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Abstract: Noise annoyance depends not only on sound energy, but also on other features, such as
those in its spectrum (e.g., low frequency and/or tonal components), and, over time, amplitude fluc-
tuations, such as those observed in road, rail, or aircraft noise passages. The larger these fluctuations,
the more annoying a sound is generally perceived. Many algorithms have been implemented to
quantify these fluctuations and identify noise events, either by looking at transients in the sound
level time history, such as exceedances above a fixed or time adaptive threshold, or focusing on the
hearing perception process of such events. In this paper, four criteria to detect sound were applied to
the acoustic monitoring data collected in two urban areas, namely Andorra la Vella, Principality of
Andorra, and Milan, Italy. At each site, the 1 s A-weighted short LAeq,1s time history, 10 min long, was
available for each hour from 8:00 a.m. to 7:00 p.m. The resulting 92-time histories cover a reasonable
range of urban environmental noise time patterns. The considered criteria to detect noise events are
based on: (i) noise levels exceeding by +3 dB the continuous equivalent level LAeqT referred to the
measurement time (T), criteria used in the definition of the Intermittency Ratio (IR) to detect noise
events; (ii) noise levels exceeding by +3 dB the running continuous equivalent noise level; (iii) noise
levels exceeding by +10 dB the 50th noise level percentile; (iv) progressive positive increments of
noise levels greater than 10 dB from the event start time. Algorithms (iii) and (iv) appear suitable
for notice-event detection; that is, those that (for their features) are clearly perceived and potentially
annoy exposed people. The noise events detected by the above four algorithms were also evaluated
by the available anomalous noise event detection (ANED) procedure to classify them as produced
by road traffic noise or something else. Moreover, the assessment of the sonic environment by the
Harmonica index was correlated with the single event level (SEL) of each event detected by the four
algorithms. The threshold value of 8 for the Harmonica index, separating the “noisy” from the “very
noisy” environments, corresponds to lower SEL levels for notice-events as identified by (iii) and
(iv) algorithms (about 88–89 dB(A)) against those identified by (i) and (ii) criteria (92 dB(A)).

Keywords: road traffic noise; noise event detection; sound source recognition; annoyance; anoma-
lous events

1. Introduction

Urbanization is expected to continue in the future, causing an increase in both the
number of people living in cities and the spatial densities of different noise sources. The
noises in urban areas are composed of several sources (e.g., technological and anthropic
sources), most of them masking natural sounds (e.g., geophonic and biophonic sounds),
throughout the day. Among the abovementioned sources, road traffic noise is often pre-
dominant in urban areas, since it is widespread throughout space and time, impacting the
people who are exposed to it. There is clear evidence in the literature that noise causes
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adverse effects on the health and well-being of citizens, e.g., sleep disturbance, annoyances,
and cardiovascular diseases [1–3].

Because of this trend, many efforts have been implemented to mitigate noise impact
and its harmful effects, as recommended by the environmental noise directive (END)
2002/49/EC) on the assessment and management of environmental noise [4]. Noise
mapping of main sources (transport and industries) is one END requirement; its reporting
to the European Commission is mandatory at least every five years. Noise maps represent—
in a graphical way, through colored scale intervals—the spatial distributions of specific
sound metrics, usually long-term averaged values such as day–evening–night level Lden
in dB(A) introduced by the END [4]. They are primarily obtained by numerical models
of outdoor sound propagation; many efforts were made in recent years, in Europe, to
harmonize these models [5]. The role of sound measurements is, therefore, rather limited,
even if it is important to tune the model to the real environmental setting. We should note
that these measurements require appropriate instrumentation and trained technicians to
perform them, are time consuming and expensive, and cannot be applied on a large scale,
as needed in urban areas. Recently, technological progress has led to the realization of
low-cost acoustic sensors suitable to be arranged into wireless acoustic sensor networks
(WASNs) [6], developed under the paradigms of smart cities and the Internet of Things
(IoT). Thus, large amounts of noise data have become available for the analysis of urban
noise—more detailed than that based on long-term noise metrics, such as those provided
by noise maps.

In 2020, a major change had occurred, due to severe restrictions on individual mobility
issued by governments to tackle the COVID-19 pandemic. These restrictions have reshaped
the acoustic environments in cities, and sources previously masked by road traffic noise
have become audible to populations [7]. Notwithstanding the reduction of background
noise levels, frequent occurrences of sound events have emerged, produced by different
sources; including road vehicle passages, it is recognized that, for the same environmental
conditions, human hearing is more sensitive to sound fluctuations over time rather than
steady sounds (e.g., see [8]). The importance of sound’s temporal structure, its audibility,
and noticeability was addressed in some articles [9,10]. The more frequent presence of
sound events may increase the adverse health effects on a population, causing, for example,
sleep disturbance and annoyance. Unfortunately, noise maps are not suitable tools to
provide information on such critical issues because, as already mentioned, they refer to
long-term average noise metrics, such as Lden. Some studies have dealt with this topic,
e.g., [11]; moreover, different road classifications were obtained when considering noise
events only [12] or together with sound energy [13].

Thus far, several methods and algorithms have been proposed to detect sound events
in environmental noises. Many of them look at transients in the sound level time history,
such as exceedances above fixed or time adaptive thresholds [14–17]; others focus on
modeling the hearing perception process of such events [9]. A review of the wide range
of algorithms, protocols, or criteria reported on in the literature for identifying noise
events within a time series of A-weighted sound levels, usually from road, rail, or aircraft
sources, is given in [15]. In particular, in [16], a small set of parameters were identified,
which may prove useful in the construction of event-based indicators supplementary to
energy-equivalent measures of road traffic noise. A further approach is the detection
of noise “notice-events”, which, for their features, are clearly perceived and potentially
affect “exposed people”. On this issue, the model proposed in [9] considers aspects of
human auditory perception, such as attention strength and habituation of the time constant;
it is grounded in the hypothesis that long-term perception of environmental sound is
determined primarily by short notice-events. Thus, the detection of noise events is strongly
required to guide noise mitigation actions; it clearly requires automatic procedures [18].

