant regression weights  

 , :=

i j

i j
i k

k s

x x
K

w
x x

K





 
 
 

 
 
 


  

with some (integrable) kernel function in place of  K u  and > 0,  or the nearest k  neighbor weights  

 ,

1 , if   is one of the  nearest neighbors to 
:=

0, otherwise.

j i

i j

k x k x
w





  

Note that in the definition  ˆ ,F t  

    ,
ˆ :=i i j j

j s

G t w I y t


  (2.3) 

is used as the fitted value in place of the unobserved indicator function  iI y t  for .i s  

Following an idea put forward in the textbook of Chambers and Clark (2012), we shall analyze an 
estimator for  NF t  based on alternative fitted values which incorporate a nonparametric estimate for the 
mean regression function  .m x  The fitted values in question are given by  

    *
,

ˆ := ˆ ˆi i j j j i
j s

G t w I y m t m


    (2.4) 

where  
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 ,:=ˆ i i j j
k s

m w y

   

is a nonparametric estimator for  m x  at = ,ix x  and the resulting estimator for  NF t  is given by  

      *
,

1ˆ := .ˆ ˆj i j j j i
j s i s j s

F t I y t w I y m t m
N   


     

 
   (2.5) 

The fitted values in (2.3) and (2.4), or appropriately modified versions of them which include sample 
inclusion probabilities in the regression weights , ,i jw  can obviously be computed also for ,i s  and they 
can be employed for example in generalized difference estimators (Särndal et al. 1992, page 221) or in 
model calibrated estimators (see for example Wu and Sitter 2001; Chen and Wu 2002; Wu 2003; Montanari 
and Ranalli 2005; Rueda, Martínez, Martínez and Arcos 2007; Rueda, Sànchez-Borrego, Arcos and 
Martínez 2010). In addition to the model-based estimators in (2.2) and (2.5), we shall thus consider also the 
generalized difference estimators given by  

        1
, ,

1
:= i j j i i i j j

i U j s i s j s

F t w I y t I y t w I y t
N

 

   

  
      

  
       

and by  

        * 1
, ,

1
:= i j j j i i i i j j j i

i U j s i s j s

F t w I y m t m I y t w I y m t m
N

 

   

  
          

  
           

where i  denotes the first order sample inclusion probabilities, ,i jw  denotes design weighted regression 

weights whose definition is given below, and ,:= .i i k kk s
m w y

   Note that  F t  and  *F t  are based on 

design weighted counterparts of the fitted values  ˆ
iG t  and  *ˆ

iG t  which are given by  

    ,:=i i j j
j s

G t w I y t


    

and  

    *
,:= ,i i j j j i

j s

G t w I y m t m


        

respectively. 

As for the regression weights ,i jw  and , ,i jw  in the present work we consider local linear regression 
weights in their place. In what follows ,i jw  and ,i jw  are thus defined by  

 
   

     

2, 1,

, 2
2, 0, 1,

1
:=

i j
s i s i

i j
i j

s i s i s i

x x
M x M x

x x
w K

n M x M x M x


 

      
   

  

and  

 
   

     

2, 1,

, 2
2, 0, 1,

1
:= ,

i j
s i s i

i j
i j

j s i s i s i

x x
M x M x

x x
w K

n M x M x M x


  

      
   

 
      

where n  is the number of units in the sample ,s  
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  ,

1
:= , = 0,1,2,

r
k k

r s
k s

x x x x
M x K r

n  

   
  
  

   

and  

  ,

1
:= , = 0,1,2.

r
k k

r s
k s k

x x x x
M x K r

n   

   
  
  

   

It is worth noting that the nonparametric estimators of this section are not well-defined if the regression 
weights ,i jw  and ,i jw  included in their definitions are not well-defined. This problem occurs for example 
when the support of the kernel function  K u  is given by the interval  1,1  (e.g., uniform kernel, 
Epanechnikov kernel), and when there are not at least two j s  such that < .i jx x   To overcome this 
problem one can use a kernel function whose support is given by the whole real line (e.g., Gaussian kernel) 
or choose the bandwidth adaptively. The latter solution may also lead to more efficient estimators (see e.g., 
Fan and Gijbels 1992). With reference to the estimators  *F̂ t  and  *F t  based on the modified fitted 
values, it is moreover worth noting that one could in principle apply different bandwidths and/or regression 
weights to the iy  values and to the indicator functions. For the sake of simplicity, in the present work we 
shall consider neither adaptive bandwidth selection nor the possibility of different regression weights to 
estimate the mean regression function and the distributions of the error components. 

Comparing the definitions of the estimators based on the two types of fitted values, it becomes 
immediately obvious that  F̂ t  and  F t  are easier to compute since they are linear combinations of the 
observed indicator functions  .jI y t  The coefficients of these linear combinations do not depend on the 
study variable Y  and they can therefore be used to estimate averages of other functions than indicator 
functions, or of functions of several study variables, in particular when there are reasons to believe that the 
latter are related to the auxiliary variable .X  This fact is of particular value to practitioners who want 
estimates related to several study variables to be consistent with one another. However, there is a strong 
argument in favor of the estimators  *F̂ t  and  *F t  based on the modified fitted values too: if =i iy a bx  
for all ,i U  then it follows that      * *ˆ = = NF t F t F t  for every sample s  such that the estimators are 
well-defined. One would therefore expect that  *F̂ t  and  *F t  be more efficient than  F̂ t  and  F t  when 
there is a strong regression relationship between Y  and .X  

 
3  Model-based properties 
 

In this section we provide asymptotic expansions for the model bias and the model variance of the 
estimators introduced in the previous section. The expansions are based on the following assumptions: 

 
(C1) N   and the sequence of population ix  values and of sample designs are such that  

                          ,

1
:=N s i

i s

H x I x x
n 

   

and  

                          ,

1
:=N s i

i s

H x I x x
N n 
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converge to absolutely continuous distribution functions    :=
x

s sa
H x h z dz  and 

   := ,
x

s sa
H x h z dz  respectively. The support of  sH x  and  sH x  is given by a bounded 

interval  ,a b  and the density functions  sh x  and  sh x  have bounded first derivatives for 

 , .x a b   sh x  is bounded away from zero. 
 

(C2) The kernel function  K u  is symmetric, has support on  1,1  and has bounded derivative 
for  1,1 .u   The bandwidth sequence   goes to zero slow enough to make sure that  

                       
 

   
 

   , ,
, ,

:= max ,sup supN s s N s s
x a b x a b

H x H x H x H x
 

   
 

  

is of order  .o   
 

(C3) The population iy  values are generated from model (2.1). The function  m x  is such that  

                                 2 2
0 0 0 0 0 0

1

2
m x m x m x x x m x x x C x x           

for some > 0,  and the family of error component distribution functions  G x  is such that  

                       

               

                   
 

1,0 0,1
0 0 0 0 0 0 0 0

2 22,0 1,1 0,2
0 0 0 0 0 0 0 0 0 0

2 2
0 0

1
2

2

G x G x G x G x x x

G x G x x x G x x x

C x x 

     

      

   

    

      

   

  

for some > 0C  and some > 0,  where  

                              , := for , = 0,1,2.r s r s r sG x G x x r s       

 

Assumption (C1) poses a restriction on how the sample and nonsample ix  values are generated. 
Together with assumption (C2) it makes sure that the estimation errors of the kernel density estimators for 

 sh x  and  sh x  go to zero uniformly for  ,x a b     and that they are uniformly bounded for 

 , .x a b  Replacing (C1) by more specific assumptions may allow for relaxing (C2) and for improving the 
uniform convergence rate for the estimation error of the kernel density estimators (see for example the 
results in Hansen 2008). Assumption (C3) is finally needed to make sure that the model mean square errors 
of the two estimators converge to zero. It can be relaxed at the cost of slowing down the convergence rates. 
In addition to assumptions (C1) to (C3) we shall also need the following assumption (C4) to make sure that 
the model mean square errors of the generalized difference estimators go to zero: 
 

(C4) The first order sample inclusion probabilities are given by  

                       
 
 

*:= , ,i
i

j
j U

x
n i U

x
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where *n  is the expected sample size and  x  is a function which is bounded away from 
zero and has bounded first derivative for  , .x a b  

 

Proposition 1. Under assumptions (C1) to (C3) it follows that:  

 
                   

               

22 2,0 1,02

0

1,1 0,2 2

ˆ =
2

2

b

N a

s

N n
E F t F t G t m x x m x G t m x x m x

N

G t m x x m x G t m x x h x dx o








     

    


  

and  

 

                

         

2
2

2
2 1

1ˆvar =

1
,

b

N s s sa

b

sa

N n
F t F t G t m x x G t m x x h x h x h x dx

n N

N n
G t m x x G t m x x h x dx o n

N n N


             

           




