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Abstract: Chronic kidney disease (CKD) patients are characterized by a high residual risk for car-
diovascular (CV) events and CKD progression. This has prompted the implementation of new
prognostic and predictive biomarkers with the aim of mitigating this risk. The ‘omics’ techniques,
namely genomics, proteomics, metabolomics, and transcriptomics, are excellent candidates to pro-
vide a better understanding of pathophysiologic mechanisms of disease in CKD, to improve risk
stratification of patients with respect to future cardiovascular events, and to identify CKD patients
who are likely to respond to a treatment. Following such a strategy, a reliable risk of future events for
a particular patient may be calculated and consequently the patient would also benefit from the best
available treatment based on their risk profile. Moreover, a further step forward can be represented
by the aggregation of multiple omics information by combining different techniques and/or different
biological samples. This has already been shown to yield additional information by revealing with
more accuracy the exact individual pathway of disease.

Keywords: precision medicine; albuminuria; genomics; proteomics; metabolomics; SNP; chronic
renal failure

1. Introduction

Chronic kidney disease (CKD) is a common chronic disease which has been recognized
as an independent predictor for cardiovascular (CV) fatal and non-fatal events, mortality
from any cause, and kidney failure (also called end stage kidney disease, ESKD) [1,2]. The
public health history of CKD has drastically changed in the past two decades, or even
less, considering that in 2007 CKD was considered uncommon, untreatable, and hard to
classify [3]. Since then, a large number of epidemiologic and clinical studies have been
carried out and have revealed exactly the opposite. First of all, the prevalence of CKD
in the general population is not trivial (i.e., higher than 10% as reported in the surveys
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in the US, Canada, Netherlands, China, and Australia), being even higher than that of
type 2 diabetes [4,5]. More importantly, the prevalence of CKD is increasing worldwide,
with the more recent Global Burden of Kidney Disease (2017) showing a global increase
of 29.3% between 1990 and 2017 [6]. With respect to treatment, the past two decades have
also seen a great implementation of intervention studies, with the completion of a number
of clinical trials testing the efficacy and safety of novel drugs in CKD patients [7,8]. Major
examples of novel developed drugs in CKD patients are the sodium-glucose cotransporter
2 inhibitors (SGLT2is) as well as the selective antagonists of endothelin-1 receptors (ERA)
and the nonsteroidal mineralocorticoid receptor antagonists (MRA) [9–11]. These studies
have shown a significant benefit of these novel pharmacological agents in protecting
against CV and renal events in CKD patients [7]. Hence, the current state of play conceives
CKD as a common and treatable disease with a solid system of classification based on
albumin and eGFR. Nevertheless, although this seems like the end of the story, it is just
the beginning. What complicates the management of CKD patients is the large intrinsic
heterogeneity of CKD. In fact, CKD is triggered and perpetuated by a multitude of risk
factors, from metabolic parameters to the presence of diabetes or immunologic factors, but
the presence of each risk factor may elicit a different effect—and with variable severity—in
different individuals. Owing to this evidence and to the increasing prevalence of CKD,
the International Society of Nephrology (ISN) proposed to improve research on CKD by
focusing on novel biomarkers that can help in predicting future events and in clarifying the
pathways of disease [12]. To this end, one important opportunity is provided through the
application of omics technologies. In fact, omics data derived from blood, urine and kidney
biopsies may provide more information on molecular pathways of disease in CKD as well
as help finding novel predictive and prognostic biomarkers useful to the management of
CKD patients [13]. The aim of the present review is to summarize the available evidence of
omics research in CKD and to discuss the future directions of such research in the context
of personalized medicines [12,14,15].

2. Variability in Prognosis and Response to Treatments in CKD Patients

It has been well demonstrated that the presence of CKD exposes patients to an in-
creased risk for all-cause mortality; CV events (such as myocardial infarction, stroke, heart
failure, arrythmias, peripheral vascular disease); and CKD progression, namely the onset of
the more advanced stage of CKD, known as ESKD, that often, due to the severe metabolic
and hemodynamic complications involved, requires referral to renal replacement therapies
(e.g., dialysis or kidney transplant). A series of four meta-analyses carried out by the CKD
Prognosis Consortium, which synthetized data derived from the U.S general population,
high-risk populations and patients with CKD, provided important evidence regarding this
point [16–18]. In fact, low eGFR (<60 vs. ≥60 mL/min/1.73 m2) levels were associated
with a two to threefold increased risk for all-cause and CV mortality independently of
age, gender, proteinuria levels and other potential confounders. Similarly, the risk for
ESKD increased exponentially moving from optimal eGFR to cut-offs of 45 mL/min or
15 mL/min [16–18]. The association between albuminuria and CV events, mortality and
ESKD was linear with an increase of 1.5- to 2.5-fold higher risk at the cut-offs of mild and
severe albuminuria [16] compared with normal albuminuria levels. Risk of ESKD was
found to have increased by around 30 times when considering a cut-off of 1000 mg/g of
albuminuria as compared with 5 mg/g [18]. Several other risk factors have been found
to be associated with cardio-renal outcomes in CKD patients regardless of albuminuria
and eGFR. Metabolic parameters, such as increased serum phosphorus or potassium levels,
low hemoglobin levels, male gender, and increased systolic blood pressure, have been
shown to forecast a negative prognosis in large studies enrolling CKD patients [19–24].
Despite several attempts to stratify future risks on the basis of baseline levels of all the
aforementioned variables, the progression (and prognosis as well) of CKD is widely hetero-
geneous [12]. It has been shown that eGFR declines over time, which is a strong surrogate of
CKD progression to ESKD, has a high degree of variability and is often unpredictable with
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the aforementioned traditional risk factors. In a pooled analysis of European CKD cohorts,
eGFR decline ranged from 0.77 to 2.43 mL/min/year [25] on average, whereas in an Italian
cohort of CKD patients referred to tertiary nephrology care, eGFR annual decline was
−1.7 mL/min with an interquartile range of −4.6 to 0.8 mL/min [26]. A large variability
in disease progression was also reported in randomized clinical trials despite the more
stringent inclusion criteria of patients. In the Irbesartan Diabetic Nephropathy Trial (IDNT),
which evaluated whether irbesartan or amlodipine slow the progression of CKD in patients
with type 2 diabetes, the coefficient of variation for eGFR slope over time was 135% [27].
In the past two decades, a number of clinical trials have been completed with the aim to
improve the treatment of CKD [9,10]. After the discovery of the protective effect of drugs
interfering with the Renin-Angiotensin-Aldosterone System (i.e., RAAS inhibitors-RAASis)
against the risk for CKD progression, a further step forward was reached more recently
with the demonstration of the efficacy of novel treatments, such as SGLT2is (in DAPA-CKD,
EMPA-REG, CREDENCE trials), MRA (FIDELIO-DKD trial) and ERA (SONAR trial) in
patients with CKD [9,14]. Although such findings may be seen as a ‘landmark’ point for
the treatment of CKD patients, it has been concomitantly demonstrated that a variability
in response to these nephroprotective treatments exists and, even more importantly, it is
non-negligible [28]. RAASis are now considered the standard of care for the management
of proteinuria and non-proteinuric CKD, being prescribed in over 70% patients followed
by nephrologists [29]. Despite their widespread diffusion, it has been demonstrated that
about 30 to 40% of patients do not respond to RAASis [30]. Hence, response to antialbu-
minuric treatments varies between individuals, and is reproducible if the same drug (or a
drug of the same class) is re-started in the same individual. Even more importantly, the
variability in response is still present when a drug is up titrated to an optimal dose or when
a drug is changed with another drug of the same family [31]. In addition to RAASis, the
variability in response is a phenomenon that has also been reported for other nephroprotec-
tive drugs. Heerspink and colleagues showed that Asian patients, when compared with
North Americans, responded better, in terms of albuminuria reduction over time, to the
ERA atrasentan [32]. This difference has been attributed to a lesser likelihood of sodium
retention after atrasentan initiation in Asian patients. Similarly, a variability in albuminuria
reduction has also been shown in response to the SGLT2i dapagliflozin [32]. The ‘net’ result
of this non-random variation of albuminuria is that a large proportion of CKD patients
remain with persistent albuminuria and, therefore, at increased residual cardiovascular
and renal risk [33]. The development and true validation of novel biomarkers is a crucial
point in nephrology research, since this may help to improve both prognosis and prediction
(of response to treatments) in individual CKD patients.