Within the above-mentioned framework, another issue that should be further de-
veloped is the recognition of the source generating the sound event. Several studies on
soundscape have shown that the human response to sound events depends not only on the
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level, but also on the type of noise source—natural sources are seen as more acceptable
than the mechanical sources. Once more, automatic procedures that are able to detect
the type of the sound source, discriminating road traffic from other sources, are strongly
needed. The procedure developed in [19] showed promising results and was applied in
some noise monitoring networks [20].

In this paper, criteria to detect sound events were applied to the acoustic monitoring
data collected in urban areas. Moreover, to automatically recognize the sound source
producing the noise event, the anomalous noise event detection (ANED) procedure [19]
was applied to estimate whether the source was a road traffic noise or another source. The
outcomes of both detection and recognition procedures can provide useful hints to improve
the efficiency of noise mitigation actions.

Noise event detection algorithms were applied to the sound monitoring data taken
at three sites in Andorra la Vella, Principality of Andorra [21], and three sites in Milan,
Italy [22]. At each site, the 1 s A-weighted short LAeq,1s time history, without any temporal
weighting (e.g., fast or slow), lasting 10 min, was available for each hour, from 8 a.m. to
7 p.m. The 92 collected outdoor LAeq,1s time histories covered a reasonable range of urban
environmental noise time patterns within the time period examined.

Another important issue was to quantify the adverse health effects on the population
exposed to the noise events and the sound energy. For such a task, it was fundamental to
relate the outcomes from the population with noise descriptors. Many studies and reviews
deal with this important topic (e.g., see [3]). Regarding annoyance from transportation
noise, a large study performed in Switzerland led to exposure–response relationships
of the percentage of highly annoyed people (%HA), as functions of road traffic, railway,
and aircraft noise exposure, measured a the day–evening–night level (Lden), and used to
clarify the degree to which the acoustic indicator intermittency ratio (IR)—which describes
the eventfulness of a noise situation [17]—predicts noise annoyance [23]. Within this
framework, one interesting indicator is the Harmonica index [24], developed to provide
information on environmental noise that is closer to what people perceive, making it
easier for the general public and authorities to be understood. This indicator considers
both the continuous and the sporadic nature of noise, by including the background noise
(BGN) and the noise event (EVT) components. The indicator was computed for the 92-time
histories and the threshold value of 8; separating a “noisy” environment from a “very
noisy” environment was related to the sound exposure level (SEL) of the events detected
by the four algorithms.

2. Materials and Methods
2.1. Noise Monitoring Sites and Data Set

The noise monitoring data at each of the six sites were formed by the time series
values of 1 s A-weighted short LAeq,1s, without any temporal weighting (e.g., fast or slow),
lasting 10 min, collected at each hour from 8:00 a.m. to 7:00 p.m. All data were taken in
non-adverse meteorological conditions, as reported by the operator in the Andorra sites
and by Milan’s meteorological data, provided by the Lombardy Agency for Environmental
Protection. The 92 collected outdoor LAeq,1s time histories covered a reasonable range of
urban environmental noise time patterns, considering the different time zones, in terms of
the continuous equivalent level LAeq,10min, from 55 to 78 dB(A).

2.1.1. Andorra la Vella, Principality of Andorra

Three locations were selected; they were already under consideration by the Min-
istry of Environment for future urban noise interventions and noise mitigation measures
(Figure 1). The locations were [21]:

• Site “Aa” (Figure 1a), connecting the three main roads of Andorra’s capital, showing
the heaviest and loudest road traffic during rush hour time, especially on weekdays; it
is the main noise source, with rather constant, high sound levels, and low variations
over time, compared to the other areas during the rush hours.
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• Site “Ab” (Figure 1b), being the intersection between the main road from the capital to
the north valley and a wide pedestrian and commercial area. This is one of the most
common promenade points for residents and tourists. In this area, the noise sources
are “wider” than site (a) throughout the day; it recently became the largest pedestrian
area in the country.

• Site “Ac” (Figure 1c), the crossing of a main road and the final part of a pedestrian and
commercial street, similar to site (b), but not totally pedestrianized, since it depends
on traffic lights for people to cross the road. Thus, a high variability of noise sources
during the day was observed, as in site (b), but with the additional—and presumably
not usual—street works occurring during the noise monitoring days.

Figure 1. Sites in Andorra la Vella selected for noise monitoring (satellite images from Google Earth Pro 7.3.4.8248) [21]:
(a) Site “Aa” Ctra. de l’Obac/Carrer de la Unió; (b) Site “Ab” Av. Carlemany/Carrer de la Valira; (c) Site “Ac” Av. Meritxell
no. 73.

At each site, the environmental noise was monitored by an operator on two days
(Wednesday, 21 March 2018 and Sunday, 15 April 2018), in order to obtain data on a week-
day and during weekend, considering that specially traffic presents different intensities,
depending on traffic to school and work or leisure. At all the three sites, the source recog-
nition provided by the ANED procedure, since it was in its preliminary application, was
manually validated by an expert.

2.1.2. Milan, Italy

Three sites were selected from the permanent continuous noise monitoring network
operating in the northern part of the city, in a strongly built-up area with high population
density and a widespread road network [22]. They represent roads with low, medium, and
high traffic flow (Figure 2). In particular, site Ml139 (Figure 2a) is a local road surrounded
by a school and residential buildings with low (l) traffic flow (<1000 vehicles in 24 h); site
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Mm129 (Figure 2b) is also a local road surrounded by a school, residential buildings, a
chemical industry, and a park, but with a moderate (m) traffic flow (1000–10,000 vehicles in
24 h). Site Mh117 (Figure 2c) is near a thoroughfare road with high (h) capacity traffic flow
(>10,000 vehicles in 24 h). At each site, the unattended monitoring data were collected at
the same date (Tuesday, 26 March 2019).