  

where  
1

1
:= r

r K u u du


  for = 0,1,2.r  

Adding assumption (C4) it can be shown that  

 
                   

               

22 2,0 1,02

0

1,1 0,2 2

=
2

2 ,

b

N a

N n
E F t F t G t m x x m x G t m x x m x

N

G t m x x m x G t m x x h x dx o








     

    


  

where  

         1:= 1 ,s sh x h x x h x     

and it can be shown that  

            1ˆvar = var .N NF t F t F t F t o n     

 

Proposition 2. Under assumptions (C1) to (C3) and assuming that 
 

i) the function  

                        2 2:=x dG x  


   

has bounded first derivative for  ,x a b  

ii)  

                     
 

 4

,

< ,sup
x a b

dG x 



   

it can be shown that  
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2 0,2* 2

0

1,0 1

0

12,0 2 1 2
2
0

ˆ =

1 0

,

b

N sa

b

s sa

b

s sa

N n
E F t F t G t m x x h x dx

N

N n K
G t m x x t m x h x h x dx

n N

G t m x x x h x h x dx o n







 

 
  








 

   

    







  

where  
1 2

1
:= K u du

  and    
1 1

1 1
:= ( ) ,K v K u v K u dudv

 
   and it can be shown that  

            * 1 5ˆ ˆvar = var .N NF t F t F t F t o n       

Adding assumption (C4) it can also be shown that  

 

           

             

          

  

2 0,2* 2

0

1,0 1

0

2,0 2 1
2
0

12

=

1 0

b

N a

b

sa

b

sa

N n
E F t F t G t m x x h x dx

N

N n K
G t m x x t m x h x h x dx

n N

G t m x x x h x h x dx

o n







 

 




 








 

   

   

 









  

and that 

            * 1 5ˆvar = var .N NF t F t F t F t o n       

 
The proofs of the Propositions are given in the Appendix. Dorfman and Hall (1993) derived similar 

expansions for the Kuo estimator with local constant regression weights instead of local linear ones. 

Note that in view of the asymptotic expansions it is possible to choose bandwidth sequences   in such 
a way as to make sure that the squares of the model biases are of smaller order of magnitude than the 
corresponding model variances. For the estimators based on the fitted values of Kuo this is achieved 
whenever  1 4= ,o n   while for the estimators with the modified fitted values this requires that   goes 
to zero faster than  1 4O n  and slower than  1 2 .O n  The convergence rates for the model biases of the 
latter estimators are optimized when  1 3= O n   and in this case the resulting model biases are both of 
order  2 3 .O n  The model biases for the estimators based on the fitted values of Kuo can be made to 
converge much faster, depending on the sequences  ,N sH x  and  ,N sH x  and on the bandwidth 
sequence .  

Given the above considerations concerning the model biases and given the fact that the leading terms in 
the model variances are the same for both types of fitted values, it would be of interest to know the second 
order terms in the model variances in order to establish which estimator is more efficient from the 
model-based perspective. The proofs in the Appendix suggest however that the second order terms depend 
on more specific assumptions than (C1) to (C3) and that, in particular for the estimators based on the 
modified fitted values, they are difficult to determine. 
 



Survey Methodology, June 2016 95 
 

 
Statistics Canada, Catalogue No. 12-001-X 

4  Design-based properties 
 

In the previous section we have shown that the model-based estimators  F̂ t  and  *F̂ t  are 
asymptotically model-unbiased and model mean square error consistent. However, they are not design-
unbiased in general and therefore they should not be used when the sample inclusion probabilities are not 
constant. In these cases the generalized difference estimators  F t  and  *F t  should be used. In fact, it 
follows from the results in Breidt and Opsomer (2000) that under fairly general conditions  F t  is 
asymptotically design-unbiased and that its design mean square error is given by  

                2 , 1
2

,

1
= ,i j i j

d N i i j j
i j U i j

E F t F t I y t G t I y t G t o n
N

  
 






          

where  dE   denotes expectation with respect to the sample design, ,i j  denotes the joint sample inclusion 
probability for units i  and j  (it is understood that , = ,i i i   and where  

    ,:= .i i j j
j U

G t w I y t


   

The regression weights ,i jw  in the definition of  iG t  refer to the whole finite population U  and are given 
by  

 
   

     

2, 1,

, 2
2, 0, 1,

1
:= ,

i j
s i s i

i j
i j

s i s i s i

x x
M x M x

x x
w K

N M x M x M x


 

      
   

  

where 

  ,

1
:= , = 0,1,2.

r
k k

r s
k U

x x x x
M x K r

N  

   
  
  

   

Moreover, according to Breidt and Opsomer (2000),  

            ,

2
, ,

1
:= i j i j

i i j j
i j s i j i j

V F t I y t G t I y t G t
N

  
  


           

is a consistent estimator for the design mean square error of  .F t  

Unfortunately the results in Breidt and Opsomer (2000) cannot be applied to the generalized difference 
estimator  *F t  as well, since the latter estimator does not fall into the class of local polynomial regression 
estimators due to the presence of the regression function estimators im  and jm  inside the indicator functions 
in the fitted values  * .iG t  However, the results for  F t  suggest that in large samples  *

iG t  and  

    *
,:= ,i i j j j i

j U

G t w I y m t m
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where ,:= ,i i j jj U
m w y

  are approximately the same, and that  

               2 ,* * * 1
2

,

1
= i j i j

d N i i j j
i j U i j

E F t F t I y t G t I y t G t o n
N

  
 






              

Based on this conjecture, we tested  

           ,* * *
2

, ,

1
:= .i j i j

i i j j
i j s i j i j

V F t I y t G t I y t G t
N

  
  


               

as estimator for the design mean square error of the generalized difference estimator  *F t  in the simulation 
study of the following section. 

 
5  Simulation study 
 

In this section we analyze some simulation results. Our goal is to compare efficiency with respect to the 
sample design of the distribution function estimators introduced in Section 2 and of the variance estimators 
of Section 4. The simulation results refer to simple random without replacement sampling and to Poisson 
sampling with unequal inclusion probabilities. As a benchmark, we included also the Horvitz-Thompson 
distribution function estimator  

    11ˆ := j j
j s

F t I y t
N  



   

and the corresponding variance estimator  

       ,

2
, ,

1ˆ := i j i j
i j

i j s i j i j

V F t I y t I y t
N

  
  


    

in the simulation study. 

We considered both artificial and real populations. The former were obtained by generating = 1,000N  
values ix  from i.i.d. uniform random variables with support on the interval  0,1  and by combining them 
with three types of regression function  m x  and two types of error components .i  The regression 
functions are (i)   = 0m x  (flat), (ii)   = 10m x x  (linear) and (iii)   1 4= 10m x x  (concave), while the error 
components i  are either independent realizations from a unique Student t  distribution with = 5  d.o.f., 
or independent realizations from N  different shifted noncentral Student t  distributions with = 5  d.o.f. 
and with noncentrality parameters given by = 15 .ix  The shifts applied to the error components in the 
latter case make sure that the means of the noncentral Student t  distributions from which they were 
generated are zero. The artificial populations are shown in Figure 5.1 to 5.3. As for the real populations, we 
took the MU 284  Population of Sweden Municipalities of Särndal et al. (1992) (population size = 284N  
and considered the natural logarithm of RMT 85   Revenues from the 1985 municipal taxation (in millions 
of kronor) as study variable ,Y  and the natural logarithm of either P85 1985  population (in thousands) 
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or REV 84   Real estate values according to 1984 assessment (in millions of kronor) as auxiliary variable 
.X  The real populations are shown in Figure 5.4. 

 

 

 

 

 

 

 

 

 

Figure 5.1 Populations generated from = ,i iy   where ~i i.i.d. Student t  with = 5  (left panel) and ~i
indep. noncentral Student t  with = 5  and = 15 ix  (right panel). 

 

 

 

 

 

 

 

 

 

 

Figure 5.2 Populations generated from = 10 ,i i iy x   where ~i i.i.d. Student t  with = 5  (left panel) and 

~i indep. noncentral Student t  with = 5  and = 15 ix  (right panel). 

 

 

 

 

 

 

 

 

 

 

Figure 5.3 Populations generated from 1 4= 10 ,i i iy x   where ~i i.i.d. Student t  with = 5  (left panel) and 

~i indep. noncentral Student t  with = 5  and 15 ix   (right panel). 
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Figure 5.4 MU284 Population of Sweden Municipalities of Särndal et al (1992). = ln 85i iy RMT  for the thi  

municipality, and = ln 85i ix P  (left panel) or = ln 84i ix REV  (right panel). 