3. Omics: New Frontiers of Research

Biomarker discovery has been greatly implemented with the introduction of ‘omics’
techniques. Samples derived from kidney biopsies, urine and blood can be used to gener-
ate proteomic, genomic, metabolomic and transcriptomics biomarkers that may be more
strongly and accurately linked to the pathophysiologic mechanisms of disease than tradi-
tional markers such as eGFR [34–37].

Proteomics has garnered a great interest since it may be well assessed using urine as
the study sample. This approach has multiple advantages. In fact, urine samples are easy
to collect and are almost routinely requested by clinicians for monitoring the response to
treatment and for stratifying risk of future outcomes in patients with CKD [38,39]. More-
over, urine collection is non-invasive and with both first morning void collection and, in
particular, with 24 h collection, a huge volume can be provided for proteomic analysis
when compared with other biological fluids. Urine contains a large variety of proteins
(there are about 1.8 million human proteoforms) which belong to various tissues and to
the urogenital tract [40]. These proteins can be detected in urine as peptides, i.e., short
amino acid sequences, or as more complex polypeptide molecules. Proteomics encom-
passes the analysis of peptides derived from enzymatic digestion or the entire molecules.
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Another approach is represented by the peptidomics that consists in characterizing the
full pattern of peptides present in a specific sample, without previous enzymatic diges-
tion [41]. Techniques that allow the characterization of structure and concentration of
unknown molecules are mass spectrometry (MS) combined with ultra-performance liquid
chromatography (UPLC) and capillary electrophoresis (CE). Since MS recognizes ionized
molecules, a molecule ionization step is required prior to MS, and this can be performed
by matrix-assisted laser desorption ionization (MALDI) or electrospray ionization (ESI).
Genomics profiling involves the analyses of whole genome sequencing or whole exome
sequencing (only the protein-coding region) using high throughput next generation se-
quencing (NGS) [42]. It is a rapid, economical approach that can be used to elucidate the
actual cause of many genetically linked kidney diseases irrespective of the stages of disease,
which is in contrast to renal biopsies, for example, that have often failed to identify a patient
at the early or late stages of disease progression [43,44]. The specimen for genomic analyses
can be collected from a tissue or biospecimen, such as serum or urine [45]. The United States
Department of Food and Drug Administration (http://www.fda.gov/cber/guidelines.htm,
last accessed: 14 October 2021) defined genomic markers as the quantifiable expression of
gene function or gene regulation, which may consist of the expression of a single gene or a
combined gene panel. For each case, an ideal genomic marker for CKD should correlate
with the functional and structural changes in the kidney cells. Genomic profiling has
unprecedented success in identifying the monogenic causes of CKD, with approximately
500 genes identified so far with the majority of these in the pediatric population [46]. In the
adult population, inheritable kidney disease was also reported to attribute up to ~37% of
all adult cases [47,48]. Furthermore, in a large genome-wide association study involving
~1 million people, there were 264 loci that were identified to be associated with eGFR and
individual kidney function, which could be potential targets to characterize kidney disease
progression and treatment allocation for these patients [49]. Metabolomic profiling enables
a non-targeted quantitative measurement of a broad range of small molecules which are
products of cellular metabolism (e.g., adenosine triphosphate, biogenic amine neurotrans-
mitters, glucose, lipid signaling molecules) from the tissue or a bio-specimen (e.g., serum,
urine, saliva) from a living organism [50–52]. It has been advantageous over genomic
or proteomic analysis, since it is able to precisely reflect and provide a ‘snapshot’ of the
current status in the cell function of an organism [53]. Moreover, metabolomic expression
is an indicator of cellular changes or gene–environment interactions that are reflected in
phenotypic changes and are possibly most easily amenable via drug treatment compared
with modifying the genome or proteome [54,55]. With regards to analytical approaches
for metabolomic analyses, high field nuclear magnetic resonance (NMR) and mass spec-
trometry (MS) coupled with capillary electrophoresis (CE-MS), liquid chromatography MS
(LC-MS), or gas chromatography (GC-MS) are commonly used for identification, extraction,
or quantification of metabolites [56]. However, it is important to note that the reproducibil-
ity of metabolomic analyses still remains a challenge, since it is often non-reproducible,
due to variations in patient demographics, biospecimens used, and the analytical and
computational approach [57–59]. Transcriptomics refers to the study of ribonucleic acid
(RNA) in a population of cells or individuals and is used to improve knowledge around the
activation of genes in different types of cells and pathologic conditions [60]. The transcrip-
tome includes all the RNA transcripts present in a predefined sample, from messenger RNA
(mRNA) to other RNA subtypes which do not code for proteins (non-coding RNA, ncRNA)
but have well defined regulatory functions including transfer RNA (tRNA) and microRNA
(miRNA). The two main techniques currently used for transcriptomics analyses are DNA
microarrays and RNA sequencing [61]. Microarrays are glass layers where small DNA
sequences (oligonucleotides) are arrayed. After sampling from control and experimental
subjects, RNA is converted into cDNA and marked with fluorophores of different colors.
The cDNA fragments are then hybridized with the oligonucleotides and the intensity and
colors of the resulting signal allow us to understand where RNA expression is higher.
RNA sequencing is an NGS technique which has the advantage of using small amounts of
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RNA and consists of RNA purification, creation of cDNA fragments (library) via reverse
transcription and library sequencing. Another omics approach that may be applied is the
so-called ‘microbiomics’. This is defined as the study of all microorganisms of a given
community (i.e., the gut or the mouth in humans), as a whole. Microbiomics is usually
performed by means of DNA extraction from a target sample, DNA amplification and
sequencing. Next, DNA sequences are matched against sequence databases to achieve
identification of the organism present. Several technologies allow the study of which genes
these organisms express and the metabolic activities in progress [62]. Omics analyses are
being embraced with the development of novel statistical methodologies for data analysis
in general, since one of the characteristics of omics is the enormous quantity of information
to process [63]. In the presence of a multitude of data and a small sample of subjects,
finding significant associations between a biomarker (or a set of multiple parameters) with
a prognostic or predictive endpoints may be hard. To this end, there are several data-driven
methods which help to select the significant variables. Given a pre-defined list of possible
variables, these methods select a final set of parameters which may be helpful in answering
research questions. These include the penalized regression methods, such as least absolute
shrinkage and selection operator (LASSO), which introduces restrictions to regression coef-
ficients and thus is able to find an ideal subset of variables that predict an outcome or drug
response [64] or the dimension reduction methods, such as principal component analysis
(PCA) [65]. PCA is a statistical tool which allows the reduction of the dimensionality of
data, while retaining all the relevant information of the variables included in the model.
Principal component analysis is particularly helpful when one of the intended uses of a
statistical model is the exportability from one sample to another, and in these cases the use
of a low number of variables is preferred. Another sophisticated method that is increasingly
used in clinical studies of chronic diseases is machine learning [66]. This encompasses
a series of learning techniques (e.g., Support Vector Machine, k-nearest neighbor, neural
networks, decision trees) that are able to learn from what happens in available observations
and to detect a risk factor, a cause of disease or an endpoint in a new set of observations.
This has attracted attention particularly for studies aimed at improving the classification
and prognosis of chronic diseases.

