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Abstract

The Bayesian framework for machine learning allows the incorporation of prior knowl-
edge into the system in a coherent manner which avoids overfitting problems but
rather seeks to approximate the exact posterior and provides a principled basis for
the selection of model among alternative models. Unfortunately, the computation
required in Bayesian framework is usually intractable. This thesis provides a family
of Variational Bayesian framework which approximates these intractable computa-
tions with latent variables by minimizing the Kullback-Leibler divergence between

the exact posterior and the approximate distribution.

Chapter 1 presents background materials on Bayesian inference, and propagation al-
gorithms. Chapter 2 discusses the family of variational Bayesian theory. It generalizes
the Expectation Maximization (EM) algorithm for learning maximum likelihood pa-

rameters. Finally, it discusses factorized approximation of Expectation propagation.

Chapter 3 - 5 derive and apply the variants of Variational Bayesian to the family of
Cluster Weighted Models (CWMs). It investigates the background history of CWMs
and proposes new different members into the family. First, the dimensionality of
CWM is explored by introducing the t Distributed Stochastic Neighbor Embedding
(tSNE) for dimensionality reduction which leads to CWMs based on tSNE for high-
dimensional data. Afterwards, we propose a Multinomial CWMs for multiclass clas-
sification and Zero-inflated Poisson CWMs for zero-inflated data. This work derives
and applies the EM algorithm with three different maximization step algorithms:
Ordinary Least Squares (OLS), Iteratively Reweighted Least Squares (IRLS), and
Stochastic Gradient Descent (SGD) to estimate the models’ parameters. It finally
examines the classification performance of the family of CWMs by eight different

information criteria and varieties of Adjusted Rand Index (ARI).

Chapter 6 proposes a variants of Expectation Propagation: EP-MCMC, EP-ADMM
algorithms to the inverse models. It demonstrates EP-MCMC and EP-ADMM on
complex Bayesian models for image reconstruction and compares the performance to
Markov Chain Monte Carlo (MCMC). Chapter 7 concludes with a discussion and

possible future directions for optimization algorithms.






Astratto

L’approccio Bayesiano alle tecniche di machine-learning consente di integrare in un
modello le informazioni a priori per evitare problemi di overfitting, cercando di ap-
prossimare la distribuzione a posteriori. Fornisce inoltre una metodologia coerente
per la scelta fra diversi modelli alternativi, e richiede tipicamente uno sforzo com-
putazionale considerevole, tale da rendere alcuni problemi intrattabili. Questa tesi
propone una famiglia di metodologie di tipo Variational Bayes per approssimare la
complessita computazionale dell’approccio Bayesiano tramite 1'utilizzo di variabili la-
tenti, minimizzando la distanza di Kullback-Leibler tra la distribuzione a posteriori
esatta e quella approssimata. Il primo capitolo riepiloga i concetti chiave dell’inferenza
bayesiana e gli algoritmi di propagazione. Il secondo capitolo introduce il metodo Vari-
ational Bayes, il quale generalizza gli algoritmi di Expectation Maximization (EM)
per la stima dei parametri tramite un approccio a massima verosimiglianza. Vengono
inoltre discusse le approssimazioni fattorizzate per i metodi di Expectation Propaga-
tion (EP). Nei capitoli da 3 a 5 vengono derivate e testate diverse varianti dei metodi
Variational Bayes per la famiglia dei Cluster Weighted Models (CWMs) e, partendo da
un breve cenno storico, vengono proposte diverse nuove classi di CWM. Inizialmente
viene analizzato il problema della riduzione di dimensionalita nei CWM, introducendo
una nuova classe basata su t-distributed stochastic neighbor embedding (tSNE). Nel
secondo lavoro viene proposto un Multinomial CWM per la classificazione multino-
miale ed un Zero-inflated Poisson CWM per dati di tipo zero-inflazionato. Vengono
derivati ed applicati gli algoritmi EM per la stima dei parametri, considerando tre di-
verse alternative per il passo di massimizzazione: Minimi Quadrati Ordinari (OLS),
Minimi Quadrati Pesati Iterati (IRLS), e Discesa Stocastica del Gradiente (SGD).
Per concludere, vengono testate le performance classificative dei modelli CWM uti-
lizzando otto criteri diversi e vari Adjusted Rand Index (ARI). Nel sesto capitolo
vengono proposte due varianti del metodo di Expectation Propagation per inverse
models denominate EP-MCMC e EP-ADMM, applicandole a modelli bayesiani per
image-reconstruction e confrontandone le performance con i metodi MCMC. 1l set-
timo capitolo chiude la tesi, traendo le conclusioni dei lavori svolti e riassumendo i

possibili sviluppi futuri.
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Chapter 1

Introduction

1.1 Background History

In the Pattern recognition, objects are grouped into a number of categories or classes
or clusters. Based on the application, these objects can be images or signal waveform
or any type of measurements that needs to be classified. These objects are generally
referred to as patterns. Pattern recognition can be dated back into the long history,
but before the 1960s, it appeared to be the output of the theoretical research in the
area of statistics. As with everything else, the evolution of computer gave rise to the
demand for the practical applications of pattern recognition, which in turn set new
demand for further theoretical developments. As our society experiences the evolution
from the industrial to its post-industrial phase, the need for information handling
and retrieval and the automation in industrial production are increasingly important.
This trend has pushed pattern recognition to the high edge of today’s application and
research. Moreover, pattern recognition is the integral part of machine intelligence
systems built for decision making. Pattern recognition is of utmost importance in
a machine vision area. A machine vision system captures images via a camera and
produces the description of the images captured by analyzing them. Machine vision
system is most useful in the manufacturing industry for automated visual inspection.
For example, manufactured objects may be allowed to pass through the inspection
stage in front of the camera. Thus, images have to be analyzed online and a pattern

recognition system has to classify the objects into the "defect” or "non-defect” class.
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After that, an action has to be taken to modify the defected parts. In an assembly
line, different objects must be located and classified in one of the classes known a

PTLOTI.

The text recognition is another important area of pattern recognition with major
implications in automation and information handling, e.g. Optical Character recog-
nition (OCR) systems. An OCR system is a front-end device consisting of a light
source, a scan lens, a document transport, and a detector. Light-intensity varia-
tion is translated into numbers and an image array is formed at the output of the
light-sensitive detector. In a sequel, a series of image processing result into line and
character segmentation. The pattern recognition software then takes over to recognize
the characters, i.e., to classify each character in the correct class. Another examples
of pattern recognition are online handwritting recognition systems, automatic mail-

sorting.

The computer-aided diagnosis is another application of pattern recognition, aiming at
assisting doctors in making diagnostic decisions. Although the final diagnosis is made
by doctors. Computer-aided diagnosis has been applied and is a valid interest for a
variety of medical data, such as X-ray, computed tomographic images, ultrasound
images, electrocardiograms (ECGs), and electroencephalograms (EEGs). Computer-
aided diagnosis is used for the interpretation of medical data which often depends
very much on the skill of the doctors. For example, X-ray mammography is used
as a computer-assisted diagnosis for the detection of breast cancer. Mammography,
as the best method for detecting breast cancer, 10 — 30% of women with breast
cancer who undergo mammography have negative mammograms. Approximately,
two thirds of the cases with false results were wrongly detected by the radiologist
which was evident retrospectively. This however, may be due to poor image quality,
eye fatigue, subtle nature of the findings. The percentage of correct classification
improves at the second look by another radiologist. Thus, pattern recognition system

can be developed with a sole goal of assisting the radiologists with a second reading.
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Increasing confidence in the diagnosis based on mammograms would in turn reduce

the number of misclassifications due to human errors.

The speech recognition is another area in which a great deal of research and devel-
opment effort has been channeled. Speech is the natural means by which humans
communicate and pass across information. Thus, the goal of building intelligence
machines that recognize spoken words has been a long-desired one among the scien-
tists. The potential applications of this are for example, to improve the efficiency in a
manufacturing society, to remotely control the machines in hazardous environments,
and to help handicapped people control machines by talking to them. A major suc-
cess is to impute data into the computer by speech. Entering information by spoken
words to computer is twice as fast as entry by a skilled typist. Furthermore, this can

enhance our ability to communicate with deaf and dumb people.

Pattern recognition can also be applicable in the areas of Data mining and knowledge
discovery in databases. Data mining is of wide interest in a vast range of applications
such as medicine and biology, market and financial analysis, business management,
science exploration, image and musical retrieval. Its fame stems from the desire that
there is ever increasing demand for retrieving information and transforming it into
knowledge. Moreover, this retrieved information exists in huge volume in various
forms including, text, images, audio, and videos stored in different places all over
the world. Traditionally, description-based model where information retrieval was
based on word matching and keyword descriptions. However, one limitation about
this model is low time management and high time consumption because the searching
presupposes that a manual annotation of the stored information has previously been
performed by human. This however, is feasible when the size of the information is not
huge but impractical when the amount of the available information becomes large.
Content-based retrieval systems are becoming more and more popularized where in-
formation is sought based on similarity between an objects, which is presented into
the system, and objects stored in sites all over the world. For example, there are
different types of content-based information retrieval (CBIR) system which are the
content-based image retrieval which takes as an input a scanned image. A music
content-based retrieval system takes as an input an extract from the music piece.

Both systems return similar object as their inputs. The foregoing are some examples
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from a much larger number of possible applications. Typically, we refer to finger-
print identification, signature authentication, text retrieval, and face recognition as

all forms of pattern recognition.

1.2 Features, Feature Vectors, and Classifiers

First of, let us "mimic” a medical image classification task. Figure (1.1) shows two
images, each having a distinct regions representing two classes. We see that the region
of the left image from a benign class, and that of right from a malignant class. The
first step is to identify the measurable quantities that make these two classes unique
from each other. The preceding artificial classification task has outlined the rational
behind a large class of pattern recognition problems. The measurements used for the
classification are known as features. More generally, z;,l = 1,...,d is d features that
form the feature vector

x = [Ty, T...,24)",

| Benign masses | | Malignant masses |

Figure 1.1: The Example of an image of cancer tissue corresponding to two classes: Benign
class (Left) and Malignant class (Right)

where T denotes transposition. Each of the feature vectors identifies uniquely a single
pattern (object). Throughout this thesis, features and feature vectors will be treated
as random variables and vectors, respectively. This is natural, as the there is a random
variation between the measurements resulting from different patterns. The variation

in the measurements is due partly to the noise of the measuring device and partly to
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the unique characteristics of the each pattern. For example, in X-ray imaging, wide

variations are caused by the differences in physiology among individuals.

Largely, the role of the classifiers is to divide the feature space into regions that
correspond to either class A or class B. For a binary categories, if an unknown
pattern falls in the class A region, it is classified as class A otherwise, as class B.
However, this does not mean the decision is correctly classified. If it is incorrect, a
misclassification has occurred. The straight line across any region is called a decision

line which explore that we knew the labels (class A or B) for each point.

1.3 Supervised, Unsupervised and Semi-supervised

Learning

In Supervised learning, the training data is assumed to be known a priori where also
the information about the class label is available. However, this in general might be
too expensive and there is another type of pattern recognition tasks for which training
data of known class labels are not available. In this type of task, we only have access
to the set of feature vectors & and the goal is to discover the underlying similarities
or cluster of similar vectors together. This is known as the unsupervised pattern
recognition. Some applications of unsupervised learning are remote sensing, image
segmentation, image and speech coding. A clustering algorithm is typically employed
to reveal the inherent grouping of the feature vectors in the D-dimensional feature
space. Points that share common or similar characteristics are clustered together.
Once this is done, the type of each cluster can be identified by associating a sample

of points in each group with available data.

Semi-supervised pattern recognition shares the same attribute with the supervised
learning discussed above. However, in semi-supervised, the analyst has a partial
information about the class labels that is, a set of patterns of unknown class origin,
in addition to the training patterns with known class. The former is generally referred
to as unlabeled and the latter as labeled data. Semi-supervised pattern recognition can
be useful when the analyst has limited information about the data, i.e., has a limited

number of labeled data. In such case, recovering an additional information from the
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unlabeled samples, related to the generic structure at hand, can be used to improve the
design. Semi-supervised learning finds a way of clustering tasks which is constrained
to assign certain points in the same cluster or different cluster. From this viewpoint,
semi-supervised learning provides a priori information that the unsupervised learning
has to respect [Jan (2005)].

1.4 Introduction to Image Reconstruction

In the original usage, medical X-rays are passed through the body, projecting im-
ages such as bones, organs, air spaces, and tumors unto a two-dimensional sheet of
film. This important diagnostic tool suffer from a major limitation: superimposition
in such a single X-ray projection are difficult or sometimes impractical to unravel
when there exists a slim margin in the differences of the X-ray densities, as between
tissue and an embedded tumor. Diagnosis now becomes more accurate through the
recently developed mathematical procedures for combining X-ray projections taken
at different angles around the body now make it possible to reconstruct a quantitative
three-dimensional representation of the internal structure of a living human body. In
addition to their contribution to medicine, the new method for reconstruction from
projections has a wide range of applications such as in microscopy, X-rays, and light.
In astronomical application, two-dimensional images of galaxies can be reconstructed
from radio and X-ray signals by mathematically identical methods. By reconstructing
only a thin (two-dimensional) slice of an image at a time, three-dimensional recon-
struction can be greatly simplified. A two-dimensional cross-section can be regarded
as a picture. In this thesis, we shall be mostly concerned with the reconstruction of
two-dimensional picture from its one-dimensional projection. We first discuss how
the object and its projection are represented in the computer. An object is stored
in a two-dimensional array of numbers also called a matriz. Each of these number

represents the density of one small square called pizel.
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Figure 1.2: Single chip Digital Light Processing projection system layout

A projection on the other hand, is stored as a vector or list of numbers, each of which
represents the total X-ray density in a narrow strip across the object. These numbers
are also called a ray and the total density within the ray is called a ray sum. One

major problem is that there is no relationship between the rays and the pixels.

In a Digital Light Processing (DLP) shown in Figure (1.2), light is focused through a
rotating multi-color which are the red, green, and blue filter wheel. Then, let  denote
the image to be reconstructed. The image is divided into n x n (= N) dimensional
vector, whose [(u — 1)n + v]|th denote the density in the pixel in the uth row and
vth column. Now, let G be a matrix known only by the assumption whose (i, j)th
element denotes the contribution of the jth pixel to the ith ray. Thus, G is a vector
of the ray sums in the various rays. Practically, G is chosen arbitrarily, and this may

contribute an error in the measured data.

1.4.1 Introduction to Inverse Problems

Inverse problems occur in a wide range of practical investigations where the vari-
ables of interest are indirectly measured by Magnetic Resonance Imaging (MRI),
Computed Tomography (CT), or Positron Emission Tomography (PET) scanning in
medical imaging. Many of these can be classified as function estimation or image
processing problems, [Aykroyd (2015)]. In statistical field, key challenges include

dealing with large number of unknown parameters compared to the amount of data
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and the highly multicollinear nature of the design matrix. Linear inverse problem can
be thought of as highly multivariate regression problems in which estimation is pri-
oritized over prediction. Inverse problems can be ill-posed and ill-conditioned which
makes estimation through least squares or maximum likelihood numerically unstable
or even infeasible. However, a possible alternative can be to introduce a penalty term
and use a penalized least squares or penalized maximum likelihood such as lasso re-
gression [Tibshirani (1996)] or ridge regression [Hoerl & Kennard (1970)] for stable
estimation. These shrinkage estimators are not appropriate as they would effectively

introduce a bias towards zero.

1.4.2 General Bayesian Approach to Inverse problem

Consider the problem of finding & € RY from the y € R where x and vy are related
by the equation below

y=0z (1.1)

y shall be referred to as the observed data and x as the unknown quantity. There are
some reasons why this problem may be difficult. Typically, we focus on one of these
reasons. One difficulty this thesis focus on is the case where N = M, which concerns
the fact that often equation is perturbed by noise and so would consider the following

equation in the chapter (6) of this thesis.
y =Gx + €, (1.2)

where we have denoted € € RM™ as the observational noise which contaminates the
observed data. Assume further that G maps RM into a proper subset of itself, G’
where G’ represents the image of G. There exists a unique inverse from G’ into RM.
Due to the noise, y ¢ G’. So, simply inverting on the data y remains impossible.
Moreover, the specific instances of the noise observation € in the data y is unknown.
Then only the statistical properties of the noise is known which is always taken to be
Gaussian with mean zero and constant variance. Thus, we cannot subtract € from
the measured data y to get the noise-free data G(x) € G'. However, if y € G’, the
uncertainty posed by the noise € causes problems for the inversion. Probabilistic

thinking enables us to overcome the difficulty of inversion discussed above to solve
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the problem. We will treat «,y and € as random variables and determine the joint
probability distributions of (a,y). The ”solution” of the inversion problem is then
defined as the probability of « given y, denoted by x|y. This allows us to model the
noise via its statistical properties without knowing the exact instances of the noise
entering the given data. Moreover, it also enables us to specify a priori the form of
solutions that we believe to be more likely, thereby enabling us to attach weights to
multiple solutions which explain the data. This is the Bayesian approach to inverse

problem.

We define a random variable (z,y) € RY x RM as follows; £ € RY be a random
variable with probability density p(x). Equation (1.1) is defined as the likelihood y|x,
where G : RY — RM is measurable, and € is independent of & distributed according to
measure Qp with probability density P(e). Then the random variable y|x is simply
found by Qo and G to measure Q, with probability density p(y — G(x)). Thus,
(z,y) € RY x RM is a random variable with probability density p(y — G(x))p(x).

The Bayes’ theorem allows us to calculate the distribution of the random variable

1.5 Probabilistic inference

Bayesian probability theory provides a language for beliefs representation and a cal-
culus for manipulating these beliefs in a well organized manner. It is an extension of
the formal theory of logic which is based on axioms that involve propositions that are
true or false. The rules of probability theory are propositions which are plausible to
being true of false and can be arrived at on the basis of just three sine qua non: (1)
level of plausibility should be represented by real numbers; (2) common sense should
have a qualitative measure with plausibilities; (3) different approaches to a conclusion
should lead to the same result. Cox showed that plausibilities can be measured on any
scale and it is possible to transform them onto the canonical scale of probabilities that
sum to one. The product and sum rules of probability can be mathematically derived
[Cox (1946)]. Statistical modeling problems involve large numbers of interacting ran-
dom variables and it is often interesting to graphically represent these dependencies

between the random variables. In particular, such graphical models are an important



CHAPTER 1. INTRODUCTION 10

tool for visualizing conditional independency relationships between variables. By rule
of independence, a variable a is independent of variable b given variable ¢ if and only
if p(a, blc) can be written p(a|c)p(b|c), By investigating conditional independence re-
lationships, graphical models provide a background upon which it has been possible
to derive efficient message-propagating algorithms for conditioning and marginalizing
variables in the model given observation data [Pearl (1988); Lauritzen & Spiegelhal-
ter (1988); Jensen (1996); Heckerman (1996); Cowell et al. (1999); Jordan (1999)].
So ideally, Bayesian methods should be applied to any situation where an inferences
from data need to be made. These include classification or clustering task such as
classifying cat and dog images, decision task like determining the next action of a
robotic game. Despite these many desirable theoretical properties, Bayesian methods
are less widely used in many interesting applications of artificial intelligence, espe-
cially those supported by deep learning [Goodfellow et al. (2016); LeCun et al. (2015);
Schmidhuber (2015)].

Although the Bayesian approach maintains a posterior distribution of all possible
settings of the desirable unknown factors, it also computes the marginal probability
of the observations. For example, in discriminative supervised learning, one would
define a conditional distribution p(y|x, @), which is also called likelihood function of
0. A concrete example for this would be to interpret p(y|z,0) as outputting the
probability of a configuration of y (e.g. a label or real value) by transforming the
input @ (an image, a text, etc.) through a simple model or deep learning model
parameterized by 8. In any real-world observed data, the parameters @ are unknown,
but with prior knowledge of po(€) about what value they might take. Then we collect
the observations D = {(x;,y;)}Y,, and based on data we want to update our prior
belief on the unknown parameters @, for example: given D, what is the most probable
value of 8, and the likelihood of @ to be set to a given value? Responding to these
questions is the procedure of inference which is a procedure of deducing unknown

properties given the observed data.

1.5.1 Emperical Bayes and hierarchical priors

It often makes sense to consider each parameter as coming from the same prior dis-

tribution when there are many common parameters in the vectors @ = (61, ...,0q).
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For example, the prior specification of the means of each of the Gaussian components
in a mixture model i.e. there is generally no a priori reason to expect any particular
component to be different from another. The parameter prior is then formed from

integrating w.r.t. a hyperprior with hyperparameter 7:

G
p(0Ir) = [p(r) T plealr) dr (13)

Therefore, each parameter is independent given the hyperparameter, although they
are marginally independent. Hierarchical priors are useful even when applied only to
a single parameter that often offers a more intuitive interpretation for the parameter’s
role. For example, the precision parameter 7 of a Gaussian variable is often given
a gamma prior, which contains two hyperparameters (a.., 3;) and correspond to the
shape and scale of the prior. Interpreting the marginal distribution of the variable
in this generative context is often more intuitively appealing than simply enforcing
a Student-t prior. Hierarchical priors are often designed using conjugate forms, both
analytical ease and also readily expresses previous knowledge. For practical example,

chapter (6) provide more details.

Hierarchical priors can be easily visualized using the graphical models which is shown
in other chapters going forward. Empirical Bayes refers to the practice of optimizing
the hyperparameters 7 of the priors, in order to maximize the marginal likelihood
of the data set p(y|7). By so doing, Bayesian learning can be viewed as optimizing
marginal likelihood learning, where there are always distributions over the parame-
ters. Moreover, the hyperparameters are optimized just as in maximum likelihood
learning. One crucial limitation of this practice is that it ignores the uncertainty in
the hyperparameters 7. An alternative approach could be to define priors over the
hyperparameters and priors on the parameters of those priors etc. In this fashion, no
parameters are actually ever fit for the data, and all predictions and inferences are

based on the posterior distributions over the parameters.
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1.5.2 Exact Bayesian inference

Bayesian statistics are particular in answering the questions on the unknown param-
eters @ by computing the posterior distribution, or the posterior belief of 8 given D,

using Bayes’ rule:
p(D]0)po(6)
p(D)

where p(D|0) = 11, p(yi|z;, @) following the ii.d. assumption. The importance of

p(0|D) = (1.4)

Bayes’ rule is that it simultaneously handles inference and modeling. The model - the
posterior distribution determined by the combination of the prior distribution and
the likelihood. The inference by the value of the posterior estimates.

A core computational hurdle in Bayesian inference is integration. Using the prod-
uct rule and sum rule of the probability distributions we derive the marginal distri-

bution as follows
p(D) = [p(DIO)po(6)d6. (15)

here we have assumed that the random variable is continuous equivalently, this is the
same for the discrete random variable which will be sum instead. If this integral is
tractable, then the posterior distribution can be easily computed by Equation (1.5).
To predict the label y* on an unseen data x*, the predictive distribution is computed

as follows
py’la", D) = [ply’lz", 0)p(6|D)d6, (1.6)

Equation (1.6) requires solving another integration problem. Since it is hard to vi-
sualize the posterior distribution in high dimensional space, we instead consider the

statistics of the posterior such as the mean and variance as follows;
u:/@wmme (1.7)

2= [(0- 1)(0 -~ 1w pOID)I0 (18)

which are both integration tasks. In particular, many tasks in Bayesian computation
can be framed as computing an integral of some function Q(@) against the posterior

distribution:

[Q®)pe|m)de (19)
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and the goal of chapter (2) is dedicated to studying the different methods to comput-

ing integrals efficiently and pragmatically.

1.6 Practical Bayesian approaches

Bayes’ rule provides a means of updating our belief system about the parameters from
the prior to the posterior distribution in light of observed data. In theory, the pos-
terior distribution encapsulates all the information deduced from the data about the
parameters. This posterior is then used to make optimal decision or predictions, or
model selection. These integrals are analytically intractable, and inaccessible to nu-
merical integration techniques. However, the computations involve high dimensional
integrals and for mixture models, the integrand has exponentially many modes. There
are various ways we can tackle this problem. At one hand, one can be restricted to
models and prior distributions that gives tractable posterior distributions and integral
for the marginal likelihood and predictive densities. This is highly undesirable since
it would lead to lose prior knowledge and modeling power. More realistically, we can

approximate the exact answer.

1.6.1 Maximum a posteriori parameter estimates

The simplest approximation to the exact posterior distribution is to use a point

estimate, such as Maximum a-Posteriori (MAP) parameter estimate,
6 = argmax p(0)p(y|6). (1.10)
6

This chooses the model with highest posterior probability density i.e. the mode.
However, this estimate is not completely Bayesian since the mode of the posterior
may not be a better mirror of the posterior distribution, although it does contain
some information from the prior. In particular, MAP models may likely give over-
confident predictions, since all the posterior probability mass is contained in models
that give poorer likelihood to the data. It might be reasonable to specify a collection
of point estimates called credible regions instead of the MAP estimate. However,

point estimates and credible regions have a limitation of non-uniqueness i.e., it is al-
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ways possible to find one-to-one monotonic correspondent mapping of the parameters
such that any particular parameter setting is at the mode of the posterior probability
density in the mapped space provided that the probability has non-zero value under
prior. This means that two models (identical priors and likelihood function) with
different parameterizations will in general find different estimate, this is called iden-
tifiability. The key factor in the Bayesian approach is not just the use of a prior but
the fact that all unknown variables are averaged over. This places a lesser importance

on the choice of parameterization because the parameters will be integrated out.

1.6.2 Discussion of Identifiability

The convergence to Gaussian of the posterior holds if a model is identifiable. A
model is unidentifiable if there are two or more parameters such that posteriors are

equivalently related or if there is degeneracy in the parameter posterior.

Degeneracy arises in models with symmetries, where the assumption of a single mode
in the posterior is incorrect. An example of symmetry is a model with a discrete
latent variable Z; having GG possible settings i.e. indicator variable in a finite mixture
model. These settings can be labeled in G! ways since there is a latent variable. If
the aliases are sufficiently distinct which correspond to unique peaks in the posterior
due to large amount of data, the error in the approximation method can be corrected
by multiplying the marginal likelihood by a factor of G!. However, it is difficult in
practice to ascertain the level of separation of the aliases, and so a simple modification
of this sort is impracticable. Estimating the permanent of the model are complicated

and computationally burdensome [Barvinok (1999); Jerrum et al. (2001)].

Parameter degeneracy arises when there are some redundancies in the selection of
parameterization of the model. For example, if a model has at least two parameters
0 = (0, 0,), and the prior over the parameter does not distinguish ¢, from 6,, then the
posterior over 8 will contain an infinite number of distinct configurations of (6, 6s),
all which give the same likelihood to the data. Consequently, the degeneracy causes

marginal likelihood estimate irrelevant.
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1.6.3 Monte Carlo methods

The large data limit approximations such as Laplace approximations are unfortu-
nately limited in their ability to trade-off computational time to improve their accu-
racy. For example, the Hessian determinant that needs to be calculated exactly which
costs O(nd?) operations to find the Hessian and then O(d?) to find its determinant.
Laplace approximation may still be very inaccurate. Numerical integration methods

is more accurate but is computationally intensive.

On the contrary, the Monte Carlo integration estimates the expectation of a function
I'(6) under a probability distribution f(8), by taking samples {8@1Y 00 ~ f(8).
An unbiased estimate, @, of the expectation of ['(8) under f(0), using N samples is
given by:

- /r(a)f(9> ~ & = L3 T(6%)do (1.11)

Expectations such as the predictive density, the marginal likelihood, posterior distri-
butions over the latent variables etc., can be obtained using such estimates. Most
importantly, Monte Carlo method returns more accurate and reliable estimate which
depends on large samples taken and the dimensionality of 8. Because in the continu-
ous space, Q(0)p(8|D) could never be computed at all locations, then one approach
would be discretization and Monte Carlo methods. However, Monte Carlo approaches
assume that drawing samples from the posterior distribution is easy, which is again
intractable in most cases. Statisticians have applied advanced drawing schemes such
as importance sampling, rejection sampling and MCMC [Gelman et al. (2014)] to
draw samples from the posterior distribution. Moreover, these methods require a
considerable number of samples in high dimensional space. These methods and the

simulation time for MCMC can be prohibitively long due to a slow mixing.

1.6.4 Importance sampling

In situations where the distribution f(z) is difficult to sample from, one can sample
from a correlated distribution called an auziliary distribution g(x) and then correct
for this by weighing the samples accordingly. This is called Importance sampling and

it constructs the following estimator using N samples {8}, generated such that
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cach 80 ~ ¢():

o= /g(e) ﬁéz)) r'(0) do ~ b = ;;w@r(a(i)), (1.12)

1(6)
9(0)
biased as it is the ratio of two estimates, and the ratio of two unbiased estimates

where w = are called importance weights. Unfortunately, this estimate is
does not necessarily in general result in an unbiased estimate of the ratio. Although,
importance sampling is simple, the estimate ® can often have a very high variance.
Having the integration task at hand, the first thing that comes to mind is how possible
they could be computed in an exact form or the question to ask is how tractable are
they? However, very unfortunately, for a vast number of integrands and distributions,
the integral in Equation (1.5) does not have a closed form or exhibit an analytical
form. In general, the intractability of the marginal probability makes the posterior
and predictive distributions intractable. Moreover, instead of finding exact form of
the integral, many mathematicians have their research career in an alternative method

such as a numerical integration.

1.6.5 Rejection sampling

A related method to importance sampling is rejection sampling which avoids the
use of a set of weights w(")iN:1 by stochastically deciding whether or not to include
each sample from ¢(@). The procedure requires the existence of a constant r such
that rg(@) > f(0) for all @, that means rg(@) envelopes the probability density
f(0). Samples are indirectly obtained from f(@) by sampling from ¢(€), and then a
condition which is either accepting or rejecting each stochastically is used based on
the ratio of its density under f(€) and g(@). That is to say for each sample is drawn

uniform distribution «® ~ U(0,1) and is accepted only if
£(0D) > ullrg(69). (1.13)

However, this becomes impractical in high dimensions and with complex functions
since it is difficult to find a simple choice of ¢(€) such that r is small enough to

allow the rejection rate to remain reasonable across the whole space. To overcome
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the limitations of rejection sampling, it is important to focus on tightness of bound
between f(0) and g(€) when f(8) is log-concave.

1.6.6 Markov Chain Monte Carlo

MCMC methods reviewed in Neal (1992) has been used to generate a chain of corre-
lated samples, starting from @ such that the next sample is a stochastic function
of the previous sample: 8% = p(80~1) where p(6',0) is the probability of tran-
sition from 0" to 0. If p has f(0) as its stationary (equilibrium) distribution, i.e.
()= [ f(0)p(0',0)db, then the set {6}, is used to obtain an unbiased estimate
of ® in the limit of a large samples. Since the set of samples have to be drawn from
the equilibrium then, it is advisable to discard all samples drawn at the beginning
of the chain, this is called burn-in. The importance of this is reduce the autocor-
relation among the chains. P in general is implemented using a proposal density
0% ~ g(8,0"~Y) about the previous sample. The probability of accepting the pro-
posal needs to take into account the probability of a reverse transition, this is to ensure
reversibility of the Markov chain. This method gives rise to the Metropolis-Hastings
[Metropolis et al. (1953); Hastings (1970)] acceptance function af.,.):

f(89)g(6"" ", 6%)

() gli-1y —
A TCIE PICION ey

(1.14)

If the acceptance function in Equation (1.14) is greater than one, i.e. a(8®,00—1) > 1
the sample is accepted, otherwise it is accepted according to the probability a(6®, 8¢—1),
Although, MCMC is guaranteed to yield exact estimates in the limit of a large num-
ber samples even for a well-designed procedures, the number of samples required
for acceptance estimates can be enormously large. Finally, Monte Carlo is a purely

frequentist procedure and according to Hastings (1987) it is fundamentally unsound.

1.6.7 Approximate Bayesian inference as optimization

Here comes an outstanding idea of approzximate inference that finds another distribu-
tion ¢(@) that is in the same exponential family with the exact posterior distribution
p(0]|D) and can make the computation of the integral [ Q(6)q(0) relatively easier by

concurrently reducing the minimal approximation error to the exact integral we want
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to compute. The knowledge of the functional form ) can be used to form a class
of candidate distributions Q in which integrating @) w.r.t. any ¢ € Q is analytically
tractable or computable with numerical methods. Then the major goal is to find the
optimal solution ¢ distribution in Q such that the ¢ integral is the most probable
approximation to the exact one. So, approximate inference presents the integration
problem of Bayesian inference as an optimization goal. For example, an approach for
fitting the ¢ distribution would be to minimize a distance, divergence or discrepancy

measure between the approximate distribution and the exact posterior distribution.

q(0) = arqgelgin KL[q(6)[p(6|D)] (1.15)

Equation (1.15) is called Kullback Leibler (KL) divergence which is the popular choice
for the divergence measure [Kullback (1959); Kullback & Leibler (1951)]. This is
widely used in wvariational inference algorithm [Beal (2003); Ghahramani & Beal
(2000); Jordan et al. (1999)]. In general, an optimization objective function F is

designed to obtain an accurate approximation:

q"(0) = argmin F(a(6); p(6]D)), (1.16)

qe
This objective function F is formulated such that F* can represent an accurate ap-
proximation to the logarithm of the marginal distribution, or model evidence log p(D)
at the optimum. All these methods are thoroughly discussed in Chapter (2). The
Bayesian prediction distribution in Equation (1.6) is computed at the prediction time

once the approximate posterior ¢ is obtained:

p(y'le’. D) ~ [ply’la", 0)a(6)d6 (1.17)

1.7 Summary of the remaining Chapters

Chapter (2) discusses the background study on the family of variational Bayesian
algorithms. It investigates the variants of EM algorithms with different maximization
techniques such as OLS, IRLS, and SGD. It discusses an alternative to variational

Bayesian algorithm which is Expectation propagation algorithm. The message passing
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EP-MCMC and EP-ADMM are also discussed. This is then applied to a hierarchical

Bayesian inverse problem in Chapter (6).

Chapter (3) discusses the general idea of Cluster weighted models. Diving through
from the finite mixture model, we give some historical evolution of the finite mixture
model. In the subsequent sections, the history about the method of estimation is
given with more emphases on EM algorithm. Afterwards, we study the CWMs in
high-dimensional and introduce a dimensionality reduction technique called tSNE.
We applied the CWM-tSNE on large data and aim to discover the hidden structure
of the data.

Chapter (4) proposes a new family of generalized cluster weighted model called Multi-
nomial CW»Ms. 1t extends the binomial CWMs for the binary response variable in
twofold. Firstly, MCWM allows for the possible nonlinear dependencies in the mix-
ture components by considering a multinomial logit regression or softmax regression
for multi-class. Secondly, it considers multinomial distribution for the conditional
distribution of the response variable given the covariates. it investigates the con-
ditions under which the proposed model is identifiable. Conventionally, maximum
likelihood estimations are derived using the Expectation Maximization algorithm for
cluster weighted models. However, EM algorithm is known for its slow-to-convergence
nature and inability to scale to large dataset due to its slow nature. To overcome
this drawback in EM and to avoid the problem matrix inversion of the model arising
from the EM algorithm with an iteratively re-weighted least squares (EM-IRLS), we
use the Expectation Maximization with a Stochastic Gradient Descent (EM-SGD).
Model selection is carried out using the Akaike Information Criterion (AIC), Bayesian
Information Criterion (BIC) and Integrated Completed Likelihood (ICL) and other
five variants. ARI variants such as Rand Index, Huberts and Arabie’s (HA), Fowlkes
and Mallow’s (FM), Morey and Agresti’s (MA), and Jaccard (JA) are considered as
a different measure of accuracy. The clustering performance of the proposed model

is investigated through simulation and real data sets. Considering different datasets,
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multinomial CWM shows excellent clustering results via performance measures such

as Accuracy and Area under the ROC curve.

Chapter (5) proposes another model into the family of Cluster Weighted Models
(CWNMs) called Zero-Inflated Cluster Weighted Model (ZIPCWM). It extends Poisson
cluster weighted models and other mixture models. To estimate the parameter of the
models, an EM algorithm with an iteratively re-weighted least squares is proposed.
The ZIPCWM is applied to real data which accounts for excess zeros of over 40%.
We explore the classification performance of ZIPCWM, Fixed Zero-Inflation Poisson
Mixture Model (FZIP), and Poisson Cluster Weighted Model (PCWM) on the data.
In conclusion, ZIPCWM outperforms both PCWM and FZIP models.

Chapter (6) focuses on solving the problem of a deterministic algorithm called Fzpec-
tation Propagation algorithm. It proposes an easy-to-use reconstruction method based
on Expectation Propagation (EP) techniques. In order to address the intractability
of the normalizing factor in EP, this method incorporates the Monte Carlo meth-
ods, MCMC, and Alternating Directional Method of Multiplier (ADMM) algorithm
into EP method. The advantages of the proposed technique include stability derived
from a stochastic search and a flexibility to hierarchical models. It demonstrates the
approach on complex Bayesian models for image reconstruction. Our technique is
applied to images from Gamma-camera scans. The experiment focuses on image re-
construction from a noisy image. It compares the results from the proposed method
with that produced by MCMC.

Chapter 7 concludes the thesis with a discussion and summary of the main contribu-

tions of the thesis.



Chapter 2

Family of Variational Bayesian

Theory

2.1 Introduction

To open the floor on the discussion of the family of variational methods, I provide a
condensed introduction to three classes of well-known approximation inference tech-
niques such as Expectation Maximization (EM), Variational Bayes (VB), and Expec-
tation Propagation (EP). I will first start by discussing statistical divergence measures
upon whose neck they all lean. Then I will provide the extension of two methods in
details.

2.2 Statistical divergence measures

Many approximate inference algorithms measure the approximation quality by con-
sidering the divergence between the exact posterior and the approximation posterior.
In this thesis, we will manly focus on the case where both the exact and the approx-
imation are expressed by probability distributions. Before we dig further, we briefly
discuss the definition of the Probability Density Function (PDF) as a prerequisite.
Denote the measurable space (X,.A), where X is the sample space of the random
variable & of interest, and A is a pre-defined o-algebra on X'. A probability distribu-

tion P is a measure defined on A such that P(X) = 1. Also, we assume there exists

21
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a dominating or reference measure p on A such that, for a probability distribution P
defined on A, we define its probability density function p by dP = pdu where for dis-
crete case, the PDF is referred to as probability mass function (PMF). For simplicity,
we will work with the sample space © = RP| the g-algebra A = {S : S C R”}, and
the reference measure du = d@. Finally, P denote the space of the PDFs such that
any probability distribution P defined on A has its PDF p € P. The next section

discuses the former definition of divergence.

Definition 2.1 (Divergence): Given a set of probability density functions P for a
random variable 0, a divergence on P is defined as a function D[.||.] : P x P — R
such that Dp||q] > 0 for all p,q € P, and DIpl||lq] =0 iff p = q.

The above definition is much weaker than that of a distance such as ls-norm, since
it does not need to satisfy either symmetry in arguments or the triangle inequality.
Hence there are many types of divergences, and this section discusses some of the
popular choices. We kick off from the well-known Kullback-Leibler (KL) divergence
and its properties and applications. Then in general, we review a-divergences and
focus more on the KL divergence as the main divergence tools for the algorithms

developed in this thesis.

2.2.1 Kullback-Leibler (KL) divergence

Kullback-Leibler divergence is one of the most widely used divergence measures, both
in approximation problem in Bayesian inference and in machine learning, statistics,
and information theory, [Kullback & Leibler (1951); Kullback (1959)].

Definition 2.2 (Kullback-Leibler Divergence): The Kullback-Leibler (KL) divergence
on P is defined as a function KL[.||.] : P x P — R with the following form
p(0)

KL[p[lq] = /p(é’) log @d& p.qEP, (2.1)
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It is easy to check the validity of the above definition as a divergence. By Jensen’s
inequality, Equation (2.1) is always non-negative and it attains zero iff. p = ¢. Also, it
is apparent that KL divergence is asymmetric, i.e. KL[p||q] # KL[q||p]. Historically,
when used in approximate inference field, the KL[p||q] is referred to as inclusive KL
divergence, and KL[q||p] is referred as ezclusive KL divergence. These names emanate
from the idea that fitting ¢ to p by minimizing these two KL divergence returns results
of distinct behavior. Fitting ¢ to p by minimizing KL[p||¢], means that KL divergence
assigns high probability mass of ¢ to the location where p has positive mass, thus the
name “inclusive” KL. This property is referred to as mass-covering. For example,
in a region S € O, the case that ¢(@) > 0 but p(@) = 0 would make the integrand
in Equation (2.1) zero. In contrast, if p(@) > 0 but ¢(@) = 0, this would mean the
integrand is infinity and the cost of missing a region with positive p mass is extremely
high. Similarly, fitting ¢ to p by minimizing KL[q||p] assigns low probability mass of
q to the location where p is very small which means "exclusive” KL. For example,
S € O that has ¢(@) > 0 but p(@) = 0 for @ € S, then this makes the integrand in
Equation (2.1) infinity, thus the KL divergence assigns an extremely cost to g. On
the contrary, if p(@) > 0 but ¢(8) = 0, the integrand restricted to the subset S is
zero, which means that the cost of missing a region with positive p mass is much
lower. This is referred to as "zero-forcing”, when the approximate distribution ¢ is

restricted to be unimodal.

Later we will see how these two KL divergence form the basis for widely used ap-
proximate algorithms such as expectation maximization algorithm [Dempster et al.
(1977)], expectation propagation [Minka (2001)], and variational Bayes [Beal (2003);
Jordan et al. (1999)]. In EM algorithm, it is obvious that maximizing the MLE is

equivalent to minimizing a KL divergence.

2.2.2 Alpha divergences

Historically, just after a year of the proposal of KL-divergence, a test statistic for
the likelihood-ratio test was introduced by [Chernoff (1952)]. The test statistic was

linked to a divergence measure that is computed by the infimum of an integral. The
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integral which has been referred to as the Chernoff a-coefficient is as follows

/ p(0)%¢(0)°d8, a e (0,1), (2.2)

It was argued by a mathematician in 1961 that, Shannon entropy can be further
generalized to many interesting cases by removing the additivity requirement [Rényi
(1961)]. He then proposed one of such entropy definitions, and then characterized
the induced mutual information and relative entropy measures using his version of

a-divergence called Renyi entropy and Renyi divergence, respectively.

In the 20th century, differential geometry that studies the geometric properties of
the manifold was introduced to statistics [Amari (1985); Efron (1975); Efron (1978)].
This is obtained by mapping P to the parameter space ®. In particular, geometric
properties of exponential family distribution was the main focus and the corresponding
divergences that reflect these features. Following this path, mathematician Shun-
ichi Amari introduced his version of a-divergence [Amari (1982); Amari (1985)], by

generalizing the application of Chernoft a-coefficient to o € R.

Definition 2.3(Amari’s a-divergence): Amari’s a-divergence DA[.]|.] : P x P — R,
parameterized by o € {a : DA[p||q] < +o0}, is defined as

D2l = (1 [0 F 0= 23)

The limit of Equation (2.3) as a — 1 is KL[p||¢] and the limit of Equation (2.3) as
a — —1is KL[¢||p]. Amari used a-divergence to study the geometry of distribution
manifolds, and as claimed in Amari (2009). Amari’s definition is the only divergence
that belongs to both f-divergence [Csiszar (1963)] and Bregman divergences [Bregman
(1967)].
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2.2.3 Renyi’s Alpha divergence

Renyi’s a-divergence measures the "closeness” of two distributions p and ¢ on a ran-
dom variable 8 € ©. It is defined on {a : a # 1, > 0} as follows

1
a—1

DI{pllq) = ——log [p(6)"q(8)'~“db. (2.4)
In Equation (2.4), |DE[p||q]| < +oo is useful to rewrite the divergence as the expec-
tation under p or ¢q. The definition is extended to a = 0, 1, +00 by continuity. When
a — 1, the Kullback-Leibler (KL) divergence is recovered, which plays a crucial role

in machine learning and information theory.

Table 2.1: Special cases in the Renyi divergence family

o Definition =~ Notes
a—1 /p(@) log %d@ Kullback-Leibler (KL) divergence used for
KL[q||p] in VB and KL|p||q] in EP.
a<+0 — log/ q(0)d@  Zero when sup(q) C sup(p)
p(0)>0
a=05  —2log(1— H?%p|lg])  Square Hellinger distance

a= —log(1 — x?[p|lg])  proportional to the x? divergence

o < +00 log maa:gee@ worst-case regret used in minimum

description length principle]Grunwald, 2007]

Besides the KL divergence, there are other choices of divergences for approximate
inference presented in Table (2.1). Some Properties of the a-divergence are given
below;

Proposition 2.1

(Monotonicity): Renyi’s a-divergence extended to negative o is continuwous and

non-decreasing on o € {a: —oo < DE < +o0}.
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Proposition 2.2

(Skew symmetry): For o ¢ {0,1} and DZE[p|lq] = 2-D{ ,lq|lp]. This implies
DZpl|g) <0 for a < 0. For the limiting case DE_[p||q) = —D%¥_[q||p]. A current
active research is how to choose a divergence in this rich family to obtain optimal

solution for a particular application.