 
From each population we selected independently = 1,000B  samples. When sampling from the artificial 

populations we set the sample size equal to = 100n  in case of simple random without replacement sampling 
and, in case of Poisson sampling, we set the expected sample size equal to * = 100n  and made the sample 
inclusion probabilities proportional to the standard deviations of the shifted noncentral Student t  
distributions of above. When sampling from the real populations, we set the sample size equal to = 30n  in 
case of simple random without replacement sampling. In case of Poisson sampling, we set the expected 
sample size equal to * = 30n  and made the sample inclusion probabilities proportional to the absolute values 
of the residuals from the linear least squares regressions of the population iy  values on the population ix  
values. 

As for the definition of the nonparametric estimators, we used the Epanechnikov kernel function 

   2:= 0.75 1K u u  with = 0.15  or = 0.3  for the samples taken from the artificial populations, and 
the Gaussian kernel function     21 2:= 1 2 uK u e   with = 1  or = 2  for the samples taken from the 
real populations. In the tables with the simulation results the nonparametric estimators corresponding to the 
small and large bandwidth values are identified with an s  (small) or an l  (large) in the subscript. We 
resorted to the Gaussian kernel function for the samples taken from the real populations to avoid singularity 
problems that occur in case of holes in the sampled set of ix  values. Such holes are much more likely to 
occur with the real populations than with the artificial ones, because the distributions of the auxiliary 
variables are asymmetric in the former. In fact, in the artificial populations the nonparametric estimators 
were well-defined for all the = 1,000B  samples selected according to the simple random without 
replacement sampling design. For the Poisson sampling design, on the other hand, 47 among the = 1,000B  
simulated samples were such that the nonparametric estimators with the small bandwidth value could not 
be computed and just one of these samples was such that the nonparametric estimators with the large 
bandwidth value were undefined. The simulation results referring to the nonparametric estimators in 
Tables 5.2 and 5.5 account only for the samples where they were well-defined and thus they are based on a 
little less than = 1,000B  realizations. 

Tables 5.1 to 5.4 report the simulated bias (BIAS) and the simulated root mean square error (RMSE) for 
each distribution function estimator at different levels of t  at which  NF t  has been estimated: based, for 
example, on the values   ,bF t  = 1,2, , ,b B  taken on by the estimator   ,F t  
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=1

1
BIAS := 10,000

B

b N
b

F t F t
B

     

and  

     2

=1

1
RMSE := 10,000.

B

b N
b

F t F t
B

     

The RMSE’s show that the estimators based on the modified fitted values are usually more efficient. In 
sampling from the real populations the gain in RMSE is sometimes quite large. As expected, the model-
based estimators tend to be more efficient than the generalized difference estimators in case of simple 
random without replacement sampling when both types of estimator are approximately unbiased. Under the 
Poisson sampling scheme the BIAS of the model-based estimators increases, but nonetheless they remain 
competitive. More variability in the sample inclusion probabilities would certainly change this outcome, 
because it would increase the BIAS of the model-based estimators. The simulation results should therefore 
not be seen to be in contrast with Johnson, Breidt and Opsomer (2008) who argue in favor of generalized 
difference estimators (called model-assisted estimators in their paper) as “a good overall choice for 
distribution function estimators”. 

 
Table 5.1 
Artificial populations (population size = 1,000 .N  BIAS and RMSE of distribution function estimators under 
simple random without replacement sampling. Sample size = 100n  
 

    1= 0.05Nt F     1= 0.25Nt F     1= 0.50Nt F     1= 0.75Nt F     1= 0.95Nt F   

 BIAS   RMSE  BIAS   RMSE BIAS   RMSE BIAS   RMSE BIAS   RMSE 

= ,i iy   with i   i.i.d. central Student t  with = 5  

 ˆ
sF t   6  216  -3  433  31  512  23  434  12  207 

 l̂F t   15  219  10  430  0  502  -10  429  3  213 

 *ˆ
sF t   6  209  -30  411  22  484  22  414  3  200 

 *
l̂F t   15  214  -9  409  10  477  1  407  -10  207 

 sF t   6  213  8  425  24  504  -4  430  8  207 

 lF t   6  210  10  417  22  494  -8  422  6  206 

 *
sF t   8  213  9  426  25  503  -5  432  5  206 

 *
lF t   7  210  10  417  23  494  -6  424  4  206 

 F t
   7  208  11  411  19  489  -5  417  6  200 

= ,i iy   with i   indep. noncentral Student t  with = 5  and = 15 ix  

 ˆ
sF t  26  225 33  376  8  477 26  419  33  209 

 l̂F t  52  236  23  374  -5  475  38  421  29  213 

 *ˆ
sF t  20  195  -29  351  -89  471  11  407  30  202 

 *
l̂F t  36  201  -11  357  -94  473  28  410  21  204 

 sF t  8  211  11  370  -7  473  4  415  16  211 

 lF t  5  208  8  367  -5  468  5  411  16  212 

 *
sF t  11  210  11  372  -11  475  4  416  15  210 

 *
lF t  7  208  11  368  -7  468  8  412  15  211 

 F t
  1  211  1  391  -6  477  8  399  18  210 
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Table 5.1 (continued) 
Artificial populations (population size = 1,000 .N  BIAS and RMSE of distribution function estimators under 
simple random without replacement sampling. Sample size = 100n  
 

   1= 0.05Nt F     1= 0.25Nt F     1= 0.50Nt F     1= 0.75Nt F     1= 0.95Nt F   

 BIAS   RMSE  BIAS   RMSE BIAS   RMSE BIAS   RMSE BIAS   RMSE 

= 10 ,i i iy x   with i   i.i.d. Student t  with = 5  

 ˆ
sF t  32  201  25  275  13  250  -14  264  -36  217 

 l̂F t  114  250  152  304  12  236  -180  312  -86  242 

 *ˆ
sF t  -50  165  12  226  51  216  26  230  13  172 

 *
l̂F t  -46  155  -14  199  69  195  23  211  17  156 

 sF t  -5  186  4  275  15  248  11  269  -2  201 

 lF t  -5  184  7  274  17  250  5  269  -2  196 

 *
sF t  -10  180  5  275  16  245  14  266  -1  200 

 *
lF t  -9  176  3  272  15  242  13  262  -1  194 

 F t
  -7  203  14  413  37  472  17  405  1  206 

= 10 ,i i iy x   with i   indep. noncentral Student t  with = 5  and = 15 ix  

 ˆ
sF t  24  204  23  351  27  403  26  382  29  208 

 l̂F t  94  242  135  372  51  392  13  380  15  212 

 *ˆ
sF t  55  182  -9  301  -18  368  -23  359  37  202 

 *
l̂F t  124  210  -31  278  -63  363  -8  356  48  200 

 sF t  -2  194  -4  349  11  401  18  377  13  208 

 lF t  -2  190  -5  345  12  398  17  374  11  209 

 *
sF t  0  191  -5  352  14  401  20  376  13  207 

 *
lF t  -1  189  -6  344  13  397  18  375  12  209 

 F t
  -4  205  -5  401  21  470  24  401  14  207 

1 4= 10 ,i i iy x   with i   i.i.d. Student t  with = 5  

 ˆ
sF t  81  207  44  316  17  384  -2  376  23  203 

 l̂F t  138  258  183  356  35  367  -50  374  8  208 

 *ˆ
sF t  7  146  -14  274  16  352  -8  358  15  197 

 *
l̂F t  9  144  10  246  -2  323  -18  339  24  186 

 sF t  3  175  3  319  10  383  17  374  10  203 

 lF t  0  178  5  316  11  380  17  370  8  202 

 *
sF t  1  167  5  320  12  383  17  374  9  203 

 *
lF t  -1  164  6  316  13  379  20  368  8  201 

 F t
  4  209  11  412  25  477  27  422  10  200 

1 4= 10 ,i i iy x   with i   indep. noncentral Student t  with = 5  and = 15 ix  

 ˆ
sF t  59  234  95  402  66  455  51  395  26  208 

 l̂F t  94  259  190  441  147  467  98  400  16  212 

 *ˆ
sF t  30  184  33  343  -123  435  -34  385  40  203 

 *
l̂F t  57  201  58  331  -148  437  2  382  34  203 

 sF t  1  205  7  386  12  449  17  392  13  208 

 lF t  -1  204  0  385  9  445  20  389  11  209 

 *
sF t  3  201  8  389  7  449  13  392  14  207 

 *
lF t  0  198  6  383  9  446  19  390  13  208 

 F t
  0  205  -2  399  9  463  25  398  14  208 
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Table 5.2 
Artificial populations (population size = 1,000 .N  BIAS and RMSE of distribution function estimators under 
Poisson sampling with sample inclusion probabilities i  proportional to the standard deviations of the 
noncentral Student t  distributions with = 5  d.o.f. and with noncentrality parameters = 15 .ix  Expected 
sample size * = 100n  
 

