
1. Introduction
In their investigations of the Earth system, geo-scientists have to deal with two complementary spaces: data space 
and model space. The model space is generally defined as the space of the investigated parameters. For a given 
parameterization of the system, each point of the model space defines a possible model of the system, represented 
by a combination of values of the model parameters. To make inferences on the model parameters, we need to 
take measurements of relevant geo-observables. The data space contains all the possible combinations of such 
observations (Tarantola, 2005) and the measured data points form a local subset of the data space with its own 
structure. While there is a vast literature about methodologies for investigating the model space (e.g., Sambridge 
& Mosegaard, 2002), few attempts have been made at a systematic exploration of the data space. Exploration 
of the data space is an ordinary activity for geo-scientists, and includes, for example, data preparation, quality 
controls (QCs) for data selection and estimation of data errors. Some of those activities, for example the data 
selection, could have a strong impact on the data space, modifying, for example, the data structure. Generally, 
such activities rely on the expert-opinion of the geoscientists and are carried out ahead of the main geophysical 
investigations that are related to the model space.

There are two main reasons for considering a systematic exploration of the data space. First, the ever grow-
ing amount of geo-data available to geo-scientists needs to be tackled with more automated workflows; expert 
opinion is generally a time-consuming process. Second, more interestingly, expert opinion, as a human activity, 
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Plain Language Summary The increasing amount of geophysical data available for making 
inferences on the Earth's properties needs to develop automated workflows for data preparation, now that expert 
opinion is becoming too time-consuming and too expensive. We present a novel approach for geophysical 
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approach is able to indicate which data volumes coherently represent the initial hypotheses and which need 
further investigations.
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implies the separation of data into categories (i.e., a discrete number of outputs) rather than a more general con-
tinuous evaluation of probability. For example, in data selection activities, the expert can select and, then exclude, 
part of the data based on their experience, using a two category model (in/out, good/bad). Conversely, a more 
automated workflow, developed in a statistical framework, can associate a probability value to each data point, 
avoiding the need to remove any of them from the analysis.

Exploration of the data-space is generally associated with Machine Learning (ML) techniques (i.e., the so-called 
data mining). In fact, ML makes use of huge databases to extract common features of the data themselves and to 
explore potential correlation between such features (e.g., Huang, 2019; Olivier et al., 2018). In particular, clus-
tering algorithms try to separate different data regions (clusters) based on the criterion or objective function to be 
optimized (e.g., Van Mechelen et al., 2018). The number of clusters is a key parameter the definition of which is a 
topic of active research (Arbelaitz et al., 2013). It can imposed a-priori or chosen during or after the data-analysis, 
initial work has been done to relax the constraint on the number of clusters (e.g., the DBSCAN algorithm used 
in Sabor et al., 2021).

In recent years, some studies have reported cases of systematic exploration of the data space, even if such analy-
ses take often a marginal role in the scientific studies themselves. In particular, there are some examples (Bodin, 
Sambridge, Rawlinson, & Arroucau, 2012; Dettmer & Dosso, 2012; Xiang et al., 2018) where Bayesian inference 
is applied to a geophysical inverse problem for defining both physical parameters (i.e., investigating the model 
space) and the errors associated to the data (i.e., exploring the data space), the so-called Hierarchical Bayes ap-
proach (Malinverno & Briggs, 2004). In Hierarchical Bayes algorithms, the uncertainties related to the data are 
assumed to be poorly known and need to be estimated during the process. This approach usually assumes a fixed 
number of parameters which represent the unknown part of the data space. In most applications of the Hierarchi-
cal Bayes approach, the absolute value of the data errors is considered an unknown in the problem that needs to be 
inferred (Bodin, Sambridge, Rawlinson, & Arroucau, 2012). Sometimes, in cases where the structure of the data 
errors is known (i.e., we know which data points are measured with more precision with respect to other points), 
a scaling factor of the data error is used as the unknown (Piana Agostinetti & Malinverno, 2018). In more com-
plex cases, the Hierarchical Bayes approach is adopted to somehow define a function of the data uncertainties, 
so-called “data structures” or “states” hereinafter, which include: estimating an auto regressive model of the data 
errors (i.e., a form of error correlation, Dettmer & Dosso, 2012), and estimating an increasing linear model for 
the data errors as a function of the geometrical distance between measurement points (e.g., Galetti et al., 2016). In 
all of these cases however, the number of parameters representing the data structure is fixed a-priori (usually one 
or two parameters, rarely more than three). By contrast, Steininger et al. (2013) and Xiang et al. (2018), extend 
Hierarchical Bayes approach to make inferences on the data space by considering data structures that are repre-
sented by a variable number of parameters. Xiang et al. (2018) make use of a transdimensional (trans-D) sampler 
(Sambridge et al., 2006, 2013) for sampling models belonging to two different states: in one state, one unknown 
defines an autoregressive model of the first order for the data errors, that is, assume uncorrelated errors, while in 
a second state, two unknowns are used to define an autoregressive model of the second order, that is, exponential 
correlation between data uncertainties. Using this ability to jump from one state to the other, the algorithm is able 
to indicate the “predominant” auto-regressive model associated to the data errors. As far as we know, Steininger 
et al. (2013) and Xiang et al. (2018) are the first applications of a trans-D algorithm in Geophysics, for sampling 
different states representing different error models, even if they are limited to a transition between states repre-
sented by one and two parameters.

In this study, we move a step forward in the development of algorithms for data space exploration. We make 
use of a trans-D sampler for exploring different “states” (represented by a different number of variables), where 
each state reproduces a partition of the data space (i.e., a data structure). The number of states to be explored is 
no longer strictly limited (e.g., two states, like in Xiang et al., 2018), and the number of variables representing 
each state can vary between a user-defined minimum and maximum. The algorithm is developed in a Bayesian 
framework, used to define the posterior probability of the data structures. Data space structures are expressed 
in terms of partitions of the covariance matrix of the errors, which allow us to define regions of the data space 
where measured data are in agreement with a given working hypothesis. The algorithm is applied to the data 
analysis workflow used for time-lapse seismics (also called 4D tile lapse seismics), a technology used primarily 
by oil&gas companies for monitoring their reservoirs. The 4D seismic data consist of time-repeated active seis-
mic surveys that need to be investigated for detecting noise/distortions and focusing the subsequent geophysical 
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inversion on the portion of active seismic data where temporal changes have occurred. The algorithm is applied 
on laboratory data that mimic active seismic surveys and the results are discussed in light of the potential of the 
algorithm for statistically separating signals with different origins.

1.1. 4D Seismics: Key-Concepts and Present-Day Challenges

The term 4D seismics indicates the data workflow adopted by oil&gas companies for monitoring their reservoirs 
through the repetition, after a few years, of active seismic surveys. The 4D seismic workflow consists of three 
main phases: acquisition, processing and interpretation. 4D seismics is generally performed for off-shore reser-
voirs, but the first successes were obtained on-shore (e.g., Davis et al., 2003; Porter-Hirsche & Hirsche, 1998). 
This technology is also used for monitoring CO2 underground storage sites (Cheng et al., 2010; Lumley, 2010; 
Roach et al., 2015; Yang et al., 2014). Briefly, a first active seismic survey, the so-called baseline survey, is per-
formed just before starting production to image the untouched resources. After some time and while the reservoir 
is under production, the active seismic survey is repeated, the so-called monitor survey. If the seismic acquisition 
and data processing are exactly the same as those used for the baseline survey, the differences between the images 
can be uniquely attribute to changes in the physical properties of the reservoir due to its exploitation. Through 
the analysis of such differences, scientists can make informed decisions about the next phases of exploitation of 
the reservoir.

An important question is: how can we get relevant information from 4D seismics? Production related effects on 
images obtained from the monitor survey can be obscured by distortions induced by the lack of repeatability of 
the data acquisition and processing. This is one of the main technical barriers for getting the correct informa-
tion from 4D seismics (Koster et al., 2000). The concept of repeatability between two or more seismic surveys 
indicates the degree to which the data-sets can be considered to be generated from the same operational and 
computational workflows. Measures of repeatability between two seismic surveys generally include Normalized 
Root Mean Square (NRMS) and trace correlation (also called predictability Kragh & Christie, 2002). Increasing 
and evaluating the repeatability of 4D seismics have been the focus of a number of studies in the last decades 
(Houck, 2007; Landro, 1999; Pevzner et al., 2011), with the main efforts going into increasing acquisition quality, 
that is, hardware solutions. Statistical approaches to 4D data analysis have been limited to the interpretation phase 
(e.g., applying Machine Learning algorithms to porosity inversion Dramsch, 2019).