2.3 Expectation Maximization algorithm

The EM algorithm is an iterative maximume-likelihood estimator and is typically used
when one is dealing with incomplete data or when the likelihood function involves
latent variables. However, the distinction of the two cases is more of interpretation
issue, since latent variable can be thought of as an unobserved data, thus leading to
incomplete data. Therefore, it is possible to use the EM algorithm by introducing a
pseudo variables which are simply declared as unobserved. The EM algorithm was
discovered and used independently by several different researchers, but it was first
described fully by [Dempster et al. (1977)], who also coined the term "EM algorithm”.

One important problem that motivated this algorithm was the parameter estimation
of Gaussian Mixture Models [McLachlan & Peel (2000)], since Cluster Weighted Mod-
els are closely related to this problem, it has also been used for parameter estimation.
Since Dempster’s paper, a huge amount of material was published which further in-
vestigated and used the algorithm for various purposes. It is important for training of
hidden Markov models, especially for speech recognition, pattern recognition, neural

network training.

2.3.1 General formulation

For describing the EM algorithm in a general fashion, we consider a parametric density
function p(z|@®), where @ are the parameters; in the case of CWMs, these parameters
are the cluster weights, the location and variances of the clusters. The random variable
X is assumed to be i.i.d according to this distribution, and D = {z4,...,zx} is a data

set which is also a realization of this random variable. The likelihood function is given
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by
N

L(O|X,y) = p(X,y|©) = > p(x:,4:]©). (2.5)

i=1
To obtain the value of the estimates of the parameters @, the common appraoch is to
use those parameters that maximize the likelihood i.e. those parameters that fulfills
the following equation

OnL = argglaXL(@\X, Y). (2.6)

In many application cases, it is easier to calculate this maximization by using the
log-likelihood £(©|x), which shall be used in the following. Until now, computing
this maximization analytically is often intractable or even impossible, so resorting to

approximation procedures is the best choice.

Customarily, the EM algorithm is peculiar to incomplete data. This covers two dif-
ferent scenarios such as incomplete data resulting from a loss of information or ex-
pensiveness of observing some data or due to technical difficulties or other limitations
of observation processes. The second scenario is to simplify the maximization of the
likelihood by introducing a hidden variables. The latter is common in the cases of

mixture and cluster weighted models.

The basic strategy of EM is to first formulate the complete data problem, given
a hypothetical complete data set D = {x,...,xn, Y1, , .-, YN, 21, ---, 2}, Where the z;

denote the latent or hidden variables. The complete log-likelihood is given by
LO|X,Y,Z)=logp(X,Y, Z|O), (2.7)
and we further decompose the joint probability according to Baye’s rule into
P(X.Y.Z|®) = p(Z|X.Y,0)p(X,Y|O©). (2.8)

Since hidden variables z; are realizations of the random variable Z, the complete log-
likelihood L is also a random variable, and we can calculate its expected value with

respect to Z, given the observed data {z;} and a current parameter estimate oW,



CHAPTER 2. FAMILY OF VARIATIONAL BAYESIAN THEORY 28

This expectation is usually written as the function @)
Q(0;0) = B| logp(X, Y, Z|©)X, Y, 0% (2.9)

This is the Ezpectation step (E-step) of the algorithm. It is important to note that Z
is a random variable and the ® can be a random variable in the case of variational
Bayes algorithm, but in EM algorithm ©®*) and X are constant. While at each

iteration, X remains the same, the ®*) changes with the iteration k.

In the Mazimization step (M-step), the recently calculated expectation Q(®; ©@®) is
maximized with respect to ®, the result being our parameter estimate for the next

iteration:
O — argmax Q(0; OW) (2.10)
®

This assures us that we will always climb uphill at every iteration and therefore
maximizing the complete log-likelihood. However, if it is not possible then it is
possible to find @*+1 with the largest likelihood than the previous one. This idea
is guaranteed to find a local maximum of (). In every iteration, one E- and M-step
are performed alternatively. The goal is to determine if these iteration will lead to

convergence, and if so, it will converge to ML estimator.

Let Z take a value from the space of all possible values Z, so that

> p(Z|X,v,0W) =1, (2.11)

ZeZ

and hence it holds that

p(X,Y,Z|©)
logp(X,Y]®) =S p(Z|X,Y,0® log[ 2.12
( |©) ZZEIZ(I ) WZIX.Y,0) (2.12)
= > p(Z|X,Y|0W)logp(X,Y) (2.13)
ZeZ

using the Q-function in Equation (2.9), we can see that the first term in this equation
is Q(©®,0),
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Therefore from Equation (2.12), we can see that

p(X,Y[©)

1 N S S
%8 DX, Y|OW)

= logp(X,Y|©) — logp(X, Y|©"), (2.14)

(2.15)

p(Z|X,Y,0W)
Q(O,0W) —QOW ™) + 3 p(Z|X,Y,0")log :
2 V(ZIX.Y, )

The last term in Equation (2.15) is the Kullback-Leibler divergence between two
densities in the fraction, which is not symmetric that is KL(p||q) # KL(¢||p) and by

definition it is always positive. Therefore, it holds that

logp(X,Y]©) —logp(X,Y|0") > Q(©,0") - Q(©", e™). (2.16)

k-+1)

Through M-step, we can now calculate ©( i.e. through the maximization of the

Q@ function
O* )  argmax Q(©, W), (2.17)
)

Substituting Equation (2.17) into Equation (2.16) yields,
log p(X, Y|@¥)) —log p(X,Y[OW) > Q(@*) 0®) — Q@™ &) >0 (2.18)

and therefore,
log p(X,Y[@*+D) —logp(X,Y|©®). (2.19)

This means that, it is guaranteed that log-likelihood increases at each iteration, until
the stopping criteria is satisfied when there is no or little change in the difference
which implies that a fixed point is reached. From Equation (2.16), it is clear that
every maximum likelihood parameter @™’ is a fixed point of the iteration, and the
sequence of parameter estimates @, O, .. ©®) gives rise to a non-decreasing se-
quence £(©©), £(@W), ..., £(©®) which must converge as k — co. In rare cases, it

is possible to reach a saddle point and even a minimum of the likelihood [Wu (1983)].
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2.3.2 Algorithm for General EM

Algorithm 1 The General EM Algorithm

1:

Given a probability model with a set of observed variables X', a set of unobserved
latent variables Z, and a vector of unknown parameters ©, the goal is to maximize
the log-likelihood w.r.t. the parameters ©.

Start with an initial value for the parameter ®© and compute the initial log-
likelihood log p(X|©©).

E-step: Evaluate

) = arguax £(6, 0%) = p(an, 20, 6%)
q

M-step: Evaluate
O* ) — argmax Q(O, Q(k))
e

Compute the log-likelihood log p(X|®%+1) and check for convergence of the al-
gorithm. If the convergence criterion is satisfied return the final parameters.
Otherwise, repeat steps 2 — 4.

However, EM algorithm is a steepest ascent method which is only guaranteed to

reach a local maximum of the likelihood. This is dependent on the initial parame-

terization ) which charted the course of the algorithm, i.e. set the route for the

algorithm in hunting for the best parameter that maximizes the likelihood. Therefore,

it is advisable to execute the algorithm with several starting values and compare the

performance of the resulting parameters with some model selection procedure.

2.3.3 Convergence Criterion

The general convergence of the algorithm is discussed in detail. Having seen that the
goal of both the E and the M steps are to maximize the log-likelihood L(g, ®), it is
easy to see that after E-step,

1Y) = L4V, 0Y) = £(g" Y, 0") (2:20)
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and that after the M-step,

L(g®, 0%y > £(g®, o). (2.21)
Combining these two inequalities together, we obtain

ﬁ(q(k'*‘l)’ @(k+1)) > ﬁ(q(’f)’ @(k))
and

log p(X|©@%+) > £(¢™, V).

It is also clear that each EM iteration increases the lower bound on the log-likelihood
function and will change the model parameters in such a way as to increase the actual
log-likelihood. This is guaranteed to reach a local maximum of the log-likelihood

function.

2.3.4 Maximum A posterior estimation

The EM algorithm can be used to find MAP solutions for models in which a prior
p(©®) over the parameters © is employed. By decomposing the log-likelihood, we have

log p(©]X) = log p(X[©) + log p(©) — log p(X)

> L(g,©) + log p(©) — log p(X) (2.22)

where log p(X) is a constant. Again we can maximize the right-hand side alternatively
with respect to ¢ and ®. In this case the E-step remains the same as in the maximum
likelihood case as ¢ only appears in L(q, ®), whereas the M-step the quantity to
be maximized is given by L(q, ®) + log p(®), which typically requires only a small

modification to the standard maximum likelihood M-step.

2.3.5 Choosing the optimal number of components

When the primary goal is to identify the number of components G, testing for the
number of components is very crucial. However, it is somewhat difficult in practice

which still remains completely unsolved. When working with the mixture model,
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two main purposes come to mind. One is to provide an appealing semi-parametric
framework in which to model unknown distributional shapes [Escobar & West (1995);
Robert (1996); Roeder & Wasserman (1997)]. The other purpose is to use the mixture
model to provide a model-based clustering. In both situations, we need to answer the
question of how many components is to be included in the mixture. In the previous
studies of density estimation, the commonly used information criteria are the AIC
and BIC which appear to be adequate for choosing the number of components G for
a density estimation. Under mild conditions, Leroux (1992a) established that certain
penalized log-likelihood criteria such as AIC and BIC do not underestimate the true

the number of components asymptotically.

2.3.6 Akaike’s Information Criteria

Akaike’s Information criteria proposed by Akaike (1973) and Akaike (1974)] is used

to select the model that minimizes
AIC = —210gl(®) + 2m (2.23)

where m is the total number of free parameters in the model. AIC has been widely
used to assess the order of a mixture model. However, Koehler & Murphee (1988)
argued that AIC is inconsistent and tends to overfit models. In mixture model, it is
observed that AIC tends to overestimate the correct number of components [Kochler
& Murphee (1993); Celeux & Soromenho (1996)].

2.3.7 Bayesian information criterion

Among the common existing model selection criteria, the Bayesian information crite-
rion (BIC; Schwarz (1978)) and the Integrated completed likelihood (ICL; Biernacki
et al. (2000)) constitute the reference choices in the recent literature on mixture
models. The BIC is commonly used in model-based clustering and classifications ap-
plications involving a family of mixture models [Fraley & Raftery (2002); McNicholas
& Murphy (2008)]. The use of BIC in the mixture model selection (Dasgupta &
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Raftery (1998)), has been strongly encouraged. The BIC formula is given by
BIC = —21(©) + mInn. (2.24)

Leroux (1992a) also shows that BIC does not underestimate the true number of
component asymptotically. One potential problem of the BIC for model selection in
model-based clustering applications is that a mixture component does not necessarily
correspond to a true cluster. For example, a cluster might be represented by two

mixture components.

2.3.8 Integrated completed likelihood

In an attempt to focus model selection on clusters rather than mixture components,
Biernacki et al. (2000) proposed a penalized version of BIC called Integrated com-
pleted likelihood which is the BIC penalized for the estimated mean entropy;

N @
ICL = BIC +)Y.Y MAP(,)In%, (2.25)
i=1g=1
N G
where ZZM AP(%;,)In 2, is the estimated mean entropy which reflects the uncer-
i=1g=1

tainty in the clustering of observation i into component G. Therefore, the ICL should
be less likely compared to the BIC to split one cluster into two mixture components.
Biernacki et al. (2000), based on numerical experiments, suggest to adopt the BIC

and the ICL for indirect and direct applications, respectively.

2.3.9 Approximate Weight of Evidence

Banfield & Raftery (1993) suggest an approximate Bayesian solution to the choice of
the number of components using classification ML approach. Their crude approxi-
mation to twice the log Bayes factor of G clusters leads to the approximate weight of

evidence (AWE) criterion having the form

AWE = —21(©) + 2m(3/2 + logn). (2.26)
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Definition and key reference for the adopted likelihood-based information criteria are

given below

Table 2.2: Definition and key reference for the likelihood-based information criteria.

Information Criteria  Definition Reference

AIC —2(®) +2m Akaike (1973)

BIC —20(®) +mlogn Schwarz (1978)

AWE —21(©) +2m(3/2 +logn)  Banfield & Raftery (1993)

AIC; —20(®) + 3m Bozdogan (1994)

AIC, AIC — 2% Hurvich & Tsai (1989)

AlIC, AIC. — nlog —"— McQuarrie et al. (1997)
n G

ICL BIC 4+ > > MAP(%,)In2, Biernacki et al. (2000)
i=1g=1

CAIC —20(®) + m(1 + logn) Bozdogan (1987)

2.3.10 Adjusted Rand Index

In addition to likelihood-based criteria presented in Table (2.2), Adjusted Rand Index
(ARI) and its variants are also used for model selection. The data analyses are mainly
conducted as clustering examples, the clustering results are compared with the a pri-
ori known true classifications. The original Rand Index [RI: Rand (1971)] is based on
pairwise comparisons and is obtained by dividing the number of agreements (obser-
vations that truly agree and observations that truly disagree) by the total number of
pairs. RI assumes values on [0, 1], where 0 indicates no pairwise agreements between
the MAP clustering and true cluster membership and 1 indicates perfect agreement.
One criticism of RI is that its expected value is greater than 0, making smaller values
difficult to interpret. ARI adjusts RI for chance by allowing for the possibility that
classification performed randomly should correctly classify some observations. Thus,
ARI has an expected value of 0 and perfect classification would result in a value of
1. Thus the higher the ARI, the better.

The component G that has the highest agreement with the true class label is selected

as the best number of components. However, we observed that even the incorrect
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number of component G can have the highest ARI, this could possibly mean that the
class labels are not evenly distributed, since the ARI only counts the predicted class

by the model that matches the true class, irrespective of their locations.

2.4 Variational Bayes Method

The development of variational techniques for Bayesian inference followed two paral-
lel, yet separate tracks. Peterson & Anderson (1987) is arguably the first variational
procedure for a particular model: a neural network. Their work, along with insights
from statistical mechanics [Parisi (1988)], led to a flurry of VB procedures for a wide
class of models [Saul et al. (1996); Jaakkola & Jordan (1996); Jaakkola & Jordan
(1997); Ghahramani & Jordan (1997); Jordan et al. (1999)]. In parallel, Hinton &
Camp (1993) proposed a variational algorithm for a similar neural network model.
Neal & Hinton (1999) (first published in 1993) made important connections to the
expectation maximization (EM) algorithm [Dempster et al. (1977)], which then led
to a variety of variational Bayesian algorithms for other types of models [Waterhouse
et al. (1996); MacKay (1997)].

2.4.1 History of Variational Methods

In the 18th century, Variational methods have their source from the work of Euler,
Lagrange and others on the calculus of variations that is concerned with studying
functionals. Standard calculus concerns the derivatives of functions. A function can
be thought of as mapping the input value of a variable to the output value of the
function. The derivative of the function then describes the various output values as
we make infinitesimal changes to the input values. Similarly, a functional can be
defined as a mapping that takes a function as an input and then returns the value
of the functional as the output. For example, an entropy H(p) takes a probability

distribution p(@) as an input and returns the quantity

Hlp| = / (6) In p(8)d6. (2.27)

as the output. Additionally, functional derivative expresses how the value of the

functional changes in response to the infinitesimal changes to the input function
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[Feynman et al. (1964)]. The rules for the calculus of variations are discussed in
[Appendix D]. Many problems can be expressed in terms of an optimization problem
in which the optimized quantity is a functional. The solution is obtained by exploiting
a search space for all possible input functions with the goal to find an optimal value
that minimizes, or maximizes the objective function. Variational methods have wide
applicability in areas such as maximum entropy [Schwarz (1988)] and finite element
methods [Kapur (1989)]. In general, variational methods lend themselves to finding
approximate solutions by restricting the range of optimized functions. For instance,
consider a quadratic functions or a function with a linear combination of fixed basis
functions in which only the coefficients of the linear combination can be random
[Jordan et al. (1999); Jaakkola (2001)].

2.4.2 General formulation of Variational methods

Now, we consider in more detail the concept of variational optimization and how it
can be applied to the inference problems. Suppose there is a fully Bayesian model
where all parameters are treated as random variables, i.e. all parameters are given
prior distributions. The model may also consist of both latent and parameters, the set
of which in this case shall be denoted by Z = {z, ..., zy}. Similarly, we shall denote
the set of observed variables by X = {xy,...,xx}, where N denotes the set of the
independent, identically distributed data. The main goal is to find an approximation
for the posterior distribution p(Z|X) and the evidence p(X) from a probabilistic
model which specifies the joint distribution p(X’, Z). According to the KL divergence
discussed above, we decompose KL divergence to obtain the log marginal probability

to maximize

~KLall) = [al2)10g "7 az (2.25)

~ [a(2)|1ogp(21%) o5 4(2) |2 (2.29)
by Bayes’ rule we have

_ p(X, Z2)

- /q(Z) [log oyl q(Z)} iz (2.30)
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Figure 2.1: Illustration of the variational (green) and Laplace (red) approximations com-
pared to the original distribution (yellow), and the right-hand plot shows the negative
logarithms of the corresponding curves. Source: [Bishop (2006)]

p(X, Z)
= /q(Z) log «(2) dz — /q(Z) logp(X)dZ (2.31)

Since log p(&X') has no variable Z then the right-hand side of Equation (2.31) is con-
stant. Then,

— KL(qllp) = L(q) — log p(X). (2.32)

Then, the marginal distribution is

log p(X) = KL(q|[p) + L(q). (2.33)
where (X Z)
p(X,
L(g) = /q(Z)log el (2.34)

The variational method can be seen as a generalized EM algorithm in that the param-
eter vector @ is no longer fixed but random or stochastic variables and are embedded
in Z. We note that we have assumed continuous variables and the same settings
are applicable for discrete variables with summation rather than integration. We
then maximize the lower bound given in Equation (2.34) by optimizing w.r.t the ap-
proximate distribution ¢(Z), which is equivalent to minimizing the KL divergence.
The maximum of the lower bound occurs when the KL divergence vanishes, i.e. when
approximate distribution equals the posterior distribution ¢(Z) = p(Z|X’). We there-
fore work with a restricted family of distributions ¢(Z) and then seek the member of

this family that minimizes the KL divergence. The main goal is that the restricted
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family sufficiently comprises of only tractable distributions, while the family is rich
and flexible enough to provide a good approximation to the true posterior distribu-
tion. It is important to emphasize that the restriction is to achieve tractability, and
that this requirement should prompt a rich family of approximating distribution as
possible because in particular, there is no ’over-fitting’ attached with highly flexible
distributions. However, using highly flexible approximating distributions helps us to

approach the true posterior distribution more intimately.

One way of restricting the family of approximating distributions is to use a parametric
distribution ¢(Z|0©) parameterized by @. The lower bound £(q) becomes a function
of ®, and we exploit standard nonlinear optimization techniques to determine the
optimal values for the parameters. The explanation of this framework is given in
Figure (2.1), in which the variational distribution is a Gaussian optimized with respect

to its mean and variance.

2.4.3 The mean-field variational family

We hereby consider another way to restrict the family of distributions ¢(Z). Suppose
the elements of Z is partitioned into a disjoint group denoted by Z;, where j =1, ..., J.
We then say that the approximate distribution is factorized with respect to the group,
so that

2)=u(z) 2:35)

This factorized form of variational inference corresponds to a framework developed
in physics called mean field theory [Parisi (1988)]. We now seek that distribution
with which the lower bound £(g) is maximized among all the distributions ¢(Z).
The goal is to make a free form variational optimization of £(g) with respect to all
the distributions ¢;(Z;). This is optimized with respect to each of the factors in
a coordinate-wise or in parallel by substituting Equation (2.35) in Equation (2.34).
We then marginalize out the dependence on one of the factors ¢;(2;) where ¢ (Z2))
denotes the distribution that does not depend on the factor g;. We therefore obtain

the following
p(X,2)

0= M| I

] dZ (2.36)
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= /qu [logp(X,Z) — Zlog qj} dZ (2.37)

= /C]l [/ logp(X, 2)[ [ dZ]}le — /ql log q; dZ; + const (2.38)
J#l
= /ql{Ej# [logp(X, Z)} + const} dzZ; — /ql log q; dZ; 4 const (2.39)
Here, the notation E;4/[...] denotes an expression with respect to the ¢ distributions

over all variables z; for j # [.

Suppose we maximize the lower bound L£(g) in Equation (2.39) w.r.t. all possible
forms for the distribution ¢;(Z;) and keep all other variables ¢, fixed. Thus max-
imizing Equation (2.39) is equivalent to minimizing the Kullback-Leibler divergence
because Equation (2.39) is a negative KL divergence. Thus we obtain a general

expression for the optimal solution ¢ (Z;) given by
log g/ (Z1) = Ejullog p(X, Z)] + const. (2.40)

Equation (2.40) says that the log of the optimal solution for factor ¢, is obtained by
taking the log of the joint distribution over all latent and observed variables and then
averaging by taking the expectation with respect to all other factors ¢; independent of

q, for j # [. Taking the exponential and normalize Equation (2.40) gives the following

exp(E;xllog p(X, Z)])
exp(E;ullogp(X, Z)]) dZ,

4 (21) = / (2.41)

The set of equations given in Equation (2.40) for [ = 1, ..., J represents a set of con-
sistency conditions for the maximum of the lower bound subject to the factorization
constraint. We will first seek a consistent solution by first initializing all of the factors
¢;(Z;) appropriately and then cycling through the factors and replacing each in par-
allel with a revised estimate given in the Equation (2.40) evaluated using the current
estimates for all other factors. Convergence is discussed in [Boyd & Vandenberghe

(2004)]. This is guarantee due to a convex bound with respect to each of the factors
4;(Z;)-
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Figure 2.2: Visualizing the mean-field approximation to a two-dimensional Gaussian pos-
terior. The ellipse show the effect of mean-field factorization. Source: [Blei et al. (2018)]

2.4.4 When should a statistician use VB or MCMC?

A critical question of interest is when should a statistician prefer one approximate
method to another. For instance, which method should be preferred between Varia-
tional Bayes (VB) and MCMC. Some researchers have delved deeper into this question
and some have unified the two algorithms into one algorithm. Considering the differ-

ence between VB and MCMC will enlighten us on which one to prefer over the other.

MCMC methods are computationally intensive than VB but produce somewhat asymp-
totically exact samples from a target density than VB [Robert & Casella (2004)]. VB
on the other hand, lacks such an accolade of producing exact posterior distribution,
but only finds a density close to the target density. However, it tends to be faster
than MCMC. VB utilizes optimization and takes advantage of methods like stochastic
optimization [Robbins & Monro (1951); Kushner & Yin (1997)]. In the field of large
data, VB is suitable than MCMC and in the scenario where many models are to be
explored. In contrast, MCMC is suitable for smaller data and in the situation where
we are happy to pay the computational cost for accuracy. For example, we might
use MCMC where we require precise inferences. But we might use VB when fitting
a probabilistic model to billions of text documents and where the inferences will be

used to serve as a search results to a large population of users.

Another factor that determines which approximate method to prefer is the geometry

of the posterior distribution. For example, a posterior distribution in a mixture
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models admits multiple modes. According to the model, Gibbs sampling tends to be
a powerful approach to sampling from the target distributions as it quickly focuses
on one of the modes. However, when Gibbs is not a better choice, VB can perform
better than a general MCMC method e.g. Hamiltonian Monte Carlo e.g. Hamiltonian
Monte Carlo for smaller datasets [[Kucukelbir et al. (2015)].

One limitation of VB is that it underestimates the variance of the posterior density.
This is visualized in Figure (2.2). This depending on the objective, underestimating
the variance may be acceptable. Several areas of research have shown that VB does

not necessarily suffer in accuracy, especially in terms of posterior predictive densities
[Blei & Jordan (2006); Braun & McAuliffe (2010); Kucukelbir et al. (2016)].

2.5 Expectation Propagation Methods

2.5.1 General EP

An alternative form of deterministic approximate inference which uses an inclusive
type of KL divergence is known as expectation propagation or EP for short [Minka
(2001)]. Similar to variational Bayesian, EP also minimizes Kullback-Leibler diver-
gence but in an inclusive or reverse form, which gives the approximation rather dif-
ferent properties. We consider the problem of minimizing KL(p||q) with respect to
the approximate distribution ¢(@) when the p(8) is a fixed distribution and ¢(0) is a

member of the exponential family which can be written as

q(8) = h(8)g(¢) exp(¢"u(8)). (2.42)

As a function of parameter ¢, Kullback-Leibler divergence becomes

KLpllg] = [p(6)logp(6)d6 — [p(6) loglh(0)g(C) exp(¢Tu(®))],  (243)

embedding all quantity that is independent of parameter ¢, we have

= —logg(¢) — CT]Ep(O) [u(@)} + const. (2.44)
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We can minimize KL[p||q] by setting the gradient with respect to ¢ to zero and this
gives the following

— Vlog g(¢) = E9) [u(@)} (2.45)

By using the method of moment matching, we equate the expectation of u(@) under
the distribution ¢(0) to the expectation in equation (2.45) as follows;

Eq0)[u(8)] = Ep@)[u(8)] (2.46)

The optimal solutions simply corresponds to matching the expectation sufficient
statistics. For example, if ¢(0) is a Gaussian N (0|u,X) then the Kullback-Leibler
divergence KL[p||g] is minimized by setting the mean g and covariance ¥ of ¢(8) to

the mean and covariance of p(8).

2.5.2 Practical Algorithm for EP

Now, we exploit this result to obtain a practical algorithm for approximate inference.
For many probabilistic models, the joint distribution of data D and latent variables

including the parameters @ can be seen as a product of factors as follows;
p(6.D) = [Tt(6). (2.47)

This arises for example in independent, identically distributed data in which there is
one factor ¢;(0) = p(x;|0) for each data point x;, where i = 0, ..., N with a factor o =
p(0) corresponding to the prior distribution. We are generally interested in evaluating
the intractable posterior distribution p(@|D) for prediction making and computing the

model evidence p(D) for the purpose of model comparison. The posterior is given by
1
p(0|D) = ——| |t:(0 2.48
(0|D) (D) H (0) (2.48)
and the model evidence is given by

p(D) = / [T#:(6)do. (2.49)
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The setting remains the same for discrete variable with integral replaced by summa-
tions. We hereby suppose that the marginalization over @ and the marginalization
with respect to the posterior distribution required to make predictions are intractable

so the only solution is approximation.

Expectation propagation is hinged on an approximation posterior distribution which

is also factorized as follows

Q(e) = Enfi(g) (2-50)

where each factor #;(0) in the approximation corresponds to one of the factors ;() in
the true posterior distribution in Equation (2.48) and the factor 1/Z is the normalizing
constant needed to make Equation (2.50) a PDF, i.e. integrate to unity. We shall
assume that the approximate factor #;(6) comes from the exponential family and the
product of the factors will therefore be from the exponential family. For example, if
each of the #;(6) is taken to be a Gaussian, the overall approximation ¢(8) will also
be a Gaussian. Generally, we would like to minimize the Kullback-Leibler divergence

between the true posterior and the approximate posterior
KLl = K1 o5 TTet6)] S 1150) @51
plg) = i 114 .
p(D)7, z7

Equation (2.51) is a reverse form of the Kullback-Leibler divergence used in variational
Bayesian. However, the involvement of the averaging with respect to the true posterior
distribution makes the Equation (2.51) intractable. To obtain a tractable version of
Equation (2.51), we instead minimize the KL divergences between the corresponding
pairs ;(0) and ;(0) of factors. However, the product of the factors could produce a

poor approximation because each factor is individually approximated.

Expectation propagation provides a much better approximation by optimizing each
factor in turn in the context of all of the remaining factors. It starts by initializing
the approximate factors #;(6), and cycles the factor refining them one at a time.
This is similar in the same spirit with the update of factors in the variational Bayes
framework discussed earlier. Suppose we wish to refine factor #;(0), the refined factor

is first removed from the approximate posterior ¢(@) to obtain the cavity distribution
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Figure 2.3: Illustration of the Expectation Propagation (blue), variational Bayes (green)
and Laplace (red) approximations compared to the original distribution (yellow), and the
right-hand plot shows the negative logarithms of the corresponding curves. Source: [Bishop
(2006)]

q-i(0) = 1?2((0)) :

Equation (2.52) is now combined with the factor ¢;(8) to compute the tilted posterior

(2.52)

t:(0) q-:(6) (2.53)
where Z; is the normalization constant given by
Z:= [1:6) 4 (6)d0 (2.54)

Conceptually, we now determine the revised form of the approximate term #;(0) by

ensuring that the product and minimizing the Kullback-Leibler divergence KL[p||q]

q""(0) < t;(0) q_i(0) (2.55)

is as close as possible to
pi(0) < t:(6) q—:(6) (2.56)

through minimizing the Kullback-Leibler divergence. This is easily solved when the
approximate posterior ¢"¢*(0) is from an exponential family, so we can find the best
approximate posterior close to the tilted posterior by matching the parameters of
" (0) with that of the tilted posterior. Finally, we compute the update for the
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approximate term #;(6).

t:(0) = Z;

(2.57)

where Z; is found by matching the zeroth-order moments as follows

/t ) do = /t ) dO = 7, (2.58)

Practically, several passes are made through the set of factors, updating each in
turn. The posterior distribution p(@|D) is then approximated using the approximate
posterior and the evidence p(D) using the

~ / [Ti:(6) do (2.59)

A special case of EP si known as assumed density filtering (ADF) [Maybeck (1982);
Lauritzen (1992); Boyen & Koller (1998); Opper & Winther (1999)]. It is obtained
by first initializing the first approximating factor in EP to unity. The remaining
factors are initialized and then make one pass through the factors by updating each
of them once. ADF is found to be appropriate for an on-line learning in which data
points are learned sequentially. Each data point is learned and then discarded before
considering the next point. However, EP technique is suitable for a batch setting
where we have the opportunity to re-use the data points many times in order to
achieve improved accuracy. One major limitation in ADF is the sequential nature
which has a dependence on the order in which the data points are updated. This

limitation is overcome by EP [Miele, Cragg & Levy (1971)].
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2.5.3 Algorithm for General EP

Algorithm 2 The General EP Algorithm

Given a probability model, we have a joint distribution over a set of observed
data D, and stochastic variables 6.

p(D.0) = [[t.(6)

we wish to approximate the posterior distribution p(8|D) by a distribution of the
form

We now approximate the model evidence p(D) as follows

1. Initialize all of the approximating factors f;(8).

2. Initialize the posterior approximation by setting

() o [T(6).
3. Until convergence:

(a) Choose a factor £;(0) to refine.

(b) Remove £;(0) from the posterior by division

q(0)
t:(0)

q-i(0) =

(c) Compute the new approximate posterior ¢"* by setting its moments
equal to tilted posterior p;(0), with the normalization constant

7:(0) = [4-:(0)1:(6)
4. Evaluate the approximation to the model evidence

p(D) ~ /Hfl(e) dae.
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2.5.4 Comparison VB and EP

The lack of guarantee of no convergence in the EP iterations makes it different from
VB. VB iteratively maximizes a lower bound on the log marginal likelihood, in which
each iteration is guaranteed to increase the bound. It is possible to optimize the
cost function of EP directly which provide a guarantee of convergence. However, the

resulting algorithms can be slower or more complex to implement.

Another difference between EP and VB stems from the types of Kullback-Leibler
divergence they both minimize. EP minimizes KL[p||q] while VB minimizes KL|q||p].
As we have discussed above, EP competes well with VB in terms of accuracy. A
simulation study shows that expectation propagation is somewhat more accurate than
mean field variational Bayes for larger sample sizes, but at the cost of considerably

more algebraic and computational effort [Kim & Wand (2016)].



Chapter 3

Variational Bayesian: EM — OLS
Cluster Weighted Models

3.1 Background History

Finite mixture of distributions has gained a long standing in statistical modeling
due to its mathematical-based approach to a wide random phenomena. Because of
their extremely flexible method of modeling, finite mixture models have brought to
limelight and received increasing attention over the years from both practical and
theoretical viewpoints. Indeed, in the past decades the extent and the potentials of
the applications of finite mixture models have widened considerably. Finite mixture
models have been widely and successfully applied in many fields such as biological,
genetics, medicine, psychiatry, economics, engineering, marketing, astronomy, among
many other fields in the biological, physical, and social sciences. In these applications,
finite mixture models underpin a variety of techniques in major areas of statistics,
including latent class analysis, discriminant analysis, image analysis, and survival
analysis, in addition to their more direct role in data analysis and inference of pro-

viding descriptive models for distributions.

The usefulness of mixture distributions in the modeling of heterogeneity in a cluster
analysis context is obvious. In case where there is a group structure, they have a very
useful role in assessing the error rate such as sensitivity and specificity of diagnostic

and screening procedures in the absence of a gold standard. But as any continuous

48
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distribution can be approximated arbitrarily well by finite mixture of normal densities
with common variance or covariance matrix in case of multivariate, mixture models
provide a convenient semi-parametric or nonfunctional framework in which to model
unknown distributional shapes, whatever the objective or the estimation or the flexible
construction of Bayesian priors. One of the examples that underpinned the evolution
of finite mixture models is the demonstration that with N = 10,000 observation, a
log normal densities can be successfully approximated by mixture of about 30 normal
distributions [Priebe (1994)]. In contrast, a kernel density estimator uses a mixture
of 10,000 normal distributions. A mixture model is able to model quite complex
distributions through an appropriate choice of its components to represent accurately
the local areas of support of the true distribution. It can also handle situations
where a single parametric family will fail to provide a satisfactory model for local
variations in the observed data. Inferences about the modeled phenomenon can be
made without difficulties from the mixture components, since the latter are chosen

for their tractability.

3.1.1 Former Approach to Mixture Analysis

One of the first major analysis involving the use of mixture models can be dated
back to 100 years ago by the famous biometrician [Pearson (1894)], who in his classic
paper fitted a mixture of two normal density functions with different means p; and s
and variances 0? and o2 in proportions m; and m, to some data provided by [Weldon
(1892); Weldon (1893)].

The data set analyzed consisted of measurements on the ratio of forehead to body
length of N = 1000 crabs sampled from the Bay of Naples. These measurements
recorded in the form of v = 29 intervals are displayed in McLachlan & Peel (2000).
Weldon (1893) speculated that the skewness in the histogram of these data might be

a signal that this population was evolving from two new subspecies.

Pearson (1894) mixture model-based approach suggested that there were presence of
heterogeneity. To estimate the models, Person used the method of moments to fit
this mixture model to the mid-points of the intervals. However, McLachlan & Peel

(2000) used method of maximum of likelihood to fit the same model, which gives a
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fit very similar to that obtained by Pearson’s. Indeed, as Everitt (1996) noted about
the computational effort in fitting this model which must have been at the time a
daunting prospect to the users of the mixture models, this daunting prospect led to
Charlier (1996) statement ”The solution of an equation of the ninth degree, where
almost all power to the ninth of the unknown quantity are existing”. He confirmed the
effort Pearson possessed in performing this heroic task yet feared if he would have
successors, if the dissection of the frequency curve into two components is not very
urgent. Not surprisingly, various attempts have been made over the years to simplify

Pearson’s moments-based approach to fitting of a normal mixture model.

3.1.2 Impact of EM Algorithm

It has been about 20 years that considerable advances have been made in the fitting
of finite mixture models, in particular by the method of maximum likelihood. There
had been some reluctance in the past to fitting mixture models to data even with
the advent of high-speed due to the lack of understanding of issues arising with their
fitting such as multiple maxima and unboundedness of likelihood function in case of
normal components with unequal covariance matrices. However, with the clarity and
proper understanding of these computational issues, it has led to the increasing use of
mixture models in practice. Fitting of finite mixture models by maximum likelihood
had been studied in the literature such as [Day (1969); Wolfe (1965); Wolfe (1967);
and Wolfe (1970)]. However, the study of EM algorithm by Dempster et al. (1977)
greatly stimulated interest in the use of finite mixture distributions to model different
subpopulation in the observed data. The reason is that fitting of mixture models by
maximum likelihood is a classical example of a problem that is considerably simplified
by the EM’s conceptual unification of Maximum Likelihood Estimation (MLE) from
the data that can be viewed as being incomplete. This was confirmed by [Aitkin &
Aitkin (1994)] that the application of mixture modeling reported in the literature
increased in number after Dempster’s study of EM algorithm. This also applies to

the applications in this thesis.
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3.2 Basic Definition of FMM

Let Xji,..., Xy denote a random sample of size N, where X; is a d-dimensional
random vector with Probability Density Function (PDF) p(x;) on R%. In practice, X;
contains the random variables corresponding to d measurements on the ¢th individual
of some features on the phenomenon under study. Let X = (X/,.., X))’ denote the
vector form of X accomplished by transpose and the realization of the random vector

!/

is denoted by the corresponding lower-case letter, i.e., x = (x,...,xy)" denotes an

observed random sample where x; is the observed value of the random vector X;.

In the premise of continuous random vector X;, the density p(x;) of X; is written as

follows;
a
plai) = D _mypy(i), (3.1)
g=1

where the p,(x;) are densities and the 7, are the nonegative quantities with con-
straints such as
0<m <1, g=1,...G (3.2)

and

iwg = 1. (3.3)

The quantities my, ..., mg are called the mixing probabilities, proportions or weights,
and the py(x;) are called component densities of the mixture. In this formulation,
the number of components GG can either be fixed a priori or inferred from the data,
along with the mixing proportions and the parameters in the specified forms for the

components’ densities.

An obvious way of generating a random vector X; with the G-component mixture
density p(x;), given in Equation (3.1), is as follows: Let Z; be a categorical random
variable taking on the values 1,..., G with probabilities 71, ..., mg, respectively, and
suppose that the conditional density of X;|Z; = g is py(x;). The variable Z; is the
component label of the feature vector X; and the p(x;) is the marginal density of x;.

Z; is distributed according to a multinomial distribution consisting of one draw on GG
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categories with probabilities 7y, ..., mg; that is,

G
(Z; = z) = [[ =y (3.4)
g=1

where m = (7, ..., 7g)".

It is convenient to work with a G-dimensional component-
label vector Z; in place of the single categorical variable Z;, where the gth element
of Z;, Ziy = (Z;),, is either one or zero according to whether the component of the

origin of X; in the mixture is equal to g or not for g =1,..., G.

The direct application of the above interpretation is where X; is drawn from a pop-
ulation D which can be decomposed to Dy, ..., Dg with proportions mq, ..., 7g. For
example, a source of the heterogeneity is often age, sex, species, geographical ori-
gin, and cohort status. Also, a population D may consist of two groups D; and Ds,
corresponding to those members with or without disease under study. Some com-
ponents may be obvious and known a priori from the external grouping while some
may not be identified with the externally existing groups. The essence of introducing
the component into the mixture model is to allow for greater flexibility in modeling
a heterogeneous population that is apparently impossible with a single component

distribution.

Mixture models can be seen as an approach that hinges between nonparametric and
parametric approaches to statistical estimation. Mixture model-based approaches are
parametric in that parametric forms py(x;) are specified for the component density
functions, but also take a nonparametric form in that they can be allowed the number

of components G can be allowed to grow.

3.2.1 Advent of EM Algorithm for Mixture Models

With the advent of high-speed computers, attention was shifted to ML estimation of
the parameters in a mixture distribution. Rao (1948) first used Fisher’s method of
scoring for a mixture of two univariate distributions with equal variances. However,
Butler (1986) argued that Newcomb (1886) predating Pearson (1894) attempt sug-
gested an iterative reweighting scheme which was similar to EM algorithm of Demp-

ster et al. (1977) to compute the MLE of the common mean of a mixture in a known
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proportions of a finite number of univariate normal populations with known variances.
Also, Jeffrey (1932) used essentially the EM algorithm in iteratively computing the
estimates of the means of two univariate normal populations which had known vari-
ances and which were mixed in known proportions. Until Hasselblad (1966), Has-
selblad (1969) addressed the problem of EM, MLE did not experience a resurgence.
Initially, he applied it to a mixture of g univariate normal distributions with equal
variances, and then to mixtures of distribution from the exponential family. He also
presented the solutions in an iterative form which corresponded to particular appli-
cations of the EM algorithm of Dempster et al. (1977). There were many other works
on ML estimation of mixture with the computation of the estimates expressed in this
iterative form such as Duda & Hart (1973), Hosmer (1973b0), Hosmer (1973a) and
Peters & Coberly (1976).

However, Dempster et al. (1977) established the convergence properties of the ML
solution for the mixture problem on a theoretical basis by formalizing this iterative
scheme in a general context through their EM algorithm. The evolution of EM had
a positive impact on finite mixture models. There were quite an extensive literature
on finite mixture models such as Everitt and Hand (1981), Titterington et al. (1985),
MecLachlan & Basford (1988) and so on.

Continuing from Equation (3.1), finite mixture model was presented in a parametric
form after the resurgence of EM algorithm for the MLE. Equation (3.1) can be written
as

G
p(xzi; ©) = ;ngg(wi; 6,) (3.5)

where the vector ® containing all the unknown parameters in the mixture model is
written as

e = <7T1,...,7TG_1,5/)/ (36)

and & is the vector containing all the parameters in 64, ...,05 known a priori be
distinct. D denotes the specified parameter space for the ®, and ® = (7, ..., 7g)’ is
the vector of mixing weights. In defining ®, 7 is simply omitted due to sum-up to

unity.
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3.2.2 The Evolution of Cluster Weighted Models

Most of the finite mixture models assume the assignment independence which implies
that the probability for a point to be generated by one of the cluster must be the same
for all the covariate values x. On the other hand the assignment of data point into the
cluster must be independent of the covariates [Hennig (2000)]. The cluster member-
ship is determined by the covariate values. There are two reasonable models for linear
regression clusters that do not assume assignment independence. One strategy used
is to replace the fixed covariates by covariate distributions that are allowed to differ
between the clusters. This is also similar to the evolution of cluster weighted models.
It assumes the varying covariates with a parameterized family of distributions. This
solves the problem of assignment independence i.e. the covariate distributions of the
mixture components is unique across the cluster. In the framework of mixture models
with varying covariates, the cluster weighted model [CWM; Gershenfeld (1997)], is

given by the equation

G G
ply,x) = Zﬂgp(ya z|D,) = Zﬁgp(mmapg)p(m'Dg)? (3.7)
g=1 g=1
also called the saturated mixture regression model [Wedel (2002)], constitutes a ref-
erence approach to model the joint density. In Equation (3.7), normality of both
p(ylz, D,) and p(x|D,) is commonly assumed |[Gershenfeld (1997); (n.d.)].

3.3 CWDMs-tSNE for High-dimensional data

Given a data set of N pairs of points

D ={(x1,11), ., (&N, YN)} (3.8)

with vector inputs x; € R? and corresponding scalar outputs y; € R, the aim of
modeling is to find an estimate of § of the output for a new vector observation
Tpnew ¢ D, which is often called a test data.

Many different approaches arise both in machine learning and statistics where one

tries to find a good approximation for the regression E[Y|X]. The pairs of observation
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(x;,y;) are the realizations of the random variables X, Y, where the random variables
are drawn from an unknown joint probability P. The regression E[Y|X] is seen as
random variable with a conditional expectation f(x) = E[Y|X = x]. Customary
to statistics, Y and X are called dependent and independent variables respectively.
On the contrary, in machine learning, they are termed as label and features. In
least square approach, f(x) ~ y; is the best approximation for the output value y;.
The prediction capability of a learning method relates strongly to the generalization
performance and is measured on an independent test data. In practice, the assessment
is very important, since it guides the choice of learning model and gives us a measure

of the quality of chosen model.

In this chapter, we will focus mainly on the application of CWMs to high-dimensional
data. The data considered in this chapter ranges from the tens to hundreds of features.
Like any machine learning classifiers, CWMs clustering performance can be hindered
by the redundancies in the feature space of the data. Moreover, the computation speed
reduces exponentially with increase in dimensionality. We hereby present CWMs
in the face of high-dimensional data. We begin the discussion with an interplay
between t-distributed stochastic neighbor embedding and CWMs for clustering high-

dimensional data.

3.3.1 Cluster Weighted Models

Cluster Weighted Models denoted by CWMs hinges between two modeling approaches
such as local and global modeling. It was first introduced by Gershenfeld et al. (1999).
The central idea is to approximate the joint density p(Y, X) of input vectors X and
output variable Y by means of a sum of simple models, each of which contributes
to the true density in the vicinity of the cluster center. Once the joint density is
successfully built, one is able to make prediction of the new input points. A fur-
ther research was performed by Ingrassia et al. (2012) in the statistical stand point
that presents CWM as a general family of mixture models such as Finite Mixture
of Regression Models (FMR)[DeSarbo & Cron (1988); McLachlan & Peel (2000),
Fruhwirth-Schnatter (2006)], and Finite Mixture of Regression with concomitant vari-
ables (FMRC)[Dayton & Macready (1988); Wedel (2002)]. These special case models

are unsupervised classification models, since there is no guide from the output vari-
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able for correction or calculation of the model error. CWMs have much in common
with these models, however, they offer one crucial extension: in each cluster, they
introduce a model for the functional dependence called local model. This local model
creates an interaction between the inputs vector X and the output variable Y. This
interaction implies that CWMs are supervised learners, while Finite Mixture Models
are usually unsupervised learners. Finite mixture models are commonly employed
in statistical modeling with two different purposes [Titterington et al. (1985)]. In
indirect applications, they are used as semiparametric competitors of nonparametric
density estimation techniques [McLachlan & Peel (2000); Escobar & West (1995)].
On the other hand, in direct applications finite mixture models are considered as
a powerful device for clustering and classification by assuming that each mixture-
component represents a group (or cluster) in the original data [Fraley & Raftery
(1998); McLachlan & Basford (1988)]. The areas of application of mixture models
range from biology and medicine to economics and marketing, [Schlattmann (2009);
Wedel & Kamakura (2001)].

