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Abstract: Although DNA metabarcoding of pollen mixtures has been increasingly used in the field
of pollination biology, methodological and interpretation issues arise due to its high sensitivity.
Filtering or maintaining false positives, contaminants, and rare taxa or molecular features could lead
to different ecological results. Here, we reviewed how this choice has been addressed in 43 studies
featuring pollen DNA metabarcoding, which highlighted a very high heterogeneity of filtering
methods. We assessed how these strategies shaped pollen assemblage composition, species richness,
and interaction networks. To do so, we compared four processing methods: unfiltering, filtering
with a proportional 1% of sample reads, a fixed threshold of 100 reads, and the ROC approach
(Receiver Operator Characteristic). The results indicated that filtering impacted species composition
and reduced species richness, with ROC emerging as a conservative approach. Moreover, in contrast
to unfiltered networks, filtering decreased network Connectance and Entropy, and it increased
Modularity and Connectivity, indicating that using cut-off thresholds better describes interactions.
Overall, unfiltering might compromise reliable ecological interpretations, unless a study targets rare
species. We discuss the suitability of each filtering type, plead for justifying filtering strategies on
biological or methodological bases and for developing shared approaches to make future studies
more comparable.

Keywords: bioinformatics; cut-off thresholds; high throughput sequencing; rare taxa; false positives;
molecular ecological network

1. Introduction

The study of Plant—Pollinator interactions is pivotal to address both theoretical
and applicative issues, with important implications in evolutionary studies, conservation
biology, and agrifood security, and it is relevant for providing reliable policies of land-use
management and mitigation of anthropogenic stressors [1–4].

Traditionally, studies of Plant—Pollinator interactions have been carried out with
direct field observations of animal foraging activity during flower visitation [5,6]. However,
to unveil Plant—Pollinator interactions, it is a valuable approach to classify the pollen
grains carried on the pollinator’s body [7,8]. This pollen might be accidentally picked and
carried by flower visitors when they touch plant reproductive structures. Alternatively, it
can be actively collected and accumulated in specialized structures such as the scopa or
the corbiculae in the case of some bee species. The identification of the transported pollen
allows discovering of the foraging “history” of flower visitors prior to a sampling event.
In this way, it is possible to retrieve complete behavioural and ecological information on
flower resource exploitation and to address ecological research questions in a potentially
fine detail. To achieve pollen identification, classical palynology based on morphology
has traditionally been used. This approach could provide lot of information about sample
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composition. However, it requires high expertise with pollen morphological assessment
and, based on the operator’s expertise, can be time-consuming [9,10]. In addition, a
detailed taxonomic resolution through morphological criteria could be limited by the lack
of diagnostic characters among taxa [11]. The morphological approach could be useful
in cases of a low number of pollen samples to be identified or for gathering quantitative
information on pollen amounts [12].

In the last decade, morphological difficulties have progressively been overcome by
using DNA-based approaches that significantly reduce the time required for pollen identi-
fication [13,14]. Recent developments in DNA sequencing technologies, especially those
based on High-Throughput Sequencing (HTS), made it possible to analyse the taxonomic
composition of complex DNA matrices. For example, mixed pollen samples can be char-
acterized by using standard DNA barcode regions in a so-called DNA metabarcoding
approach [15,16]. For pollen-based studies, DNA metabarcoding is becoming a standard
approach, being employed not only for the characterization of the pollen retrieved from
animal bodies (see e.g., [17]), but also in the analysis of other kinds of samples such as
cavity nests [18], honey [19], sediments [20,21], and forensics [10,22]. In the context of
Plant—Pollinator interactions, the type of data retrieved from pollen DNA metabarcoding
could potentially shed light on the foraging habits of flower visitors or evaluate the com-
plexity and resilience of the interaction networks. This methodological revolution not only
improved ecological knowledge, but it also offered new insights into the development of
effective conservation and restoration actions [9].

Given the astounding number of sequences (hereafter “reads”) [23,24], the data from
HTS techniques require a proper bioinformatic pipeline. This is a critical phase of the dry
lab activities and usually consists in (i) the assembly of paired-end reads resulting from
bidirectional sequencing of the DNA templates, (ii) the analysis of the variation among
sequences and the clustering of molecular features (e.g., Operational Taxonomic Units
OTUs sensu [25] or Exact Sequence Variants ESVs sensu [26]), and (iii) the removal of
chimeras, artifacts, and spurious sequences [27]. However, this bioinformatics process does
not completely solve all the potential biases. Additional artifacts, hereafter referred to as
false positives, result from clusters of molecular features (i.e., OTUs and ESVs) generated as
a consequence of inaccuracies during field sampling operations (e.g., cross-contamination
among samples), laboratory processing (e.g., contamination of DNA extraction or am-
plification reagents), or from some steps of the bioinformatics analysis (e.g., taxonomic
misidentification of molecular features) [24,28]. The presence of infrequently detected
molecular features or taxa might add further background noise in the output of a DNA
metabarcoding pipeline. Given the extreme sensitivity of DNA metabarcoding, it is crucial
to filter out false positives and contaminants, which could significantly alter the reconstruc-
tion of samples composition. Moreover, rare features or taxa should be treated consciously
during the postsequencing bioinformatics processing and possibly removed, depending on
the study aims and the required sensitivity of the analysis [27–30]. However, the resulting
species composition of a sample could be biased by the disapplication or misapplication
of cut-off thresholds. For instance, DNA metabarcoding could detect the occurrence of
particularly infrequent taxa, which may be of interest in some specific cases (e.g., tracking
the origin of a sample based on rare pollen). On the other hand, these may produce a
great impact on the ecological interpretation of results, especially when reads counts are
converted into presence/absence data. Such a situation could lead to the overestimation
of the generalist attitudes of the investigated pollinators and to misleading ecological
interpretations.