1.2. Methodological Framework: Bayesian Inference, Markov Chain Monte Carlo and Trans-
Dimensional Algorithms

Various geophysical inverse problems have been solved following a probabilistic Bayesian framework (Taranto-
la, 2005, 2006). Bayes' theorem

𝑝𝑝(𝐦𝐦|𝐝𝐝) = 𝑝𝑝(𝐦𝐦)𝑝𝑝(𝐝𝐝|𝐦𝐦)
𝑝𝑝(𝐝𝐝) (1)

connects (probabilistic) prior information p(m) about some subsurface properties (m) and data measured (d), gen-
erally at the surface, to extract new information about such properties (the so-called posterior probability distri-
bution p(m∣d) or PPD), through an (assumed) known error statistics (the Likelihood p(d∣m), or L(m) hereinafter, 
Bayes, 1763). Thus, in contrast with other approaches, the solution of geophysical inverse problems is given in the 
form of a probability distribution over the investigated parameters, and not as a single value for each parameter 
(i.e., a single model). In simple cases, Bayes' theorem can give an analytic solution to geophysical inverse prob-
lems (Tarantola, 1987). However, numerical methods have been widely used in more complex cases. In particu-
lar, Markov chain Monte Carlo (McMC) sampling has been found to be well suited for sampling a chain of Earth 
models with a probability proportional to the PPD and, thus, to make inferences on relevant parameters based on 
such sampled models (Sambridge & Mosegaard, 2002). Here, we follow the approach presented in Mosegaard 
and Tarantola (1995) and we develop a sampler of the prior probability distribution which can be “switched” to 
sample models with a probability that follows the PPD. After collecting a relevant number of models from the 
PPD, we compute numerical estimators of the investigated parameters directly from the sampled models. For 
example, the mean value of the parameter m, can be estimated as
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𝑚𝑚𝑗𝑗 , (2)

where Ns is the number of samples computed during the McMC sampling and mj is the value of parameter m for 
the jth model sampled. Following the approach in Mosegaard and Tarantola (1995), we define the probability of 
accepting a new model along the Markov chain as:

𝛼𝛼 = min[1, 𝐿𝐿(𝐦𝐦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)∕𝐿𝐿(𝐦𝐦𝑐𝑐𝑐𝑐𝑐𝑐)], (3)

where mcand, the candidate model, and mcur, the current model, are two consecutive Earth models along the 
Markov chain and L(m) is the likelihood of the model given the observed data. In other words, the candidate is 
always accepted if L(mcand) ≥ L(mcur). If L(mcand) < L(mcur), the random walk moves to the candidate model with 
probability equal to L(mcand)/L(mcur). The last point, L(mcand) < L(mcur), guarantees that the McMC sampler will 
not get stuck in a local maximum of the likelihood function, because models which worsen the fit to the data may 
still be accepted.

Two fundamental points in Bayesian inferences are the initial states of knowledge about the investigated param-
eters, the so-called priors, which can take a closed analytical form, or be represented by a set of rules (e.g., one 
parameter has to be smaller than a second parameter, like in P- and S- waves velocities in rocks). More interest-
ingly, the statistics of the data uncertainties should be known at a certain level. Such statistics is used to compute 
the likelihood value of an Earth model. Simplified statistics can be adopted (e.g., a diagonal covariance matrix 
in Gaussian distributed errors) but has been proven to give un-realistic results in some cases (Birnie et al., 2020). 
Both of these assumptions have to hold to make inferences on physical parameters and, given Equation 1, the 
solution to the geophysical inverse problem may change under different assumptions.

An efficient design of the McMC sampler is fundamental for achieving robust results (in terms of number of sam-
ples extracted from the PPD) in a limited amount of time. Several different recipes have been designed in the past 
for proposing a candidate model, that is, a new point in the model space, as a perturbation of the current model, 
that is, the last visited point in the model space (Bodin, Sambridge, Tkalcic, et al., 2012). In fact, if the sampling 
is too limited to the neighborhood of the current model, McMC will converge too slowly toward the global 
maximum of the likelihood function. Conversely, too strong a perturbation of the current model will likely lead 
to poorly fitting candidate models, most of which will be rejected. In recent years, one ingredient that has been 
added to many implementations of the McMC sampler is the possibility of sampling a candidate model which has 
a different number of variables than the current model (Malinverno, 2002; Sambridge et al., 2006). In practise, 
we relax the hard constraint of a fixed number of variables in the models, allowing it to vary between fixed min-
imum and maximum values. This new generation of McMC samplers are collectively called trans-dimensional 
samplers (e.g., Sambridge et al., 2013) and are based on the pioneering works of Geyer and Møller (1994) and 
Green (1995). For trans-dimensional samplers, Equation 3 holds under specific assumptions on the model space 
transformation and its Jacobian matrix (see Appendix B in Piana Agostinetti & Malinverno, 2010; for details).

2. Data
We consider a simple time-lapse scenario that consists of an overburden layer and a reservoir. To better mimic a 
real world application, we use a scaling factor of 10,000 such that a frequency of 200 kHz represents a frequency 
of 20 Hz, and a dimension of 1 mm represents 10 m. To build this experiment in the lab we take two Plexiglas 
blocks with dimensions 310 × 154 × 77 mm, and attach them together (Figure 1). The first Plexiglas block rep-
resents the overburden layer with elastic properties of Vp = 2,780 m/s, Vs = 1,480 m/s, and ρ = 1.19 g/cm3. This 
overburden layer remains unchanged between the two surveys. To build the reservoir layer we remove a rectangu-
lar cube from the second block, allowing us to insert different fluids into our “reservoir.”

For the baseline survey, we keep the second block empty, representing a gas-filled reservoir. In this case, the 
elastic properties of the air are Vp = 332 m/s, Vs = N/A, and ρ ∼ 0 g/cm3. For the monitor survey, we fill the block 
with water, miming a scenario where the gas in the reservoir has been replaced with brine. The elastic proper-
ties of the water are Vp = 1,500 m/s, Vs = N/A, ρ ∼ 1 g/cm3. Figure 1 shows the experimental setup for the data 
acquisition. For the source, we use a P-wave transducer with a single-cycle sine wavelet at 200 kHz, generated 
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through the function generator (top left corner of Figure 1). This P-wave transducer has a diameter of 10 mm. For 
the receivers, we use a laser vibrometer that measures the particle velocity along the direction of the laser beam 
(perpendicular to the surface), and sends it to the oscilloscope to be saved. The laser measures the signal at 160 
points along the tape, giving us a total of 160 receivers with a sampling distance of 0.5 mm. The nearest offset in 
this case is 10 mm. Figure 1 top right corner shows the signal reading at the nearest offset for the baseline case. 
Throughout the data acquisition the P-wave transducer is glued to the Plexiglas box, and the laser is attached to a 
stage that stably moves it along the tape. This allows for a controlled and repeatable time-lapse experiment. Sum-
marizing, the experimental set-up allows us to record 160 “wiggles” for each of the two different reservoir-states, 
composing two “shot-gathers.” For the first 100 wiggles in each shot-gather, clear arrivals from the surface and 
the reservoir can be separated. These shot-gathers compose a homogeneous, discrete (x, t)-space, where x is the 
wiggle offset, and t is the recording time (Figure 2). In order to obtain more copies of the baseline and monitoring 
surveys without doing the full experiment, we make use of the error model described in Section 2.1, adding a 
noise component to the original recordings.

In general, we use the first shot-gather from the first reservoir-state experiment as the “baseline survey” (Fig-
ure 2a). We combine the wiggles for the two experiments to simulate different monitoring scenarios. For exam-
ple, in Figure 2b, we mimic: (a) the misplacement of some sensors (wiggles between 15 and 25), replacing the 
correct baseline wiggles with wiggles from the baseline survey but with a four-wiggles shift; and (b) the presence 
of changes in the reservoir (wiggles 60 to 90), replacing wiggles from the baseline with wiggles from the second 
reservoir-state experiment. In the “monitoring survey” un-changed wiggles belong to one of the copies of the 
baseline survey, and not the original baseline data set itself. Point-wise measurements of the squared difference 
between baseline and monitor surveys can be larger for misplacement sensors than for reservoir alteration (Fig-
ure 2c), making the discrimination between the two effects quite challenging.

To test our methodology, we used one in five wiggles for the first 100 wiggles, thus, we collect 20 “traces” for 
each survey, Nw = 20. Downsampling the number of wiggles allows us to have enough data for simulating the 
misplacement of the receiver in the monitor survey. In the following, we continue to call “wiggles” the recording 
for a single detector position as a function of time in each shot-gather, and we call “traces” the wiggles selected 

Figure 1. Experimental setup and photos of the equipment. (a) Function generator showing the parameters of the source 
pulse (b) oscilloscope showing an example of a recorded wiggle. The red spot on the model is the location of the laser 
receiver, which is moved vertically in controlled increments to generate wiggles at different locations, which are combined 
into the final shot record.
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to compose the baseline and monitor surveys. Each trace is composed of 
NS = 1,251 samples. Thus, our (x, t)-space is composed of Nw ⋅ Ns = 25,020 
data-points.