    1= 0.05Nt F     1= 0.25Nt F     1= 0.50Nt F     1= 0.75Nt F     1= 0.95Nt F   

 BIAS   RMSE  BIAS   RMSE BIAS   RMSE BIAS   RMSE BIAS   RMSE 

= ,i iy   with i   i.i.d. central Student t  with = 5  

 ˆ
sF t  -10  252  -11  593  -22  738  -20  743  6  357 

 l̂F t  -1  237  9  543  -15  621  -5  590  11  302 

 *ˆ
sF t  22  244  -29  485  -3  555  9  515  -17  297 

 *
l̂F t  14  238  -10  492  -5  564  14  524  -1  283 

 sF t  -6  247  0  579  -27  724  -40  736  3  349 

 lF t  -2  231  11  526  -1  598  -10  566  7  285 

 *
sF t  23  248  23  505  -4  562  -27  531  -20  304 

 *
lF t  12  240  20  504  1  573  -13  538  -6  287 

 F t
  -6  220  -7  543  -37  741  -44  929  -48  1,058 

= ,i iy   with i   indep. noncentral Student t  with = 5  and = 15 ix  

 ˆ
sF t  17  164  30  411  4  749  14  590  15  190 

 l̂F t  47  173  19  383  -1  602  57  498  15  187 

 *ˆ
sF t  21  175  -7  378  -89  554  -11  473  3  192 

 *
l̂F t  29  152  -3  367  -99  555  27  481  3  184 

 sF t  1  159  10  406  -11  737  -5  579  -2  194 

 lF t  1  158  9  388  -5  586  14  482  -1  192 

 *
sF t  14  186  27  409  -3  562  -17  487  -10  200 

 *
lF t  3  160  22  399  -11  566  -5  482  -2  193 

 F t
  -3  162  -7  451  -31  738  -29  980  -55  1,067 

= 10 ,i i iy x   with i   i.i.d. Student t  with = 5  

 ˆ
sF t  8  461  21  561  -12  259  -18  218  -30  164 

 l̂F t  78  429  183  451  2  248  -161  261  -79  189 

 *ˆ
sF t  -69  306  12  340  10  267  15  199  6  143 

 *
l̂F t  -59  294  4  302  56  205  15  172  17  124 

 sF t  -25  441  4  560  -10  257  9  219  5  153 

 lF t  -14  372  35  410  -10  262  4  219  5  151 

 *
sF t  -31  333  -2  386  -29  294  4  227  -1  161 

 *
lF t  -20  339  15  372  -10  259  11  215  4  151 

 F t
  -15  385  3  746  -37  917  -35  1,004  -48  1,070 

= 10 ,i i iy x   with i   indep. noncentral Student t  with = 5  and = 15 ix  

 ˆ
sF t  -4  516  30  671  7  453  11  344  6  182 

 l̂F t  63  409  129  539  61  421  9  341  1  180 

 *ˆ
sF t  44  300  -29  433  -45  422  -47  345  12  180 

 *
l̂F t  107  314  -41  420  -60  397  -22  323  31  171 

 sF t  -27  502  8  667  -8  450  0  344  -8  185 

 lF t  -10  364  16  510  11  425  -2  345  -7  182 

 *
sF t  -6  325  -9  479  -25  447  -14  356  -10  187 

 *
lF t  -7  332  -9  489  -5  426  -3  344  -6  182 

 F t
  -16  349  -2  705  -21  886  -42  1,013  -61  1,069 
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Table 5.2 (continued) 
Artificial populations (population size = 1,000 .N  BIAS and RMSE of distribution function estimators under 
Poisson sampling with sample inclusion probabilities i  proportional to the standard deviations of the 
noncentral Student t  distributions with = 5  d.o.f. and with noncentrality parameters = 15 .ix  Expected 
sample size * = 100n  
 

   1= 0.05Nt F     1= 0.25Nt F     1= 0.50Nt F     1= 0.75Nt F     1= 0.95Nt F   
 BIAS   RMSE  BIAS   RMSE BIAS   RMSE BIAS   RMSE BIAS   RMSE 

1 4= 10 ,i i iy x   with i   i.i.d. Student t  with = 5  

 ˆ
sF t  36  497  47  629  9  418  -11  320  15  191 

 l̂F t  56  393  186  490  43  383  -48  308  13  184 

 *ˆ
sF t  -29  276  -19  383  -18  380  -43  335  -1  204 

 *
l̂F t  -29  274  10  355  7  336  -29  290  23  179 

 sF t  -30  475  12  630  4  421  7  317  6  191 

 lF t  -42  336  31  452  11  390  8  312  8  186 

 *
sF t  -31  306  5  429  -18  406  -14  344  -8  210 

 *
lF t  -28  308  14  424  7  387  5  315  7  191 

 F t
  -15  380  10  739  -23  891  -37  993  -47  1,064 

1 4= 10 ,i i iy x   with i   indep. noncentral Student t  with = 5  and = 15 ix  

 ˆ
sF t  24  308  69  687  53  690  38  406  2  188 

 l̂F t  47  301  131  553  139  561  91  393  -2  186 

 *ˆ
sF t  15  237  2  435  -135  513  -59  411  12  186 

 *
l̂F t  27  235  18  435  -149  506  -5  374  13  179 

 sF t  -28  274  -8  673  4  688  3  403  -10  191 

 lF t  -29  251  -12  512  17  541  7  395  -9  188 

 *
sF t  -3  255  -12  481  -7  536  -20  422  -12  196 

 *
lF t  -12  251  -16  489  2  538  -4  399  -9  189 

 F t
  -10  267  -8  608  -4  860  -38  1,009  -63  1,066 

 

Table 5.3 
Real populations (population size = 284 .N  BIAS and RMSE of distribution function estimators under simple 
random without replacement sampling. Sample size = 30n  
 

    1= 0.05Nt F     1= 0.25Nt F     1= 0.50Nt F     1= 0.75Nt F    1= 0.95Nt F   
 BIAS   RMSE  BIAS   RMSE RBIAS   RMSE BIAS   RMSE BIAS   RMSE 

MU284 population with = ln 85Y RMT  and = ln 85X P  

 ˆ
sF t  133  421   339  625  180  529  -265  490  -187  439 

 l̂F t   52  380   67  588   45  555   -63  469   -87  370 

 *ˆ
sF t   8   81  -154  203   90  130   62  123   6   54 

 *
l̂F t   28   66  -170  212   69  112   57  109   2   50 

 sF t  -28  300   -24  497   8  483   -48  421   -38  319 

 lF t  -28  326   -96  569  -52  544   3  466   1  319 

 *
sF t   26  177   -11  302   0  244   1  308   -18  102 

 *
lF t   29  179   -10  302   -2  243   -1  308   -21  104 

 F t
   22  388   -10  771   9  864   5  731   -43  394 

MU284 population with = ln 85Y RMT  and = ln 84X REV  

 ˆ
sF t   143  449  303  643   138  554  -217  543  -166  446 

 l̂F t   62  395   62  611   36  582   -49  519   -71  376 

 *ˆ
sF t   -11  204  -32  300  -101  328   42  285   31  155 

 *
l̂F t   36  183  -40  288  -149  345   6  261   34  122 

 sF t   5  340  -22  548   4  557   -30  498   -23  332 

 lF t   -2  349  -78  599   -36  588   10  522   8  331 

 *
sF t   24  303   7  446   -6  494   2  439   -13  209 

 *
lF t   29  304   4  443   -6  495   -1  432   -18  192 

 F t
   34  395   1  766   16  880   9  744   -37  398 
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Table 5.4 
Real populations (population size = 284 .N  BIAS and RMSE of distribution function estimators under Poisson 
sampling with inclusion probabilities proportional to the absolute value of the residuals of the linear regression 
of the population iy  values on the population ix  values. Expected size * = 30n  
 

    1= 0.05Nt F     1= 0.25Nt F     1= 0.50Nt F     1= 0.75Nt F     1= 0.95Nt F   
 BIAS   RMSE  BIAS   RMSE RBIAS   RMSE BIAS   RMSE BIAS   RMSE 

MU284 population with = ln 85Y RMT  and = ln 85X P  

 ˆ
sF t   204  420   485   668  239   519  -412   626   -90   317 

 l̂F t   180  424   417   684  319   614  -239   548  -148   348 

 *ˆ
sF t   -41   97  -118   199  132   178   40   140   -71   104 

 *
l̂F t   11   70  -147   211   63   128   -25   122   -85   106 

 sF t   24  360   30   649   0   675   -68   614   58   368 

 lF t   9  390   -63   737  -64   774   -7   682   75   414 

 *
sF t   16  184   -14   307   36   283   16   323   -11   103 

 *
lF t   25  187   -15   312   30   286   14   328   -11   112 

 F t
   40  445   73  1,983   12  2,498   -43  3,094   -49  3,341 

MU284 population with = ln 85Y RMT  and = ln 84X REV  

 ˆ
sF t  349  660  1,185  1,373   890  1,059   458   654   -32   270 

 l̂F t  287  601  1,003  1,236   771   989   484   695   42   263 

 *ˆ
sF t  317  453   739   866   761   879   624   701   159   207 

 *
l̂F t  364  471   720   842   718   824   572   647   96   158 

 sF t   35  488   82   818   -31   772   7   634   -8   326 

 lF t   22  500   3   878   -98   852   40   704   27   354 

 *
sF t   37  317   32   498   -13   513   32   412   7   157 

 *
lF t   51  313   30   498   -30   518   12   411   -10   149 

 F t
   32  671   19  1,658  -172  2,354  -173  2,787  -191  2,935 

 
 

Consider finally the simulation results referring to the variance estimators of Section 4. Tables 5.5 to 5.8 
report the relative bias (RBIAS) and the relative root mean square error (RRMSE) for each of them. For 
example, based on the variance estimates    ,bV F t   = 1,2, , ,b B  obtained from the estimator    ,V F t   

 
     

  =1

1
RBIAS := 10,000

B
b B

b B

V F t V F t

B V F t




  
   

and  

 
      

  

2

=1

1

RRMSE := 10,000

B

b B
b

B

V F t V F t
B

V F t




   

   

where  

        2

=1

1
:= .

