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Abstract—In this article we discuss the development of prog-
nostic Machine Learning (ML) models for COVID-19 progres-
sion: specifically, we address the task of predicting intensive
care unit (ICU) admission in the next 5 days. We developed
three ML models on the basis of 4995 Complete Blood Count
(CBC) tests. We propose three ML models that differ in terms
of interpretability: two fully interpretable models and a black-
box one. We report an AUC of .81 and .83 for the interpretable
models (the decision tree and logistic regression, respectively),
and an AUC of .88 for the black-box model (an ensemble). This
shows that CBC data and ML methods can be used for cost-
effective prediction of ICU admission of COVID-19 patients: in
particular, as the CBC can be acquired rapidly through routine
blood exams, our models could also be applied in resource-limited
settings and to get fast indications at triage and daily rounds.

Index Terms—eXplainable AI, Machine Learning, COVID-19,
Prognosis, Complete Blood Count

I. INTRODUCTION

One year after its appearance, the SARS-CoV-2 coronavirus
has infected more than 100 million people and has resulted
in almost three million deaths worldwide. To mitigate this
unprecedented pandemic spread, the use of AI techniques to
develop tools that are supportive of clinicians in various tasks
has attracted increasing interest. Despite promising results for
the diagnostic task [1]–[3] (i.e., the detection of COVID-19),
the development of prognostic models, either to predict ICU
admission or other outcomes (including death) or to stratify
patients by risk, has so far lagged behind: recent surveys report
important limitations (in terms of bias or risk of overfitting)
in the existing solutions [4], [5].

To address these limitations, in this work we report a
retrospective study aimed at developing prognostic Machine
Learning (ML) models to predict ICU admission, which can be
seen as a proxy of disease severity or an outcome of worsening
conditions. A large dataset of hematologic parameters has
been collected from COVID-19 patients admitted to one of
the largest teaching hospitals in Lombardy (Northern Italy),
which was one of most severely affected regions during the
first wave of the pandemic.

More specifically, we used and processed one of the most re-
liable datasets made available so far for COVID-19 analysis [1]
(which is shared on the European open-access repository
Zenodo1), motivated by the promising results regarding the

1https://zenodo.org/record/4081318#.X 1UDxYo-Uk

strong association between blood tests data and COVID-19
prognosis [6], [7]. From this dataset, we extracted a small
set of features regarding routine blood exams that are both
inexpensive and quick to get, the so-called Complete Blood
Count - CBC, for its wide application in a number of diagnos-
tic and monitoring tasks. To the best of our knowledge, this
is the first work using ML algorithms to perform COVID-
19 prognosis only on the basis of CBC parameters. To this
aim, we present three models, which have been conceived as
complementary decision support tools. One model, which is
based on the ensembling of 3 models, has been selected for its
high accuracy, despite its low clinical interpretability because
of the black-box nature. The other two models, i.e. a decision
tree and a logistic regression, have been selected because of
their explainability, despite their lower accuracy with respect
to the ensemble model mentioned above. Indeed, these models
can provide clinicians with more interpretable indications that
can help them in their decision-making during the management
and treatment of COVID-19 patients.

II. METHODS

The study protocol (BIGDATA-COVID19) was approved by
the Institutional Ethical Review Board in agreement with the
World Medical Association Declaration of Helsinki.

In what follows, we report the data characteristics re-
garding the model development according to the MINIMAR
guidelines [8], which were recently proposed to increase the
understandability and reproducibility of Machine Learning
studies in medical settings.

The dataset used for this retrospective study encompasses
the results of routine blood tests of 1218 patients, regularly
admitted to the hospital Emergency Department for COVID-
19 of the San Raffaele Hospital (OSR), Milan (Italy). The
data collection was performed between February 19, and May
31, 2020, i.e. at the height of the first wave of the epidemic
in Italy. In that period, healthcare facilities in Northern Italy
were under unprecedented pressure, especially the intensive
care units [9], which on the 3rd of April peaked at 133% of
their nominal capacity with 1381 inpatients. In the collected
records, the average age of the patients was 63.5 ± 0.85
(mean and 95% confidence interval), and the distribution of
biological sex was 70.8% males (vs. 29.2% females). For each
patient, with at least 24 hours of hospitalization, multiple



TABLE I
COMPLETE LIST OF PREDICTIVE COVARIATES USED FOR THE MODEL

DEVELOPMENT

Feature Unit of Measure Missing rate (%)
Sex Male/Female 0
Age Years 0

White Blood Cells (WBC) 109/L 0.4
Red Blood Cells (RBC) 1012/L 0.4

Hemoglobin (HGB) g/dL 0.4
Hematocrit (HCT) % 0.4

Mean Corpuscular Volume (MCV) fL 0.4
Mean Corpuscular

Hemoglobin (MCH) pg/Cell 0.4

Mean Corpuscular
Hemoglobin Concentration (MCHC) g Hb/dL 0.4

Erythrocyte Distribution
Width (RDW) CV% 0.5

Platelets (PLT) 109/L 0.4
Mean Platelet Volume (MPV) fL 3.5

Neutrophils Count (NE—NET) % — 109/L 8.4
Lymphocytes Count (LY—LYT) % — 109/L 8.4