2.1. Error Statistics

To rigorously compare the monitor and baseline survey we need to know 
how the errors are statistically distributed in the two data-sets, that is, the 
error covariance matrix. Computing the rank of such a large (Nw ⋅ Ns) × (Nw 
⋅ Ns) matrix could be intractable. To avoid this, we estimate the covariance 
matrix from the data themselves with the following assumptions. First, we 
do not consider inter-trace correlation, so our model of the covariance matrix 
is block-diagonal, one block for each trace. Note that this assumption means 
that near-by traces are not correlated, which could be un-realistic under some 
scenarios, for example, weather conditions, acquisition systems and so on. 
Second, we assume the same error statistics for the baseline and monitor 
surveys. Again, this assumption could be partially false for, for example, 
surveys acquired with a large (10s of years) time-gap. However, under our 
assumptions, we can estimate a tractable error covariance matrix 𝐴𝐴 𝐂𝐂∗

𝐞𝐞,𝐢𝐢𝐢𝐢 which 
can be decomposed following the approach developed in Malinverno and 
Briggs (2004), with an adequate correlation model (Kolb & Lekić, 2014) (see 
Table 1 for variables definition).

Given the nature of our data, that is, band-limited waveforms, our covari-
ance matrices are semi-positive definite Toeplitz matrices and they can be 
decomposed as:

𝐂𝐂∗
𝐞𝐞,𝐢𝐢𝐢𝐢 = 𝐒𝐒𝐒𝐒𝐒𝐒 (4)

where:

� =

⎛

⎜

⎜

⎜

⎜
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⎜

⎜

⎜

⎝

�1,1 0 0 … 0

0 �2,1 0 … 0

0 0 �3,1 … 0

⋮ ⋮ ⋮ ⋮ ⋮

0 0 0 … ���,��

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

 (5)

represents the diagonal matrix containing the standard deviation of each data 
point bij in the baseline (Malinverno & Briggs, 2004).

With the assumption of independent traces, the correlation matrix R can be 
represented as a block-diagonal matrix with Nw blocks, each of dimension: 
Ns × Ns. The block Rj represents the error correlation within the jth trace 
and can be estimated from the data (Piana Agostinetti & Malinverno, 2018; 
Piana Agostinetti & Martini, 2019). However, such data-derived correlation 

matrices Rj are often not positive definite and need to be approximated, for example, with the singular value 
decomposition, to use them for estimating the covariance matrix and computing the likelihood L(mcand). In this 
study, we make use of a correlation model that results in positive definite matrices and guarantees stable matrix 
inversion (Kolb & Lekić, 2014). Thus, our blocks Rj assume the form:

𝐑𝐑𝑗𝑗 = 𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑗𝑗 = 𝑒𝑒−𝜆𝜆𝑗𝑗 |𝑡𝑡𝑖𝑖−𝑡𝑡𝑖𝑖|cos(𝜆𝜆𝑗𝑗𝜔𝜔𝑗𝑗|𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑖𝑖|) (6)

Figure 2. Example of seismic surveys: (a) Baseline survey using all wiggles 
generated with air/Plexiglas interface. (b) Monitor survey. Same wiggles as 
in (a), but wiggles from 15 to 25 have been replaced with the wiggles from 
19 to 29, same interface (simulating misplaced receivers); wiggles from 60 
to 89 have been replaced with wiggles recorded in the same position but with 
a different interface (water/Plexiglas, simulating a change in the physical 
properties of the reservoir). (c) Squared differences of the two survey, 
computed for each sample separately. Notably the largest values are associated 
with “misplaced receivers.” See Section 4.1 for the details of this experiment.
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where tk and ti are the time of the bkj and bij samples, respectively, while λj and ωj are estimated from the data in 
the jth trace. In Figure 3, we illustrate the computation of σij, λj and ωj. In Figure 3a, we show how we estimate 
the standard deviation of each point in each trace. For the jth trace (red), we consider all traces between j − 5 
and j + 5 and we compute a stack of these traces (Figure 3b). From the stack, we compute a residual for each 
trace considered (Figure 3c) and the residuals are autocorrelated. The autocorrelation functions are stacked to 
obtain an average autocorrelation (orange line in Figure 3d). This function is used to estimate λj and ωj (green line 
in Figure 3d), through a 2-parameter grid search. Our model for the autocorrelation function fits the empirical 
function well before 10 μs and somewhat over-estimates sample correlation at longer periods, thus it should be 
considered a conservative model.

3. Exploration of the Data-Space Through Trans-Dimensional Sampling: 
Methodology
Exploring the data space of 4D seismics implies the separation of multiple sources for the “4D signal” (i.e., the 
signal arising when monitor and baseline surveys differ). Here we consider a simplified case using three signal 
sources: ambient random noise (noise, hereinafter), sensor misplacement (perturbation) and physical changes in 
the reservoir (target signal). With perfect survey repetition (no sensor misplacement) and no change in the reser-
voir, the unique source of 4D signal is the noise. Assuming an empirically estimated noise model, we can define 
our working hypothesis: in the case of a unique source of 4D signal from the noise, the fit of the monitor survey 
with respect to the baseline survey should close to the number of data-points Nw × Ns, where the fit is statistically 
represented by:

𝜙𝜙∗ = (𝐞𝐞𝐓𝐓𝐢𝐢𝐢𝐢 (2 × 𝐂𝐂∗
𝐞𝐞,𝐢𝐢𝐢𝐢)

−1 𝐞𝐞𝐢𝐢𝐢𝐢), (7)

which is used to compute the likelihood of the monitoring to the baseline survey:

�∗ =
��
∏

�=1

1

[(2�)��
|2 × 𝐂𝐂∗

𝐞𝐞,𝐢𝐢𝐢𝐢|]
1∕2

exp
(

−1
2
�
)

, (8)

Variables Description

Nw Number of traces in the survey

Ns Number of samples per trace

i, k Indices for samples

j Index for a trace

xij Space (xi) and time (xj) position of the ith point for the jth trace

bij Amplitude of baseline survey at the ith point for the jth trace

mij Amplitude of monitor survey at the ith point for the jth trace

eij = (bij − mij) Sample-wise difference between baseline and monitor surveys (at the ith point for the jth trace)

Terms Description

Data

Shot-gather Original data from the laboratory, one for each experimental set-up

Wiggle One recording (in time) at a fixed position within one shot-gather

Survey Input data for the algorithm: new shot-gather composed of selected wiggles

Trace One recording of the survey

4D signal Differences in the monitoring and baseline surveys

Sources of 4D signal

Target signal Changes in reservoir properties

Noise Ambient random noise

Perturbation Sensor misplacement

Table 1 
Description of Variables and Terminology
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and we assume Gaussian distributed noise with the error model defined in 
Section 2.1. Here, the covariance matrix 𝐴𝐴 𝐂𝐂∗

𝐞𝐞,𝐢𝐢𝐢𝐢 is directly estimated from the 
data through their autocorrelation and their standard deviation. Here, we as-
sume that the baseline and monitoring surveys have the same noise charac-
teristics, however Equation 7 can be easily modified to account for different 
noise levels. It is interesting to note that the likelihood computation is what 
we need to advance our McMC sampling, following Equation 3.

When there signals in the 4D data caused by different sources, we can adopt 
a Hierarchical Bayes approach to define a different configuration for the co-
variance matrix so that the new covariance matrix will again closely fit our 
error model and the working hypothesis defined by Equation 8. As detailed 
in Bodin, Sambridge, Rawlinson, and Arroucau (2012), modifications to the 
covariance matrix obtained through a Hierarchical Bayes algorithm not only 
represent improved estimates of the data uncertainties, but also include any 
additional source of uncertainty arising from, for example, un-realistic mod-
eling or, as in our case, incorrect assumptions. In fact, the likelihood function 
above does represent the differences in the two surveys in case of noise only 
(our assumption), and the covariance matrix needs to be modified appropri-
ately when this hypothesis is violated. In the case of sensor mis-placement 
(i.e., when errors occur in the geometry of the monitor survey), the modifica-
tion of the covariance matrix should be the same for all the points belonging 
to the misplaced traces. Conversely, when changes in the reservoir occur, the 
covariance matrix needs to be modified only for those seismic phases gener-
ated at the top of the reservoir for some consecutive traces (in our simplified 
data, from the top and the bottom in field measurements). Summarizing, we 
will try to define a different structure for the covariance matrix so that the 
modified covariance matrix will approximate our error model. In this sec-
tion, we first introduce the concept of partitions of the covariance matrix 
and how to obtain them. Then, we illustrate what a model that represents 
such partitions looks like, expressing it as a vector of parameters. In the next 
subsection, we describe the a-priori probability distributions of our parame-
ters. These distributions are required in our Bayesian approach. Finally, we 
present the details of our “recipe” to update the McMC sampling, that is, how 
to choose a new candidate model from the current one.