A Cluster Weighted Models is a robust model that originated from the finite mixture
models. It has been well studied by many researchers. However, there are still areas
for improvement. Cluster Weighted Models (CWMs) is an input-output inference
framework based on probability density estimation of a joint set of input feature and
output target data. It is a flexible technique for approximating an arbitrary function
which requires only one hyper-parameter to be fixed beforehand, and provides data
parameters such as the length scale (bandwidth) of the local approximation as an

output rather than an input of the algorithm.

A broad family of cluster weighted models was introduced in Ingrassia et al. (2015)
by assuming that the components conditional distributions belong to the exponential
family and the set of covariates were divided into two categories viz; continuous and
finite discrete called a mixed-type covariates. Two types of exponential families were
considered such as binomial and Poisson cluster weighted models, [Ingrassia et al.
(2015)]. An application to real data and a simulation study were carried out. Also,
a novel family of twelve mixture models with random covariates was proposed and
nested in the linear ¢t CWM, [Ingrassia et al. (2014)], which is more robust than linear
Gaussian CWM for heavy long tail data. Solving the inadequacy found with the finite
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mixture of linear regressions was the main motivation. The major problem as stated
out by Hennig (2000) was the assumption of assignment independence. t CWM
has been proposed in the literature [Ingrassia et al. (2012)], where the conditional
components were assumed to be linear ¢ regression. The twelve family of models were
composed by assuming two distributions; Normal and ¢ distributions with variables

and equal constraints imposed on them.

Another innovative generalization of cluster weighted model was proposed to solve
the drawbacks of health care effectiveness, [Berta et al. (2016)]. A major drawback
addressed was the failure of multilevel model and risk adjustment model (linear and
logistic regression) in the presence of data with large unobserved heterogeneity. To
overcome this drawback, multilevel cluster weighted model was developed. The main
idea of the work was related to multilevel regression mixture model which placed mul-
tilevel model in the framework of mixture of regression with fixed covariates, [Muthen
& Asparouhov (2009)]. In the same spirit the multilevel model was merged into the
mixture of regression with random covariates. The resulting equation below is called
Multilevel CWM. In model-based clustering and classification, the cluster-weighted
model constitutes a convenient approach when the random vector of interest con-
stitutes a response variable Y and a set p of explanatory variables X, [Subedi et al.
(2012)]. The applicability of linear Gaussian CWMs in high dimensional X spaces still
remains a challenge, i.e linear Gaussian fails in the presence of high dimensional data.
A latent factor structure for X in each mixture component which leads to cluster-
weighted factor analyzers (CWFA) model was developed to fit high-dimensional data.
The extension of linear Gaussian framework to the nonlinear regression in the mix-
ture components has been achieved [Punzo (2014)]. This is useful in modeling data
that cannot be captured by linear models or regression. It provided the use which is
not restricted to the model-based clustering but also extended to model-based clas-
sification. Most of the data in nature are highly skewed which Gaussian distribution
is not fit to model. Modeling such data with a Gaussian CWMs can lead to a false
grouping. Gutierrez et al. (1995) and Lo et al. (2008) suggested a transformation of
skewed data to make it fit for Gaussian components CWMs which in the other hand
gives a misleading interpretation. On this note, a model called polynomial Gaussian

CWNMs to capture the non-elliptical data was proposed. Linear Gaussian CWMs is
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the special case of the proposed model. However, the nonlinear extension of linear

Gaussian CWM only considered one-dimensional response variables.

Maximum likelihood Estimation (MLE) for CWM is based on Expectation Maximiza-
tion (EM) algorithm. EM is the standard approach for estimating the parameters
of the mixture model, [Dempster et al. (1977)]. EM requires a priori selection of
model order such as number of components to be incorporated into the model, and
the initialization value. However, EM results depend strongly on the starting values
of the parameters. The higher the number of components within the mixture, the
higher will be the total log-likelihood. Unfortunately, increasing the number of Gaus-
sians will lead to over-fitting and an increase in the computational burden. Also, EM
can be trapped at local maxima and consequently fail to reach global maximal [Wu
(1983)]. In a broader view, like many algorithms, EM is a search algorithm that hunts
for the best values of the parameters maximizing log-likelihood in a compact space.
Additionally, EM does not usually find the best values but seemingly appropriate
value in the neighborhood of the parameter space. One simple way that has been
explored in the literature is to run the algorithm with different randomly selected
starting points and select the starting point that gives the highest likelihood as the
global value. This type of solution is computationally expensive because EM algo-
rithm converges slowly. This alone has been a core goal in research, there are many
variations of EM to alleviate the problem of local maxima. Multiple restart strategy
has been proposed to run EM with multiple random starting points for a specified
number of iterations then select the one with highest likelihood and continue from
there with the algorithm until convergence, [Hastie & Tibshirani (2004); McLachlan
& Peel (2000); Ueda et al. (2000) and Roberts et al. (1998)].

3.3.2 General Formulation

Let (X,Y) be a pair of random vector X and random variable Y defined on D with
joint probability p(x,y), where X is a d-dimensional input vector with values in some
space X C R? and Y is a response variable having values in )V C R. The set of all
model parameters is denoted ©® = (w, y, ¥, 7). To begin with, we state that w € R¥*¢
denotes the weight of the local model to be tuned by stochastic Gradient Descent,

location parameter u € R%“ where G is the number of groups, X is the positive
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definite covariance matrix, and the 7 is the mixing distribution with some constraints
such as 37,7, = 1 and 7, > 0. Since we are dealing with supervised learning, we
suppose that for each observation in (y, X), we have access to the values of the latent
variable Z. Now, we have {y, X, Z} as our complete data set, the set of {y, X} shall
therefore be referred to as incomplete data. We stress that in supervised learning,
Z is gotten from y which contains the position of each observation, and it shall be

referred to as one-hot encoding in the next chapter.

Generally, CWMs are written as a sum

G
p(x,y) = ;pg(xa y), (3.9)

where g enumerates the clusters, and p,(y,x) is a density of a specific form discussed
below. The total number of clusters G must be chosen beforehand and can be selected

using cross-validation. The density py(x,y) is written as

G
p(y.x) = p(y.x, z) (3.10)

g=1

The density p,(x,y) is written as
Pe(X, ) = p(ylx, zg) p(x|2g) g (3.11)

Where p(z,) = m,. The terms in equation (3.11) have the following interpretation:

Cluster Weights: The cluster weight 7, € [0,1] denotes the amount of data de-

scribed by the cluster g. The 7, are chosen subject to the constraint

G
Y omg=1 (3.12)
g=1

Probability of inputs: The density p,,(x) = p(x|z,) describes the domain of influ-

ence of cluster g, that is, the distribution of inputs x around the cluster. They are
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chosen with assumption as Gaussian densities, i.e.

p(x|zg) ~ N (g, ) (3.13)
—1)1/2
() = S bl )5, @ ) (3.14)

with mean p, and covariance matrix 3, effectively describing the location and the
range of cluster influence. When working in the high dimensional spaces, it suits
well to reduced these input by separable Gaussian, with diagonal matrix of single

variances in each dimension, i.e. ¥, = diag (041, ..., 0g.4)-

Output terms: The density p(y|x) is the conditional density of the outputs y given
the inputs @ around the cluster g. The presence of the conditional distribution allows
the input vector @ to relate with target variable y. In general, they are chosen to as

Gaussian densities

p(y[x, 29) ~ N (f(x,84),04) (3.15)
po(yl) = (2r02) P exp(— 5[y — F(w. B,)/0?) (316)

with mean f(x, 3,) and variances 02 describe the local models and the error around
the cluster g. The vector B, denote the coefficient of the local model or the weight

of contribution associated with the input vector . The p,(y|x) are normalized thus

/pg(ylw)dy =1 Vg (3.17)

The cluster functions are chosen based on the type of supervised learning (Regression
or classification) we wish to do. It is mostly chosen as linear combination of basis

functions f;(x).

The model output of the CWM is therefore weighted averagely by the local functions
f(x,By). The Gaussian, which are the input densities p,(x), controls the behavior of

the local functions. The real problem is to find a good parameter values for
e the weights ,

e the means p, and the variances Ef] of the input density,
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e the variances of the output terms 03 and

e the parameters of the local functions 3,.

3.3.3 EM algorithm applied to CWMs

In the case of CWMs, as described above in section (3.3) the likelihood becomes easier
by introducing a pseudo variable called a latent variable which we can interpret as
unobserved data. This unobserved random variable can be imagined as sampling each

pair (z;,y;) from a single cluster with some probability.

Let Z; € {1,...,G} be the label of the cluster that gave rise to (x;,y;). This ran-
dom variable is unobserved. The cluster weights 7, equation (3.11) are interpreted
as the probability that Z; = ¢ for all ¢ = 1, ..., G, implying that Z; are distributed
as multinomial distribution parameterized by the cluster weights 7,. Handling clus-
ter model parameters through maximum likelihood would be straight forward if the
cluster which generates each sample was known a priori. For example, each cluster
center would be the cluster mean of all points from each label. However, since this
information is hidden, estimating through maximum likelihood become a nonlinear
optimization problem which comes with difficulty. For this problem, EM algorithm
is elegant and efficient algorithm when involving latent variables.

The realization of the Z; are written as an indicator vectors z; = (z;1, ..., ziG)T, where

17 { Xiy Yi ezi?
zz-k:{ f o) € 2 (3.18)

0, otherwise.

The training set is written as Q¢ = {(x1,y1,21), .., (TN, YN, 28)} and the complete
log-likelihood L. as

N G
Le(Qc|©) = > 2iglog py(yilxi)py(xi) g, (3.19)

i=1g=1
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where ® denotes the entire parameter space of the cluster weighted model, namely
the weights, the means p, and the variances o4 of the cluster centers as well as the
parameters 3y, 3, of the local models.

The EM algorithm optimization is initialized by the estimates @) of these parame-
ters. One possibility, which was also used in the following, is to initialize the cluster
weights uniformly i.e. 7, = 1/G, random cluster mean g, by random numbers or sim-
ply picking randomly from the training data and all variances o, start with identity
matrix.

In the expectation step (E-step) of the algorithm as described in chapter (2), the
conditional expectation of L. is computed with respect to the current parameter

estimate, given rise to the following ()— function:
Q(©;0) = Eo{L.(%|O®)[x,y} (3.20)

The conditional expectation affects only z;, since the terms in the logarithm depend
on x; and y;.
E-step is effectively reduced to a calculation of the expectation of z,, given the

observed training data. We introduce

q(x,9;0) = Fo(zi4|x,vy) = p(Z; = g|xi, ¥s) (3.21)

According to the definitions from section (3.3), the posterior probability is in general
given by
A Po(Y|X)py(x)O Po(Y|X)py(x)O
) = P00, py(upIn, (90,
Yiapi(y,x) X5 pi(yx)pi ()0,

Each cluster is able to relate with each data point through this distribution. Looking

(3.22)

at Equation (3.22), one can see that posterior is the ratio of one cluster to all the the

cluster. Given the expectation value, the ()—function is given by

N G
= >3 py(x, 43 ©) log py (i xi)pg (xi)7, (3.23)

i=1g=1
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In the maximization step (M-step), the next parameter estimate © is obtained by
the global maximization of the (Q—function with respect to ® over the parameter
space. The derivatives with respect to the desired parameter is calculated by taking
the gradient with respect to the parameter of interest and setting to zero, thus obtain
a new set of parameters ® as a function of the old parameters ©. This procedure is
repeated until convergence.

Applying the logarithmic law, ()—function can be decomposed as follows:

N G
=35 py(x,y; ©) log py (yilx;)

i=1g=1

+ZZpg x,1; ©) log p,(x;)

i=1g=1

+ Z Zpg X y, ) log 7, (3.24)

i=1 g=1
This decomposition is useful as taking the gradient with respect to the parameter of
interest becomes convenient. For example, the cluster weights m,, can be computed
independently of the other while others summands without the parameter of interest
becomes zero automatically. Since the weights are with constraints } 7, = 1 and
0 <7, <1, Lagrange multiplier is introduced as follows:

0 G
Q(0:0) + A1 Z — 0, (3.25)

or,

which, now leads to
1 i .
N= !

which can equally be interpreted as Y_; z;,/N, where the unknown labels are substi-

tuted by their expectation value.



CHAPTER 3. VARIATIONAL BAYESIAN CLUSTER WEIGHTED MODELS 64

The update estimates for the means and variances of the clusters (p,,o,) are also

derived by maximized Q(©; @) Thus, the updated means are given by

A

N fo\i X:iDg(Yi, Xi; ©

SN pe(yi, xi3 ©)

3.3.4 Geometrically Constrained CWMs

The full multivariate Gaussian for CWMs discussed above has posed a lot of problem
in the estimation process. Some of the problems which are due to high-dimensional
space or large d can be associated to the problem of matrix inversion caused by
singularity, degeneracies of the algorithm. For full covariance matrix the parameters
to be estimated are (G — 1) + Gd + G[d(d 4 1)/2]. This parameters are quite a large
number number. For example in the Epileptic Seizure data, with d = 178 and G = 5,
this is 128, 879 parameters to be estimated, which is too large for any clustering model.
Such a large numbers of parameters can lead to difficulties in estimation, including
lack of precision or even cause the algorithm to degenerate. They also reduce the
computational speed of the algorithms. In order to mitigate this problem, Banfield &
Raftery (1993) and Celeux & Govaert (1995) introduced the eigenvalue decomposition

of the cluster covariance matrix 4, in the form
Sy = AgDygA D] (3.27)

In Equation (3.27), D, is the matrix of the eigenvectors of 3, A, = diag{ A1 4, ..., Ady}
is a diagonal matrix whose elements are proportional to the eigenvalues of X, arranged
in a descending order, and ), is the constant associated with the proportionality.

Each elements in this decomposition corresponds to a particular geometric property
of the gth component. The matrix of the eigenvectors D, determines its orientation
in R, The diagonal matrix of scaled eigenvalues A, governs its shape. The region
where the gth is densely concentrated can be determined by the maximum number
of the shape in the plane. For example, if A;, > A,,, then the gth component
is tightly concentrated around a line in R®. If A;, ~ Ay, > As,, then the gth
component is concentrated in a two-dimensional plane in Ry. If all the values of A; ,

are approximately equal, then the gth component is roughly equal. The constant
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of proportionality determines the volume. This is proportional to )\3|Ag| where ||4,

is determinant of A, preferably constrained to be equal to 1. Parsimony occurs in

different ways using the decomposition by either constraining any or all of the vol-

ume, shape or orientation to be to be equal or varied across the clusters. Also, the

covariance matrix can be forced to be spherical i.e. Identity matrix /. Whenever

the covariance matrix is spherical, there are two univariate models, and 14 possible

models in multivariate case.

Table 3.1: Parameterizations of the covariance matrix Y, through Eigenvalue decomposi-
tion. A denotes a diagonal matrix

Identifier Model Distribution Volume Shape Orientation
E — Univariate Equal Not required Not required
\Y% — Univariate Variable Not required Not required

EIl A Spherical Equal Equal Not required
VII Mgl Spherical Variable Equal Not required
EEI AA Diagonal Equal Equal Axis-aligned
VEI AgA Diagonal Variable Equal Axis-aligned
EVI NA Diagonal Equal Variable Axis-aligned
VVI AgAy Diagonal Variable Variable Axis-aligned
EEE )y Ellipsoidal Equal Equal Equal
VEE NyDADT Ellipsoidal Variable Equal Equal
EVE ADA,DT Ellipsoidal Equal Variable Equal
EEV )\DgADgT Ellipsoidal Equal Equal Variable
VVE N,DA,D" Ellipsoidal Variable Variable Equal
VEV )\ngADgT Ellipsoidal Variable Equal Variable
EVV )\DgAng Ellipsoidal Equal Variable Variable
VVV by Ellipsoidal Variable Variable Variable
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Figure 3.1: Models Used in CWMs clustering: Example of contours of the bivariates nor-
mal component densities for the 14 parameterization of the covariance matrix. Source:
Bouveyron et al. (2019)

Table (3.1) shows the multivariate models denoted by three-letter identifier where
"E” stands for Equal and ”V” stands for variable. If the first letter is "E” it means
the volume is equal/constant across the clusters, and "V” if varied across. In the
same vein, the second letter "E” represents equal shape and ”V” if not, so that for
all g =1, ..., G, the shape matrices A; = A. "I” stands for spherical when the A; = I
for g = 1,...,G. Finally, if "E” is located at the the third position, then the D, of
eigenvectors specify the cluster orientations are equal D, = D for g = 1,...,G, "V” if
they are not constrained, and ”I"” if the clusters are spherical such that D, = I for
g=1,.,G.

Figure (3.1) shows the examples of contours of the component densities for the various
models in the two-dimensional case with two mixture components. These constrained
models can have extremely fewer parameters that need to be estimated independently
than the full covariance model, while fitting the sample data almost as well. The con-
strained models can yield more precise estimates of model parameters, accurate out-
of-sample predictions, and easy interpretability of parameter estimates. Moreover,
the model have Gd parameters for the component means p,, and (G — 1) parameters

for the mixture proportions .

Table (3.2) shows the numbers of parameters needed to specify the covariance matrix
for each model in the 178-dimensional five-component case, d = 178, G = 5, three-
dimensional five-component case, d = 3,G = 5 gotten from the Epileptic seizure
recognition data before dimensionality reduction, and after dimensionality reduction,

respectively. Before performing the dimensionality reduction, we note that CWM is
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impracticable. These results are obtained by noting that for one mixture compo-
nent, the volume is specified by 1 parameter, the shape by (d — 1) parameters, and
the orientation by d(d — 1)/2. The potential gain in the combination of parsimony
and dimensional reduction is far higher than the gain achieved from only parsimony

compared to the full covariance matrix parameters.

Table 3.2: Numbers of the parameters needed to specify the covariance matrix for

models used CWMs and CWMs-tSNE

Model General d=3,G=5 d=178,G =5
E _ _ _
AV _ _ _

EII 1 1 1
VII G 5 5
EEI d 3 178
VEI G+ (d-1) 7 182
EVI 1+G(d—-1) 11 886
VVI Gd 15 890
EEE d(d+1)/2 6 15931
VEE G+ (d+2)(d—1)/2 10 15935
EVE 1+ (d+2G)(d—-1)/2 14 16639
EEV 1+ (d—1)+G[d(d—1)/2] 18 78943
VVE G+ (d+2G)(d—-1)/2 18 16643
VEV G+(d-1)+Gld(d—-1)/2] 22 78947
EVV 1+G(d+2)(d—-1)/2 26 79651
VVV Gld(d+1)/2] 30 79655

In the most extreme case in Table (3.2), in the 178-dimensional case with 5 mixture
components, the VVV model requires 79, 655 parameters to represent the covariance
matrices, whereas the same VVV requires 30 parameters with the combination of

dimensionality reduction and eigenvalue decomposition. Although, there are some
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gains in parsimony, however it has been observed that the most parsimonious models
do not always fit the data adequately. Moreover, the number of parameters to be
estimated in parsimonious model is still outrageously high, and the preferable solution
would be to apply some steps further parsimonious method to the results of the
parsimonious model. However, this might not achievable if the computational time
is a priority. Alternatively, the best solution would be to perform dimensionality

reduction before using parsimony.

Unfortunately, Eigenvalue decomposition method does what we can call a "local pa-
rameter reduction” when the "global feature” remains huge. Fitting the huge original
high-dimensional data irrespective of the parsimony encumbers CWMs model. Con-
sequentially, reducing the classification power, slows the computation speed, and lead

to misinterpretation of the result. This becomes a challenge in CWMs models.

3.3.5 The theory of tSNE

The Stochastic Neighboring Embedding (SNE) was first introduced by Hinton &
Roweis (2002). SNE aims to place the objects in a low-dimensional space in order to
retain neighboring identity, and can be naturally extend to allow multiple different
low-dimensional images of each object, [Hinton & Roweis (2002)]. As a dimensional
reduction technique, SNE can construct a reasonably good performance of visualiza-
tions, however, it is hindered by a complex cost function that is difficult to optimize.
Maaten & Hinton (2008) introduced a variation of SNE called t Distributed Stochastic
Neighbor Embedding (tSNE). The aim of tSNE is to transform the high-dimensional
data set X = (1, ..., x,) into low-dimensional data set Y = (y1, ..., ¥»). tSNE is much
easier to easier to optimize, and provides significantly better visualization by reducing
the tendency to crowd points together in the center of the map, [Maaten & Hinton
(2008)]. The cost function employed in tSNE is difference from that of SNE. tSNE
employed a symmetric version of SNE as an alternative to mitigate the problem of

the presence of outliers. The asymmetric SNE used in SNE is given as follows;

_eap(=Ily — ylPP)
i exp(=lyr — y;ll?)

(3.28)

ij
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where g;; is the pairwise similarities in the in the low dimensional map and the way

to define the pairwise similarities in the high-dimensional space p;; is given by

__eap(=|lwi — x4]]*) /20”
Yizi cap(= ||z — a5l [?/20?)

ij (3.29)
These equations are referred to as symmetric because it has the that p;; = pj;; and
¢ij = ¢;; for Vi,j. Another uniqueness with tSNE is that tSNE applies a Student
t-distribution with one degree of freedom similar to Cauchy distribution as the heavy-
tailed distribution in the low-dimensional space. The joint probabilities for the low-

dimensional map g;; instead becomes

()
Siegt (1 Il = y512)

(3.30)

qij

The advantages of employing a Student t-distribution can be found in Maaten &
Hinton (2008). The ultimate goal of t-SNE is to represent p;; by ¢;j as accurate as

possible, so the cost function is given by
C =KL(P||Q) = X pilog, * (3.31)
i ij

Gradient method is introduced for minimizing the cost function and the gradient has

the form given by

- 10 = a) 0~ (1 ) (3.32)
Equation (3.32) can be interpreted as the summation of a resultant force pulling y; in
the direction of y; or pushing it away depending on whether j is observed as a neighbor
of i. The gradient descent is initialized by sampling the map point Y© = (y1, ...y,,)
randomly from N (0,107*7). A momentum is added to the gradient descent to speed
up the optimization and avoid being stuck in local optimal. Finally, the gradient

update is given by

oC
YO — y@-1 4 Cog + a(t) (YD — y(t=2) (3.33)
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where Y® is the solution at the iteration ¢, ¢ is the learning rate, and the a(t) is the

momentum at iteration ¢.

3.3.6 Dimensionality reduction

Given the high-dimensional nature of the dataset considered here, a preprocessing
step of feature extraction is of great importance to reduce the computational burden
and time complexity before fitting the CWMs model. The considered preprocessing
step proceeds as follows; first of, we fit the feature set to the tSNE, and afterwards
we project the test unit nonlinearly to obtain the low-dimensional subspace. Without
dimensionality reduction process, CWMs can be so limited by the high-dimensional
data which slows down the computational speed and hamper the clustering perfor-
mance of the model. The subspace of the original features are then filtered into the
CWNMs for clustering analysis. Moreover, the visualization of the high-dimensional
data is made possible by tSNE technique. Here, we present both low-dimensional

data and high-dimensional data with features running to the order of hundred.

3.4 Application to real data

This section illustrates some real data applications of the linear CWMs defined above
with a substantive high dimensionality. The analysis is performed using the R pack-
age for CWMs called FlexCWM, [Mazza et al. (2018)].

3.4.1 Abalone data

The first application concerns the prediction of age of abalone from physical measure-
ments. The data was taken from UCI Repository (UCI) database with the original
sources of Marine Resources Division and Sam (1995); Warwick et al. (1994). The
age of abalone was determined by counting the number of rings through a microscope
after cutting the shell through the cone, and staining it. The analysis presented below
uses all the variables in the dataset. The following are the attributes of the data;

Sex: Male (M), Female (F), and Infant (I), Length: Longest shell measurement, Di-
ameter: Perpendicular to length, Height: With meat in shell, Whole.Weight: Whole
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Figure 3.2: The visualization of the Figure 3.3: Model selection for the

descriptive summary of the original
Abalone data colored according to the
grouping of the Rings: Black (1—8), Red
(9 —10), and Green (> 11)

Figure 3.4: The classification plot of
CWM-tSNE for G = 3 with model VVV
as selected by BIC.

Abalone data using BIC values of the
fourteen models. The BIC produced by
three models select the correct number of
components.

0
Dim2 (12.4%)

Figure 3.5: The classification plot of
CWM-tSNE for G = 4 as suggested by
the BIC

= > e 2

abalone, Shucked.Weight: Weight of meat, Viscera.Weight: Gut weight after bleeding,
Shell. Weight: Gut weight after being dried, Rings: Age in years of the Abalone.

There are G = 3 groups of abalone with respect to Sex variables: M = 1528, ' =
1307, and I = 1342. First off, we use the whole variables and check the effect on the
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clustering power of the linear CWM. We compare the Bayesian Information criteria

(BIC) produced by fourteen different parsimonious models.

Figure (3.2) concerns the observed labeled data. This graphical representation is
the visualization of the descriptive summary of the abalone data. The observations
are color-coded according to the group of the Rings variable grouped into 3- class
category; 1 — 8, 9 — 10, and > 11. The goal is to classify the abalone according
to their age group. The nonlinear projection from the original feature space to low
dimensional feature space is performed. However, the goal is not to separate the
observation to their respective classes but to reduce the dimension of the data which
leads to the removal of any multi-collineariy among the features. Afterwards, we
filtered the projected feature into CWMs. This is always better in terms of speed
and accuracy. We perform the analysis on the original data and the parsimonious
models selected the same number of component as the projected data. This assures us
that the low-dimensional data is a good representation of the original data. However,
all the eight information criteria have an extremely high number produced by the

original data. This might be due to redundancy in the feature of the original data.

The data can be seen as a nested cluster or as having both global and local compo-
nents, i.e. cluster through the sex variable of the Abalone which are male (M), Infant
(I), and Female (F), and the grouping through the age of the Abalone. This makes
the data extreme difficult to separate. The previous work by Sam (1995) also con-
firmed the presence of overlap in the data while he suggested additional information
to separate the class completely using the affine combinations. We note that it is eas-
ier to separate the data with respect to the sex variable while the age group remains

cluttered together. This can hinder the performance of the clustering algorithm.
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Table 3.3: The selection of the best model among 14 models according to the BIC is VVV

Model compl comp?2 comp3 comp4 compd
EIT  -87696.1 -2109.2 -85062.3 -84460.1 -32541.1
VII  -87696.1 -2230.8 -2024.8 -9174 -341.9
EEI  -87688.0 -2115.9 -2101.1 -84412.6 Not Estimated
VEI  -87688.0 -2184.1 176940.8 -838.7  Not Estimated
EVI  -87688.0 -2006.1 -84632.3 -1225.5 Not Estimated
VVI  -87688.0 -2085.3 177254.5 Not Estimated -32220.5

EEE  -87687.8 -2122.8 1793.2 Not Estimated -32554.9
VEE  -87687.8 -2146.5 176932.7 -32459.0 Not Estimated
EVE  -87712.7 -1999.1 -84415.3 -31949.4 -32016.0
EEV ~ -87687.8 -2086.2 2651.1 -32021.3 Not Estimated
VVE  -87734.3  -85777.6 -1219.1 -118.8 -32002.6
VEV  -87687.8 -2186.5 -1337.2 182260.9 -32072.1
EVV ~ -87687.8  -85606.0 -1196.0 Not Estimated -1063.1
VVV  -87687.8 -2108.3 177462.9 715 -32028.74

Figure (3.3) shows the values of BIC for the models in the CWMs-tSNE with G
ranging from 1,...,5. We show the plot resulting from BIC. In CWMs-tSNE model,
the four models that provide the largest values for the BIC were VEI, VVI, VEE,
VVV with values: 176940.8,177254.5,176932.7, and 177462.9. In Table (3.3), we
presented only the BIC values for the 14 models considered because the eight infor-
mation criteria agreed in selecting the same number of components. The best models

are distinguished with boldface.

Also, the ARI and its variants are presented in Table (3.4). The ARI for the models
selected by the BIC as shown in Table (3.3) is 1. In contrast, according to Sam (1995)
the Cascading-Correlation with no hidden nodes and with 5 hidden nodes had 24.8%
and 26.2% , while C4.5 achieved 21.5%, Linear Discriminant Analysis (LDA) achieved
0.0%, and the k = 5 Nearest Neighbor got 3.57% accuracy.
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Table 3.4: Adjustment Rand Index and its variants of the three-component Model for
Abalone data. According to the BIC, the models VEI, VVI, VEE, and VVV give ARl =1

Model Rand HA MA FM Jaccard
EIL 0.780 0.576 0.576 0.777 0.603
VII 0.782 0.471 0.471 0.627 0.447
EEI 0.822 0.599 0.599 0.733 0.577
VEI 1.000 1.000 1.000 1.000 1.000
EVI 0.794 0.513 0.513 0.662 0.490
VVI 1.000 1.000 1.000 1.000 1.000

EEE 0.823 0.603 0.603 0.735 0.582
VEE 1.000 1.000 1.000 1.000 1.000
EVE 0.781 0.576 0.576 0.777 0.603
EEV 0.809 0.571 0.571 0.715 0.556
VVE 0.782 0.488 0.488 0.647 0.475
VEV 0.957 0.901 0.901 0.934 0.872
EVV 0.798 0.519 0.520 0.666 0.493

VVV 1.000 1.000 1.000 1.000 1.000

3.4.2 Protein data

The goal of the second application is to cluster the localization site of proteins. The
protein data created by Horton & Nakai (1996) and is available in the UCI database.
The data consist of seven input variables and class variable. There are N = 336
observations and attributes information is as follows;

Sequence Name: Accession number for the SWISS-PORT database, mcg: McGeoh'’s
method for signal sequence recognition, gvh: Von Heijne’s method for signal sequence
recognition, lip: von Heijne’s signal Peptidase I consensus sequence score, chg: Pres-
ence of charge on N-terminus of predicted lipoproteins, aac: Score of discriminant
analysis of the amino acid content of outer membrane, alml: Score of the ALOM
membrane spanning region prediction program, alm2: Score of ALOM program af-
ter excluding putative cleavable signal regions from the sequence. According to the
framework of CWMs, we transformed the multiclass response called the localized site
by adding the 0.5 and taking the logarithm of the result. This is done to transform
from a categorical variable to continuous. We pretended as if the true clustering is

not known apriori and check which model would perform the best among the fourteen
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Figure 3.6: Model selection for the pro-  Figure 3.7: The plot produced by CWMs
tein data using BIC values of the four- after dimension reduction via tSNE.
teen models. The BIC produced by five = CWDMs selected eight components which
models select the correct number of com-  aligns to the true class of the localization
ponents. site of protein.

parsimonious models. In order to visualize the BIC values, Figure (3.6) shows the
BIC plot for the protein data, using the R commands provided by the FlexCWM
package. Values are shown for up to G,,., = 8 components and for the 14 covariance
models estimated in the same package, i.e. for 8 x 14 different competing models in
all. BIC selects the model with six mixture components and the EEE with 10 other
covariance specifications, in which all the covariance matrices are either equal or var-
ied. However, BIC selects the five models such as VII, VVI, VEE, and VEV with eight
mixture components. Table (3.5) lists the values of the BIC for the fourteen models.
The values of the BIC according to the Table (3.5) are —6183.0 (VII), —6183.0 (VVI),
—6155.1 (VEE), and —6129.2 (VEV). Among all the models considered, the value of
the BIC —6309.6 produced by EII is the worst model. Table (3.6) is generated by
comparing the clusters produced by the BIC values with the true class of the localized
site using the varieties of ARI. VVE model shows higher values of the ARI among
all the models. According to the selection of the component produced by the CWM-
tSNE model, Figure (3.6) shows the classification for the VVI selected model with
respect to the number of cluster produced by the CWMs-tSNE. We note that AWE
gives wrong number of clusters throughout the analysis. The protein data has been
analyzed by Horton & Nakai (1996). In their work of ”A Probabilistic Classification

System for predicting the Cellular Localization Sites of Proteins”, their model
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Table 3.5: The comparison of the BIC produced by the fourteen parsimonious models after
performing the dimensionality reduction

Model compl comp2 comp3 comp4d compb compb comp7?  comp8

EIT -8291.1 -7270.3 -7217.3 -6433.0 -6479.2 -6309.6 -6937.0 -6815.8
VII -7960.9 -7223.6 -6565.9 -6474.5 -6336.2 -6394.1 -6337.5 -6183.0
EEI -7960.9 -7422.0 -6577.6 -6437.5 -6389.8 -6453.8 -6210.9 -6213.5
VEI -7960.9 -7086.6 -7262.7 -6411.8 -6404.0 -6304.2 -6213.3 -6346.9
EVI -7960.9 -7196.4 -6566.5 -6644.1 -6440.1 -6361.3 -6214.6 -6230.0
VVI -7960.9 -7223.6 -6565.9 -6474.5 -6336.2 -6394.1 -6337.5 -6183.0
EEE -7412.5 -7005.6 -6460.8 -6327.7 -6284.3 -6201.5 -6295.4 -6214.2
VEE -7412.5 -7143.0 -6457.2 -6413.9 -6219.8 -6222.3 -6215.4 -6155.1
EVE -8182.5 -6997.2 -6452.2 -6192.0 -6147.5 -6168.1 -6186.7 -6227.5
EEV -7412.5 -6745.1 -6429.6 -6431.5 -6180.8 -6182.5 -6150.6 -6247.5
VVE -8189.6 -6994.1 -6954.8 -6176.8 -6132.6 -6222.1 -6185.7 -6198.5
VEV -7412.5 -6941.4 -6503.3 -6199.0 -6174.0 -6174.7 -6324.7 -6129.2
EVV -7412.5 -6733.9 -6473.3 -6229.9 -6242.5 -6241.3 -6184.3 -6299.9
VVV -7412.5 -6822.0 -6412.8 -6363.1 -6154.2 -6183.6 -6241.4 -6192.4

Table 3.6: Adjustment Rand Index and its variants of the fourteen parsimonious models to
select the hidden structure or cluster in the protein data

Model Rand HA MA FM Jaccard
EIl 0.821 0.478 0.483 0.603 0.411
VII 0.794 0.429 0.435 0.567 0.389
EEI 0.799 0.413 0.419 0.549 0.360

VEI 0.800 0.428 0.434 0.562 0.378
EVI 0.777 0.336 0.343 0.484 0.299
VVI 0.798 0.414 0.420 0.550 0.364
EEE 0.799 0.412 0.419 0.549 0.359
VEE 0.848 0.587 0.591 0.690 0.522
EVE 0.816 0.468 0.474 0.594 0.405
EEV 0.788 0.409 0.415 0.551 0.373
VVE 0.866 0.646 0.649 0.737 0.581
VEV 0.803 0.446 0.452 0.578 0.396
EVV 0.788 0.406 0.411 0.547 0.368
VVV 0.783 0.372 0.379 0.516 0.334

achieved 81% classification accuracy. Also similar accuracy has been achieved for

Binary Decision Tree and Bayesian Classification methods.
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3.4.3 Epileptic Seizure Recognition

We now analyze the Epileptic Seizure recognition data gotten from UCI. The original
dataset consists of 5 different folders, each with 100 files, with each file representing
a single subject/person. Each file is a recording of brain activity for 2.36 seconds.
The corresponding time-series is sampled into 4097 data points. Each data point
is the value of the EEG recording at a different point in time. So there is a total
of 500 individuals with each having 4097 data points for 23.5 seconds. Every 4097
data points is divided and shuffled into 23 chunks, and each chunk contains 178 data
points for 1 second. Each data point is the value of the EEG recording at a different
point in time. So there is a total of 11500 pieces of information (row), each with
178 data points for 1 second (column), then the last column represents the class
y = {1,2,3,4,5}. The Epileptic data contains 178—dimensional input vector. The
dependent variable y is defined as follows; 5: eyes open when the EEG signal of the
brain was recorded. 4: means eyes closed when the EEG signal was recorded, 3: mean
they identified where the region of the tumor was in the brain and the recorded the
EEG activity from the healthy brain area, 2: means the EEG was recorded from the

area where the tumor was located, and 1: means the recording of seizure activities.

The goal is to detect the underlying component of the data. In the previous works, the
data has been treated as a binary classification where class 1 represents the presence
of seizure in a patient and 2, 3,4, 5 represent the absence of seizure. The label class
is distributed equally as 2300.
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Figure 3.8: The tSNE for dimensionality
reduction of the Epileptic Seizure data for
1000 iteration, perplexity = 15 and theta
= 0.5.
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Figure 3.10: The tSNE for dimensionality
reduction of the Epileptic Seizure data for
10, 000 iterations, perplexity = 250, and
theta = 0.5.
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Figure 3.9: The CWM-tSNE plot for
clustering the low-dimensional data pro-
duced by tSNE for Seizure recognition
data with five categories.
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The CWM-tSNE plot for
clustering the low-dimensional represen-
tation of Seizure recognition data pro-
duced by tSNE with EEE model.

Figure 3.11:

The Cluster Weighted Models (CWMs) employs the Ordinary Least Squares (OLS)

for its maximization step of the EM algorithm, therefore it becomes inappropriate to

fit the dependent variable which is a categorical variable. An alternative approach is

to take the logarithm of the label class and add some noise to make it a continuous

variable. Afterwards, we performed the dimensionality reduction on the independent
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variable of order 178. We note here again that the goal of tSNE is not for clustering,

however we prioritize dimensionality reduction over clustering with tSNE.

Figure (3.8) visualizes the high-dimensional data on a 2D plane with the perplexity =
15, iteration = 1000 and the theta = 0.5. According to the plot shown in Figure
(3.8), there is a linear pattern as revealed by the tSNE. We observed that when the
perplexity is between 9 and 15, and the theta = 0.5, tSNE gives an unsatisfactory
low-dimensional data, this is called a "crowd point”. However, due to high volume of
the data, tSNE tends to be a bit slower than when performed on a moderately high-
dimensional data. According to the setup of tSNE, there is a trade-off between speed
and accuracy. The hidden structure in the high-dimensional data is preserved in the
low-dimensional space. However, the epileptic seizure data is highly overlapped, this
makes clustering extremely difficult to perform. Figure (3.9) shows a five-component
structure of the CWMs plot on the low-dimensional data filtered into the CWMs
model. Almost all the information criteria selected model with 5 mixture components.
Although, we are able to visualize the high-dimensional data but the clusters are not
well separated. One limitation associated with the tSNE output in Figure (3.8) is that
the information criteria tend to favor the number of the label class. This is however
contrary to previous works which have performed binary classification where class 1
represent presence of Epileptic seizure in the patients against the absence of Epileptic
seizure. To reduce the crowd points in Figure (3.8), we further performed a thorough
dimensionality reduction with different parameters of the tSNE; the Perp = 250,
theta = 15, with 10,000 iterations. The output after 10,000 iterations is presented
in Figure (3.10).

From the plot in Figure (3.10), the underlying structure was revealed after 10,000
iterations but tSNE alone is not strong enough to cluster the label class into two
classes. CWM-tSNE however worked on the output of the tSNE to reveal the hidden
2-categorical structure in the seizure data. The plot of CWM-tSNE is shown in Figure
(3.11). This is the plot produced by the model EEE selected by ICL. CWM-tSNE
produces a distinct two classes but with some misclassifications. In Figure (3.11),
1 represents the presence of Epileptic seizure and 2 represents the absence of the
Epileptic seizure. The number of components selected by BIC does not agree with
one selected by ICL when using the model EEE. BIC suggested that the number of
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Table 3.7: The comparison of the BIC and ICL produced by the fourteen parsimonious
models after performing the dimensionality reduction

Model compl comp?2 comp3 | compl comp?2 comp3
EII -169881 -166546 -163231 | -169881 -169186 -164750
VII -169881 -166556 -162870 | -169881 -169185 -164866
EEI -168667  -164041 -162360 | -168667 -165176 -165164
VEI -168667  -164050 -162591 | -168667 -165176 -164680
EVI -168667  -164050 -160881 | -168667 -165185 -162118
VVI -168667  -164059 -159935 | -168667 -165183 -161259

EEE -168593 -163889 -163367 | -168593 -165081 -166885
VEE -168593 -163898 -162569 | -168593 -165090 -164475
EVE -169086 -164816 -161938 | -169086 -166081 -163565
EEV ~ -168593 -163898 -162271 | -168593 -165090 -163699
VVE -169109 -163927  -159226 | -169109 -165145 -160531
VEV -168593 -163908 -162034 | -168593 -165099 -163612
EVV ~ -168593 -163908 -161937 | -168593 -165103 -163613
VVV  -168593 -163149 -159204 | -168593 -164215 -160499

Table 3.8: Adjustment Rand Index and its variants of the fourteen parsimonious models to
select the hidden structure or cluster in the protein data

Model Rand HA MA FM Jaccard

EII 0.557 0.153 0.153 0.618 0.432

VII 0.477 0.052 0.053 0.520 0.328
EEI 0.503 0.083 0.083 0.555 0.363
VEI 0.474 0.053 0.053 0.516 0.323
EVI 0.708 0.428 0.428 0.759 0.596
VVI 0.486 0.071 0.071 0.529 0.336
EEE 0.601 0.152 0.152 0.686 0.520
VEE 0.478 0.056 0.056 0.522 0.329
EVE 0.712 0.434 0.434 0.763 0.601
EEV 0.539 0.152 0.153 0.589 0.394
VVE 0.486 0.069 0.069 0.529 0.336
VEV 0.509 0.106 0.107 0.556 0.360
EVV 0.705 0.421 0.421 0.756 0.592

VVV 0.485 0.068 0.068 0.529 0.336
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Figure 3.12: The Model selection of BIC
for Seizure data among the fourteen par-
BIC selected wrong
number of mixture component when the
true component according to the label is
two-categorical.

simonious model;
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Figure 3.13: The Model selection of ICL
for Seizure data among the fourteen par-
simonious model; ICL selected EEE with
the correct number of mixture component
when the true component according to
the label is two-categorical.
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components is 3, while ICL suggested that the hidden number of components is 2.
In the other models, the number of components selected by BIC agreed with ICL as
they all selected 3 mixture components. Figure (3.12) and Figure (3.13) show the
comparison between BIC and ICL on the number of mixture components. The values
are provided in the Table (3.7). The left values are produced by BIC and the right
values are the ICL. The ARI and its variants are provided in Table (3.8). The model
with the highest values of ARI is EVE model. However, the classification accuracy
produced by EEE model is 73%.

3.5 Summary

In this chapter, we investigated the use of CWMs model on moderately high dimen-
sional and extremely high-dimensional data. First, we reviewed the general back-
ground study of the CWMs according to Ingrassia et al. (2014) and explained how they
metamorphosed from a finite mixture model (FMM). According to Hennig (2000), the
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problem associated with FMM is the assumption of assignment independence, i.e. the

assignment of the data points to the cluster has to be independent of the covariates.

On the contrary, CWMs assume random covariates with a parametric specification
which allows for assignment dependence. We further derived the EM algorithm for
the parameter estimations. The limitations of CWMs are the main motivation of
the chapter. The limitation of CWMs is the effect of the "curse of dimensionality”.
The clustering performance of CWMs is hampered by the dimensionality of the data.
However, the eigenvalue decomposition only has a little improvement in the face of
huge high-dimensional data. For example, the seizure data of 178 dimensions has
128,879 parameters to estimate. This may be impractically attainable in real time
when using CWMs, unlike RandomForest that performs internal feature selection.
However, the use of eigenvalue decomposition only solves the problems in-part by a
little reduction in the number of parameters to be estimated. In the presence of high-
dimensional data with CMWs, denegeracies are inevitable, misinterpretation is bound
to occur, the computation time increases proportionally with the dimensionality of
the data, and low classification performance. For example, an original CWMs fails

to cluster an image data with 784-dimensions.

To alleviate these limitations in CWMs, we introduce a CWMs based on tSNE for
high-dimensional data. tSNE is a very powerful dimensionality reduction technique
introduced by Maaten & Hinton (2008). We first performed a dimensionality reduc-
tion based on different parameters of Rtsne package in R. The approach called
CWNMs-tSNE is applied to real high-dimensional Epileptic Seizure recognition data.
The goal primarily is to detect the hidden mixture component different from the class
labels. We investigated different perplexities and selected the one with a satisfactory
low-dimensional output. At first, perplexities between 9 and 15 gave an unsatisfactory
representation with “crowd points” presented in Figure (3.8). We further increased
the perplexity to 250. This however contradicts the suggestion given by the authors
but the output gave a clear structure. The output however fails to reveal the hidden
cluster of the epileptic patients even after 10,000 iterations [Figure (3.10)]. After-
wards, the output with the perplexity = 250 was filtered into the CWMs model. At
this junction, we applied the 14 parsimonious models, and we observed a varying

computation time due to their varying model complexities. The model selection was
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performed through eight different information criteria. We observed that the number
of mixture component selected BIC did not agree with ICL. While the BIC selected
the models with wrong number of components, ICL selected the model EEE with
the correct number of hidden components. The output is provided in Figure (3.11).
However, the overlap reduced drastically when compared to Figure (3.10). The data
we have used in this Chapter are categorical data with class label more than two
classes. All the class labels are first transformed to be continuous variables. This is
necessary because the linear Gaussian CWMs models uses OLS for the maximization
step and it can only handle a continuous dependent variable efficiently. The possible
feature direction should be to create a self-sufficient CWMs by embedding a dimen-
sionality reduction technique into the CWMs package in R. This will allow the
package to handle high-dimensional data. In the next chapter, we tackle the limita-
tion of the family of CWMs and mitigate the effect of the 'curse of dimensionality’
on CWMs by developing an appropriate model that is suitable for categorical data in

high-dimensional space.



