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Abstract
We analyze the problem of computing the Banzhaf and Shapley power indices for 
graph restricted voting games, defined in a particular class of graphs, that we called 
line-clique. A line-clique graph is a model of a uni-dimensional political space in 
which voters with the same bliss point are the connected vertices of a clique and then 
other arcs connect nodes of consecutive cliques. The interest to this model comes 
from its correspondence to the spatial voting game: a model that has been proposed 
and used by political analysts to understand nations’ behavior and the political out-
come of the bargaining process within the EU Council. Broadly speaking, the com-
putation of a power index of a graph restricted game is strongly #P-complete, as 
it includes the enumeration of all winning coalitions. Nevertheless, we show that 
in this special class of graph coalitions can be enumerated by dynamic program-
ming, resulting in a pseudo-polynomial algorithm and proving that the problem 
only weakly #P-complete. After implementing our new algorithms and finding that 
they are very fast in practice, we analyze the voting behavior in the EU Council, as 
for this application previous research compiled a large data set concerning nations’ 
political positions and political outcomes. We will test whether voting power has an 
effect on the political outcome, more precisely, whether nations that are favored by 
their weight and position can influence the political outcome to their advantages. 
Using linear regressions, we will see that unrestricted power indices are not capable 
of any predictive property, but graph restricted indices are. The statistic evidence 
shows that the combination of voting weight and network position is a source of 
power that affects the political outcome to the advantage of a country.
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1  Introduction

A voting game is a cooperative game in which a set of voters, or players, having 
different weights, must make a yes-or-no decision on a proposal. The proposal is 
accepted if it is supported by a number of votes at least equal to a fixed majority 
threshold. Voters are endowed with different weights, so their vote can be more 
or less important to approve the proposal. Player’s voting power is its ability to 
influence the approval or the rejection of the issue and it depends on its possi-
bility of forming winning coalition. Every time that the voter can join a loos-
ing coalition and let it win, it expresses an influence to the vote results, and the 
greater is the number of such coalitions, the greater is the player’s power. This is 
the underlying idea behind most voting power indices proposed in the literature, 
the most famous being the Shapley-Shubik index (1954), and the Banzhaf index 
(1965). The calculation of both indices requires the enumeration of all coalitions, 
e.g. all subsets of voters, but they are an exponential numbers and it has been for-
mally proved that this enumeration is NP-complete and #P-complete, Prasad and 
Kelly (1990). Still, the indices can be calculated efficiently using dynamic pro-
gramming, Matsui and Matsui (2001), generating functions, Bilbao et al. (2000), 
or accurately approximated by the multilinear extension, Leech (2003).

The standard definition of power indices assumes that all coalitions will form 
with the same probability, defining what are called the a-priori or unrestricted 
power indices. In these models no assumption is made about voters’ preferences: 
This is an assumption that has been often criticized, see for example Garrett and 
Tsebelis (1999), as there are real applications in which voters’ preferences take 
a strong role in coalition formation. For example in Western Parliaments coali-
tions between left-wing and right-wing parties excluding the central ones are 
hardly seen. Therefore, realistic political analysis should consider that some coa-
litions are more probable than others and the power definition should be modified 
accordingly.

Researchers have addressed unequal coalitions probability by: (i) Restricting the 
family of feasible coalitions, Rodriguez-Veiga et  al. (2016), for example imposing 
that some voters always vote in opposite directions, Alonso-Meijide et al. (2015) and 
Yakuba (2008), or also assuming that voters form a-priori unions before casting their 
votes, Alonso-Meijide et al. (2009), Amer et al. (2002) and Leech and Leech (2006; ii) 
Assuming that some coalitions are more probable than others, for example when voters 
are located in Euclidean political spaces the most likely coalitions are composed of vot-
ers that are close to each other, Benati and Vittucci Marzetti (2013), Passarelli and Barr 
(2007) and Mielcova (2016). One of these models is relevant here: It is the spatial vot-
ing game proposed in Pajala and Widgrèn (2004), for which a large set of empirical data 
has been collected, Thomson et al. (2012; iii) Assuming that voters are embedded in a 
communication graph, in which the vertices represent voters and the edges represent 
communication links. In this family of models a coalition is feasible if and only if the 
coalition induces a connected subgraph. These models have been introduced in Myerson 
(1977) and applied to voting situations in Alonso-Meijide and Fiestras-Janeiro (2006), 
Benati et al. (2015), Chessa and Fragnelli (2011), Fernandez et al. (2002), Skibski et al. 
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(2015) and Álvarez Mozos et al. (2013), where they have been called graph restricted 
games or spectrum games, to emphasize that voters are located on a political spectrum.

In this paper, we consider the computation of Banzhaf and Shapley indices for 
graph restricted voting games, defined to a particular class of graphs that we call 
line-clique graphs. In these graphs, voters are located on consecutive cliques posed 
along a line, as if voters were located in a 0–1 political segment and they could share 
the same political position. The practical interest to these graphs is that they exactly 
describe the spatial voting game proposed in Pajala and Widgrèn (2004) to model 
nations’ positions and the bargaining process of the Council of the European Union. 
This model has been used for empiric political analysis, Badinger et al. (2014), Lein-
aweaver and Thomson (2014) and Schneider et al. (2010), as, based on this model, 
an interesting data set of empirical observations is available, Thomson et al. (2012).

The paper is structured as follows: In the first part of the paper, after defining power 
indices and graphs, we discuss the application of #P-completeness theory to the calcu-
lation of power indices, Matsui and Matsui (2001) and Prasad and Kelly (1990), outlin-
ing that the theory excludes the possibility of algorithms calculating power indices in 
polynomial time. The technical reason is that an index of power must enumerate and 
count how many coalitions have a given property, that is, in how many coalitions a 
player i is a swing voter. Excluding polynomiality means that there is no fast way of 
counting the number of such coalitions. However, the #P-completeness theory sepa-
rates counting problems that are #P-complete in the weak sense from problems that are 
#P-complete in the strong sense, Jerrum et al. (1986) and it has important consequences 
for the algorithm design. Basically, what separates the two classes is the possibility of 
using dynamic programming for an exact counting. If a problem is #P-complete in the 
weak sense, then we can apply dynamic programming principles to devise pseudo-
polynomial algorithms (algorithms that are linear with respect to the size of the input 
data, instead of being log-linear as required by being polynomial), that, even though not 
fully efficient from a theoretical point of view, they are very fast in practice, see Bilbao 
et al. (2000) and Uno (2012). Conversely, strong #P-complete problems exclude even 
the possibility of pseudo-polynomial computation and for those cases, calculating the 
number of coalitions can be done only through simulations, Castro et al. (2009), Castro 
et al. (2017) and Benati et al. (2019). Unfortunately, it has been proved in Benati et al. 
(2015) that indices of graph restricted voting games are strong #P-complete problems. 
However, in that paper it has also been found that counting coalitions can be weak 
#P-complete if the graph has a peculiar structure. So, at present some pseudo-polyno-
mial algorithms were proposed for same specific cases: For example, when the graph is 
a tree, Benati et al. (2015), or has bounded tree-width, see Skibski et al. (2015). A fur-
ther graph class admitting pseudo-polynomial algorithms is introduced here: the line-
clique graphs1.