4. Prognostic Omics in CKD

Several studies based on omics analysis have been carried out with etiologic or prog-
nostic aims namely for improving risk stratification of CKD patients on future cardio-
vascular and renal events as well as to reach a better knowledge of pathophysiological
mechanisms of disease. The general purpose of prognostic research in CKD is to find a
biomarker that should be able to improve the prediction of an event beside and beyond the
clinical intuition of clinicians and the already available laboratory and clinical parameters.
In CKD patients, it has already been demonstrated that variables such as age, gender, eGFR
and albuminuria (or proteinuria) levels allow a good prediction of renal and cardiovascular
endpoints [67,68]. From their side, nephrologists have clinical tools that they use to evaluate
the clinical status of CKD patients, such as the strict control of blood pressure, dietary in-
take, physical activity as well as adherence to pharmacological treatments [69,70]. However,
the use of omics has been shown to achieve additional improvements in cardiorenal risk
prediction. The first CE-MS analyses of the urinary proteome demonstrated that a panel
of relatively few proteins (from 20 up to 50) allows discrimination between patients with
different etiologies of renal diseases, such as IgA nephropathy, membranous nephropathy,
focal and segmental glomerulosclerosis (FSGS), and diabetic kidney disease [71,72]. In the
vast majority of cases, these proteins are represented by small fragments that are likely the
products of proteolytic fragmentation of larger proteins [73]. Another CE-MS analysis of
urinary proteomes conducted in 39 healthy subjects and 112 patients with type 2 diabetes
detected polypeptides that are able to identify patients with type 2 diabetes and, even
more importantly, to discriminate between patients with different degrees of proteinuria
(from low-moderate to severe) [74]. A proteomic study, which involved only CKD patients,
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without the control group of healthy subjects, highlighted that urine peptide classifiers can
identify with excellent sensitivity and sensibility the specific cause of CKD, thus differen-
tiating between diabetic kidney disease from glomerulonephritis or nephrosclerosis [75].
The methodology of this study was rigorous since the authors identified a combination
of multiple peptides, the so-called classifiers, for each CKD diagnosis and evaluated a
huge number (1180) of urine samples. These discoveries, taken together, have important
clinical and prognostic implications, since it has been well demonstrated that, among
CKD patients, those with diabetic kidney disease and polycystic kidney disease have a
higher risk of CKD progression and CV events compared with other glomerulonephritis or
hypertensive nephropathies, in addition to an increased CV risk as proteinuria becomes
more severe [38,76]. More recently, a panel of 273 peptides (thus called CKD273) has been
developed by analysing the urinary proteome of both healthy subjects and patients with
CKD from different etiologies [77]. This urinary marker was able to detect the presence
of CKD irrespective for the etiology, and higher scores of CKD273 were cross-sectionally
associated with a more severe individual risk profile as testified by the lower eGFR, lower
haemoglobin, higher blood urea levels and increased urine protein excretion [78]. More
intriguingly, CKD273 has been shown to predict future events in CKD patients. In fact,
CKD273 performed well in predicting the eGFR decline over time and the onset of ESKD
regardless of proteinuria and eGFR levels [78,79]. This suggests that CKD273 provided ad-
ditional prognostic information when added to the two principal kidney measures, namely
proteinuria and eGFR. Other than risk for CKD progression, CKD273 has also been shown
to forecast CV events. In a recent time-to-event analysis, Verbeke and colleagues found
that CKD273 was an independent predictor of fatal and non-fatal CV events including
myocardial infarction, cerebrovascular events, cardiac and peripheral revascularization and
heart failure in CKD stages I to III-b, namely the earlier stages of CKD, which need more
prevention efforts compared with more advanced CKD stages where the fate of patients
is almost unchangeable [80]. Proteomics analysis have also been performed in kidney
tissues [73]. These studies showed a disparate expression of proteins in the renal cortex
and renal medulla and detected the thymosin β4 as a marker of sclerosis in animal models
of FSGS [81–83]. Nevertheless, the use of proteomics in CKD has been proposed to be an
alternative to kidney biopsy in some clinical contexts, that would help the nephrologist to
detect kidney disease early on, select the appropriate treatment and, hopefully, to monitor
the treatment effect over time [84]. Many genetic variants have been associated with the
presence of CKD and influence its prognosis. Several prognostic pieces of evidence can
be extrapolated from these studies. In a genomic study involving over 1 million individ-
uals from the Veteran Affairs population and the CKD Genetics Consortium, Hellwege
and colleagues identified several variants that significantly explain eGFR variation [85].
Mutations in the PKD1gene, encoding polycystin 1, and the NOS3 gene, encoding nitric
oxide synthase 3, have been significantly associated with variation in eGFR. The genome-
wide association study (GWAS) also found single nucleotide polymorphisms (SNP) strictly
associated with the severity of CKD. Several loci in fact explained the variation in serum
uric acid levels (including TRIM46, INHBB, SFMBT1, TMEM171, VEGFA, BAZ1B) and
urine albumin excretion (C9orf3 and variant rs334 of HBB encoding beta globin) [86,87].
This association acquires clinical significance when considering that both serum urates and
urine proteins are two important CV risk factors in CKD patients [88]. Other SNPs, such as
ZFHX3, PMF1-BGLAP, USP38, and TTBK1, have been associated with an increased risk for
cerebrovascular accidents in CKD patients, thus helping to clarify the link between CKD
and vascular disease [87]. The gene UMOD, encoding uromodulin, has also been associated
with the severity of several diabetic and non-diabetic kidney disorders [89,90]. In particular,
the variants rs77924615 and rs111285796 have been associated with an altered expression of
UMOD in renal tubules of patients suffering from nephrotic syndrome, a clinical condition
associated with increased CV risk given the high likelihood of developing thrombosis and
ischemic vascular damage [91,92]. The variant rs955333 of CNKSR3 has been shown to
influence sodium and water retention, and thus plasma volume expansion in patients with