Chapter 4

Variational Bayesian: EM—IRLS &
EM-SGD Multinomial CWM

4.1 Introduction

In order to completely combat the inability of CWMs to handle categorical data and
failure in the presence of high-dimensional data, in this Chapter we develop a novel
model called Multinomial Cluster Weighter Model (MCWM). MCWM is well suited
for categorical data and has the capacity to handle high-dimensional data. First,
MCWM allows for the possible nonlinear dependencies in the mixture components
by considering a multinomial logit regression or softmax regression for multi-class.
Secondly, MCWM considers multinomial distribution for the conditional distribution
of the response variable given the covariates. We investigate the conditions under

which the proposed model is identifiable.

The new model uses both Iteratively Reweighted Least Squares (EM-IRLS) and
Stochastic Gradient Descent (EM-SGD) in the maximization step of the EM algo-
rithm. Conventionally, maximum likelihood estimates are derived using the FExpec-
tation Maximization (EM) algorithm with OLS (EM-OLS) in the maximization step
for linear Gaussian CMWs. On the contrary, we derive the EM with a Mini Batch
Stochastic Gradient Descent (EM-SGD) to overcome the drawback of unscalability
and matrix inversion of the model arising from the EM-OLS and EM-IRLS algo-

rithms. Model selection is carried out using the Akaike Information Criterion (AIC),

84
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Bayesian information criterion (BIC), and Integrated completed likelihood (ICL) and
other five variants. Adjusted Rand Index variants such as Rand Index, Hubert and
Arabie’s (HA), Fowlkes and Mallow’s (FM), Morey and Agresti’s (MA), and Jaccard
(JA) are considered as a different measure of accuracy. The clustering performance
of the proposed model is investigated through simulated and real data sets. Consid-
ering different datasets, MCWM shows excellent clustering results via performance

measures such as Accuracy and Area under the ROC curve.

4.1.1 Main contribution

The goal of this chapter is to propose an extension of a binomial CWM to a multiclass
called Multinomial CWM and give an extensive derivation. We derive the identifi-
ability condition of the proposed model. On this proposed model, we study the
Expectation-Maximization algorithm from two angles such as the angle of Iteratively
Reweighted Least Squares and Stochastic Gradient Descent. In particular to solve
the problem of singularity of matrix inversion arising from the EM-IRLS and to make
EM scalable to large dataset, we derive EM-SGD for MCWM, where we optimize EM
parameter in batches. At the E step, we follow the optimization conventionally, but
at the M step, we use SGD and IRLS for the multinomial distribution.

For the first time, we apply the variant of CWM to image classification problems in
high-dimensional data, taking CWMSs from the perspective of regression to a classi-
fication perspective. Moreover, employing the mini batch SGD, MCWM is scalable
to a large dataset. Unlike the conventional EM which has to deal with the problem
of matrix inversion and local maxima, EM-SGD is able to overcome these problems

due to its random nature.

4.2 The Model

Multinomial Cluster Weighter Model (MCWM) is a technique that takes as a local
model any form of stand alone non-linear model suitable for categorical data.
Let (X,Y) be a pair of random vector X and multi-class response variable Y defined

on D with a joint probability p(x,y), where X is a d-dimensional input vector with
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values in some space X C R? and Y is a J- dimensional response variable having
values in ) € R’. Thus, x,y € X x Y C R*/. Suppose that D can be partitioned
into G disjoint groups, say Dy, ..., Dg, that is D = D1 U...UDg. MCWM decomposes
the joint probability p(X,Y) as follows:

a
p(X,Y;0) = le(Y|X» Dy)p(X|Dy)my (4.1)

g=
where p(Y|X,D,) is the conditional density of the multiclass response variable Y
given the predictor vector x and D,, p(x|D,) is the probability density of x given
D,, 7y = p(D,) is the mixing weight of D,, with constraints such as 7, > 0 and
Z?:l g =1, 9 =1,...,G and the ® = (2, u, 3, 7) denotes the set of all model
parameters, where Q € R¥7*G denotes the coefficient of the local model, location
parameter pu € R, G is the number of groups, ¥ is the positive definite covariance

matrix.

In the framework of MCWM, the conditional density of multiclass response variable
is assumed to be a Multinomial distribution whose probabilities are the multinomial
logit regression or softmax regression, and the marginal density is taken to be a
Gaussian, with Y|x, D, ~ Multi(¢jg, ..., p14), and X|D, ~ Ny(pg, X,) respectively.
Thereafter, we shall write p(X|D,) = ¥u(X; p,, X,) and p(Y|X,D,) = p(y; ¢y),
g = 1,..,G, where the conditional densities are based on the nonlinear mappings

which we define later. Thus, we get:

G
p<X7 Y? ®> = Zﬂ-gp(yl =Y, .- YJ = yJ‘(ﬁjg? ceey ¢Jg)¢d(x§ l"’g7 29) (42)

g=1

The approach in Equation (4.2) is referred to as Multinomial CWM. In particular,

the posterior is given by

7Tgp<Yv1 =Yy ey YJ = yJ‘qug? SERS) ¢Jg)wd(xs Mg, EQ)
G

S mp(Yi = y1, o Yo = sl Pi, o, Gui)a(x; pos, i)

k=1

p(Dg|X7 Y) =

(4.3)
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In Equation (4.3), ¥(.) denotes the Gaussian density and the number of free param-
eters for MCWM is (GJd) + G[d(d + 1)/2] + Gd + (G — 1) where

The number of free parameters coefficients €2 in the conditional response vari-

able is GJd

The number of free parameters in the covariance matrix ¥ is G[d(d + 1)/2]

The number of free parameters in the mean p is Gd

The number of free parameters in the mixing probability 7 is G — 1

4.2.1 Modeling for p(Y|X;n,)

In order to deal with discrete or categorical response variable, we assume that p(y|x; n,)
belongs to the exponential family. Thus, in general, Y C R’. There exists an associ-
ation between exponential family and the generalized linear models via a monotone
and a differentiable link function f,(.) to relate the expected value of Y'|¢; to the

covariates X through the relation f;,(x;3,;,) = x;3;4, where

Pijg
¢i1g

fig(x; Bjg) = log = z;8j, (4.4)
where 4 is an intercept and B, is a vector of regression coefficients, for j = 2, ..., J.
Here, we assume that the intercept [y;, is implicit in Equation (4.4) and the model
matrix X includes a column of ones.

Equation (4.4) is analogous to logistic regression model, expect that the probability
distribution of the response is multinomial instead of binomial, hence Multinomial
Cluster Weighted Model. Also, instead of one equation in logistic regression model,
we have J — 1 equations. We contrast each of categories 2,...,J with category 1
in the multinomial logit equations, whereas in single logistic regression equation in
binomial cluster weighted model [Ingrassia et al. (2015)] is a contrast between success
and failure. So, if J = 2 the multinomial cluster weighted model reduces to binomial
cluster weighted model. The multinomial logit model can also take the form of the

original probabilities ¢;; rather than the log-odds. Starting from Equation (4.4), we
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can write

exp{ fjo(z; Bjg) }
1+ Z exp{ fjq(z: Bjg)}

J=2

Pjg =

(4.5)

The multinomial logit model may also be written as the original probabilities ¢,,
rather than the log-odds. Starting from Equation (4.5), we adopt the convention that

¢14 = 0, then we have

expi fiq(x; Bjg) }
; exp{ fjg(z; Bjg)}

Pjg = (4.6)

for j =1,..,J, summing over j then ¢, = 1/, exp(fjg).

4.2.2 The Multinomial CWM

Consider a random Y; that takes one of the several discrete values, which is indexed
1,2,...,J. Let ¢;; = Pr(Y; = j) denote the probability that the ith response falls in
the jth category. The probability of the counts Y;; given by ¢;; yields the multinomial

distribution:

M, ZE
PT(Yz‘l = Yij, LY = yz‘J|¢ija --~7¢iJ) = ( > H ?jj (4-7)

Yi1y -y Yig j=1

In Equation (4.6), one can imagine that for J possible outcomes, running J — 1
independent binary logistic regression models where one outcome is a pivot and the
other J — 1 is regressed against the pivot outcome. Thus the posterior probability of
Equation (4.3) is

(Gt et ) (sl 24 ),

P(Dylyixi) = &
((ythl,yu)qfﬁf ?32>N<Xi|ﬂk72k> Tk

(4.8)

k=1
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4.2.3 Identifiability

Identifiability problems arising from the finite mixture model can be categorized into
two viz; trivial problems and generic problems, [Fruhwirth-Schnatter (2006)]. Trivial
identifiability is the problems of empty components, that arise as a result of compo-
nents with the same parameters. Trivial problems can be avoided by restraining the

feasible parameter space w to @ C w, V © € @ such that
>0 g=1,....G, (4.9)

imposes a suitable ordering constraint. It has been shown that mixtures of binomial
distributions with respect to generic identifiability problem are identifiable if the con-
dition M > 2G — 1 is fulfilled, where M denotes the number of repetitions for a given
individual [Teicher (1963); Blischke (1964); Titterington et al. (1985)]. The restric-
tion is necessary and sufficient for the model class of all mixtures with a maximum
of G components. The result obtained by Lindsay (1995) for the more general class
of mixtures of discrete exponential densities with M + 1 point support and the same
condition is applied for mixtures of multinomial distributions [Grun (2002); Elmore
& S.(2003)]. The identifiability of mixture of Gaussian regression models is analyzed
in Hennig (2000). Their results show that full rank covariance matrix is not sufficient.
In addition, checking the coverage conditions is very vital in order to ensure identi-
fiability. Supplementary results for the finite mixture of Gaussian regression models
with two components, only local identifiability is considered [Meijer & Ypma (2008)].
Sufficient identifiability conditions imply that any mixture distribution function from
the specified model class can be uniquely parameterized, i.e. the parameters can be
uniquely determined given infinitely many observations. In contrast, if a mixture
distribution is not identifiable, the parameters can still not be uniquely determined

even if an infinite amount of data is available.

In order to estimate the parameters of model in Equation (4.2), it is important to

establish its identifiability. Consider a parametric class of density function

F={f(z:0):zcXx 0e(} (4.10)
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and the class of finite mixture of functions in F,

G G
H = {h(az;go) ch(x;¢) = > f(x;¢,)my, with 7, >0 and > 71, =1,

g=1 g=1

f(50,)eF,g=1,..,G, ¢ #Cfor g#k,GeN,x e X, pc G)} (4.11)
This class is identifiable, if for any two members of H such that

G G
h(z:ip) =) _f(x:0,)m,, and h(z;¢) = f(z;0,)7, (4.12)

g=1 v=1

the equality h(z;@) = h(x;@) implies that G = G and there exists a one-to-one
correspondence between the two sets {1,...,G} and {1,...,G}, such that T, = T, and
0y = 0,. Here, we wish to establish the identifiability of MCWM defined in Equation
4.2. The class of the MCWM is given by

G
P = {p(ﬂc,y; ©) :p(w,y; @) = Y F(ylw; Big)va(m; py, Tg)m,,

g=1
G
with 7, >0, 7y =1,87 # 3
g=1

for g#s,(2',y) e Rx YV, 0o ={8, 1y, 2y, 75;9=1,....,G} € ©,G € N} (4.13)

where ) depends on the component distribution q. We provide the sufficient condi-
tions for P to be identifiable in X x ), where X C R? is a set with probability one

according to the d — variate Gaussian density ¢.

Theorem

Let P be the class defined in Equation (4.7) and assume that there exists a set X C
Re with probability one of Gaussian density such that the mizture of multinomial

distributions
G

> F(ylz: 6)y,(x) (4.14)

g=1
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where 07
In [04 = x;08 (4.15)
J

is identifiable for each fivred x € X, where y1(x),...,vq(x) are positive weights sum-
ming to one for each x € X. Then the class P is identifiable in X X Y, if the following
conditions are fulfilled:
For all j =1,...,J — 1 there exists a non-empty fg which is a subset of U;I; and for
which

SN My >2G -1V iel, (4.16)

i

where fg is defined as the index sex of all observation for the individual © with covariate
vector ;.  The condition guarantees that no intra-component label switching is
possible. Intra-component label switching is an identifiability problem where the
labels fixed in one covariate point according some ordering constraints, the labels may
switch in order covariate points for the different parameterizations of the model. As
the component membership is fixed for each individual, there exists a hyperplane that
separates the components and the only feasible hyperplanes are those that partition
the covariate points where the covariate points from the same individual fall on the
same side of the hyperplanes. The condition implies that there exists a ¢ € N with
at least 2G — 1 observations. The proof of this theorem is deffered to Appendix (B).

4.3 The EM-IRLS and EM-SGD Algorithms for

Parameter Estimation

Let (®1,y1), ..., (N, yn) be a sample from drawn from model in Equation (4.2). The

corresponding likelihood, for a fixed number of components G, is given by

N G
©) = [I>_myp(yildig) N (il kg, Zg) (4.17)

i=1g=1

N
=1

Define z; = (2, ..., zi¢)’, with 2z, = 1if (2}, y})’ comes from Dy, and z;, = 0 otherwise,

and consider the complete data {(m;, Y.,z )/;z’ =1,..,.N } Then the complete-data

7
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likelihood is as follows;

N G
= HHﬂ-gigp(yi|¢ig)ZigN(wi|ﬂ'ga Eg)Zig (418)

i=1g=1
where z;, denotes the gth component of z;. Taking the logarithm of Equation (4.18),
we obtain

N G

1e(©) = Y3 2ig I p(yil i) + 2ig{ Iy + NN (2], zg)}] (4.19)

i=1g=1

To maximize Equation (4.19) is the main goal of mixture model. Now, to prepare

Equation (4.19) for the optimization technique, we write
N G N G
SN zigInp(yileig) ZZzig{lnﬂg—i—ln/\/'(ximg,Zg)} (4.20)
i=1g=1 i=1g=1

where © = (B, ..., Big, Iy, 2y, T,) are the parameters to estimate.

From Equation (4.19), we have
N @& N G
ZZng ln{ 11 gzﬁ?fg} D zigIn N (xilpg, Bg) + D zigInm,  (4.21)
i=1g=1 i=1g=1 i=1g=1
since z; is a vector of ones and zeros, we can also write Equation (4.21) as
N @ J N G N G
> Ha= g}ln{ 11 3;;} +2°0 zigIn N (xi|pg, Bg) + DD ziglnm,  (4.22)
i=1g=1 7=1 i=1g=1 i=1g=1

where 1{z; = ¢} is a vector of ones only where ¢ is true. Equation 4.21 can be

rewritten as
N G N G
ZZZ,Q In { H gbfjg} + ZZZZ'Q In N (xi|pg, Xg) + ZZzig Inm, (4.23)
i=1g=1 i=1g=1 i=1g=1

where Q' = (84, .-, 815,) k = (K}, ..., kg) with ky = (pg,%,)". Z is a matrix

whose rows are vectors of ones and zeroes, one at the position of the group and zero
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everywhere else.

N G J
(@) =3z { 1Tt (420

i=1g=1 j=1

By using Equation 4.6, Equation (4.24) becomes

zlcm):iiz@ln{ﬁ[ XD Posg + i) ]} (4.25)
= )

i—1g=1
! Z exp(Bojg + ZiB1jg

N G J ) 1,'/» Ui
llc(ﬂ> _ Zsz{Zyw In |: Jexp(ﬁoyg + 2/6 ]9) ] } (426)

—1g—1 —1
Y ’ Z exp(Bojg + TiBjg)
J

N G
l20(k> - Zzzzg In 1/}d(wi; Hg; 29) (427)

i=1g=1

l3e(m ZZng Inm, (4.28)

i=1g=1

4.3.1 E-step

The EM algorithm [Dempster et al. (1977)] can be used to maximize Iz(€2), l¢(k) and
le(m) to find the maximum likelihood (ML) estimates for the unknown parameters
of the MCWM. The E and M steps of the algorithm can be detailed as follows: The

E-step, on the gth iteration, requires the calculation of
Q(r;79) = Eo [Lo()|©)] (4.29)

The E-step on the gth iteration simply requires the calculation of the current condi-
tional expectation of Z;, given the observed sample due to the linearity of /.(7) in the

unobserved data z;,, where Z;, is the random variable of z;,. Then the conditional
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expectation of Z;, is as follows:

| (( ..... ) () (6 >>%§,) (Xlwq q>) (@
Z <(yz1 ,,,,, sz) ¢(q )i/ﬁc (gb 7 )f}i)-/\/‘<xz|u§f)’ 22”)71-5(]‘1)

Erw(Z:|©) = 21

T

(4.30)

which correspond to the posterior probability that the unobserved data (z;, ;)" belong
to the gth component of the mixture, using the current fit 7@ for T. Substituting
the values z;, in Equation (4.22) with the values z ) obtained in equation (4.30), w

have
Q(T;79) = Qi 79) + Qa(k; T9) + Qs(m; 71) (4.31)

where

N G J /
Q1 (7)) = Zsz;’){Zyw In [ Jexp(ﬁo]g + 2,) ] } (4.32)
==t = Z IBOJQ + x; /61]9)

N G
Qo ™) = -3 2D Inwpg(@s; gy, ) (4.33)
i=1g=1
Qs(m; 7@) = ZZz Inm, (4.34)
i=1g=1

4.3.2 M-step

On the M-step, at the (¢4 1)th iteration, it follows that Q@ k(@ and 7(% in Equation
(4.21) can be computed independently of each other, by separate maximization of
Equations (4.26), (4.27) and (4.28), respectively. Moreover, k@ and 7(? can be

computed in closed form but Q@ cannot be computed in closed form.

4.3.3 Maximization of Q;(92;7?) via IRLS

The updated estimates 741 are the solutions of the following M-step.

7@1(

/B Zzzzg {yzl In ¢zlg + Zyw In Cbz]g} (435)

8/67, 1g=1
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Since the derivative in Equation (4.35) does not have a closed form, we resolve to
iterative optimization which will be derived further in the Appendix (C). The updated

estimates are

N /N
6 (a+1) 6((1) (Zzz(g)nzm;v”ng) (Zzz(g)wﬂ}”gg;;) (436)
i=1

i=1

qH) (Zz nzw;vijg:ci) (szg)xivijggi(f)) (4.37)
i=1

where Vijg = ¢zgg< (bz];) <z(jq) - nzmzﬁjg + gz] and C'Lj - yz]/¢2jg - y11/¢21g The

weight v;;, and the adjusted response Cw) are updated at each iteration based on the

current estimates of the multinomial distribution probability ¢;;.

4.3.4 Minimizing Negative of Q;(Q; 7)) by SGD

MCWM wishes to explain the data by minimizing the negative log-likelihood function.

Q1 (92 ZZZ@ In(¢ij,) (4.38)

i=1g=1

where the ¢;;, is given in Equation (4.6). The cost function in Equation (4.38) cannot
be solved analytically, so we seek to minimize the cost function by using the iterative
optimization algorithm called Gradient descent. The free parameters to be adapted
by SGD are the Q = {Byj1, ..., Bojc}, which are the parameters of the conditional

response variable. The derivative is as follows;

6NG

%Ql( Z}gzlzg In(ijy) (4.39)

using the chain rule and following from Equation (4.4) and f(x, 3,) = Bojs + 'Bjy,
the gradient of Equation (4.39) can be written and derived as follows

0 0

WCﬁ(f)%f(w;ﬁ) (4.40)

il i < afs(@)
5Q1( @) = ¢Q1( VR
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Then,
Q:1(Q 2; (4.41
8¢zg ! zzlgzl 7 (szg )
The next equation will be derived on element-by-element basis, that is;
9 9 exp{ fig(x; Bjg) }
—(f 4.42
07w 8) PV " @ B) 0, explfulai B) )

For i = j: Equation (4.42) is ¢;4(1 — ¢;4) and for i # j, Equation (4.42) is —;;,ijg-
The gradients of the intercept and the coefficients are given as follows

BEED = g0 Q1 (B; 9 (4.43)

860]9

Bl = Bl - Q1(8;9'9) (4.44)

351]9

A learning rate « is required for performing the SGD. We observe that a good choice
of the learning rate for MCWM which can either be fixed or tuned in the algorithm
is between 0.01 and 0.09. Generally, we can always set the batch size to 1. However,
the limitation of this is the longer time it takes to reach convergence. Therefore for

high-dimensional data, increasing the batch size is required.

4.3.5 Maximizing Q,(k;7?) by ML
With reference to the updated estimates of kg4, g =1, ..., G,
Q Zzzmg In wd Li; Ky, X ) (445)
i=1g=1

maximizing Equation (4.45) with respect to p, and 3,, g = 1,...,G is equivalent
to independently maximizing each of the GG expressions that leads to the following

results;

N
Zzz(g) In wd(wi; Mg, 2g) (446)
=1
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N
(‘”1 z 'z, 29 4.47
»71 Zg

and the covariance matrix for the component is as follows
quﬂ Zz ( q+1)> (:113Z qH)) Zzzg (4.48)

4.3.6 Maximizing Q3(m; 7(?) by ML

Regarding the mixing weights, maximization of Qs(7; 7(?) with respect to 7 subject
to the constraints on those parameters is obtained by maximizing the Lagrangian
function
ZZZ’ Inm, — A(ng - 1> (4.49)
i=1g=1 g=1

where A is the Lagrangian multiplier. Setting the derivative of Equation (4.49) with

respect to 7, to zero and solving for 7, yields the solution

N
Zzi(g) (4.50)
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4.3.7 Algorithm for MCWM

Algorithm 3 Algorithm for Multinomial Cluster-Weighted Models

1: Insert training Data (X,Y)
2: select an initial coefficient 3;
3: initialize the group mean and Covariance matrix p and 3 respectively,
4: initialize assignment probability 7,
5. while ¢ # maxit do
6: while g # G do
7: while j # J do
8: Compute f(x;;8,) = x;Bj,
9: Compute the ¢;, using Equation (4.5)
10: E-Step: Compute the posterior probability z;,; p(zi4|®;) using Equation
(4.30)
11: M-Step: Update the parameters as follows:
12: compute g+ Zm, Zz
13: compute X0+ Zzi(g) (:13Z - ugqﬂ)) (:/18z (q“ ) Zz(q)
i=1
N
14: compute 7w Zzi(q)/]\f
=1
15: compute the update of 3;; (a+1) according to Equation (4.36) and Equation
(4.37) for EM-IRLS or Equation (4.43) and Equation (4.44) for EM-SGD
16: compute the complete log-likelihood function [.(®) using Equation (4.23)
17: end while

18: end while
19: end while
20: return p, 3, Q 7, (0), Z

4.4 Computational Issues

Codes for the of EM algorithm described in section (4.3) was written in R computing
environment [R (2019)]. EM algorithm is an iterative, strictly hill-climbing whose
performance or behavior can be hampered or determined by the choice of the starting
values. EM algorithm is very sensitive to its starting values. On the other hand, the

starting values may cause a numerical instability or explosion due to singularity.



CHAPTER 4. VARIATIONAL BAYESIAN MULTINOMIAL CWM 99

This sensitivity to starting values is inevitable because the likelihood function often
has multiple local maxima [McLachlan & Peel (2000)]. Thus, to achieve the best of
the EM algorithm, good initialization is crucial for finding ML estimations. Many
suggestions about the selection of initial values have been provided in the literature
[e.g. Figueiredo & Jain (2002); Maitra (2009)]. However, no strategy is superior to
the other. The use of hierarchical clustering was proposed by Banfield & Raftery
(1993) and incorporated in R package Mclust for Gaussian mixture. It works well
with well-separated or less overlapping components. This however, may be infeasible
for initialization when clustering large data sets. There are also stochastic algorithms
for initialization such as emEM algorithm proposed by Biernacki et al. (2003) which
consists of two parallel EM runs. The first stage, called short em, involves starting
from several random values and use the result as a starting value for the EM until
convergence is reached. The advantage gained from this strategy of initialization is a
fast convergence. However, it does not guarantee that good estimates for component
will be found. As a modification to emEM, Maitra (2009) replaced the short em with
a Rnd by choosing multiple starting points and evaluating log-likelihood at these
values without running any EM iterations. However, Baudry et al. (2010) argued
that using multiple random starting point in quest of global maximum can be time-
consuming, such standard initialization consists in selecting a value for 7. An
alternative approach is to perform the first E-step by specifying in the equation, the
values of 2\, i = 1,..., N [Forina (1991); McLachlan & Peel (2000), p. 54].

4.4.1 Convergence Criterion

To monitor convergence, the stopping criterion is usually adopted with the EM algo-
rithm in terms of either the relative small deflection in the parameter estimates or the
log-likelihood, log(L(®)). However, as Lindstrom & Bates (1991) emphasize, this is
just a measure of lack of movement between current log-likelihood and the previous
log-likelihood but not of actual convergence. As established by Bohning et al. (1994),

in their application to the sequence of the log-likelihood values to provide a useful
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estimate of the limiting values, Aitken’s acceleration is applicable in the case where

the sequence of the log-likelihood values 1(@) is linearly convergent to some [*.

We adopted the Aitken’s acceleration method to monitor the convergence of the EM-
IRLS algorithm. Here the gth iteration of the log-likelihood is

19 = log L(©Y) (4.51)

Under this assumption,
1D 1 (19 — %), (4.52)

for all ¢ and some a € (0, 1), a decision can be made based on this estimates whether
or not the algorithm has reached convergence that is, whether or not the log-likelihood
is close to the estimated asymptotic value. The Aitken acceleration at iteration ¢ is

given by
[(a+1) _ 1(9)

(@) —
@ T @ — @ (4.53)

where 1(+D 1@ and 1(¢=Y are the log-likelihood values from iterations ¢ + 1, ¢ and
q — 1, respectively. Then, the asymptotic estimate of the likelihood at iteration ¢+ 1

is given by
1

1 —q@

In a situation where the primary interest is on the sequence of the log-likelihood

l(()g%-l) — @ 4 (l(q+1) _ l(‘I)), (4.54)

values rather than the sequence of the parameter estimates, Bohning et al. (1994)

suggest the EM algorithm can be stopped if ‘lg‘éﬂ) — Z(Q)‘ < € for small €. Following
MeNicholas (2010) and  (n.d.), we stopped the algorithm with ’l(()g“) - l(q)‘ <= 0.05.

4.4.2 Model selection and performance evaluation

In mixture models, it is a common practice to assume that the functional form and
the variables of the mixing densities are known. However, in the past, model selec-
tion has typically been referred to the problem of choosing the optimal number of
components G. Moreover, in the recent investigations, identification of variables with

more predictive power has been carried out.



CHAPTER 4. VARIATIONAL BAYESIAN MULTINOMIAL CWM 101

4.4.3 Receiver’s Operating Characteristics Curve

A receiver’s operating characteristics (ROC) graph is a visualizing, organizing and
classifying technique based on their performance. ROC grapghs have been used for
many detection theories to depict the tradeoff between hits rates and false alarm rates
of classifiers [Egan (1975); Swets et al. (2000)]. To distinguish between the actual class
and the predicted class we use the labels pred, real for the class prediction produced
by MCWM. Given a classifier and an instance, there are four possible outcomes;
if the instance is positive and it is correctly classified as positive then it is a true
positive; if it is classified as negative it becomes the false negative. Similarly, if an
instance is negative and the classifier correctly classifies it as negative then it is a
true negative but if incorrectly classified it is a false positive. In the confusion matrix,
the diagonal values represents the correctly classified labels and the number off this
diagonal represents the error or confusion between various classes. The true positive

rate (also called hit and recall) of a classifier is estimated as

Positive correctly classified

tp rate & (4.55)

Total positives

Negatives incorrectly classfied

fp rate ~ (4.56)

Total Negatives

Additional terms are associated with ROC curves are sensitivity = recall, while

True negative

specificity = (4.57)

False positives + True negatives
=1 — fp rate

positive predictive value = precision.

4.5 A Simulation Study for Multinomial CWM

A simulation study was performed to evaluate the performance of the MCWM ob-
tained via EM algorithm. The data were simulated from Multinomial CWM according
to the Equation (4.8) above. We considered two different scenarios of groups G = 2

and G = 3 with two sample sizes of n = 500 and n = 1000 in the simulation. First,
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we chose values for the parameters; the number of covariates d = 2, the response
variable Y is a categorical variable with 3 levels a, b, ¢ where ¢ is the baseline for both
a and b.

Among the possible initialization strategies proposed, we adopted the random starting
values to estimate multinomial cluster weighted model. The choice is due to its
simplicity compared to other proposed initialization methods. However, to ensure a
near-optimal likelihood value, we repeated the algorithm more than once and select
the solution with the highest value of likelihood. The algorithm may explode due to
a bad random start-off which may result into singularity. Some issues arising from
the random stating values can also lead to non-convergence in the IRLS algorithm.
To alleviate this problem, we adopted more powerful and stable optimization package
to execute the IRLS algorithm in the M-step. We used the R function Optim_sa
from optimization package [Kirkpatrick et al. (1983); Pronzato et al. (1984); and
Corana et al. (1987)]. The function searches the global optimum with systematic
component and allows for non-linear, non-differentiable, and multimodal functions.
The advantage of this is that the algorithm has the ability to escape the trap of local

maximum.

4.5.1 Continuous Covariates and Mixing Proportions

We considered the two- and three-dimensional observations obtained by generating
samples from each of the two multivariate Gaussian distributions. The covariance
matrices are identical matrices and the means are chosen for both scenarios with
G = 2 and G = 3. The vectors of means and mixing proportions for both scenarios
are presented in Table (4.1 top) and Table (4.1 bottom)

Table 4.1: True values of u, o2, and 7 for G = 2 (top) and G = 3 (bottom),

n = 500, 1000
[ TR ™

0.10 2.00 1.00 1.00 0.50
—2.00 0.00 1.00 1.00 0.50
0.10 0.00 1.00 1.00 1/3
—2.00 1.00 1.00 1.00 1/3
2.00 3.00 1.00 1.00 1/3

W N N S
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4.5.2 Response Variables

The response variable Y is defined as a multinomial variable with 3 levels (a, b, and ¢).
Y is obtained by applying Equation (4.5). Fixing the intercept at zero and the slopes
B are presented in Table (4.2 top) for G = 2 and Table (4.2 bottom) for G = 3. We
tried as many values to increase the level of overlap in the observations. The presence
of overlap ensures that MCWM can handle not just well separated clusters but well

cluttered observations.

Table 4.2: True values of coefficients 8 for n = 500, 1000

and G =2,3
g Y Bo B B2
1 a 0.000 5.000 0.400
b 0.000 0.300 0.040
2 a 0.000 0.010 0.020
b 0.000 2.000 1.000
1 a 0.000 5.000 0.400
b 0.000 0.300 0.040
2 a 0.000 0.010 0.020
b 0.000 2.000 1.000
3 a 0.000 1.000 0.030
b 0.000 0.060 0.020

4.5.3 Algorithm for simulating from MCWM

Algorithm (4) is explained as follows; each data point was generated according to the
following setup: first, we generated random number of length n from a uniform dis-
tribution that is U with (0, 1) and the generated value was used to select a particular
component from MCWM.

In line 1, we initialized the coefficients 3 according to Table (4.2). In line 2, the
component mean g, the number of mixture components GG, and 3 were initialized
as presented in Table (4.1). We generated @; from Gaussian distribution with their
respective group parameters p, and X, The probability ¢;; was computed using

Equation (4.5). Based on the probabilities ¢, we generated response variable Y from
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multinomial distribution as described in the introduction of the simulation study in
Section (4.5). The algorithm is presented in Algorithm (4).

Algorithm 4 Algorithm for simulation Multinomial Cluster-Weighted Models with
multinomial response variables.

1: Select an initial coefficient 3, Number of Groups G
2: Initialize the group mean and Covariance matrix p and 3 respectively,
3: Initialize assignment probability 7,

4: Set a seed

5: Generate U ~ (0,1)

6: while 7 # n do

T if U; < m; then

8: Generate x; ~ N (1, 21)

9: Compute ¢;; using equation (4.5)
10: Generate y; ~ Multi(1, ¢;)

11: elseif U, >m & U; < m + 7 then

12: Generate x; ~ N (2, o)

13: Compute ¢;o using equation (4.5)

14: Generate y; ~ Multi(1, ¢;2)

15:  else

16: Generate x; ~ N (3, X3)

17: Compute ¢;3 using equation (4.5)

18: Generate y; ~ Multi(1, ¢;s3)

19:  end if

20: end while

We present the estimates of the coefficients for two-component MCWM with n = 500
and n = 1000 with ¢ as the baseline. We select eight core information criteria for
selecting the true mixture components G such as presented in Table (2.2). We also
evaluate the performance of the MCWM with the Receiver’s operating characteris-
tics(ROC) plot and provide the Area under ROC curve for both scenarios. Addition-
ally, we provide the Adjusted Rand Index and its variants such as Rand Index (RI),
Hubert and Arabie’s adjusted Rand index, Morey and Agresti’s adjusted Rand index,
Fowlkes and Mallow’s adjusted Rand index, and Jaccard index, which measure the

agreement, between the true cluster and classification result of the proposed model.
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Figure 4.1: The classification plot of Figure 4.2: The classification plot of
Multinomial CWMs for (n = 500, G =  multinomial CWM for (n = 1000, G =
k = 2) with two covariates. k = 2) with two covariates.

4.5.4 Results for the two components

Here, we present the results produced by the MCWM when the true cluster G = 2.
First, we pretended as if the number of components is unknown. Then we allow
MCWM to discover the hidden components of the observation to ascertain the model

selection power of the proposed model.

Figure (4.1) and Figure (4.2) show the plot partitioned by the classification result of
MCWM for n = 500 and n = 1000 with the number of mixture component G = 2.
Table (4.3) shows the estimates of p, 7 and the diagonal of ¥. When n = 500, the
estimates provided in group 2 e.g, for fi; is —1.944 and for n = 1000, fi; is —2.004.

The estimates for the coefficients are shown in Table (4.4) with ¢ as the baseline.

In Table (4.5 Top), the model achieves an accuracy of 93% when n = 500. In group
one, the model has a misclassification rate of 5.60%, while in group two the model
has a misclassification rate of 8.21%. The overall misclassification rate is 7.00%. By
contrast, Table (4.5 Bottom) shows the accuracy of the model with the sample size
n = 1000 to be 93.10%. However, the misclassification rate in group two is 7.20%,
while the overall misclassification rate is 6.90%. The visualization of the confusion
matrices for n = 500 and n = 1000 are presented in Figure (4.3) and Figure (4.5)

respectively.
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Table 4.3: Estimated values of i, o and 7 for n = 500, 1000 and G = 2

~ ~ ) ~90 ~
M1 M2 011 039 i

0.100 2.000 1.000 1.000 0.500
—2.000 0.000 1.000 1.000 0.500
0.193 1.821 0.968 1.159 0.453
—1.944 0.046 0.946 1.245 0.547
0.098 1.997 0921 0974 0.484
—-2.004 —-0.023 0912 1.058 0.516

n

True

Recovered 500

Recovered 1000

N (N RN RS

Table 4.4: Estimated values of coefficients 3 for n = 500, 1000 and G = 2
with ¢ as the baseline

n_ g Bo 5 B2

True 1 0.000 5.000 0.400
0.000 0.300 0.040

2 0.000 0.010 0.020

Y

a

b

a

b 0.000 2.000 1.000
a 0.298 6.889 0.159
b 0.593 0.377 —0.489
a

b

a

b

a

b

Recovered 500 1

0.348 0.143 0.156
0.602 3.793 2.597
0.378 4.887 0.183
—0.118 0.160 —0.037
0.117 —0.004 —0.048
—0.133 1.721 0.608

Recovered 1000 1

Table 4.5: Confusion Matrix in the three component Model for n = 500 and 1000

n  Component 1 2 MR (%)

500 1219 13 5.60

2 22 246 8.21
Misclassification 7.00
Accuracy 93.00%

1000 1 451 35 7.20

2 34 480 6.61
Misclassification 6.90

Accuracy 93.10%
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Confusion Matrix and Statistics

x.overall
Accuracy 0.93
Kappa 0.86
AccuracylLower 0.9

Reference

AccuracyUpper 0.95
AccuracyNull 0.52
AccuracyPValue o]

McnemarPValue 0.18

Figure 4.3: The Visualization of Con-
fusion Matrix and Statistics of MCWM
with n = 500.

Confusion Matrix and Statistics

x.overall

Accuracy 0.93

Kappa 0.86

AccuracylLower 0.91

AccuracyUpper 0.95

AccuracyNull 0.52
AccuracyPValue 0
McnemarPValue 1

Reference

Prediction

Figure 4.5: The Visualization of Confu-
sion Matrix and Statistics of the Multi-
nomial Cluster Weighter Model with n =
1000
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Figure 4.4: The Receiver’s Operating
Characteristics curve of the prediction
by Multinomial Cluster Weighter Model
with n = 500.
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Figure 4.6: The Receiver’s Operating
Characteristics curve of the prediction
by Multinomial Cluster Weighter Model
with n = 1000.

Figure (4.4) and Figure (4.6) show the Area under Receiver’s Operating Characteristic
curve of the prediction produced by multinomial CWM for both n = 500, and 1000
each with G = 2,3,4,5. In (4.4), the two component MCMW G = 2 achieves higher
accuracy than other groups considered. The area under the curve for G = 2 coincides
with the area under the curve for the component G' = 3, this might indicate that many
of the classes are distributed across the two groups while only a few observations are
clustered in the third group. Four component MCWM G = 4 falls below 50% accuracy

which indicates an inappropriate model for the data, and the area under ROC curve
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Table 4.6: The values of 8 core selected information criteria of MCWM for different n =
500,1000 and G = 2. The values in bold face are the smallest values selecting the true
values of the artificial data.

n G AIC BIC ICL AWE AIC3 AlICc AICu Caic

500 2 3641.63 3742.78 3739.40 3223.33 3521.63 3639.11 3613.46 3420.48
3 3982.60 4134.32 4130.97 3355.15 3802.60 3976.84 3938.40 3650.87
4 4633.17 4835.47 4831.39 3796.56 4393.17 4622.73 4571.16 4190.86
o 4744.61 4997.48 4992.71 3698.85 4444.61 472793 4662.88 4191.73

1000 2 7031.83 7149.62 7140.55 6580.26 6911.83 7030.60 7005.28 6794.05
3 9414.11 9590.79 9580.34 8736.75 9234.11 9411.34 9373.64 9057.43
4 8983.30 9218.87 9209.89 8080.15 8743.30 8978.35 8928.11 8507.73
5 11155.14 11449.60 11442.99 10026.21 10855.14 11147.34 11084.4 10560.67

Table 4.7: Adjusted Rand Index and its variants of the three-component Model
for n = 500 and 1000

n G Rand HA MA FM Jaccard AUC
500 2 0.870 0.739 0.739 0.870 0.769 0.930
3 0.812 0.624 0.625 0.794 0.648 0.939

4 0.840 0.680 0.681 0.827 0.697 0.901

5 0.802 0.604 0.605 0.781 0.627 0.709

1000 2 0.871 0.743 0.743 0.871 0.772 0.931
3 0.868 0.736 0.736 0.868 0.766 0.929

4 0.824 0.648 0.649 0.809 0.673 0.900

5 0.851 0.703 0.703 0.847 0.735 0.925

of five components G = 5 is lower than both G = 2 and G = 3. ROC graphs
are two-dimensional graphs in which tp rate is plotted on the Y axis and fp rate
is plotted on the X axis. The point (0,0) depicts that the classifier never issues a
positive classification i.e., it commits no false positive error and also gains no true
positives. Conversely, the point (1, 1) is an unconditional issuing of positive classifica-
tions. While point (0, 1) is a perfect classifier. In Figure (4.4), G = 4 can be thought
of as having random performances i.e., they randomly guess the positive class half
the time and negative class half the time correctly. Similarly, in Figure (4.6), the
components other than two components G = 2 perform randomly by guessing true
positive and false positive < 50% of the time. The ROC plot in Figure (4.6) gets

improved with large sample size n = 1000. There is a clear-cut distinction between
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area under the ROC curve of two components and three component when exposed to

large datasets.

Table (4.6) shows the values of eight different information criteria described in Table
(2.2). We compared different the groups to investigate the identifiability power of the
model. It is observed that all the eight model selection criteria agree to the selection
of the model with G = 2 which aligns to the true component of the model. In Table
(4.6), the selection criteria of G = 2 for both sample sizes have the smallest values and
it shows the model is identifiable for this simulated data. Table (4.7) shows the values
for the ARI and its variants to further establish the selection of the true component
and performance evaluation of the model. The higher the values, the stronger the
agreement between the actual classes and the predicted classes. It can be seen that
two-component MCWM has the highest values among other number of components
in both sample sizes. This simply means that the model with the components other

than the true component performed poorly in this simulation study.

4.5.5 Results for the three components

We present the results for the three-components MCWM G = 3 for sample sizes
n = 500 and n = 1000.

In table (4.8), the estimates for the mean vector, the mixing proportion, and the sigma
are presented. Also, the estimates of the coefficients are shown in Table (4.9). With
three component, MCWM provides good estimates of the parameters for both sample
sizes. Table (4.10) shows the result of the component selected by the eight information
criteria. It can be seen that all the eight information criteria agree together in both
sample sizes. Figure (4.7) and Figure (4.8) presents the plots of the observations,

where each observation is clustered by the color of their classes.

In Figure (4.9) and Figure (4.10), we visualize the confusion matrix whose values are
presented in Table (4.12). Also, the ROC plots can be visualized in Figure (4.10)
and Figure (4.12). According to Figure (4.11) and Figure (4.12) for n = 500 and
n = 1000 respectively, the area under ROC curve of the three-component MCWM is

higher than other number of components considered in the study.



CHAPTER 4. VARIATIONAL BAYESIAN MULTINOMIAL CWM

Table 4.8: Recovered values n = 500,1000 and G = 3

2

2

n_g fla i 911 T2 T

True 1 0.100 0.000 1.000 1.000 1/3

2 —=2.000 1.000 1.000 1.000 1/3

3 2.000 3.000 1.000 1.000 1/3

Recovered 500 1 0.031 -0.179 0.880 0.870 0.314
2 —1.919 1.043 1.110 1.086 0.330

3 1.954 2987 1.008 1.011 0.356

Recovered 1000 1 0.235 0.014 0.901 1.049 0.340
2 —1.976 1.066 0.987 1.040 0.343

3 2.016 3.110 0911 0.967 0.317

Table 4.9: Recovered values n = 500,1000 and G = 3 with ¢ as the baseline

n g Y Bo b1 B2

True 1 a 0.000 5.000 0.400

b 0.000 0.300 0.040

2 a 0.000 0.010 0.020

b 0.000 2.000 1.000

3 a 0.000 1.000 0.030

b 0.000 0.060 0.020

Recovered 500 1 a 0.263 6.236 0.301
b 0.057 0.714 0.102

2 a 0.204 0.326 0.093

b 0.232 2.093 0.651

3 a 0.051 0.581 0.103

b —0.085 0.417 —0.420

Recovered 1000 1 a 0.135 4.710 0.385
b —0.152 0.044 —0.060

2 a —0.283 —0.087 —0.039

b —0.262 1.426 0.805

3 a —0.622 1.113 0.132

b —0.729 —0.134 0.346
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Figure 4.7: The classification plot of
MCWM for n = 500 with covariates.
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Figure 4.9: The Visualization of Confu-
sion Matrix and Statistics of the MCWM
with n = 500.
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Figure 4.11: The Visualization of Confu-
sion Matrix and Statistics of the MCWM
with n = 1000
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Figure 4.8: The classification plot of
MCWM for n = 1000 with covariates.

111

00 04 08

00 04 08

True positive rate

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

False positive rate

Figure 4.10: The ROC curve of the pre-
diction by MCWM with n = 500
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Figure 4.12: The ROC curve of the pre-
diction by MCWM with n = 1000.
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Table 4.10: The values of Information Criteria of MCWM for different n = 500, 1000
and G =3

n G AIC BIC ICL AWE AIC3 AlCc AICu Caic

500 2 4491.25 4592.40 4589.03 4072.95 4371.25 4488.73 4463.08 4270.10
3 3997.76 4149.49 4143.77 3370.31 3817.76 3992.01 3953.57 3666.03
4 4483.21 4685.51 4681.26 3646.61 4243.21 4471.78 4421.21 4040.91
5 4703.66 4956.54 4951.74 3657.91 4403.66 4686.99 4621.93 4150.79

1000 2 8459.67 8577.46 8565.33 8008.10 8339.67 8458.44 8433.12 8221.88
3 7896.39 8073.07 8061.30 7219.03 7716.39 7893.62 7855.92 7539.71
4 8528.43 8764.01 8752.98 7625.29 8288.43 8523.49 84.73.25 8052.86
5 8737.17 9031.64 9022.30 7608.24 8437.17 8729.38 8666.44 §&8142.71

Table 4.11: Adjustment Rand Index in the three component Model for n = 500

n G Rand HA MA FM Jaccard AUC
500 2 0.543 0.117 0.119 0.499 0.319 0.509
3 0.908 0.793 0.794 0.862 0.757 0.950

4 0.804 0.542 0.544 0.685 0.518 0.878

5 0.802 0.530 0.532 0.672 0.501 0.709

1000 2 0.614 0.273 0.273 0.606 0.410 0.738
3 0.882 0.734 0.734 0.822 0.696 0.930

4 0.860 0.675 0.675 0.777 0.633 0.858

5 0.842 0.613 0.614 0.731 0.559 0.867

Table (4.10) shows the results of the selected eight different information criteria. All
the eight information criteria provide a correct selection of the number of components
for both 500 and 1000. Table (4.11) shows the values for the ARI and its variants in
order to further establish the model performance. Again, the model with G = 3 has
the highest ARI and AUC values of 0.95 and 0.93 for both sample sizes. In Table
(4.12), the confusion matrix is presented for n = 500 at the top and n = 1000 at the
bottom. The overall classification accuracy for n = 500 and n = 1000 are 92.4% and

90.3% respectively.



