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Abstract We present some analytic results aiming at explaining the lack of

thermalization observed by Fermi Pasta and Ulam in their celebrated numerical

experiment. In particular we focus on results which persist as the number N of

particles tends to infinity. After recalling the FPU experiment and some classical

heuristic ideas that have been used for its explanation, we concentrate on more

recent rigorous results which are based on the use of (i) canonical perturbation

theory and KdV equation, (ii) Toda lattice, (iii) a new approach based on the

construction of functions which are adiabatic invariants with large probability in

the Gibbs measure.

1 Introduction

In their celebrated paper of the year 1954 Fermi Pasta and Ulam (see [20]) studied

the dynamics of a chain of nonlinear oscillators by numerical integration of the

equations of motion, with the aim of testing the dynamical foundation of equilibrium

statistical mechanics. They looked at the evolution of the normal mode energies

and of their time averages. FPU considered initial data with all the energy in the

first Fourier mode and observed that, for the initial data and the ranges of time

considered, (1) the harmonic energies seem to have a recurrent behaviour, and

(2) the time averages of the harmonic energies quickly relax to a distribution which

is exponentially decreasing with the wave number (the so called FPU packet of

modes). This was quite surprising since the solution was expected to explore a
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whole energy surface in phase space in such a way that the normal mode energies

would relax to equipartition, according to the prescription of equilibrium statistical

mechanics. For this reason the FPU result is sometimes referred to as the FPU

paradox.

A qualitatively new result was then obtained by Izrailev and Chirikov in the year

1966 [29] (confirmed by Bocchieri et al. [16]), who discovered that the paradox

disappears if initial data with sufficiently high energy are considered. In the same

period Zabuski and Kruskal [39] used the KdV equation in order to try to describe

analytically the recurrent behaviour observed by FPU.

Thus two kind of analytic problems naturally arise. The first one is to describe

the FPU recurrent behaviour, maybe along the lines of Zabuski and Kruskal; the

second one is to establish whether the FPU paradox persists in the thermodynamic

limit, i.e. the limit in which the number N of particles in the chain tends to infinity

while keeping the specific energy E=N fixed, which is the relevant limit for the

foundations of statistical mechanics.

The aim of the present paper is to present a short review of the status of the

research, focusing only on analytic results and in particular on a couple of results

recently obtained by the authors [5, 31].

The paper is organized as follows: in Sect. 2 we present some numerical

computations which essentially coincide with those by FPU. We also add a further

numerical computation showing the existence of an energy threshold above which

the paradox disappears. In Sect. 3 we will discuss some theoretical heuristic ideas

which have been used in order to try to explain and to understand the FPU paradox.

In particular, in Sect. 3.1 we will discuss the relation between FPU lattice and

KdV equation, while in Sect. 3.2 we discuss the use of KAM theory and canonical

perturbation theory (and Nekhoroshev’s theorem) in the context of FPU dynamics.

In Sect. 4 we present some rigorous results that have been obtained in the last ten

years on the problem and which give some explanation of the existence of the so

called FPU packet of modes. The limitation of all these results is that they apply to a

regime in which the specific energy goes to zero as N ! 1. The section is split into

three subsection, the first one deals with a result based on the KdV approximation,

the second one deals with a result based on multifrequency expansion and the third

one deals with a result based on the approximation by Toda lattice. The subsection

on Toda lattice contains the best results now available on the FPU packet of modes.

In Sect. 5 we will present an averaging theorem for the FPU chain valid in the

thermodynamic limit. This last result in particular deals with a slightly different

problem, namely the exchange of energy among the different degrees of freedom

when one starts with an initial datum belonging to a set of large Gibbs measure. We

conclude the paper with a short discussion in Sect. 6.

2 The FPU Paradox

The Hamiltonian of the FPU–chain can be written, in suitably rescaled variables, as

HFPU D H0 C H1 C H2 (1)
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where

H0
defD
X

j

 
p2

j

2
C

�
qjC1 � qj

	2

2

!
;

H1
defD 1

3Š

X

j

�
qjC1 � qj

	3

H2
defD A

4Š

X

j

�
qjC1 � qj

	4
;

where .p; q/ are canonically conjugated variables. We will consider either periodic

boundary conditions or Dirichlet boundary conditions: the index j runs from 0 to N

in the case of Dirichlet boundary conditions, namely q0 D qNC1 D 0 D p0 D pNC1,

while it runs from �.N C 1/ to N in the case of periodic boundary conditions, i.e.

q�N�1 D qNC1 and p�N�1 D pNC1.