B

B b N
b

V F t F t F t
B

    

As a benchmark, we report also the RBIAS and RRMSE of the estimator  
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       ,

2
, ,

1
:= .i j i j

i j
i j s i j i j

V F t I y t I y t
N

  
  


     

for the variance of the Horvitz-Thompson estimator. 

 
Table 5.5 
Artificial populations (population size = 1,000 .N  RBIAS and RRMSE of variance estimators under simple 
random without replacement sampling. Sample size = 100n  
 

    1= 0.05Nt F     1= 0.25Nt F     1= 0.50Nt F     1= 0.75Nt F     1= 0.95Nt F   

 RBIAS   RRMSE  RBIAS   RRMSE RBIAS   RRMSE RBIAS   RRMSE RBIAS   RRMSE 

= ,i iy   with i   i.i.d. central Student t  with = 5  

  sV F t   -1,092 32,442 -1,249 3,895 -1,714 3,077 -1,536 3,828 -824 34,601 

  lV F t   -576 31,726 -603 3,838 -1,122 3,374 -951 3,758 -441 33,055 

  *
sV F t   -1,091 32,579 -1,292 3,914 -1,708 3,085 -1,640 3,828 -802 34,809 

  *
lV F t   -556 31,881 -622 3,857 -1,148 3,361 -1,025 3,749 -425 33,184 

  V F t
   42 30,952 57 3,928 -592 3,776 -287 3,825 551 33,462 

= ,i iy   with i   indep. noncentral Student t  with = 5  and = 15 ix  

  sV F t   -1,900 29,622 50 4,707 -917 3,557 -998 3,695 -1,480 29,417 

  lV F t   -1,359 29,623 535 4,572 -395 3,881 -527 3,736 -1,277 28,267 

  *
sV F t   -1,832 30,119 -101 4,710 -991 3,530 -1,077 3,704 -1,398 29,927 

  *
lV F t   -1,362 29,713 465 4,559 -420 3,865 -591 3,718 -1,236 28,489 

  V F t
   -351 29,132 1,096 4,215 -78 4,074 574 4,067 -638 29,507 

= 10 ,i i iy x   with i   i.i.d. Student t  with = 5  

  sV F t   -2,170 11,624 -1,027 2,480 -816 3,274 -1,424 2,583 -1,946 8,681 

  lV F t   -1,534 11,605 -529 2,632 -148 2,975 -859 2,590 -1,151 9,015 

  *
sV F t   -1,765 12,107 -1,108 2,529 -714 3,366 -1,318 2,660 -1,905 8,658 

  *
lV F t   -1,062 11,948 -671 2,735 -212 3,291 -762 2,785 -1,048 8,590 

  V F t
   254 31,545 -52 3,726 136 4,152 267 3,992 35 30,264 

= 10 ,i i iy x   with i   indep. noncentral Student t  with = 5  and = 15 ix  

  sV F t   -1,642 25,809 -855 3,541 -1,076 3,038 -1,081 3,030 -1,361 21,157 

  lV F t   -950 25,692 -323 3,509 -597 3,312 -617 3,164 -1,124 20,231 

  *
sV F t   -1,385 26,406 -997 3,505 -1,089 3,045 -1,096 3,033 -1,310 21,393 

  *
lV F t   -832 26,212 -292 3,556 -614 3,317 -716 3,154 -1,135 20,286 

  V F t
   105 29,621 507 3,857 209 4,244 425 3,910 -337 29,082 

1 4= 10 ,i i iy x   with i   i.i.d. Student t  with = 5  

  sV F t   -2,465 30,612 -1,121 4,594 -1,512 3,183 -1,958 3,076 -863 19,720 

  lV F t   -1,780 28,103 -663 4,420 -1,092 3,319 -1,491 3,140 -439 18,985 

  *
sV F t   -2,052 33,980 -1,150 4,619 -1,537 3,217 -1,948 3,127 -954 19,637 

  *
lV F t   -1,194 33,573 -691 4,472 -1,124 3,368 -1,438 3,228 -357 19,245 

  V F t
   -81 30,001 9 3,756 -110 3,996 -598 3,661 440 32,455 

1 4= 10 ,i i iy x   with i   indep. noncentral Student t  with = 5  and = 15 ix  

  sV F t   -1,873 29,437 -758 3,759 -621 3,476 -709 3,599 -1,298 27,679 

  lV F t   -1,267 28,511 -284 3,661 -131 3,758 -321 3,552 -1,075 26,790 

  *
sV F t   -1,710 30,670 -928 3,741 -628 3,510 -777 3,603 -1,245 27,972 

  *
lV F t   -939 30,486 -270 3,764 -171 3,803 -375 3,581 -1,014 26,926 

  V F t
   178 29,640 599 3,816 533 4,324 590 3,874 -404 28,917 
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Table 5.6 
Artificial populations (population size = 1,000 .N  RBIAS and RRMSE of variance estimators under Poisson 
sampling with sample inclusion probabilities i  proportional to standard deviation of noncentral Student t  
distribution with = 5  d.f. and with noncentrality parameter = 15 .ix  Expected sample size * = 100n  
 