CHAPTER 4. VARIATIONAL BAYESIAN MULTINOMIAL CWM 113

Table 4.12: Confusion Matrix in the three component Model for n = 500 and 1000

n  Component 1 2 3 MR (%)

500 1 145 18 6 14.20

2 10 146 0 6.41

3 2 2 171 2.29
rate 7.60
Accuracy 92.40%

1000 1 300 31 10 14.29

2 38 295 6 12.98

3 3 0 308 0.96
Misclass 9.70
Accuracy 90.30%

4.6 MCMW For Real Moderate Data

4.6.1 The Use of Contraceptive Among married women

The dataset about the use of contraceptive among married women is a subset of the
1987 National Indonesia Contraceptive Prevalence Survey. The samples are married
women who were either not pregnant or not aware of any pregnancy at the time of
interview [Dua & Graff (2017)]. The goal is to predict the choice of the current con-
traceptive methods (no use, long-term methods, or short-term methods) of a woman

based on her demographic and socioeconomic characteristics.

The following information about the couples are given as follows: age: numerical,
education: 1 = low, 2, 3, 4 = high, Number of children ever born: (numerical), Wife’s
religion: 0 = Non-Islam, 1=Islam, Wife’s now working: 0=Yes, 1=No, Standard-of-
living index: 1=low, 2, 3, 4=high, Media exposure: 0 = Good, 1 = Not good,
contraceptive method used (class attribute): 1 = No-use, 2 = Long-term, 3 = Short-

term.

First, we performed feature extraction using the Principal component analysis. The
principal components value with a cumulative of 0.9 was used to extract the feature.
This reduces the features further to two features and it is presented in Figure (4.13).

Figure (4.15) shows the cluster plot of the married women using contraceptive.
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Figure 4.13: The feature extraction se-
lected by principal component analysis
for contraceptive. The selection tech-
nique is due to the cumulative variance of
90%, i.e. only two features explain about
90% of the variance in the data.
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Figure 4.14: The feature extraction se-
lected by principal component analysis
for Heart data. The selection technique
is due to the cumulative variance of 90%,
i.e. only three features explain more than
90% of the variance in the data.

Table 4.13: Confusion Matrix of the three-component MCWM for the use of contraceptives
among married woman. MCWDM has the highest prediction accuracy of about 99%.

Real Component 1 2 3 Misclassification rate (%)

1 625 4 0 0.64

2 0 316 17 5.11

3 0 0 511 0.00
Misclassification 1.43
Accuracy 98.57%

In group one the number of married women according to the prediction of the model
is 625, while the actual number in cluster one is 629. There is mild misclassification
in cluster one. The cluster two according to MCWM has 316 married women. These
are correctly classified as the married women that have long-term use of contraceptive
while the prediction of married women in cluster three is 511. Multinomial CWM

correctly predicts that 511 married women have a short-term use of contraceptive.
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Confusion Matrix and Statistics

x.overall
Accuracy 0.99
Kappa 0.98
AccuracylLower 0.98
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AccuracyUpper 0.99
AccuracyNull 0.43
AccuracyPValue 0

McnemarPValue NaN
1 625,42.43%

3
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2 1

ot @) ‘ ' Figure 4.16: The Visualization of Confu-
Figure 4.15: The cluster plot of the  sion Matrix and Statistics of the MCWM
married women using contraceptive with  prediction of the use of contraceptives
three levels. Cluster 1 has 625 married among married women. The result shows
women, cluster 2 has 316 married women, low confusion in the prediction of the
and cluster 3 has 511 married women. MCWM model.

4.6.2 Heart Data from Cleveland database

The Cleveland database has been used widely by many researchers such as Detrano
et al. (1989); David & Dennis (1988); Gennari et al. (1989). The goal refers to the
presence of heart disease in the patient. This database contains 76 attributes from
which many experiments have suggested using subset of 14 attributes. The class label
is categorical where 0 represents absence of heart disease and 1,2, 3,4 represents the
"presence” of heart disease in the patient. Although there are five classes but the
intrinsic cluster is binary. Our goal is to investigate the discovering power of the
proposed model in discovering the hidden cluster among the patients.

Again we first carried out a feature extraction mechanics by transforming using the
PCA. Figure (4.14) shows that three features account for more than 90% of the spread
in the data. The essence of PCA is also to de-correlate the features. Afterwards, we
assumed that there are five classes and performed a model selection based on the
number of mixing components in the data since the response variable Y has five
levels, anyone might be tempted to assume that there are four or at most five groups.
However, Table (4.14) shows that all the eight information criteria revealed the hidden
cluster of G = 2 rather than G = 5. This supports the claim of other experiments

with the Cleveland database which have attempted to distinguish presence
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Confusion Matrix and Statistics
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ot (759 ‘ Figure 4.18: The Visualization of Confu-
Figure 4.17: The cluster plot of the pa-  sion Matrix and Statistics of the MCWM
tients diagnosed with heart disease: The  prediction of the diagnosis of the patient
class is absence (0) and presence (1,2,3,4).  with heart disease.

(values: 1,2,3,4) from absence (value: 0). From Figure (4.18), it can be shown that
multinomial CWM misclassified 5 patients wrongly and achieves about 98% overall.
We note here that there is a difference between supervised learning and supervised
clustering. Supervised learning focuses in the class label and the predicted class, while
the supervised clustering focuses on the location of the observations hereby called
clusters. To perform confusion matrix, we ”"binarize” the class label with presence =
1 and absence = 0. This will enhance a comparison between the actual class and the
predicted. We also sorted both classes for proper comparison. Table (4.14) shows the
choice of number of component in the heart data. All the eight information criteria
select the number of component G = 2. This confirms what other researchers have

done to increase the prediction accuracy of their model on the data.

Table 4.14: The values of eight choices of Information Criteria of MCWM for different
mixture component GG. The outcome has five levels which is absence (0) and presence
(1,2,3,4). According to the information criteria, the number of mixture component selected
is G = 2 which confirms what previous researchers naively suggested.

G AIC BIC ICL AWE AIC3 AICc AICu Caic
2 1358.71 1440.41 1435.48 997.30 1248.71 1355.09 1331.17 1167.01
3 1652.25 1774.81 1773.41 1110.15 1487.25 1643.91 1607.85 1364.70
4 2085.84 2249.24 2245.28 1363.03 1865.84 2070.49 2021.78 1702.43
5 1982.89 2187.15 2186.65 1079.38 1707.89 1957.95 1896.04 1503.64
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Table 4.15: Confusion Matrix in the three component Model for the multinomial CWM
compared with other models used for the heart disease data. Among these model, MCWM
has the highest prediction accuracy of about 99%

Component 1 2 MR (%)

1 164 5) 7.20

2 0 134 6.61

Multinomial CWM  Logistic-Regression =~ NTgrowth C4 CLASSIT
98.35% 7% 1%  74.8% 78.9%

Table (4.15) shows the prediction accuracy of the proposed model MCWM. It can be
seen that previous models such as Logistic regression and N'Tgrowth model achieved
77%, C4 has a prediction accuracy of 74.8%, and the CLASSIT model has 78.9%
accuracy. Figure (4.17) show the cluster of the patient diagnosed with heart disease
and without heart disease. Cluster one has 164 patients with no presence of heart
disease while cluster two has 134 patients with the presence of heart disease. The
actual data have 169 patients with no heart disease and 134 patients with heart

disease.

4.7 MCWMs for Real High-dimensional data

In this section, we compare the MCWM with model-based clustering (Mclust) [Scrucca
et al. (2016)] and High Dimensional Data Clustering (HDDC) [Bouveyron et al.
(2007)].

The MNIST dataset comprising of 10-class handwritten digits, was first introduced
by LeCun et al. (1998). The full handwritten digit data is divided into training set
and test set. The size of training set is 60,000 x 784 and the test set is 10,000 x 784.
First, we use USPS358 data set. However, due to large volume of full handwriting
data set, Mclust and HDDC are not used for the full handwritten image data. This
shows the limitations of the EM algorithm which is the inability for scalability to

high-dimensional data.
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Figure 4.19: The original image of the data of the digits 3, 5 and 8 to be recognized is
presented at the top while the means of the posterior produced by MCWM is presented at
the bottom.

4.7.1 USPS358 Data set

The USPS358 data contain only the 1,756 images of the digits 3,5 and 8 which are
the most difficult digits to discriminate. Each digit is a 16 x 16 gray level image and
is represented as a 256-dimensional vector in the USPS358 data set.

Figure (4.19 top) shows a sample of handwritten digits from the USPS postal services
(USPS358 data set in the MBCbookR package). And Figure (4.19 below) are the
images of the handwritten number of the different handwriting from the means of
the result produced by MCWM. We note here that we have used cluster and class
interchangeably. Table (4.16) shows the confusion matrix, Accuracy, and Adjusted
Rand Index. It can be seen that the proposed model MCMC outperforms other
competing models such as Mclust and HDDC. The Accuracy of MCWM is 100% while
Mclust achieves 31.89% and HDDC achieves 35.14%. This is also confirmed by the
result of the Adjusted Rand Index that counts the number of correctly classification

between the actual and the predicted.
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Table 4.16: Confusion Matrix, Accuracy, and Adjusted Rand Index of the MCWM compared
with other models used for the USPS data. Among these model, MCWM has the highest

prediction accuracy of about 100%.

Real Component 3 5 8
3 658 0 0

5 0 556 0

8 0 0 542

Accuracy MCWM Mclust HDDC
100.00% 31.89% 35.14%

ARI MCWM Mclust HDDC

100.00% 63.42%  80.50%

4.7.2 Full Handwritten digit

image

We performed an analysis on the full image of the hanwritten digits. Table (4.17)

shows the results of the confusion matrix for both training set and test set. In Table
(4.17), the accuracy provided by MCWM is about 93%, while MCWM achieved the
prediction accuracy of about 92%. The minimized difference between the training

result and the test result shows that there is no presence of overfitting. We note here

that no comparison was made with both Mclust and HDDC due to the volume of the

data. The use of batch size technique makes MCWM scalable to high-dimensional
data. Also, we computed the Adjusted Rand Index for the training set and test set

to be 81% and 80% respectively.
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Figure (4.20) shows a well partitioned classes of the numbers which is the output of

MCWM. Finally, Figure (4.21) shows the plot of each class in low-dimensional space.

Table 4.17: Confusion Matrix of the MCWM used for the training set and test set of
Handwritten Image

cl c2 c3 c4 cH cb c7 c& c9 cl0

cl 5807 1 14 20 3 19 8 8 28 10
c2 1 6629 19 22 2 13 1 17 23 15
c3 25 82 5298 178 61 28 45 74 137 30
c4 19 19 67 5673 6 178 5 46 61 o7
Training  ¢5 26 26 26 10 5383 10 26 31 25 279
cb 53 25 34 236 29 4820 49 18 120 37
c7 73 26 69 16 92 99 5549 8 19 7
c8 17 16 42 26 31 10 1 5965 6 151
c9 24 200 45 328 16 273 28 29 4784 124
cl0 25 20 17 54 87 42 2 194 16 5492

cl c2 c3 cd cH c6 c7 c8 c9 cl0

cl 964 0 1 2 1 4 3 3 1 1
c2 0 1120 2 4 0 1 3 2 3 0
c3 8 19 898 35 10 3 11 14 31 3
c4 4 0 6 942 1 28 1 12 8 8
7
7

Testing ¢5 1 2 6 4 897 0 5 10 10 4
cb 11 4 3 51 6 769 9 7 25
c7 17 3 10 6 11 30 880 1 0 0
c8 2 7 16 9 3 1 0 957 2 31
c9 9 22 5 46 6 64 8 16 780 18
cl0 10 8 0 10 15 10 0 31 1 924

4.8 Summary

In this Chapter, we have introduced a new cluster weighted models called a Multi-
nomial CWM for clustering data with multiclass response variables by introducing
the softmax function as the probability of the multinomial distribution. Multinomial
CWM extends preexisting Binomial CWM for binary response variables [Ingrassia
et al. (2015)]. Different from the previous work in the field of cluster weighted model,

MCWM allows modeling of multinomial response variables. Furthermore, we de-
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scribed through simulation study an EM algorithm via both Iteratively Re-weighted
Least Squares and Stochastic Gradient Descent for parameter estimation. To inves-
tigate the performance of the model, several performance metrics was used such as
confusion matrix, Receiver’s Operating Characteristics (ROC), and ARI with its vari-
ants. We also showed through different eight information criteria that the MCWM
is able to discover the mixture component hidden in the data. Following the condi-
tions of identifiability, we can say that MCWM is identifiable. We provided different
supporting plots such as the classification plots, confusion matrix plots, and ROC
plot. We also evaluated the performance of the proposed model on two real datasets.
It was shown that Multinomial CWM has higher accuracy when compared to other

models used for the data.

However, from the perspective of the EM-IRLS algorithm for the parameter estima-
tion of MCWM, the main limitations encountered are general limitations arising from
EM algorithm such as in-scalability to large dataset due to slow-to-convergence na-
ture of EM algorithm and the problem of initialization. The matrix inversion from
the multinomial distribution estimation computed by the iteratively re-weighted least
squares could lead to the problem of singularity in the covariance matrix. This prob-
lem of singularity at the M-step often causes the EM algorithm to degenerate. Addi-
tionally, the use of conventional maximum likelihood techniques at the M-step such
as optim function and multinom in R [R (2019)] become so unstable due to covari-
ance matrix inversion. We used more stable version of ML technique in R [R (2019)]
which is the optim_sa function from the R package Optimization. In the future,
we wish to explore different variants of EM algorithm for this type of proposed model
such as EM algorithm via Simulated Annealing (SA). EM-SA algorithm will avoid the
problem of local maxima in EM algorithm. With the help of EM-SGD which we have
established, we also wish in the future to work in the perspective of Deep Learning
where MCWM will be computed at each hidden unit. Moreover, another possible fu-
ture direction is to investigate different cross-validation techniques and regularization
methods.

In the next chapter, we will address the problem of large proportion of zeros in
the class label by proposing a CWMs that can account for the presence of large

proportion of zeros in the class label which often causes misleading or erroneous
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interpretation or inference for decision making. This problem is generally known as
class imbalance in the data. For example, defects in manufacturing usually occur when
the manufacturing equipment is not properly aligned. If the equipment is misaligned,
defect can occur according to Poisson distribution. This means that the defects in
manufacturing occurs with inflation at zero. Similarly, in medical data, the record of

a particular patient can be censored or missing before the end of a follow-up study.



Chapter 5

Variational Bayesian: EM — IRLS
Zero-Inflated Poisson CWM

5.1 Introduction

Two-component mixture models are frequently used to model data that contain excess
zeros. In medical context, a possibility of excess zeros might be due to the fact
that the patient is cured after the treatment and no realization of the symptom
being monitored in a follow-up will occur. This phenomenon can be handled by a
two-component mixture where one of the components is taken to be a degenerate
distribution, having mass 1 at y; = 0. While the other component is a Poisson (or

binomial) regression model depending on the situation.

A Finite mixture of Poisson regression models with constant weights parameters have
been developed by Wedel et al. (1993); Brannas & Rosenqvist (1994); Wang et al.
(1996); and Alfo & Trovato (2004). Wang et al. (1998) incorporated covariates in the
weight parameters of finite mixture Poisson regression models, treating the covariates
as the concomitant variables. To account for different covariates with count response
variables, Ingrassia et al. (2015) proposed a generalized linear mixed cluster-weighted
model where the response variable is allowed to follow the Poison distribution. As
an alternative to Poisson regression model for handling over-dispersion in data, a
Negative binomial (NB) regression model can be used. The count variable of interest

may contain more zeros than expected under a Poisson model, which is observed in

123
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many applications. Inflated zeros can cause instability in a predictive model. Class
imbalance also can be a consequence of zero inflation in a response variable we wish
to predict therefore causing irregularities in the prediction accuracy and result in
overfitting. Zero-Inflated Poisson (ZIP) regression model has been proposed with an
application to defects in manufacturing [Lambert (1992)]. The ZIP distribution is a
mixture of a Poisson and a degenerate distribution at zero. This regression setting
allows for the covariates in both Poisson mean and weight parameter. Furthermore, in
a situation where over-dispersion takes precedence, a zero-inflated negative binomial
(ZINB) regression model can be a better fit. However, if a population has excess
zeros and several sub-populations in non-zero counts, a single component of the ZINB
regression model may fail to capture the excess or sufficient to describe the non-zero

counts.

5.1.1 Main Contribution

In this Chapter, we wish to address the problem of class imbalance by proposing a
zero-inflated Poisson cluster weighted (ZIPCWM) model that is capable of handling
zero-inflation in data. ZIPCWM extends Poisson cluster weighted models and other
mixture models. Moreover, ZIPCWM model allows for a mixed covariates to be ei-
ther discrete or continuous or both. Contrary to the existing zero-inflated models,
ZIPCWM can be used as a classification model which is appropriate in handling
uneven class distributions. We investigate further the effect of mixed covariates in
the zero-inflated Poisson cluster weighted models. To estimate the parameter of the
models, we propose an Expectation-Maximization (EM) algorithm via an iteratively
reweighted least squares for ZIPCWM. We analytically investigate the identifiability
of the proposed model through an extensive simulation study. Parameter recovery,
classification assessment, and performance of different information criteria are inves-
tigated through broad simulation design. The ZIPCWM is applied to real data which
accounts for excess zeros of over 40%. We explore the classification performance of
ZIPCWM, Fixed Zero-inflated Poisson mixture model (FZIP), and Poisson cluster
weighted model (PCWM) on a real data. Furthermore, we will compare the classifi-
cation strength of the new proposed with its existing mixture models such as Poisson

cluster weighted model and Fixed zero-inflated Poisson mixture models.
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5.1.2 Mixed Continuous and Categorical Variables
We consider now the problem of fitting a family of cluster weighted model

G
p(x,y) = Z = myp(y|z, Dy)p(x|Dy) (5.1)

g=1

to some pair of data (X',Y")’, where X is a matrix of covariates, and Y is a random
variable defined on some space D and where some of the variables are categorical.
Basically, we can assume that the categorical variables are independent of each other
and the continuous variables which can be taken to have any continuous distribution
such as the multivariate normal distribution. This idea of mixed covariates has come
into prominence more recently due to its appearance in the graphical modeling of
mixed variables known as the conditional Gaussian distribution model [Whittaker
(1990); Cox & Wermuth (1992)]. The location model has been used for fitting the
mixture models to mixed categorical and continuous variables, [Jorgensen & Hunt
(1996); Lawrence & Krzanowski (1996); and Lawrence & Krzanowski (1999)].

5.2 The Zero-Inflated Poisson CW M.

Suppose that X can be decomposed as (Q', W)', where Q is a g-variate vector of

continuous covariates and W is a p-variate vector of categorical variable respectively,

the W categorical variables are replaced by a single multinomial random variable W;

with p cells.

Suppose that Y is a count response variable, then the probability of observing zeros
is 1, and the probability of observing Poisson cluster weighted model (PCWMs) is

1 — m. The ZIP cluster weighted model is given as follows:

G
p(x,y: ©) = mIy—0) + Z;p(y\w; Co)p (59 ) g, (5.2)
o
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where Equation (5.2) is decomposed into categorical and continuous covariates as

follows;
G
= mly=0) + Z:Qp(y\w; Co)p(a vy )p(w; ¥y ), (5.3)
g:

since y = 0, and its mean p;;(x; 31) = 0, then p(y|x; 1) = 1. If we assume that the
response variable contains many zeroes, then p(y|z; (,) is modeled as a Zero-Inflated
Poisson regression, p(w|;*) follows a multinomial distribution and p(g|t;) follows a
Gaussian distribution, where G is the number of mixing components, 7, is the mixing
weight of component g such that 0 < 7, <1, g =1,...,G and Zle 7y = 1 by the
decomposition m; =1 — Z?:z 7g. The weight m; determines the proportion of excess

zeros compared with an ordinary Poisson mixture model determined by 1 — ;.

5.2.1 Modeling for p(y|X;n,)

To handle response variable with excess zeros, we assume that the density of p(y|xz; n,)
belong to exponential family. It is a common practice that the exponential family is
strictly related to the generalized linear models with a monotone and differential link
function f(.) that makes the expected value p,, of Y|D, depend on the covariate X
through the linear combination f(u,) = «’B,. Note here that we have not used 3,
explicitly, so it contains the coefficient and X will have extra column of ones. The
distribution of Y'|D, is denoted by p(y|x;B,). Assuming that Y takes values in )
and that the conditional density Y|z, D, is Poisson with parameter j;,(x; 3,); that
is, Y|x, Dy ~ Plpig(x; By)]. We allow the mean of the response variable to depend

on the covariates ji;4(x; 3,) using the following regression models that is,

ig(x; By) = exp(xBy), i=1,...N,g=2,...G (5.4)

In this case,
[—ptig(2; By)]”
y!

The mixing weights {m,}%_| can be treated as the multinomial logit of 7, to be a linear

pylz; By) = exp[—pug(x; By)] (5.5)

function of covariates which is commonly known in the literature as a concomitant
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variable. ( )
exp(v;y,
Tig(vi,7) = 55— (5.6)

> exp(viy,)

g=1
In this case, x; = (241, ..., Tip) and v; = (v1, ..., v;) are 1 X p and 1 x ¢ rows vectors
of covariates (including an intercept), respectively. They can be the same or have
nothing in common. The regression coefficient for the gth component are 3, and ~,
which are vectors of p x 1 and ¢ x 1 respectively. We note that the mixing probability
of the first component 7;1(v;, ) is taken to be the baseline for the multinomial logistic

model.

5.2.2 Modeling p(x;,)

The term p(q; ;) in Equation (5.3) is modeled as a g-variate Gaussian density with
mean p, and covariance matrix X, i.e., p(q|)) = ¢(q; py, X,). With respect to
the term p(w;1);*) in Equation 5.3, we assume that each categorical covariate can be
taken to be a binary vector w* = (w*, ..., w**)", where w** = 1 if r}, is equal to the
value s, with s € {1,...,7.}, and w* = 0 otherwise. Furthermore, we assume that ¢

categorical covariates are independent of each other. Then,
P Tk .
plw;ay) = HH(O‘ng)w ’ (5.7)

k=1s=1

where ¢ = 1,...,G, ay = (ag,,...,a,) and ag = (Qger; -, Qgrr,). We take the
density of p(w;a,) in Equation 5.7 to be a multinomial distribution of parameters

g, where k=1, ...,p and Y.%; ags = 1 with constraint ags > 0.

5.2.3 The Resulting Overall Model

The ZIPCWM over all observation can be formulated as follows:

a
p(x,y; ©) = mly—o) + ZPois(y’w; Bg)gb(q; TP Eg)p<w; ag>7rg (5.8)

9=2

where () is an indicator function that outputs 1 when the specified condition is

satisfied and 0 otherwise, and Pois(.) denotes the probability mass function of y; and
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x; with a mean of j;,(;; B,). Thus the posterior probability of Equation 5.3 is

Pois (yZ

w;ﬁg) ((w”’M"wzs)axéaf;;)jv(ung’ 29) Tg

p(z,y:0) (59)

p(Dg|Yi7 Xi) -

5.2.4 Identifiability

To be reliably estimate the parameters of Equation (5.8), we require that the ZIPCWM
be identifiable, that is, two sets of parameters which do not agree after permutation
cannot produce the same mixture distribution. Teicher (1961) proves that the class
of finite mixtures of Poisson distribution is identifiable without covariates. Similarly,
Follmann & Lambert (1991) give sufficient conditions for identifiability, and Wang
et al. (1996) extend the definition of identifiability of finite Poisson mixtures with
covariates. We provide the condition for identifiability of ZIPCWM as follows.

Definition

Consider the collection of probability models {p(x1,y1,®),....,p(xN,yn; O)}, with
a restriction that m < ... < m,, sample space )i, ..., Vn, parameter space ©, and
fixed covariates vectors x1, ..., xy that is decomposed to categorical w and continuous
variables ¢, where w; € R? and ¢; € R? for i = 1, ..., N. The collection of probability
model is identifiable if for (Q, 7 k, h), (Q*, w* k*, h*) € O,

p(x,y, Q7 k h) =p(x,y Q,n" k" h") (5.10)

for all y; € Vi, i = 1,..., N, implies that (Q,m k, h) = (Q*, 7*, k* h*).

We note here that the restriction on the mixing probability is a sufficient condition
for label switching problems and it means that two models are equivalent if they agree
up to permutation of parameters.

We now provide a sufficient condition for identifiability. Suppose that (2,7, k, h),
(Q*, 7", k*, h*) satisfy Equation (5.10).
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It then implies that

€]
Tl (y—0) + ZPois (y
g=2

2 By) (& thg, 2y ) p(w; g )y =

C
i ly=0) + X_Pois(y|: B:)o(as iz, Tt o (ws e )2 (5.11)

for each ¢ and y; € V;,i =1, ..., N. Teicher’s and Hennig’s results imply that
G=C, mg=m., By =B, 1y = Ko,
¥,=37, and oy = 0,
fori=1,...Ng=1,...,G, and ¢ = 1,...,C. By definition of ZIPCWM, we obtain
exp(x;By) = exp(w;/3;), (5.12)

Equation 5.12 means
(By — B)w; =0, fori=1,...,N. (5.13)

C

Then, we say

Pois (y

x; Bg> = Pois(y

x:87), 6(a 11y, By) = 0 17, 37),

p(w; ag) = p(w; a:),ﬂ'g = . (5.14)

Hence a sufficient condition for identifiability is that X is a full rank matrix, where

X =x,...,xN.

5.3 Related Mixture Model

This section highlights the special cases of the proposed model. We show a list of
special cases of ZIPCWM below;
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5.3.1 Poisson CWM

Let p(x, y; ©) in Equation (5.8) be a ZIPCWM. Assuming that Y takes values y = N,
Y|x; D, is Poisson regression model with parameter yu,(x;3,) and the X|D, with
parameter (p,,>,). If there is no account of excess zeros, then Y|z, D, is modeled

with Poisson regression and the X|D, is taken to be the Gaussian distribution, then
ZIPCWM reduces to Poisson CWM as follows;

G
p(x,y;©) = EzlPois(y w;ﬁg)qb(q; Ky, Eg)p<w; ag>7rg. (5.15)
o

Poisson CWM is proposed by Ingrassia et al. (2015)

5.3.2 Generalized ZIP Regression mixture model

If p(x) = 1 in Equation (5.8), then ZIPCWM reduces to Generalized ZIP mixture

distribution if the mixing weight depends on a concomitant variables

G
p(y; ©) = mia (vi,7) [ (y=0) + ZPoiS(y ; ﬁg)mg(’vi, 7) (5.16)
g=2

and Fixed ZIP if the mixing weight is fixed.

G
p(y; ©) = mil(y—g) + ZPOiS (y
g=2

% 8,)7, (517
Both GZIP and FZIP are proposed by Hwa et al. (2014)

5.3.3 Zero-Inflated Poisson distribution

If p(x) =1 and G = 2 in Equation (5.8), then ZIPCWM reduces to ZIP distribution
[Lambert (1992)].
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5.3.4 Standard Poisson mixture model:

If both 7, and p4(x;, 3,) are constant functions and p(x) = 1, ZIPCWM reduces to

the standard Poisson mixture model, denoted by

G
p(Y =y) = Z 7o Pois(yi|A\g) (5.18)

g=1

where the constancy of p;,(x;, 3,) is taken to be A,. It should be noted that we have
used ), to preserve the original parameter notation of the standard Poisson mixture
model. In the following, we present the derivative of an estimation method based on
the EM algorithm for the ZIPCWM model described in Equation (5.9).

5.4 Model Estimation by EM-IRLS Algorithm

Let (z},y;), ..., (x),,yn) be a sample of n independent observation pairs drawn from
model Equation (5.9). The corresponding likelihood, for a fixed number of component

G is given by
N N

L(®) = Hp(wz‘,yi; )= H [Wlf(yi))+

=1 i=1
G
Z2PoiS(y)w; By)6(a; 1o, g )p(w; ag)wgl (5.19)

Here, we assume that the number of G is fixed and known a priori and z; = (21, ..., zic)’
be the latent vector of component indicator variables, where z;, = 1 if ith subject
(w;> yz)
assumption, each belongs to one of the G unobservable components therefore, con-

" comes from D, belongs to the gth latent group and z;; = 0 otherwise. By

sidered missing or incomplete. Using a multinomial distribution for the unobserved
vector z;,where { (&}, y;, 2/)’;i = 1,..., N} is the complete data. The the complete-data

log-likelihood can be written as

N G
Le(©) =[] |mily=0) + HPOiS(y

i=1 g=2

@ 3,)6 (4 1y, By )p (w: ag)wg] RNERY
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The corresponding complete-data log-likelihood by taking the logarithm of Equation
(5.20) can be written as

l(Oly,w, x) Zz,l Inmly,—o + ZZzzg lln T, +1n P01s<y,|,ulg(:vz, ,39)>

i=1g=2

+1ngb<qz-|ug,29> +lnp<wi;ag)] (5.21)

where 7 = 1 — Z?:Q 7, and © = (p,, 34, By, o) for g = 2,...G is the set of model

parameters to be estimated.

5.4.1 E-step

Using the current estimates ®®), we compute the probability z ™) that the subject @

comes from gth component of the mixture:
myPois (yi‘/h‘g (i, ﬁé%) ¢ <Qi ’Hét)y Egt)> Mult (’wi; aé”)

p(“h’v%? @(“>
(5.22)

which correspond to the posterior probability that the unlabeled observation (&, y;)’

E(Zi!}’yiawiyxiag(t)) =

belong to the gth component of the mixture, using the current fit @® for ® and

f{ =1- Zg 9 Zg The E-step, on the tth iteration, requires the calculation of

Q(r;7") = B0 [l(7)|©] (5.23)

5.4.2 M-step

At this step, we obtain the Q(.) with respect to ®*+!) where t = 0,1,..., The

conditional expectation of I.(®) given the observed data , say Q(©; ©®) is maximized

with respect to ®. The z;, are simply replaced by the current expectations z()
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yielding,

N
Q(@; (-)(t)) — ZZZ(? InmI,—o+ Zz,zzg Inm, + ZZZZQ lnp(’w,, ag)
i=1

i=1g=2 i=1g=2

N G N G
+ 3324y InPois (il pig (@i, By) ) + DD 24y In <¢(q¢\ug, 29)) (5.24)

i=1g=2 i=1g=2

Substituting the values z;, in Equation (5.21) with the values z ) obtained in Equation
(5.22), we have

Q(r;T t)) Q1 (8Y; 7 ) + Qa2 (k; T(t)) + Qs(; T(t)) (5.25)

where

N G - Yi
Ql(ﬂ;f(t))Zzzzg)ln[eXp[—mg(-’B;ﬂg)][_uzg( 2y } (5.26)

i=1g=2 y!
Q Zzll 1I17T1 yi= O_I_Zzzzg 1Il7Tg (527)
i=1g=1
N G .

= >34 In Gl prg. ) (5.28)
i=1g=1
N G

Qu(h; TV) = ZZzg) In Mult(w;; o) (5.29)
i=1g=1

5.4.3 Maximization of Q,(Q;7@) via IRLS

We maximize Equation (5.23) independently of the G expression as the four terms

on the right of Equation (5.23) have zero cross-derivatives, i.e.

N

0
a—ﬁng( ) = 98, % 121(9) In <P01s<yl\uzg(wz,ﬁg))> (5.30)

(Mz’g(ici; ﬁg))yi exp < — ig(2; ﬁg))

;!

_ »®
8697, 1 ’Lg

log (5.31)
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a n
28 [y log pig(xi; By) — pig(xi; By) — log yi!] (5.32)
8/891 1
= o Hig(Ti; By) = i exp(x;By) = Tittig(Ti; By) (5.33)
0B,
Zzg [yz log /szg(xza /Bg) Mig(a:i; /Bg) - 1Og yz'] (534)
a/391 1

From Equation (5.34), we have the following

< ), . Yi _ Mz‘g(wi;ﬁg)> -0 535
ZA:ZIZzg wzlulg (mlv ﬁg) (,uzg(wu /Bg) ,uzg(mz; /Bg) ( : )

= Z:lzi(;)wi (?/z — Hig(@i; /Bg)> (5.36)

() 4 [[(ﬁ(t))}_ls(ﬁgﬂ), where I(8Y)) is the Fisher

g g
Information matrix and S(BY) is the score function obtained in Equation (5.36). So,

Using the expression 8{*) = 3

S(BY) = 3 _zig wig(@is Byl (5.37)

1(8) =

|
Dl

B(H_l t) + <ZZZ(;)ILLZQ (.’131,,89) w;wz> h (izz(;)wl (yi o Mig(;ti;ﬁg))) (5.38)
i=1

finally Equation (5.38) becomes
-1/ n
Bl (Zm ' Sig T ) (ngsi95§2)> (5.39)
i=1

where 6®) = x;By+0;, with 67, = (yi—uig(a:i; Bg))/uig(wi; B,) and s,y = zg)ug?(a}i; By)
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5.4.4 Maximization of Qy(m;7®) via ML

The maximum of Q(®) with respect to 7, subject to the constraints on these param-

eters, Q(O®) is achieved by maximizing the augmented function

N N G G
=59 mm -y (m - 1) Lo+ D> 2 Inmy + 7<Z7rg - 1> (5.40)

i=1g=2 g=2

where v, is a Lagrangian multiplier. Setting the derivative in Equation (5.40) with
respect to m; for a degenerate distribution and 7, for a Poisson cluster weighted

models equal to zero and solving yields

t+1 Z (t+1)/

r{t+D Z t“’/ (5.41)

where g =2,...,G.

5.4.5 Maximization of Q3(k;7") via ML

Maximizing Equation (5.23) with respect to p, and 3,, g = 1, ..., G, is equivalent to

maximizing independently each of the G expression

RN <¢(Qi|“’g7 Eg)> (5.42)
=1

we obtain .
t t
(t+1 ZZ(Z;)% ;z((i;) (5.43)
and

ST S PO A ) S TS

i=1
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5.4.6 Maximization of Q4(h;T") via ML

Maximizing Q4 (h; 7)) with respect to oy, g =1,...,G is equivalent to maximizing

each of the G expression considering the constraints

P n Tk
Zz In p(w;; o) ZZzg)Zwks In avgps. (5.45)

k=1i=1 s=1

Using the Lagrangian multiplier, Equation (5.45) can be expanded as follows;

n Tk T
ZZ,-(;)ZIU’“ In avgres — 72 (Zagks — 1), (5.46)
=1 s=1 s=1

the 9 is used here as the Lagrangian multiplier. Setting the derivative of Equation
(5.46) to zero

n wks
Zzi(;)a — =0, = ZZ(” / Yo = Qghs, (5.47)

i=1 gks i=1

we find v, = then finally we have

=1 zg )
1 t
g,:; ) Zzlg w Z Z( ) (5.48)

We note here that we can also maximize Q4(h; 7®) with respect to c, via IRLS if
we allow probabilities ay to be either a multinomial logit or softmax regression with

varying coefficients according to chapter 4.
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Figure 5.1: The Visualization of the sim-  Figure 5.2: The Visualization of the sim-
ulated data with sample size 500 ulated data with sample size 1000

5.5 A Simulation Study for parameter Recovery

A simulation study was performed to evaluate the performance of the maximum
likelihood estimates of the model obtained via EM algorithm. We generated samples
of size N from the following ZIPCWM with three components.

3
p(x,y; ©) = mly—o) + ZQPois(y‘m; Bg)¢(q; K, Eg>p(w; ag)wg (5.49)
o=

Figure (5.1) and Figure (5.2) present the visualization of the simulated data with
sample sizes 500 and 1000 but we intentionally not include visualization for n = 200.
Table 5.1 shows the true values of the mean vectors, and the covariance matrices
are the spherical covariance matrices. For the finite discrete variables w; and ws,
we generated two different variables from binomial distribution where p = 2 discrete
covariates and r; = 2 and 7, = 3 levels with the probability of success 0.5 and 1/3

respectively.

We randomly generated the continuous variables from a Gaussian variate according to
the parameter presented in Table (5.1) whose dimension is d = 3. The two categorical
variables w; and ws are generated according to the binomial distribution where the

probabilities are aey = 0.5 with levels 2 and a, = 1/3 with levels 3 respectively. The
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count response variable is generated according to the true values of the coefficients
presented in Table (5.2).

Table 5.1: True values of the mean, sigma, and mixing weight
for n = 200, 500 and 1000

n g M1 M2 M3 O11 022 033 T

True 1 - — — — - - 0.50
2 0.10 2.00 1.00 1.00 1.00 1.00 0.30

3 —2.00 0.00 3.00 1.00 1.00 1.00 0.20

Table 5.2: True values of the regression coefficients for
n = 200, 500, 1000

Values n g [Bo i B2 B3 [ Bs
True 2 0.00 0.88 0.28 0.96 0.09 0.33

3 0.00 0.77 0.53 0.98 0.07 0.37

The log-link for the Poisson mean p;, is as follows:

log(ftia(xi, B2)) = Bao + Por i

log(pis(i, B3)) = B30 + Ba1 (5.50)

where x; in this case is the combination of g;, and w; random variables. We considered
the distribution q|D, € R? to follow a Gaussian distribution. The true values of
the ZIPCWM regression coefficients are presented in Table (5.2). We selected the
m ~ 0.5, my ~ 0.3, and 73 ~ 0.2 according to Hwa et al. (2014).

We generated a random number U from Uniform distribution. To generate samples
from the above model for each subject (i = 1,...,n), we adopted the following condi-
tions; if U is less than 7y, Y; takes the value 0, where p;; = 0. If U is between 7 and
71 + o, then Y; is a draw from Pois(u;2). Otherwise, Y; is generated from Pois(p;3).

Algorithm 5 presents the steps taken to generate the simulated data;
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5.5.1 Algorithm for simulating from ZIPCWM

139

Algorithm 5 Algorithm for simulation ZIPCWM

1:
2:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:

Select an initial coefficient 3, Number of Groups G
Initialize the group mean and Covariance matrix g and X
respectively,
Initialize assignment probability 7,
Set a seed
Generate U ~ (0, 1)
while i # n do
if Uz S 1 then
Generate q; ~ N (p1,2)
Generate wl; ~ Bin(1,0.5)
Generate w2; ~ Bin(1,1/3)
Combine the x; = (gq;, wl;, w2;)
Generate y; ~ zipois(1, uy = 0)
elseif U, > m & U; <7 + m then
Generate gq; ~ N (p2, X5)
Generate wl; ~ Bin(1,0.5)
Generate w2; ~ Bin(1,1/3)
Combine the x; = (q;, wl;, w2;)
Generate y; ~ Pois(1, iz(x;, B2))
else
Generate q; ~ N (u3, X3)
Generate wl; ~ Bin(1,0.5)
Generate w2; ~ Bin(1,1/3)
Combine the x; = (q;, wl;, w2;)
Generate y; ~ Pois(1, p;s(x;, B3))
end if
end while
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5.5.2 Result for Parameters Estimated

Here, the ZIPCWM with three component is fitted to the simulated data of sizes
N = 200,500, and 1000. We compute the misclassification based on the simulated
data. We ran each simulation 10 times as suggested by McLachlan & Peel (2000)
to avoid local maxima. However, we ran the simulation 10 times and recorded the

average values to avoid the biased choice of selecting the best result.

Table (5.3) shows the recovered estimates of the p,, the diagonal values for X, and
the mixing proportions mg. For the estimated parameters of 11, in component 1 for
n = 200,500, and n = 1000, the values are omitted. Generally, in Table (5.3), we
observe that the closeness of the parameter values is not independent of the sample
size N. Also, in Table (5.4), considering the coefficients B, where g = 2,...,G, the
parameter estimates for N = 1000 are closer to the true parameter values compared
to the parameter estimates for N = 200 and N = 500.

Table 5.3: True and Recovered values of the mean, sigma, and mixing weight
for n = 200, 500 and 1000

N g M1 Mo M3 011 022 033 ™

1 - — — — - - 0.50

True 2 0.10 2.00 1.00 1.00 1.00 1.00 0.30
3 —2.00 0.00 3.00 1.00 1.00 1.00 0.20

1 — — — — — — 0.54

Recovered 200 2 —0.77 1.50 2.20 1.99 1.62 1.48 0.25
—1.07 092 240 2.14 1.57 1.86 0.21

w

1 - - - — - — 053
500 2 —0.50 152 2.03 1.72 1.39 1.25 0.25
3 —144  0.62 279 145 1.30 0.99 0.22

1 — — - = = — 053
1000 2 0.7 2.08 1.17 0.70 0.81 1.11 0.27
~1.93 —0.07 3.09 1.00 1.05 1.21 0.20

w
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Table 5.4: True and Recovered values of the regression coeflicients for
n = 200, 500, 1000

N g Bo B Ba B3 B4 Bs
2 0.00 0.88 0.28 0.96 0.09 0.33
True 3 0.00 0.77 0.53 0.98 0.07 0.37

2 033 073 026 087 0.07 0.39
Recovered 200 3 0.30 0.71 0.29 0.84 0.18 041

2 025 082 0.29 092 0.09 0.32
500 3 0.24 0.75 042 0.89 0.086 0.38

2 002 092 0.27 0.8 0.09 0.39
1000 3 0.51 0.81 049 086 0.04 041

We investigate the ability of the proposed model to identify the number of components
using eight different model selection criteria such as Akaike’s information criterion
(AIC) and Bayesian information criterion (BIC) model selection criteria, ICL, AWE,
AlCc, AIC3, AICu, Caic.

The values presented are the average values of ten runs for each of the criterion. In
Table (5.5), the effect of sample size is significantly evident. It can be seen that all the
selection criteria select wrong number of components with large size. They all selected
the model with too many components (clusters) when the sample size is N = 200.
However, when the sample size increases to 500, AIC, AIC3, and AICc correctly
selected the true cluster component. Moreover, when the sample size is 1000, all
the selection criteria except AWE selected the right choice of the model component.
AWE displays a poor performance of overestimating the number of components in
the data. All criteria except the AWE performed satisfactorily with higher sample
size. Obviously, we can conclude that the performance of the criteria roughly gets

better with increasing sample size N.
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Table 5.5: The values of AIC, BIC, ICL of ZIPCWM for different n = 200, 500, 1000 with
true component G = 3. For n = 200, all the selection criteria perform poorly. However, the

performance gets improved with increased sample size.

N G AIC BIC ICL AWE

AIC3 AlCc AICu Caic

200 2 2192.91 2080.77 2080.76 1798.62
3 2055.82 1831.49 1822.53 1267.24

2158.91  2178.48  2140.01 2046.77
1987.82  1984.18  1899.56 1763.53

4 194512 1608.69 1598.41 762.26 1843.12 1728.50 1583.78 1506.69
5 1771.851323.28 1315.37 194.70 1635.85 1180.35 949.32 1187.28
500 2 7557.49 T414.20 7413.55 7100.90 7523.49 7552.37 7516.09 7380.20
3 5128.59 4841.99 4826.93 4215.40 5060.59 5106.82 5032.57 4773.99
4 5212.08 4782.19 4750.51 3842.30 5110.08 5159.16 5043.82 4680.19
5  5270.85 4697.66 4649.80 3444.47 5134.85 5168.19 5008.09 4561.66

1000 2 12074.24 11907.38 11907.37 11570.51

12040.24 12071.78 12036.15 11873.38

3 10234.37 9863.09 9900.64 9226.91 10166.37 10224.29 10152.79 9832.64

4 10860.90 10360.31 10268.41 9349.72
5 10907.28 10239.83 10127.11 8892.37

10758.90 10837.48 10728.78 10258.31
10771.28 10864.10 10716.76 10103.83

We presented the confusion matrix for ZIPCWM, PCWM [Ingrassia et al. (2015)],
and FZIP [Hwa et al. (2014)] with varying sample sizes. Table (5.6) shows the mis-
classification rates produced by the competing models. The overall misclassification
rate produced by ZIPCWM is 5.5%, 8.4%, and 6.7% for N = 200, 500, and 1000
respectively. Moreover for N = 1000, we compared proposed model with PCWM and
FZIP. PCWM has a misclassification rate of 10.2 and FZIP has 13.1% misclassifica-
tion rate. The classification power of FZIP agrees with the simulated study provided
in Hwa et al. (2014). PCWM achieves a slightly higher classification accuracy of
89.8% compared to FZIP. To validate the classification power, we presented the ARI
value for each model which measures the agreement between the true cluster and
classification result of the proposed model. The ARI of the ZIPCWM is 0.892 when
N = 1000 and FZIP has ARI of 0.847. This means the predicted result of ZIPCWM
agrees more with the true classification than the FZIP. The AUC for both sample
sizes are 0.923, while the AUC of FZIP model is 0.829.
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Confusion Matrix and Statistics
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Figure 5.3: The Visualization of Con-
fusion Matrix and Statistics of the
ZIPCWM with n = 200, G = 3.