In order to introduce the Fourier basis consider the vectors

Oek.j/ D

8
ˆ̂̂
ˆ̂<
ˆ̂̂
ˆ̂:

ıPDp
NC1

sin
�

jk�

NC1

�
; k D 1; : : : ; N;

1p
NC1

cos
�

jk�

NC1

�
; k D �1; : : : ; �N;

1p
2NC2

; k D 0;

.�1/jp
2NC2

; k D �N � 1:

(2)

Then the Fourier basis is formed by Oek, k D 1; : : : ; N and ıPD D p
2 in the case of

Dirichlet boundary conditions, and by Oek, k D �N � 1; : : : ; N and ıPD D 1 in the

case of periodic boundary conditions.

Introducing the Fourier variables .Opk; Oqk/ by

pj D
X

k

Opk Oek.j/ ; qj D
X

k

Oqk Oek.j/ (3)

with

!k D 2 sin

� jkj�
2.N C 1/

�
; (4)

the system takes the form

H D H0 C H1 C H2 (5)
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where

H0.Op; Oq/ D
X

k

Op2
k C !2

k Oq2
k

2
; H1 D H1.Oq/ ; H2 D H2.Oq/ : (6)

We also introduce the harmonic energies

Ek D Op2
k C !2

k Oq2
k

2
;

and their time averages

Ek.T/ WD 1

T

Z T

0

Ek.t/dt : (7)

We will often use also the specific harmonic energies defined by

ek WD Ek

N
: (8)

We recall that according to the principles of classical statistical mechanics, at

equilibrium at temperature T , each of the harmonic oscillators should have an energy

equal to ˇ�1, where ˇ D .kBT/�1 is the standard parameter entering in the Gibbs

measure (and kB is the Boltzmann constant). Furthermore, if the system has good

statistical properties, the time averages of the different quantities should quickly

relax to their equilibrium value.

Fermi Pasta and Ulam studied the time evolution of Ek and of the corresponding

time averages Ek under Dirichlet boundary conditions. Figure 1 shows the results

of the numerical computations by FPU1; the initial data are chosen with E1.0/ 6D 0

and Ek.0/ D 0 for any jkj > 1.

From Fig. 1 one sees that the energy flows quickly to some modes of low

frequency, but after a short period it returns almost completely to the first mode;

in the right part of the figure the final values of Ek.t/ are plotted in a linear scale.

The final distribution turns out to be exponentially decreasing with k.

If one continues the integration one sees that the return phenomenon repeats itself

almost identically for a very long time (see Fig. 2). The distribution of the Ek.t/, too,

is almost unchanged: one usually says that a packet of modes has formed.

In Fig. 3 the time averages Ek.t/ are plotted versus time in a semi-log scale. One

sees that the quantities Ek.t/ quickly relax to well defined values which, as shown

in Fig. 2 (right figure), decay exponentially with the wave number. To describe the

situation with the words by Fermi Pasta and Ulam “The result shows very little, if

1Actually these figures where obtained more recently by Antonio Giorgilli by repeating the

computations of FPU.
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Fig. 1 Mode energies vs time (left) and final values of their time averages vs mode number k

(right)
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Fig. 2 Energy of the first mode and final values of Ek.t/ at longer time scales

any, tendency towards equipartition of energy among the degrees of freedom.” This

is what is usually known as the Fermi Pasta Ulam paradox.

All the above results correspond to initial data with small energy. It was however

discovered by Izrailev and Chirikov [29] that the results qualitatively change when

the energy per particle is increased. This is illustrated in Fig. 4 from which one sees

that the FPU paradox disappears in this regime, because equipartition is quickly

attained.