1  The difference between strong and weak #P-complete problems can be understood as similar to the 
difference between strong and weak NP-complete problems. The theory of NP-completeness refers to 
problems expressed in existential form. Is there at least one solution satisfying a given property? Two 
examples are: Is there at least one Hamiltonian path in a graph?, or: Is there at least one coalition for 
which i is a swing voter? The former is strongly NP-complete, the latter is weakly NP-complete, as it 
can reduced to knapsack. The former can be solved by heuristic, the latter can be solved by dynamic 
programming.
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In the second part, after having coded the dynamic programming as Fortran/R 
subroutines, the power indices are applied to the EU negotiations data set described 
in Thomson et  al. (2012). So, power distributions among European countries can 
be analyzed and different indices compared. We will see that unrestricted indices, 
that is, indices not considering spatial location, can be empirically interpreted as an 
average of those graph restricted, as theoretically advanced in Passarelli and Barr 
(2007). Then, we will see that, when applied to decision processes, graph restricted 
indices are better predictors of the outcomes of the negotiation processes, perhaps 
because restricted indices are measuring in a more realistic way the real political 
forces underlying the bargaining processes.

2 � Voting models and power indices

2.1 � Voting models with preferences

In a voting game, or weighted majority game, Peleg and Sudholter (2007), a set of 
voters V = {1,… , n} must make a yes-or-no decision on a given issue and each voter 
i ∈ V  controls wi ∈ ℕ votes. Voters form coalitions S ⊆ V  , whose electoral weight 
is: w(S) =

∑
i∈S wi . Let W = w(V) be the total weight, let q be the majority threshold 

(with q > W∕2 ), decisions are approved if supported by a majoritarian coalition S 
for which w(S) ≥ q.

It is well known that voting weights do not correspond to voting power, as the 
small voters can be as necessary as the big ones to let coalitions win. Voter’s power 
is assumed to rely on the property of being critical (or pivotal, or swinging): Player 
i is said to be a critical voter for a coalition S ⊆ V − {i} if and only if S ∪ {i} is win-
ning, but S is not (and S is said i-critical).

The game characteristic function v ∶ 2V → {0, 1} is such that v(S) = 1 if 
w(S) ≥ q , and v(S) = 0 otherwise. Player i is a critical voter for coalition S if and 
only if:

where vi(S) can be seen as the marginal contribution of i to S.
To compute the power index of voter i, the marginal contributions vi(S) must be 

aggregated. Using the plain sum over all S, we obtain:

and in this way the Banzhaf index of power can be defined, Penrose (1946), Banzhaf 
(1965):

Alternatively, with a different normalization, the Banzhaf index can be defined as:

(1)vi(S) = v(S ∪ {i}) − v(S) = 1,

(2)P(i) =
∑

S⊆V−{i}

vi(S),

(3)B(i) =
P(i)

2n−1
.
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Next, from the same marginal contributions, the Shapley index of power can be 
derived, Shapley and Shubik (1954):

The two measures of power rely on different axiomatic assumptions, Shapley (1953) 
and Dubey and Shapley (1979), whose mathematical content is not discussed here. 
What is important is that those axioms are based on different political behaviors and 
this may circumscribe the applied cases in which one index is more appropriate than 
the other. The Banzhaf index 3 assumes that all coalitions are equally likely: Vot-
ers are characterized by the same one-half probability of supporting or rejecting the 
proposal. Instead, the Shapley index assumes that all sequences of voters are equally 
likely. That is, it is assumed that all voters will vote “yes”, but they cast their prefer-
ence in sequence. The first voter begins the sequence and then it is followed suit by 
another voter, forming a sequence whose size increases progressively. The sequence 
defines nested coalitions whose weights increase as well, to the point that there will 
be a specific voter i that let the sequence overcome the majority threshold. In this 
case, i is critical for the sequence. Then, the Shapley index 5 stands for the probabil-
ity of forming a i-critical sequence.

Formulas 3 and 5 assumes that all coalitions or all sequences are equally likely, 
so that they exclude the possibility that voters have preferences over the outcome. 
This is not always the case, as it may happen that a left-wing party is less willing to 
vote a right-wing law than the right-wing party itself. There has been a lively debate 
among political scientists about the possibility of introducing preferences into power 
measurements, see for example Steunenberg et al. (1999), Braham and Holler (2005) 
and Napel and Widgrén (2004, 2005, 2006, 2011). When resolved, the proposal is 
to represent voters’ preferences as bliss points on a political space, and then voters 
form coalitions (or sequences) constrained by their position, see Passarelli and Barr 
(2007), Barr and Passarelli (2009), Benati and Vittucci Marzetti (2013), Badinger 
et al. (2014), Blockmans and Guerry (2015), Peters and Zarzuelo (2016) and Mar-
tin et al. (2017). Among the models above, we refer specifically to the spatial vot-
ing game presented in Pajala and Widgrèn (2004). There, voters’ bliss points are 
located on the unit length segment (0–1), with the possibility of more than one voter 
placed in the same position, see Fig.  2. Then coalitions are feasible or unfeasible 
depending on their structure, with proximity playing a central role. As will seen, the 
mathematical structure of this model is equivalent to a voting game restricted to a 
particular graph and, recognizing this property, the Banzhaf and Shapley index can 
be formally defined.

The graph restricted voting game, as defined in Benati et  al. (2015), in an 
application to voting situation of a general theory presented in Myerson (1977). 
A graph G = (V ,E) is given, in which every node (or vertex) i ∈ V  represents 
a voter and each edge (undirected link) (i, j) ∈ E represents the communication 

(4)BI(i) =
P(i)

∑
j∈V P(j)

.

(5)SSI(i) =
∑

S⊆V−{i}

(|S|)!(|V − S − 1|)!
|V|!

vi(S).
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link between voters i, j ∈ V  . Coalition S ⊆ V  is feasible if and only its induced 
subgraph G[S] = (S,E[S]) is connected, i.e. there is a path between any pair of 
nodes in G[S] . We denote with F  the set of all connected coalitions.

To model the above mentioned spatial voting games, we restrict the analysis 
to a peculiar class of graphs, which we call line-clique.

Definition 1  (Line-clique graphs) The line-clique is a class of graphs G = (V ,E) 
where nodes can be partitioned into subsets V1 ∪… ∪ Vm such that: 

1.	 for every subset Vc , c = 1,… ,m , the induced subgraph G[Vc] = (Vc,E[Vc]) is 
complete, that is, there is an edge (i, j) ∈ E[Vc] for all i, j ∈ Vc;

2.	 nodes of consecutive subsets are connected, that is: 

(a)	 there is an edge (i, j) ∈ E for every pair of nodes i ∈ Vc , j ∈ Vc+1 for all 
c = 1,… ,m − 1;

(b)	 there is no edge (k, l) ∈ E for any pair of nodes k ∈ Vi , l ∈ Vj , for all 
|i − j| ≥ 2.

Figure 1 shows an example of a line-clique graphs.
To recognize the equivalence of the model in Pajala and Widgrèn (2004) in 

Fig. 2 and the model 1, it is sufficient to recognize that nations having the same 
bliss point on the political space are nodes of the same clique Vc of the graph-
restricted game and that the proximity between two voters in the political space 
is translated as a connection in the line-clique graph. Then, the spatial model 
assumes that: “..the connected coalition is a coalition formed by members that 
are adjacent to each other in a unidimensional policy space... ”, (Pajala and 
Widgrèn 2004, pag. 77). So adjacency in the line is a property that can be inter-
preted as connectivity in the graph:

Lemma 1  Each feasible coalition of the spatial voting game is a connected coalition 
of the line-clique graph.