Basophils Count (BA—BAT) % — 109/L 8.4
Eosinophils Count (EO—EOT) % — 109/L 8.4
Monocytes Count (MO—MOT) % — 109/L 8.4

observations (approximately one for each day of hospital
stay) were considered. In total, the dataset encompasses 4995
observations: for each instance (that is, one day of hospital
stay for each given patient), the target corresponds to whether
the given patient would be admitted to the ICU within the next
5 days (starting from the date of the observation).

The data exploration revealed an imbalance with respect to
the target variable, skewed in favor of the negative class: the
number of observations for which the patient was admitted
to the ICU (within the 5 days time interval) was 1359 (27%
of the total observations). We addressed this imbalance by
means of the SMOTE re-sampling procedure (see below) and
by considering balanced metrics.

As covariate features, we selected a set of 22 variables:
namely gender, age and the Complete Blood Count (CBC),
including the leukocyte formula (analyzed through a Sysmex
XN 9000 hematology analyzer). We decided to focus on this
set of features for two main reasons: first, these variables
guaranteed the highest completeness rate for the dataset at
hand (see Table I); second, and most important, these hema-
tologic parameters can be obtained through rapid, widely
available and cost-effective routine blood exams. The full set
of features, with the respective missing data rates, is reported
in Table I. The complete dataset, in compliance with medical
ML reporting guidelines [8], has been made publicly available
on Zenodo https://zenodo.org/record/4686707.

In order to perform missing data imputation, we used a
multi-variate iterative imputation approach [10], for its capa-
bility to better take into account the latent distribution of the
missing values compared with standard constant-based impu-
tation strategies. Due to the relatively low number of missing
values (< 10%), we do not expect significant differences with
respect to other multi-variate imputation strategies [11]

In regard to data imbalance, we applied the SMOTE

oversampling method [12]. This approach, compared with
standard under- or oversampling approaches, allows to better
capture the distribution of the minority class (under standard
smoothness assumptions).

Model testing was performed through a patient code-based
train/test split: we used a 80%-20% data split with the addi-
tional constraint that all observations pertaining to each given
patient were all in the same data fold. This setting was selected
in order to reduce performance over-estimation due to potential
auto-correlations among different observations pertaining to
the same patient.

As anticipated in Section I, we considered three classes of
models: two interpretable models, i.e., a decision tree and a
(regularized) logistic regression; and a black-box ensemble
model. According to the tenets of eXplainable AI [13], the
more interpretable models were chosen to guarantee a suf-
ficient accuracy level according to the general expectations
of clinicians for prognostic tasks [14] in combination with
a high level of interpretability, so that their output could be
understood and examined by the clinicians involved. In regard
to the black-box model, this was developed as a solution to
maximize the model’s discriminative performance. This model
was obtained by determining the best combination among
5 different ML model classes: Gradient Boosting, logistic
regression, Support Vector Machine, Random Forest and a
Decision Tree.

In order to perform hyper-parameter selection, we used
a Sequential Model-Based Optimization (SMBO) approach,
implemented through the Optuna framework, which allows to
perform a computationally efficient and model-agnostic search
through the parameter space [15].

Hyper-parameter selection, model training and validation
were performed on the training set through a 10-time re-
peated 7-fold Cross-Validation. Indeed, as shown in [16], this
procedure has lower over-estimation bias compared to either
boostrapping and standard Cross-Validation, while being less
computationally intensive than Nested Cross-Validation.

The target metric for hyper-parameter selection was the F2
score:

F2 = 5
PPV ·Sensitivity

4 ·PPV +Sensitivity
(1)

We chose this metric in order to improve sensitivity (which
the above formula considers twofold more important than
positive predictive value) and hence reduce the amount of
false negatives. False negatives for the task at hand are worse
than the false positives, as the former ones contribute to
underestimate the number of ICU beds necessary in the near
future.

For each model, we report five different metrics, evaluated
on the test set, namely: area under the ROC curve (AUC),
sensitivity, specificity, F2 score and the Brier score (as a
measure of calibration). In particular, we reported the F2 score
as a way to better account for the presence of label imbalance
in the used dataset.

We also report the performance of the models on the
instances that were associated with a probability score greater



than 75% [14]: this allows to assess the performance of the
models on the instances these models were more “confident”
about, or for which the prediction uncertainty was lower [17].
In the former case, we denote the related measures as “highly
confident” - HC.