The application of an appropriate cut-off threshold to filter the DNA metabarcoding
data from the signal of possible false positives and rare taxa or features is therefore a
critical step of the bioinformatics pipeline. Although some studies have not applied any
cut-off threshold, different approaches for filtering false positives and rare taxa or features
have been used so far in recent literature. In practice, some studies applied fixed cut-off
thresholds, such as a defined number of reads used as reference level for accepting a
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molecular feature or taxon in a sample (e.g., [31]). Other studies employed proportional
cut-off thresholds, where molecular features or taxon are discarded if represented by less
than a certain percentage of the total reads of a sample (e.g., [32]). Alternatively, statistical
approaches have been used for estimating a variable threshold based on Receiver Operator
Characteristic (ROC) curves, thus depending on the distribution of reads among molecular
features or taxa within a sample [17]. This highlights the absence of agreement on whether
and how to prune a DNA metabarcoding output. However, to date, no studies have
investigated the effect of each of the abovementioned filtering strategies on molecular
datasets concerning pollen samples (or honey) and Plant—Pollinator interactions.

In this study, we investigated and summarized the criteria and the strategies adopted
for filtering out the false positives and rare features or taxa, focusing on published studies
on pollen DNA metabarcoding. Moreover, we aimed at evaluating the direct ecological
effects of the most commonly applied filtering methods on publicly available datasets of
pollen/honey DNA metabarcoding. To do this, we measured how unfiltering or different
cut-off thresholds impacted (i) plant species composition and species richness and (ii) the
interactions among plants and pollinators described by network indexes. With these aims,
we evaluated how the different filtering strategies could alter the identification of species
and of interactions, and thus the ecological interpretation of the results.

2. Methods
2.1. Filtering Taxa from Pollen DNA Metabarcoding: Literature Overview

To revise the types of filtering and the methodology applied in the scientific literature
used to remove (or not) false positives and rare taxa or features, bibliographical research
was conducted in Scopus using the following keywords: “DNA” + “metabarcoding” +
“pollen”. Within the results of the query, we selected only peer-reviewed original published
articles that dealt with pollination, pollinator diet (pollen and honey), and plant—pollinator
interactions by using a DNA metabarcoding approach (we excluded reviews, news, views,
opinions, perspectives papers, and studies on airborne pollen or other pollen matrices
when unrelated to pollinators). We selected studies spanning between 2012, when the term
DNA metabarcoding was proposed for the first time [16], and 2021 (last update on 9 May
2021). The retrieved articles were used to create a summarizing table (Table 1) including:
(i) the type of sample from which the DNA was extracted, (ii) the studied organism, (iii)
the details of the filtering applied, and (iv) the DNA barcoding markers used to achieve
the amplification reaction.
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Table 1. List of published studies subjected to review, including details on referencing, used samples in the DNA metabarcoding analysis, the organisms from which the pollen samples
were collected, and the cut-off threshold with a brief explanation of the filtering actually applied. Additional information is given on the DNA barcode marker(s) used and on whether the
dataset was included in the present study.

Source Type of Sample Organism Type of Cut-Off
Threshold

Detail on the Application of the
Cut-Off Threshold

DNA Barcode
Marker(s)

Nonfiltered Dataset
Used in This Study

Baksay et al. (2020) [33] Mock pollen samples - Mixed
Sequences with a count of ≤10,

with no variants and with a count
<5% of the total reads per sample

ITS1, trnL

Bänsch et al. (2020) [34] Pollen from legs Apis mellifera, Bombus
spp. (Apidae) Not specified - ITS2

Bell et al. (2017b) [35] Mock pollen samples - Negative controls

Removed identifications
occurring at a frequency lower
than those obtained in negative

controls (isolation negative
control = 34 reads, PCR negative

control = 30 reads)

ITS2, rbcL

Bell et al. (2017a) [12] Pollen from the whole
body

Hymenoptera:
Anthophila Negative controls

Removed taxonomic
classifications recorded from

reads fewer than the maximum
number of a negative control

(21-936 rbcL and 42-1124 ITS2)

ITS2, rbcL X

Bell et al. (2019) [24] Mock pollen samples - Negative controls

Threshold based on the maximum
sequence count from any negative
control (11 and 34 ITS2, 8 and 30

rbcL)

ITS2, rbcL X

Beltramo et al. (2021) [36] Honey Apis mellifera
(Apidae) Proportional Removed OTUs with <0.2% of the

reads trnL

Biella et al. (2019) [17] Pollen from legs Bombus terrestris
(Apidae)

Variable:
statistical-based

Receiver Operating
Characteristics (ROC) ITS2 X

Danner et al. (2017) [37] Pollen from legs Apis mellifera
(Apidae) Proportional Removed species <1% of the

relative reads count per sample ITS2

DeVere et al. (2017) [38] Honey Apis mellifera
(Apidae) Not specified - rbcL X

Elliott et al. (2021) [39] Pollen from legs or
scopa

Hymenoptera:
Apidae, Halictidae,

Megachilidae,
Colletidae

Proportional Removed taxa <1% of all reads per
plant taxon for each bee species rbcL
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Table 1. Cont.