V1 V2 V3 V4

Fig. 1   Example of line-clique graph: All node pairs of two consecutive cliques are connected
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2.2 � Power on graph‑restricted voting games

Some further definitions are needed. From a non connected coalition S we can 
extract connected components Q’s:

Definition 2  (Component) A voters subset Q, Q ⊆ S ⊆ V  , is a component of S if the 
induced subgraph G[Q] is a maximal connected subgraph of G[S].

In a line-clique graph, connected coalitions are composed of nodes of consecu-
tive cliques: More formally, if a connected coalition Q is such that Q ∩ Vr ≠ � and 
Q ∩ Vt ≠ � , with r ≤ t , then Q ∩ Vc ≠ � for all c such that r ≤ c ≤ t . There is the 
first and the last clique, that we define as the leftmost and the rightmost.

Definition 3  (Leftmost and rightmost clique) Given a connected coalition Q, its 
leftmost clique is:

whereas its rightmost clique is:

Following Myerson (1977), the characteristic function of graph restricted vot-
ing games is:

The Shapley index of voter i of the graph restricted game is calculated by the 
weighted sum of the marginal contribution of i:

l(Q) = min{c | Q ∩ Vc ≠ �}

u(Q) = max{c | Q ∩ Vc ≠ �}

(6)vG(S) =

{
1 if w(Q) ≥ q̄ for some Q ∈ F such that Q ⊆ S

0 otherwise

Fig. 2   Position of the political actors in the controversy about the auctioning of carbon credits in the pro-
posed directive on emission allowances in the aviation sector (COD/2006/304). Source: Thomson et al. 
(2012)
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Note that in the summation it is not required that S is connected.
To define the Banzhaf index of the spatial voting game, Pajala and Widgrèn 

(2004) argued that winning coalition must be connected. So, in the calculation of the 
marginal contribution of player i, subsets S ∪ {i} that are not connected should not 
be considered and then the non-normalized Banzhaf index of voter i is:

The correspondent (relative, or normalized) Banzhaf index is given by:

Observe that the summation is taken only for coalitions S ∪ {i} that are connected 
and note also that in the summation S can be connected or unconnected.

From definitions (9) and (7), it can be seen that a voter has power for two reasons. 
The first is its coalitional power: Voter i joins a loosing but connected coalition and 
makes it win thanks to its weight. But in graph restricted games there is a positional 
power too: Voter i links two otherwise unconnected loosing coalitions and make 
them win. It is useful to define formally the two occurrences:

Definition 4  (Coalitional power) The voter i has coalitional power with respect to a 
coalition S ( i ∉ S ) if S ∈ F  , w(S ∪ {i}) ≥ q and w(S) < q.

Definition 5  (Positional power) The voter i has positional power with respect to an 
unconnected coalition S ( i ∉ S ) if S ∉ F  and

whereas instead w(S ∪ {i}) ≥ q and S ∪ {i} ∈ F .

2.3 � Computational complexity of voting games

The #P and #P-complete complexity classes play an important role in cooperative 
game theory and they have important consequences is in the algorithm design, in a 
way that is symmetric to the role of the NP (and NP-complete) complexity classes in 
combinatorial optimization. To define NP-complexity classes, a combinatorial prob-
lem is formulated as an existential question, regarding whether there is at least one 

(7)SSIG(i) =
∑

S⊆V−{i}

(|S|)! (|V − S − 1|)!
|V|

(
vG(S ∪ {i}) − vG(S)

)
.

(8)
PG(i) =

∑

S ⊆ V − {i}

S ∪ {i} ∈ F

(
vG(S ∪ {i}) − vG(S)

)
.

(9)BIG(i) =
PG(i)∑
j∈V PG(j)

.

max
Q ⊂ S

Q ∈ F

w(Q) < q,
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solution satisfying some properties. The answer to the question must be YES or NO. 
In voting games, such question is whether there is at least one coalition for which a 
player i would be critical. However, the binary answer to this question is too weak 
for a voting game. To calculate an index of power, we must also count how many 
solutions are satisfying some properties: How many coalitions are there for which i 
would be critical.

More formally, given a voting game with threshold q̄ and voters’ weights 
w1,… ,wn , a coalition S is i-critical if:

The corresponding existential problem is:
PIVOT Prasad and Kelly (1990), Given a voting game with threshold q̄ , voters’ 

weights w1,… ,wn and a player i, 1 ≤ i ≤ n : Is there at least one coalition S that is 
i-critical?

The problem above is actually a decision problem whose answer is YES or NO. 
It belongs to the NP-complexity class, as, whenever the answer is YES, the coalition 
S offers a compact certificate of correctness that can be verified in polynomial time 
by a deterministic Turing machine. That is, we can code a polynomial algorithm that 
can check the correctness of the answer YES. Moreover, in Prasad and Kelly (1990) 
it has been also proved that PIVOT is also NP-complete, as another NP-complete 
problem, the SUBSET SUM, can be reduced to it.

We remark again that the existence of an i-critical coalition is not enough to 
calculate an index of power. Rather, we must also know how many i-critical coali-
tions are admitted by the game structure and therefore we are naturally interested to 
counting problems. The relevant complexity class of counting problems is #P (pro-
nounced “sharp-pi”), introduced in Valiant (1979).

The correct problem statement that we are interested in is:
COUNTING PIVOT Given a voting game with threshold q̄ , voters’ weights 

w1,… ,wn and a player i, 1 ≤ i ≤ n : how many coalitions S are there that are 
i-critical?

Here, the answer is an integer number, not a binary decision YES or NO. Clearly, 
COUNTING PIVOT is at least as difficult as PIVOT, because if the integer number 
is strictly greater than zero, then the answer to PIVOT is YES.

Having posed that the true question is about counting rather than about existence 
opens a realm of different complexity classes, namely the ones that are in #P. Tech-
nically, #P is defined through another hypothetical device: the counting non- deter-
ministic Turing machine. This is an imaginary machine that, in parallel, is able to 
explore all solutions satisfying given properties, with the depth of the computation 
tree (length of each single thread) remaining polynomial. Stated less technically, a 
given problem is in #P if verifying the correctness of one single solution can be done 
in polynomial time by a deterministic Turing machine, e.g. by a computer program.

(10)
∑

j∈S

wj < q̄ and
∑

j∈S

wj + wi ≥ q̄
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Treating the problem as a counting and then classifying it through its member-
ship to the main #P subclasses has a profound impact in algorithm design. Some #P 
problems are polynomially solvable, but they are very rare, most of them form the 
#P-complete class, that is, the counting problems that cannot be solved in polyno-
mial time unless P=NP. In voting games, COUNTING PIVOT is an example of a 
#P-complete problem, see Prasad and Kelly (1990).

Similarly to the NP-complete, the #P-complete complexity class can be further 
refined into the #P-complete problems in the strong or in the weak sense. A counting 
problem is #P-complete problem in the strong sense if it remains #P-complete even 
when in the input the numbers are encoded in unary rather than in binary. Equiva-
lently, it remains #P-complete even when restricted to instances in which the num-
bers magnitude is bounded by some polynomial in the input length. This rather tech-
nical definition separates the weak #P-complete problems from the strong ones and 
has deep implications in the algorithm design. It implies that, if a problem is weakly 
#P-complete, its difficulty lays only in the magnitude of the numbers in the input, 
but not in its inherent combinatorial structure. Regarding the algorithm design, these 
problems can be frequently solved by dynamic programming, leading to pseudo-pol-
ynomial time algorithms2 that usually perform very well in practice. For example 
counting i-critical coalitions can be done in pseudo-polynomial time: An analysis 
of the dynamic programming method of Uno (2012), or the generating function of 
Bilbao et al. (2000), reveals that the worst case computation time depends polyno-
mially on the term W(=

∑
j wj) , instead of some function of logW as required to an 

algorithm to be polynomial.
Conversely, when a problem is strongly #P-complete problems, the algorithm 

design must follow a complete different approach. In cooperative games one pos-
sibility is the use of estimation and/or simulation, Leech (2003); Castro et al. (2017); 
Benati et al. (2019). For example, the Shapley value is an average of marginal gains 
over sequences, so it can be estimated from a sample of sequences, e.g., simulating 
the process by which voters cast their vote.