The FPU numerical experiment originated a huge amount of scientific research

and in particular subsequent numerical computations have established the shape of

the packet of modes to which energy flows (see e.g. [13]) into FPU regime and have

put into evidence that the FPU packet is only metastable [21], namely that after a

quite long time, whose precise length is not yet precisely established, the system

relaxes to equipartition (see e.g. [12, 14]).
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Fig. 3 Ek.t/ versus time
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Fig. 4 Ek.t/ versus time at

large energy
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3 Heuristic Theoretical Analysis

We remark that the theoretical understanding of the FPU paradox would be

absolutely fundamental: indeed it is clear that the phenomenon would have a strong

relevance for the foundations of statistical mechanics if it were proven to persist in

the thermodynamic limit, i.e., in the limit in which the number of particles N ! 1
while the energy per mode, namely

P
k Ek=N, is kept fixed. Of course numerics can

just give some indications, while a definitive result can only come from a theoretical

result, which is the only one able to attain the limit N D 1.
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3.1 KdV

One of the first attempts to explain the FPU paradox was based on the use of the

Korteweg de Vries equation (KdV). The point is that on the one hand KdV is known

to approximate the FPU and on the other one KdV is also known to be integrable,

so that it displays a recurrent behaviour.

We now recall briefly the way KdV is introduced as a modulation equation for the

FPU. We consider the case of periodic boundary conditions and confine the study to

the subspace

X

j

qj D 0 D
X

j

pj (9)

which is invariant under the dynamics. The idea is to consider initial data with large

wavelength and small amplitude, namely to interpolate the difference qj � qjC1

through a smooth small function slowly changing in space (and time). This is

obtained through an Ansatz of the form

qj � qjC1 D �u.�j; t/; � WD 1

N
; � � 1 (10)

with u periodic of period 2. It turns out that in order to fulfill the FPU equations, the

function u should have the form

u.x; t/ D f .x � t; �3t/ C g.x C t; �3t/

with f .y; �/ and g.y; �/ fulfilling the equations

f� C �2

�
fyyy C ffy D O.�2/ ; g� � �2

�
gyyy � ggy D O.�2/ ; (11)

namely, up to higher order corrections, the system is described by a couple of

KdV equations with dispersion of order �2=�. The origin of this group of ideas

is the celebrated paper by Zabuski and Kruskal [39] on the dynamics of the KdV

equation, which was the starting point of soliton theory and led in particular to the

understanding that KdV is integrable. Thus, the enthusiasm for the discovery of such

a beautiful and important phenomenology, led to the idea that also the FPU paradox

might be an integrable phenomenon, or more precisely could be the shadow of the

fact that KdV is an integrable system nearby FPU.

In order to transform such a heuristic idea into a theorem one should fill two

gaps. The first one consists in showing that in the KdV equation a phenomenon of

the kind of the formation and persistence of the packet of modes occurs; the second

one consisting in showing that the solutions of the KdV equation actually describe

well the dynamics of the FPU, namely that the higher order corrections neglected in

(11), are actually small.
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As discussed below, both problems can be solved in the case � D �2, in which

the KdV equation turns out to be the standard one.

In particular, in this case one can exploit some analytic properties of action angle

variables for KdV (see [30]) in order to show that if one puts all the energy in the

first Fourier mode, then the energy remains forever localized in an exponentially

localized packet of Fourier modes. However, if one wants to take the limit N ! 1
while keeping � fixed (as needed in order to get a result valid in the thermodynamic

limit), one has to study the dispersionless limit of the KdV equation and very little

is known on the behaviour of action angle variables in such a limit. Thus we can

say that, in the KdV equation, the phenomenon of formation and persistence of the

packet is not explained in the limit which corresponds to the thermodynamic limit

of the FPU lattice.

The second problem (justification of KdV as an approximation of FPU) is far

from trivial, since FPU is a singular perturbation of KdV, namely the O.�2/ terms in

(11) contain higher order derivatives: the proof of theorems connecting the solutions

of KdV and the solutions of FPU have only recently been obtained [6, 36], and only

in the case � D �2.

3.2 KAM Theory and Canonical Perturbation Theory

Izrailev and Chirikov [29] in 1966 suggested an explanation of the FPU paradox

through KAM theory. We recall that KAM theory deals with perturbations of

integrable systems and ensures that, provided the perturbation is small enough, most

of the invariant tori in which the phase space of the unperturbed system is foliated

persist in the complete system. In the case of FPU the simplest integrable system

is the linearized chain for which the perturbation is provided by the nonlinearity.