Source Type of Sample Organism Type of Cut-Off
Threshold

Detail on the Application of the
Cut-Off Threshold

DNA Barcode
Marker(s)

Nonfiltered Dataset
Used in This Study

Fahimee et al. (2021) [40] Pollen from the whole
body

Heterotrigona itama
(Apidae) Fixed—Not proportional Removed OTUs with <2 reads trnL

Galliot et al. (2017) [41] Pollen from the whole
body

Diptera,
Hymenoptera,

Coleoptera,
Lepidoptera

Negative controls Threshold of 3 reads based on
negative controls ITS2

Gous et al. (2019) [42] Pollen from the scopa Megachile venusta
(Megachilidae) Proportional Removed taxa <0.1% of total reads

number per sample ITS1, ITS2, rbcL

Gous et al. (2021) [43] Pollen from the scopa Megachile spp.
(Megachilidae) Proportional Removed taxa <0.1% of total reads

number per sample ITS2

Hawkins et al. (2015) [44] Honey Apis mellifera
(Apidae) Fixed—Not proportional Removed taxa <10 sequences rbcL

Jones et al. (2021) [45] Honey Apis mellifera
(Apidae) Fixed—Not proportional Singletons discarded ITS2, rbcL X

Khansaritoreh et al.
(2020) [46] Honey Apis mellifera

(Apidae) Not specified - ITS2, rbcL

Leidenfrost et al. (2020) [47] Pollen from legs Bombus terrestris
(Apidae) Not specified - ITS2

Lucas et al. (2018a) [48] Pollen from the whole
body Syrphidae Not specified - rbcL

Lucas et al. (2018b) [49] Pollen from the whole
body Syrphidae Not specified - rbcL

Lucek et al. (2019) [50] Honey Apis mellifera
(Apidae) Fixed—Not proportional 5 reads per sequences cluster ITS2 X

Macgregor et al. (2019) [51] Pollen from proboscid Lepidoptera (moths) Negative controls Threshold of 50 reads based on
positive and negative controls rbcL

Nürnberger et al. (2019) [52] Pollen from legs Apis mellifera
(Apidae) Not specified - ITS2

Peel et al. (2019) [53] Pollen from legs Apis mellifera, Bombus
spp. (Apidae) Proportional Removed taxa <1% of the total

assigned long reads per sample Genomic DNA

Piko et al. (2021) [54] Pollen from the whole
body

Bombus terrestris,
B.pascuorum,

B.lucorum (Apidae)
Mixed

Removed taxa <100 reads each
sample and <1% of the total read

count per sample
ITS2
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Table 1. Cont.

Source Type of Sample Organism Type of Cut-Off
Threshold

Detail on the Application of the
Cut-Off Threshold

DNA Barcode
Marker(s)

Nonfiltered Dataset
Used in This Study

Pornon et al. (2016) [55]
Mock pollen samples,

Pollen from whole
body

Hippeastrum sp.,
Chrysanthemum sp.,
Lilium sp.; Diptera,

Hymenoptera,
Coleoptera,
Lepidoptera

Mixed
Removed taxa <0.1% of the most
common sequences and <10 reads

each sample
ITS1, trnL

Pornon et al. (2017) [56] Pollen from the whole
body

Diptera,
Hymenoptera,

Coleoptera,
Lepidoptera

Fixed—Not proportional Sequences less than <1000 ITS1, trnL

Pornon et al. (2019) [31] Pollen from the whole
body

Syrphidae,
Empididae, Apidae Fixed—Not proportional Sequences less than <1000 ITS1, trnL

Potter et al. (2019) [57] Pollen from the whole
body

Hymenoptera:
Anthophila Not specified - rbcL

Richardson et al. (2015a) [19] Pollen from legs Apis mellifera
(Apidae) Not specified - ITS2

Richardson et al. (2015b) [58] Pollen from legs Apis mellifera
(Apidae) Not specified - ITS2, rbcL, matK

Richardson et al. (2019) [59] Pollen from legs Apis mellifera
(Apidae) Proportional

Removed genera identified with
only one marker and taxa with

proportion of sequences <0.01%
ITS2, rbcL, trnL, trnH

Richardson et al. (2021) [60] Pollen from legs Apis mellifera
(Apidae) Proportional

Removed genera identified with
only one marker and with <0.001

proportional abundance of
sequences

ITS2, rbcL, trnL

Sickel et al. (2015) [61] Pollen from nest
Osmia bicornis,
O.truncorum

(Megachilidae)
Proportional Removed taxa <0.1% of reads per

sample ITS2

Simanonok et al. (2021) [62] Pollen from legs Bombus affinis
(Apidae) Mixed Removed OTU <10 reads and taxa

with <2% reads per sample ITS2

Smart et al. (2017) [63] Pollen from legs Apis mellifera
(Apidae) Fixed—Not proportional Removed taxa <50 reads ITS1, ITS2

Suchan et al. (2019) [64] Pollen from the whole
body

Vanessa cardui
(Lepidoptera) Fixed—Not proportional Removed taxa <100 reads per

sample ITS2

Swenson et al. (2021) [65] Mock pollen samples - Mixed

Removed taxa <0.1% of the
sample reads of ITS1 and ITS2;

removed taxa occurring at a lower
frequency than those obtained

from negative controls

ITS1, ITS2, rbcL
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Table 1. Cont.