3.1. Partition of the Error Covariance Matrix

Here we define a new structure of the covariance matrix as an unambiguous 
correspondence between a partition of the data and a partition of the covari-
ance matrix, so that separating regions of the data space separates distortions 
in the covariance. Given the properties of the covariance matrix and assign-
ing a relevant weight to each sampled point (x,t), we can create a modified 
covariance matrix such as

𝐂𝐂𝐞𝐞,𝐢𝐢𝐢𝐢(𝐦𝐦) = 𝐖𝐖(𝐦𝐦) × 2 × 𝐂𝐂∗
𝐞𝐞,𝐢𝐢𝐢𝐢 ×𝐖𝐖(𝐦𝐦) (9)

where

𝐖𝐖𝐢𝐢𝐢𝐢(𝐦𝐦) = 10𝑤𝑤𝑖𝑖𝑖𝑖 (𝐦𝐦), (10)

and wij is a weight associated to sample point (x,t), derived by the model sam-
pled during the McMC process. Note that our assumptions on the original 
covariance matrix (block-diagonal matrix generated from a modeled corre-
lation function) are not necessary for generating Ce,ij. Thus, the following 
discussion can be generalized to any covariance matrix. The goal now is to 

Figure 3. Example of data analysis for reconstructing the Covariance matrix 
of the error associated to trace 155. (a) Zoom of the traces close to trace 155. 
The yellow box indicates the traces used for estimating the standard deviation 
and the correlation model needed to compose the Covariance matrix. (b) Stack 
and standard deviation for the traces in the yellow box in (a). The orange line 
and the dashed orange lines represent the stack and the standard deviation, 
respectively. Gray lines report the traces in the yellow box in (a). (c) Residuals 
between the stack and each single trace in the yellow box in (a). (d) Auto-
correlation of the residuals in (c). The orange line shows the average of all 
autocorrelation curves (gray lines). The green line displays the best-fitting 
curve, modeled using the function in Equation 6 (Kolb & Lekić, 2014).
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generate sensitive weights for all points, to be able to separate the portion of the monitor survey where the signal 
follows the likelihood in Equation 8, from the signal where other distortions are present. Given the nature of the 
distortions considered here, we can assume that, in the case of the misplacement of a single sensor, all the weights 
associated to the corresponding trace have to be modified by the same amount. This means that, for a given j, 
the weights wij would be the same for one entire block along the diagonal of the covariance matrix, associated to 
the misplaced trace. Conversely, in case of a change in the reservoir, all weights associated to the same seismic 
phase need to be homogeneously modified. Thus, wij would be the same for the same time interval across different 
traces (assuming an almost flat interface generating phases arriving almost at the same time at the receivers, as 
in Figure 2a at about 70 μs). This second kind of distortion strongly impacts the covariance matrix, equivalently 
modifying many blocks along its diagonal. Having homogeneous weights for different portions of the covariance 
matrix, we can create a partition of the covariance matrix based on the corresponding partition of the (x, y)-space 
associated to the relevant distortion. Giving the nature of our algorithm, that is, a new way for elaborating parti-
tions of the data, it could be categorized as a member of the family of clustering algorithms, where the number 
of cluster is not pre-specified by the user or chosen during or after the data analysis, but it is self-defined by the 
data themselves (e.g., Van Mechelen et al., 2018).

3.1.1. Model Parameterization

We model our partition of the covariance matrix as rectangular partitions of the data-space (Figure 4). Our model 
is represented by a variable number of rectangular patches (so-called cells) that cover the data-space, where each 
patch has an associated constant weight. In detail, our model m is composed of a scalar n and five n-vectors, m 
= (n, cn, rn, tn, sn, πn), where n is the number of cells, cn the vector of position of cell centers along the x-axis, rn 
the vector of cell radii along the x-axis, tn the vector of the time-position of the cell centers along the time axis, 
sn the vector of the time-width of the cells, and πn the vector of the cell weights. Keeping the model definition in 
mind, we can assume that the relevant weight for each point in the data space is the sum of the weights of the cells 
that extend to cover that particular point:

𝑤𝑤𝑖𝑖𝑖𝑖(𝐦𝐦) = 0 if 𝑥𝑥𝑖𝑖𝑖𝑖 ∉ 𝐶𝐶𝑚𝑚∀𝑚𝑚 = 1,… , 𝑛𝑛 (11)

Figure 4. Example of a model. The rectangles represent the cell, colored according to their weights. Where cells overlap, 
weights are summed. Each data point (dots) has an associated weight. Data points outside all cells are associated to a weight 
wij = 0.0. Yellow circles represent cell nuclei. To make the figure readable, only one of every 15 data-point is plotted.
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𝑤𝑤𝑖𝑖𝑖𝑖(𝐦𝐦) =
𝑛𝑛
∑

𝑚𝑚=1

𝜋𝜋𝑚𝑚 if 𝑥𝑥𝑖𝑖𝑖𝑖 ∈ 𝐶𝐶𝑚𝑚 (12)

where 𝐴𝐴 𝐴𝐴𝑚𝑚 represents the time-space extension of the cell associated to the mth 
nucleus, that is:

��� ∈ �� ⇔

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�� − 1∕2 ⋅ �� < �� < �� + 1∕2 ⋅ ��,

�� − 1∕2 ⋅ �� < �� < �� + 1∕2 ⋅ ��

 (13)

Having defined the weight for each data point as a function of the partitioning 
model of the data space, we now have most of the elements for sampling the 

model space according to our McMC strategy. In fact, the weights define the likelihood of the model from Equa-
tion 8 substituting Ce,ij for 𝐴𝐴 𝐂𝐂∗

𝐞𝐞,𝐢𝐢𝐢𝐢 , that is:

�(�) = �(�|�) =
��
∏

�=1

1

[(2�)��
|��,��|]

1∕2
exp

(

−1
2
�
)

, (14)

where:

𝜙𝜙 = (𝐞𝐞𝐓𝐓𝐢𝐢𝐢𝐢𝐂𝐂𝐞𝐞,𝐢𝐢𝐢𝐢
−1𝐞𝐞𝐢𝐢𝐢𝐢). (15)

The novelty of our approach resides in the fact that, differently from standard McMC schemes, here the depend-
ence of the likelihood function on the model is solely expressed in the covariance matrix and not in the residuals 
e (e.g., Malinverno, 2002).

Our choice of rectangular cells is optimal for the case of vertical and horizontal anomalies, because the trans-D 
sampler can easily mimic this kind of distortions with a limited number of cells. However, all models sampled 
from the PPD will have vertical and horizontal boundaries, thus generating a somewhat “blocky” PPD. For 
more complex, that is, dipping, anomalies, more general functions such as anisotropic Gaussian kernels (Belhadj 
et al., 2018) can be adopted.

3.2. Priors

To make Bayesian inferences about the data partitions we define appropriate prior probability distributions on the 
model parameters. We make use of uniform probability distributions between minimum and maximum values for 
all investigated parameters. Minimum and maximum values are reported in Table 2. Uniform priors have several 
advantages from a computational point of view, and keep the number of pieces of prior information to a minimum 
(two values per parameter). We do not impose any constraints on the radius and time-window parameters for cell 
centers approaching the boundary of the (x,t) space, that is, some cells could span outside the (x,t) space (this is 
the reason why some cells seem to have their centers not exactly in the middle of the cells in Figure 4). While this 
assumption can introduce some combinations of parameters with very limited impact on the likelihood function 
(e.g., when cm is close to one or close to NW and rm is small), the parsimonious behavior of our trans-D approach 
guarantees that useless cells are removed from the model at some point, thus avoiding keeping too many cells.

3.3. Candidate Selection

We now need to define how to progress in our McMC sampling, that is, how to propose a new candidate model 
to be compared to the current one, the so-called recipe. Defining an efficient recipe, in terms of convergence to 
the global maximum of the likelihood function and ability to explore a (potentially) multi-modal distribution, is 
fundamental for keeping the required computational resources reasonable.