Confusion Matrix and Statistics

x.overall
Accuracy  0.93
Kappa  0.89
AccuracyLower  0.92

Reference

AccuracyUpper  0.95
AccuracyNull  0.48

AccuracyPValue [}

McnemarPValue  NaN

1

3

1 2
Prediction

Figure 5.5: The Visualization of Con-
fusion Matrix and Statistics of the
ZIPCWM with N = 1000, G = 3.
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Figure 5.4: The Visualization of Con-
fusion Matrix and Statistics of the
ZIPCWM with N =500, G = 3.
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Figure 5.6: The Visualization of Confu-
sion Matrix and Statistics of the FZIP re-
gression mixture model with N = 1000,

G = 3.
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Table 5.6: Confusion Matrix in the three component Model for N = 200, 500, 1000. For
1000, ZIPCWM, PCWM, and FZIP are compared together. It was observed that ZIPCWM
outperforms PCWM and FZIP.

n Component 1 2 3 MR (%)
200 1 102 0 0 0.00
2 6 42 0 12.50
3 0 5} 45 10.00
Misclassification 5.50
Accuracy 94.50%
500 1 241 0 0 0.00
2 24 121 0 16.55
3 0 18 96 15.79
rate 8.40
Accuracy 91.60%
1000 1 485 0 0 0.00
2 45 253 0 15.10
3 0 22 195 10.14
Misclassification 6.70
Accuracy 93.30%
PCWM 1 485 0 0 0.00
2 15 196 87 34.23
3 0 0 217 0.00
Overall 10.20
ccuracy 89.80%
FZIP 1 485 0 0 0.00
45 167 86 43.96
3 0 0 217 0.00
Overall 13.10
ccuracy 86.90%

5.6 Modeling of ZIPCWM on Real Data

5.6.1 The Use of Contraceptive Among married women

We revisited the data set on the use of contraceptive methods among married woman
whose attributes have been presented in Chapter 4. The main goal is to first check if

there is any presence of excess zeros or class imbalance in the data before classifying
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Figure 5.7: The Visualization of Con-  Figure 5.8: The Visualization of Confu-
fusion Matrix and Statistics of the  sion Matrix and Statistics of the PCWM
ZIPCWM on Contraceptive data on Contraceptive data

the current contraceptive method choices (no use, long-term methods, or short-term

methods) of a woman based on her demographic and socio-economic characteristics.

First of, we carried out a dispersion test to ascertain the absence of overdispersion in
the data. The dispersion parameter is 0.83983 which signifies the absence of overdis-
persion. Furthermore, the Poisson regression model was carried out to check the
significant power of the variables in the data. The result shows that the wife’s age
has a significant effect on the use of contraception among married women. This is
reasonable since the estimate (., = —0.04375. This means that younger married
women are 0.04375 times more expected to use contraceptive than their older mar-
ried counterparts. More conceptually, the use of contraceptive method has about
4.4% decrease among married women for every one-year increase in age. Similarly,
the wife’s education also contributes significantly to the use of contraceptive with a
p-value of < 2e — 16. The coefficient of education variable (1.18) indicates that on
average there is an increase of 1.18 use of contraceptive method for every one-year
education. This means that well-educated married women have more exposure to the
use of contraceptive. The rest of the significant variables considered in the study are
Number of children ever born, Standard-of-living index and Media exposure.

We performed a comparison study of three different models such as Zero-Inflated Pois-
son Cluster-Weighted Models (ZIPCWM), Poisson Cluster-weighted Models (PCWM,
Ingrassia et al. (2015)), and Fixed Zero-Inflated Poisson Mixture models (FZIP, Hwa
et al. (2014)) based on these significant variables.
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Table 5.7: Comparison of classification performance of ZIPCWM and PCWM with classi-
fication accuracy of 97%, and 58.5% respectively. FZIP performs so poorly on the data as
the model could not identify the reasonable component for the data.

Model Component 0 1 2 MR (%)
Z1IPCWM 0 629 0 0 0.00
1 0 294 39 11.71
3 0 0 511 0.00
Misclassification 2.60
Accuracy 97.40%
PCWM 0 351 95 183 44.20
1 0 0 333 100.00
2 0 0 511 0.00
Misclassification 41.50
Accuracy 58.50%

Here, the ZIPCWM, PCWM, and FZIP models with three components are fitted
to the method of contraceptive among the married women based on the significant
demographics and they are used to classify the data into three components. We com-
puted the misclassification rate produced by the competing models. Visualization
results are presented in Figure (5.7) and Figure (5.8). In Table (5.7), ZIPCWM has
the overall misclassification rate is 2.6%. Moreover, it can be seen that most of the
misclassifications are in component two which has 11.71%. In group one the number
of married women according to the prediction of the model is 629. Contrary to the
result produced in Chapter 4, ZIPCWM appropriately accounts for the excess zeros
in the data. The component two according to ZIPCWM has 294 married women
correctly classified as the married women that have long-term use of contraceptive.
39 observations of the women that have long-term use were misclassified into cluster
three (short-term use). ZIPCWM correctly predicts that 511 married women have a
short-term use of contraceptive. We observe that PCWM has a higher overall misclas-
sification rate of 41.50%. PCWM correctly classified 351 out of 629 married women
as a no-use contraceptive method. This is due to the PCWM not accounting for the
excess zeros in the data. Moreover, all the component two was totally misclassified
as component three. This is a problem of label switching. FZIP provides the worst
classification. FZIP was unable to identify the components at all but classified all the

women as coming from component three. We conclude based on the result produced
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by the competing models that ZIPCWM appropriately fit better than PCWM and

FZIP for the use of contraceptive method among married women.

5.6.2 Modeling the Number of Absence of students

The data consists of the performance of students in Portugal. The secondary educa-
tion consists of 3 years of schooling, preceding 9 years of basic education followed by
the higher education. Due to some factors, most of the students join the public and
free education system. The data was collected primarily with questionnaires. The
structure of the education system in Portugal is a 20-point grading scale where 0 is
the lowest and 20 is the perfect grade. The data was collected during the 2005 — 2006
school year from two public schools by Cortez & Silva (2008). They designed the
latter with closed questions related to demographic, social/emotional [Pritchard &
Wilson (2003)] and school related questions. The goal of the study is to classify the
students according to the number of absence in the class. This is one major cause of
zero inflation in the data if there is no significant reason for any student to be absent

in class, the number of absence will be greatly zeros.

First of, we identify the significant factors that contribute to the absence. We modeled
the data with a Poisson regression to investigate the significant effect of the variables
on the presence of the students in class. Table (5.8) shows the significant variables
that contributed to the absence/presence of the students in class. It is interesting
to know how some factors can strongly contribute to or negatively affect the success
of the students such as parent cohabitation status. The response variable is taken
to be a Poisson count. We also note the presence of class imbalance in the data i.e.
one class makes up about 63% of the response variable which makes it suitable for

Zero-inflated model.

The response variable is a number of event occurring (absence) in the class. The
number of absence ranges from 0 to 93 where 0 represents no absence and other
numbers represent the number of absence. The response variable can also be seen as
a binary variable of presence and absence. However, we performed a model selection
test using the combination of eight model selection criteria with ZIPCWM and the

result is presented below.
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Table 5.8: The significant student related variables

Attribute Description

school student’s school (binary: Gabriel Pereira or Mousinho da Silveira)

sex student’s sex (binary: female or male)

age student’s age (numeric: from 15 to 22)

Pstatus parent’s cohabitation status (binary: urban or rural)

Medu mother’s education (numeric: 0 to 4)

Fedu father’s education (numeric: 0 to 4)

Mjob mother’s job (nominal)

Fjob father’s job (nominal)

guardian  student’s guardian (nominal: "mother”, "father” or "other”)

studytime weekly study time

failures number of past class failures (numeric: n if 1 <n < 3, else 4)

famsize family size (binary: < 3 or > 3)

schoolsup extra educational support (binary: yes or no)

famsup family educational support (binary: yes or no)

paidclass  extra paid classes(binary: yes or no)

higher wants to take higher education? (binary: yes or no)

romantic  with a romantic relationship (binary: yes or no)

famrel quality of family relationships (numeric: from 1 - very bad to 5 - excellent)
freetime free time after school (numeric: from 1 - very low to 5 - very high)

Dalc workday alcohol consumption (numeric: from 1 - very low to 5 - very high)
Walc weekend alcohol consumption (numeric: from 1 - very low to 5 - very high)
health current health status (numeric: from 1 - very bad to 5 - very good)
absences  number of school absences (numeric: from 0 to 93)

Figure (5.9) and Figure (5.10) present the visualization of the confusion matrix with

the classification accuracy. Thus, we conclude that ZIPCWM has a higher classifi-

cation power compared to PCWM. We measure the agreement between actual class

and predicted class using Adjusted Rand Index (ARI). ZIPCWM has ARI of 1 while
PCWM has ARI of 0.81. After confirming the component of the model, we compared
the classification power of ZIPCWM and PCWM models to distinguish between the
zero-inflation model and ordinary model. We observed that the ZIPCWM outper-
forms PCWM.
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Figure 5.9: The Visualization of Con-  Figure 5.10: The Visualization of Confu-
fusion Matrix and Statistics of the sion Matrix and Statistics of the PCWM
ZIPCWM on number of Absence. on number of Absence

Table (5.9) confirms our intuition about the response variable. We observe that all the
model selection criteria agree with the selection of the model with two components.
This shows us that there are two categories of students in the class viz; those students

that are regular in class and those that are irregular whether short-term or long-term.

Table 5.9: The values of model selection criteria of ZIPCWM for different G = 2, 3,4 and
5. Before proceeding with the clustering analysis, we carried out a model selection test. All
the selection criteria used suggest the model with two components.

G AIC BIC ICL AWE AIC3 AlCc AICu Caic

2 6505.81 6420.77 6419.84 6240.74 6486.81 6504.60 6484.28 6401.77
3 7784.37 7614.30 T481.70 7254.24 T7746.37 7779.51 7739.29 7576.30
4 8059.74 7804.64 T633.21 7264.54 8002.74 8048.55 TI8T.T9 T7747.64
5 7515.60 717547 7062.70 6455.34 7439.60 7495.14 7413.18 7099.49

This ascertain a need to account for excess zeros in the data. Table (5.10) shows
the misclassification rate of both models. ZIPCWM has zero misclassification rate
and achieves 100% classification accuracy while the PCWM has 89.52% classification

accuracy with 10.48% error of classification.
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Table 5.10: Comparison of classification power of the ZIPCWM and PCWM Models. We
intentionally omitted FZIP because we are interested in zero-inflated model against ordinary
model. ZIPCWM provides higher classification accuracy relative to PCWM.

Model Component 1 2 MR (%)
ZIPCWM 1 244 0 0.00
2 0 405 0.00
Misclassification 0.00
Accuracy 100.00%
PCWM 1 242 2 0.82
2 66 339 16.30
Misclassification 10.48
Accuracy 89.52%

5.7 Summary

In this Chapter, we have introduced another new member called Zero-Inflated Pois-
son cluster-weighted model (ZIPCWM) into the family of CWMs which accounts
for excess zeros in the data. The ZIPCWM is suitable for class imbalance in data
commonly known as censored information in medical data. ZIPCWM is a general-
ized form of the previously existing models such as Poisson cluster weighted model,
Fixed Zero-Inflated Poisson mixture model. ZIPCWM allows modeling the data with
mixed-type covariates which is the combination of the finite discrete and continuous

variables.

This provides an advantage over the limitations of GZIP and FZIP. Furthermore,
we have extensively described an Expectation-Maximization algorithm for parameter
estimation via IRLS. To investigate the parameter recovery of the algorithm and
the performance of various model selection criteria to select the number of mixture
components, explicit simulation studies were carried out.

Our simulation showed that the proposed model worked satisfactorily and the estima-
tion technique performed well. The results presented showed that the ZIPCWM with
three components provides the best fit. This results lent support to the use of cluster
weighted model and establish that ZIPCWM provides better fitting performance than
the PCWM and FZIP when explaining zero-inflated heterogeneous data. Addition-
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ally, the proposed model was applied to the real data and a comparison study of the
classification performance with its special models was investigated. It was observed
that the proposed model outperformed its special models. In this Chapter, we used
eight different model selection criteria to select the number of mixing components,
(. This is necessary to discover the hidden structure of the data irrespective of the
response variable. The future research direction can be to critically investigate the

eigenvalue decomposition on ZIPCWM.

The next chapter was carried out with Prof. Robert Aykroyd in the University of
Leeds on image recognition. The chapter focuses on the problems encountered in Ex-
pectation propagation algorithm when in dealing with complex Bayesian hierarchical
model. The chapter aims to solve some of the problems by proposing a stochastic

and deterministic generalization of EP.



Chapter 6

Variational Bayesian: Expectation

Propagation Image Reconstruction

6.1 Introduction

Image reconstruction problems common to medical imaging area such as fast MRI
and low dose CT are generally mathematically ill-posed inverse problems. Often
times, linear imaging system are considered with a forward operator G, e.g. a Fourier
transform for MRI and X-ray transform for CT. The measurement y is given as
y = Gz, where x is the underlying image in the noise-free state. The linear operator
G is ill-posed for most applications; therefore, some statistical priors are necessary
to make these problems invertible. Consequently, intractability becomes inevitable
due to high-dimensional data. Moreover, when the number of hidden variables to
be estimated grows bigger and result in multiple integration, intractability poses a

problem in Bayesian inference.

This Chapter presents a new unification of stochastic algorithm and deterministic
algorithm called Splitting Expectation Propagation (SEP). A splitting expectation
propagation achieves a very high accuracy and also in terms of computational speed
is faster than the Markov Chain Monte Carlo method and other existing determinis-
tic approximation methods like Assumed Density Filtering (ADF) and standard EP
algorithms. Although, EP algorithms may not guarantee the desired result due to

their limitations which will be discussed in the following paragraph. As pointed out
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by Minka (2001); ADF is a one pass, sequential method for computing an approx-
imate posterior distribution. The main advantage of ADF over EP is its simplicity
and high memory efficiency. However, the weakness of ADF stems from its sequential
nature, its sensitivity to observation ordering makes it undesirable in a batch con-
text. Expectation Propagation [Minka (2001)] on the other hand is an extension of
ADF [Maybeck (1982); Opper & Winther (1999)]. EP incorporates the term itera-
tive refinement. The word iterative refinement uses an additional passes through the
network. The choice made earlier is independent of the information from the latter
observation but rather refines the choice which is important to retain. This iterative
refinement poses a lot of problem to EP and often leads to algorithm explosion due
to a negative value of the variance vy. This happens when many of the variances v; of
the approximate terms are negative and the positive v; is to be refined. In the refine-
ment stage, a positive value is subtracted from new approximate posterior variance

Ugew

and are left with some negative values. In this case, the marginal likelihood Z;
doesn’t exist any longer and the algorithm fails. Although, a remedy to this was given
in Minka (2001); which relaxes the expectation constraints: “set variance v; to a large
value (10%) anytime it would become negative”. This remedy leads to convergence
but at the expense of the posterior accuracy. EP proves to be very difficult in han-
dling hierarchical models due to the computation of marginal likelihood (Z;) which
may come from a different exponential family and yet does not guarantee an accurate
result of the posterior. When the posterior is multimodal, EP fails to capture the

whole mode because it is a unimodal approximate algorithm. An example is seen in
clutter problem [Minka (2001)].

6.2 Related Work

Many attempts have been done on expectation propagation to solve the problem
of instability. Quite a few researches have focused on the problem of energy func-
tion of expectation propagation i.e. the major part of the algorithm which is the
minimization of KL divergence. Some have shifted their attention on the need to
parallelize expectation propagation to reduce its inefficiency or ill-management of

memory. Moreover, a lot of works have focused on applying the algorithm to various
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areas of research. One application of expectation propagation has been found in the

area of nonlinear inverse problem.

Matthias & Bangti (2014) studied expectation propagation method and demonstrated
its significant potentials on the nonlinear inverse problem. To handle non-linearity in
inverse problem, they proposed the coupling of the EP with an iterative linearization
strategy. A direct integral was used for computing the marginal likelihood. This
can only be tractable in a low dimensional space as the work assumed. However
in practice, this becomes a hard nut to crack in hierarchical Bayesian framework.
Also, their approach only involves the Gaussian distribution. Jose & Ryan (2015)
worked on a similar problem handled in this work as a layered Bayesian Neural Net-
work. Due to the memory inefficiency of EP and the possibility of the likelihood to
grow with massive data, the method of EP was approached as an ADF in multiple
succession. However, the disadvantage of this approach is that it can lead to under-
estimation of variance of approximate posterior. Graves (2011) proposed a Monte
Carlo approximation to compute the lower bound of the variational inference, which
is then optimized using the second approximation for the stochastic gradient descent
(SDG). Following this approach for variational inference, the initial approximation
leads to poor estimation for large data sets because of its inefficient use of data. John
et al. (2011) focused on the problem of intractable lower bound on the marginal like-
lihood in variational inference while computing the updates of the parameters. It
often requires the ability to integrate a sum of terms in the log joint likelihood using
factorized distribution. However, not all the integrals are tractable which is typically
handled by using a factorized distribution. In order to overcome this type of problem
in variational inference, they presented an alternative approach based on stochastic

optimization that allows for direct optimization of the variational lower bound.

Gelman et al. (2014) revisited expectation propagation as a prototype for scalable al-
gorithm that partition big datasets into many parts and analyze each part in parallel
to perform inference of shared parameters. The limitations of expectation propa-
gation were highlighted and discussed in detail in their work. Jylanki et al. (2011)
discovered that when the moment computations are not accurate, EP may have sta-
bility issues, even with one-dimensional tilted distributions, moment computations

are more challenging if the tilted distribution is multimodal or has long tails. Minka
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(2004) proposed an extension of EP called a fractional EP to improve the robust-
ness of EP algorithm when the approximation family is not enough [Minka (2005)] or
when the propagation of information is difficult due to vague prior information [Seeger
(2008)]. Fractional EP can be viewed as a method for minimizing the «, where o = 1
corresponds to Kullback-Leibler divergence used in EP, a = 0 corresponds to the re-
verse Kullback-Leibler divergence used in variational Bayes, and o = 0.5 corresponds
to Hellinger distance. Yingzhen et al. (2018) presented an extension of expectation
propagation called a Stochastic Expectation Propagation that maintains a global pos-
terior approximation like variational Bayes but updates the posterior in a local way.
The work used the expectation propagation strategy but differs only at the updating
stage. Stochastic Expectation Propagation was seen as a corrected version of ADF
such that it updates the global factor that captures the average effect of likelihood
on the posterior. In this work, we study the complex Bayesian model by proposing a

Splitting EP algorithm for image reconstruction.

6.2.1 Main contribution

The goal of this present work is to study the Expectation Propagation method, and
to make a new modification of EP fit for the hierarchical Bayesian framework to solve
an inverse problems. Splitting EP (SEP) incorporates the Monte Carlo methods
(Stochastic Search), Markov Chain Monte Carlo method (MCMC), and Alternating
Direction Method of Multiplier (ADMM) at the EP updating stage. SEP focuses
on the core limitation of expectation propagation algorithm. The major limitation
addressed in this work that automatically addresses other limitations is the compu-
tation of marginal likelihood in the hierarchical Bayesian models and also in high
dimensional space. Recall that in the expectation propagation, the most vital part
of the algorithm is the minimization of the Kullback-Leibler divergence between the
tilted posterior and the approximate posterior. For background knowledge on EP,
Minka (2001) provides detailed explanation. The new approach to the EP method is
called the Splitting Expectation Propagation (SEP) algorithm. One of the advantages
of Splitting Expectation Propagation is its ability to generalize expectation propa-
gation when normalizing factor involves different exponential family of distributions

(non-Gaussian distributions and Gaussian distributions).
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Because of the intractability of inversion of an ill-posed operator with partial and
corrupted measurements, we do not intend to learn an end-to-end inversion mapping
from the measurements to the reconstructed image. Motivated by Bayesian inference-
based image reconstruction methods, we propose to split the task of inversion of a
known forward operator from learning an image representation. In order to feed
the inputs into the EP algorithm implicitly, we approach EP from both stochastic
and deterministic standpoints. From the stochastic viewpoint, we apply MCMC
and Monte Carlo integration to EP setup and from the deterministic viewpoint we
establish the normalizing factor as a loss function and apply the ADMM (EP-ADMM).
Finally, we present EP with ADMM and MCMC (Combination of stochastic and
deterministic standpoints to EP), and Stochastic Search EP independently (SSEP is
the only Stochastic standpoint to EP) addresses the intractable normalizing factor
of EP with Monte Carlo integration and gradient descent. This is altogether called
Splitting Ezpectation Propagation (SEP).

6.3 Stochastic and Deterministic Methods

6.3.1 Markov Chain Monte Carlo

In Bayesian modeling, we encode our knowledge about the unknown z in a prior
distribution p(z) that forms the second building block of Bayesian modeling. The
prior plays a role of regularization function of the ill-posedness pertinent to the model.
The most widely used Bayesian algorithm is Markov Chain Monte Carlo (MCMC)
[see Gamerman & Lopes (2006); Geyer (2011); Gilks (1995)], and it is a popular
method for exploring posterior state. MCMC constructs a Markov chain with the
posterior distribution p(X, A\, 7)) as its stationary distribution, and draws samples
from the posterior distribution by running the Markov chain, from which the sample
mean and variance can be computed. Specifically, MCMC algorithm generates a set
of N dependent samples which is used to approximate the posterior. In order to
obtain accurate estimate a moderately large number of samples after burn-in period
is needed for stationarity purpose which is controlled by the Autocorrelation of the
samples, e.g., N = 1 x 10° to 1 x 10°. Each iteration is a decision stage of whether

the proposal 2 should be accepted or rejected. The major goal of this approach is
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to evaluate the likelihood and the prior distributions. However, MCMC algorithm
is extremely expensive and thus a straightforward application is impractical. The
MCMC method provide an approach when the model is complex or the number of
parameters is large. The transitions in the Markov chain are designed so that an
equilibrium distribution exists and is equal to the target distribution, for example the

posterior distribution in Bayesian analysis.

6.4 The Clutter Problem

The clutter problem has been addressed in the work by Minka (2001). This work
replicates this process to compare the proposed algorithm with the EP algorithm for
a one-dimensional space. Suppose we have observations from a Gaussian distribution
embedded in a sea of unrelated clutter where w is the clutter ratio, so that the density

observation is a mixture of two Gaussians:
p(yl0) = (1 = w)N(y;6,1) + wN(y; 0, 10I) (6.1)
Let the d-dimensional vector 8 with a Gaussian prior distribution:
p(0) ~ N(0,1001) (6.2)
The joint distribution of 8 and n observation D = {y1,...,¥n}

p(D,0) = p(0) ] I p(y:l0) (6.3)

The goal is to approximate the posterior distribution

p(D,0)
0|D) = ———-—"— 6.4
pOID) = e (6.4
Here, the first component contain the parameter to be estimated which is # and the
second component describes the clutter where w is the known ratio of the clutter.
The Bayesian network for this problem is § point to the y; [Check Minka (2001) for
more detail]. The next subsection reveals the results of expectation propagation and

splitting expectation propagation with a clutter problem in one-dimensional space.
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6.4.1 SSEP in low-dimensional space

In order to address the most difficult but vital part of expectation propagation algo-
rithm, we next present a method based on stochastic search and gradient descent for
the evidence of the posterior distribution which involves integral in case of intractabil-
ity. This method uses a stochastic approximation of the gradient with respect to the

approximation distribution ¢. This is what we call SSEP.

Following is the definition of terms in EP algorithm

e #;(0) is the approximate term

w is the hyperparameter.
e ¢(0) is the approximate posterior

e ¢_;(0) is the cavity distribution

my is the mean of the approximate posterior

vg is the variance of the approximate posterior

pi(0) is the tilted distribution.

The Monte Carlo integration and gradient descent of the V, log Z;(0|w) for each

observation become

V., log Zi(8lw) = V., log / 1,(0) q_:(0]w) db (6.5)

V., log Zi(flw) = 0‘ /v £:(0) ¢_.(0]w) dO (6.6)

where Z;(0]w) :/t-( ) q_i(6]w) db.

We substitute ¢_;(f|w) = & (ee‘rg))

in Equation (6.6) and it becomes

V., log Zi(0|w) = 9| /vz 1?(((2’|]w)) do (6.7)
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we take the gradient with respect to the parameter of ¢(6|w)

log Z; 1 :
V. log Z;(0|lw) = 9|w /t 00) q(0|lw) V, log q(f|w) db (6.8)

We use V,q(0|lw) = q(0|lw)V, log ¢(f|w) in Equation 6.8

V., log Zi(0lw) = (; | [ 1:6) a-i(01) Vi loga(elw) o (6.9)

Equation (6.9) can be viewed in different ways; either by generating samples from the

Uniform distribution;

K
V. log Z;(0|w) ~ Z H(k lw) V., logq(0 (k)|w)/

K

Z (0P |w_;) (6.10)

or by rewriting it as a function of ¢(f|w) and generating samples from it.

1 & )
V. log Z;(0|w) =~ — Z

k:l l

t k k) K

k)| V., log (0™ |w) g (6.11)
where 00 X g(6|w) for k = 1,..., K. Equation (6.10) and Equation (6.11) can be
denoted as d1/dg so at iteration t,

t+1 01

Wt =Wt Irx —

5 (6.12)

An alternative version of SSEP is to use a stochastic approximation of the gradient
with respect to the old approximation posterior q_;. The evidence or normalizing

factor is defined

Z,(0lw) = /t (Olw) d (6.13)
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The Monte Carlo integration and gradient descent of the V, log Z;(f|w) for each

observation becomes

V., log Zi(6|w) = V., log / £:(0) q_s(0]w) 6 (6.14)

V., log Zi(6|w) = 9’ /v £:(6) q_s(0)) 6 (6.15)

Our goal is to make a stochastic approximation of this gradient. To preserve the

originality of the EP, we rewrite the function as

V. log Z;(0|w) = 9| /t _i(0|lw) V, log q_;(0|w)db (6.16)
We take the gradient with respect to the parameter of ¢_;(f|w) and use the identity

Vuq-i(0|w) = ¢-i(0lw) V., log g—i(0]w)

in Equation (6.17) below

V., log Z;(0]w) = 9| /t (01w Vo logg_i(0)w) d6 (6.17)
It is so apparent that Equation (6.17) is an expected value of V,, log ¢_;(f|w), that is,

;[ V., 1og q_i(0lw)]

Zeroing the gradient with respect to w gives the conditions as follows;
V. log Z;(0|w) ~ ZV log q_;(Ok|w) (6.18)

where 0, ~ p which is the exact posterior distribution. We can therefore replace
V. log Z;(0|w) with the unbiased stochastic approximation of this gradient in Equa-
tion (6.18). We Denote this approximation by (,,. For example if t;(§) and g_;(6_;) are
both of the distribution say Gaussian distributions then according to Minka (2001),
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the first and second moments are as follows;

0. —
Vine l0g Z;(my, vg) = —Zkime (6.19)
Np=1 Vg
then,
E;[0] ~ my + vgV,, log Z(my, vy) Zok (6.20)
also,
n _ 2 _
V., log Zi(mg, vg) Z (6 mel ved (6.21)
2v;
We denote V,, log Z;(my, vy) as ¢, in the following equation
Es[070) — Ex[0)7 Epl0) ~ ved — vi(VE NV, — 2V, log Z (my, vg)) (6.22)
Equation 6.22 can be written as follows;
Ey[076] — E»[0]" E5[0] = vod — v5(CrGm — 260) (6.23)

6.4.2 EP-ADMM in low-dimensional space

In order to modify expectation propagation algorithm from deterministic viewpoint,
we present a method based on alternating direction method of multipliers for the
evidence of the posterior distribution which addresses the instability in EP. This
method uses a ADMM of the gradient with respect to the approximation distribution
g. The integration and gradient descent of the V, log Z;(0|w) with ADMM for each

observation become;

minimize  KL(p(0,)]/¢(0;;)) (6.24)

subject to : m;; = a;v;; > b
The Lagrangian formulation is

L(mo, vo, o, B) = KL(p(0;;)llq(0:)) + o' (mg — a) + gllme —all3+
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8" (vo = b) + Ellea — bl (6.25)

Then, we compute
Vm97U07a7/8L<m97 UG? a? 5)7 (6-26)

where «, and [ are the dual values of Equation (6.25);

(Mg, vg) /t _i(O|lw)db (6.27)
t:(6) 1
— 0 — 0 — do 6.28
/(zﬂ-vi)d/Q exp {21}9( mag)" ( me)} ; (6.28)
Now, we find the gradient with respect to my
V.0 1og Zi(ma, vp) LV, Zi(me,ve) (6.29)
; = i(mg,v .
m 108 £y, Vg Zi(me,ve) m&s 0,Y0),

Vm log Zi(mg, ’Ug) = /

Vo
(6 1 #:(0)q_:(0
V. log Zs(ma, vg) /9 |°" dQ—/mg(MHw)dG, (6.31)
(Mg, vg) Vg Zi(mg, vg)
1
V., log Zi(ma,ve) = —E[0] — ", (6.32)
Vo Vo

Make Ej[6] the subject of formula, then equation 6.32 becomes
E; = mg 4+ 19V, log Z;(mg, vp), (6.33)

then,

new

myp = my 4+ vyV, log Z;(my, ve) + a+ p(my — a), (6.34)

We find the gradient with respect to vy from equation 6.26

Vo log Zi(ma. ) = 5 / L0 — me)T(0 — m)t(0) gi(0]w)dd,  (6.35)
d 1 1 1 ) e
_QWZi(me,ve)/ (6)g- (0|w)d9+2792'(m9,ve) /(H_me) H0)a-(Blw)db, (6.36)
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- ;; + 210315[92] - 2m;fgw] ;”j (6.37)
Using my = E[0] — vgVelog(Zi(mg, vy))
E[070] — E[0)]T E[0) = ved — v lV%Vm — 2V, log(Z;(my, "Ug))] (6.38)
then,
vg™ = ved — vj lvﬁvm — 2V, log(Z;(mg™”, Ua))] + B8+ p(ve — b) (6.39)

Q™ =" 4+ p(mi™ —a) and B = BF + p(vy” —b) (6.40)
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6.4.3 Splitting EP algorithm for clutter problem

Algorithm 6 The General Splitting EP Algorithm

We present below the univariate version of the algorithm for SEP:

1. Initialize all of the approximating factors #;(6).

2. Compute the initial approximation ¢(#) from the product of the approxi-
mating factors:

1L
"= e

3. Until all #; converge:

(a) Choose a #; to refine

(b) Remove #; from the approximation ¢(#) by division:

1(0) tq(é))

(c) Compute the tilted distribution p;() from ¢_; and the exact factor ¢;

5:(0) = ti(e);;i(9)7

The normalizing factor is defined as

7= [1:(6) a_i(0)d6

(d) Since p;(0) is not in the chosen family Q, we minimize the Kullback-
Leibler divergence between the tilted distribution p;(#) and approxi-
mate distribution ¢(6) that is

q"(0) = arginin KL(p:(0)]1¢(6)),

Computing V,, log Z;(#) using Equation (6.10), and Equation (6.11)
to update ¢ by SSEP. Using Equation (6.34), Equation (6.39), and
Equation (6.40), ¢ is updated by EP-ADMM.

(e) Compute the new approximate term:

mew _ qnew(g)
7 (0) = Z; 0

4. Evaluate the approximation to the model evidence: p(D)

12

/ [T:(6) 6
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SSEP

Figure 6.1: A complex posterior in the  Figure 6.2: A complex posterior in the
clutter problem produced by EP with  clutter problem produced by Stochastic
ADMM and EP compared with the ex-  search EP with Monte Carlo integration
act posterior. compared with EP.

6.4.4 Result of clutter problem

The strength of stochastic search expectation propagation over expectation propa-
gation is the use of stochastic approximation within EP. The learning rate (Ir) in
Equation (6.12) determines how stable the stochastic search expectation propaga-
tion algorithm is, unlike expectation propagation which fails at the refining step.
Learning rate controls the erratic nature of the expectation propagation algorithm,
and this seems to be a viable improvement over EP. Moreover, it forces the variance
not to reduce to negative value which often leads to EP’s stability issue. EP was
compared to four algorithms for approximate inference in Minka (2001) such as the
Laplace’s method, variational Bayes, Importance sampling where the prior is used as
the importance sampling, and Gibbs sampling by introducing the hidden variables
that determines if a data point is clutter or not. According to Minka (2001), EP
competed well with other deterministic algorithms by approximating the posterior
with a Gaussian. However, their performance improved substantially with more data
i.e. the posterior is more Gaussian with more data. Figure (6.1) shows where the true
posterior has three different modes (Black line). It can be seen that the EP-ADMM
(Red line) captures at least two modes while EP captures one of the modes. This
is not surprising as the EP has been termed as a unimodal algorithm. Figure (6.2)

shows that the Stochastic search expectation propagation competes so well with EP.
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Figure 6.3: Graph networks connecting priors and their hyper-priors

Stochastic Search Expectation Propagation (SSEP) is a stochastic version of the EP
algorithm and it can be seen that SSEP approximates EP at least properly well. We
emphasize that EP-ADMM, and SSEP are all EP algorithms so the goal is not to
find the most accurate algorithm but the generality and stability of the EP algorithm

without a trade-off of the accuracy power of EP algorithm.

6.5 Model formation for Hierarchical Bayesian Model

6.5.1 Bayesian Formulation

We describe a Bayesian model for the data based on an inverse problem. Given data
D = {X,, Y.}, made up of D—dimensional vector &, € R and corresponding
target variables ), € RP. In the context of inverse problems, we only have access to
a noisy version ) of the exact data X. We assume that ) is obtained as Y = GX +&,
where the ¢ € RN*P represents the noise in the data. Figure 6.3 shows graphical
representation of the Bayesian hierarchical model which is mathematically represented
as follows;

DX A TY) = pYV|GX, \)p(X|7)p(A)p(7) | (6.41)

[ [p1G2 (X P)p(\)p(r)dXdNdr

Equation 6.41 has a large size of the integration which grows with the size of the
reconstructed image X'. The standalone or independent variable is directly connected

to both its mean X and variance A\. The priors are disconnected from each other but
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directly connected to their respective hyper-priors. We consider a linear equation
F(X) =D, (6.42)

where the map F : RN*P — RNXP ‘matrices X € RN*P and Y € RN*P refer to data

formation mechanism, unknown parameter and the given data respectively.

6.5.2 EP via Monte Carlo integration called SSEP

In the context of high dimensional space, the proposed algorithm is applicable when
the marginal likelihood involves mixture of family of distributions, for example Gaus-
sian family of distributions and exponential distribution as we will encounter later.
Splitting expectation propagation is an inference method that modifies expectation
propagation method by looking into the intractable normalizing integral that makes
the whole procedure unattainable at least for complex or hierarchical Bayesian model.
Expectation propagation is vastly known for its fast and accurate properties but only
in a less complex models. However, when the likelihood term and prior distribu-
tion are of different distributions from the exponential family, EP algorithm becomes
unachievable. The splitting expectation propagation follows the EP setup but only
differs by using different update technique. The update rule uses an idea proposed

by John et al. (2011) for stochastic approach.

Let Y be an N x D matrix and X be an N x D matrix also. The likelihood for the
model and the noise variance A, with data D = (X)) is then

p(VIGX,A) HH/\/ (Vi

GXij, A), (6.43)

Also, we specify a Gaussian prior distribution for each entry L£X which is used as
a matrix with zero mean and 72 as its variance. The Gaussian prior for LX is as

follows;

p(LX|r) = [ ITIN (£x5)0,7), (6.44)

The prior distributions for A and 7 are chosen to be an exponential distributions, i.e.,

p(7) = exp(7|a,) and also the noise variance to be p(\) = exp(A|a,). The posterior
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distribution for the parameters X', A\, 7 can then be obtained by

(XA (V) = PG, Vp(LX|T)p(Mp(7) (6.45)

p(Y)

where A\, 7 are unknown variances and G is a known matrix, p())) is the normalizing

factor and it will be denoted as Z throughout this work and in particular

7z = / / pVIGX, Np(LX | )p(N)p(r)dX dAdr, (6.46)

where X is N/ x D dimension and ) is N x D dimension. Next, we choose an ap-
proximating families. Here, the approximate distributions are different distributions

of the exponential family. For instance,

q(X, A7) = [ﬁﬁ/\/(%j

m; ;, vxi’j)] exp(A|ay) exp(T]a,), (6.47)
i—1j=1

X ~ N(mz; ;,vx; i), A~ exp(ay) and 7 ~ exp(a,). The approximation parameters
mx; ;,v%; ;, 0. and ay are determined by applying a stochastic search expectation
propagation on the posterior in Equation (6.45). Finally, we sequence through and
incorporate the terms ¢; into the approximate posterior in Equation (6.47). At each

step, we move from an old ¢_;(X, A\, 7) to a new ¢(X,\, 7).

The update rule is given in Equation (6.48) below;

Oé:_ww N gy + Va_y; Ca_i]., (648)

Where the mean % Z,le 7% is denoted as Ca_,; and variance as v, _,;-

The update rule for A is given in Equation (6.49) below;

1 K
Ay mad; + Vor == > AR (6.49)
“i K
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Taking the derivative of the normalizing factor with respect to w concerning X as

follows;

J(LXij,7)
V. logZ = Z/”TW%( )V log gi (X, T)dX,ydr,  (6.50)

At this juncture, we proceed with the use of Monte Carlo Integration
z z ; ) z 1 ) )

— = Z J DN log g (X, T Z j J (6.51)
n=1 1 J 1 o ) z Z NE )

when taking A into consideration then we fix 7 and vice versa. So we update the

parameter by taking the gradient step

01
Wt =w +lrx — (6.52)

do’

One of the peculiarities of EP is the ability to minimize Kullback-Leibler divergence
between the tilted posterior and the approximate posterior. The full derivatives are

provided in the Appendix (F).

6.5.3 EP-ADMM in High dimensional space

EP becomes so vulnerable to numerical instability as discussed in the introduction.
We introduce the Alternating direction method of multiplier (ADMM) algorithm to

update the approximate posterior parameters.

minimize  KL(p(x;;]q(x)q;)) (6.53)

subject to : m;; > a;v;; > b
where a and b are constants. Then updating according to Minka (2001) is as follows;
Mg = Vi, log Zy +a+ p(m_i; — a) (6.54)

and
Ve = Vy_,; log Zy + B+ p(v_ij — b) (6.55)



CHAPTER 6. VARIATIONAL BAYESIAN IMAGE RECONSTRUCTION 170

where
q(x) = N(X;mq,v,) (6.56)
then the tilted distribution is

tij(w)q-i;(x)

/ tij(w)q-ij(x)dr;;
Now the normalizing factor is
Ly = / N Vijs GXig, N (Xijs meij, v-ij)d (6.58)
Tij

The update rule for the parameters m, and v, of ¢(X) according to Minka (2001)

with a method of multipliers are

new Yij — gMm—ij
—m_y; i P — 6.59
m} m_i; +v ]Uiij92+)\g+a+p(m a) ( )
v—ij/\
new __ P — b 6.60
Q" = aF b p(mi —a) and = B () —b) (661)

for full derivatives, Appendix (F) provides details.

6.5.4 EP-MCMC in High Dimensional Space

The EP-MCMC method provides an approach when the model is complex or the num-
ber of parameters is large and deterministic gradient-based techniques are infeasible
and most importantly when the posteriors are not Gaussian. The Kullback-Leibler
divergence between the tilted posterior and the approximated posterior can be ad-
dressed using the MCMC technique. In brief, the transitions in the Markov chain are
designed so that an equilibrium distribution exists and is equal to the target distribu-
tion (tilted posterior). According to EP’s strategy of moment matching, this is also
possible but instead we update the moments of the approximated posterior with the
moment of the tilted posterior from the Markov chain. We update the approximate

term and compute the new cavity distribution from the new approximated posterior
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and thereafter compute the new tilted posterior. With this cycle in mind, the ad-
vantage of EP-MCMC over the MCMC is that at each iteration in EP-MCMC the
tilted posterior is updated with new cavity distribution thereby generating samples
that are independent at each step of the algorithm. Unlike EP-MCMC, the major
problem of MCMC is the dependence between samples generated at different itera-
tions. This is due to a static target posterior. The EP setup for the parameters 7

and A is approached via Markov Chain Monte Carlo method.

Pij (1) o< tij(T)q-ij(T) and  Pij(A) o< ti;(A)g—i () (6.62)
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Algorithm 7 The General EP-MCMC Algorithm

Set an initial value for 7 and A\

1. Initialize all of the approximating factors #;(7) and #;(\).

2. Compute the initial approximation ¢(7) and ¢(A\) from the product of the
approximating factors:
Hfi Hfi

q(1) = /l_ifsz and  ¢()\) = /l_ifzd)\

3. Until all #; converge:

(a) Choose a t; to refine

(b) Remove #; from the approximation ¢(7) and ¢()\) by division:
x

q_i(T)mg((:)) and  q_;(\) ql((i))

(c) Compute the tilted distribution p; from ¢_; and the exact factor ¢;

!

~+~

i. Generate ¢, and €, from a Gaussian distribution
ii. Generate a proposed new value 7* = 7+ ¢, and \* = X\ 4 €,

iii. Evaluate (1)
(T
=0 and
@ 7(T]X) and. o

()
()

iv. Generate u, and uy from a uniform distribution U(0, 1)

v. If a; > u, and ) > uy then accept the proposals 7* and A* and
set 7=7"and A = \*

(d) Update the approximated posterior from the inference of tilted poste-
rior, this is similar to a moment matching in EP. ¢"*(7) and ¢"**(\)

(e) Compute the new approximate term:

N qnew(,r) ~
(1) o and () o
SR W

4. Evaluate the approximation to the model evidence:

p(X) & /H@(T) dr and  p(Y) = /Hﬂ-()\) dA (6.63)
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6.6 Implementation details

After incorporating the factors in Equation (6.57) for the first time, we constrained
only mean and variance parameters of approximate posterior g of X" for the purpose of
this work using augmented direction method of multipliers. Because of the structure
of the data presented in Figure (6.4) which is sparse, EP often breaks down when
the algorithm produces variance parameter that is negative after incorporating one
likelihood factor, especially at the update step of approximate term which involves
division. A similar operation was reported in Minka (2001) when negative variances
arise in Gaussian approximation factors. The inner loop of EP-ADMM takes about
7 minutes to run. We first present the results from the simulation study followed by
the real data.

To effectively and successively apply EP to hierarchical models for the reconstruction
of image from gamma camera, we introduced two strategies such as ADMM and
stochastic search method. Stochastic search method is used where direct updates
become impossible due to intractability of the normalizing factor i.e. often when the
exact term and the cavity distribution are different, this was encountered with the
updates of 7 and A\. The hyper-priors for A and 7 are chosen to be an exponential
distributions i.e., p(7) = exp(7|a?) and (A|aY), with shape o = 0.001 and a? = 0.001.
The approximation parameters m,, v, are determined by EP-ADMM while «, and
a, are determined by applying MCMC method. We initialized m, = 0 and v, = 7.

6.6.1 Monitoring Convergence of Splitting EP

To monitor convergence of the embedded Metropolis Hastings in EP, we run EP-
ADMM m = 10 replications and n = 1000 to compute the Brook-Gelman statistic;
Brooks & Gelman (1998) which compare the between-chain variance and within-chain
variance. However, EP is generally known to be deterministic which is still preserved
in EP-ADMM for the prior on X but the priors on A and 7 are randomly tuned. The
reconstruction images presented are mean of the approximate posterior m;;. To know
if a convergence has been reached, Gelman & Rubin (1992a) suggested comparing m
inferences computed from the m chains to the inferences computed by mixing together

the mn draws from all the sequences.
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To compute the between-chain and within-chain variances, let s;; where j =1,...,m
and t = 1,...,n be the tth iterations of s in sequence j, the between-chain variance
B/n and within-chain variance are given by
1 & _ 9
B/n=—-> (5, —5.) (6.64)

m—1

and

W= ¥§Ii(sﬁ - 5;)° (6.65)

m(n — 1)j:1t:1
We also computed the potential scale reduction factor PSRF which is the variance of

the pooled and within-chain inferences

_v

2

R

R will be estimated by R because its denominator is unknown

R:W_ — (6.66)
where the pooled variance is given by
V =62+ B/(mn) (6.67)

and the estimated variance of the o2 given by the weighted average of B and W

1 B
52 = <”n>W +- (6.68)

Equation (6.68) is the unbiased estimate of the true variance ¢2. And V accounts for
the sampling variability of the estimator which yields a pooled posterior variance esti-
mate given in Equation (6.68). The PSRF is expected to be close to 1 for convergence
to be guaranteed and each of the m sets of n simulated observations is close to the
target distribution, however large value of R indicates no convergence or divergence
and further simulations can be taken into consideration or the proposal distribution

should be critically looked into.
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Figure 6.4: (a) True data: X, (b) the mean: GX and (c) Noisy data:)

6.7 An Application of SSEP on image

The synthetic data of a cylindrical image produced by a gamma camera is presented
in Figure (6.4). The true image to be reconstructed is presented in Figure (6.4c)
mixed with a noise. We evaluate SSEP in inverse problem with hierarchical Bayesian
models, with data of cylindrical image from gamma camera. In SSEP, we retain the
originality of the EP. However, we improve on the intractability of the normalizing
factor by adopting the idea of John et al. (2011). The simulation was performed in

[R (2019)]. The true parameters are the following; the precision is 100 and the true

standard deviation is 0.1.