Regarding the complexity of graph-restricted voting games, in Benati et  al. 
(2015) it has been proved this hierarchy of difficulties: (i) if the graph is a tree, the 
problem is #P-complete in the weak sense and power indices can be calculated by 
dynamic programming; (ii) if the graph has no structure, the problem is #P-complete 
in the strong sense and no pseudo-polynomial algorithms can calculate the indices.

In what follows, we show that computing Banzhaf and Shapley indices in line-
clique graphs is #P-complete in the weak sense: We prove it describing two dynamic 
programming algorithms that run in pseudo-polynomial time. Next, we will see how 
to apply these methods to analyse spatial voting games3.

2  Pseudo-polynomial time algorithms are polynomial in the input length once all numbers in the input 
were written in unary.
3  We coded them in Fortran and developed an R library with the two algorithms. Both are available from 
the authors on request.
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3 � Computation of line‑clique Banzhaf and Shapley power indices

3.1 � Line‑clique Banzhaf index

In what follows, we shall refer to ���[i] = PG(i) as the data structure necessary to 
calculate the Banzhaf index. Then, the number of i-critical coalitions S ∪ {i} such 
that |S| = k , that is the data structure necessary to calculate the Shapley index, will 
be denoted ���[i, k].

For c ∈ {1,… ,m} and q = 0, 1,… ,W , we define the following data structures:

–	 ���[c, q] , the number of connected coalitions S ⊆ Vc and w(S) = q;
–	 ���[i, c, q] , the number of connected coalitions S ⊆ Vc − {i} and w(S) = q;
–	 ����[c, q] , the number of connected coalitions S ⊆ V  such that u(S) = c and 

w(S) = q;
–	 ����[c, q] , the number of connected coalitions S ⊆ V  such that l(S) = c and 

w(S) = q.

Since Vc is a complete subgraph, ���[c, q] and ���[i, c, q] can be calculated with any 
algorithm for the Banzhaf index of simple voting games.

For computational convenience (the dynamic programming initialization), we 
assume ���[c, 0] = 0 , ���[i, c, 0] = 1 , ����[c, 0] = 1 and ����[c, 0] = 1.

����[c, q] and ����[c, q] can be computed through recursion. For q ∈ [1,W] , 
����[1, q] = ���[1, q] . For c > 1 , the recursive formula for ����[c, q] is:

Formula (11) combines any coalition in Vc with all connected coalitions whose 
rightmost voter belongs to Vc−1 (including the empty set), forming new coalitions 
whose rightmost voters is in Vc.

Similarly, for q ∈ [1,W] , ����[m, q] = ���[m, q] and the recursive formula is:

Formula (12) combines any coalition in Vc with all the connected coalitions whose 
leftmost voter is in Vc+1 (including the empty set), forming new coalitions whose 
leftmost voters is in Vc.

A voter i in Vc has positional power when it bridges two loosing connected coali-
tions, one on the left and one on the right of Vc . Let S1 and S2 be these coalitions. We 
enumerate them in the following data structure.

For c ∈ {2,… ,m − 1} , let ����[c, q] be the number of coalitions S ⊆ V − Vc with 
w(S) = q and such that S can be partitioned into two connected coalitions S1 and S2 
with the properties: max{w(S1),w(S2)} < q , u(S1) = c − 1 and l(S2) = c + 1.

The data structure can be worked out by recursion:

(11)����[c, q] =

q∑

j=1

���[c, j]����[c − 1, q − j].

(12)����[c, q] =

q∑

j=1

���[c, j]����[c + 1, q − j].
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Formula (13) combines all the loosing connected coalitions on the right of Vc with 
those on the left.

The positional power of voter i can be readily computed from ����[c, q] . Let 
���[i] be the number of coalitions in which i has positional power. If i ∈ V1 ∪ Vm , 
then ���[i] = 0 . If i ∈ Vc with c ∈ {2,… ,m − 1} , then:

.
Formula (14) sums all the not connected coalitions that turn out connected and 

winning when joined by i.
Next, we focus on those situations in which i has coalitional power. Given voter 

i ∈ Vc and coalition S ⊆ V − {i} (such that S ∪ {i} is connected), we must consider 
four cases: 

1.	 l(S ∪ {i}) < c and u(S ∪ {i}) = c , i.e., voters belong to more than one clique and 
i is a rightmost voter of S ∪ {i};

2.	 l(S ∪ {i}) = c and u(S ∪ {i}) > c , i.e., voters belong to more than one clique and 
i is a leftmost voter of S ∪ {i};

3.	 l(S ∪ {i}) < c and u(S ∪ {i}) > c , i.e., voters belong to more than one clique and 
i is in a middle position in S ∪ {i};

4.	 l(S ∪ {i}) = u(S ∪ {i}) = c , i.e., all voters belong to Vc.

We consider the four cases:
Rightmost voter: Let ����[i, q] be the number of coalitions S (not containing i) 

for which case 1 applies and moreover w(S) = q . Then, for all i and q ≤ W − wi , the 
data structure can be calculated as follows:

Formula (15) combines the subsets of Vc without i (including the empty set, as 
���[i, c, 0] = 1 ) with the subsets on the left of Vc.

Leftmost voter: Let ����[i, q] be the number of coalitions S (not containing i) for 
which case 2 applies, and moreover w(S) = q . Then, for all i and q ≤ W − wi , the 
data structure can be calculated as follows:

(13)����[c, q] =

min(q−1,q−1)∑

j=max(1,q−(q−1))

����[c − 1, j] ����[c + 1, q − j].

(14)���[i] =

W−wi∑

q=q−wi

����[c, q].

(15)����[i, q] =

q−1∑

j=0

���[i, c, j] ����[c − 1, q − j].

(16)����[i, q] =

q−1∑

j=0

���[i, c, j] ����[c + 1, q − j].

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



1 3

Voting power on a graph connected political space with an…

Formula (16) combines the subsets in Vc without i (including the empty set) with the 
subsets on the right of Vc.

Middle voter: Let �����[i, q] be the number of coalitions S (not containing i) for 
which case 3 applies and moreover w(S) = q . Then, for all i and q ≤ W − wi , we 
have:

where the subscript conditions on j1 and j2 guarantee that j1 ≥ 1 , j2 ≥ 1 and 
q − (j1 + j2) ≥ 1 , so that there is at least one voter other than i in Vc (i must not have 
positional power).

Formula (16) combines the non empty subsets in Vc with the subsets that are on 
the right and on the left of Vc.

One clique: Let ����[i, q] be the number of coalitions S for which case 4 applies 
and moreover w(S) = q . Then, for all i and q ≤ W − wi , we have:

Since the coalitions are all contained in Vc , formula (18) relabels ���[i, c, q].
Having computed the previous data structures, we can calculate the number 

���[i] of subsets for which i has coalitional power as:

Let ���[i] be the number of i-critical coalitions. It is equal to the sum:

from which the computation of the Banzhaf index (9) easily follows.
Regarding the complexity of the computation, the calculation of formulas (11), 

(12), (13), (15), (16) and (17) has worst case complexity O(W), that must be repeated 
mW or nW times at most. As n > m , the greatest complexity is O(nW2) , that is quad-
ratic in the input size W. This proves that calculating the line-clique Banzhaf index 
has pseudo-polynomial complexity, being #P-complete in the weak sense.