Model parameter Minimum Maximum

Number of cells, n 1 200

Cell center along x-axis, cn 1 20

Cell radius, rn 1 10

Cell center along y-axis, tn 1 1251

Cell time-window, sn 1 625

Weight, πn 0.0 1.0

Table 2 
Uniform Prior Distributions of Model Parameters in the m Vector
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Our recipe comprises seven moves, each of which represents a different way of perturbing the current model. 
During the definition of the candidate model only one of the moves is performed. Moves are selected with differ-
ent probability. In detail, we define the following moves:

1.  perturb the time-position tn of a randomly picked cell nucleus (this move has a probability of 0.15 to be 
selected);

2.  perturb the space-position cn of a randomly picked cell nucleus (0.15);
3.  perturb the time-extension sn of a randomly picked cell nucleus (0.15);
4.  perturb the space-extension rn of a randomly picked cell nucleus (0.15);
5.  perturb the weight πn of a randomly picked cell (0.2);
6.  birth of a new cell: one cell is addded to the model (0.1);
7.  death of a cell: one cell is removed from the model (0.1).

Perturbation of the parameters in moves [1]–[5] are made according to the scheme in Appendix A in Piana Agos-
tinetti and Malinverno (2010). Following this scheme, the normal proposal distributions for sampling the uniform 
priors have the following variances 𝐴𝐴 𝐴𝐴𝑖𝑖

2 : 𝐴𝐴 𝐴𝐴1
2 = 𝐴𝐴3

2 = 8 × 10−3 for moves [1] and [3]; 𝐴𝐴 𝐴𝐴2
2 = 𝐴𝐴4

2 = 0.0025 for moves 
[2] and [4]; 𝐴𝐴 𝐴𝐴5

2 = 10−6 for move [5]. Moves [6] and [7] are called trans-dimensional moves because they imply 
the changing of the number of variables associated to the candidate model with respect to the current model. Such 
moves are defined as in Appendix B in Piana Agostinetti and Malinverno (2010), so that the determinant of their 
Jacobian matrix is equal to 1. We follow the approach developed in Mosegaard and Tarantola (1995) for moves 
[6] and [7]. Thus, we make use of a sampler that walks across the prior distributions (the so-called sampling from 
the priors approach), and we accept or reject the candidate model with the probability in Equation 3. It is worth 
noting that sampling from the priors can be quite inefficient if the data contain a lot of information about the 
investigated parameters, and thus the PPD likely differs from the prior probability distribution. On the contrary, if 
there is limited information contained in the data, sampling from the priors is a convenient sampling strategy, as it 
removes the need to define a proposal distribution (as in, e.g., Bodin, Sambridge, Rawlinson, & Arroucau, 2012).

4. Results
4.1. Simple Cases: Misplaced Sensors or Changes in the Physical Properties of the Rocks

In this section, we consider three simple tests. As a first illustration of the algorithm, we construct a monitor sur-
vey which mimics the mis-placement of some sensors (Figure 5). The baseline survey is composed of 20 traces 
(Wiggle numbers: 5, 10, 15, …, 100) from the first experimental set-up (Plexiglas/air). For the monitor survey, 
we use the same traces as in a copy of the baseline survey, and substitute five traces (Wiggle numbers: 50, 55, …, 
70) with shifted traces (Wiggle numbers: 54, 59, 64,…, 74, all positions have been shifted by the same amount) 
from the same Plexiglas's/air experimental set-up. In this way, the amplitude of the arrivals do not have relevant 
changes, but we introduce a temporal shift. It is worth noting that the number of traces used, the number of shifted 
traces, and the shift amplitude have been selected to keep a reasonable number of traces in the inversion (20 wig-
gles out of 100 available) while having enough space to introduce a significant shift in the traces (four wiggles). 
The results are obtained by running 5 parallel McMC samplings. Each chain is composed of 2 × 106 models, half 
of which are discarded as part of the burn-in phase (Somogyvari & Reich, 2019). For each chain, we used 20 
CPUs on a Linux cluster for about 17 hr. Each chain has a “Master node,” which runs the McMC sampling, sends 
candidate models to “Slave nodes” and performs 1/20 of the Likelihood computations (i.e., one trace), and 19 
“Slave nodes” which perform the remaining Likelihood computations (i.e., 19 traces). The full computation time 
was about 5 × 20 × 17.5 = 1,750 core-hours. Computation time is almost constant across all tests presented in this 
study, due to the same number of traces and the limited number of rectangular cells used by the trans-D sampler.

In Figure 5, we show the most relevant information extracted from the PPD, together with the monitor and base-
line surveys. The misplaced traces in the monitor survey are marked (yellow box in Figure 5b). For each point 
in the discrete (x, t)-space, we compute the 1D marginal PPD of wij and plot its mean posterior value (Figure 5c) 
and standard deviation (std, Figure 5d). As a rule of thumb, high values of the mean posterior wij indicate regions 
where the baseline and monitor surveys differ the most. Low and high values of the std differentiate well- and 
less-constrained regions, respectively. Our results illustrate how the algorithm works in this simple case. Due to 
the kind of distortion used, that is, misplaced sensors, we should attribute almost the same weight to the entire set 
of misplaced traces. The algorithm accomplishes this task using a limited number of rectangular cells (about 20 
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Figure 5. Results for a simple case: misplacement of receivers. (a) Baseline survey. The gray area denotes where the signal is absent. (b) Monitor survey. See 
Section 4.1 for details on how the monitor survey is created. (c) Mean posterior weight wij associated to each data point (ith sample on the jth trace). (d) Posterior 
standard deviation of wij. The yellow box indicates the wiggles that changed between the Baseline and Monitor surveys.
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cells, see Figure S1), confined in the vertical area of misplaced traces. The std also displays the same pattern with 
low values indicating a robust result. Due to the realistic nature of our test (traces obtained in laboratory and not 
synthetic traces), the results are not “perfect” and there are some anomalies (higher std for surface arrivals and a 
vertical stripe in the std plot within the misplaced traces) due to complexity in the experimental set-up (hardware 
noise).

The performance of the algorithm (Figure S1) highlights some key-aspects of the sampling. First, we are not 
overfitting the data because the number of cells in the sampled models is limited, and thus so is the number of 
inverted parameters. The acceptance probability for trans-D moves is very low, so we need long chain (>1 million 
of models) to guarantee the necessary exploration of the data-space. However, after 1 million models, the number 
of cells used is almost stable between 15 and 30, but not constant, that is, chains are still sampling models with 
variable number of dimensions but within a limited range of values.

Our second test is designed to complement the previous one and considers a monitor survey where only changes 
in the reservoir state are present (Figure 6). In this case, we make use of the same baseline as in the previous test, 
but in the monitor survey we substitute five traces (Wiggle number: 50 to 70) with the traces recorded at the same 
position but for the Plexiglas/water experimental set-up. Both posterior mean and std of wij share the same struc-
ture, with a vertical block and a pinched horizontal structure. The main difference in the results, with respect to 
the previous test, is the presence of a dark (large weights) spot in the location of the change in the reservoir-state, 
that is, limited to the arrivals from the top of the reservoir and not including the surface waves (Figure 6c). Also, 
while the results contain a vertical stripe in the mean posterior wij in the region of the reservoir changes, as in 
Figure 5c, the std along the same stripe is very large. Horizontally, the rectangular cells seem to be able to move 
slightly and the dark region in the mean posterior wij (defining the reservoir changes) propagates across some 
traces, suggesting that our data have a higher vertical than horizontal resolution on reservoir-changes.

The third test considers the presence of both reservoir-changes and receiver misplacement in two separated re-
gions of the (x, t)-space (Figure 7). In this case, while the baseline is kept the same as in previous tests, the mon-
itor survey is composed as follows: for the misplaced sensors, three traces (wiggle numbers 15, 20, and 25) are 
replaced with wiggles from the same experimental set-up but with a four wiggle shift (so replaced with wiggle 
numbers: 19, 24, and 29); for the reservoir-changes, we substitute seven traces from 60 to 90, with the wiggles re-
corded in the same position but with the second experimental set-up. Note that the number of traces representing 
the two anomalies is different from the previous tests, to keep them separated and to be able to split it into two 
regions (see next section). Further analysis are needed to investigate the effect of varying the number of traces 
composing each anomaly on the results.

The results clearly show that, in the case of not-interacting anomalies, the two kinds of distortions can be sepa-
rately identified (Figure 7c). Both anomalies can be seen in the mean posterior of wij with the same characteristics 
as in the previous tests. In the analysis of the std there is a clear difference, with respect to the previous tests, in 
the bright spot defining the reservoir-change, but also in the value (lower here) of the vertical stripe defining the 
misplaced sensors. However, such changes could be attributed to the different numbers of traces composing the 
anomalies (Figure 7d), indicating that the std is more sensitive to the lateral extension of the anomaly than to 
the mean posterior value. The bright spot in the std close to the position of the reservoir-change resembles the 
“uncertainty loops” found in Galetti et al. (2015) and highlights the uncertainty in the position of the rectangular 
patches.