Figure 2. Sites in Milan selected for noise monitoring (satellite images from Google Earth Pro 7.3.4.8248) [22]: (a) Site
“Ml139” Via Leonardo Bruni; (b) Site “Mm129” Via Benigno Crespi; (c) Site “Mh117” Viale Enrico Fermi.

2.2. Data Processing
2.2.1. Detection of Noise Events

Individual events in the sound pressure level (SPL) time history of the environmental
noise are usually identified by an exceedance-based detection algorithm. As detailed in
the extensive literature review reported in [15], the onset of a noise event is detected when
the instantaneous SPL exceeds a threshold level Lβ for a duration τ in s, and with an
emergence of at least E dB. Noise events are only retained when the time gap (or noise free
interval) since the previous detected event is larger than τg [16].

A script running in the “R” environment, version 3.6.3 [25], was developed to import
each of the 1 s short LAeq time series as input in a text file format, formed by four columns;
that is date, time, short LAeq,1s in dB(A) at 1 s interval, and a label indicating the corre-
sponding source, namely road traffic noise (RTN) or something else (ANE; anomalous
noise event), as recognized by the ANED procedure [19].

Among the several criteria proposed to detect noise events, the following were consid-
ered (Figure 3), consider the outcome of the extensive studies carried out in [15,16]:

1. Noise levels exceeding the threshold Lβ = LAeqT + C dB, according to the formulation
of the intermittency ratio (IR) [17], where LAeqT is the continuous equivalent level
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referred to the measurement time T and 3 dB is the value chosen for the constant term
C [17] (Figure 3a). This algorithm is denoted as “IR” hereinafter.

2. Noise levels exceeding the threshold Lβ = LAeq,run + 3 dB, where LAeq,run is the
running LAeq (Figure 3b). This algorithm is denoted as “Lr” hereinafter.

3. Noise levels exceeding the threshold Lβ = LA50 + 10 dB, namely the NAL50E10
metric [16], where LA50 is the 50th noise level percentile; that is the noise level
exceeded for 50% of the measurement time T (Figure 3c). This algorithm is denoted
as “L50” hereinafter.

4. SPL onset, as sum of progressive positive SPL increments, greater than 10 dB from
the event start time τs (Figure 3d). This algorithm is denoted as “O10” hereinafter.

Figure 3. Parameters of the sound event detection for each algorithm: (a) algorithm “IR” based on IR; (b) algorithm “Lr”
based on LAeq,run; (c) algorithm “L50” based on LA50; (d) algorithm “O10” based on the sum of progressive increments
of SPL. τ is the duration of the sound event, starting at time τs and ending at time τe, and τg is the time gap between
sound events.

Each of the above algorithms were applied to detect noise events in the 1 s short
LAeq,1s time series with the following options:

• Without any condition on the event duration τ and time gap τg (or noise free interval)
between adjacent events, hereinafter denoted as NC.

• Event duration τ > 2 s and time gap τg equal to 5 (T5) and 10 (T10) s, hereinafter
denoted as C.
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When a sound event was detected, in order to assign the relevant source, the labels
provided by the ANED procedure at each second along the duration of the sound event
itself were considered. The source was assigned according the following rules:

• Unique source labels, assigned source corresponding to that indicated by all the labels
when they were always the same (either road traffic noise (RTN), or something else,
i.e., anomalous noise event (ANE).

• Mixed source labels, assigned source corresponding to that indicated by the majority
of the labels when they differed.

• Equal number of RTN and ANE labels, no source assignment.

In the algorithm Lr the term of +3 dB added to the running LAeq,run was chosen
because this quantity roughly corresponds to a perception of a clear difference in SPL.
The algorithms L50 and O10 seem suitable for detection of “notice-events”; that is, those
potentially attracting attention and likely causing reactions by exposed people, for instance
in terms of annoyance and sleep interference [23,26]. The algorithm O10 differs from the
others because it only considers progressive positive SPL increments and not the decreasing
SPL transients. The onset of 10 dB is often used as exceedance threshold to detect sound
events, such as in the NAL50E10 index [16] and in the Italian legislation on railway and
aircraft noise [27]. We should note that a difference of 10 dB in SPL roughly corresponds to
a doubling of loudness.

The output of the data processing included the following outcomes:

• The continuous equivalent level LAeq,T in dB(A), referred to measurement time T of
10 min.

• The running equivalent level LAeq,run in dB(A).
• The standard deviation (sdLA) and the kurtosis (kLA) of the 1 s short LAeq levels

during the measurement time T to describe the level distribution.
• The noise climate, as difference between the percentiles levels LA10 and LA90 in dB(A)

along the measurement time T.
• The intermittency ratio (IR) in %, calculated according to [17].
• The event-related component EVT of the Harmonica index [24], representing the

acoustic energy provided by noise peaks that emerged above the background noise,
and calculated as follows:

EVT = 0.25·
(

LAeq,T − LA95eq
)
, (1)

where LA95eq is the equivalent background noise level, evaluated every second by the
noise level exceeded 95% of the time during the previous T/6 interval, where T is the
measurement time. We should note that the Harmonica index was formulated to provide
information that is easier to understand by people and more closely reflects the noise
nuisances, as perceived by the public.

• The total number of noise events detected by the four algorithms with (C) and without
(NC) conditions on event duration and time gap.