So the size of the nonlinearity increases with the energy of the initial datum and

KAM theory should apply for energy smaller than some N-dependent threshold �N .

This approach has the advantage of potentially explaining the FPU paradox and

also to predict that it should disappear for energy larger then some threshold (as

actually observed numerically). From the argument of Izrailev and Chirikov (based

on Chirikov’s criterion of overlapping of resonances) one can extract also an explicit

estimate of �N which should go to zero like N�4 
 �4. Such an estimate is

derived by Izrailev and Chirikov by considering initial data on high frequency

Fourier modes, while they do not deduce any explicit estimate for the case of initial

data on low frequency modes. Their argument was extended to initial data on low

frequency Fourier modes by Shepeliansky [37] leading to the claim that also in

correspondence to such a kind of initial data the FPU phenomenon should disappear

as N ! 1. However a subsequent reanalysis of the problem led Ponno [33] to

different conclusions, so, we can at least say that the situation is not yet clear.
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We emphasize that the actual application of KAM theory to the FPU lattice is

quite delicate since the hypotheses of KAM theory involve a Diophantine type

nonresonance condition and also a nondegeneracy condition. The two conditions

have been verified only much later by Rink [35] (see also [26, 32]). Then one

has to estimate the dependence of the threshold �N on N and it turns out that a

rough estimate gives that �N goes to zero exponentially with N (essentially due

to the Diophantine type nonresonance condition). This is the main reason which

led Izrailev and Chirikov to conjecture that the FPU paradox disappears in the

thermodynamic limit.

In order to weaken this condition on �N , Benettin, Galgani, Giorgilli and

collaborators [1, 8–11, 22] started to investigate the possibility of using averaging

theory and Nekhoroshev’s theorem to explain the FPU paradox. This a quite

remarkable change of point of view, since at variance with KAM theory averaging

theory and Nekhoroshev’s theorem give results controlling the dynamics over long,

but finite times, so that such a point of view leaves open the possibility that the FPU

paradox disappears after a finite but long time, which is what is actually observed

in numerical investigations (see also the remarkable theoretical paper [21]). Results

along this line have been obtained for chains of rotators ([1, 9]) and FPU chains with

alternate masses [1, 22]. An application to the true FPU model is given in the next

section.

4 Some Rigorous Results at Vanishing Specific Energy

4.1 KdV and FPU

The unification of the two points of view illustrated above was obtained in the

paper [6]. In that paper, first of all canonical perturbation theory is used in order

to deduce a couple of KdV equations as resonant normal form for the FPU lattice

and, secondly, the KdV equations are used in order to describe the phenomenon of

formation and metastability of the FPU packet. We briefly recall the result of [6].

We consider here the case of periodic boundary conditions. Consider a state of

the form (10) and write the equation for the evolution of the function u. Then it turns

out that such an equation is a Hamiltonian perturbation of the wave equation, so one

can use canonical perturbation theory for PDEs in order to simplify the equation.

Passing to the variables f ; g the normal form turns out to be the Hamiltonian of a

couple of non interacting KdV equations. In [6] a rigorous theory estimating the

error was developed, and the main results of that paper are contained in Theorem 1

and Corollary 1 below.

Consider the KdV equation

f� C fyyy C ffy D 0 I
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it is well known [30] that if the initial datum extends to a function analytic in a

complex strip of width � , then the solution (as a function of the space variable y) is

also analytic (in general in a smaller complex strip).

Consider now a couple of solutions f ; g of KdV with analytic initial data and let

qKdV
j .t/ be the unique sequence such that

qKdV
j .t/ � qKdV

jC1 .t/ D �2
�
f

�
�.j � t/; �3t

	 C g
���.j C t/; �3t

	�
;

X

j

qKdV
j .t/ 
 0 ; (12)

where, as above, � WD N�1. Then the result of Theorem 1 below is that qKdV
j

approximates well the true solution of the FPU lattice.

Let qj.t/ be the solution of the FPU equations with initial data qj.0/ D qKdV
j .0/,

Pqj.0/ D PqKdV
j .0/; denote by Ek.t/ the energy in the kth Fourier mode of the solution

of the FPU with such initial data and ek WD Ek=N.