4.2. Complex Case: Simultaneous Retrieval of Misplaced Sensor and Changes in the Physical Properties 
of the Rocks

The most interesting case represents the co-existence of both misplaced receivers and reservoir-changes in the 
same region of (x, t)-space. To test this, the baseline is kept the same as in previous tests. The monitor survey is 
composed of the baseline traces with substitutions in three different and contiguous regions. In the first region, 
called “A,” six traces are substituted by shifted wiggles from the same experimental set-up (i.e., mimic mis-
placement receivers only: wiggles numbers 30, 35, …, 55 are replaced with 34, 39, …, 59). Also in the second 
region “B” we have misplaced traces (three traces, wiggles numbers 60, 65, and 70 replaced with 64, 69, and 
74) but from the second experimental set-up, to simultaneously reproduce both misplaced receivers and reser-
voir-changes. Finally in the third region ”C,” we consider reservoir changes only. Four traces (wiggles numbers 
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Figure 6. Results for a simple case: Changes in the physical properties of the reservoir. See Figure 5 for details.
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Figure 7. Results for a complex case: Misplacement of receivers and changes in the physical properties of the reservoir, separated. See Figure 5 for details.
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75 to 90) are replaced with the wiggles recorded in the same position, but from the second experimental set-up. 
The minimum region dimension is three traces, but the “misplaced sensors” anomaly covers nine traces, while 
the “reservoir-changes” anomaly covers seven traces (Figures 8 and 9).

As expected, the outcomes from a complex case are more challenging to describe. The mean posterior of wij still 
clearly defines the reservoir changes as a dark (large values) elongated region that covers exactly the expected 
traces (Figures 8 and 9b). However, recognizing the boundaries between regions “A” and “B,” and “B” and “C” is 
not easy in the mean posterior. In fact, the value of the mean posterior of wij does not change significantly through 
regions “A” to “C” away the reservoir-changes zone, with fluctuation given by experimental noise and lateral 
smearing of the reservoir-changes anomaly. It is hard to recognize which traces have only been shifted (from the 
region between traces number 1 to 5 where the two surveys share the same wiggles) or which traces are both 
shifted and have a reservoir-change. Knowing the monitor survey composition, we can see that more traces than 
the ones composing region “C” have been locally perturbed, from the occurrence of the high-weights at localized 
times (dark region), but we cannot really discriminate which of the traces that also have the reservoir-change 
signature have been displaced.

The results for the posterior std of the wij furnish some additional insights into the separation of the three regions. 
In fact, comparing both mean and std shows that the posterior std is generally uniform, but very large in the region 
where we only have reservoir changes (as seen also in Figure 6). The posterior std is lower and more variable for 
the region where we have misplaced traces (both with and without simultaneous reservoir changes). In practise, 
only the simultaneous analysis of both mean and std posterior for wij can somewhat unequivocally define the 
three regions.

Finally, the posterior std is very low in the core of the reservoir-changes anomaly, as found in the previous test 
(compare to Figure 8d), likely caused by the large lateral extent of the anomaly (quite large, seven traces [one 
third of the total]). Moreover, we observe that the area of the std where we only have misplaced sensors is not 
uniform as expected, due to the interaction with the reservoir anomaly (anomaly lateral smearing). However, the 
std is large where the two anomalies interact.

5. Discussion
We propose a new methodology for exploring 4D seismic data and detecting potential noise sources other than 
random ambient noise, and relevant signals from the alteration of a reservoir. The algorithm has been proven to 
correctly perform in isolating simple case scenarios (one noise source or one reservoir change, or both present in 
two different portions of the 4D seismic data). In such cases, our algorithm identifies the different anomalies and 
their position, and it is able to characterize them in terms of both the amplitude of the posterior weights and their 
standard deviation. In particular, anomalous signals related to a misplacement of the sensors is identified as a 
broad portion of the monitoring survey where the posterior weights are uniformly increased by a limited amount, 
and their standard deviation is uniform too. Conversely, in the portion of the monitoring survey where the anoma-
ly is related to a reservoir change, the posterior weights are extremely high in a localized 2D patch. Their standard 
deviation also displays a peculiar pattern, with very low values in the inner portion of the anomaly and very high 
values along its border. We suggest that the rapid change in the standard deviation is the key-element that can 
define the shape of the anomaly related to reservoir changes.

In more complex cases, that is, where both noise sources and reservoir signals coexist, the interpretation of the 
results is more challenging. Dis-aggregating co-existing changes/mis-positioning is not easy (Figure 9), but we 
observe that reservoir changes are always the most striking and isolated feature. Also in this case, the analysis of 
the standard deviation of the weights is a critical point for making inferences. In fact, even here the sharp change 
in the standard deviation defines the border of the anomaly given by reservoir changes. Moreover, the standard 
deviation also helps to define the area where the mis-placed sensors are present (these regions have a lower stand-
ard deviation compared to area where only reservoir changes are present). It is worth noting that the estimation of 
the standard deviation of the weights is a brand new outcome of our algorithm, given by our statistical approach 
to data-space exploration.

Our results display to some extent the boundaries of our rectangular patches (i.e., they seem to have a block-struc-
ture). Such blockiness indicates the resolution limits of our model to some extent, and are related to our choice 
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Figure 8. Results for a complex case: Misplacement of receivers and changes in the physical properties of the reservoir, overlapping. See Figure 5 for details. Yellow 
boxes indicate changes between monitoring and baseline surveys in Figure 5 have been removed for improving readability.
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Figure 9. Details of the results for a complex case: Misplacement of receivers overlapping changes in the physical properties 
of the reservoir. (a) Monitor survey. The three letters indicate different area with [A] misplaced receivers [B] misplaced 
sensors and changes in the reservoir, and [C] only changes in reservoir. (b) Mean posterior weight Wij associated with each 
data point (ith sample at the jth trace). (c) Posterior standard deviation of Wij. See Section 4.2 for details.
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of rectangular partitions. In trans-D algorithms, the effects of the parameterization on the retrieved results is an 
on-going research field (e.g., Gao & Lekic, 2018). Here, we suggest that other choices of partition shape could 
be more efficient on bigger-scale data, such as the anisotropic kernels, proposed in Belhadj et al. (2018), which 
could more easily reproduce the true shape of anomalies in field measurements. We anticipate that the choice 
of the parametrization is strictly related to the data-space that needs to be explored. Preparing different kinds 
of geophysical data-sets (see below) will probably need completely different parameterizations (e.g., a set of 
changepoints as in Poggiali et al., 2019). For example, a parameterization of 1D Voronoi cells (or changepoints) 
can be useful to create separators in data represented by time-series of observed quantities.

Our approach to 4D seismic data analysis could be used to support more complex data workflows adopted in 
energy industries. In Figure 10, we compare the results of our complex case, with a standard analytic indicator 
(NRMS) commonly used in data-workflow for 4D seismics. Comparing Figures  10a and  10b, it seems that 
mis-positioning is the most impactful issue in terms of likelihood between baseline and monitoring surveys, but it 
is easily separated from reservoir changes, which have the strongest Wij in our case. As seen in Figure 10c, NRMS 
is clearly higher in the area of sensor misplacement. Such an anomaly masks the signal coming from the “altered 
conditions in the reservoir.” In fact such a signal can be seen as a small amplitude anomaly (i.e., around 40% at 
trace 16–19, still higher NRMS with respect to trace 1–5 where no anomaly is present at all), but it is totally ob-
scured between traces 11 and 15, where the dominant effect is the sensor misplacement. Our approach could be 
used as a support to standard data-workflow and could save time during subsequent petro-physical modeling of 
the reservoir (an extremely time-consuming task). Because it makes no preliminary assumption on the reservoir 
geometry, our approach does not risk bringing an initial bias into the results and thus could furnish more reliable 
information on the state of the geo-resources. As explained in Kragh and Christie (2002), the main technical risk 
when acquiring time-lapse seismic data is that production-related effects are obscured by differences incurred 
by a lack of repeatability of the seismic acquisition. Our approach can be used to separate the two effects. In 
fact, misplaced traces display a different signature in our mean posterior plots, with respect to reservoir-changes. 

Figure 10. (a) Mean posterior weight Wij associated with each data point (ith sample at the jth trace). Posterior standard deviation of Wij is shown as red contour lines. 
See Section 4.2 for details. (b) Same as in Figure 2c, point-wise L2 difference between monitoring and baseline surveys. (c) NRMS for each trace of the monitoring 
survey with respect to baseline survey. NRMS computed as in Kragh and Christie (2002).
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Moreover, the computation of the posterior std can be used to find the most promising areas where production-re-
lated effects are statistically supported by the data.