3.2 � Line‑clique Shapley index

To compute the line-clique Shapley index, one has to consider both the coalition 
weight and the coalition size. Moreover, the Shapley index considers coalitions that 
are not connected. For unconnected coalitions, we must keep track of their con-
nected component, whose weight is to be stored, and keep track of unconnected vot-
ers that are important to define the coalition size. As a consequence, notations are 
cumbersome, but dynamic programming principles are simple.

(17)

�����[i, q] =
∑

1 ≤ j1 ≤ q − 2

1 ≤ j2 ≤ q − 1 − j1

���[i, c, q − (j1 + j2)] ����[c − 1, j1] ����[c + 1, j2]

(18)����[i, q] = ���[i, c, q].

(19)���[i] =

q−1∑

q=q−wi

(
����[c, q] + ����[c, q] + �����[c, q] + ����[c, q]

)
.

(20)���[i] = ���[i] + ���[i]
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Let ���[c, q, k] be the number of connected coalitions such that S ⊆ Vc 
( S ⊆ Vc − {i} ), w(S) = q and |S| = k , with c ∈ {1,… ,m} and q = 0,… ,W .

Similarly, let ���[i, c, q, k] be the number of connected coalitions such that 
S ⊆ Vc − {i} , w(S) = q and |S| = k , with c ∈ {1,… ,m} and q = 0,… ,W .

As Vc is a complete subgraph, all its subsets S are connected coalitions and 
therefore these values can be calculated using any algorithm for the Shapley 
index of simple voting games, Uno (2012).

For each c, the following constants, representing the number of voters on the 
left and the right of Vc , are defined:

Let �����[l, u, q, k] be the number of connected coalitions S of k voters ( |S| = k ) with 
coalition weight q ( w(S) = q ) such that l(S) = l and u(S) = u.

This number can be computed via recursion. When u = l , 
�����[l, l, q, k] = ���[l, q, k] . For u > l , we have:

Using formula (21), we can combine coalitions contained in Vu with coalitions in 
which the rightmost voter is in Vu−1.

Let ����[l, u, q, k] be the number of coalitions S ⊆ V  of k voters ( |S| = k ) that 
can be partitioned into two disjoint sets Q and T, where Q is the component of S 
with l(Q) = l , u(Q) = u and w(Q) = q , whereas T ⊆ V1 ∪… ∪ Vl(Q)−2.

For l ∈ {1, 2} , ����[l, u, q, k] = �����[l, u, q, k] , because T = � . For l > 2 , the 
data structure can be calculated through the formula:

Formula (22) combines the aforementioned connected coalitions Q with all the sub-
sets of voters T, unconnected to Q and located on the left of it.

Similarly, let ����[l, u, q, k] be the number of coalitions S ⊆ V  of k voters 
( |S| = k ) that can be partitioned into two disjoint sets Q and T, where Q is the 
component of S with l(Q) = l , u(Q) = u and w(Q) = q , and T ⊆ Vu(Q)+2 ∪⋯ ∪ Vm.

If u = m or u = m − 1 , ����[l, u, q, k] = �����[l, u, q, k] , because T = � . If 
u < m − 1 , the data structure can be calculated through the formula:

Formula (23) combines the connected coalitions Q with all the subsets T, uncon-
nected to Q and located on the right of it.

L(c) =

c∑

j=1

|Vj|; U(c) =

m∑

j=c

|Vj|.

(21)�����[l, u, q, k] =

q−1∑

j1=1

k−1∑

j2=1

���[u, j1, j2] �����[l, u − 1, q − j1, k − j2].

(22)����[l, u, q, k] =

k−1∑

j=0

(
L(l − 2)

j

)
�����[l, u, q, k − j].

(23)����[l, u, q, k] =

k−1∑

j=0

(
U(u + 2)

j

)
�����[l, u, q, k − j].
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Formulas (22) and (23) are combined to enumerate all the coalitions with respect 
to player i ∈ Vc has positional power: for c ∈ {2,… ,m − 1} ), i will form a link with 
a coalition S1 located on the left of Vc ( u(S1) = c − 1 ), with a coalition S2 located on 
the right ( l(S2) = c + 1).

Let ����[c, q, k] be the number of coalitions S of k voters ( |S| = k ) that can be 
partitioned into two subsets S1 and S2 such that:

–	 S1 ⊆ V1 ∪… ∪ Vc−1 and S2 ⊆ Vc+1 ∪… ∪ Vm;
–	 S1 can be partitioned into two disjoint subsets Q1 and T1 , with u(Q1) = c − 1;
–	 S2 can be partitioned into two disjoint subsets Q2 and T2 with l(Q2) = c + 1;
–	 w(Q1) < q , w(Q2) < q and w(Q1) + w(Q2) = q.

Note the data structure is useful to determine when i has positional power, as the 
data structure enumerates those coalitions S for which i is a bridge. Each coalition 
S ∪ {i} has a component Q = Q1 ∪ Q2 ∪ {i} with associated weight w(Q) = q + wi . 
If q + wi > q then i has positional power.

The formula to compute ����[c, q, k] is:

Formula (24) combines two non-winning subsets: one on the left and one on the 
right of Vc , keeping track of the weight q and the size k.

Let ���[i, k] be the number of i-critical coalitions S of k voters ( |S| = k ) where 
player i has positional power. If i ∈ V1 ∪ Vm , then ���[i, k] = 0 . If instead i ∈ Vc 
with c ∈ {2,… ,m − 1}:

Next, we focus on the situations in which i has coalitional power, but no positional 
power. In particular, we consider a voter i ∈ Vc and a coalition S ⊆ V − {i} . S is par-
titioned into two subsets, Q and T, such that Q is connected (Q is the coalition for 
which we recorded w(Q)) and voters of Q are not connected to voters of T. We have 
four possible cases: 

1.	 i is a rightmost voter of Q ∪ {i} : l(Q ∪ {i}) < c and u(Q ∪ {i}) = c;
2.	 i is a leftmost voter of Q ∪ {i} : l(Q ∪ {i}) = c and u(Q ∪ {i}) > c;
3.	 i is a middle voter of Q ∪ {i} : l(Q ∪ {i}) < c and u(Q ∪ {i}) > c;
4.	 all the voters of Q ∪ {i} belongs to Vc : l(Q ∪ {i}) = u(Q ∪ {i}) = c.

We consider the four cases:
Rightmost voter: In case 1, the enumeration of coalitions is made in two steps. 

In the first step, we combine the subsets of Vc with the ones located on the left of 

(24)
����[c, q, k] =

c−1∑

l=1

m∑

u=c+1

min(q−1,q−1)∑

j1=max(1,q−q+1)

k−1∑

j2=1

����[c + 1, u, q − j1, k − j2]⋅

⋅ ����[l, c − 1, j1, j2]

(25)���[i, k] =

W−wi∑

q=q−wi

����[c, q, k]
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Vc , computed in formula (22). In the second step, we combine these coalitions 
with the unconnected ones on the right of Vc.