6.7.1 Reconstruction Results of SSEP and MCMC

We hereby present the reconstruction results of the SSEP and MCMC. Figure (6.5)
shows the final output of SSEP after 1000 iterations while Figure (6.6) shows the out-
come of the MCMC. The reconstruction result of SSEP outperforms that of MCMC
in terms of sharpness of the image. Compared to the true image in Figure (6.4a), we
observe that the posterior of X is well approximated by the SSEP method. In terms
of the convergent time, i.e. time for both methods to reach convergence, SSEP is
faster than MCMC. Unlike MCMC that needs about 500 chains as a burn-in period,
SSEP does not require any thin-in or burn-in period. We observed a clear pattern in
the residual plot shown in Figure (6.6b). This non-randomness may be due to the
choice of the starting value of hyperparameters. The estimated precision for both
SSEP and MCMC are provided in Figure (6.7) and Figure (6.6(c)) respectively. It
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Figure 6.6: (a): The reconstruction im-
age of the cylindrical image produced by
MCMC.(b): relative error (c): The esti-
mates of precision converge at about 85,
Figure 6.5: The reconstruction of the (d): The estimates of standard deviation
cylindrical image produced by SSEP converges at 0.085.
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Figure 6.7: The precision is calculated Figure 6.8: The variance output from the
from the plot as 772 = 100. Since the SSEP is 0.01 then the estimated standard
variance is 72 = 0.01 deviation of SSEP is 0.1.
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is not surprising to observe that SSEP produces the exact precision parameter value
because of the high accuracy in the approximation of X. Similarly, the estimate of
variance parameter value are provided in Figure (6.8) and Figure (6.6(d)) for SSEP
and MCMC respectively. Table (6.1) shows the comparison of the estimate of preci-
sion and variance parameter values for SSEP and MCMC with the true parameters.
We observe that SSEP provides a closer estimate of both precision and variance to

the true parameters.
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Table 6.1: The Accuracy of the Standard deviation and precision produced
by SSEP and MCMC for prior 7 and A compared to the True values provided
Parameter True-Value SSEP MCMC
72 100 100 85
A 0.1 0.1 0.085

6.8 An Application of Splitting EP on Animal Im-

age Reconstruction

The full description of the study on the y-eye system evaluated in a proof-of-concept
animal study using normal Webster Swiss Albino mice with average weights of 25¢g can
be found in Maria et al. (2016). The author conducted the study on three different
clinical radio-pharmaceuticals which was radio-labeled with Tc-99m and injected the
mice via their tail vein. The first mouse presented in Figure (6.9a) was injected
with 100p1/7.5 MBq [*™T'c] MDP, which is a suitable agent for bone imaging and
static images were obtained at 1h post-injection (pi), 2h pi, 3h pi, and 4h pi. The
second mouse was injected by 100u1/7.5 MBq [*™Tc] DMSA, which is a tracer for
imaging the anatomical structure and functional process of the kidneys. The author
performed dynamic imaging for the first hour after injection and then static images
for 10 min were acquired every 1h up to 24h pi. The image presented in Figure (6.9b)
is a 1-h dynamic study of a mouse injected with 100ul of [*Tc] DMSA radio-tracer.
Then, static images were acquired at different time intervals. Figure (6.9¢) shows a
third mouse injected with 100u1/5.6 MBq [?*™7¢] MIBI for heart perfusion. Dynamic

imaging was performed for 2h pi and 10 min static images were obtained up to 5 h

pi.



CHAPTER 6. VARIATIONAL BAYESIAN IMAGE RECONSTRUCTION 178

o | &

Figure 6.9: (a): Mouse injected with [*"T'c]M DP at 4 h pi (15-min) acquisition time. (b):
A mouse injected with %™T'c DMSA at 1A (10-min scan), 3 h (10-min scan), 5 h (10-min
scan), 6h (10-min scan), and 24 h pi (30-min scan), (¢): A static image of the mouse injected
with the [?™Tc] MIBI at different intervals of time.

6.8.1 Parameter Setup for Splitting EP

The EP-ADMM algorithm was initialized with the following parameters; 7 = A = 0.01
as a starting point for Metropolis Hasting algorithm embedded in EP to solve the
intractability of the normalizing factor. We fixed the hyper-priors to a;; = 2, dﬁj =1
for the approximate term distribution and «;; = oz;-\j = 10 for the approximate poste-
rior. According to the update of EP, we computed the cavity distribution parameters
a’,;; and at ;; Just once to initialize the target distribution p(7) and p()). The outer
loop of EP-ADMM consists of the EP-MCMC, i.e. tilted posteriors of 7 and \ are
hereby assumed to be intractable and thereby approximated using MCMC technique.
We note that EP-MCMC has some advantages over ordinary MCMC in terms of
speed to convergence, and accuracy. Also, we observed that due to different values of
cavity distribution computed at different iterations of the algorithm, EP-MCMC does
not need either burn-in period or thinning to achieve stationarity. To illustrate the
accuracy of EP-ADMM for the image reconstruction and EP-MCMC for parameter
recovery, we present also the results by a standard Metropolis Hasting MCMC with a
sample of 1000 and burn-in period of 500. The random walk stepsize is chosen so that
the acceptance rate is close to 0.234, which is widely known to be optimal; [Gelman

et al. (1996)]. It is well known that the convergence of MCMC is very crucial.
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6.8.2 Reconstruction result for Mibi

First, we present the reconstruction result for the mouse injected with 10041/5.6
MBq [?9"T¢] MIBI for heart perfusion. The estimate based on the Gaussian prior
is shown in Figure (6.10). It can be seen that a well reconstruction is obtained
with a substantive reduction in the noise. The result produced from Markov chain
Monte Carlo is presented in Figure (6.11(a)). The reconstructions produced by both
algorithms have a clear distinctions. First off, the reconstruction by EP-ADMM has
a white background and smooth edges while the reconstruction produced by MCMC
has a gray background and rough edges around the image reconstructed. This is a
very important distinction because expectation propagation is well known for its fast
computational speed. In contrast, MCMC is known for its slow convergence and it
requires more computational time to reach a stationary distribution. Figure (6.10(b))
shows the error comparing the estimates with the data ). Comparing the MCMC
results with the reconstruction produced in EP-MCMC, the parameter estimates of
o, in MCMC is 160 while 7 in EP-MCMC is about 158.48, similarly the parameter
estimates of o, is about 0.9 while that of EP-MCMC is 0.028.

The residual error shown in Figure (6.10(b)) comparing the estimates with the data,

shows a foggy pattern. It is possible to produce similar random residual as shown in
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Figure 6.12: The Autocorrelation plot  Figure 6.13: For the 7, the plot shows a
of the mouse injected with Mibi reagent  strong dependence of chains at first four
for sigma; the EP-MCMC algorithm was  replications but at the fifth and ninth
run 10 time each of length 1000. The  there is no correlation and the last repli-
plot shows independence of chains at each ~ cation shows a decline in correlation of
replication. the chains

Figure 6.11(b&c) by adjusting the value of oy and «, in the hyperparameter A and
T respectively. This may be achieved by tweaking the values of the hyperparameters
A and 7. However, given our primary aim to produce a constant reconstruction,
our focus is on the appropriate values of hyperparameters that produce smoother
reconstruction.

Table 6.2: The mean estimates of the ten EP-MCMC chains for priors 7 and A
of Mibi data

parameter Posterior-Mean R v w B/n 0%
T 158.48 1.06  173.58 98.53 68.32  166.75
A 0.028 1.00 2.98¢7% 2.49¢7% 2.48c7% 2.73¢7%

These parameter estimates are very significant in producing the clearer and smooth
image. Given our primary aim to produce a clear and smoother image, which means
larger 7 in EP-MCMC and o, in MCMC would be preferred and lower values of o, in
MCMC and A in EP-MCMC would be also be preferred. The autocorrelations of the
estimates produced by MCMC are nested in their respective plot and it can be seen
that the autocorrelations have been controlled by the well set-up of MCMC such as
burn-in of 500 samples and thin-in of 1-of-10 samples. However, there seems to be
a high correlation in Figure (6.11(e)) which might be reduced over time with large
iteration. The computed potential scale reduction factors R for 7 is 1.06, with upper
C.Ito be 1.12 and for A is 1 with upper C.I to be 1 as shown in Table (6.2). Here, the

potential scale reduction factor for A is exactly 1 which indicates strong convergence
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Figure 6.14: Tterative PSRF Plot for A in
Mibi image data (from m = 10 parallel
sequence and n = 1000). The conver-
gence starts at about 300 iterations till
the end of the iteration.
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Figure 6.15: Iterative PSRF Plot for 7 in
Mibi image data (from m = 10 parallel
sequence and n = 1000). The conver-
gence starts at About 800 iteration till
the end of the iteration.
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across the 10 runs. According to Gelman & Rubin (1992a), large R can be interpreted
as a need for more simulations to further reduce the estimate of the variance 62 or to
increase the W. The closeness to 1 indicates that each m sets of n simulated samples
is close to the target distribution. However, potential scale reduction factor for 7 is
a bit more than one which is in tandem with further plots below. The simulation
result agrees with the result from MCMC. Figure (6.12) shows the correlation between
the chains of A for each run. It can be seen that there is no autocorrection in the
chains for each of the runs, this indicates that there is a convergence at every run
which also contributes to the potential scale reduction factor of 1. Similarly, Figure
(6.13) shows an autocorrelation plot of 7 for the 10 runs. There is a high correlation
among the chain of the first four runs, but at the fifth and ninth runs there is sharp
reduction in the correlation while the tenth run shows a continuous decline in the
correlation. Figure (6.16) and Figure (6.17) show the density of the marginal posterior
distributions for both parameter A\ and 7 respectively. In each plot, the density
summarizes the posterior sample. The thick horizontal bar at the bottom shows the
posterior 95% credible interval and the maximum value is the posterior mean. The
posterior estimate for A is A = 0.028, with the credible interval of (0.0275,0.0285).
The posterior estimate for 7 is 7 = 158.48 with the credible interval of (150, 170).
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Figure 6.17: Marginal posterior distribu-
Figure 6.16: Marginal posterior distribu-  tion of the parameter 7 for Mibi data.
tion of the parameter \ for Mibi data. The tick horizontal bar signifies the pos-
The tick horizontal bar signifies the pos-  terior 95% credible interval and the max-
terior 95% credible interval and the maxi-  imum value at about 160 is the posterior
mum value at 0.028 is the posterior mean.  mean.

6.8.3 Reconstruction result for Mouse Data

Now, the reconstruction result for the mouse injected with 100u1/7.5 MBq [*™T¢]
MDP, to X-ray the bone imaging is presented in Figure (6.18) and Figure (6.19) for
splitting EP and MCMC respectively. Figure (6.18(a)) shows the estimate of the true
image reconstructed from the noise by EP-ADMM. it can be seen that the image has
a clear background with slightly rough edges on the image. The residual error shown
in Figure (6.18(b)) comparing the estimates with the data, shows no randomness.
Similar comment can be made about the residual shown in Figure 6.19(c&d). It is
possible to reduce the patterns in the residual by adjusting the value of « in the
hyperparameter A. This may lead to introducing another noise into the posterior
mean estimate. Given that our primary aim is to produce a constant reconstruction,
the focus is on the appropriate values of hyperparameter. Figure (6.18(c)) and Figure
(6.18(d)) show the estimates of the parameter which converges to around 165.44
and 0.019 produced by EP-MCMC. Figure (6.19) on the other hand, shows a result
produced by MCMC which is seen to have slightly similar results with EP-ADMM
with a difference of blurry background. This might be as a result of long chain needed
to reach convergence. Also, in Figure (6.19(e)), it can be seen that the samples are

highly correlated even at 1500 iteration.
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To reduce the correlation, the number of n samples to thin might be increased that is,
the number of samples to be discarded for each kept sample. Figure (6.18(c)) shows
the trace plot for the parameter 7. It can be seen that the acceptance rate is quite
low, this might be due to the choice of proposal distribution. Also, in Figure (6.19(e))
the o, chains produced by MCMC have high correlation which doesn’t show any sign
of reduction. On the contrary, the observations o, of MCMC exhibit independence
in the chains. However, all the parameters from EP-MCMC and MCMC converge to
a very similar value with slight differences. We further establish the convergence of

the 7 and ) for EP-MCMC.

Table 6.3: The mean estimate of the ten EP-MCMC chains for prior 7 and A of mouse data

parameter Posterior-Mean R V w B/n o3
T 165.44 1.02 56.84 56.58  0.00031 56.83
A 0.019 1.00 1.21e7%® 1.21e7% 1.14e7'! 1.21¢7%

Table (6.3) shows some statistical inference to establish the convergence properties of
the EP-MCMC parameters. The potential scale reduction faction of 7 is 1.02 which

is still within the acceptable range of 1.
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Figure 6.20: The Autocorrelation plot of
the mouse injected with Mdp reagent; the
EP-MCMC algorithm was run 10 time
each of length 1000. The plot shows in-
dependence of chains at each replication.
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Figure 6.22: Iterative PSRF Plot for A in
Mouse image data (from m = 10 parallel
sequence and n = 1000). About 800 iter-
ations, the convergence starts till the end
of the iteration.
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tion in dependence of chains at first three
replications but at the fifth and ninth
there is no correlation and the last repli-
cation shows a decline in correlation.
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Figure 6.23: Iterative PSRF Plot for 7 in
Mouse image data (from m = 10 parallel
sequence and n = 1000). About 600 iter-
ations, the convergence starts till the end
of the iteration

184

This can be interpreted as the chain represents the target distribution of the parameter
7. Also, the PSRF for A is exactly 1.

The within-chain, between-chain variances, and pooled variance for 7 are W = 56.58,
B/n=3.1x10"% and V = 56.84 respectively. Similarly, the within-chain, between-
chain variances, and pooled variance W = 1.21 x 1078, B/n = 1.14 x 107!* and
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Figure 6.25: Marginal posterior distribu-
Figure 6.24: Marginal posterior distribu-  tion of the parameter T for Mouse data.
tion of the parameter A for Mouse data.  The tick horizontal bar signifies the pos-
The tick horizontal bar signifies the pos-  terior 95% credible interval and the max-
terior 95% credible interval and the maxi-  imum value at about 166 is the posterior
mum value at 0.019 is the posterior mean.  mean.

V =121x10"8 respectively. It can be seen that according to the interpretation by
Gelman & Rubin (1992a), the equality of pooled variance V and W for both parame-
ters indicates the existence of convergence. Figure (6.22) gives a visual interpretation
of the values presented above in Table (6.3). The shrinking factor for A in Figure
(6.23) was above 1 at the initial stage of the iteration, but on getting to around
800 iterations the equality between the between-chain and within-chain becomes so
evident. This indicates that 1000 iterations is sufficient to provide convergence for
parameter \. Likewise, the shrinking factor for the 7 at the first 100 iterations is 10
which means the chains still need a lot of iterations to bring reduction in the shrinking
factor. At about 600 iterations, the shrinking factor is on the acceptable line of 1
which according to the Table (6.3) is 1.02.

Figure 6.24 and Figure 6.25 show the density of the marginal posterior distributions
for both parameter A and 7 respectively. In each plot, the density summarizes the
posterior sample. The thick horizontal bar at the bottom shows the posterior 95%
credible interval and the maximum value is the posterior mean. The posterior estimate
for A is A = 0.019, with the credible interval of (0.01885,0.0198). The posterior
estimate for tau is 7 = 165.44 with the credible interval of (100, 250).



CHAPTER 6. VARIATIONAL BAYESIAN IMAGE RECONSTRUCTION

residual

(@)

!

1

1

1

1

20 40 60 80 100

!

1

1

1

1

1

1

0.175 0.177 0.179 0.181

I

from SEP, (b):

relative error (c):
mate 7 is 58.9, (d): estimate A is 0.179

esti-

[@]
-
: U,LL Ll |
o s:m %0 _ ﬁ

T
500

6.8.4 Reconstruction result for DMSA Data

186

Fi‘gurg 6.26: (a) dmsa_1h_mouse_results Figure 6.27: (a): MCMC Dmsa (b)&(c):
error & residual, (d)&(e): the estimate of
oz & o converges at 10 and 3.0

Now, moving to the reconstruction of the mouse injected with DMSA. The results

produced by splitting EP and MCMC are quite similar in Figure (6.26(a)), Figure
(6.26(b)), Figure (6.27(a)), and Figure (6.27(b)) respectively. Given that we require
clear and smooth image reconstruction, EP-ADMM produces a smooth image re-

construction with a clear and white background. In contrast, MCMC produces a

white and clear background with sharp surface coupled with slightly rough edges.

The residual error shown in Figure (6.26(b)) and Figure (6.27b) comparing the esti-

mates with the data, show similar pattern. Adjusting the value of a;, and «, in the

hyperparameters A and 7 respectively may produce random errors.

In Figure (6.26(d)), the mean estimate of the posterior for A across the 10 replication

is 0.179, which can be seen in the trace-plot. Figure (6.26(c)) does not show any
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Figure 6.28: Iterative PSRF Plot for A in  Figure 6.29: Iterative PSRF Plot for 7 in
Mouse image data (from m = 10 parallel ~ Mouse image data (from m = 10 parallel
sequence and n = 1000). After about 800  sequence and n = 1000). About 200 it-
iteration convergence starts till the end of  eration convergence starts till the end of
the iteration. the iteration.

pattern of convergence even after 1000 iterations. This however may be due to the

choice of proposal distribution.

Table 6.4: The mean estimate of the ten EP-MCMC chains for prior 7 and A
of DMSA data

parameter Posterior-Mean R V w B/n o3
T 58.82  1.00 59.89 59.87 0.75 59.89
A 0.179 1.00 7.60e7°" 7.60e7°7 8.93¢71° 7.60e°7

Figure 6.30 and Figure 6.31 show the density of the marginal posterior distributions
for both parameter A and 7 respectively. In each plot, the density summarizes the
posterior sample. The thick horizontal bar at the bottom shows the posterior 95%
credible interval and the maximum value is the posterior mean. The posterior estimate
for A is A = 0.179, with the credible interval of (0.176,0.182). The posterior estimate
for tau is 7 = 58.82 with the credible interval of (1,102).
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Figure 6.31: Marginal posterior distribu-
Figure 6.30: Marginal posterior distribu-  tion of the parameter 7 for DMSA data.
tion of the parameter A for DMSA data.  The tick horizontal bar signifies the pos-

The tick horizontal bar signifies the pos-  terior 95% credible interval and the max-
terior 95% credible interval and the maxi-  imum value at about 59 is the posterior
mum value at 0.179 is the posterior mean.  mean.

6.8.5 Reconstruction result of four Circles Data

Finally, Figure (6.33(a)) presents the reconstruction result for the image of four cir-
cles. It can be seen that EP-ADMM produces a clear and sharp reconstruction image,
while MCMC produces a scaly and gray background as shown in Figure (6.34(a)).
Comparing the parameter estimates of MCMC with EP-MCMC, the parameter es-
timates of o, in MCMC is 160 while 7 in EP-MCMC is about 200, similarly the
parameter estimates of o, is about 0.5 while that of EP-MCMC is 0.023. The resid-
ual error shown in Figure (6.33(b)) comparing the estimates with the data, shows a
very clear pattern. Random residual as shown in Figure 6.11(b&c) can be produced
by using an appropriate values of the hyperparameters A and 7. However, given our
primary aim to produce a constant reconstruction, this remains a little concern and it
can be further checked in the future. The computed potential scale reduction factors
R for 7 is 1.1, upper C.Iis 1.12, and X is 1 with upper C.I as 1 are shown in Table
(6.5).
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Figure 6.33: (a): The reconstruction im-
age of four circles by EP-ADMM, (b):
relative error (c): estimates T converges
at 200 from EP-MCMC, (d): estimates A

converges at 0.023 from EP-MCMC

140
I

60 80 100
Lo

0012345
L

L L L)

Figure 6.34: (a): The reconstruction im-
age of four circles produced by MCMC

(b)&(c):

error & residual, (d):
timate of o, converges at 150, (e):
estimates of o, converges to about 0.5
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Here, the potential scale reduction factor for A is exactly 1 which indicates strong

convergence across the 10 runs. Figure (6.35) shows the correlation between the

chains of X for each run. It can be seen that there is no autocorrection in the chains

for each of the runs, this indicates that there is a convergence at every run which also

contributes to potential scale reduction factor of 1. Similarly, Figure (6.36) shows an

autocorrelation plot of 7 for the 10 runs at the initial stage of the runs. There is a

high correlation among the chain of the first four runs, but at the fifth and ninth runs
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Figure 6.35: The Autocorrelation plot of  Figure 6.36: The plot shows a strong de-
the image of four circles; the EP-MCMC  pendence of chains at first four replica-
algorithm was run 10 time each of length  tions but at the fifth and ninth there is no
1000. The plot shows independence of  correlation and the last replication shows
chains at each replication. a decline in correlation

Table 6.5: The mean estimate of the ten EP-MCMC chains for prior 7 and A

of Circles
parameter Posterior-Mean R v w B/n 0%
T 200 1.10 112.06 110 2.16 112.06
A 0.023 1.00 9.84e7% 979 1.4le7 ! 9.84e7%

there is sharp reduction in the correlation while the tenth run shows a continuous

decline in the correlation.
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Figure 6.38: Iterative PSRF Plot for 7
in image of four circles (from m = 10
parallel sequence and n = 1000). About
200 iteration convergence started and di-
verged in the middle but later converged
at about 800 till the end of the iteration.
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6.9 Summary

In this chapter we have presented an algorithm called Splitting Expectation Prop-
agation for approximating hierarchical Bayesian models. Our algorithm focused on
the problems of instability and intractability in EP especially at the refinement stage
where it often fails and its inability to handle hierarchical Bayesian models due to
problem of rigorous moment matching especially when the prior and likelihood family
distributions differ. The modification was employed from stochastic and deterministic

standpoints.

From the stochastic point, we adopted the technique by John et al. (2011) which
has led us to use Monte Carlo integration for the intractable integration of the EP.
This stochastic approach to EP is what we called Stochastic Search Expectation
Propagation (SSEP). SSEP was used for the image reconstruction and it competed
well with the MCMC in that SSEP produced well approximated parameter estimates.
The second approach from the deterministic viewpoint is the introduction of both
ADMM and MCMC to EP. This is what we referred to as EP-ADMM and EP-
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MCMC respectively. EP-ADMM was used to handle the image reconstruction and
EP-MCMC was used for estimating the hyperparameters. According to the results
presented EP-ADMM produced very clear, sharp and white background. While in
the same algorithm, EP-MCMC is the use of MCMC at the refinement stage of EP.
EP-MCMC achieved low variances when compared to the ordinary MCMC. Splitting
EP in these viewpoints is the umbrella over both SSEP, EP-ADMM, and EP-MCMC.
Splitting EP was able to solve the problems of intractability and inflexibility of EP
to hierarchical Bayesian models. Splitting EP can therefore be seen as an alternative

EP for image analysis.

The main limitation of SSEP is that it required large number of samples to fulfill
the central limit theorem due to the Monte Carlo integration. As a result of the
large samples, SSEP is slow to converge. Moreover, the limitation of the EP-MCMC
differs from the ordinary MCMC in that the inner loop EP-ADMM that contributes to
the EP-MCMC for the hyperparameter is efficiently fast. On the contrary, ordinary
MCMC for the prior X will be slow resulting in slow convergence in total. As a
future direction, we look forward to handling the hyperparameters with Variational
Inference. This method would make perfect sense as the approximate posterior from
the prior X will be used as the auxiliary posterior distribution factorized over both
the hyperparameters A and 7 which can be seen as a Coordinate Ascent Variational
Inference (CAVI) [Blei et al. (2018)].



Chapter 7

Conclusion

7.1 Discussion

In this thesis we have worked in the Bayesian learning context, inference, cluster-
ing, classification, and image recognition using the variants of variational approxi-
mations. We have described a general framework of variational Bayesian learning
and show how it can be applied to several models of interest in high-dimensional
data. We have approached variational Bayesian learning from both deterministic
and stochastic viewpoint. The family of variational approximations used in this the-
sis are Expectation-Maximization, Variational Bayes, and Expectation propagation

algorithms. Then we discussed their relationship.

7.2 Summary of contributions

The aim of this thesis has been to investigate the variational Bayesian methods
for approximating Bayesian inference and learning in a variety of statistical models
used in machine learning applications. We have used the term variational Bayesian
as a generic name for any optimization method used in this work. For example,
The family of variational Bayesian used in this thesis are Expectation-Maximization,
Variational Bayes, and Expectation propagation. We have approached Expectation-
Maximization and Expectation propagation from both deterministic and stochastic

standpoints. Chapter 1 provided a general background for machine learning and re-

193
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viewed some machine learning terms. We have showed that in situations where the
parameters of the model are unknown the correct Bayesian procedure is to integrate
over this uncertainty to form the marginal likelihood of the model. We explained that
the marginal likelihood is intractable to compute for almost all interesting models.
We discussed the supervised, semi-supervised, and unsupervised. Chapter 1 also re-
viewed some basics of probabilistic inference in the Bayesian context. We provided a
general introduction to image reconstruction and how it relates to inverse problems

which is tackled by Bayesian approach.

We reviewed the exact Bayesian inference which is extremely intractable in high-
dimensional space. We also reviewed a number of current methods for approximating
the marginal likelihood, Markov Chain Monte Carlo (MCMC), Monte Carlo method,
and Importance sampling. We note that Maximum a posterior estimate may not
be a representative of the posterior mass at all. Moreover we noted that the MAP
optimization does not produce the same prediction using the MAP estimates with
the same model and priors, but with different parameterizations. This means that
MAP is basis dependent. We also discussed a variety of sampling methods, and noted
that these are guaranteed to produce an exact answer for the marginal likelihood only
with an infinite number of samples, and impractically long sampling runs to obtain

accurate and reliable estimates.

In chapter 2, we presented the family of variational Bayesian for approximating the
marginal likelihood of the exact Bayesian model. We first treated the standard
expectation-maximization (EM) algorithm for learning parameters as a member of
the family of Variational Bayesian method. EM can be interpreted as a variational
optimization of a lower bound on the likelihood of the data. We note the similarity
between EM and VB through the minimization of the Kullback-Leibler divergence
but dissimilar only through a deterministic parameters. In this optimization, the E
step can be restricted to a particular family of distributions in which case the bound
is loose. The amount by which the bound is loose is exactly the Kullback-Leibler
divergence between the latent variable posterior and the exact posterior. We then
provided the general background of the variational Bayes (VB). We note that VB is
the generalized EM by treating the hidden parameters as a random variable which

leads to a hierarchical Bayesian model. We reviewed the mean-field variational family
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which is a factorized form of the VB. We discussed the appropriate algorithm and
when a statistician should choose between VB and MCMC. Finally, we gave a gen-
eral review of expectation propagation algorithm. We note the different between VB
and EP. We also treated EP as a member of Variational Bayesian by minimizing the

inclusive/reverse of Kullback-Leibler divergence.

In chapter 3, we investigated the application of cluster weighted models (CWMs) in
high-dimensional space. First, we gave a general background study of CWM. We dis-
cussed how CWM transitioned from finite mixture model (FMM) due to a problem
of assignment independence. We noted the limitations of CWM in high-dimensional
space. Moreover, we noted that eigenvalue decomposition is not enough for CWM
to handle high-dimensional data. We therefore discussed a powerful dimensionality
reduction technique called t-distributed stochastic neighbor embedding (tSNE). tSNE
is a nonlinear transformation of high-dimensional data to a low-dimensional represen-
tation which can preserve the hidden structure of the data. We noted also that the
clustering or classification power of CWM is hampered by the dimensionality of the
data. We integrated the tSNE with CWM in order to increase the classification power
of CWM in the high-dimensional space. We applied CWM-tSNE on both moderate-
dimensional data and high-dimensional data. In particular we analyzed and clustered
the Epileptic seizure recognition whose goal was to discover the hidden structure by
the information criteria. The plausible future research is to propose a multivariate

CWM where the response variables are multivariate Gaussian distribution.

In chapter 4, we proposed a new member of CWM appropriate for multiclass re-
sponse variable called Multinomial CWM (MCWM). MCWM combat the inability
of CWMs to handle categorical data and failure in the presence of high-dimensional
data. The proposed model allowed for the nonlinear dependency in the mixture
components using the multinomial logit regression or softmax regression. In addi-
tion MCWM considered multinomial distribution for the conditional distribution of
the response variable given covariates. We derived the identifiability conditions for
MCWM. First, we approached the method of parameter estimation using EM algo-
rithm from two viewpoints. We developed EM-IRLS for estimating the parameters of
MCWM. At the E step, we updated the complete log-likelihood while at the M step,

we adopted the Newton-Raphson algorithm to maximize the parameters. However,
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the limitation associated with EM-IRLS hindered the scalability of the algorithm to
high-dimensional space. To solve this problem, we developed the EM-SGD. EM-SGD
algorithm employed the Stochastic Gradient Descent (SGD) algorithm at the M step
to estimate the parameters. We analyzed both simulated and real data and compared
the results of the proposed model to other models. We evaluated the classification
power of MCMW using both confusion matrix and ARI and we compared to other
existing models such as Logistic regression, NTgrowth, C4, Classit models. According
to the result provided, We have concluded that MCWM was superior to other existing
models. Therefore MCWM can further be given a consideration for classifying multi-
class data. With the help of EM-SGD, we scaled MCWM to high-dimensional space
and classified handwriting image data. This is novel in the field of CWMs and the re-
sult was comparably accurate. To achieve high accuracy in machine learning models,
the hyperparameters must be tuned using different types of cross-validation meth-
ods. Feasible future direction will be to investigate different type of cross-validation

method on MCWM. Moreover, a regularization technique should be employed.

The limitation of MCWM stemed from the method of parameter estimation. For
example, EM-IRLS has a problem of matrix inversion. This has been tackled by
a stochastic gradient descent algorithm. Also, MCWM does not take into account
the problem of class imbalance in the data. Class imbalance is inevitable mostly
in the medical field possibly due to a loss of information or censored information.
Therefore, MCWM will tend to favor the class with large distribution and give a

misleading result. We looked more into this problem in the next chapter.

In chapter 5, we tackled the problem of class imbalance using zero-inflation models.
We proposed a model that addressed the presence of excess zeros in the data which
often cause erroneous result leading to wrong decision making. We developed a model
in the context of CWM and extended the Poisson CWMs (PCWM) by Ingrassia et al.
(2015) to account for zero-inflation in the data. The model is called zero-inflated Pois-
son CWM (ZIPCWM). ZIPCWM has many models as special cases such as Poisson
CWM [Ingrassia et al. (2015)], Generalized Zero-inflated Poisson regression mixture
model [Hwa et al. (2014)], Zero-inflated Poisson distribution [Lambert (1992)], and
Standard Poisson mixture model. We developed EM-IRLS due to the Poisson count

for the response variable. We also derived the identifiability conditions for parameter



CHAPTER 7. CONCLUSION 197

discovery. We further investigated the classification power on a count data whose
intrinsic structure or class was unknown. First, we discovered the hidden cluster of
the data. Afterward, we classified the observations according to the cluster discov-
ered. We compared the classification power of ZIPCWM to both PCWM and FZIP,
we discovered that FZIP performed the worst among the competing models. PCWM
performed averagely but hampered by the problem of label switching. ZIPCWM per-
formed the best as it took account of the extra zeros in the data and the covariates

distribution had an advantage over FZIP.

In chapter 6, we focused on different type of variational Bayesian approximation called
Expectation propagation (EP) algorithm [Minka (2001)]. EP instead minimizes the
Kullback-Leibler divergence between the tilted distribution and the approximate dis-
tribution. We investigated EP in high-dimensional context and noted that it is in-
feasible due to its memory inefficiency. We also noted that EP proved to be difficult
when both tilted distribution and approximate distribution are of different exponen-
tial family other than Gaussian distribution. Working with different distributions
other than Gaussian, the Kullback-Leibler to be minimized can either be addressed
by Gaussian quadrature which is an approximation of the definite integral of a func-
tion (KL divergence). We noted that this is however infeasible with multidimensional
finite integrals. We therefore approached EP from the stochastic perspective called
Stochastic search EP (SSEP). SSEP employed the idea of John et al. (2011). We
employed the Monte Carlo approximation and SGD to minimize the KL divergence
between the non-Gaussian tilted distribution and approximated distribution. The
result was comparably accurate with the result produced by MCMC. However, we
noted that there was a great impact of high-dimensional space on SSEP. This is due to
the large number of samples needed to achieve convergence. To combat this problem,
we proposed an unification of stochastic and deterministic of EP called Splitting EP
algorithm (SEP). SEP algorithm used an alternating direction method of multiplier
as a deterministic part which we called the EP-ADMM. EP-ADMM handled the im-
age reconstruction in the hierarchical Bayesian model. The stochastic version used
MCMC in EP called EP-MCMC which handled the parameters estimation. The im-

ages reconstructed were comparably sharper than the ones reconstructed by MCMC.
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Appendix A presents an ongoing work on the hybridization of VB and EP. We
discussed the hybridization of VB and EP with probabilistic Backpropagation for
Bayesian Neural Networks. Although the work is ongoing but the mathematical
derivations are presented in the Appendix A. We show here with an example that
EP can be approached from VB. The work generalizes the work done by Jose &
Ryan (2015) in a linear regression context. However, the new work is the binary

classification using Binary Logistic regression in VBEP.

To conclude, I hope that this thesis has provided an accessible and coherent account of
the widely applicable variational Bayesian approximation. We have derived a families
of Variational approximation for varieties of statistical models. We have addressed
two solid problems of CWMs in this thesis and the problem arising from the original
EP for image reconstruction. The hope is that the experimental findings and insights
documented in these chapters will stimulate and guide future research on variational

approximation.



Appendix A

VBEP Algorithms with
Probabilistic Backpropagation for

Bayesian Neural Networks

A.1 Introduction

We propose a novel approach for nonlinear Logistic regression using a two-layer neu-
ral network (NN) model structure with hierarchical priors on the network weights.
We present three variants of expectation propagation such as expectation propagation
expectation maximum (EP-EM) approach, Variational Bayes-Expectation Maximiza-
tion approach (VBEM), and Variational EP-EM approach for approximate integra-
tion over the posterior distribution of the weights, the hierarchical scale parameters
of the priors and zeta. Using a factorized posterior approximation we derive a com-
putationally efficient algorithm, whose complexity scales similarly to an ensemble of
independent sparse logistic models. The approach can be extended beyond standard
activation functions and NN model structures to form flexible nonlinear binary pre-
dictors from multiple sparse linear models. The effects of the hierarchical priors and
the predictive performance of the algorithm are assessed using both simulated and
real-world data. We consider a hierarchical Bayesian model with logistic regression

likelihood and a Gaussian prior distribution over the parameters called weights and
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hyperparameters. We work in the perspective of E step and M step for computing the
approximating posterior and updating the parameters using the computed posterior

respectively.

A.1.1 Main contribution

The goal of this work is to study the Expectation Propagation and Variational Infer-
ence methods from an intertwined viewpoints and a different divergence standpoint.
We make a new unification of EP and VB algorithms which makes EP less analyti-
cally rigorous for the hierarchical Bayesian framework. Variational Bayes EP (VBEP)
incorporates the propagation algorithm of EP at the VB updating stage. VBEP fo-
cuses on the core limitation of expectation propagation algorithm while generalizing
the Variational inference algorithm. The most vital part of the EP and VB algorithm
is the minimization of the Kullback-Leibler divergence. This new approach to both
EP and VB method is called the Variational Bayes Expectation Propagation (VBEP)
algorithm. VBEP has several advantages such as the generalization of the Variational
Inference algorithm by incorporating the refining strategy of EP into VB. Moreover,
the refinement of the prior through the data instead of fixed contribution of the prior
to the approximate posterior in VB would be expected to improve the accuracy of
VB although at the expense of the global update rule. Additionally, VBEP connect
a path or mediates between EP and VB algorithms. VBEP breaches the rigorous
analytical problems of EP by transiting from the VB algorithm with an augmenta-
tion. Additional, solving the intractable tilted posterior distribution of EP with a VB
approach. This leads to working in the perspective of hybridizing the EP and VB to
approximate hierarchical Bayesian models. We provide some theoretical framework
that establish the connecting linkage between EP and VB.

Furthermore, we investigate the sparse linear models into nonlinear regression fol-
lowing the strategy by Jylanki et al. (2014) which combines the sparsity favoring
priors with a two-layer regression models. This aims to solve the challenges faced
in constructing a reliable Gaussian EP approximation for the analytically intractable
likelihood resulting from the NN observation model by adopting the probabilistic
backpropagation method by Jose & Ryan (2015).
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Finally, we derive the VBEP for the hierarchical Bayesian model with the Logistic
regression as the likelihood and the Gaussian prior distribution. We work in the
context of deep neural networks. Working with Logistic regression by adopting the
approximate lower bound of the logistic function [Jaakkola & Jordan (2000)] extends
the work by Jose & Ryan (2015). However, this work computes the parameters of the
hyperprior distribution using the marginal likelihood. This leads us to another useful
algorithms such as VBEM, EP-EM and a new algorithm VEP-EM we would compare
with. conventionally, following the widely used approximation method in Expectation
Maximization algorithm, these algorithms compute the approximate posterior distri-
bution at the E- step and optimize the parameters of the hyperprior distribution at

the M-step. This is iterated until convergence.

A.1.2 The Heart of EP through VB

According to Minka (2005), EP minimizes the inclusive Kullback-Leibler divergence
KL(pl|q) that uses the matching-moment if only the two distributions are in the same
exponential family most importantly Gaussian family. However, many studies have
brought into limelight how rigorous and intractable EP could be when the tilted and
approximate distribution come from different family of distributions entirely. Zocter
& Heskes (2005) uses Gaussian Quadrature for the problem of mismatching moments
in EP with different family of distributions such as Beta distributions. Also, in
Chapter 6 we have used stochastic search, and MCMC algorithm to solve the problem
of mismatching moments between Gaussian and Exponential distributions. On the
contrary, VB minimizes the exclusive Kullback-Leibler divergence KL(¢||p). VB has
been used to handle many combinations of incongruous distributions by indirectly
maximizing the lower bound £(g) through optimizing with respect to the distribution
g. The difference between these two Kullback-Leibler divergences can be understood
by noting that there is a large positive contribution to the Kullback-Leibler divergence
KL(q||p) from the region of the latent space in which the p is near zero unless ¢ is
also close to zero. Thus minimizing this form of KL divergence leads to distributions
q that avoid the region in which p is small. Similar to this framework, Magnus et al.

(2009) hybridized VB and EP for Bayesian sparse factor analysis. A comparison study
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carried out by Kim & Wand (2016) on the accuracy power of the mean and variance
estimates produced by both VB and EP algorithms shows that the mean estimate
produced by VB tends to be more accurate than the mean estimate produced by EP
algorithm. On the contrary, the variance estimate produced by VB is underestimated
or less accurate than the variance estimate produced by EP algorithm. This also
confirms the study by Bishop (2006) that shows how well approximated to the mean
of the exact posterior distribution the mean of the approximate posterior produced

by VB but underestimates the variance estimate.

Here, we show that the Kullback-Leibler divergence KL(p||q) is less than or equal to
KL(g||p) augmented by any constant and local optimization to reflect the Leave-One-
Out (LOO) method in EP. i.e.

KL(p||lq) < KL(ql||p) + constant (A1)

The accuracy of the pure mean-field solution, treating the latent variables as fac-
torized variables by augmenting the exclusive KL divergence. By minimizing the
KL(p||q) of Equation (A.1l), the normalization constant Z following the matching
moments of Minka (2001), the Kullback-Leibler divergence between p and ¢™" can
then be obtained as a function of m, v, and the gradient of log Z with respect to these
quantities, namely

m" =m_; +v_;V,,log Z

2
VY = — v, Kvm log Z> — 2V, log Z] (A.2)

We present the VBEP for the Bayesian linear regression model example in Bishop
(2006). This example has been solved by the variational Bayes approach. The likeli-

hood function for w, and the prior over w are given by

p(tlw) = [N (t]w" ¢, B71) and p(wl|a) = N (w|0,a™}) (A.3)

=1
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where ¢; = ¢(x;). The prior over « is given thus
p(a) = Gam(a|ag, by) (A.4)

First by using EP algorithm, we approach EP from KL(p;||¢;) and KL(g;||p;). Here as
EP, we have the cavity distribution, approximate posterior, and the tilted posterior

as follows
q-i(w) = N(w|m_;,v_;), (W) = N (w|m,, v,), and p;(w) = N (w|i;, 9;)  (A.5)

we show that KL(p;||¢;) = KL(qi||p;). However, it is clear from the symmetric prop-
erty of Kullback-Leibler divergence that KL(p||q) # KL(¢||p). We proceed from the

exclusive KL divergence first according to the conventional variational Bayes.
Ing;(w) = E, lln qi(w)ti(w)] =F, [ln N (wim_s, v_ )N (t:|w”’ ¢, ﬁ_l)] (A.6)

We note here that the expectation with respect to g(«) is constant and it becomes
irrelevant which will be removed going forward. Now, the mean and the variance of

q(w) is as follows

-1

-1
My = (m_i + v_i@-tzﬂ) (1 + v_,-qﬁ%ﬂ) and vy, = v_; (1 + v_z¢T¢5> (A7)

Now from the direction of inclusive Kullback-Leibler divergence, first we compute the

normalizing constant
7z, — / N (wlm_s, v )Nt wE s, 8 dw = N (my, v,) (A.8)

where the mean m; and variance v, of t are as follows

~1
my = m_;¢; and v; = (6‘1 + v_lquQS) (A.9)



APPENDIX A. VBEP ALGORITHMS WITH PB FOR BNN 204

Computing V,, log Z; and V, log Z; and using Equation A.8 gives the following

-1

1
My = <m_i + v_i(ﬁitiﬁ) (1 + v_id)Tq’)B) and v, = v_; (1 + v_iqﬁT(]ﬁB) (A.10)

This establishes the equivalence between KL(p;||¢;) = KL(¢;|[p;) in a local approxi-

mation.

A.2 The Model

This section focuses on the multilayer perceptron NNs where the unknown function

value f; = f(x;) related to a d- dimensional input vector x; is modeled as
R K
f(xi) = ZW;{Lg(Wﬁzl,l), I=1,..L (A.11)
k=1

where g(z) is a nonlinear activation function, K the number of hidden units, and
the W = {W,}, is the collection or array of all the weights of the networks with
dimension of K x (K;_1+1) between the fully connected layers. We denote the output
of the layers by by vectors {z}*, where z, is the input layer. {z}75' represents
the output of the hidden layer and z; = o( ﬁ) is the output of the output layer. The
activation functions for each hidden layer are Rectified Linear Units (RELUs) i.e.,
a(z) = max(x,0), [Nair & Hinton (2010)]. In the next subsection, we explain the

likelihood function for the model.

A.2.1 Likelihood Definitions

Here, we illustrate the use of local variational methods for the Bayesian logistic re-
gression model. This focuses on the variational treatment based on the approach
of Jaakkola & Jordan (2000). The variational treatment leads to the Gaussian ap-
proximation like the Laplace method. However, compared to the Laplace method,
the greater flexibility of the variational approximation leads to improved accuracy.
Furthermore, the variational approach can be as optimizing a well defined objective

function given the rigorous bound on the model evidence.



APPENDIX A. VBEP ALGORITHMS WITH PB FOR BNN 205

A.2.2 Binary-Class Classification

Logistic regression has been treated from the standpoint of Monte Carlo sampling
techniques [Dybowski & Roberts (2005)]. The output of the last layer is transformed
using the sigmoid function for a binary output and softmax as a multiclass output.
The variational approximation based on the lower bound allows the likelihood function
for logistic regression, which is governed by the sigmoid or softmax to be approximated

by the exponential of a quadratic form.

We first note that the conditional distribution for y can be written as

plilaz, ©) = o(an)" (1 - o(ar)) "

—ay,
— e*yiaLlj_ﬁ = efyiaLo'<—a,L> (A12)

where ay, = ﬁ and the © is the collection of all the hyperparameters and f is from
the equation A.11. The variational lower bound on the logistic sigmoid function in

A.12 is given by
o(u) = a(¢) exp{(u — ¢)/2 = M) (u* = ¢*)} (A.13)

. Therefore, the likelihood function is written as

where A(¢) = i la(C) — %

p(yilar, ®) = e"Fo(—ar) > e"=a(C) exp{—(ar + ¢)/2 = AM()((ar)* = ¢*)} (A.14)

Moreover, the bound is applied to each of the terms in the likelihood function sepa-
rately, then there is a variational parameter (; associated to each training set (x;, ;).

Finally, the lower bound for the likelihood function will be denoted as

N
W(®,¢) = [ (G) exp {yiaL — (az +G;)/2 = MGi)(af, — Cf)} (A.15)
i=1
The likelihood used is the lower bound of the Sigmoid function for binary classifica-
tion which is presented in Equation A.15 and this makes the posterior analytically

intractable.