Source Type of Sample Organism Type of Cut-Off
Threshold

Detail on the Application of the
Cut-Off Threshold

DNA Barcode
Marker(s)

Nonfiltered Dataset
Used in This Study

Tanaka et al. (2020) [66] Pollen from
honeycomb

Apis mellifera
(Apidae) Not specified - rbcL

Tommasi et al. (2021) [67] Pollen from the whole
body

Hymenoptera:
Anthophila, Diptera:

Syrphidae
Not specified - ITS2 X

Tremblay et al. (2019) [68] Pollen from legs Apis mellifera
(Apidae) Fixed—Not proportional Removed taxa <100 reads ITS2

Vaudo et al. (2020) [69] Pollen from nest Osmia cornifrons
(Megachilidae) Proportional

Removed taxa <1% sample read
abundance and genera <0.3% of

the total read counts per site
across all sites

ITS2 X

Wilson et al. (2021) [32] Pollen from nest Tetragonula
carboniaria (Apidae) Proportional

Removed taxa identified in blank
controls with abundance <1% of
the relative read abundance in

real sample

ITS2, rbcL
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2.2. Evaluating the Consequences of Filtering (or Not) Taxa

To evaluate how the application (or not) of different cut-off thresholds could lead
to changes in the results and their interpretation, we retrieved publicly available DNA
metabarcoding datasets based on the ITS2 DNA barcode marker (that is the most used
in pollen DNA metabarcoding studies) from the previously mentioned literature search.
Only those datasets which were not preliminarily filtered were kept for our analysis (see
Table 1). In detail, we retrieved published nonfiltered datasets (hereafter named as “no cut”,
equivalent to a 0-reads threshold), and we derived several subsequent filtered versions
by separately applying three different approaches for filtering false positives and rare
taxa or features. The filtering approaches were chosen based on utilization frequency in
the literature or on their biological reliability (i.e., the ROC approach). Specifically, the
first method is based on a fixed threshold, and it removes from a sample the molecular
features or taxa represented by less than 100 reads (hereafter “fixed 100 reads”), thus
mimicking studies where exclusion thresholds are based on reads found in sequencing
blanks (e.g., [12]). The second method is proportional and discards what is represented
in a sample by a number of reads lower than 1% of the total sample count of reads
(hereafter “proportional 1%”) as used for example in [37]. The third one estimates a cut-
off threshold accounting for the distribution of reads among molecular features, thus
providing a customized proportion for each sample through the statistical ROC curve
approach, as indicated in [17] (hereafter “statistical ROC”). This strategy is commonly
applied in several disciplines, and it was specifically proposed for the detection of false
positives [70]. We applied the ROC approach in the same way as it was done in the pollen-
based literature, thus following the procedure of [17]; see Supplementary Material Text S1
for a script, although different implementations of ROC are possible and they might affect
the final estimations. We associated a variable coded as “negative” or “positive” to each
taxon of a sample. Specifically, “negative” was assigned if its reads were 0; otherwise,
“positive”. We fitted a Generalized Linear Regression with an overdispersed Poisson
distribution (quasi-Poisson) for each sample to model the distribution of the amount
of reads per taxa (quantitative response) between “positives”/“negatives” (categorical
predictor). Fitting a regression is a necessary step for later estimating the false positives of
a sample that otherwise are usually not known in DNA metabarcoding data. The predicted
reads distribution was processed with the pROC package [71] (in the R environment) that
uses the roc function to build ROC curves between the reads per sample estimated by
the GLM and true “positives”/“negatives” (those used to fit the regression). The optimal
threshold of reads below which taxa should be excluded was obtained with the function
coord in the same package based on the Youden’s J statistic [72] (see [71] for further details).

For each dataset, changes in plant species composition and species richness (that was
standardized for the maximum number of species observed in a sample) for each pollen
sample was evaluated in response to the type of filtering used (i.e., no cut, fixed 100 reads,
proportional 1%, and statistical ROC). For the comparison of pollen species composition,
we used a Permutational Manova based on distance matrices (with Jaccard distance index),
which is an analysis of variance that uses a permutations test with pseudo-F ratio [73].
This analysis was performed through the adonis function with R-package vegan [74], where
each dataset was analysed independently. The effect of the different cut-off thresholds on
species richness was evaluated through a Generalized Linear Mixed Model (GLMM) with
species richness as response variable and the type of filtering used (i.e., no cut, fixed 100
reads, proportional 1%, and statistical ROC) as covariate. The identity of the pollinator
animal nested within the dataset was set as a random effect.