In particular, let ����[i, q, k] be the number of coalitions S of k voters ( |S| = k ) 
that do not include i ( i ∉ S ) and have a component Q with w(Q) = q . In case 1, 
S ∩ Vj = � for all j > c , l(Q) < c and u(Q ∪ {i}) = c . Then, by assuming for com-
putational convenience ���[c, i, 0, 0] = 1 , we can write:

Let ����[c, i, q, k] be the number of coalitions S of k voters ( |S| = k ) having a com-
ponent Q with u(Q ∪ {i}) = c and w(Q) = q . Then we have:

Formula (27) combines all the coalitions enumerated through (26) with all the coali-
tions on the right of Vc , whose number is accounted for by the binomial coefficient.

Leftmost voter: Also in this case, the enumeration of coalitions can be accom-
plished in two steps.

In particular, let ����[i, q, k] be the number of coalitions S of k voters ( |S| = k ) 
that do not include i ( i ∉ S ) and have a component Q such that w(Q) = q . In 
case 2, we have S ∩ Vj = � for all j < c , l(Q ∪ {i}) = c and u(Q) > c . Assuming 
���[c, i, 0, 0] = 1 , we have:

Let ����[c, i, q, k] denote the number of coalitions S of k voters having a component 
Q with l(Q ∪ {i} = c and w(Q) = q . Then we have:

Formula (29) combines all the coalitions in (28) with all the unconnected coalitions 
on the left of Vc , whose number is accounted for by the binomial coefficient.

Middle voter: Let �����[i, q, k] be the number of coalitions S of k vot-
ers ( |S| = k ) that do not include i ( i ∉ S ) and have a component Q such that 
w(Q) = q . In case 3 we have l(Q) < c and u(Q) > c . Moreover, since we are con-
sidering only the situations where i has coalitional power and excluding the ones 
in which the player has positional power, it must be that Q ∩ Vc ≠ � and therefore 
|(Q ∪ {i}) ∩ Vc| ≥ 2.

The formula to calculate �����[i, q, k] is thus:

(26)����[i, q, k] =

c−1∑

l=1

q∑

j1=1

k∑

j2=1

����[l, c − 1, j1, j2]���[c, i, q − j1, k − j2]

(27)����[c, i, q, k] =

k∑

j=0

(
U(c + 2)

j

)
����[i, q, k − j]

(28)����[i, q, k] =

m∑

u=c+1

q∑

j1=1

k∑

j2=1

����[c + 1, u, j1, j2]���[c, i, q − j1, k − j2]

(29)����[c, i, q, k] =

k∑

j=0

(
L(c − 2)

j

)
����[i, q, k − j]
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Formula (30) combines all the coalitions in Vc with those that are on the left and on 
the right of Vc . The range of j3 and j4 guarantees that there is at least one voter in Vc , 
at least one on the right of Vc , and at least one on the left of it.

One clique: Let ����[i, q, k] be the number of coalitions S of k voters ( |S| = k ) not 
including i ( i ∉ S ) and having a component Q with coalition weight q ( w(Q) = q ). In 
case 4, we have S ∩ Vc+1 = S ∩ Vc−1 = �.

Assuming for convenience that L(c) = 0 for c < 1 and U(c) = 0 for c > m,

Formula (31) combines all the coalitions in Vc with all the ones made up of the non 
critical players located on the left and on the right of Vc.

Formulas (27), (29), (30) and (31) can be summed up to compute the number of 
coalitions with respect to which player i has coalitional power. Let ���[i, k] be the 
number of such coalitions S of k voters ( |S| = k ), then:

The data structure ���[i, k] needed to calculate the Shapley index on line-clique 
graphs is:

Regarding the computational complexity, the calculation of formulas (21), (22), 
(23), (24), (26), (27), (28), (29), (30) and (31) has at most pseudo-polynomial com-
plexity, depending on polynomial functions of n, m and W. The greatest attained 
complexity is O(m3W2n2) for formula (24). This proves that calculating the Shapley 
index on line-clique graphs is #P-complete in the weak sense.

4 � Power indices and negotiation outcomes in the Council 
of the European Union

In this section, we shall carry out an illustrative application of the analysis of power 
using the graph restricted versions of Banzhaf and Shapley indices and compare 
results with the unrestricted versions.

(30)

�����[i, q, k] =

c−1∑

l=1

m∑

u=c+1

∑

1 ≤ j1 ≤ q − 2

2 ≤ j1 + j2 ≤ q − 1

∑

1 ≤ j3 ≤ k − 2

2 ≤ j3 + j4 ≤ k − 1

����[l, c − 1, j1, j3]⋅

⋅ ����[c + 1, u, j2, j4] ���[c, i, q − (j1 + j2), k − (j3 + j4)]

(31)����[i, q, k] =

k∑

j=0

(
L(c − 2) + U(c + 2)

j

)
���[c, i, q, k − j]

(32)

���[i, k] =

q−1∑

q=q−wi

(
����[i, q, k] + ����[i, q, k] + �����[i, q, k] + ����[i, q, k]

)

(33)���[i, k] = ���[i, k] + ���[i, k]
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In particular, we shall use the dataset on “Decision-making in the European 
Union” (DEUII) released by Thomson et al. (2012). The data set serves to ana-
lyze the distributions of power across EU member states in the Council of the 
European Union (or Council of Ministers, CM). Its structure is the spatial vot-
ing model from which our line-clique restricted game has been developed. DEUII 
contains data on 331 controversial issues raised by 125 legislative proposals 
introduced in the Council between 1996 and 2008. In particular, using informa-
tion from 349 semi-structured interviews with key informants, the authors iden-
tify for each controversial issue: (i) the location of the policy alternative favored 
most by each of the political actors—European Commission (COM), European 
Parliament (EP), member states’ representatives in the CM—in a unidimensional 
policy space (from 0 to 100), i.e. the bliss point of single-peaked preferences; 
(ii) the spatial location of the decision outcome occurring when the legislative 
proposal is not adopted, i.e. the disagreement (or reference) point; (iii) the spatial 
location of the final decision outcome in the same space; (iv) the level of impor-
tance that each actor attaches to each of the controversial issues on a 0-100 scale 
(issue salience).

To give an example, Fig. 2, taken from Thomson et al. (2012), shows the iden-
tified spatial location of the political actors (COM, EP and member states’ repre-
sentatives) in the controversy about the auctioning of carbon credits in the proposed 
directive on emission allowances in the aviation sector (COD/2006/304).

Since both the EU voting system and the member states have changed much in 
the last twenty years, we consider two different scenarios: (i) the Pre-Nice scenario, 
from 1995 up to the Treaty of Nice (February 2003) and before the 2004 enlarge-
ment; (ii) the Post-Nice scenario, from January 1st 2007 onward, after the fifth 
enlargement with the accession of Bulgaria and Romania.

In the former scenario (Pre-Nice), the voting system in the CM was as follows: 
there were 15 member states; acts were proposed by the European Commission or at 
least 10 member states. In policy areas not requiring unanimity, there was a qualified 
majority voting with a threshold of 62 out of 87 votes. The vote allocation was less 
favorable to big countries. The voting weights were: France, Germany, Italy, UK 10; 
Spain 8; Belgium, Greece, Netherlands, Portugal 5; Austria, Sweden 4; Finland, Ire-
land, Denmark 3; Luxembourg 2.