• Start time τs, duration τ, SEL and LAeq levels of each detected noise event.
• Number of detected noise events.
• Number of noise events due to mixed sources as recognized by the ANED proce-

dure [19].
• Number of noise events due to road traffic noise recognized as unique labels or

majority of mixed labels as provided by the ANED procedure [19].
• Number of noise events with an equal number of RTN and ANE labels.
• Plot of 1 s short LAeq levels versus time, with indication of the detected noise events

and the recognized source for each algorithm.

An example of the plots obtained from the data processing is given in Figure 4, regard-
ing the noise monitoring at site Mh117 taken at 9:10 a.m., with a standard deviation sdLA of
LAeq,1s equal to 3.8 dB(A), and kurtosis kLA = 3.1, close to the value of 3 corresponding to
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the normal distribution of SPLs. As shown in Figure 4, the detected noise events depend on
the applied algorithms, as they can be different in number, detected at different times, can
have different durations, and a set of source labels that lead to different source associations;
moreover, all of the methods focus on different characteristics and features from the types
of noise. For instance, setting the time gap between events τg = 5 s and the event duration
τ > 2 s, algorithm IR detects 7 noise events (6 RTN + 1 ANE), algorithm Lr detects 5 noise
events (3 RTN + 1 ANE + 1 not associated source), algorithm L50 detects 1 ANE event,
and algorithm O10 detects 3 RTN events. Thus, it is clear that the choice of the noise event
detection algorithm is important.

Figure 4. Example of plots obtained from the data processing setting time gap between events τg = 5 s and event duration
τ > 2 s. Red and black dots mark events due to road traffic and other sources, respectively; blue cross mark event with not
assigned source: (a) algorithm “IR”; (b) algorithm “Lr”; (c) algorithm “L50”; (d) algorithm “O10”.

2.2.2. Recognition of the Noise Event Source

The ANED algorithm, designed in the framework of the DYNAMAP (dynamic noise
mapping) project [28], is a two-stage decision scheme, as shown in Figure 5. At the first
level, ANED classifies the acoustic signal at a frame-level base. It is based on a two-class
detection-by-classification [29] approach, using an artificial intelligence algorithm trained
by means of acoustic models from representative real-life data collected from both suburban
and urban environments. In order to generate the frame-level label every 30 ms, the acoustic
signal is analyzed by means of a feature extraction stage. This short-term windowing of the
acoustic signal is performed by means of a Hamming window of 30 ms, with an overlap
between windows of 50% of the signal, followed by a feature extraction step based on the
Mel-frequency cepstral coefficient (MFCC) [30]. This feature extraction is followed by a
Gaussian mixture model (GMM)-based binary classification stage [28]. The second level, a
high-level decision, based on a majority vote criterion, had to be conducted every second,
and it considered the aggregated values of the frame-level decisions, in a predefined
time window, to generate a binary output (RTN/ANE). Both levels require a real-time
implementation in-situ in the sensor gathering the data in order to provide the final binary
label at the moment of the LAeq evaluation. The ANED algorithm was trained using more
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than 150 h of expert-manually labeled data, coming from the 24 sensors, deployed by
the DYNAMAP project in Milan, with around 8% of anomalous noise events (e.g., bird
singing, sirens, dogs barking, horns, trams). The diversity coming from 24 sensors—some
from narrow streets, others in wide ones, some close to parks, and others close to schools—
gave the dataset a variate group of examples of urban sounds. The ANED procedure
was already tested and validated in a real environment in the framework of the LIFE
DYNAMAP project [28,31,32]. A further study [29] showed an accuracy of more than 70%
in urban environment ANE detection, measured at frame level (using a 30-ms window
analysis), by means of a 10-fold cross-validation test to ensure the stability of the results.
The performance of the ANED algorithm was also validated in other environments [18],
considering, in addition, the acoustic salience of the ANEs in real-operation [33]. The
validation was inspired on the manual evaluation process by experts, considering the most
salient events present in the measurements, with respect to the LAeq1s. The algorithm
detected—for the events catalogued as high-salience—all of the present airplane noise,
more than 90% of works, and people talking, and for the mid-high salience, more than
84% of airplane noise, nearly 80% of works, and more than 60% of people talking, to list a
few examples. The accuracy results of the ANED algorithm is especially improved with
a high-level stage, and it shows good performance, especially when dealing with high
salience events.

Figure 5. ANED computation block diagram, with a first filtering stage, a feature extraction algorithm
(MFCC) every 30-msec window, and a frame-level classifier, with a final high-level decision based on
a majority vote every 1 s.

3. Results and Discussion

Figure 6 reports the box plots of the acoustic parameters LAeq, the noise climate
LA10–LA90, the intermittency ratio (IR), and the event component (EVT) of the Harmonica
index for all 92-time series, together with the estimated normal distribution curve on the
left side of each box plot. The variability is fairly large and covers a reasonable range of
environmental noise time patterns, usually occurring in urban areas. The available data did
not include the spectrum and the overall unweighted dB level and, therefore, the analysis
was limited to dB(A) data. However, these types of data are, very often, the output of the
noise monitoring networks usually installed in urban areas, mainly to check the compliance
of the environmental noise with the limits issued by the legislation.

Since, at least at the Milan sites, it was not possible to check whether the noise events
detected by the four algorithms matched with their real occurrences during the monitoring
time, the analysis was aimed to compare the considered detection algorithms. The number
of events detected by each of the four algorithms is reported in the box plots of Figure 7,
for every site and day of monitoring.
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Figure 6. Box plots of the acoustic parameters observed for all 92-time series: (a) the equivalent level LAeq; (b) the noise
climate LA10–LA90; (c) the intermittency ratio (IR); (d) the event component (EVT) of the Harmonica index.

Figure 7. Box plots of the number of noise events detected by each algorithm for every site and day
of monitoring (W = Wednesday, S = Sunday, T = Tuesday).