    1= 0.05Nt F     1= 0.25Nt F     1= 0.50Nt F     1= 0.75Nt F     1= 0.95Nt F   

 RBIAS   RRMSE  RBIAS   RRMSE RBIAS   RRMSE RBIAS   RRMSE RBIAS   RRMSE 

= ,i iy   with i   i.i.d. central Student t  with = 5  

  sV F t   -3,306 65,777 -4,248 8,032 -5,093 4,242 -6,258 4,844 -5,652 32,037 

  lV F t   -2,048 47,035 -2,656 4,705 -2,434 3,116 -3,310 3,939 -3,092 29,380 

  *
sV F t   -3,362 36,855 -2,488 4,409 -1,910 3,147 -2,869 3,910 -4,329 23,247 

  *
lV F t   -2,696 39,509 -2,076 4,450 -1,768 3,163 -2,648 3,811 -3,244 26,343 

  V F t
   113 129,637 259 15,120 618 6,327 193 5,429 273 6,097 

= ,i iy   with i   indep. noncentral Student t  with = 5  and = 15 ix  

  sV F t   -740 125,975 -2,522 14,864 -5,466 3,658 -4,896 6,691 -1,551 83,262 

  lV F t   -391 83,047 -1,503 8,946 -2,428 4,099 -2,228 5,526 -1,154 54,680 

  *
sV F t   -3,260 58,072 -2,649 7,661 -2,260 3,936 -2,795 5,011 -2,116 48,739 

  *
lV F t   -716 77,935 -2,000 7,979 -1,934 4,235 -2,279 5,243 -1,243 52,531 

  V F t
   666 251,134 -564 26,553 -87 7,344 -2 6,029 407 6,610 

= 10 ,i i iy x   with i   i.i.d. Student t  with = 5  

  sV F t   -6,801 7,898 -6,470 4,281 -1,059 22,596 -398 32,401 -1,650 72,632 

  lV F t   -4,978 5,826 -2,898 4,473 -603 9,530 206 15,226 -1,157 40,466 

  *
sV F t   -4,520 6,691 -2,710 4,213 -3,245 6,723 -1,156 12,681 -2,458 32,907 

  *
lV F t   -4,226 6,206 -1,674 5,062 -978 7,874 55 12,781 -1,283 33,737 

  V F t
   -707 47,550 118 7,214 609 4,409 743 4,628 435 4,800 

= 10 ,i i iy x   with i   indep. noncentral Student t  with = 5  and = 15 ix  

  sV F t   -7,398 8,847 -6,235 3,667 -2,493 8,171 -1,051 16,299 -1,440 71,943 

  lV F t   -4,548 9,463 -3,136 3,282 -1,187 4,246 -832 7,638 -982 45,182 

  *
sV F t   -3,902 11,727 -2,808 3,409 -2,411 3,501 -1,721 6,737 -1,671 41,389 

  *
lV F t   -3,598 10,771 -2,610 3,462 -1,284 3,988 -852 7,008 -972 43,017 

  V F t
   146 57,044 -42 8,708 520 4,784 214 4,686 390 5,085 

1 4= 10 ,i i iy x   with i   i.i.d. Student t  with = 5  

  sV F t   -7,731 8,568 -6,597 3,484 -2,442 7,775 -903 16,067 -1,967 56,480 

  lV F t   -4,611 9,378 -2,990 3,252 -874 4,119 -347 7,420 -1,310 35,051 

  *
sV F t   -4,747 11,909 -2,679 3,298 -1,896 3,272 -2,248 5,747 -3,382 27,222 

  *
lV F t   -4,223 10,380 -2,100 3,494 -788 3,731 -550 5,975 -1,795 29,856 

  V F t
   -428 47,038 -206 7,350 641 4,504 738 4,708 487 4,943 

1 4= 10 ,i i iy x   with i   indep. noncentral Student t  with = 5  and = 15 ix  

  sV F t   -4,936 40,696 -6,111 4,579 -5,549 4,035 -1,864 14,381 -1,509 84,892 

  lV F t   -3,004 29,404 -2,764 3,962 -2,436 3,606 -1,234 7,357 -1,103 53,875 

  *
sV F t   -4,328 27,704 -2,516 4,235 -2,671 3,332 -2,586 5,955 -1,939 47,601 

  *
lV F t   -3,454 28,267 -2,263 4,160 -2,329 3,574 -1,433 6,682 -1,171 50,985 

  V F t
   152 98,607 663 12,879 15 5,376 20 5,080 429 5,619 
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Table 5.7 
Real populations (population size = 284 .N  RBIAS and RRMSE of variance estimators under simple random 
without replacement sampling. Sample size = 30n  
 

    1= 0.05Nt F     1= 0.25Nt F     1= 0.50Nt F     1= 0.75Nt F     1= 0.95Nt F   

 RBIAS   RRMSE  RBIAS   RRMSE RBIAS   RRMSE RBIAS   RRMSE RBIAS   RRMSE 

MU284 population with = ln 85Y RMT  and = ln 85X P  

  sV F t   -2,853  16,809  -1,700  3,037  -1,554  2,984  -1,100  4,633  -5,503  16,257 

  lV F t   -1,110  16,374  -1,827  2,760  -1,683  2,847   -927  4,387  -3,016  18,685 

  *
sV F t   -1,043  19,081   -91  7,728   -448  9,120   -484  7,715  -1,877  65,298 

  *
lV F t    -424  18,971   104  7,819   -382  9,110   -301  7,799  -1,058  62,968 

  V F t
    -186  29,720   -603  3,901   31  3,971   500  4,383   -74  28,418 

MU284 population with = ln 85Y RMT  and = ln 84X REV  

  sV F t   -2,283  16,303  -1,450  3,538  -945  3,526  -1,071  4,300  -4,832  19,401 

  lV F t   -1,095  16,755  -1,427  3,181  -938  3,390   -780  4,051  -2,753  20,551 

  *
sV F t   -1,737  14,642   -298  5,648  -546  5,282   -736  5,679  -3,564  38,344 

  *
lV F t   -1,174  14,111   -27  5,856  -422  5,452   -228  5,974  -1,433  43,923 

  V F t
    -307  28,421   -460  3,963  -344  3,850   112  4,235   -401  27,987 

 
Table 5.8 
Real populations (population size = 284 .N  RBIAS and RRMSE of variance estimators under Poisson 
sampling with inclusion probabilities proportional to the absolute value of the residuals of the linear regression 
of the population iy  values on the population ix  values. Expected size * = 30n  
 

    1= 0.05Nt F     1= 0.25Nt F     1= 0.50Nt F     1= 0.75Nt F     1= 0.95Nt F   

 RBIAS   RRMSE  RBIAS   RRMSE RBIAS   RRMSE RBIAS   RRMSE RBIAS   RRMSE 

MU284 population with = ln 85Y RMT  and = ln 85X P  

  sV F t   -3,502   26,342  -1,841  14,037  -2,691  12,087  -3,415   9,674  -5,932  26,823 

  lV F t   -2,159   27,610  -1,782  14,010  -2,840  12,002  -3,186  10,177  -4,455  26,802 

  *
sV F t    -434   22,455   515  15,503   -506  31,296  -1,460  23,496  -2,649  78,527 

  *
lV F t    -80   22,921   677  15,575   -280  33,294  -1,283  26,612  -1,597  72,166 

  V F t
    -294  361,991   522  75,891   43  48,764   -241  36,354   90  32,354 

MU284 population with = ln 85Y RMT  and = ln 84X REV  

  sV F t   -5,220   18,699  -3,667   8,749  -3,222   7,537  -3,018   9,279  -4,955  44,597 

  lV F t   -4,254   20,765  -3,100   9,180  -3,435   7,231  -3,196   8,540  -3,461  43,206 

  *
sV F t   -2,938   18,922  -1,110  11,828  -1,265   8,726  -1,040  10,963  -3,682  89,262 

  *
lV F t   -1,938   19,997   -699  12,641  -1,003   9,305   -599  11,545  -1,558  98,798 

  V F t
    -143  128,401   493  33,934   -255  18,473   -91  17,904   327  16,463 

 
As can be seen from the simulation results, the variance estimators suffer from large variability. This 

problem is shared by the variance estimator for the Horvitz-Thompson estimator, which occasionally 
exhibits extremely large RRMSE’s. It is further interesting to note that while the RBIAS of the variance 
estimators for the generalized difference estimators is almost always negative and at times rather large in 
absolute value, the RBIAS of the variance estimator for the Horvitz-Thompson estimator is in most of the 
considered cases positive. 
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Appendix 
 

Let   denote a sequence of real numbers. Throughout this appendix we shall indicate by  
1 2, , , ki i iO   

rest terms that may depend on 
1 2
, , ,

ki i ix x x  and that are of the same order as the sequence   uniformly 
for 1 2, , , .ki i i U  Formally,    

1 2 1 2, , ,, , , =
k ki i i i i iR x x x O   if  

    
1 2

1 2, , ,

, , , = .sup
k

k

i i i
i i i U

R x x x O 


   

Moreover, to simplify the notation, we shall write im  in place of  im x  and 2
i  in place of  2 .ix  
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Bias of the generalized difference Kuo estimator 
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Similar steps as those seen for  F̂ t  show that  
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where  

         1:= 1 .s sh x h x x h x     

 
Variance of the model-based Kuo estimator 
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Thus, 
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Variance of the generalized difference Kuo estimator 
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where 2A  is the same as in the variance of  ˆ ,F t  and where  
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Thus,  

             1 1ˆvar = var .N NF t F t F t F t O n n         

 

Bias of the model-based estimator with modified fitted values 
 

Let ,
ˆ := ,ˆ i i k kk s
m w m

  , , ,:= 1i j j j i jc w w   and  
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Consider first 1C  and note that  
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Consider next 2 .C  (A.2) and (A.3) imply that  

 

           
      

    
      

   

3 21
, , ,

2 2
, , , ,

3 22 1
, ,

2

, , ,

2 2
, ,

ˆ ˆ= 1 ˆ ˆ

=

=

i j i j i j j i i i j

j j i j i j j k k j i i k k i
k s k s

i j i j

j j i j i j i j k k j
k s

i j k k j i k k i
k s k s

E d c t m m m m m O n n

w w t m m w x x m w x x

o O n n

w w t m m m w x x

m w x x w x x

 

  



 





 

       

      

  

     

    
 



 



 

    3 22 1
, ,i j i jo O n n    

  

so that  

     3 22 1
2 2, 2, 2,= ,a b cC C C C o O n n          

where  

 

      

         

             

  

1,0
2, , , ,

1,0 1
, , ,

1,0

0

1 1 1

1
:=

1
=

1 0
=

a i j i j j j i j i
i s j s

i i i i j j j i j
i s j s

b

s sa

C w G t m x w w t m
N

G t m x t m w w w O n
N

N n K
G t m x x t m x h x h x dx

n N

O n n


 

  

 



 

  

  

   

 
    

 



 



  

with  
1 2

1
:= ,K u du

  

 

       

 

21,0
2, , ,

2

1
:=

=

b i j i j j i j k k j
i s j s k s

C w G t m x m m w x x
N

o 
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and 

 

       

         

 

2 21,0
2, , , ,

2 21,0 2
, , ,

2

1
:=

1
=

= .