In the latter scenario (Post-Nice), there are 27 EU member countries. In policy 
areas not requiring unanimity, in the CM the system sets three quotas for passing an 
act: (i) a qualified weighted majority (74% of the votes, i.e. 255 out of 345 votes); 
(ii) a (qualified) majority of members (14, for proposals of the European Commis-
sion, or 18); (iii) 62% of the total EU population. The voting weights in the qualified 
weighted majority are: France, Germany, Italy, UK 29; Poland, Spain 27; Roma-
nia 14; Netherlands 13; Belgium, Czech Republic, Greece, Hungary, Portugal 12; 
Austria, Bulgaria, Sweden 10; Denmark, Finland, Ireland, Lithuania, Slovakia 7; 
Cyprus, Estonia, Latvia, Luxembourg, Slovenia 4; Malta 3. In fact, as showed by 
Felsenthal and Machover (2001) and Baldwin and Widgrén (2004), conditions (ii) 
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and (iii) have negligible effects for acts proposed by the European Commission and 
we therefore consider only condition (i).4

In what follows:

–	 We first analyze the numerical difference between graph restricted and unre-
stricted power indices on a single issue and we will find that country’s position 
affects its power, being the central positions more strategical than the extreme.

–	 Next, we compute the power indices on all issues and observe their empiric dis-
tributions. We will observe that, the average of a country’s graph restricted index 
corresponds to the value of the unrestricted index. Interestingly, it appears that in 
the long run no country is taking advantage of any positional power, e.g., coun-
tries are sincere when they express a position.

–	 Finally, we run some regression models to test the predictive power of the indi-
ces, and we will find that the graph restricted indices are positively correlated 
with the negotiation outcomes, while the unrestricted indices are not. The result 
shows that graph restricted indices can be useful for applied political analysis.

4.1 � Graph restricted and unrestricted Banzhaf and Shapley indices

To start with, let us analyze the differences between graph restricted and unrestricted 
Banzhaf indices in one particular controversy. The controversy is about the auction-
ing of carbon credits in the proposed directive on emission allowances in the avia-
tion sector (COD/2006/304).

Figure 3a reports the unrestricted Banzhaf indices for the 27 member states com-
puted using the Post-Nice voting system (these indices are constant across contro-
versies cause they do not depend on the particular issue at stake), along with the 
graph restricted Banzhaf indices, using data from the spatial voting game of Fig. 2.

Although the two indices are positively correlated (the correlation coefficient is 
0.8), for some member countries some differences emerge. For the UK, Denmark, 
Ireland and Sweden, the unrestricted index is greater than the line-clique version, 
since these countries are located on the right of the ideological space with no suffi-
cient ability of connecting coalitions. Conversely, for other countries (e.g., Belgium 
and the Netherlands) the graph restricted Banzhaf index is greater than the unre-
stricted, since the two nations take advantage their positional power.

Figure 3b shows the unrestricted and restricted versions of the Shapley index for 
the same spatial voting game. As in the case of the Banzhaf index, the two ver-
sions of the Shapley index are highly correlated (the correlation coefficient is 0.92), 
although for some countries they in fact differs. The greatest differences emerge 
with respect to the UK, Belgium, Denmark and the Netherlands. For these countries 
the line-clique version of the Shapley index returns a value significantly greater than 

4  The voting system of the Lisbon Treaty, which came into force in November 2014, is instead a double 
majority system: (i) majority of countries (72%, or 55% if acting on a proposal of the European Commis-
sion); (ii) majority of population (65%).

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



	 S. Benati, G. Vittucci Marzetti 

1 3

Fig. 3   A-priori and line-clique indices computed for the controversy about the auctioning of carbon cred-
its in the aviation sector (COD/2006/304)

Fig. 4   Scatter plots of (line-clique) Banzhaf index vs. (line-clique) Shapley index with least squares fit
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Fig. 5   Boxplots of line-clique Banzhaf and Shapley indices for the 15 EU member states calculated over 
119 controversial issues under the Pre-Nice scenario (red circles are a-priori versions of the indices)

Fig. 6   Boxplots of line-clique indices of the 27 EU member states calculated over 46 controversial issues 
under the Post-Nice scenario (red circles are a-priori indices)
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the correspondent a-priori version of the index. As remarked previously, this is due 
to their positional power.

Notably, in the case of the UK, while the a-priori Banzhaf and Shapley indices 
return fairly similar values (respectively, 0.078 and 0.087), the line-clique versions 
of the two indices are rather different: the Banzhaf index is small (0.010), while the 
Shapley index is significantly larger (0.131). This is because the positional power 
strictly depends on the assumptions on how, given the preferred outcomes of the 
players, coalitions are formed and these assumptions are different in the two indices 
(we will expand this remark later).

In general, while the unrestricted versions of Banzhaf and Shapley indices are highly 
correlated (the correlation coefficient is as high as 0.997), the correlation between the 
respective graph versions is lower (0.879). Figure 4 shows the scatter plots of unrestricted 
Banzhaf and Shapley index (Fig. 4a) and the corresponding line-clique versions (Fig. 4b).

Finally, Figs. (5) and (6) show the box plots of the distribution of line-clique 
Banzhaf and Shapley indices computed for each member state over all the different 
issues in the Pre-Nice and Post-Nice scenario. In this respect, it is interesting to note 
that, although, as we discussed before, unrestricted and line-clique versions com-
puted for a single issue can be rather different, unrestricted indices (denoted with red 
circles in the figures) are always very close to the median of the distribution of the 
corresponding graph indices. This is because, although the relative ideological loca-
tion of member countries in fact differs across issues (e.g. countries located at the 
right of the spectrum for some issues are at the left in some other issues), the relative 
frequency of each country’s location along the ideological space for the different 
issues tend to be almost the same, and thus the unrestricted version of the indices 
gives an estimate of the average power of countries across the different issues.

This notwithstanding, line-clique indices should be better measure of players’ 
expected level of success in any given negotiation process, since they employ infor-
mation on the relative ideological location of players. This is something we shall 
explore in the following section, where we analyze how the different indices are able 
to forecast the actual outcome of the negotiation processes.

4.2 � Power indices and negotiation outcomes

To analyze if and to what extent the different indices can help predicting the out-
come of the negotiation process, for each member state in each controversial issue 
we compute the distance between the member’s ideal outcome (the stated preferred 
outcome of its representatives) and the actual outcome of the negotiation, and study 
how this variable correlates with the indices.5

5  In fact, the distance between actual and ideal outcomes is a measure of lack of success, and success 
depends on “power” and “luck” Barry (1980a, 1980b). On the implications of the differences between 
luck and power in measuring ex-post power see, among the others, Steunenberg et al. (1999) and Napel 
and Widgrén (2004). Within this context, (ex-post) power is meant as “the ability of a player to make a 
difference in the outcome” (Steunenberg et al. 1999, p. 362). Napel and Widgrén (2004) suggest to meas-
ure it by looking at the sensitivity of the outcome with respect to the player’s ideological location.
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To start with, we run the following simple bivariate OLS regressions:

where the inverse hyperbolic sine of the Euclidean distance between the bliss point 
of country c and the decision outcome in issue i, asinh(distci) , is regressed on a con-
stant and a power index computed for country c in issue i (0–100 scale), powerci . We 
run four regressions, one for each of the four indices we considered: Banzhaf, graph 
restricted Banzhaf, Shapley and graph restricted Shapley.6

We also estimate specifications where we include the salience of the issue for 
the country, to control somehow for the strength of the interests at stake, as well as 
country dummies and/or issue dummies, i.e.:

where salci is the salience of issue i for country c—from 0 (no salience) to 100 (max 
salience)—, �c are country dummies (one dummy for each country) and �i issue 
dummies (one dummy for each issue).