The following theorem holds

Theorem 1 ([6]). Fix an arbitrary Tf > 0. Then there exists �� such that, if � <

�� then for all times t fulfilling

jtj � Tf

�3
(13)

one has

sup
j

ˇ̌
rj.t/ � rKdV

j .t/
ˇ̌ � C�3 ; (14)

where rj WD qj � qjC1 and similarly for rKdV
j . Furthermore, there exists � > 0 s.t.,

for the same times, one has

ek.t/ � C�4e�� jkj C C�5 : (15)

Exploiting known results on the dynamics of KdV (and of Hill’s operators [34]) one

gets the following corollary which is directly relevant to the FPU paradox.

Corollary 1. Fix a positive R and a positive Tf ; then there exists a positive constant

��, with the following property: assume � < �� and consider the FPU system with

an initial datum fulfilling

e1.0/ D e�1.0/ D R2�4 ; ek.0/ 
 ek.t/
ˇ̌
tD0

D 0 ; 8jkj 6D 1 : (16)

Then, along the corresponding solution, Eq. (15) holds for the times (13).
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Furthermore there exists a sequence of almost periodic functions fFk.t/g such

that one has

ˇ̌
ek.t/ � �4Fk.t/

ˇ̌ � C2�5 ; jtj � Tf

�3
: (17)

Remark 1. One can show that the following limit exists

NFk WD lim
T!1

1

T

Z T

0

Fk.t/dt : (18)

It follows that up to a small error the time average of ek.t/ relaxes to the limit

distribution obtained by rescaling NFk. Of course NFk is exponentially decreasing with

k, but one can also show that actually one has NFk 6D 0 8k 6D 0

The strong limitation of the above results rests in the fact that they only apply

to initial data with specific energy of order �4, thus they do not apply to the

thermodynamic limit.

4.2 Longer Time Scales at Smaller Energy

We present here a result by Hairer and Lubich [24] which is valid in a regime of

specific energy smaller then that considered above, but controls the dynamics for

longer time scales. The proof of the result is based on the technique of modulated

Fourier expansion developed by the authors and their collaborators. In some sense

such a technique can be considered as a variant of classical perturbation theory. The

key tool that they use for the proof is an accurate analysis of the small denominators

entering in the perturbative construction.

To be precise [24] deals with the case of periodic boundary conditions.

Theorem 2. There exist positive constants R�, N�, T, with the following property:

consider the FPU system with an initial datum fulfilling (16) with R < R�. Then,

along the corresponding solution, one has

ek.t/ � R2�4R2.jkj�1/ ; 8 1 � jkj � N ; 8jtj � T

�2R5
; (19)

where as above ek WD Ek=N.

It is interesting to compare the time scale covered by this theorem with the time

scale of Corollary 1. It is clear that the time scale (19) is longer than (13) as far as

R < N�1=5 (20)
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(where we made the choice Tf WD T), namely in a regime where the specific energy

goes to zero faster than in Theorem 1.

One has also to remark that in Theorem 2 one gets an exponential decay of the

Fourier modes valid for all k’s (the term of order �5 present in (15) is here absent).

4.3 Toda Lattice

It is well known that close to the FPU lattice there exists a remarkable integrable

system, namely the Toda lattice [25, 38] whose Hamiltonian is given by

HToda.p; q/ D 1

2

X

j

p2
j C

X

j

eqj�qjC1 ; (21)

so that one has

HFPU.p; q/ D HToda.p; q/ C .A � 1/H2.q/ C H.3/.q/;

where

Hl.q/ WD
X

j

.qj � qjC1/lC2

.l C 2/Š
; 8l � 2 ;

H.3/ WD �
X

l�3

Hl ;

which shows the vicinity of HFPU and HToda.

The idea of exploiting the Toda lattice in order to deduce information on the

dynamics of the FPU chain is an old one; however in order to make it effective,

one has first to deduce information on the dynamics of the Toda lattice itself, and

this is far from trivial. The most obvious way to proceed consists in constructing

action angle coordinates for the Toda lattice and using them to study the dynamics

of the Toda lattice itself. An important result along this program was obtained

by Henrici and Kappeler [26, 27] who constructed action angle coordinates and

Birkhoff coordinates (a kind of cartesian action angle coordinates) showing that, for

any N, such coordinates are globally analytic (see Theorem 3 below for a precise

statement). However the construction by Henrici and Kappeler is not uniform in the

number N of particles, thus it is not possible to exploit it directly in order to get

results in the limit N ! 1.