Network indices describing the interactions between plants and pollinators were
calculated. Specifically, the analysed indices were Connectance (i.e., proportion of possible
links actually recorded), Modularity (i.e., a measure of how interactions are distributed into
modules, where species within modules mostly interact with each other), and Shannon
Entropy (i.e., a measure of the overall diversity and complexity in the interactions of a
network). Furthermore, at the level of a single individual pollinator, the Connectivity
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index was calculated. This index of centrality quantifies the putative central role of an
individual or of a species in connecting different parts of the whole network [75]. It could
provide information in ranking individuals or species according to their contribution to
the stability of the interactions and the cohesion among network participants. Network
indices were calculated through the R-package bipartite (specifically for Connectance,
Modularity, and Entropy) and rnetcarto (for Connectivity) [76,77]. For this purpose, only
those datasets originated from direct characterization of pollinator foraging were used,
excluding a study on mock samples [24] and a study with an incomparable experimental
design [38] that instead were used in the other analyses. Changes in interaction indices
at the network level (Connectance, Modularity, Entropy) were evaluated through either
a Linear or a Generalized Mixed Model depending on the distribution and range of the
response variable. The type of filtering used was included in the models as covariate, and
the dataset identity, as random effect. The individual level (i.e., samples) Connectivity was
analysed as response variable, the type of filtering used, as covariate in interaction with the
normalized degree of the pollinator individuals. This normalized degree was calculated as
the number of plant species found in each sample divided by the overall number of plants.
The inclusion of the normalized degree in this analysis allowed us to describe the variation
of Connectivity across the entire specialism–generalism spectrum of an individual and in
relation to the applied filtering approach. In this case, the sample identity nested within
the dataset was included in the model as a random effect.

For all the mentioned regression analyses, a comparison among the adopted strategies
of filtering was performed through a post hoc test (Tukey’s HSD test). All the statistical
analyses explained above were carried out with R (Version 3.6.1 of R).

3. Results
3.1. Filtering Taxa from Pollen DNA Metabarcoding: Literature Overview

Overall, 43 research articles on pollen DNA metabarcoding were found and reviewed
concerning the strategy of filtering of false positive and rare taxa or features (Table 1).
About one quarter of studies did not apply any filtering approach, while the remaining
ones applied at least a filtering type. Specifically, the proportional cut-off threshold was the
most applied method (11 studies, 28%). In these studies, the cut-off threshold calculated
as 1% of the number of reads produced by each sample was the most recurrent. Other
filtering types were less common. Only one study used a statistical approach (i.e., the ROC
curve; [16]) to set a proportional cut-off threshold. Nine studies (21%) used a fixed number
of reads chosen arbitrarily as cut-off threshold (e.g., 100 or 1000 reads), while five other
studies (12%) used the number of reads produced by negative controls to set the threshold
to remove false positives and rare taxa or features. Finally, five studies (12%) used more
than one filtering approach simultaneously. Details and a brief explanation of the strategies
applied to set the cut-off threshold for the reviewed studies are reported in Table 1.

Twenty-eight published studies (65%) recovered the pollen samples from the whole
insect’s body or from specific body parts such as scopa and corbiculae. Four studies (9%)
focused on pollen stored in cavity nests or in hives, while five (12%) investigated mixed
pollen mock samples to address methodological issues (e.g., the optimization of DNA
extraction or quantitative use of DNA metabarcoding reads). Finally, six studies (14%)
analysed the taxonomic composition of honey by looking at the pollen grains contained in
it.

Most of these studies (65%) used the ITS2 marker as a DNA barcode region for species
identification, although in some these cases (28%), this marker was combined with other
barcode loci (e.g., rbcL).

3.2. Evaluating the Consequences of Filtering (or Not) Taxa

From the 43 reviewed studies, eight nonfiltered and publicly available ITS2 DNA
metabarcoding datasets were retrieved. Among these, four were obtained by processing the
pollen found in nests or carried on insects’ bodies [17,35,67,69]. Three datasets contained
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data from honey samples [38,45,50], and one was obtained from the analysis of pollen
mock samples [24].

Significant changes in the composition of pollen samples depending on the filtering
approach are summarized in Table 2. Specifically, the main differences occurred between
the no-cut and all the other filtering approaches, in all datasets (Table 2). Minor changes in
community composition among fixed 100 reads, proportional 1%, and statistical ROC were
only occasionally found (Table 2).

Table 2. Comparison of cut-off thresholds applied on pollen species composition of samples from several datasets, based on
Permutational Manova. Dataset names (entitled with main author and year; see Table 1 for further details) are reported
in the first column “Dataset”. The column “F-value” reports the pseudo-F ratio value and the associated significance p
(α = 0.05). Significant cases are reported in bold.

Dataset F-Value
Significance

p of Full
Model

Significance p of Pairwise Comparisons

Proportional
1% vs. No

Cut

Fixed 100
Reads vs.
No Cut

Proportional
1% vs. Fixed

100 Reads

Statistical
ROC vs. No

Cut
Statistical

ROC vs. 1%
Statistical

ROC vs. Fixed
100 Reads

Tommasi et al.
(2021) [67] 0.819 0.806 1 1 1 0.031 0.314 0.045
Bell et al.

(2017a) [12] 87.264 0.001 0.001 0.001 0.14 0.001 0.001 0.001
Bell et al.