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severe diabetic kidney disease [93]. CNKSR3 is involved in the regulation of the epithelial
sodium channel (ENaC) located in the distal portion of the nephron, which mediates the
sodium reabsorption in response to aldosterone. Variants of these genes may explain the
increased sodium sensitivity present in patients with diabetic kidney disease that confers
an increased CV risk to these patients [76]. In these patients, the variant Pro12Ala of the
PPARG2 gene forecasted an increased risk for cerebrovascular events (defined as transient
ischemic attack, cerebral ischemia, or cerebral haemorrhage) [94]. In CKD patients from
different etiologies, the SNP rs495392 of the Klotho gene has been associated with a reduced
risk for progression of atherosclerotic damage [95]. Klotho deficiency, as occurs during
CKD progression, may contribute to endothelial dysfunction and arterial stiffness which, in
turn, worsen the CV prognosis of CKD patients. In the Chronic Renal Insufficiency Cohort
(CRIC), a cohort of CKD patients periodically followed for monitoring CKD progression,
several genetic variants have been linked to the onset of future CV events [96]. Variants in
chr9p21, COL4A1, ATP2B1 and HNF4A have been shown to predict coronary calcification
and coronary artery disease over time in CKD patients. The products of these genes are
involved in the regulation of blood pressure, vascular tone and calcium homeostasis and
are thus strictly connected to CV complications in these patients. Some pharmacogenomic
prognostic markers have also been reported thus far. The SNP Ser270Ala in SLC22A2
encoding the protein OCT2, a transporter of cationic drugs (such as metformin, metoprolol,
cisplatin) located on the basolateral membrane of renal tubular cells, predicted the onset of
side effects due the impaired urine excretion of these drugs [97,98]. Similarly, the variant
Ala465Val of the SLC47A1 gene encoding MATE1 transporter has been associated with an
impaired secretion of toxins and drugs with urine and thus with a higher frequency and
severity of CKD [99]. Metabolomics is another field implemented in kidney diseases and
has been considered as a useful tool since it simultaneously reflects the function of genes
and proteins in biologic fluids [100]. The main aims of this field of research in nephrology
are assessing whether alterations in the metabolome are associated with severity of CKD
and whether they allow us to predict future events. Several previous studies revealed a sig-
nificant role of plasma levels of kynurenine-to-tryptophan ratio, kynurenine and kynurenic
acid in forecasting the onset of CKD, defined as an eGFR < 60 mL/min/1.73 m2 [101,102].
Nevertheless, in a subsequent longitudinal analysis of the CRIC cohort, none of these
metabolites were associated with CKD progression [103]. Several other metabolites have
been reported as good predictors for CV events. Using the LC-MS technique, it has been
possible to isolate these metabolites, which are trimethylamine-N-oxide (TMAO), betaine
and choline [104,105]. The plasma levels of TMAO were found to predict the incidence of
stroke, CV acute events and mortality over time [106]. The pathway which links TMAO
to CV risk has been confirmed in CKD patients and has been attributed to the fact that
TMAO undergoes renal metabolism and thus its plasma concentration is strictly regulated
by the kidney [106,107]. GC-MS has identified several urine metabolites of oxidative stress
as being potentially involved in several patterns of kidney disease. Increased urine levels
of fumarate, an intermediate of tricarboxylic acid cycle, and decreased urine levels of
metabolites related to mitochondrial function have been found to be associated with an
increased risk of developing diabetic kidney disease in mice [108]. Moreover, podocyte
overexpression of NOX4, a major source of reactive oxygen species in the kidney, has been
associated with diabetic kidney disease and a mechanism which directly involves the tissue
levels of fumarate may be responsible for this pathway [109]. With respect to transcrip-
tomics, several ncRNA have been found to be associated with the onset and progression
of CKD [60]. A recent study carried out by Khurana and colleagues on 15 CKD patients
and 10 healthy controls, showed that extraction of RNA from urinary exosomes led to the
isolation of a number of ncRNAs that were differentially expressed in CKD and healthy
subjects [110]. In particular, 9 miRNAs (miR-222-3p, miR-27a-3p, miR-27b-3p, miR-877-3p,
miR-31-5p, miR-3687, let-7c-5p, miR-6769b-5p and miR-296-5p) were increased whereas 7
miRNAs (miR-133a, miR-133b, miR-15a-5p, miR-181a-5p, miR-34a-5p, miR-181c-5p and
miR1-2) were decreased in CKD patients compared with healthy subjects. The authors
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suggested that some of these miRNAs could be evaluated as biomarkers of early diagnosis
of CKD, in particular miR-181a which appeared the most reproducible and reliable miRNA
in their analysis. Several miRNAs are involved in the dysregulation of extracellular matrix
(ECM) deposition and epithelial-to-mesenchymal transition, two mechanisms which lead
to renal fibrosis over time [111]. In diabetic nephropathy models, the increased expression
of miR-192 determines an increased deposition of collagen via TGF-β, and this pattern
is even amplified by miR-200. Clusters of miR-17-92 have been found to be associated
with mesangial expansion, proteinuria and enlargement of renal glomeruli in the context
of lupus nephritis [112]. In general, miRNAs have been found to be associated with dys-
regulation of podocytes, a mechanism shared by multiple causes of CKD, and determine
a fast progression to ESKD and death [113,114]. Moreover, expression of miR-143 and
miR-145 were found to be altered in an experimental model of atherosclerosis and CKD,
thus suggesting a role of miRNAs in determining endothelial and vascular damage in CKD
which is per se a condition associated with increased cardiovascular risk [115]. In the past
decades, it has been demonstrated that gut microbiota have a relevant role in influencing
human health [116]. In CKD patients, the microbiome is significantly altered in compo-
sition and diversity with an increase in bacteria which synthetize uremic toxins such as
p-cresyl-sulphate and indoxyl sulphate. Meta-omics techniques have identified a number
of peptides and proteins which are generated by fermentation in the large intestine and
that their overexpression is associated with an increased risk for CKD progression and poor
prognosis [117]. It has been postulated that some of these toxins such as p-cresyl-sulphate
and indoxyl sulphate can be considered as biomarkers of CKD in the future [62].