Results on the behaviour of the integrable structure of Toda for large N have been

recently obtained in a series of papers [2–5, 15]. In particular in [2–4], exploiting

ideas from [15], it has been shown that, as N ! 1, the actions and the frequencies

of the Toda lattice are well described by the actions and the frequencies of a couple

of KdV equations, at least in a regime equal to that of Theorem 1, namely of specific

energy of order �4.
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Further results (exploiting some ideas from [2–4]) directly applicable to the

FPU metastability problem have been obtained in [5] and now we are going to

present them. In [5] the regularity properties of the Birkhoff map, namely the map

introducing Birkhoff coordinates for the FPU lattice, have been studied and lower

and upper bounds to the radius of the ball over which such a map is analytic have

been given.

To come to a precise statement we start by recalling the result by Henrici and

Kappeler.

Consider the Toda lattice in the submanifold (9) and introduce the linear Birkhoff

variables

Xk D Opkp
!k

; Yk D p
!k Oqk ; jkj D 1; : : : ; N I (22)

using such coordinates, H0 takes the form

H0 D
NX

jkjD1

!k

X2
k C Y2

k

2
: (23)

With an abuse of notations, we re-denote by HToda the Hamiltonian (21) written in

the coordinates .X; Y/.

Theorem 3 ([28]). For any integer N � 2 there exists a global real analytic

canonical diffeomorphism ˚N W R2N � R2N ! R2N � R2N, .X; Y/ D ˚N.x; y/

with the following properties:

(i) The Hamiltonian HToda ı ˚N is a function of the actions Ik WD x2
kCy2

k

2
only, i.e.

.xk; yk/ are Birkhoff variables for the Toda Lattice.

(ii) The differential at the origin is the identity: d˚N.0; 0/ D 1l.

In order to state the analyticity properties fulfilled by the map ˚N as N ! 1 we

need to introduce suitable norms: for any � � 0 define

k.X; Y/k2
� WD 1

N

X

k

e2� jkj !k

jXkj2 C jYkj2
2

: (24)

We denote by B� .R/ the ball in C2N � C2N of radius R and center 0 in the topology

defined by the norm k:k� . We will also denote by B�
R WD B� .R/ \ .R2N � R2N/ the

real ball of radius R.

Remark 2. We are particularly interested in the case � > 0 since, in such a case,

states with finite norm are exponentially decreasing in Fourier space.

The main result of [5] is the following Theorem.
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Theorem 4 ([5]). Fix � � 0 then there exist R; R0 > 0 s.t. ˚N is analytic on B�
�

R
N˛

	

and fulfills

˚N

�
B�

�
R

N˛

��
� B�

�
R0

N˛

�
; 8N � 2 (25)

if and only if ˛ � 2. The same is true for the inverse map ˚�1
N .

Remark 3. A state .X; Y/ is in the ball B� .R=N2/ if and only if there exist

interpolating periodic functions .ˇ; ˛/, namely functions s.t.

pj D ˇ

�
j

N

�
; qj � qjC1 D ˛

�
j

N

�
; (26)

which are analytic in a strip of width � and have an analytic norm of size R=N2.

Thus we are in the same regime to which Theorem 1 apply.

Theorem 4 shows that the Birkhoff coordinates are analytic only in a ball of

radius of order N�2, which corresponds to initial data with specific energy of

order N�4.

We think this is a strong indication of the fact that standard integrable techniques

cannot be used beyond such a regime.

As a corollary of Theorem 4, one immediately gets that in the Toda Lattice

the analogous of the FPU metastable packet of modes is actually stable, namely

it persists for infinite times. Precisely one has the following result.

Corollary 2. Consider the Toda lattice (21). Fix � > 0, then there exist constants

R0; C1; such that the following holds true. Consider an initial datum fulfilling (16)

with R < R0. Then, along the corresponding solution, one has

ek.t/ � R2.1 C C1R/�4e�2� jkj ; 8 1 � jkj � N ; 8t 2 R : (27)

We recall that this was observed numerically by Benettin and Ponno [7, 12].