(2019) [24] 39.817 0.001 0.001 0.001 0.01 0.001 0.658 0.001
Biella et al.
(2019) [17] 29.671 0.001 0.001 0.001 0.035 0.001 0.725 0.008
Jones et al.
(2021) [45] 6.538 0.001 0.001 0.001 0.944 0.001 0.233 0.855

Lucek et al.
(2019) [50] 5.465 0.001 0.001 0.001 0.038 0.001 0.975 0.058

DeVere et al.
(2017) [38] 2.415 0.024 0.004 0.212 0.538 0.003 0.704 0.152

Vaudo et al.
(2020) [69] 11.553 0.001 0.001 0.001 0.556 0.001 1 0.578

Plant species richness inferred from pollen samples was significantly influenced by
the filtering approach (X3

2 = 468.22, p < 0.001). Specifically, higher species richness per
sample was found in the unfiltered type (i.e., no cut) compared to all the other filtering
approaches. A significant difference between the proportional 1% and the statistical ROC
approaches was also found, with the latter reducing species richness even more (Figure 1a,
Table 3).

Table 3. Statistical comparison of the selected cut-off thresholds (i.e., no cut, fixed 100 reads, pro-
portional 1%, statistical ROC) on plant species richness, Connectance, Modularity, and Entropy of
interaction networks after Tukey’s pairwise comparison test (α = 0.05). Significant differences are
highlighted in bold.

Variable Comparison Estimated
Difference Significance p

Species richness No cut—Fixed 100 reads 0.383 <0.001
Proportional 1%—Fixed 100 reads 0.043 0.178
Statistical ROC—Fixed 100 reads −0.013 0.934

Proportional 1%—No cut −0.340 <0.001
Statistical ROC—No cut −0.396 <0.001

Statistical ROC—Proportional 1% −0.055 0.040
Connectance No cut—Fixed 100 reads 0.660 0.008

Proportional 1%—Fixed 100 reads −0.068 0.991
Statistical ROC—Fixed 100 reads −0.131 0.941

Proportional 1%—No cut −0.729 0.004
Statistical ROC—No cut −0.792 0.001

Statistical ROC—Proportional 1% −0.063 0.993



Diversity 2021, 13, 437 11 of 19

Table 3. Cont.

Variable Comparison Estimated
Difference Significance p

Modularity No cut—Fixed 100 reads −0.678 <0.001
Proportional 1%—Fixed 100 reads 0.000 1
Statistical ROC—Fixed 100 reads 0.259 0.176

Proportional 1%—No cut 0.679 <0.001
Statistical ROC—No cut 0.937 <0.001

Statistical ROC—Proportional 1% 0.259 0.177
Entropy No cut—Fixed 100 reads 1.189 <0.001

Proportional 1%—Fixed 100 reads −0.191 0.819
Statistical ROC—Fixed 100 reads −0.411 0.237

Proportional 1%—No cut −1.380 <0.001
Statistical ROC—No cut −1.600 <0.001

Statistical ROC—Proportional 1% −0.220 0.746
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Figure 1. Changes in plant species richness (a), Connectance (b), Modularity (c), and Entropy (d) of plant—pollinator
networks after using different cut-off thresholds (i.e., no cut, fixed 100 reads, proportional 1%, statistical ROC; see methods
for details). Significances are reported in Table 3.

Significant effects of filtering on the network level indices were found on Connectance
(X3

2 = 11.642, p = 0.008), Modularity (X3
2 = 25.273, p < 0.001), and Entropy (X3

2 = 29.907,
p < 0.001). Connectance (Figure 1b, Table 3) and Entropy indices (Figure 1d, Table 3)
were significantly higher, while Modularity significantly lower (Figure 1c, Table 3) in the
unfiltered (i.e., no cut) compared to all the other filtering approaches. In addition, in most
cases, the ROC filtering changed the network indices even more than the “proportional
1%” and “fixed 100 reads” approaches (Figure 1c,d).

The individual level index of Connectivity showed a significant effect of the interaction
between the filtering approach and the normalized degree index (X3

2 = 609.2, p < 0.001).
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Specifically, the Connectivity was lower in the unfiltered (no cut) compared to all the other
filtering types for any value of the normalized degree (i.e., for both generalist and specialist
individual pollinators; Figure 2, Table 4).
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Figure 2. Response of the individual-level index of Connectivity to normalized degree in statistical
interaction with the type of filtering (i.e., no cut, fixed 100 reads, proportional 1%, statistical-based
ROC).

Table 4. Comparison of Connectivity index after different filtering types in statistical interaction with
normalized degree of individual pollinator (Tukey’s multiple comparison test, α = 0.05). Significant
cases are highlighted in bold.