Our novel methodology can be re-adapted to explore different kind of geophysical datasets. In seismology, raw 
data are generally not used as input data to geophysical inverse problems and data preparation often occurs sim-
ply based on expert-opinion. This is the case, for example, of the preparation of double-difference (DD) seismic 
data, to improve our knowledge of the seismic velocity field in the subsurface (e.g., Qian et al., 2018). DD data 
are derived through the selection of paired seismic events based on some kind of distance criteria (in space and, 
sometimes, in time, Caló et al., 2011). Being able to prepare DD data in a more objective way could guarantee 
more realistic results. The preparation of DD data using a trans-dimensional approach has been presented in Pi-
ana Agostinetti and Sgattoni (2021). Location of seismic events routinely needs seismic data preparation, where 
arrival times of P- and S- waves recorded by distant (from the hypothesized seismic event) seismic stations are 
often removed from the location workflow (or their importance is downweighted). In this case, our approach can 
be used in conjunction with standard location processes, so that data-space is more rigorously explored (using a 
trans-dimensional algorithm) during model-space investigation.

6. Conclusions
In this study, we presented a new methodology for the exploration of the data-space. We followed a trans-D sam-
pling approach to recreate and validate data-structures in the form of partitions of the covariance matrix. We ap-
plied the new methodology to 4D seismic data acquired for monitoring the sub-surface. Our results indicate that:

1.  the trans-D approach can be applied to data-space exploration for defining unknown data-structures and sep-
arating data-volumes that are coherent with a-priori physical hypotheses;

2.  the analysis of the full PPD of the data-structures can be used for classifying different sources of 4D signal, 
like repeatability noise and 4D signal from the geo-resources;

3.  In comparison with standard measures of repeatability like NRMS, our approach is less biased by the presence 
of different sources if 4D signal in the same data-volume and can be used to efficiently separate such sources.

In the future, we will further develop our methodology to include different shapes and orientation of the parti-
tions (i.e., not rectangular patches, also called anisotropic kernels, as in Belhadj et al., 2018) for increasing the 
efficiency of the McMC sampling; and to consider 3D partitions and the comparison of two entire 3D volumes.

Data Availability Statement
Raw data (i.e., waveforms used to compose baseline and monitoring surveys) has been archived on Mendeley 
Data Repository (Piana Agostinetti et al., 2021) at https://data.mendeley.com/datasets/ppdmhxf3j3/1. The Gener-
ic Mapping Tools software was used for plotting the figures of this manuscript (Wessel & Smith, 1998).

References
Arbelaitz, O., Gurrutxaga, I., Muguerza, J., Paorez, J. M., & Perona, I. (2013). An extensive comparative study of cluster validity indices. Pattern 

Recognition, 46(1), 243–256. https://doi.org/10.1016/j.patcog.2012.07.021
Bayes, T. (1763). An essay towards solving a problem in the doctrine of chances. Philosophical Transactions of the Royal Society of London, 53, 

370–418.
Belhadj, J., Romary, T., Gesret, A., Noble, M., & Figliuzzi, B. (2018). New parameterizations for Bayesian seismic tomography. Inverse Prob-

lems, 34(6), 065007. https://doi.org/10.1088/1361-6420/aabce7
Birnie, C., Chambers, K., Angus, D., & Stork, A. L. (2020). On the importance of benchmarking algorithms under realistic noise conditions. 

Geophysical Journal International, 221(1), 504–520. https://doi.org/10.1093/gji/ggaa025
Bodin, T., Sambridge, M., Rawlinson, N., & Arroucau, P. (2012). Transdimensional tomography with unknown data noise. Geophysical Journal 

International https://doi.org/10.1111/j.1365-246X.2012.05414
Bodin, T., Sambridge, M., Tkalcic, H., Arroucau, P., Gallagher, K., & Rawlinson, N. (2012). Transdimensional inversion of receiver functions and 

surface wave dispersion. Journal of Geophysical Research, 117(B02301). https://doi.org/10.1029/2011JB008560
Caló, M., Dorbath, C., Cornet, F., & Cuenot, N. (2011). Large-scale aseismic motion identified through 4-D P-wave tomography. Geophysical 

Journal International, 186(3), 1295–1314. https://doi.org/10.1111/j.1365-246X.2011.05108.x
Cheng, A., Huang, L., & Rutledge, J. (2010). Time-lapse VSP data processing for monitoring CO2 injection. The Leading Edge, 29(2).
Davis, T. L., Terell, M. J., Benson, R. D., Cardona, R., Kendall, R. R., & Winarsky, R. (2003). Multicomponent seismic characterization and 

monitoring of the CO2 flood at Weyburn field, Saskatchewan. The Leading Edge, 22(7), 606–700.

Acknowledgments
The authors are thankful to the Associate 
Editor, Erdinc Saygin and an anonymous 
reviewer for constructive comments on 
the original version of the manuscript. 
NPA would like to thank Daniele Melini 
at INGV for assistance with the linux 
cluster. NPA publications are printed 
with the financial support of the Austrian 
Science Fund (FWF), project number: 
M2218-N29. We are also grateful for 
support at Memorial provided by Chevron 
and with grants from the Natural Sciences 
and Engineering Research Council 
of Canada Industrial Research Chair 
Program and InnovateNL (IRCPJ 491051-
14). We would also like to thank Kamal 
Moravej for his help and instructions at 
the lab in order to collect the data used in 
this study.

https://data.mendeley.com/datasets/ppdmhxf3j3/1
https://doi.org/10.1016/j.patcog.2012.07.021
https://doi.org/10.1088/1361-6420/aabce7
https://doi.org/10.1093/gji/ggaa025
https://doi.org/10.1111/j.1365-246X.2012.05414
https://doi.org/10.1029/2011JB008560
https://doi.org/10.1111/j.1365-246X.2011.05108.x


Journal of Geophysical Research: Solid Earth

PIANA AGOSTINETTI ET AL.

10.1029/2021JB022343

21 of 22

Dettmer, J., & Dosso, S. E. (2012). Trans-dimensional matched-field geoacoustic inversion with hierarchical error models and interacting Markov 
chains. Journal of the Acoustical Society of America, 132(4), 2239–2250.

Dramsch, J. S. (2019). Machine learning in 4D seismic data analysis: Deep neural networks in geophysics (Unpublished doctoral dissertation). 
Technical University of Denmark.

Galetti, E., Curtis, A., Baptie, B., Jenkins, D., & Nicolson, H. (2016). Transdimensional Love-wave tomography of the British Isles and shear-ve-
locity structure of the East Irish Sea Basin from ambient-noise interferometry. Geophysical Journal International, 208(1), 36–58. https://doi.
org/10.1093/gji/ggw286

Galetti, E., Curtis, A., Meles, G. A., & Baptie, B. (2015). Uncertainty loops in travel-time tomography from nonlinear wave physics. Physical 
Review Letters, 114, 148501. https://doi.org/10.1103/PhysRevLett.114.148501

Gao, C., & Lekic, V. (2018). Consequences of parametrization choices in surface wave inversion: Insights from transdimensional Bayesian meth-
ods. Geophysical Journal International, 215(2), 1037–1063. https://doi.org/10.1093/gji/ggy310

Geyer, C. J., & Møller, J. (1994). Simulation procedures and likelihood inference for spatial point processes. Scandinavian Journal of Statistics, 
21, 359–373.

Green, P. J. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika, 82(4), 711–732.
Houck, R. T. (2007). Time-lapse seismic repeatability – How much is enough? The Leading Edge, 26(7).
Huang, W. (2019). Seismic signal recognition by unsupervised machine learning. Geophysical Journal International, 219(2), 1163–1180. https://

doi.org/10.1093/gji/ggz366
Kolb, J. M., & Lekić, V. (2014). Receiver function deconvolution using transdimensional hierarchical Bayesian inference. Geophysical Journal 

International, 197(3), 1719–1735. https://doi.org/10.1093/gji/ggu079
Koster, K., Gabriels, P., Hartung, M., Verbeek, J., Deinum, G., & Staples, R. (2000). Time-lapse seismic surveys in the North Sea and their busi-

ness impact. The Leading Edge, 19(3), 286–293. https://doi.org/10.1190/1.1438594
Kragh, E., & Christie, P. (2002). Seismic repeatability, normalized RMS, and predictability. The Leading Edge, 21(7), 640–647. https://doi.

org/10.1190/1.1497316
Landro, M. (1999). Repeatability issues of 3D VSP data. Geophysics, 64(6).
Lumley, D. (2010). 4D seismic monitoring of CO2 sequestration. The Leading Edge, 29(2). https://doi.org/10.1190/1.3304817
Malinverno, A. (2002). Parsimonious Bayesian Markov chain Monte Carlo inversion in a nonlinear geophysical problem. Geophysical Journal 

International, 151(3), 675–688.
Malinverno, A., & Briggs, V. A. (2004). Expanded uncertainty quantification in inverse problems: Hierarchical Bayes and empirical Bayes. 