Algorithms IR and Lr provided rather similar results, the number of events detected
by the former (1889 events) being −6% on average less than those (2010) detected by the
latter. A large difference was observed in the number of noise events detected by the above
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two algorithms and those recognized by the algorithms L50 (685, the lowest number of
events) and O10 (929). These two algorithms on average detected −59% of events than
those recognized by IR and Lr. The algorithms IR and Lr in their definition differed for the
threshold, with the former having a fixed value equal to LAeqT, referred to the measurement
time (T), and the latter an adaptive value equal to the running LAeq,run, while for both,
the exceedance (E) above the threshold was equal to 3 dB. In particular, IR detected a
higher number of events than that obtained for Lr for 42% of the 92-time histories of 1 s
A-weighted short LAeq, a lower one for 50%, and the same number for 8%. As mentioned
above, the algorithms L50 and O10 seem suitable to detect notice-events; the former having
a fixed threshold equal to LA50 + 10 dB and the latter looking at a sum of progressive
increases of the A-weighted SPL greater than 10 dB from the SPL at the event start time
τe (see Figure 3). We should note that, in Milan, the site with high traffic flow (MhT)
showed a number of events lower than those observed for moderate (MmT) and low (MlT)
traffic flow for all algorithms. This was most likely due to the louder background noise
produced by the higher number of vehicles passing-by, as confirmed by the intermittency
ratio equal to 31.3%, on average, for MhT, compared to 44.3% and 63.4% for MmT and MlT,
respectively.

Figure 8 reports the box plots of the percentage of the number of events with conditions
(C), referred to those without conditions (NC) and detected by the four algorithms, at each
site and day of monitoring in compliance with an event duration τ longer than 2 s, and a
time gap between events τg of 5 (T5) or 10 s (T10).

Figure 8. Box plots of the percentage of the number of conditioned events, referred to those “not conditioned”, and detected
by the four algorithms, at each site and day of monitoring, in compliance with an event duration > 2 s and a time gap
between events τg of 5 (T5) or 10 s (T10).
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The considered conditions for the noise events largely reduce the number of detected
noise events compared to those without conditions (NC), with the exception of the O10
algorithm. This suggests that most noise fluctuations are not recognized as noise events.

Regarding noise exposure, Figure 9 shows the box plots of SEL values for not condi-
tioned (NC) events versus conditioned events detected by the four algorithms. The SEL
values for conditioned events are generally lower than those for not conditioned (NC) ones,
as reported in Table 1, where median and median absolute deviation (MAD) values are
given for the SEL differences conditioned—not conditioned (NC) events across all data.
The largest values of MAD (1.4) are observed for the L50 algorithm. Table 1 also gives
the p-values obtained by the Wilcoxon test, a non-parametric statistical test to compare
two paired groups, reported in bold when there were non-significant differences at the 95%
confidence level observed. These non-significant differences were obtained for the L50 and
O10 algorithms, as well as for all the algorithms when comparing the SEL values obtained
with a time gap τg of 5 (T5) and 10 (T10) s.

Figure 9. Comparison of box plots of SEL for not conditioned (NC) events versus conditioned events
detected by the four algorithms.

Table 1. Differences of SEL values for conditioned (C) minus not conditioned (NC) events detected by the four algorithms;
p values reported in bold correspond to not significant differences at 95% confidence level.

IRT5 IRT10 LrT5 LrT10 L50T5 L50T10 O10T5 O10T10

Median −1.2 −1.6 −1.3 −1.6 −1.5 −1.4 −0.4 −0.9
MAD 0.4 0.7 0.6 0.8 1.4 1.4 0.4 0.9

p value

Not conditioned events
(NC) vs. Conditioned (C) 0.016 0.037 0.020 0.006 0.115 0.083 0.331 0.186

T5 vs. T10 0.528 0.646 0.894 0.705

Considering the labels provided by the ANED procedure at each second of every
single event, and the rules to assign the relevant source described in Section 2.2.1, Table 2
reports the percentage of events associated with road traffic noise (RTN), those with sources
different from RTN (ANE), mixed events where labels RTN and ANE were present, and the
source was assigned, according to the majority of labels of the same type (RTN or ANE),
and sources not assigned because of the equal number of labels RTN and ANE in the event
(reported as even).
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Table 2. Percentage of events detected by the four algorithms for the two time gaps between events
of 5 (T5) and 10 s (T10) as function of the source type.

% IRT5 LrT5 L50T5 O10T5 IRT10 LrT10 L50T10 O10T10

RTN 78.9 79.2 75.7 86.0 79.6 79.2 74.9 86.2
ANE 17.9 17.5 19.9 11.8 17.4 17.7 20.5 11.7

Mixed 33.0 34.0 40.3 30.3 32.5 33.4 39.8 31.0
Even 3.1 3.1 3.9 2.3 3.1 3.0 4.1 2.2

Road traffic noise (RTN) is largely the source producing the events; the percentage of
events for which the source is not assigned (even events) is limited to a small value (2–4%).
Events that, during their duration, showed both RTN and ANE labels, was about 1/3 of
the total.

The probability density plots of the number of events detected by each algorithm for
both time gaps in each SPL time history, reported in Figure 10, show similar shapes for the
time gaps. The sharper distribution and the lowest number of detected events is observed
for the algorithm L50, whereas O10 shows the flattest shape.

Figure 10. Density plots of the number of events detected in each SPL time history by the four algorithms for the two time
gaps between events: (a) τg = 5 s (T5); (b) τg = 10 s (T10).

Regarding the duration of the detected events, set to a minimum of 3 s, Figure 11
reports the box plot of the observed durations at each site detected by the IRT5 algorithm.
The highest median values (5 s) were observed for the sites Ac on Sunday and Ab on
Wednesday in Andorra, and site Ml139 in Milan. In all of these sites—road traffic was not
the predominant noise source.