One has to remark that according to the numerical computations of [12], the packet

exists and is stable over infinite times also in a regime of finite specific energy

(which would correspond to the case ˛ D 0 in Theorem 4). The understanding of

this behaviour in such a regime is still a completely open problem.

Concerning the FPU chain, Theorem 4 yields the following result.

Theorem 5. Consider the FPU system. Fix � � 0; then there exist constants R0
0;

C2; T; such that the following holds true. Consider a real initial datum fulfilling (16)

with R < R0
0, then, along the corresponding solution, one has

ek.t/ � 16R2�4e�2� jkj ; 8 1 � jkj � N ; jtj � T

R2�4
� 1

jA � 1j C C2R�2
: (28)
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Furthermore, for 1 � jkj � N, consider the action Ik WD x2
kCy2

k

2
of the Toda lattice

and let Ik.t/ be its evolution according to the FPU flow. Then one has

1

N

NX

jkjD1

e2� jkj!kjIk.t/ � Ik.0/j � C3R2�5 for t fulfilling (28): (29)

So this theorem gives a result which covers times one order of magnitude longer

then those covered by Theorem 1. Furthermore the small parameter controlling the

time scale is the distance between the FPU and the Toda

This is particularly relevant in view of the fact that, according to Theorem 1 the

time scale of formation of the packet is ��3, thus the present theorem shows that

the packet persists at least over a time scale one order of magnitude longer then the

time needed for its formation.

5 An Averaging Theorem in the Thermodynamic Limit

In this section we discuss a different approach to the study of the dynamics of the

FPU system, which allows to give some results valid in the thermodynamic limit.

Such a method is a development of the one introduced in [17] in order to deal with

a chain of rotators (see also [19]), and developed in [18] in order to study a Klein

Gordon chain.

We consider here the case of Dirichlet boundary conditions and endow the phase

space with the Gibbs measure �ˇ at inverse temperature ˇ, namely

d�ˇ.p; q/
defD e�ˇHFPU.p;q/

Z.ˇ/
dpdq I (30)

where as usual

Z.ˇ/ WD
Z

e�ˇHFPU.p;q/dpdq

is the partition function (the integral is over the whole phase space). In the following

we will omit the index ˇ from �. Given a function F on the phase space, we define

hFi defD
Z

Fd� ; (31)

kFk2 defD hF2i 

Z

jFj2d� ; (32)

�2
F

defD kF � hFik2 ; (33)
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which are called respectively the average, the L2 norm and the variance of F. The

time autocorrelation function CF of a dynamical variable F is defined by

CF.t/ WD hF.t/Fi � hF2i ; (34)

where F.t/ WD F ı Gt and Gt is the flow of the FPU system.

Remark that the Gibbs measure is asymptotically concentrated on the energy

surface of energy N=ˇ. Thus, when studying the system in the above setting one is

typically considering data with specific energy equal to ˇ�1.

Let g 2 C2.Œ0; 1�;RC/ be a twice differentiable function; we are interested in the

time evolution of quantities of the form

˚g
defD

NX

kD1

Ek g

�
k

N C 1

�
:

We are thinking of a function g with a small support close to a fixed wave vector
Nk=.N C 1/, so that the quantity ˚g represents the energy of a packet of modes

centered at Nk=.N C 1/.

The following theorem was proved in [31]

Theorem 6. Let g 2 C2.Œ0; 1�IRC/ be a function fulfilling g0.0/ D 0. There exist

constants ˇ� > 0, N� > 0 and C > 0 s.t., for any ˇ > ˇ� and for any N > N�, any

ı1; ı2 > 0 one has

�
�ˇ̌

˚g.t/ � ˚g.0/
ˇ̌ � ı1�˚g

	 � ı2 ; jtj � ı1

p
ı2

C
ˇ (35)

where, as above, ˚g.t/ D ˚g ı Gt.

This theorem shows that, with large probability, the energy of the packet of modes

with profile defined by the function g remains constant over a time scale of order

ˇ�1. We also emphasize that the change in the quantity ˚g is small compared to

its variance, which establishes the order of magnitude of the difference between the

biggest and the smallest value of ˚g on the energy surface.