III. RESULTS

The selected hyper-parameter values are as follows:
• Decision Tree: split criterion = entropy, maximum depth

= 4, minimum samples per split = 26, minimum samples
per leaf = 3;

• Logistic Regression: regularization norm = l1, regular-
ization coefficient C = 0.0058, solver = liblinear;

• Ensemble: optimal configuration = XGBoost, Random
Forest, Logistic Regression.

The performance of the developed models, in terms of
sensitivity, specificity, F2 score, AUC and Brier score is
reported in Table II. Table II also reports performance scores
evaluated on the instances with an associated probability score
greater than 75% (denoted with a HC- prefix, where HC stands
for Highly Confident).

A graphical representation of the models’ performance in
the ROC space is reported in Figure 1, while the calibration
of the models is reported in Figure 2.

Fig. 1. ROC Curve evaluated on the Test Set.

IV. DISCUSSION

The results reported in Section III show that our proposal
to support the interpretation of COVID-19 cases is at the
same level of - if not better than - the main contributions
to the current literature. In what follows, we outline the main
characteristics of these solutions and compare them with ours,
to highlight the respective strengths and limitations.

Fig. 2. Reliability curve for each model

Rodriguez-Nava et al. [18] developed clinical scores to
predict ICU admission, and reported an AUC of .76. Although
the proposed score is interpretable (like our logistic regression
and decision tree models), it was developed on a relatively
small sample encompassing 300 patients, and it was validated
on the same data used to develop the score, with no method
to control overfitting.

Wu et al. [19] developed a Logistic Regression model for
risk prediction that they also externally validated: on the
external validation sets the authors report an average AUC
of .87, average sensitivity of .86 and average specificity
of .71. The model, however, was developed and validated
only with data collected between February and March 2020;
also, compared with our proposed method, the model em-
ploys a large set of features encompassing hemato-chemical
parameters, symptomatology and radiological findings. This
could hamper its applicability in real-world medical practice,
especially in resource-limited settings; our model, by contrast,
only employs CBC data, i.e., a rapid, widely available and
economic blood test. Also, while we address the task of ICU
admission prediction, the authors of [19] consider a composite
binary prediction task: a patient was considered severe in case
of either ICU admission, organ failure, shock or death; this,
in turn, can reduce the usefulness of the ML method in the
management of severe cases.

Klann et al. [20] developed generalized-linear and gradient-
boosting models for severity prediction based on computable
phenotypes (that is, vector-based representations of a patient’s
clinical history and EHR data): for the task of ICU admission
prediction, they report an average sensitivity of .77 and an
average specificity of .79. While the reported results are
comparable with our findings, we notice that our logistic re-



TABLE II
RESULTS OBTAINED ON THE TEST SET.

Model Sensitivity Specificity AUC F2 Brier score HC-AUC HC-Sensitivity HC-Specificity HC-F2 Coverage
Decision Tree 0.76 0.73 0.81 0.69 0.17 0.86 0.60 0.93 0.63 0.72

Logistic Regression 0.83 0.70 0.83 0.74 0.17 0.92 0.76 0.94 0.78 0.43
Ensemble 0.85 0.74 0.88 0.77 0.15 0.93 0.75 0.94 0.78 0.58

gression model achieves higher performance while being fully
interpretable: this in turn could improve model understanding
and foster trust in the clinical users and, ultimately, bring wider
adoption in clinical practice as a medical decision support.
Furthermore, the model discussed in [20] uses all information
collected in patients’ health records as predictive features,
while the method that we propose only requires CBC data.

More in general, four recent reviews [5], [21]–[23] surveyed
the state-of-the-art with respect to prognostic ML models for
COVID-19: most of the surveyed works were found to be
subject to a high risk of bias. This is due to limitations
related to model development and data collection [24], lack of
reporting standards, lack of procedures to control or mitigate
over-fitting, and lack of data sharing [25] which, in turn, affects
replicability.

As a final comment, we note some general important differ-
ences between the proposed approach and the surveyed works.
First, all discussed models consider the task of severity (either
death and/or ICU admission) prediction with a potentially
unlimited prediction horizon: a case is considered to be severe
if any severe adverse outcome occurs during the hospital
stay, irrespective of its length. While this approach could
help reducing data imbalance, it could also incur the risk
of disregarding important confounding factors, such as the
therapy; or it could require data which would not be available
shortly after admission. In order to mitigate the impact of these
confounding factors, in our method we considered prediction
on a fixed 5-day horizon, which is nonetheless clinically mean-
ingful and potentially useful. Second, our proposed approach
is based only on CBC data and this is a major advantage for
the following reasons:

• CBC can be acquired through routine exams;
• CBC can be acquired rapidly and with small costs com-

pared to other more specialized biomarkers’ data;
• Compared with other exams related to clinical chem-

istry [26], inflammatory markers [27], or coagulation
parameters [28], CBC is less affected by both pre-
analytical (that is, how specimens are collected, handled,
and identified), analytical (which regards differences in
the testing methods in different laboratories or with
different equipment [29]) and biological variability (that
is related to the fluctuations of biomarkers along patient’s
life [30]).