To get more insight on the relationships among the variables, further analysis was
conducted to determine the patterns in the results obtained for the time series; that is the
matrix formed by 92 observations and 15 variables, namely the acoustic metrics (LAeq,
LA10 − LA90, IR, EVT), the descriptors of the SPL distribution (sLA and kLA), and the
number of events detected by the four algorithms for the two time gaps between events. For
this purpose, the principal component analysis (PCA) was performed using the FactoMineR
package [34], considering the Euclidean distance between scaled observations (mean = 0,
standard deviation = 1). The obtained variable correlation plot is given in Figure 12, where
the variable’s contribution at the two dimensions is reported on a colored scale. The first
two dimensions together explain a large percentage (70.15%) of the dataset variability. The
LAeq level is the variable with the lowest contribution, confirming that this metric is not
suitable to describe the presence of events.
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Figure 11. Box plots of the event durations at each site detected by the IRT5 algorithm: (a) Andorra’s sites; (b) Milan’s sites.

Figure 12. Correlation plot obtained by the PCA and variable contribution on a colored scale.

The two time gaps between events led to similar results for each event detection
algorithm; good correlation is observed between the intermittency ratio (IR) and the event
component (EVT) of the Harmonica index, as shown in Figure 13. It is also confirmed that
the algorithms L50 and O10, most likely suitable to detect notice-events, are correlated, and
differ from the algorithms based on IR and Lr (see dimension 2).

Considering the features of the Harmonica index, which accounts for the noise energy
content (by the background component, BGN), its eventfulness (by the event component,
EVT), and its ease to be understood by people, we investigated its correlation with the SEL
of events detected by the four algorithms. The results, in terms of linear regression, are
shown in Figure 14, where the yellow and red bands on the x axis report the qualitative
scale proposed for the Harmonica values [24]. All 92 SPL time histories are within the
“noisy” and “very noisy” attributes of the scale. The regression is better for IR and Lr
algorithms, very close to each other, than for L50 and O10. The threshold value of 8 for the
Harmonica index, separating the “noisy” environment from the “very noise” environment,
corresponds to different values for SEL, as shown in Figure 15. In particular, for procedures
L50 and O10, suitable to detect “notice-events”, the SEL values corresponding to the
threshold value of Harmonica are lower than those observed for the IR and Lr algorithms,
most likely due to the temporal patterns of such notice-events (e.g., high SPL rise time). The
variability range of each reported value was obtained, considering the prediction bands at
the 95% confidence level.
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Figure 13. Regression plot between intermittency ratio (IR) and the event component (EVT) of the
Harmonica index; confidence and prediction bands at 95% confidence level.

Figure 14. Regression plots between the Harmonica index and the SEL values of the events detected by the four algorithms:
(a) IR algorithm; (b) L50 algorithm; (c) Lr algorithm; (d) O10 algorithm; confidence and prediction bands at the 95%
confidence level.
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Figure 15. Linear regression fitting between the Harmonica index and the SEL values of events
detected by the four algorithms; SEL values corresponding to Harmonica index = 8 are reported,
with their variability range obtained by the prediction bands at the 95% confidence level.

4. Conclusions

The evaluation of human reactions to road traffic noise exposure might be improved by
accounting for the occurrence of noise events in addition to the use of indicators based on
sound energy. A wide range of procedures to detect such noise events were proposed in the
literature, but there is yet no generally accepted algorithms. Considering the outcomes of
the literature on this important topic, it was deemed of interest to examine four algorithms
for noise event detection, as described in Figure 3—IR, Lr, L50, and O10. To evaluate the
performance of these algorithms, they were applied to the sound monitoring data taken at
six sites in urban areas, formed by 92 LAeq1s time histories. Three options were considered
for the event detection—no condition on event duration τ and time gap between adjacent
events τg, event duration τ > 2 s with time gap τg = 5 s, event duration τ > 2 s and time
gap τg = 10 s. Moreover, the available data are able to label each 1 s short LAeq, accor
ding to the binary classification obtained by the anomalous noise event detection (ANED)
procedure, and discriminate road traffic noise (RTN) from other sources (ANE). This is a
very important feature that improves the efficiency of noise mitigation actions, focusing on
specific sources.

The results showed that the algorithms L50 and O10, owing to their definitions, seem
more suitable to detect “notice-events”, e.g., events that, for their features, are clearly
perceived and potentially affect the people who are exposed to them. These algorithms
detect much less events than those recognized by the other two algorithms, namely IR
and Lr. For all of the algorithms, the site in Milan with high traffic flow showed a number
of detected events lower than those observed for moderate (MmT) and low (MlT) traffic
flow, most likely due to the louder background noise produced by the higher number of
vehicles passing-by. The conditions required for the events largely reduced the number
of those recognized, with the exception of the O10 algorithm. In terms of noise expo-
sure, the SEL values for the conditioned events were lower than those observed for not
conditioned events. The ANED procedure showed that road traffic noise was largely
the source producing the events (more than 70% of detected events for all algorithms).
The principal component analysis showed that the two time gaps between events led to
similar results for each event detection algorithm; moreover, good correlation was observed
between the intermittency ratio (IR) and the event component (EVT) of the Harmonica
index. Regarding this index, its linear regression with the SEL of events detected by the
four algorithms provides interesting results. In particular, the value of 8 for the Harmonica
index, separating the “noisy” from the “very noise” environments on the qualitative scale,
corresponds to SEL values of about 92 dB and 88–89 dB for the IR and Lr couple and the L50
and O10 couple, respectively. This difference is most likely due to the different selections
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of events performed by the algorithms, with L50 and O10 more suitable for notice-events,
characterized by specific temporal patterns (e.g., high SPL rise time).