Theorem 6 is actually a corollary of a result controlling the evolution of the

time autocorrelation function of ˚g. We point out that, in some sense the time

autocorrelation function is a more important object, at least if one is interested in

the problem of the dynamical foundations of thermodynamics. Indeed, it is known

by Kubo linear response theory, that the specific heat of system in contact with a

thermostat is the time autocorrelation function of its energy. Of course we are here

dealing with an isolated system, so the previous theorem is not directly relevant to

the problem of foundations of statistical mechanics.

Remark 4. Of course one can repeat the argument for different choices of the

function g. For example one can partition the interval Œ0; 1� of the variable k=.N C1/

in K sub-intervals and define K different functions g.1/; g.2/; : : : ; g.K/, with disjoint
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support, each one fulfilling the assumptions of Theorem 6, so that one gets that

the quantities ˚g.l/
defD P

k g.l/
�

k
NC1

	
Ek are adiabatic invariants, i.e. the energy

essentially does not move from one packet to another one.

The scheme of the proof of Theorem 6 is as follows: first, following standard

ideas in perturbation theory (see [23]), one performs a formal construction of an

integral of motion as a power series in the phase space variables. As usual, already

at the first step one has to solve the so called homological equation in order to find

the third order correction of the quadratic integral of motion. The solution of such

an equation involves some small denominators which are usually the source of one

of the problems arising when one wants to control the behaviour of the system in

the thermodynamical limit. We show that, if one takes as the quadratic part of the

integral the quantity ˚g, then every small denominator appears with a numerator

which is also small, so that the ratio is bounded. The subsequent step consists in

adding rigorous estimates on the variance of the time derivative of the so constructed

approximate integral of motion. This allows to conclude the proof.

We emphasize that this procedure completely avoids to impose the time invari-

ance of the domain in which the theory is developed, which is the requirement that

usually prevents the applicability of canonical perturbation theory to systems in the

thermodynamic limit. Indeed in the probabilistic framework the relevant estimates

are global in the phase space.

6 Conclusions

Summarizing the above results, we can say that all analytical results available

nowadays can be split into two groups: the first group consisting of those which

describe the formation of the packet observed by FPU and give some estimates

on its time of persistence. Such results do not survive in the thermodynamic limit;

indeed they are all confined to the regime in which the specific energy is order

N�4. We find particularly surprising the fact that very different methods lead to the

same regime and of course this raises the suspect that there is some reality in this

limitation. However one has to say that numerics do not provide any evidence of

changes in the dynamics when energy is increased beyond this limit.

A few more comments on this point are the following ones: the limitations

appearing in constructing the Birkhoff variables in the Toda lattice (which are the

source of the limitations in the applicability of Theorem 5) are related to the fact

that one is implicitly looking for an integrable behaviour of the system, namely

a behaviour in which the system is essentially decoupled into non interacting

oscillators. On the contrary the construction leading to Theorem 1 is based on a

resonant perturbative construction in which the small denominators are not present.

The main limitation for the applicability of Theorem 1 comes from the need of
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considering the zero dispersion limit of the KdV equation. So, it is surprising that

the regime at which the two results apply is the same.

So the question on whether the phenomenon of formation of a metastable

packet persists in the thermodynamic limit or not is still completely open. An

even more open question is that of the length of the time interval over which it

persists. Up to now the best result we know is that of Theorem 5, but from the

numerical experiments one would expect longer time scales (furthermore in the

thermodynamic limit). How to reach them is by now not known.

At present the only known result valid in the thermodynamic limit is that of

Theorem 6. However we think that this should be considered only as a preliminary

one. Indeed it leaves open many important questions. The first one is the optimality

of the time scale of validity: the technique used for its proof does not extend to

higher order constructions. This is due to the fact that at order four new kinds

of small denominators appear and up to now we were unable to control them.

Furthermore there is no numerical evidence of the optimality of the time scale

controlled by such a theorem.

An even more important question is the relevance of the result for the foundations

of statistical mechanics. Indeed, one expects that the existence of many integrals of

motion independent of the energy should have some influence on the measurement

of thermodynamic quantities, for example the specific heat. In particular, since the

time needed to exchange energy among different packets of modes increases as

one lower the temperature, one would expect that some new behaviour appears as

the temperature is lowered towards the absolute zero. However up to now we were

unable to put into evidence some clear effect of the mathematical phenomenon

described by Theorem 6. This is one of the main goals of our group for the next

future.
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