Filtering Type x Normalized Degree Estimated Difference Significance p

No cut—Fixed 100 reads −11.896 <0.001
Proportional 1%—Fixed 100 reads 0.279 0.756
Statistical ROC—Fixed 100 reads 0.694 0.456

Proportional 1%—No cut 12.175 <0.001
Statistical ROC—No cut 12.590 <0.001

Statistical ROC—Proportional 1% −0.414 0.662

4. Discussion

Since its “formalization” in 2012, the DNA metabarcoding approach has revolution-
ized the field of biodiversity investigation, and it has even provided insights for studying
biological interactions. Its application has rapidly spread and has contributed to research
contexts such as microbiome [78,79], food [80–82], trophic ecology [83,84], and environ-
mental DNA-based analyses [85]. In spite of its usefulness, methodological choices during
the whole DNA metabarcoding pipeline and specifically the bioinformatics processing
could deeply influence the obtained results and their interpretation [86–88]. Therefore,
in this study, we attempted to evaluate the effects of the approach used to filter DNA
metabarcoding outputs. Specifically, we focused on the analysis of DNA metabarcoding of
pollen in the framework of plant—pollinator interactions, being aware that the outputs of
our investigation could be extended to the other typologies of DNA metabarcoding-based
studies. Although the issue of removing false positives and rare taxa or features is quite
neglected in the scientific literature in relation to the bioinformatic pipeline (but see [28,30]),
the choices made when analysing a HTS output could generate relevant effects on the
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community composition, species richness, and species interactions. These aspects would
deeply impact the ecological outcomes of the investigated system.

The high potential of using DNA metabarcoding outputs for pollen analysis would
also merit a robust bioinformatic pipeline that should be coherent and comparable among
different studies. Instead, our literature overview highlighted a high heterogeneity of filter-
ing approaches adopted to remove false positives and infrequent taxa. This is particularly
appreciable even among studies that focused on similar analytical matrices (e.g., pollen
from animal bodies). Surprisingly, a similarly high heterogeneity in filtering approaches
emerges from studies using morphological palynology ([7] used a minimum number of
10 pollen grains, while [89,90] used a threshold of 5, and [91,92] retain species with a
frequency of pollen grains above 10%, and [93], above 1%). In the case of DNA metabar-
coding of pollen, our literature review showed that the proportional approach is the most
recurrent, that is, to remove those molecular features or species present in the sample with
reads under a certain proportion of the total reads per sample. This is quite expected,
as it is an approach also well represented in other studies using DNA metabarcoding
(e.g., [83,94,95]). Probably due to the ease of calculating proportions, they bear advantages
when comparing different samples or when samples would be too depauperated after a
fixed raw number of reads. However, we found no concordance between different authors
about the exact amount of proportion to be used as threshold, and surprisingly about the
reasons justifying the choice of a particular percentage or another one (e.g., [61] used 0.1%,
while [59] used 0.01%; see Table 1). It should be noticed that Peel and colleagues [53], while
analysing samples of pollen prepared ad hoc with a known composition, highlighted that
false positives occurred at a rate lower than 1% per sample, thus supporting this filtering
strategy. On the other hand, caution should be recommended prior to generalizing the 1%
threshold as a universally effective filtering practice; for samples represented by extremely
high total reads count, it might be better to use a lower value. Conversely, 1% threshold can
also be ineffective with almost empty samples, such as in the case of a fly that has never
visited a flower but that was contaminated by airborne pollen. In such cases, it might be
worth using even higher threshold values to better safeguard from misleading information.

The second most recurrent cut-off approach found in literature is based on a fixed
number of read counts, used as general threshold across all samples (e.g., 50 as in [63], 100
as in [68]; see Table 1), the most frequent amount being 100 reads per sample. As reported
above, with this approach, the specific value of the cut-off threshold is poorly supported
by clear biological reasons. The subjectivity of authors is an important factor, and it could
be a source of biases, as, for instance, studies using high threshold values would likely
remove a high proportion of truly occurring taxa. For example, [56,57] observed how
a threshold of 1000 reads per plant species ensures the removal of the vast majority of
grass pollen species, which, however, were taxa occurring at the study areas and shall be
considered true positives from airborne pollen. Therefore, low or high cutting values could
have been chosen depending on the need to remove false positives but also on potential
environmental contamination or infrequent species. Conversely, in other studies, the fixed
cut-off value is clearly derived from sequenced negative controls. In those cases, the
maximum number of reads found in blank samples is usually set as threshold (see Table 1).
The assumption behind this approach is that it would allow removal of false positives
exclusively originating from laboratory activities (i.e., during DNA isolation, PCR, and
sequencing) [24]. However, the impact of using blanks to yield thresholds is not so clear
when it comes to rare or infrequent species that might have fewer sequencing reads than
controls, and those cases would be systematically removed by this approach. Regarding
this, the development of practices to retrieve negative controls for field contaminations (as
hypothesized in [24]) could probably further improve the potential of this filtering method,
allowing for better discrimination between species originated from field contamination
and rare but truly occurring taxa.