The results cannot be generalized and are limited to the four algorithms considered.
However, it seems that the L50 algorithm, providing the lowest number of events, is the
least sensitive in detection; the performance of the O10 algorithm is less influenced by
conditions required for noise events than observed for the other three algorithms. Beyond
that, it is important to address the need for automatic procedures to detect noise events,
include such events in sound environment descriptions, consider their harmful health
effects and improve mitigation actions.
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Acronyms

ANE anomalous noise event
ANED anomalous noise event detector
BGN background component of the Harmonica index
DYNAMAP dynamic acoustic mapping
END European noise directive 2002/49/EC
EVT event component of the Harmonica index
GMM Gaussian mixture models
IR intermittency ratio
MAD median absolute deviation
MFCC Mel-frequency cepstral coefficient
RTN road traffic noise
SEL single event level
SPL sound pressure level

References
1. European Environment Agency. Good Practice Guide on Noise Exposure and Potential Health Effects; EEA Technical Report 11/2010;

EEA: Copenhagen, Denmark, 2010.
2. Stansfeld, S.A.; Matheson, M.P. Noise pollution: Non-auditory effects on health. Br. Med. Bull. 2003, 68, 243–257. [CrossRef]

[PubMed]
3. Fritschi, L.; Brown, A.L.; Kim, R.; Schwela, D.H.; Kephalopoulos, S. Burden of Disease from Environmental Noise. Quantification of

Healthy Life Years Lost in Europe; World Health Organization Regional Office for Europe, JRC European Commission: Copenhagen,
Denmark, 2011.

4. Directive 2002/49/EC of the European Parliament and of the Council of 25 June 2002 relating to the assessment and management
of environmental noise. Off. J. Eur. Communities 2002, 189, 12.

5. Kephalopoulos, S.; Paviotti, M.; Anfosso-Lédée, F. Common Noise Assessment Methods in Europe (CNOSSOS-EU); Publications
Office of the European Union: Luxembourg, 2012.

6. Bertrand, A. Applications and trends in wireless acoustic sensor networks: A signal processing perspective. In Proceedings of the
18th IEEE Symposium on Communications and Vehicular Technology in the Benelux (SCVT), Ghent, Belgium, 22–23 November
2011; pp. 1–6.

7. Alsina Pagès, R.M.; Alias, F.; Bellucci, P.; Cartolano, P.; Coppa, I.; Peruzzi, L.; Bisceglie, A.; Zambon, G. Noise at the time of
COVID 19: The impact in some areas in Rome and Milan, Italy. Noise Mapp. 2020, 7, 248–264. [CrossRef]

http://doi.org/10.1093/bmb/ldg033
http://www.ncbi.nlm.nih.gov/pubmed/14757721
http://doi.org/10.1515/noise-2020-0021


Appl. Sci. 2021, 11, 8031 18 of 18

8. Bockstael, A.; De Coensel, B.; Lercher, P.; Botteldooren, D. Influence of temporal structure of the sonic environment on annoyance.
In Proceedings of the 10th International Congress on Noise as a Public Health Problem (ICBEN), London, UK, 24–28 July 2011;
pp. 945–952.

9. De Coensel, B.; Botteldooren, D.; De Muer, T.; Berglund, B.; Nilsson, M.E.; Lercher, P. A model for the perception of environmental
sound based on notice-events. J. Acoust. Soc. Am. 2009, 126, 656–665. [CrossRef] [PubMed]

10. Lercher, P. Environmental noise and Analysis of an Annotated health: An integrated research perspective. Environ. Int. 1996, 22,
117–129. [CrossRef]

11. Vidaña-Vila, E.; Duboc, L.; Alsina-Pagès, R.M.; Polls, F.; Vargas, H. BCNDataset: Description and night urban leisure sound
dataset. Sustainability 2020, 12, 8140. [CrossRef]

12. Brambilla, G.; Confalonieri, C.; Benocci, R. Application of the intermittency ratio metric for the classification of urban sites based
on road traffic noise events. Sensors 2019, 19, 5136. [CrossRef] [PubMed]

13. Brambilla, G.; Benocci, R.; Confalonieri, C.; Roman, H.E.; Zambon, G. Classification of urban road traffic noise based on sound
energy and eventfulness indicators. Appl. Sci. 2020, 10, 2451. [CrossRef]

14. Brown, A.L.; Banerjee, D.; Tomerini, D. Noise events in road traffic and sleep disturbance studies. In Proceedings of the Internoise
2012, New York, NY, USA, 19–22 August 2012.

15. Brown, A.L.; De Coensel, B. A study of the performance of a generalized exceedance algorithm for detecting noise events caused
by road traffic. Appl. Acoust. 2018, 138, 101–114. [CrossRef]

16. De Coensel, B.; Brown, A.L. Event-based Indicators for road traffic noise exposure assessment. In Proceedings of the Euronoise
2018, Crete, Greece, 27–31 May 2018; pp. 485–490.

17. Wunderli, J.M.; Pieren, R.; Habermacher, M.; Vienneau, D.; Cajochen, C.; Probst-Hensch, N.; Röösli, M.; Brink, M. Intermittency
ratio: A metric reflecting short-term temporal variations of transportation noise exposure. J. Expo. Sci. Environ. Epidemiol. 2016,
26, 575–585. [CrossRef] [PubMed]

18. Orga, F.; Alías, F.; Alsina-Pagès, R.M. On the impact of anomalous noise events on road traffic noise mapping in urban and
suburban environments. Int. J. Environ. Res. Public Health 2018, 15, 13. [CrossRef] [PubMed]

19. Socoró, J.C.; Ribera, G.; Sevillano, X.; Alías, F. Development of an anomalous noise event detection algorithm for dynamic road
traffic noise mapping. In Proceedings of the ICSV 2015, Florence, Italy, 12–16 July 2015.