It is worth noting that, since unrestricted Banzhaf and Shapley indices do not 
depend on the issue at stake, but only on the voting system, they are constant for 
each country and therefore it is not possible to consistently estimate Eq. (35) includ-
ing both country and issue dummies. Moreover, with country dummies, for the 
estimation one exploits the differences in the index for each country across the two 
voting systems (pre and post Nice), and therefore the only observations that can be 

(34)asinh(distci) = �0 + �1 powerci + �ci

(35)asinh(distci) = �0 + �1 powerci + �2 salci + �c + �i + �ci

Table 1   OLS estimation results: Banzhaf index

Dependent variable: asinh(distance). Unreported constant included. Standard errors in parentheses.
Significance at: 1% ∗∗∗ ; 5% ∗∗ ; 10% ∗

I II III IV V VI VII VIII

Banzhaf 
index

–0.0043 –0.0241∗ 0.0107 –0.0050

(0.0122) (0.0123) (0.0408) (0.0099)
Graph 

restricted 
Banzhaf 
index

–0.0312∗∗∗ –0.0468∗∗∗ –0.0945∗∗∗ –0.1272∗∗∗

(0.0114) (0.0114) (0.0224) (0.0186)

Salience 0.0115∗∗∗ 0.0119∗∗∗ 0.0127∗∗∗ 0.0092∗∗∗ 0.0125∗∗∗ 0.0101∗∗∗

(0.0015) (0.0015) (0.0016) (0.0015) (0.0016) (0.0015)
Country 

dummies
No No No No Yes No Yes Yes

Issue dum-
mies

No No No No No Yes No Yes

Adjusted R2 0.0000 0.0022 0.0177 0.0220 0.0189 0.4995 0.0248 0.5105

Obs 2988 2988 2988 2988 2988 2988 2988 2988

6  Note that for very small values of x, the inverse sine is approximately equal to log(2 x) , or log 2 + log x , 
and therefore in Equation (34) 100 �1 can be interpreted as (approximately) the percentage change in the 
expected value of the distance associated with a unit increase of the power index.
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actually used are those referring to the 15 member states that are also in the Pre-
Nice scenario. These issues do not apply to the graph restricted indices, because 
they in fact vary across countries and issues, depending also on the stated preferred 
outcome of member states’ representatives in each controversial issue.7

The regression results are summarized in Tables 1 and 2. In general, the coeffi-
cients attached to power indices have the expected signs: an increase in the country’s 
power is associated on average and ceteris paribus with a smaller distance between 
ideal and actual outcomes. What is worth discussing are the differences between 
unrestricted and graph restricted indices.

The coefficients attached to the unrestricted indices (Banzhaf and Shapley) in 
the regressions are very low and almost always not significant: a larger value of the 
index for a certain player in any given negotiation is not associated ceteris paribus 
with actual outcomes significantly closer to the player’s ideal point. This result is not 
in favor of unrestricted indices: If power, meant as the capacity or ability to direct or 
influence the course of events, is expected to be (significantly positively) correlated 
with success, these indices are not particularly good at measuring it. In any case, 
they turn out to be not very useful in predicting the actual outcome of the negotia-
tion process.

Do graph restricted indices perform better? The answer is yes. The most impor-
tant results are obtained for the Banzhaf index. Its regression coefficient is always 
larger, in absolute terms, than the unrestricted one and it is always statistically sig-
nificant to a large extent: less than 1%. The coefficient negative sign is consistent 
with the effect of power: It makes shorter the distance between the bliss point and 
output. For example, according to the point estimate of �1 in the bivariate regres-
sion (column II in Table 1), a unit increase in the index ( �powerci = 1 ) makes the 
expected value of the distance decrease by roughly 3%. The coefficient �1 is still 
significant even when we introduce salience and dummy variables about issue and 
country. It is interesting to note that salience is significant, but inversely correlated 
to success. Data suggests that the more an issue is important, the less successful is 
the negotiation outcome. Here we suggest that it can be interpreted the other way 
round: nations declare an issue as salient just because they realize that their posi-
tional power is little. Finding significant coefficients is an important result about the 
application of power indices. Unfortunately, this does not mean that the outcome is 
really predictable: Looking at the R-squared indices we see that they remain quite 
low (as is generally accepted when regression is applied to political and social data). 
There is one remarkable exception however, that is in the two cases in which issue 
dummies are present and in which the R-squared are very high. At the moment, we 
cannot explain the political reason to this, but it is a result that is worth supplemen-
tary analysis.

Regarding the graph restricted Shapley index, we can see in Table 2 that results 
are less strong. Coefficient estimates have the right sign, but in only one case we 
found a significant value. Conversely, estimates on salience and dummies remain 

7  It is worth pointing out that we are assuming that the stated preferred policy alternative in the contro-
versial issue is exogenous and not the result of strategical commitments of players to maximize power.
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consistent. We may guess that the graph restricted Banzhaf index is better than 
Shapley because it relies to more realistic political underpinnings. The Banzhaf 
index corresponds to the case in which all connected coalitions are equally likely. A 
coalition with an unconnected voter saying “yes” is not accounted for. Conversely, 
the Shapley index replaces coalition with sequences. Any sequence is possible, but 
if a sequence is not connected, it does not express a majority even though its votes 
are!

5 � Future research and conclusions

In this contribution, we have shown how to use dynamic programming to compute 
the number of connected coalitions in spatial voting games and we have shown that 
the indices of power calculated in this way are useful to understand the political 
games, namely, the bargaining process in EU Council. In the past, some authors 
claimed that cooperative games and power indices can be used only to analyze the 
a-priori power of legislature, but our results are showing that preferences can be 
accommodated to better define voters’ power and that the a-posteriori indices cal-
culated in this way can be used to predict the outcome of a bargaining process. This 
opens up a set of questions in which computational theory and political analysis are 
strictly intertwined.

We restricted our attention to the Banzhaf and Shapley indices of power, but 
other definitions of power are available in the literature. Firstly, in our approach, 
to remain faithful to the original definitions, only connected coalitions define the 
Banzhaf formula 9, while connected and unconnected coalitions define the Shapley 
formula 7. But with a manipulation of our dynamic programming, one could test 
the opposite possibility: Defining a Banzhaf formula based on all coalitions (con-
nected and unconnected), defining a Shapley formula based on connected coalitions 
only. Formulas would loose their theoretical backgrounds, namely, the axiomatic of 
Shapley’s and the political empiricism of Banzhaf’s, but they could gain explanatory 
power in the regression 35. Secondly, other power indexes can be useful here, for 
example the Deegan-Packel and the Holler indices. Both indexes are based on the 
concept of minimal winning coalitions, and for Deegan-Packel’s, a dynamic pro-
gramming algorithm has been proposed in Matsui and Matsui (2000). The recursive 
function has parameters: the player, the coalition weight, the size, and the coalition 
minimum weight. It seems elaborate but not insurmountable to include a connectiv-
ity constraint in the line followed in Sect.  3. The same consideration holds when 
considering the possibility of a-priori unions, as suggested in Owen (1977): From a 
computational point of view, algorithms are more elaborate, but still the same prin-
ciples can be applied. The final consideration is about to what other kind of graphs 
dynamic programming can be applied to devise pseudo-polynomial algorithms. 
Here, the case of line-clique is an instance of graphs that can be defined recursively, 
according to the definitions available in Borie et al. (2008). In that paper it is also 
argued that under specific rules and conditions, those graphs are amenable to the 
application of dynamic programming. However, specific details are to be given to 
take advantage of the peculiar recursion that defines the graph.
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