Unfiltering seems controversial. The literature survey (Table 1) showed that nearly a
quarter of studies did not report a filtering approach (based on reads count) and possibly
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did not filter the datasets with quantitative thresholds. However, in some of these cases,
a manual filtering was used to remove the species that were not plausible in the study
area [48,49,57,67], while in others, the concordance between multiple DNA barcoding
markers is employed [58], thus at least partly following the recommendations to remove
false positives and possibly rare taxa or features [96]. The analyses of our study clearly
suggest that using a cut-off threshold for filtering the HTS output leads to significant
differences compared to the unfiltered output matrix, especially in species composition,
species richness and plant—pollinator interactions, impacting the ecological interpretation
of the data. Our results indicated that, firstly, any of the cut-off thresholds yielded a
community composition different from those obtained through unfiltered data. Moreover,
filtering decreased species richness in comparison to nonfiltered data. These differences
between unfiltered and filtered data could even be amplified under particular research
aims. For example, in studies focusing on pollinator foraging behaviours, the unfiltering
could overestimate the number of plants foraged by an animal, and it could obviously
lead to an overestimation of generalism, foraging niche, and delivered ecosystem service
of pollination. Another example derives from studies on honey composition, where a
no-cut strategy could mislead on the purity of products, with consequences that could
involve commercial issues. In our investigation, the filtering of false positives or rare taxa
impacted not only the species composition and richness but also the ecological networks
of species interactions. Specifically, we detected significant differences when comparing
networks calculated from filtered to nonfiltered data. The implications of this network
variation could potentially be very high, as, for instance, network Entropy, Connectance,
Modularity, and Connectivity refer to network stability and resilience, to the ability to
buffer perturbations, and to the stabilizing role of central hub species [40,97–99]. Thus, the
higher the difference between filtering or unfiltering strategies, the higher the potential for
misleading ecological results obtained from the networks associated to each filtering type.
For instance, our results showed that filtering decreased network Connectance and Entropy.
This aligns well with the lower species richness per sample found in filtered datasets,
and it can be explained by a decrease in network number of realized links (i.e., fewer
plant species found on pollinator bodies or samples). In other words, by decreasing the
numerosity of links, filtering likely yields networks with slightly higher element-specific
linkage compared to nonfiltered networks. From an ecological point of view, this translates
in a lower chance of overestimating generalism after filtering. Moreover, filtering increases
Modularity and Connectivity of networks. This result further clarifies that removing
ambiguous taxa decreases the ubiquity of links among elements, thus allowing for better
emergence of ordered patterns of well-defined compartments of interactions (Modularity)
and important hub species connecting them (characterized by a higher Connectivity). As a
consequence, filters seem to increase the ecological reliability when describing how flower
resources are used by foragers (i.e., Modularity) and the importance of certain species in
contributing to interactions stability (i.e., Connectivity). In other words, unfiltering returns
networks richer in links, which tend to be ubiquitously distributed among elements, with
the high potential of overestimating foraging strategies and network resilience. Based on
these considerations, researchers could prefer filtering their data. One exception to this
would be when the role of rare plant species is targeted in the study [100]. In this case,
manually checking an unfiltered dataset for unplausible taxa could limit the amount of false
negatives. Moreover, integrating DNA metabarcoding data with traditional (quantitative)
morphology of pollen could improve results reliability and interpretation [101]. This could
possibly control for the presence of spurious information from DNA metabarcoding.

Among the filtering strategies analysed here, the statistical ROC approach appears
to be the most conservative one, since it tends to yield the lowest species richness, the
highest Modularity, and the lowest Connectance and Entropy. Thus, ROC-based filtering
might remove not only the false positives from samples but also the infrequent species.
It should be noted that ecological patterns emerging or confirmed even in a conservative
framework are more likely to be trustworthy. Even if this approach has rarely been applied,
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to date, in the pollen DNA metabarcoding literature (Table 1), it was specifically developed
to distinguish “true signals” from “noise” [102] in molecular biology and could constitute
a promising avenue for processing data of pollen DNA metabarcoding. For instance, it
has been used in other DNA-based research fields [103,104], such as for eDNA where
it is proved to increase the reliability of data [105]. However, it would be promising
to investigate how different parametrizations of the ROC approach would impact the
estimations of cutting thresholds. Because ROC is a conservative approach, it may be
favoured in studies willing to highlight ecologically meaningful species composition,
richness, and interactions, while sacrificing the pursuit of high species richness based on
keeping elements of rarity, potential contaminants, and false positives.

5. Conclusions

Our survey shed light on the possible consequences of using (un)filtering strategies
of pollen DNA metabarcoding data in ecological and biological research. To date, this
powerful molecular tool still requires the development of shared approaches on the bioin-
formatic filtering of molecular features. This would improve the provision of reliable,
repeatable, and comparable data. In particular, we recommend that researchers (i) always
make both raw unfiltered and filtered data easily accessible, thus improving the possi-
bility of exploring large amounts of data and, consequently, the growing rate of human
knowledge in strategic research fields such as pollination ecology. The authors should
(ii) apply filtering from false positives and possibly also from infrequent species, depending
on research aims. Moreover, (iii) the specific type of filtering must be clearly justified under
a biological perspective, evaluating the efficiency and universality of the loci selected
for species identification and the consequent taxonomic resolution of molecular feature
assignments. Furthermore, (iv) the specific strategy has to be decided based on whether the
research aim would benefit from a conservative filtering. Without an appropriate filtering,
DNA metabarcoding reads converted to presence/absence data certainly yield spurious
results [30,106,107]. To avoid this, conservative approaches like the ROC filtering must
be preferably adopted. Otherwise, the application of a filter either based on a percentage
with a clear biological support or based on a fixed value from negative controls is possible,
although greater awareness should be placed on the risk of excluding only false positives
while keeping environmental contamination and infrequent species.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/d13090437/s1, Text S1: Script for estimating filtering thresholds with an approach based on
ROC curves.
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