20. Bellucci, P.; Peruzzi, L.; Zambon, G. LIFE DYNAMAP: Making dynamic noise maps a reality. In Proceedings of the Euronoise
2018, Crete, Greece, 27–31 May 2018; pp. 1181–1188.

21. Alsina-Pagès, R.M.; Almazán, R.G.; Vilella, M.; Pons, M. Noise events monitoring for urban and mobility planning in Andorra la
Vella and Escaldes-Engordany. Environments 2019, 6, 24. [CrossRef]

22. Benocci, R.; Confalonieri, C.; Roman, H.E.; Angelini, F.; Zambon, G. Accuracy of the dynamic acoustic map in a large city
generated by fixed monitoring units. Sensors 2020, 20, 412. [CrossRef] [PubMed]

23. Brink, M.; Schäffer, B.; Vienneau, D.; Foraster, M.; Pieren, R.; Eze, I.C.; Cajochen, C.; Probst-Hensch, N.; Röösli, M.; Wunderli, J.-M.
A survey on exposure-response relationships for road, rail, and aircraft noise annoyance: Differences between continuous and
intermittent noise. Environ. Int. 2019, 125, 277–290. [CrossRef] [PubMed]

24. Mietlicki, C.; Mietlicki, F.; Ribeiro, C.; Gaudibert, P.; Vincent, B. The HARMONICA project, new tools to assess environmental
noise and better inform the public. In Proceedings of the Forum Acusticum 2014, Kraków, Poland, 7–12 September 2014.

25. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria,
2018. Available online: https://www.R-project.org/ (accessed on 28 August 2021).

26. Lercher, P.; Boeckstael, A.; De Coensel, B.; Dekoninck, L.; Botteldooren, D. The application of a notice-event model to improve
classical exposure-annoyance estimation. In Proceedings of the Acoustics 2012, Hong Kong, China, 13–18 May 2012.

27. Decree of the Italian Ministry of Environment, D.M. Ambiente 16/3/1998 Tecniche di rilevamento e di misurazione
dell’inquinamento acustico (Measurement techniques of noise pollution). Gazz. Uff. 1998, 76, 15–19. (In Italian)

28. Sevillano, X.; Socoró, J.C.; Alías, F.; Bellucci, P.; Peruzzi, L.; Radaelli, S.; Coppi, P.; Nencini, L.; Cerniglia, A.; Bisceglie, A.; et al.
DYNAMAP—Development of low cost sensors networks for real time noise mapping. Noise Mapp. 2016, 3, 172–189. [CrossRef]

29. Socoró, J.C.; Alías, F.; Alsina-Pagès, R.M. An anomalous noise events detector for dynamic road traffic noise mapping in real-life
urban and suburban environments. Sensors 2017, 17, 2323. [CrossRef] [PubMed]

30. Mermelstein, P. Distance measures for speech recognition, psychological and instrumental. Pattern Recognit. Artif. Intell. 1976,
116, 374–388.

31. Alías, F.; Socoró, J.C.; Alsina-Pagès, R.M. WASN-based day–night characterization of urban anomalous noise events in narrow
and wide streets. Sensors 2020, 20, 4760. [CrossRef] [PubMed]

32. Orga, F.; Socoró, J.C.; Alías, F.; Alsina-Pagès, R.M.; Zambon, G.; Benocci, R.; Bisceglie, A. Anomalous noise events considerations
for the computation of road traffic noise levels: The DYNAMAP’s Milan case study. In Proceedings of the 24th International
Congress on Sound and Vibration, ICSV 2017, London, UK, 23–27 July 2017.

33. Alsina-Pagès, R.M.; Alías, F.; Socoró, J.C.; Orga, F. Development and validation of an anomalous noise events detector focused
on salient events through an urban and suburban WASN adapted to real-operation. In Proceedings of the ICSV27, online,
11–16 July 2021.

34. Lê, S.; Josse, J.; Husson, F. FactoMineR: An R Package for Multivariate Analysis. J. Stat. Softw. 2008, 25, 1–18. [CrossRef]

http://doi.org/10.1121/1.3158601
http://www.ncbi.nlm.nih.gov/pubmed/19640031
http://doi.org/10.1016/0160-4120(95)00109-3
http://doi.org/10.3390/su12198140
http://doi.org/10.3390/s19235136
http://www.ncbi.nlm.nih.gov/pubmed/31771185
http://doi.org/10.3390/app10072451
http://doi.org/10.1016/j.apacoust.2018.03.031
http://doi.org/10.1038/jes.2015.56
http://www.ncbi.nlm.nih.gov/pubmed/26350982
http://doi.org/10.3390/ijerph15010013
http://www.ncbi.nlm.nih.gov/pubmed/29295492
http://doi.org/10.3390/environments6020024
http://doi.org/10.3390/s20020412
http://www.ncbi.nlm.nih.gov/pubmed/31940784
http://doi.org/10.1016/j.envint.2019.01.043
http://www.ncbi.nlm.nih.gov/pubmed/30731377
https://www.R-project.org/
http://doi.org/10.1515/noise-2016-0013
http://doi.org/10.3390/s17102323
http://www.ncbi.nlm.nih.gov/pubmed/29023397
http://doi.org/10.3390/s20174760
http://www.ncbi.nlm.nih.gov/pubmed/32842527
http://doi.org/10.18637/jss.v025.i01

	Introduction 
	Materials and Methods 
	Noise Monitoring Sites and Data Set 
	Andorra la Vella, Principality of Andorra 
	Milan, Italy 

	Data Processing 
	Detection of Noise Events 
	Recognition of the Noise Event Source 


	Results and Discussion 
	Conclusions 
	References