5. Predictive Omics in CKD

An ambitious role of omics in CKD is the detection of subjects who will likely respond
to a specific treatment. This function can be similar to that of predictive biomarkers and
confers on them the diction of predictive omics [118]. The evaluation and validation of
predictive omics in nephrology is of great interest, given that a striking portion of CKD
patients do not respond to nephroprotective treatments and novel interesting projects have
been started but, to date, the available information is still incomplete. Patients with type
2 diabetes and CKD have been included in a cross-over randomized trial with two treat-
ment periods with candesartan, an angiotensin II receptor blocker, or placebo, in random
order [119]. As usually done in cross-over studies, at the end of each treatment period,
which is followed by a wash-out that eliminates the effect of previous treatments before
starting a new drug, laboratory or clinical measurements were performed. In this study,
the treatment effect was associated with a change in a urine pattern of damage consisting
of 113 polypeptides. Treatments with candesartan modified 11 out of 113 polypeptides and
the degree of changes was positively correlated with the degree of change in albuminuria
across treatments, thus giving even more emphasis to the results. These findings are impor-
tant in the context of CV risk reduction, since predicting the reduction of albuminuria in
short treatment periods is considered as a good surrogate marker of CV protection in the
long term [38,39]. After demonstrating a good prognostic performance in CKD patients,
the CKD273 classifier has been evaluated as a predictive omics in randomized trials scenar-
ios. CKD273 has been proposed as a useful tool for biomarker-based enrichment studies,
namely clinical trials, in which patients are considered eligible, and thus included, based
on the baseline levels of a prognostic marker [12]. The rationale of this approach consists of
including in intervention studies those patients who are at increased risk for developing
future negative outcomes. In the ‘proteomic prediction and renin angiotensin aldosterone
system inhibition prevention of early diabetic nephropathy in type 2 diabetic patients with
normoalbuminuria’ trial, patients were enrolled based on increased risk of developing al-
buminuria according to the CKD273 score [120]. High-risk patients were then randomized
to receive spironolactone or placebo and the development of mild albuminuria was the
primary study outcome. Although spironolactone did not confer a significant reduction
of albuminuria risk, likely because of discrepancies between the sample size calculated
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and the number of patients subsequently allocated in the high-risk group, nonetheless the
high-risk group, identified with the CKD273, was at significantly higher risk of developing
albuminuria than the low-risk group (p < 0.001). In fact, other studies revealed a significant
change in CKD273, toward the values observed in healthy subjects, after treatment with
RAASis or MRA [121,122]. Hence, this study is an original example of how omics can be
used in the early phase of disease, and in fact PRIORITY trial patients, who were not yet
albuminuric, were treated with albuminuria-lowering drugs. Another interesting result
derives from a post-hoc analysis of the Efficacy, Safety & Modification of Albuminuria
in type 2 Diabetes Subjects with Renal Disease with the LINAgliptin (MARLINA-T2D)
trial [123]. This trial originally demonstrated the efficacy in terms of glycemic control
of linagliptin, a dipeptidyl peptidase-4 inhibitor, when added to standard treatment in
patients with diabetic kidney disease. Interestingly, patients with high-risk score according
to CKD273 and who started linagliptin were those who benefitted more from this treatment
in terms of loss of renal function and, more importantly, this benefit was not captured by
eGFR alone. Many attempts to assess the predictive role of proteomics have been made
with respect to IgA nephropathy. Several studies suggest a role of urine kininogen and
urine proteomic classifiers in predicting the response to RAASis treatment, which needs
further confirmation from larger intervention studies [75,124]. Genetic variants in several
crucial loci have also shown predictive, other than prognostic, ability. An insertion (I) or
deletion (D) polymorphism of the angiotensin-converting enzyme gene influences the renal
and systemic function of RAAS. Some analyses showed that these polymorphisms may
influence the response to RAASis and, consequently, may affect the cardiorenal prognosis
in CKD patients [125,126]. In particular, the treatment effect of ramipril and losartan, in
the REIN and RENAAL trials, respectively, was greatest in patients with DD phenotype
compared with ID or II genotypes. The relative risk reductions were large, being 61.3% in
the REIN study and 41.3% in the RENAAL study. It is remarkable that such analyses have
been carried out specifically in patients with CKD. Single nucleotide polymorphisms in
the gene regulating cytochrome P450 function, and hepatic metabolism (SLCO1B1, ABCB1,
ABCC2, ABCG2 and ABCB11) modifies the response to statins, which are frequently used in
CKD patients to reduce CV risk [127,128]. Many other SNP variants have been found to be
associated with variable responses to other nephroprotective treatments. Genetic variants
in the UGT1A9 gene encoding the uridine 5’-diphospho-glucuronosyltransferase (UGT)
enzyme influence the response to canagliflozin and other SGLT2is. In fact, patients who
are carriers of the variants UGT1A9*3 and UGT2B4*2 have a higher AUC of canagliflozin
and thus a better drug availability [129–131]. Variations in the TCF7L2 gene have reduced
insulin secretion from pancreatic β-cells and thus have an impaired response to incretins
(dipeptidyl peptidase-4 inhibitors—DPP-4—and glucagon like peptide 1 receptor agonists—
GLP1-RA), which have been shown to confer CV and renal protection in patients with
diabetic kidney disease (Figure 1) [132].