c i j i j i j k k j i k k i
i s j s k s k s

i i i i j j k k j i k k i
i s j s k s k s

C w G t m x m w x x w x x
N

G t m x m w w x x w x x o
N

o





   

   

    
 

    
 

  

      

Consider finally 3 .C  Note that from (A.2) and (A.3)  

       2 22 2 4
, , , ,=i j j k i k k i j

k s

E d w w O n   



    (A.6) 

so that  

 

        

          

               

2 22,0 2 4
3 , , ,

2 12,0 2 4
, , ,

12,0 2 4
2
0

1
=

2

1
=

2

1
=

i j i j j k i k k
i s j s k s

i i i i j j k i k
i s j s k s

b

s sa

C w G t m x w w O n
N

G t m x w w w o n O
N

N n
G t m x x x h x h x dx o n O

n N

  

  

 
  

 



  



  



   

   

 
    

 

  



  

with      
1 1

1 1
:= .K v K u v K u dudv

 
   

Substituting the above expansions for 1 2,C C  and 3C  into (A.5) yields finally  

 

           

             

          

  

2 0,2* 2

0

1,0 1

0

2,0 2 1
2
0

12

ˆ =

1 0

.

b

N sa

b

s sa

b

s sa

N n
E F t F t G t m x x h x dx

N

N n K
G t m x x t m x h x h x dx

n N

G t m x x x h x h x dx

o n







 

 




 








 

   

   

 







  

 

Bias of the generalized difference estimator with modified fitted values 
 

Let ,i jd  be the design-weighted counterpart of ,i jd  and observe that  

 

        

      

*
, ,

1
, ,

1
=

1 .

N i j j i i j i
i s j s

i i j j i i j i
i s j s

F t F t w I t m d I y t
N

w I t m d I y t



 

 



 


     




       





 

 



 (A.7) 
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Adapting the proof that leads to (A.4), it is seen that the asymptotic expansion in (A.4) holds also with ,i jd  
in place of , .i jd  Adapting the remaining part of the proof finally leads to  

 

           

             

          

  

2 0,2* 2

0

1,0 1

0

2,0 2 1
2
0

12

=

1 0

,

b

N a

b

sa

b

sa

N n
E F t F t G t m x x h x dx

N

N n K
G t m x x t m x h x h x dx

n N

G t m x x x h x h x dx

o n







 

 




 








 

   

   

 









  

where  

         1:= 1 .s sh x h x x h x     

 
Variance of the model-based estimator with modified fitted values 
 

Write  

        *
, ,

1ˆ =N i j j i i j i i
i s j s i s

F t F t w I t m d I t m
N

 
  


       

 
    

and observe that  

     *
1 2 3

ˆvar = ,NF t F t D D D     

where  

     
1 2 1 1 2 2

1 2

1 , , , ,2

1
:= cov , ,i j i j j i i j j i i j

i s i s j s

D w w I t m d I t m d
N

 
  

        

     
1 1 2 2 1 1 1 1 2 2 2 2

1 2 1 2 2 1

2 , , , ,2
,

1
:= cov ,i j i j j i i j j i i j

i s i s j s j s j j

D w w I t m d I t m d
N

 
    

          

and where 3 2:=D A  from the variance of the model-based Kuo estimator. 

Consider 1.D  Observe that  

 
       

     
1 1 2 2 1 1 2 2

1 1 2 2

, , , ,

, ,

cov , =

.

j i i j j i i j i i j i i j j

i i j j i i j j

I t m d I t m d E G t m d t m d x

E G t m d x E G t m d x

           

    
 (A.8) 

Since  

    
1 1 2 2 1 2 1 2, , , , ,i i j i i j i i i j i jt m d t m d t m t m d d             
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it follows from (A.6) that  

        
1 1 2 2 1 2 1 2

1 22
, , , ,= .i i j i i j j i i j i i jE G t m d t m d x G t m t m x O n             (A.9) 

Moreover, from (A.1), (A.4) and (A.6) it follows that  

        1 22
, ,= .i i j j i j i jE G t m d x G t m x O n        (A.10) 

Using (A.9) and (A.10) to get an asymptotic expansion for the covariance in (A.8), and substituting the 
outcome into the definition of 1D  yields  

 

    

  

     

 

1 2 1 1 2 2

1 2

1 2 1 1 2 2

1 2

1 1 2 2

1 2 1 2

1 2

1 , , , ,2

, , , ,2

, ,

, ,2

1
:= cov ,

1
=

1
=

i j i j j i i j j i i j
i s i s j s

i j i j i i j i i j j
i s i s j s

i i j j i i j j

i j i j i i j
i s i s j s

D w w I t m d I t m d
N

w w E G t m d t m d x
N

E G t m d x E G t m d x

w w G t m t m x G t
N

 
  

  

  

     

    

     

   





    

  

      

           

    

1 2

1 22 1 1

2
1 22 1 1

,2

2
2

1 1 21 1

1
=

1
=

.

i j i j

j j j j i j
j s i s

b

s s sa

m x G t m x

O n n n

G t m x G t m x w O n n n
N

N n
G t m x x G t m x x h x h x h x dx

n N

O n n n n

 

 

   

 

 

 

  

   

 

        
 

             

  

 



 (A.11) 

Consider next  

     
1 1 2 2 1 1 1 1 2 2 2 2

1 2 1 2 2 1

2 , , , ,2
,

1
:= cov , .i j i j j i i j j i i j

i s i s j s j s j j

D w w I t m d I t m d
N

 
    

          

Since  

     
1 1 1 1 2 2 2 2, ,cov , = 0j i i j j i i jI t m d I t m d         

if 
1 2

> 2 ,i ix x   it follows that rest terms 
1 1 2 2, , , ,i j i jR  whose contribution to the above covariance is of order 

 
1 1 2 2, , ,i j i jO   for some sequence   that goes to zero, contribute to 2D  a term of order  .O   Now, let  

  
1 2 1 1 2 2

1
, , , , ,:= ,i j j i j j j i jb c w w    

 
1 2 1 1 2 2, , , , ,:=i j j i i j i j j ja t m d b      
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and note that  

 
1 1 2 1 2 2, , , , ,= .i i j i j j i j j jt m d a b      

Since 
1 2, ,i j ja  does not depend on 

1j
  and 

2
,j  it follows that  

 

    
     

   

 

1 1 1 1 2 2 2 2

1 1 1 2 1 1 2 2 2 2 2 1 2 2 1 1

1 2 1 2

2 2 1 2 2 1 2 1

2 1 2 1

1 1 2 1 1 2 1

, ,

, , , , , , , , 1 2

*
, , ,

, , , ,

*
, , ,

, , , ,

= , ,

=

j i i j j i i j

j i j j i j j j j i j j i j j j k

i i j j
i j j i j j j j

i i j j
i j j i j j j

E I t m d I t m d

E E I a b I a b k j j

E G a b x dG x

E G a b x dG





 

    

 







     

    

  
 

 



  

    

2

1 2 1 2 1 2 1 2 1 2

* *
, , , , , , ,

j

i i j j j i i j j j

x

E G x G x



 


 
 



 (A.12) 

where  

 1, 1 2 2 2 1 1 1 2

1 2 1 2

1 1 2 2 2 1

, , , , ,*
, , ,

, , , ,

:= .
1

i j j i j j i j j

i i j j
i j j i j j

a a b

b b





  

Note that the two expectations in the third and fourth lines in (A.12) are the same if 1i  and 1j  are 
interchanged with 2i  and 2 ,j  respectively. Thus it suffices to analyze the first expectation. Using the fact 
that  

    
1 2 1 2 1 1 1 1 1 2 2 2 1 2 1 2

* *
, , , , , , , , ,= ,i i j j i i j i j j i j i i j jt m d b t m R          

where  

      
1 2 1 2 1 2 1 2

4 3 21 4 * 1
, , , , , ,= ,i i j j i i j jE R O n n       

it is seen that  

 

   

   
         
             

 

1 2 1 2

2 2 1 2 2 1 2 1

1 1 2 2

1 1 2 2 1 1 1 1 2 2

1

2 2 1 1 2 2 2 2 2 2 1 1

1

*
, , ,

, , , ,

1,0
, , ,

1,0 1,0
, , ,

2,0

=

1

2

i

i i j j
i j j i j j j j

i j i j

i j i j i j i j j i

t m

i j i j i j i j i j j j

i j

E G a b x dG x

G t m x G t m x

G t m x G t m x E d b t m

G t m x G t m x E d G t m x b dG x

G t m x


 

 







  
 

 

      

    

 





             
         

  

1 2 2 1 1 2 2 1 1 2 2

1 1 2 2 1 1 2 2

1 2 1 2

2,02 2
, ,

1,0 1,0
, ,

14
, , ,

1

2

,

i j i j i j i j i j

i j i j i j i j

i i j j

G t m x E d G t m x G t m x E d

G t m x G t m x E d d

o n  

   