For these reasons, and in light of previous studies that
highlighted key associations between CBC indicators and
COVID-19 prognosis [6], [7], our CBC-based approach could
be particularly useful for developing countries or for countries
facing any resource shortage (e.g. in terms of specialized

personnel), in that it provides a cost-effective method to predict
ICU admission and, therefore, support the clinicians in ICU
allocation planning.

In what follows, we discuss the results reported in Sec-
tion III: as anticipated above, we observe that all three devel-
oped models achieved good results; in particular, all models
achieve an AUC score greater than 80%. While these results
are promising, we also acknowledge the following limitation:
the generalizability of the developed models was not evaluated
(e.g. through external validation), either on data collected from
different settings, or collected from the same hospital but in
a different period. Nonetheless, as previously mentioned, the
adopted model development procedures were selected with the
aim of increasing model robustness and reduce overfitting.

Interestingly, we note that the interpretable models (in
particular, the logistic regression model) achieved good perfor-
mance (see Table II): this shows that these approaches could
be fruitfully used as decision-support tools that provide much
more information, compared with the black-box model, and
thus aid the clinicians in the decision-making task without
undermining the predictive performance. Nonetheless, we note
that, from a purely quantitative perspective, the ensemble
model achieved the best performance.

Focusing on the interpretable models, the Decision Tree and
the logistic regression coefficients are reported in Figures 3, 4,
and 5. In both cases, the Neutrophils count feature is con-
sidered the most important prognostic variable, with higher
Neutrophils count increasing the odds of ICU admission for
both models. This information is consistent with the existing
literature [31] where the prognostic role of the neutrophils-
to-lymphocyte ratio is often discussed: interestingly, both
models also associate a negative predictive power with the
lymphocytes count (i.e. increased lymphocytes reduce the odds
of ICU admission). Similar points can also be made for other
leukocyte formula components, though the role for prognostic
purposes of these other biomarkers has been less studied [32],
[33]. As a further potential limitation of our study, we note that
both interpretable models associate a decreasing odd of ICU
admission with increasing age: this could be a consequence
of the relatively small proportion of young patients in our
sample (just around 25% of the involved patients was younger
than 50 years), or an indication of more aggressive therapeutic
interventions in older patients. In future work, we aim to
collect data from more patients with possibly different age
distributions, and see whether information about comorbidities
(presence/absence or even the type) would have predictive
power (as highly plausible). Also, we aim to validate our
models also on COVID-19 negative patients: This would allow



Fig. 3. A graphical representation of the Decision Tree

Fig. 4. Feature importance based on Logistic Regression coefficients, for the
positive class (that is, admission to ICU)

the models to be applied also on cases that could be affected
by false negatives in the RT-PCR test results.

In regard to calibration, we see from Table II that all models
reported a good Brier score (we recall that the lower the Brier
score, the better the model calibration ): this can also be seen
from Figure 2, where we can observe that all models over-
estimate the probability scores, and especially so in the middle
part of the plot (that is, on the more uncertain instances).

In order to better understand the performance of the models
(as a function of the probability scores), we can observe the
Highly Confident scores in Table II: the AUC and Specificity
of the models increase when considering instances for which
confidence is higher than 75%, while the Sensitivity decreases.
This highlights the fact that the models tend to assign lower
probability scores to positive- rather than negative-predicted
instances: this is consistent with the decision to optimize the
models for the F2 score (which weights sensitivity more than
PPV).

Fig. 5. Feature importance based on Logistic Regression coefficients, for the
negative class.

V. CONCLUSIONS

In summary, we reported a retrospective study to address the
challenging task of predicting whether a COVID-19 patient
will have to be transferred to the ICU within the next 5
days during their hospital stay. The proposed approach, based
on both interpretable and black-box models, reported good
results. Also, our methods are parsimonious, as they ground
on two demographic features and the CBC test results, only:
this is the main strength of our approach in light of acceptable
accuracy. For this reason, our models can be useful in resource-
limited settings, such as healthcare facilities which have to
manage a surge of ill patients and that cannot afford the
execution of more COVID-specific exams (e.g., inflammatory
markers, interleukins and coagulation parameters [34]) on a
daily basis.

For future work, we aim to externally validate our models
with data coming from other hospitals and other time periods:
This would allow to test the model in light of possible virus
mutations and different patient management and therapeutic



policies. Since these latter ones depend on the number of cases
to deal with and on the continuous advancement of what we
know about COVID-19 and its effective treatment (changing
its prognosis), phenomena related to concept drift cannot be
ruled out in any existing predictive model, including ours.
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