Furthermore, metabolomics biomarkers have been proposed to be candidates as good
predictors for response to treatment. In experimental models, niacinamide gained particular
interest since its mediator, the PPARγ-coactivator-1α (PGC1α), is quantifiable in renal tissue
and urine as an omics biomarker. The intraperitoneal infusion of niacinamide increased
NAD levels in the kidney, a coenzyme critical for activating energetic metabolism and
which may offer protection against kidney failure and CV risk [133]. The involvement of
miRNAs in many crucial mechanisms of damage in CKD has sparked great interest in
developing drugs that block specific miRNAs or their function. The available tools to inhibit
miRNAs are sponges, which absorb miRNAs reducing their activity, or oligonucleotides,
which are more stable in vivo and thus also more used [134]. This latter strategy is very
intriguing since, after systemic circulation, the oligonucleotides accumulate in the kidney
and so exert a prolonged local action. The inhibition of miR-21 has been tested as treatment
for reducing fibrosis in animal models and has been shown to reduce the severity of renal
dysfunction, albuminuria and inflammation in a genetic model of Alport syndrome [135].
In a diabetes mouse model, the inhibition of miR-192 reduced the development of diabetic
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kidney damage, but the effect in humans is still controversial [136,137]. Replacement
treatment with miR-145 has been shown to stabilize atherosclerotic plaques in mice [60].
Finally, but very importantly, the treatment-induced modification of gut-derived toxins has
been considered as a promising strategy to reduce risk for CKD progression. A number
of intervention studies have been carried out to evaluate whether the use of probiotics,
namely microorganisms beneficial for the microbiome, may improve CKD progression and
whether this effect can be associated with a change in biomarker levels [70,117]. Probiotics
administered are mainly represented by Bifidobacterium, Lactobacillus, and Streptococci
species. It has been shown that treatment with probiotics specifically in CKD patients
in stage G3a determined a significant reduction of urinary levels of 3-methyl-indole and
indican, two markers of intestinal dysbiosis. Further promising results derive from the
benefit from treatment with AST-120, an oral spherical activated carbon, which absorbs
small-molecule uremic toxins, leading to ESKD risk reduction. However, more studies are
needed to clarify the individual response to probiotics in larger CKD populations [138].
Table 1 reports a summary of prognostic and predictive OMICs in CKD patients.
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Figure 1. Influence of SNPs in the TCF7L2 gene in response to treatment with SU derivatives,
GLP1-RA and DPP-4 inhibitors. In the pancreatic β-cell, GLP-1 phosphorylates β-catenin via cAMP-
dependent protein kinase A (PKA). This avoids the degradation of the β-catenin that subsequently
accumulates, enters the nucleus and forms the transcription factors β-catenin/TCF. This leads to
activation of genes such as Isl-1 and Axin2. Overall, this pathway results in pro-insulin processing,
β-cell protection from IL-1β and interferon-γ-mediated apoptosis, stimulation of β-cell proliferation
and glucose/GLP-1-stimulated insulin secretion. Patients with TCF7L2 gene variants have impaired
TCF7L2 expression in pancreatic β-cells resulting in reduced insulin secretion and impaired response
to incretins (GLP1-RA, DDP-4 inhibitors). The abnormal response to GLP1-RA and DPP-4 inhibitors
is likely to depend on the direct effect of TCF7L2 on PKA.
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Table 1. Prognostic and predictive OMICs in chronic kidney disease.

Name Types Source Role Outcome Disease Note/Comments

Human studies

CDK273 [78,79] Peptide Urine Prognostic
ESKD onset or
eGFR decline;

CV events
CKD

High CKD273 score was
associated with an

increased individual risk
for CKD progression.

PKD1 & NOS3
[85] Gene

Single
nucleotide

polymorphisms
(SNPs)

Prognostic
Decrease in

renal function
(eGFR)

Renal function

Mutations of PKD1,
encoding polycystin-1
and NOS3, involving

nitric oxide production,
have been associated
with reduced renal

function.

TRIM46,
INHBB,

SFMBT1,
TMEM171,

VEGFA, BAZ1B
[86,87]

Gene

Single
nucleotide

polymorphisms
(SNPs)

Prognostic CV events CKD

SNPs in these genes
influence serum uric acid

levels and this
association partially

explains the increased
CV risk in CKD.

C9orf3 and
variant rs334 of
HBB encoding

beta-globin
[86,87]

Gene

Single
nucleotide

polymorphisms
(SNPs)

Prognostic CV events CKD

These genetic variants
influence urine albumin
excretion and mediate

the association between
CKD and CV events.

ZFHX3,
PMF1-BGLAP,

USP38, and
TTBK1 [87]

Gene

Single
nucleotide

polymorphisms
(SNPs)

Prognostic Cerebrovascular
accidents CKD

SNPs in these genes
influence serum uric acid

levels and this
association partially

explains the increased
risk for cerebrovascular

accidents in CKD
patients.

UMOD [91,92] Gene Uromodulin Prognostic
Disorders in

diabetic
nephropathy

Diabetic
nephropathy

The variants rs77924615
and rs111285796 were

found to predict the risk
of nephrotic syndrome.