Geophysics, 69(4), 1005–1016. https://doi.org/10.1190/1.1778243
Mosegaard, K., & Tarantola, A. (1995). Monte Carlo sampling of solutions to inverse problems. Journal of Geophysical Research, 100(B7), 

12431–12447.
Olivier, G., Chaput, J., & Borchers, B. (2018). Using Supervised Machine Learning to Improve Active Source Signal Retrieval. Seismological 

Research Letters, 89(3), 1023–1029. https://doi.org/10.1785/0220170239
Pevzner, R., Shulakova, V., Kepic, A., & Urosevic, M. (2011). Repeatability analysis of land time-lapse seismic data: CO2 CRC Otway pilot 

project case study. Geophysical Prospecting, 59(1).
Piana Agostinetti, N., Kotsi, M., & Malcolm, A. (2021). Exploration of data space through trans-dimensional sampling: A case study of 4D 

seismics. Mendeley Data. https://doi.org/10.17632/ppdmhxf3j3.1
Piana Agostinetti, N., & Malinverno, A. (2010). Receiver Function inversion by trans-dimensional Monte Carlo sampling. Geophysical Journal 

International, 181. https://doi.org/10.1111/j.1365-246X.2010.04530
Piana Agostinetti, N., & Malinverno, A. (2018). Assessing uncertainties in high-resolution, multi-frequency receiver function inversion: A com-

parison with borehole data. Geophysics, 83(3), KS11–KS22. https://doi.org/10.1190/geo2017-0350.1
Piana Agostinetti, N., & Martini, F. (2019). Sedimentary basins investigation using teleseismic p-wave time delays. Geophysical Prospecting, 

67(6), 1676–1685. https://doi.org/10.1111/1365-2478.12747
Piana Agostinetti, N., & Sgattoni, G. (2021). Exploration of the data space via trans-dimensional sampling: The case study of seismic double 

difference data. Solid Earth.
Poggiali, G., Chiaraluce, L., Di Stefano, R., & Piana Agostinetti, N. (2019). Change-point analysis of VP/VS ratio time-series using a trans-di-

mensional McMC algorithm: Applied to the Alto Tiberina Near Fault Observatory seismic network (Northern Apennines, Italy). Geophysical 
Journal International, 217(2), 1217–1231. https://doi.org/10.1093/gji/ggz078

Porter-Hirsche, J., & Hirsche, K. (1998). Repeatability study of land data acquisition and processing for time lapse seismic. In Seg technical 
program expanded abstracts 1998 (p. 9–11). Retrieved from https://library.seg.org/doi/abs/10.1190/1.1820663

Qian, J., Zhang, H., & Westman, E. (2018). New time-lapse seismic tomographic scheme based on double-difference tomography and its appli-
cation in monitoring temporal velocity variations caused by underground coal mining. Geophysical Journal International, 215(3), 2093–2104. 
https://doi.org/10.1093/gji/ggy404

Roach, L. A. N., White, D. J., & Roberts, B. (2015). Assessment of 4d seismic repeatability and CO2 detection limits using sparse permanent land 
array at the aquistore CO2 storage site. Geophysics, 80(2).

Sabor, K., Jougnot, D., Guerin, R., Steck, B., Henault, J.-M., Apffel, L., & Vautrin, D. (2021). A data mining approach for improved interpreta-
tion of ERT inverted sections using the DBSCAN clustering algorithm. Geophysical Journal International, 225(2), 1304–1318. https://doi.
org/10.1093/gji/ggab023

Sambridge, M., Bodin, T., Gallagher, K., & Tkalcic, H. (2013). Transdimensional inference in the geosciences. Philos Transaction Royal Society 
A, 371, 20110547.

Sambridge, M., Gallagher, K., Jackson, A., & Rickwood, P. (2006). Trans-dimensional inverse problems, model comparison and the evidence. 
Geophysical Journal International, 167(2), 528–542. https://doi.org/10.1111/j.1365-246X.2006.03155.x

Sambridge, M., & Mosegaard, K. (2002). Monte Carlo methods in geophysical inverse problems. Reviews of Geophysics, 40(3), https://doi.
org/10.1029/2000RG000089

Somogyvari, M., & Reich, S. (2019). Convergence tests for transdimensional Markov chains in geoscience imaging. Mathematical Geosciences. 
https://doi.org/10.1007/s11004-019-09811-x

Steininger, G., Dettmer, J., Dosso, J., & Holland, S. (2013). Transdimensional joint inversion of seabed scattering and reflection data. Journal of 
the Acoustical Society of America, 133, 1347–1357.

Tarantola, A. (1987). Inverse problem theory: Methods for data fitting and model parameter estimation. Elsevier Science Publishing Co.
Tarantola, A. (2005). Inverse problem theory and methods for model parameter estimation. SIAM.
Tarantola, A. (2006). Popper, Bayes and the inverse problem. Nature Physics, 2.
Van Mechelen, I., Boulesteix, A.-L., Dangl, R., Dean, N., Guyon, I., Hennig, C., et al. (2018). Benchmarking in cluster analysis: A white paper.

https://doi.org/10.1093/gji/ggw286
https://doi.org/10.1093/gji/ggw286
https://doi.org/10.1103/PhysRevLett.114.148501
https://doi.org/10.1093/gji/ggy310
https://doi.org/10.1093/gji/ggz366
https://doi.org/10.1093/gji/ggz366
https://doi.org/10.1093/gji/ggu079
https://doi.org/10.1190/1.1438594
https://doi.org/10.1190/1.1497316
https://doi.org/10.1190/1.1497316
https://doi.org/10.1190/1.3304817
https://doi.org/10.1190/1.1778243
https://doi.org/10.1785/0220170239
https://doi.org/10.17632/ppdmhxf3j3.1
https://doi.org/10.1111/j.1365-246X.2010.04530
https://doi.org/10.1190/geo2017-0350.1
https://doi.org/10.1111/1365-2478.12747
https://doi.org/10.1093/gji/ggz078
https://library.seg.org/doi/abs/10.1190/1.1820663
https://doi.org/10.1093/gji/ggy404
https://doi.org/10.1093/gji/ggab023
https://doi.org/10.1093/gji/ggab023
https://doi.org/10.1111/j.1365-246X.2006.03155.x
https://doi.org/10.1029/2000RG000089
https://doi.org/10.1029/2000RG000089
https://doi.org/10.1007/s11004-019-09811-x


Journal of Geophysical Research: Solid Earth

PIANA AGOSTINETTI ET AL.

10.1029/2021JB022343

22 of 22

Wessel, P., & Smith, W. H. F. (1998). New, improved version of the generic mapping tools released. EOS Transaction AGU, 79, 579.
Xiang, E., Guo, R., Dosso, S. E., Liu, J., Dong, H., & Ren, Z. (2018). Efficient hierarchical trans-dimensional Bayesian inversion of magnetotel-

luric data. Geophysical Journal International, 213(3), 1751–1767. https://doi.org/10.1093/gji/ggy071
Yang, D., Malcolm, A., Fehler, M., & Huang, L. (2014). Time-lapse walkaway vertical seismic profile monitoring for CO2 injection at the SAC-

ROC enhanced oil recovery field: A case study. Geophysics, 79(2).

https://doi.org/10.1093/gji/ggy071

	Exploration of Data Space Through Trans-Dimensional Sampling: A Case Study of 4D Seismics
	Abstract
	Plain Language Summary
	1. Introduction
	1.1. 4D Seismics: Key-Concepts and Present-Day Challenges
	1.2. Methodological Framework: Bayesian Inference, Markov Chain Monte Carlo and Trans-Dimensional Algorithms

	2. Data
	2.1. Error Statistics

	3. Exploration of the Data-Space Through Trans-Dimensional Sampling: Methodology
	3.1. Partition of the Error Covariance Matrix
	3.1.1. Model Parameterization

	3.2. Priors
	3.3. Candidate Selection

	4. Results
	4.1. Simple Cases: Misplaced Sensors or Changes in the Physical Properties of the Rocks
	4.2. Complex Case: Simultaneous Retrieval of Misplaced Sensor and Changes in the Physical Properties of the Rocks

	5. Discussion
	6. Conclusions
	Data Availability Statement
	References