  

 

(A.13) 

and that  
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1 2 1 2 1 2 1 2 1 2

1 1 2 2

1 1 2 2 1 1 1 1 2 2

2 2 1 1 2 2 2 2 1 1

1 1 2 2 1 1

2 2

* *
, , , , , ,

1,0
, , ,

1,0
, , ,

2,0 2
,

2,0

=

1

2

1

2

i i j j j i i j j j

i j i j

i j i j i j i j j i

i j i j i j i j j i

i j i j i j

i j

E G x G x

G t m x G t m x

G t m x G t m x E d b t m

G t m x G t m x E d b t m

G t m x G t m x E d

G t m x G t

 

 

      

      

  

     
         

  

1 1 2 2

1 1 2 2 1 1 2 2

1 2 1 2

2
,

1,0 1,0
, ,

14
, , , .

i j i j

i j i j i j i j

i i j j

m x E d

G t m x G t m x E d d

o n  

  

 

 (A.14) 

Using the asymptotic expansions in (A.4), (A.13) and (A.14) yields  

 

    
       
         

  

1 1 1 1 2 2 2 2

2 2 2 2 1 1 1 1 1 1 1 2 2 2

1 1 2 2 1 1 2 2

1 2 1 2

, ,

1,0 1,0
, , , , , ,

1,0 1,0
, ,

14
, , ,

cov ,

=

cov ,

,

j i i j j i i j

i j i j j i j i j i j j i j

i j i j i j i j

i i j j

I t m d I t m d

G t m x b G t m x b

G t m x G t m x d d

o n

 

 

  

     

  

  

 

 (A.15) 

where  

  , := .
it m

i j jdG x  


   

Now observe that  

   
1 2 1 2 2 1 2

2
, , , , , ,=i j j j j i j i j jb w w O n     

and that  

 

    

     

1 1 2 2 1 1 2 2

1 21 1 2 2

1 1 2 2 1 2 1 2

2
, , , , , ,

; ,, ,

22
, , , , , , ,

1
cov , =

=

i j i j j k i k j k i k k
k s k j ji j i j

j k i k j k i k k i i j j
k s

d d w w w w
c c

w w w w O n



 

 





 

  




  

so that  

  5 1
2 2 2= 2 ,a bD D D o n     (A.16) 

where  
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1 1 2 2 1 1 1 2 1 2 2 2

1 2 1 2 2 1

1 1 2 2 1 1 1 2 1 2 2 2

1 2 1 2

2 2 2 2 1 2 1 1

2 1 1

1,0
2 , , , , ,2

,

11,0 1
, , , , ,2

1,0
, , ,2

1
:=

1
=

1
=

a i j i j i j j j i j i j
i s i s j s j s j j

i j i j i j j j i j i j
i s i s j s j s

j j j j j j i j
j s j s i

D w w G t m x w w
N

w w G t m x w w O n n
N

G t m x w w
N



 



    



   

  

 

  



 



 

  
    

2 2 2

2

2

, ,

11 1

1 11 1=

i j i j
s i s i s

w w

O n n n

O n n n n

 

   

 

 

  

   
  

 

 

  
 (A.17) 

and 

 

       

  

       

     

1 1 2 2 1 1 2 2

1 2 1 2 2 1

1 1 2 2

1 1 2 2 1 1 2 2

1 2 1 2

1 1 2 2

1,0 1,0
2 , ,2

,

2
, , , ,

1,0 1,0
, ,2

12 1
, , , ,

1
:=

1
=

=

b i j i j i j i j
i s i s j s j s j j

j k i k j k i k k
k s

i j i j i j i j
i s i s j s j s

j k i k j k i k k
k s

D w w G t m x G t m x
N

w w w w

w w G t m x G t m x
N

w w w w O n n



 

    



   





 

  

 

   

 







        

      

  

2
2 11,02 1 1

, , ,2

2
2 11,02 1 1

, , ,2

1 1

1

1
=

= .

k k k i j j k i k
k s i s j s

k k k j k i j i k
k s j s i s i s

G t m x w w w O n n n
N

G t m x w w w O n n n
N

O n n

  

  

  

 

  

 

   

 


      

 


      

 



 

   

 (A.18) 

Putting everything together finally yields  

 

                

         

2
* 2

2
2 5 1

1ˆvar =

1
.

b

N s s sa

b

sa

N n
F t F t G t m x x G t m x x h x h x h x dx

n N

N n
G t m x x G t m x x h x dx o n

N n N
 

             

            




  

 
Variance of the generalized difference estimator with modified fitted values 
 

In view of (A.7), we shall show that  

            * * 1ˆvar = varN NF t F t F t F t o n    (A.19) 

by showing that  
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         1 1
, ,

1
var 1 = .i i j j i i j i

i s j s

w I t m d I y t o n
N

  

 


      

 
    (A.20) 

To prove (A.20) observe that the variance on the left hand side may be written as  

 1 2 3 4 52 2 ,E E E E E      

where  

        
1 2 1 2 1 2 2

1 2

1 1
1 , , , ,2 1

1
:= 1 1 cov , ,i j i j i i j i i j j i i j

i s i s j s

E w w I t m d I t m d
N

    

  

              

 

       
1 2 2 1 2 1 1 1 1 2 2 2 2

1 2 1 2 2 1

1 1
2 , , , ,2

,

1
:= 1 1 cov , ,i j i j i i j i i j j i i j

i s i s j s j s j j

E w w I t m d I t m d
N

    

    

            

  

     21
3 2

1
:= 1 var ,i i i

i s

E I t m
N

 



     

        
1

1 1
4 , ,2

1
:= 1 1 cov , ,i j i j j i i j j j

i s j s

E w I t m d I t m
N

    

 

          

and finally  

        
1 1 2 1 1 2 2

1 2 2

1 1
5 , ,2

,

1
:= 1 1 cov , .i j i i j i i j i i

i s i s j s j i

E w I t m d I t m
N

    

   

            

To begin with, consider 1E  and 2 .E  Observe that except for (i) the fact that the summation indexes 1i  
and 2i  range over s  instead of the complement of s  in ,U  (ii) the presence of the factors  11 i

  and (iii) 
the fact that the , ’si jw  and the , ’si jd  are substituted by their design-weighted counterparts ,i jw  and , ,i jd  

1E  and 2E  are the same as 1D  and 2D  from     *ˆvar ,NF t F t  respectively. Adapting the proofs that 
lead to the asymptotic expansions for 1D  and 2D  shows thus that  

            
2

22 1 1
1

1
= 1

b

sa

N n
E G t m x x G t m x x x h x dx o n

n N
                     

and that  

  5 1
2 = .E o n    

As for 3E  it is immediately seen that  

  1
3 1= ,E E o n   
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while in order to deal with 4E  and 5E  we shall need asymptotic expansions for  

     
1 1 2 2,cov ,j i i j i iI t m d I t m       (A.21) 

for the case when 2=j i  and the case when 2 .j i  In the former case we may employ arguments similar to 
those for proving (A.9) and (A.10), which lead to  

 
    

        
1 1

1 1

,

1 22

cov ,

= .

j i i j j j

i j j i j j j

I t m d I t m

G t m t m x G t m x G t m x O n

 

  

    

       


  

When 2 ,j i  on the other hand, the covariance in (A.21) is different from zero only if 
2j ix x    or 

1 2
,i ix x    and adapting (A.12) it can be shown that  

 

    
     
    

           
     

1 2 2
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1 21 2 2

1 2 2 2 2 1 1

1 21 2 2 2 2
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= , ,
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j i i j i i

i j ij i j i i i i k

t m

i j ii j i j i

i j i i i i i j i j

i j ii j i i i i

E I t m d I t m

E E I a b I t m k i j

E G a b x dG x

G t m x G t m x G t m x G t m x E d

G t m x b G t m x G

 

   

 







    

    



    

   









      

  
1 1

1 2

0 2
,

14
, , ,

i j i j

i i j

t m x E d

o n  



 

  

where , ,i j ka  and , ,i j kb  are the design-weighted counterparts of , ,i j ka  and , , ,i j kb  respectively. Adapting also 
(A.4) to account for the design-weights, it is seen that  

 
           

        
1 21 1 2 2 1 2 2 1 2

2 1 2 2 2 1 2

11,0 4
, ,, , , ,

11,0 4
, , , , ,

cov , =

=

i j ij i i j i i i j i i i i j

i j j i i i i i i i j

I t m d I t m G t m x b o n

G t m x w w o n

    

  





       

   



 
  

so that (cfr. the steps that lead to the asymptotic expansions of the terms 1D  and 2D  in the variance of the 
model-based two-step estimator)  

  1
4 1=E E o n   

and  

  5 1
5 = .E o n    

This completes the proof of (A.20) and thus (A.19) follows. 
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