PPARG2 [94] Gene

Single
nucleotide

polymorphisms
(SNPs)

Prognostic Cerebrovascular
events CKD patients

Variant Pro12Ala was
able to predict

cerebrovascular events in
CKD patients.

Klotho [95] Gene

Single
nucleotide

polymorphisms
(SNPs)

Prognostic

Progression of
endothelial
dysfunction
and arterial
stiffness, CV

events

CKD

Genetic variants of
Klotho gene influence

CV risk and progression
of atherosclerosis in CKD

patients.
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Table 1. Cont.

Name Types Source Role Outcome Disease Note/Comments

Chr9p21,
COL4A1,

ATP2B1, and
HNF4A [96]

Gene

Single
nucleotide

polymorphisms
(SNPs)

Prognostic CV events CKD

These genes are involved
in regulation of blood

pressure, vascular tone,
and calcium homeostasis
and their variants predict
coronary artery disease

in CKD patients.

MATE1 [99] Gene

Single
nucleotide

polymorphisms
(SNPs)

Prognostic Severity of
CKD CKD

MATE1 secretes drugs
from cells into the lumen

of proximal tubules.
Several genetic

polymorphisms such as
the variant Ala465Val of
SLC47A1 may affect the

function of this
transporter with

impaired secretion of
toxins and drugs, which
reflect on the severity of

CKD.

Trimethylamine-
N-oxide

(TMAO) [105]

Amine
oxides Serum Prognostic

Stroke, CV
acute events,
and mortality

over time

CKD

Trimethylamine-N-oxide
(TMAO) plasma levels
are strictly associated
with the incidence of

stroke, CV acute events,
and mortality over time.
TMAO levels increase

with the progression of
kidney damage.

Therefore, this marker
could perform even

better in CKD patients.

NOX4 [109] Gene

Single
nucleotide

polymorphisms
(SNPs)

Prognostic Severity of
CKD CKD

NOX4 expression
increases fumarate levels,

which are linked to
glomerular dysfunction.
Therefore, fumarate is a

key link connecting
metabolic pathways to
diabetic nephropathy.

miR-222-3p,
miR-27a-3p,
miR-27b-3p,
miR-877-3p,
miR-31-5p,
miR-3687,
let-7c-5p,

miR-6769b-5p
miR-296-5p
miR-133a,
miR-133b,

miR-15a-5p,
miR-181a-5p,
miR-34a-5p,
miR-181c-5p
miR1-2 [111]

miRNAs Non-coding
RNA fragments Prognostic Severity of

CKD CKD

These miRNAs are
differentially expressed

in CKD patients.
miRNAs associated with
CKD impair the degree

of fibrosis, ECM
deposition and
proteinuria and
accelerate CKD

progression.
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Table 1. Cont.

Name Types Source Role Outcome Disease Note/Comments

p-cresyl-
sulphate
indoxyl

sulphate [117]

Protein-
bound
uremic
toxins

Microbiomics Prognostic Severity of CV
damage CKD

Overexpression of
uremic toxins accelerate

CKD progression.

CKD273
[120–123] Peptide Urine Predictive Response to

RAASi/DPP-4
Diabetic

nephropathy

CKD273 panel is not
only a prognostic but
also a predictive tool.

There is a close
relationship between a
high CKD273 score and
response to RAASi or
Linagliptin therapy. In

high-risk patients
undergoing therapy with

the latter, the CKD273
score had a significant

decrease compared with
healthy subjects.

Urine
kininogen

[75,124]
Peptide Urine Predictive Response to

RAASi CKD

Urine kininogen could
predict the response to
therapy with RAASi.

However, further studies
are needed.

Angiotensin-
converting

enzyme gene
polymorphisms

[125,126]

Gene

Single
nucleotide

polymorphisms
(SNPs)

Predictive Response to
RAASi CKD

Polymorphisms
(insertion or deletion) for

the gene encoding the
angiotensin-converting
enzyme may predict the
response to RAASi. In

one study, the D/D
variant, followed by the
I/D variant, resulted in a

greater reduction in
proteinuria, and better

renal function over time.
In contrast, the I/I

variant predicted poor
response and less benefit

from RAASi therapy.

SLCO1B1,
ABCB1, ABCC2,

ABCG2 and
ABCB11
[127,128]

Gene

Single
nucleotide

polymorphisms
(SNPs)

Predictive

Response to
statins and
consequent

increased CV
risk

CKD

Several polymorphisms
(SLCO1B1, ABCB1,

ABCC2, ABCG2, and
ABCB11) for the gene
encoding cytochrome
P450 could affect the
response to statins,

which play a central role
in reducing CV risk

among CKD patients.
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Table 1. Cont.

Name Types Source Role Outcome Disease Note/Comments

UGT1A9
[129–131] Gene

Single
nucleotide

polymorphisms
(SNPs)

Predictive Pharmacokinetics
of SGLT2i

CKD and
diabetes

UGT1A9 gene translates
for an enzyme involved
in the pharmacokinetics
of SGLT2i. Carriers of the
variants UGT1A9*3 and
UGT2B4*2 have higher
plasma levels of drugs,
which are associated
with greater benefits.

TCF7L2 [132] Gene

Single
nucleotide

polymorphisms
(SNPs)

Predictive
Pancreatic
response to

incretins
CKD

Some variants of the
TCF7L2 gene cause a

lower pancreatic
response to incretins.
Therefore, patients

carrying these variants
are expected to benefit
less from therapy with

GLP-1 agonists or DDP-4
inhibitors.

miR-192 [137] miRNAs Non-coding
RNA fragments Predictive Onset of CKD CKD

Inhibition of miR-192
reduces the renal
complications of

diabetes.

3-methyl-
indole indicant

[70]

Protein-
bound
uremic
toxins

Microbiomics Predictive Severity of
inflammation CKD

Reduction of urinary
levels of both markers

after treatment is
associated with

reduction in
inflammatory patterns in

CKD patients.

Animal studies

Thymosin β4
[81,82] Protein Renal

parenchyma Prognostic Sclerosis
progression

Segmental
glomeruloscle-

rosis
(FSGS)

Thymosin β4 was
associated with sclerosis

progression in animal
models of FSGS.

miR-143
miR-145 [115] miRNAs Non-coding

RNA fragments Prognostic Severity of CV
damage CKD

They are associated with
higher severity and less

stability of
atherosclerotic plaque in

CKD.

miR-21 [135] miRNAs Non-coding
RNA fragments Predictive Severity of

CKD CKD
Inhibition of miR-21

reduces renal fibrosis in
Alport nephropathy.

miR-145 [60] miRNAs Non-coding
RNA fragments Predictive Severity of CV

damage CKD

Inhibition of miR-145
allows stabilization of

the atherosclerotic
plaque and the onset of

CV events.