APPENDIX A. VBEP ALGORITHMS WITH PB FOR BNN 206

A.2.3 Prior Definitions

We use the sparsity-promoting priors p(wy;i|7;;) with hierarchical scale parameters
T];j} where the weight wy;; is the k:th row and j:th column of the Wy, T,;J} controls
the prior variance of all the weights wyj;. We place a Gaussian prior over the weights
as follows

P(west| o) = N (w0, 751) (A.16)

where the variance is 7',;7} in equation A.16. The grouping of the weights can be
chosen freely and also other weight prior distribution can be used in place of Gaussian
distribution. The approximate inference on the variance parameters 7, ' > 0 is
carried out using non-negative supported prior distribution to constrain the variance
to be non-negative. In doing so, the computationally most convenient alternative non-
negative supported prior distribution is to employ rectified Gaussian prior distribution

on the precision controlling parameter as follows;

2
erfe(—mg/\/v0)

where k =1,...,K, j=1,... K, 1+ 1and [ =1,..., L. Equation A.17 corresponds

p(Tij) = N (Tkjt|mo, vo) U (Thji) (A.17)

to a rectified-Gaussian prior for the associated layer prior precision 7, and U(.) is
a step function, mgy and vy are the location and scale parameter for the precision,
respectively. It is easy to see that the rectified Gaussian prior is conjugate to a
Gaussian likelihood and the posterior can be computed in the same manner as the
standard Gaussian distribution since the erfc(0) = 1, then we have constant of 2 in
Equation A.17.

However to solve the EP algorithm, the rectified Gaussian prior is only computation-
ally possible if the location parameter my is fixed to zero, making the erfc function
vanish. Also we note that the biases are already included in the setup of the weights

matrices.

A.2.4 The Posterior Distribution

Given the previously explained prior definitions and a set of N observations D =

{X,y}, where y = [y;,...,yn]? and the features are X = [xy,...,xy]?, the joint
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posterior distribution of the prior and hyperparameters is as follows;

K Ki—1+1 [

p(w, 7D, ¢,v) = H ’yz!fz,@ 1:[ 1:[1 HP wk;l|7'kgz)l_1_[1p(7'l|’7) (A.18)

where the v = {(,mg,v9} contains all the hyperparameters to be computed at the
E-step of the EM version of EP, VB, and VBEP algorithms, and Zgp is the ap-
proximation of the marginal likelihood Z which is the marginal likelihood of the

observations conditioned on ~ as follows

7= p(yX.¢.7) = [HyIX, w, ¢ pOV|mp(rly)dwdr — (A19)

A.3 Approximate Inference

In this section, we describe how approximate Bayesian inference on the unknown
model parameters w, 7, and ¢ can be done efficiently using the variants of EP. First,
in section A.3.1, we describe how the posterior approximation is formed using the
approximate term and in section A.5, we discuss the hybridization of the VB and EP

algorithm suitable for determining their parameters.

A.3.1 The Approximate Posterior

We form the analytically tractable approximation for the exact posterior distribu-
tion. We approximate all the likelihood and prior terms with unnormalized Gaussian
distribution where appropriate. The Gaussian distribution has become a common
use of approximating family for the weights of neural network, due to its matching
moments nature [Seeger (2008)]. However, we use the rectified Gaussian distribution
for the prior distribution over the precision of the weights of the neural networks.
This is important, as to place a nonzero constraint on the prior distribution. On
the contrary, one could consider other exponential family distribution such as the

gamma distribution for the weight precision parameter [Jose & Ryan (2015)]. We
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approximate the exact posterior distribution in Equation A.18 as follows

K Ki—1+1 [

N
p(w,T|D,¢,v) = H (vl fi ) 1:[ 1:[ Hp (Wit | Tij1) P(Tiji| Vi) (A.20)

N ~AK1K171+1L~ ~ ~
er1 12yt (P I T 11280t (wii)E (i) (A.21)
i—1 h=1 j=1 i=1

A.4 The Likelihood Term Approximations

The exact likelihood terms that depend on the weights w through f; according to the
Equation A.21

h(yilar, G) ~ Z,iti(ap|m, o) = Z, N (ap|mi, §;) (A.22)

where Zy,n = [t(ap|mi, %) day, is a scalar scaling parameter or normalizing constant.
Here, we have assumed that all the weights are incorporated in w for both the hidden
layer and the output layer. Note that the notation A is used for a normalized Gaus-
sian distribution. Notice that we are approximating the lower bound to the sigmoid
as the likelihood function that is the probability distribution which normalizes over
the binary targets y;, by an un-normalized Gaussian distribution over the latent vari-
ables ﬁ This is important because we are interested in how the likelihood behaves
as a function of the latent ﬁ On the contrary, this is somewhat different from the
regression setting which uses Gaussian distribution as the likelihood function and as
linear model for the output y; which makes it a Gaussian distribution. We compute

the posterior to investigate how the likelihood function behaves as a function of ﬁ

A.4.1 The prior Term Approximation

The prior terms of all the weights w;;; for ¢ = 1,..., K, 7 = 1,..,K;_; + 1 and
l =1,...,L are approximated conventional by Gaussian distribution We have used

particularly a factorized distribution, due to the structure of the prior distribution
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over the precision of the weights,
P(wiit| i) = 23 (wig) Ty (Tige) o< N (wieg iy, O5)N (i, Oyp) - (A.23)

where a factorized site approximation with location and scale parameters my;, and
Myj1s Uy, and Up; are associated with the network weights and precision respectively.
The approximation term for the 7. is also assumed to be the rectified Gaussian

distribution and any other exponential distribution could also be appropriate.

A.4.2 The Joint Posterior Approximate

The product of the independence local likelihood #; is

&

N

Q<f> = Zy,zN(ﬁ’mfvvf) = N(f’mfavf)HZy,z (A-24)

=1 i=1

The prior and hyperprior that need to be processed multiple times using the expec-

tation propagation are the factors in equation A.21 as follows

Kl Klfl"l‘]- L
qw,t) =TI 11 TIZ&N (wealmiy, vis )N (Tejolmi, i) (A.25)
k=1 j=1 I=1
In Equation A.25, we use the assumption of independence between the approximate

posterior distributions and use the method of factorized distribution as follows

q(w,T) = q(w)q(T) (A.26)

where the approximate posterior distribution for the network weights is given as

follows
K Ki—1+1 L

q(w) = H H HN(ijzlm?ﬂ,vi”ﬂ) (A.27)

k=1 j=1 I=1
Conceptually, one can think of the approximate posterior distribution for the hyper-

prior 7 in two ways, either by combining the approximate terms and the hyperprior
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distribution which gives the following

L
q(T) = HN<Tkjl ’ijla Ul:jl) (A.28)

Now, multiplying the parameters approximation of w and 7 together with the prior

in Equation A.27 and A.28 give the approximate posterior
qw) x N(M,,V,,) and ¢(7)x N(M,,V,)U(T) (A.29)
where using the Gaussian multiplication strategy gives
3 ) ) ~1
M,=V,V.'M, and V,= (%1 + V;1> (A.30)
where the marginal posterior for the precision 7y is given by
q(wrji) oc N(mygy, vyy) - and - q(7igr) oc N (my, o) U(7) (A.31)

where my;; and v}, are the mean and variance parameters for the approximate distri-
bution of the network weights q(wy;;) while mf;, and vj;, are the mean and variance
parameters for the approximate distribution of the precision ¢(74j). The mean vec-
tor M of the approximate posterior is the vector of mj; and the covariance of the

approximate posterior V; is diagonal with vg; for the approximate posterior.

A.5 Hybridization of VB and EP

The parameters of the local site approximations that define the approximate posterior
distribution are determined using the hybridization of VB and EP. In the following,
we give general description of the EP update for the likelihood and the weight prior

terms. Here, we consider a sequentially updated EP.
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A.5.1 EP Update For the Hyperprior Terms

As noted above in Equation A.23, each of the exact prior factors is approximated by

a corresponding approximation prior give by
tHwpjr, Tejt) = N (wign|0, 7). and E(7i0) = N (Tjal i, Opj0) (A.32)

First, we initialize all the {(74;) uniformly, that is, mj; = 0 and 0f; = co. EP
starts to incorporate all the exact prior factors t(wyji, 7j) into ¢ in K x (K1 +
1) x L times. Here, we are interested in the individual precision parameter for each
weights. This is relevant because it shows how accurate the weight estimates are at
the update for each unit of every layer. The only demerit of this approach is the
memory inefficiency. However, we don’t store each update in memory. The first time

t(wgji, Trj1) is incorporated into ¢, we update #(73;) and ¢ as follows:
My =0 and  Op; =vo, my; =0 and v, = (A.33)

where vy is the parameter of the rectified Gaussian hyperprior on 7. On subsequent
iterations, we refine #(73;;) by first removing the approximate factor from the ap-
proximate posterior of 7 to obtain the cavity distribution. This cavity distribution is
computed as the fraction of the ¢ and £. The cavity marginal distribution on 73 is

therefore
Gt (Tojt) = @(Trj0)E (i) ™ = N (Tl mT i v 40) (A.34)

where m7” ., and v7; are as follows:
(Uzkjl)_l = (UI:jl)_l - (171:]'1)_1

mDy = My + (@Zjl)ilvzkﬂ(m;jl — M) (A.35)

The cavity for the marginal distribution of wy;; is also

Gerji(wit) = q(wig)t(wig) ™" = N (Wi |m® 0, v (A.36)
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where m®, , and v, ; are as follows:
(Uq;ukjl>71 = (vi'}z)’l - (771?]'1)71

my = myy + (@%l)_lviukjl(m%l — M) (A.37)

A.5.2 Computing the Tilted for 7;;, and wyj

After incorporating all the prior factors, we compute the tilted posterior distribution
P(7ij1). The tilted distribution is formed by combining the cavity with the exact prior
term ¢(7y;;):

ﬁ(Tkjl) = Zququkjlt(Tkjl)p(Tkﬂ) = N(Tkjl’mzj'la ﬁl:ﬂ) (A.38)

where the normalizing factor Z,, is given as follows
Zy = /t(Tkﬂ)p(Tkﬂ)Q—kﬂdiﬂ

= [N Gial0, )N (g, ) U () d 7 (A.39)

We compute the log Z,, from the KL(¢||p) of VB instead of a direct computation of
Z by KL(p||q). We compute log Z,, from KL(q||p), with 0y = (wgj, T;1) as follows:

ﬁkjl(&cjl)

— KL(qgjil[Prj1) = /q’fﬂ(g’“ﬂ) log Qiji (k)

dbyj1 (A.40)

. N (O
= /Qkﬂ(@kﬂ) [bg( Il kﬂ)p(TZkﬂ)q Il kﬂ)) — log Qk:jl(gkzjl)] dBy;i (A.41)

By rearranging Equation A.41 we obtain

. toit (0 DTV 1i1 (B
—_ KL(Qk;alkﬂ) — /ijl(ekﬂ) log ( k‘]l( k‘]l);;(l:zi‘g:?) k]l( k‘]l)) dek]l _ log Zw (A42)
J J

Making the log Z,, the subject of the formula and rearranging we obtain

b (00T Va1t (Ors R
log Z,, = / Qrjt(Orji) log ( sl kﬂ)i(,l]gg:j) sl kﬂ)) dOrjr + KL(qrjul[Prjo) — (A-43)
J J
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where

teir (O N1 (0,
E(Tkﬂ) _ /qka(%l)log< kjl( kjl)p(Tkjl)q k]l( k]l)) d@ka (A.44)
Qrji(Ori0)

then using factorized method qkjl(ﬁkﬂ) = qkjl(wkjl, Tkjl) = qkﬂ(wkﬂ)qkﬂ(mﬂ)

log Z,, = L(0kj1) + KL(qkjil|Drit) (A.45)

A.5.3 The hyperprior parameters 7

Here, just like VB, we maximize the lower bound in equation A.45 and we take the
expectation with respect to the ¢(w,y;) using the following factorized method. Thus,
minimizing Kullback-Leibler divergence is equivalent to maximizing the lower bound,
we select all the exact distributions that depend on only 75 and obtain a general

expression for the optimal solution ¢(73;;) as follows

In ¢*(Twj1) = Ew [t(Wijs Trjt)P(Thjt)q—rji(T) | + const (A.46)
My = U;jz(vzka)_lmzka - 5”1@1(”2}1 + [mZ”jz]Q) (A.47)

where we have used the expectation with respect to ¢, and E(w?) = v, + m? and

Equation A.47 becomes

T T T w w Vo
My = [m—kﬂ - 5“—@'1(%;‘1 + [mkjl]Q)] o+
Z ki
~1
Ul:jl = ('Uo_l + (vzkﬂ)_1> <A48)

A.5.4 The Prior weights w;

We compute the approximate posterior mean m,, and variance v,, according to the
setup of variational expectation propagation. We use the expectation with respect to

the approximate posterior ¢(7x;;) and factorize all that depend only on the weights
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wy;i as follows
In q*(wkﬂ) = ET lt(wkﬂ, Tkﬂ)q_kﬂ(wkﬂ)] -+ const (A49)

then the mean and variance of approximate posterior ¢(wyj) are computed as
-1
-1 -1 T
My =m e (v) og  and v = l(vwkjl) +mkjl‘| (A.50)

In Equation A.50, E[7;] = mf;. Finally, we update the parameters of the approxi-

mate factor #(73;;) and #(wyj)
~1
77123'1 = [(U;jl)l - (/UTkjl)ll
ijl = @;c—jl [ijl(vgjl)_l - mT—k:jl(Uzkjl)_l‘| (A.51)
—1
ot = |07 - (08

mz}jl = 771?}1 [mﬁ”ﬂ(v};’}z)l - mwkjl<vwkjl)11 (A.52)

respectively.

A.5.5 EP Update For the Likelihood Terms

Here, we consider the procedures for updating the likelihood sites #(wy;;) and ap-
proximate posterior q(wy;;) defined in Equation A.22. The exact likelihood terms
p(yi|f;) is a Logistic regression model and approximated by the lower bound from a
Taylor series h(®,¢) which does not depend on the weight precision 7;5. The pos-
terior approximations can be factorized as q(zyji, arji, wij) and the exact likelihood

is p(yilar) = t(ar) where ay, is the matrix multiplication for the last layer. Now, we
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compute the Z, as follows

Z, = / h(yilap)N (agmit, oiF) day (A.53)
—oxp{ s = (a0 = /2~ MG~ ) - g (6~ | (A54)

by integrating out the matrix multiplication ar, we have
Zy = N (yilmy,v,) (A.55)

where the mean m, and v, are as follows

1 mgk 1[1 1
my = 5 — UZ; and Uy = a [2 — U(Q)‘| - ’Uzjl" (A56)

Note that we have made use of the

&) = g |6 - 3]

The updated rule for the mean and variance of the approximate posterior of q(f;) =
q(ar) in Equation A.24 is given below

Mt = Mla + [my — wilv, " and v, = 3l + v, [2mgfy(yi —my) — 1] (A57)

A.6 Probabilistic Back-propagation

In this section we describe a probabilistic back-propagation algorithm for this model.
PBP does not use point estimates for the synaptic weights in the network, [Jose &
Ryan (2015)]. Instead, it uses a collection of one-dimensional Gaussian, each one ap-
proximating the marginal posterior distribution of a different weight. PBP also has
two phases equivalent to the ones of BP. In the first phase, the input data is propa-
gated forward through the network. However, since the weights are now random, the

activation produced in each layer are also random and result in (intractable) distri-
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butions. PBP sequentially approximates each of these distributions with a collection
of one-dimensional Gaussian that match their marginal means and variances. At the
end of this phase, PBP computes, instead of the prediction error, the logarithm of
the marginal probability of the target variable. In the second phase, the gradients of
this quantity with respect to the means and variances of the approximate Gaussian
posterior are propagated back using reverse-mode differentiation as in classic back-
propagation. These derivatives are finally used to update the means and variances of

the posterior approximation.

A.6.1 Derivation of the gradients

We derive the gradient of the gradient of the logarithm of the marginal likelihood,
that is the log Z, given in Equation A.53, with respect to the means and variance
of the network weights in the Gaussian approximate posterior ¢. In PBP, the corre-
sponding algorithm has two variables such as the means and variance for each neuron.
The activation function used at each layer is the RELU activation and this becomes
random since the weights are now random. The output of each layer is denoted as z;
and the matrix multiplication is denoted by a; for [ = 1, ..., L. The activation function
used for the last layer is the sigmoid function o(.). We start by propagating forward
through the network from the input layer to the last layer called output layer. Let us

assume for the moment that we have L = 3 before the general concept of PBP.

A.6.2 The Forward Propagation

Counsider a class of neural networks defined the function form

1

Sl ET—— (A.58)

2L
where aj, stands the matrix multiplication of the last layer and it is explicitly written

as follows

-1 K J
a, = wigr [ Z Z 91( wkjﬂll)] (A.59)
=1 k=1 \j=1

For Layer L =1, E[WITZO} and my;m* (A.60)
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A.6.3 The Backpropagation

For the last layer,

0%,  dlogZ, 0mys  dlog Z, vy}
Omyk — Omik 8% dugy omyf’

0Z,  dlog Z,0my; N dlog Z, Oyt

wr, a w a w (A61)
For the hidden layers
0z, _0logZ, omy; N dlog Z,, vy
omy) omyl omy) vy Omy}
0Z, _ dlog Z, Omy; N dlog Z, O} (A62)
vy omy  Ovy] v Ouy '
where .
dlog Z, dlog Z,0my;"  dlogZ, v (A.63)
omy) 3mal+1 8m 821(”*1 omy’ '
dlog Z,  0Olog Z, Omy™ N 0log Z, Qv (A.64)
dups  omt Ol Qustt O .
8777%“ _ 8mZ§“ 8m?] N Gm%“ 02;,?]
omy omy; omyl Qv Omyl
omy; _ amal“ omy; N Omys dugl (A.65)
81}2} 8milj v 81),?]- v '
ug™t Outt Omyy  duitt Ol
377123 8ng omys vy am“l ’
aUkHl akal am aval+‘ k] <A 66)
ovy! kj 8m?] vt ks 81},?]- vt i ‘

The mean and variance of the output of the matrix multiplication at each level are
defined as mzz and v,‘;; respectively. Also, the mean and variance of the activation
function which becomes the input of the next layer are defined as mzlj and v,‘;é respec-

tively. First, the matrix multiplication is randomized following from Equation A.60
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by computing the first and second moments as follows
Blaz] = Elwiy] E[2"] = (Var(w) + (E[w])*)(Var(z) + (E[2])*) (A.67)

The first and second moments are given below

miy = my;my (A.68)
vy = (my ) o) 4 vt (mi)? + oy o) (A.69)

The randomized RELU activation function is given as follows

iy = Bl iy + B (A70)

Vg = My lmzlj + UZij] D (—auy) + P (o) vpt (1 — vij — gy (A.71)

where vy; = @)/ P(ars), ar; = myj/\/ve; with ¢, and @ denote the standard
Gaussian pdf and cdf respectively. The gradients starting from the normalizing con-

stant Z, in Equation A.53 are as follows

dlog Z 1, apn—
o = o — w0 (A7)
dlog Z, 1 1 o MY 1
= —(y; — — (y; — - — A.73
31)2]@ (,UZJL>2 21]3 (y my) + Uy (y my) 2Uy ( )

where Equation A.53 is brought forward for convenience

L any— L1 1
my = - — mpk(vF) ' and v, = —|5—0(G)| — = (A.74)
2 Cz 2 kj

This is a gradient of the upper layer with respect to the lower layer of interest a; and

21—1

ap ap ap
omy vy vt

Zl—1_ wy ¥
Zi—1
Qvy;

omg
J wy — —
= = 2my; v, and

wr\2 wy
21—1 kj> 21—1 ) 21—1 kj kj
omy; vy omy;
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ovt
and Wffl = (m}:;f + v}fj. (A.75)
[t

This is a gradient with respect to the same layer of interest a; and w;

oms om;L ovyt ovyt
ki _ . zi-1 kj _ kj 21-1, Wy kj 21-1\2 Z1—1

Gt = T 0 gom = 0, iy = 2y 'my,;, and = (my; ) +ug . (A76)
kj kj kj kj

This is a gradient with respect to the same layer of interest z; and a;

om#

oma

a 6716 aak' a a

2
amkj . Gakj

a a a a . .
[mké+ Uk§7kj]¢(akj)+<1>(akj)[ vpL Z’;er kg 1 (A.78)

vy Ovij ko2
8@,? 2 a 8%] Gakj a 2
8m£§ = my; ll + /Ui om D (—ay;) + rnggb(akj)vk;‘(l = Viej — QW Vkj)
a a z 80ék j am?
- [mk; + Uk;fykj‘| [mk;¢(akj)amzi - (ﬁ(_akj) amzlj
J J
0wt Ok Oay;
— ® () Ut | 2 ——— , J ; J A.79
(akj)vkj [ Vkj 0m,c% + Qg 077%2’] + Vi 0mZ§ ( )

8’0;1, a aak j a 8’7k;l 8'719 | aak .
8@,‘;- = @(akj){ [1—7£j_akj7kj] [1+Uk§‘7kjavgf ~Ukj | 2k vt T 81};‘; M 3%‘;
J ’ ’ ’ J

2 a af)/kj Vkj a a
+mkf]{l Uk 8 + 2ol P(—au;) — |migy + /05

Oag;  ®(—ay;) Omy);
¢(O{k ) aj - z ’ a,J (A80)
[ ! vy my; vl
we now compute the v and o with respect to mj}; and vy;
8%]- (%vkj 2 804;64 1
_ (s (i d = A.81
gy oy W) law)]and = (8D
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ay
Oauy My

kj Day; 5
_ A v (ves d = — A.82
ooy ~ gy | ) Tl | and Gt = e ()




Appendix B

Proof of Identifiability for MCWM

The proof is divided into two parts. The first part is built upon results given in
Hennig (2000) while the second part is built upon the results given in Griin & Leisch
(2008). Consider the class of models defined in Equation (4.2) and prove the equality

as follows;

G G
ZF(y|w; ﬂ?)¢d(m7 Ky, 25])7Tg = ZF(y’w§ :Bf)(bd@:a llk; Ek)frk (Bl)

g=1 k=1

holds for almost all & € R% and for all ye Vit G= G and there exists a one-to-one
correspondence between {1,...,G} and {1,...,G} such that for each ¢ € {1,...,G}
there exists a correspondent element k € {1, ..., G} and 3] = ~§“, By = fg, X, = >,

and 7, = 7. Integrating both sides of Equation (B.1) over Y is as follows
G G B _
/y Y F(yle; B])¢a(x; pg, By, dy = /y Y F(yla; BY)dal(w; fir, Xp)7r, dy  (B.2)
g=1 k=1
G G B _
Y ba(@; pg, By)mg /3)F(y|a:;ﬁf) dy = Y dala; fur, Tip) /J}F(y|w;ﬂf) dy (B.3)

Since
| Pl ) dy = | Flyla: 3) dy =1

221
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then Equation (B.3) becomes

Zcbd (; pg, X Z¢d (@ fie, 2.7 (B.4)

a
Let us set p(a; 1, X, 7) = Y ¢a(x; fir, k)7 and p(a; p, B, 7) = > da(; e, ),
k=1 k=1

where (p, 3, 7) = {(tg, g, 7);9 = 1,..., G}, (11, 2, 7) = {(ﬂ"l’ Y, ) k=1,...,G}.
Applying the Bayes’ theorem gives p(Dy|x; [, ¥ @) = a(@ile D) o p(Dylx; p, X, 7) =

G N N
1 Pa(®; e, X)) T

Pa(@itto- Do)y Thep Substituting Equation (4.15) and Equation (4.16) into Equa-
ZS:1¢d(w§N57zs)ﬂ's

tion (B.1) and Equation (B.2) we get p(Di|x; f1, 2, %) = M and p(Dy|x; p, X, 7) =

% thus, Equation (B.1) can be written as e
G
p(z,y:©) = p(z; p, 2, 7T)gz_lF(y; M, 07)p(Dy|a; p, B, )
= pla; p, 3, m)p(ylz; ) (B.5)
where o
p(ylz; @) = ZlF(y; M, 6%)p(Dy|x; p, %, ) (B.6)
o

where also the positive weights v,(x) in Equation (4.14) can be written as v,(x) =
p(Dylx; p, X, ) To complete the first part of the proof, since the p(Dy|x; pu, X, )
and p(Dy|x; fr, 2, 7) are defined according to the Equation (B.3) and Equation (B 4),

we get:

G

— / Ga(T; g, Xy) Ty d —/ Dul@; g, Xg) g > a(m; ps, B, dee
Z¢d I; #’57 ) =
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since p(D,|x; p, 3, 7) = p(Di|x; fi, >, 7), then

x; [ ,2 T G L e 5 L =
=/, 2[1( Py 2 T > balx; fu, X)) dz = Wk/)(¢d($;uk,2k) dx (B.7)
=1

Z¢d(w; e, gt)ﬁt
t=1

since [y pa(x; fi, EN]k) dx =1, then 7, = 7;. Following the same step, it can be seen

that p, = 1, and 3, = >

The class of models in Equation (B.6) is identifiable if the condition of intra-component

label switching is fulfilled, this builds up the second part of the proof.

G

> p(Dylx; p, =, m) [ [T1F (yis; My, 02)

g=1 (]
é ~ ~

= > p(Dyla; o, B, 7) [ [T[F (9i5: M3, 65) (B.8)
k=1 i

implies that G = G and there exists a one-to-one mapping between the two sets
{1,...,G} and {1,...,G} such that 9 = @*. Moreover the relationship between re-

sponse variable y and the covariates x is 6.
0.
In <J> = z8; (B.9)
6,
Exponentiating Equation (B.9) gives ¢*% and since 8; = 6, then 6; = 8 which im-

plies that e*i% = e®Bi . Now following Grun and Leisch, 7, we show that e®i(Bi=Bi) =

¢;. Following Ingrassia et al. (2015), we introduce two sets
X = {m c R%: for each g,w € {1,...,G} and

~ 139 18w
kyhe{l,..,G}:e"f =™ — 07 =07,8! =Y,

! /

139 ' 3k Ak Sk '3k ' 31 Nk ah A3k 2h
6mzﬁj S S — 03‘] — 0]7/6? — j)eﬂilﬂj = 6111133 — 0] = OJ’B] = /Bj} (B]_O)



APPENDIX B. PROOF OF IDENTIFIABILITY FOR MCWM 224

Since 89 # % for g # w. The following holds for all i € I and for j =1,...,J — 1,
Yij = 0; and y;; = M,; — y;;, then Kronecker delta d;; = 1 if ¢ = j and zero otherwise.

The multinomial coefficients on both side of equation B.6 are canceled

G

J —M;;
> p(Dylz; p, 2, ) [eméﬂgHH (Zew;ﬁz> ]
2B =AY — i \u=1
G

- J o\ M
> p(Dilx; p, =, ) le“’ﬁﬂknn (Zemiﬁiﬁ) ]
i j \u=l1l

(B.11)

k=1

for a fixed x € X, according to Equation (B.4), v, (x), ..., v¢(x) which is also

p(Di|z; 1, B, 7), .., p(Dgl; p, B, ) and p(Dy|x; i, X, %), - p(Dglx; fr, ¥, 7) which
all sum to one. It follows that, for each @ € X, the density given in Equation (B.6) is
then identifiable if and only G = G and there exists k € {1, ..., G} such that 89 = 9%

and p(Dg|x; p, B, 7) = p(Da|x; 1, 2, 7), then the left hand side Equation (B.11) is

constant for all ¢ € I,,.
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Derivation of Maximization via

IRLS

The updated estimates (@t are the solutions of the following M-step.

aNG

7@1( ’l/) Zzzzg {yzl hl gbzlg + Z?ng lIl ¢z]g} (Cl)

aﬁ zlgl

Following from Equation (4.6) and f(z,3;,) = Boj, + 'B1j4, the update of 1@ of
Equation (C.1) is derived as follows

B = g 4 [1(B\)] ' s(81Y) (C.2)

where [ (B( ) is the Fisher information matrix and S(83; Q)) is the score function. The

parameters are estimated as follows:

0 0
o7 "o

Maximizing Equation (C.1) with respect to B is equivalent to independently maxi-

7@1( ¢ ) 7@1( 3¢(q)) f(z; B) (C.3)

98 o

mizing each J class and G component expressions

S(BY) = (q’{j” - jll } (C.4)

225
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using the expression y;; = n; — y;; and ¢, = 1 — ¢4, Equation (C.4) can be written

as

(q) Yig — Ni — Yij
(ﬁ]g ) Ql 170 Zzlg { ! ’ }8/ng d)l]g (05)

a¢m] (bwg 1-— ¢ijg

The next equation will be derived on element-by-element basis, that is;

0 0 exp{fwg(m ng)}
OFon@:B) P9 = B (@ B) ST exp i @i B} (C6)

eXp {fijg (5135 ng) }]Z; exp {fijg (33; /ng)} — &Xp {fijg (5135 ng)} exXp {fijg (flf; ng)}
(Jzijl €xp {fijg (513; 53’9) })

(C.7)

then we have,

_ Jexp {fz‘jg(a:;,@jg)} . Jexp {fijg<m;ﬂjg)} ) ©3)
jzlexp {fijg (w;ﬁjg)} jzlexp {fijg (w;ﬁjg)}

Equation (C.6) is ¢;j4(1 — ¢4j4)2;. The score function becomes

(q) Yij Yi1
ZZ wl¢1]g 1 - ¢i?g>{¢(q) - gb@ } (09)
ijg ilg
Now, we derive the Fisher information matrix as follows;
() - Z/ _Ya
y ) = ZZZ ml¢zgg¢zlg j (@) (ClO)
i=1 ¢ ¢'1
ijg ilg

N
() = ZZZ(;’)wi{yzjabEg - yi1¢§?;} (C.11)
i=1
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using the expression y;; = n; —y;; and ¢;1, = 1 — ¢4, again Equation (C.11) becomes

N
= lefj)wl{y” - nz¢§?_¢)]} (C.12)
0 (@) )
o aﬁ Zzzg nzwngzgg(l - ¢z]g)m' (013)
J9

N
EDIC S (C.14)

=1

The updated estimate is

N /N
6 (a+1) 6((1) (Zzg’)nzmngwz) (Zzz(g)wzvugg;> (015)
i=1

i=1

qH) (Zz nzw;vijgazi) (szj)xiuijggi(j)) (C.16)
i=1

where Vijg = qug( ¢z]2}) Cz(j(I) = TZZCL'ZBJ(;) + C:; and C:; - yz]/¢£§; yzl/gbzlg The
weight v;;, and the adjusted response Ci(;]) are updated at each iteration based on the

current estimates of the multinomial distribution probability ¢;;.



Appendix D

Calculus of Variations

We can think of a function y(z) as being a mapping that, for any input value z,
returns an output value y. In the same spirit, functional F[y] can be defined as an
operator that takes a function y(z) as its input and returns an output value F. In
the field of machine learning, a commonly used functional is the entropy H|z] for a
continuous variable x because for any choice of probability density function p(x), it
returns a scalar value representing the entropy of x under that density. Thus the

entropy of p(x) could be written as H[p].

A more common task in conventional calculus is to find a value of x that maximize
or minimize a function y(x). Similarly, the goal of calculus of variation is to seek
a function y(z) that either maximizes or minimizes a functional Fy| according the
task at hand. This means among all the possible functions y(x), we wish to find the
particular function for which the functional F[y] is a maximum or minimum. The
calculus of variations can be used, for example, to show that the maximum entropy

distribution is a Gaussian.

We could evaluate a conventional derivative dy/dx by making an infinitesimal change

€ to the variable  and then expanding in powers of €, so that

y(x +€) =y(x) + Zie + O(€%) (D.1)
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and finally taking the limit ¢ — 0. Similarly, for a function in high-dimensional space,
y(x;,...,xp), the corresponding partial derivatives are defined by
y(x1+€,...,xp+ep) =y(xy+€,....,xp+€ep) + Za—xez +O(€%). (D.2)
d=1Y"1
The analogous definition of a functional derivative arises when we consider how a
functional F[y] changes with respect to a small change e((z) of the function y(z),

where ((x) is an arbitrary function of .

Let the functional derivative of E[f] with respect to f(x) be denoted by dF/d f(z)

which is defined as
5F ,
Fly(x) + ()] = Fly(a)] +¢ 5y (D) + 0(e). (D.3)

This is a natural extension of Equation (D.2) where F'[y] now depends on a continuous
set of variables, called the values of y at all point x. One condition is that the
functional must be stationary with respect to small variations in the function y(x)

gives

§F
oy(x)

Equation D.4 must hold for an choice of {(x), and it follows that the functional deriva-

((z)dz = 0. (D.4)

tive must also vanish. We also consider a functional that is defined by an integral
over a function H(y,y’, z) that depends on both function y(x) and its derivative y'(z)

as well as having a direct depends on x

Fly) = [H(y(2). /(). 2)dz (D.5)

where the value of y(x) is assumed to be fixed at the boundary of the region of
integration. We now obtain the Equation (D.6) below if we consider the variations in

the function y(x)

Pl + <c(o)) = Flato)) + e[ { ot + e fas + 06 0o
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By integrating the second term we obtain the following

/g(x){?;+g§}dx ‘g” I e <8H>C(x)dx+g§qx) (D7)

embedding the last term into O(e?), Equation (D.7) becomes

OH
Fly(z) + ()] = Fly(@)] + ¢ [ () {y 4 <8y ) }dx L0@).  (DS)
The functional derivative is required to vanish and it gives
OH d ,0H
- = = D.9
Jdy dzx <8y’ ) (D-9)
which are also known as the Euler-Lagrangian equations.
Let’s take an example. If
H=y(2)" + (y(x))* (D.10)

OH /0y = 2y(x) and OH /0y = 2y'(x). Then the Euler-Lagrangian equations take
the form
d d*y
(o) — (4 (1) = y(w) = 5 =0 (D.11)
This second order differential equation can be solved for y(x) by making use of the
boundary conditions on y(x). Optimizing a functional with respect to a probability

distribution need the normalization constraint on the probabilities.



Appendix E

Alternating Direction Method of
Multipliers

In chapter (6), we showed that the alternating direction method of multipliers (ADMM)
is appropriate to distributed convex optimization, and in particular to large-scale
problems arising from statistics and machine learning. ADMM takes the form of
a decomposition-coordination procedure, in which the solutions to small local sub-
problems are coordinated to find a solution to a large global problem. ADMM can
be viewed as a combination of dual decomposition [Everett (1963); Lasdon (1970);
Geoffrion (1972); Luenberger (1973); Bensoussan et al. (1976)] and augmented La-
grangian methods [Hestenes (1969a); Hestenes (1969b); Miele, Cragg, Iver & Levy
(1971); Miele, Cragg & Levy (1971); Miele et al. (1972)] for constrained optimiza-
tion. ADMM integrates the decomposability of dual ascent [for more on dual ascent:
Boyd & Vandenberghe (2004); Rockafellar (1970); Shor (1985)] with the superior con-
vergence properties of the method of multipliers. Augmented Lagrangian methods

The algorithm solves the problems in the form

minimize  f(x) + g(y) + h(z) (E.1)
subject to : Ax + By + Cz = d;

with variables z € R", y € R™, and z € R? where A € RP*", B € RP*™, (' € RP*?
and d € RP. According to the purpose of this, we will assume that f, g and h are
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convex functions. The optimal value of the problem in Equation (E.1) is denoted by
p" =inf{f(z) + g(y) + h(z)|Az + By + Cz = d} (E.2)
The augmented Lagrangian is formed as follows;
L, = f(x)+g(y) + h(z) + o’ (Az + By + Cz — d)

+ (,0/2)HA:U+By+Cz—de (E.3)

ADMM consists of the iterations

2" = argmin L, (, y", 2¥) (E.4)
y* 1 .= argmin Lp(xkﬂ, y, 2) (E.5)
v
= argmin L,(z"!, ! 2, oF) (E.6)
ot = argmin of + p(Ax* 4 ByMT + CM —a) (E.7)
o

where p > 0. The algorithm is very similar to dual ascent and the method of multi-
pliers: it consists of an z-minimization step in Equation (E.4), y-minimization step
in Equation (E.5), z-minimization step in Equation (E.6), and the dual variable up-
date in Equation (E.7) . The dual variable update uses the step size equal to the

augmented Lagrangian parameter p similar to the method of multipliers.

The method of multipliers for Equation (E.1) has the form

(2D y D D) = argmax L,y (2, y, 2, %)
ZT,Y,z

Oék+1 _ Oék + p(AZE(k+1) + By(k+1) + CZ(k+1) o d)

Contrary to augmented Lagrangian, the variables z,y, and z are updated in an alter-

nating direction, which accounts for the term alternating direction.



Appendix F

Derivatives of SSEP and
EP-ADMM

F.1 EP via Monte Carlo integration called SSEP

F.1.1 Incorporating the priors into ¢

We first incorporated priors on 7 and A as factors. These factors have the same

functional form as

q(X, A7) = [ﬁﬁ/\/(?@j

mxivj,vxivj)] exp(A|ay) exp(T|a,) (F.1)
i=1j=1

The first update rules oy and a2 for ¢ is obtained by SSEP method which will
be discussed in the algorithm below. The rest of the factors are sequentially incorpo-
rated into Equation (F.1) which is also updated in a similar manner. One difficulty
encountered when applying the update rules in Minka (2001) is that the normalizer
does not have a closed form. This brings about a uniqueness in SSEP which treats Z

as follows;
7 = /N(/:Xij 10, 7) g(X, A, 7) dX d\dr

_ / N(LX;; )0, 7) exp(r|a,)dX dr (F.2)
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In Equation (F.2), the integral involves 7. We adopted the method by John et al.
(2011). The normalizing factor Z in Equation (F.2) is solved for 7 as follows,

1 K
7. = 7 ZN(EXM |0, T(k)) exp(T(k) | o), (F.3)
k=1

T is generated from exponential distribution while X is initialized by ) to compute
LX which is in general the goal of this work. So the Monte Carlo integration of
Equation (F.2) with respect to X becomes

1 K
Zy = = > NIGX:; NN (X, may, vyy) (F.4)

Here, X is generated from any distribution student-t, Normal distribution, or Uniform
distribution from which £LX is recomputed. Here, we write the exact likelihood that
needs to be processed multiple times i.e NV x D times, where N and D represent the

number of rows and columns respectively.

p(LX|T) = HHN

=1 j5=1

(F.5)

To approximate the posterior with SSEP algorithm, the posterior distribution can be

factorized as follows

) = | T,

i=17=1

m:z:”,v:c”)] exp(A|ay) exp(T]as) (F.6)
The exact likelihood term is a joint distribution and is denoted as

tij(r) = N(LX;|0,7) (F.7)

Then, we approximate the exact likelihood term by choosing approximating term

ti(1) = exp(7|dy ;) (F.8)
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We choose term to refine by removing #; ; from ¢ to compute the cavity distribution

on X;; and 7
q-i5(7) = exp(|ai;) (F.9)

O3 = QG j — di,j (F].O)

After this, we perform the moment marching between ¢(7) and a normalizing version

of t; j(1)g—; (7). It is computed as follows

argmin K L(p; ;|(¢:.;)
q

where () )
~ ij\T)4—ij\T
() = F.11
0= T (Paes ) .
Following Equation (F.11), the integral contains an intractable terms resulting from
V., log Z where

Z = / ;1 (T)goiy (7)dT (F.12)

Our goal is to make a stochastic approximation of this gradient.

1
Velog Z = va/Tti’j(T)q_i,j(T)dT (F.13)

1
V,logZ = Z/ti,j(T)qu_i’j(T)dT (F.14)
Equation (F.14) can be written as
1
Vw log Z = Z/Tti’j (T)q,i’j (T)Vw lOg q—ij (T)dT (F15)

referring to Equation (F.11) as the posterior, we have Equation (F.15) as an expec-

tation
Vo log Z = Eyr)| Vi log q_ij(7)] (F.16)
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we use the identity V,q_;;(7) = ¢_i;j(7)Vylogq_; (7). We can stochastically ap-

proximate the expectation using Monte Carlo integration as follows;

1 K
VologZ = —> V,logq ; (1) (F.17)
Kk:l

Now, we substitute for ¢_; ;(7)

1 K
VaologZ = EZVQ log (exp(7'|oz_i7j)) (F.18)
k=1
we compute the updates as follows;

Vo ,logZ == (¥ F.19
72 () (F.19)

The update rule is given in equation (F.20) below;

™ R aij + Va_;Cay (F.20)

T

Where the mean % Zszl 7() is denoted as Ca_,;; and variance as v, _,;-

F.1.2 Incorporating the likelihood factors into q

Now, the N x D factors are sequentially incorporated for the likelihood in Equation
(F.5). However, approaching this with conventional update rule in EP is difficult to
compute because it requires integration of each likelihood factor. After incorporating
all the factors in Equation (F.5), SSEP sequentially incorporates the N x D factors
for the likelihood Equation (F.5) provided below in Equation (F.21)

7y = /N(y|g2(, N (X, A, 7)dX d\dr

_ /N(yyg;c, A) exp(A ]y )dA. (F.21)
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Then the Monte Carlo approximation for Equation (F.21) is
1 K
7 STNYIGX, AD) exp(AP|ay). (F.22)
k=1

Now we compute the gradient of the normalizing factor as follows;

1
Vs log Z = — [ 500V i5(0)dA (F.23)
1
Vo, logZ = /A L (N iy (A)Va, log i (A)dA (F.24)
1
VoslogZ = - A NG, N i (A)Va, log exp(Alay)dA (F.25)

Equation (F.25) can be approximated as follows;

K
Ey[\] = D Ve, logexp(Aay) (F.26)
k=1
Similarly, for A
1 & \
VylogZ = K;vw log (exp()\|oz_i’j)) (F.27)
LS (0
_ k
Vor, logZ = KkZl(A ) (F.28)

We denote the mean % Eszl AR ag ¢ _;; and variance as v,» . The update rule for
o

A is given in Equation (F.29) below;
1 K
Ayt v —y AW (F.29)
=

The cavity of the prior over X is

q-ij(X) = N(wij;m—ij, v_i;) (F.30)
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We choose the approximate posterior for A" as

q(X) = N(@ij;mz, vz)
Then the approximate term is chosen from the Gaussian family

tii(X) = N(X%Ja Mij, Dij)
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(F.31)

(F.32)

In order to update the cavity distribution we remove ¢;; from ¢ and update its pa-

rameters as follows;
-1 _ -1 o~
VUi = VT = Vi
M_j = M + V0 5(mai; —m;)

Our goal is to make a stochastic approximation of this gradient.
V. log Z = fv / L, )iy (X, T)dXdr

Replace q_; ; in Equation (F.35) with ¢; j/¢;; then it becomes

J(LX; 5, 7)
Vylog Z = / 7vaz‘,‘(Xi,'77')dXi,‘dT
Z Xi g, t”(.)(mﬂ') ’ ’ ’

(L, 7)

V IOg 7 = Z /” . mqi,j(él’w, T)Vw log qi,j(k.i,jy T)dXLde

At this juncture, we proceed with the use of Monte Carlo Integration

6 Xt (LA,

7, ) / 1]
Lo 2 U og g (X 7)) Y
50 tz (Xz]a ) gqj g z Z]) )

n=1

Xij: 7)

(F.33)

(F.34)

(F.35)

(F.36)

(F.37)

(F.38)

when taking X into consideration then we fix 7 and vice versa. So we update the

parameter by taking the gradient step

1)
W = otk 2L
do

(F.39)
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F.2 Derivative of EP-ADMM in High dimensional
space

We introduce the Alternating direction method of multiplier (ADMM) algorithm to

update the approximate posterior parameters.

minimize  KL(p(z;5]¢(x)ij)) (F.40)

subject to : m;; > a;v;; > b

where a and b are constants. Then updating according to Minka (2001) is as follows;

My = Vi_,; log Zy +a+ p(m_i; — a) (F.41)
and
Uy = Vy_,; log Zy + B+ p(v_i; — b) (F.42)
where
q(z) = N(X;mg,v;) (F.43)

then the tilted distribution is

Bay) = 1 10)45() (F.44)
/X tij(€)q—ij(x)dx;;

ij

Now the normalizing factor is
Za: = / N()}U, GXZ‘J'7 )\)N(XZ], m_iy, U—ij>d$ij (F45)

By integrating out x, Z, becomes

1 2 2
/GXP{—2<yij - 9%) AT (iEz‘j - m—z’j) U:ilj}dfij (F.46)
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Completing the squares, we have

(gyijk‘l + m_iv7;

ZJ) (F.A47)

2
1 gyij)\_l -+ m_ijviilj 2\ —1 _1 1
_ _ i — A L _
2 | @A o] g U ) 2 @A o]

—ij —ij

Then the normalizing factor of x is

Zy = N(yiji My, Uy) (F.48)
where . )
Al
my = g2 Mijl=ij — = gm_j; (F.49)
A — g2\ 2 <g2)\—1 + U%)
and

1

-3 = U,ijgz + A (F50)
AL — g2)\_2 <92/\—1 + U:}j)

then updating the parameters m,, and v, of ¢(X) as follows according to Minka (2001)

with a method of multipliers, we have

new Yij — gm—i;
— g vy, 2 I F.51
m} M_ij + V_jj Y g+ a+p(m; —a) (F.51)
Ufij)\
new—i—{—lg—i—ﬂ 1—b F.52

A" = o 4+ p(m}™ —a) and B = 55+ p(vp —b) (F.53)

xT
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