6. Omics and Personalized Medicine in Nephrology: Future Perspectives and Conclusions

Prediction of cardiovascular outcomes in CKD patients needs to be improved. A
number of initiatives have been implemented in the general population with the aim of
improving individual awareness of CV damage and reinforcing prevention strategies. The
Joint British Societies launched a self-assessed risk score where patients are allowed to
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personally select those risk factors that deserve to be improved [139]. In the nephrology
field, data are sparse, and risk scores in patients without CKD cannot be directly applied
to those with CKD, as shown for the Framingham risk score [140]. For this reason, the
International Society of Nephrology pushed the implementation of novel risk scores which
are more appropriate to predict CV events in CKD patients through (1) the construction
of large and multicentric databases, (2) the amelioration of statistical methodology while
building a risk score with the assessment of external validation, calibration, GIF and
discrimination and (3) the introduction and development of novel biomarkers that are able
to add useful information for CV risk prediction [14]. The omics strategies can be involved
in all these steps. However, a great effort is still necessary in this direction [141,142]. The
main limitations of omics studies in CKD are the small sample size and the short follow-up
in available studies. In fact, the vast majority of evidence available thus far is focused on
the demonstration of change in biomarker levels (i.e., urine albumin excretion) after some
months from the baseline study visit. In nephrology research, the major endpoints, such as
ESKD or all-cause mortality, may need years to occur, especially if enrolled populations
include young patients and those with a mild reduction of kidney function. Further
studies with longer follow-up and a higher number of patients are needed. For all types of
omics signatures, namely proteomics, genomics or metabolomics, future studies should be
oriented at demonstrating prognostic and predictive abilities specifically in CKD patients.
A clear example of the strict relationship between predictive and prognostic biomarkers is
the importance of CKD273 that may allow a better risk stratification of patients and the
identification of CKD patients who will respond better to a specific treatment.

As we mentioned in the previous sections, a lot of evidence has been provided thus far
but, in most cases, they have been assessed in settings different from CKD patients. This
is a key point since CKD patients differ from the general population and other high-risk
patients (type 2 diabetes or hypertensive patients) for baseline characteristics, risk factors,
and long-term prognosis [143–145]. In fact, CKD patients, despite an advanced mean age,
are more prone to develop ESKD than mortality as outcome and have a high-risk CV
profile (frequency of diabetes, smoking habit, previous CV disease) at baseline [146–148].
Moreover, the omics approach should be able to provide additional information not only on
prediction and prognosis, but also on the pathogenetic mechanisms of CKD. An interesting
strategy that would help to do this is to aggregate data derived from renal tissue and/or
urine samples into networks that can provide more information of specific pathways
of kidney disease [12]. For example, the integration of genetic data with histological,
molecular data and clinical variables (the so-called multi-layered datasets) may help to
better understand the mechanisms of kidney disease and to select the best therapeutic
option for each patient. Analytic tools that have been proposed to build such datasets are:
RNA sequencing of compartment-specific tissue (e.g., glomeruli or tubules in the kidney)
to generate transcriptomic data; implementation of digital imaging of kidney biopsies
that may generate high quality images and apply computer-aided techniques such as
machine-learning [37]; multiple omics assessments from urine samples. An integrated
omics approach has already been used in research. Following such an approach, one study
demonstrated that genetic expression of EGF, encoding the protein epidermal growth
factor (EGF) in kidney tissue (derived from biopsy) correlated significantly with kidney
measures such as eGFR reduction or kidney failure, and also with urine levels of EGF [149].
Moreover, in a cohort of 157 European patients with CKD from multiple etiologies, the
investigators integrated the eGFR-associated genetic loci information with transcriptional
data [150]. Through such a study, it was possible to identify activated and suppressed
inflammatory, metabolic and immune processes across different causes of CKD (i.e., diabetic
CKD, several forms of glomerulonephritis). The patterns discovered involved the NF-E2-
related factor 2 and JAK-STAT pathway. Interestingly, these data have been confirmed in
multiple cohorts which reported that loss of EGF expression in the kidney was associated
with a high-risk of CKD progression, thus providing important prognostic information.
The integrated multi-layered approach should be also important to assess whether omics
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analysis can completely substitute for renal biopsy or also whether renal biopsy remains an
important and unique diagnostic and prognostic tool for CKD patient management; this is
still a matter of debate [151]. In one study, the information derived from kidney biopsies
have been merged with genome-wide transcriptional analysis [152]. This study involved
95 human biopsies and demonstrated that there was a differential gene expression (with
respect to CPT1A, CPT2, ACOX1-2) between kidney samples with and without fibrosis.
Such a discovery is relevant as the degree of renal fibrosis is one of the main parameters
used to guide treatment decision among nephrologists.

Another important aspect of omics research is related to the clinical trials design for
personalized medicine. There are several clinical trial designs which are currently used in
evaluating the efficacy and safety of nephroprotective treatments at an individual level,
i.e., by focusing on selecting the ‘right drug for the right patient’ [12]. Three main exam-
ples of these studies are represented by: (1) The biomarker-based enrichment in which
patients are selected on the basis of the presence/absence of a biomarker. (2) The adap-
tive enrichment studies in which all patients undergo a phase of experimental treatment
(e.g., enrichment period) and only patients who respond to the study treatment will next
enter the randomization to treatment or placebo. In such studies, treatment response could
be based on the changing of specific blood or urine markers. (3) The cross-over designs in
which patients undergo two or more treatment phases (with different drugs) separated by
wash-out periods and the response to treatment in each phase is assessed by measuring
the change of marker levels from the start to the end of treatment. The omics markers can
be implemented in all these study designs by giving information as to which patients are
likely to respond to a treatment.

7. Conclusions

In conclusion, omics research in CKD patients has been started and has provided much
important information. Significant steps forward have indeed been made with respect to
both prognosis and prediction of future CV and renal events in CKD. However, future
studies may be oriented toward the correct definition of the role of omics specifically in
CKD patients, the implementation of multi-omics integrated approaches and, hopefully,
the integration of omics in the novel designs of randomized clinical trials.
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