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The faceting of a growing crystal is theoretically investigated by a continuum model including the incorpora-
tion kinetics of adatoms. This allows us for predictions beyond a simple Wulff analysis which typically refers to
faceted morphologies in terms of the equilibrium crystal shape for crystals with an anisotropic surface-energy,
or to steady-state kinetic shape when the crystals grow with orientation-dependent velocities. A phase-field ap-
proach is implemented in order to account simultaneously for these contributions in two- and three dimensions
reproducing realistic kinetic pathways for the morphological evolution of crystal surfaces during growth. After
a systematic characterization of the faceting determined by orientation-dependent incorporation times, several
different crystal morphologies are found by tuning the relative weights of thermodynamic and kinetic driving
forces. Applications to realistic systems are finally reported showing the versatility of the proposed approach
and demonstrating the key role played by the incorporation dynamics in out-of-equilibrium growth processes.
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1 Introduction Faceting is one of the most distinc-
tive traits of a finite crystal, from the macroscopic scale
down to the micro- and nanoscale [1]. In the latter case,
the enhanced surface-to-volume ratio makes it a crucial as-
pect for material properties and applications. Understand-
ing, and possibly controlling, the crystal faceting has then
been the object of intensive studies dating back to the 19th
century. Already in 1901, indeed, G. Wulff proposed its
famous geometric construction [2] for predicting the equi-
librium crystal shape (ECS) on the basis of the principle
of surface energy minimization. This geometric procedure,
formalized and demonstrated only decades later (see in
particular Ref. [3]), is illustrated in Figure 1 in two dimen-
sions (2D). Once the surface energy density γ is known as
a function of the local surface orientation n̂, one traces its
polar plot and at each point along it draws a plane normal
to n̂. The inner envelope of all these planes corresponds to

the ECS. This shape can be meant as the trade-off between
the tendency toward exposing the facets having minimum
energy and the minimization of the total surface area. The
thermodynamic principles behind the definition of the ECS
[4,5] find good applicability for inspecting the faceting of
crystals under annealing or, more in general, in the case of
close-to-equilibrium growth processes, i.e. at high temper-
ature and slow growth rates. Indeed, adatoms at the surface
must be sufficiently mobile to diffuse according to ther-
modynamic driving forces prior to their permanent incor-
poration in the crystal and/or being covered by additional
deposited material.

When considering growth, out-of-equilibrium condi-
tions can alter the crystal faceting corresponding to the
ECS. A more convenient description of the crystal faceting
during growth is then provided by the kinetic crystal shape
(KCS), obtained by considering that each facet grows with
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an assigned velocity v = v(n̂). The Wulff procedure can
still be applied to determine the shape of the growing crys-
tal just replacing γ with v [6–8], as in Figure 1.

Both the ECS and the KCS scale self-similarly with
volume so that they just provide the final shape of the crys-
tal, without any information on kinetic pathways. In par-
ticular, ECS describes the minimum energy configuration
and the KCS provides a description of the growth front
when stationary conditions hold. However, since normally
the growth does not start from a crystal seed with the same
shape of the KCS, a first transient state can be expected
with changes in the relative extensions of facets, i.e. in con-
trast with the KCS. In a very simplified way, this evolution
can be traced by evolving each point according to its ve-
locity v(n̂) (Borgstrom construction [9]), as shown by the
dashed profiles in the Figure 1(b). By simple geometric ar-
guments, it can be shown that the slowest growing facets
expand in size at the expenses of the fastest ones, up to ex-
pelling them from the growing profile if not present in the
KCS[10].

While the ECS can be considered a property of the
material for given environmental conditions e.g. temper-
ature, (partial) pressure of the components, surface recon-
struction, . . . , and, in principle, it could be theoretically
predicted by computing the surface energy of all possi-
ble facets, it is much more difficult to estimate the KCS
without a direct comparison of experiments. Indeed, the
growth rates of facets v result from a complex combi-
nation of surface/energetic properties and details of the
growth procedure, e.g. kind of reactants, distribution of the
species, chemical environment and possible side reactions
(e.g. etching, passivation, . . . ), sticking/desorption at the
surface, . . . (for a topical review, see Ref. [1]). Reasonably,
the set of possible facets should be the same for ECS and
KCS but the two can be quite different and only a subset
of such facets may really be distinguishable in a growing
profile.

ECS and KCS can be considered the two limiting cases
when the shape is defined by thermodynamics or by the
growth kinetics, respectively. The former is established
when the surface diffusion prevails over the deposition dy-
namics so that the material can redistribute to achieve the
minimum energy configuration. Viceversa, the latter is ob-
tained when only short-range diffusion is enabled so that
the local velocity of the growth front is essentially deter-
mined by the net income of material.

An intermediate condition is yet possible if the time-
scale for adatom diffusion, before the incorporation in the
crystal, becomes comparable with the one of deposition.
This regime has been discussed in details by J.W. Cahn and
J.E. Taylor in Ref. [11] (see also Ref. [12] for a detailed
derivation) and takes into account that atoms deposited on
the surface require a finite time to get incorporated in a
definitive site during which they can migrate elsewhere. As
this process is expected to significantly depend on the ac-
tual facets, it introduces another anisotropic contribution

θ
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Figure 1 Schematics of the Wulff construction for the
ECS, starting from a γ-plot, and the KCS, starting from
a v-plot. The geometric construction is the same for both
cases and it is sketched for the ECS only. An illustrative
growth sequence for the evolution of a circular seed to the
KCS is illustrated by the dashed profiles and it is obtained
by moving points accordingly.

that can compete, and even overrule, the thermodynamic
driving force toward ECS. At the same time, the morphol-
ogy also diverts from the KCS, making the net growth rate
dependent on the adatom flux exchanged between neigh-
boring facets.

In Ref. [13], C. Stöcker and A. Voigt investigated the
effect of an isotropic kinetic term on the faceting by an-
nealing of crystal surfaces caused by strongly anisotropic
surface free energies. Later, Rätz et al. in Ref [14] intro-
duced an anisotropic kinetic term, depending on the facet
orientations. It is the goal of the present work to extend
such study to the case of a growing crystal, showing how
faceting can change from ECS to KCS by controlling the
incorporation kinetics. To this purpose a phase-field (PF)
approach [15,16] is exploited, as detailed in the Section 2.
Simulation results are first reported for a few test cases in
Section 3, showing in a systematic way how the crystal
faceting may occur because of anisotropies in the incorpo-
ration dynamics. Then, in Section 4, the competition be-
tween anisotropic surface energy and/or growth rates and
the incorporation dynamics is investigated. More specifi-
cally, we show the possibility to account for intermediate
morphologies that recover the ECS and the KCS as limiting

Copyright line will be provided by the publisher



pss header will be provided by the publisher 3

cases. Finally, a few applications to morphologies observed
in experiments are reported in the Section 5 to validate the
method and illustrate its capabilities.

2 Continuum modeling and phase-field approach
Simulations of crystal growth are based on the kinetic
model from Ref. [11], exploiting the phase-field approach
described in Ref. [14]. Here we briefly review the key con-
cepts of this model and its implementation in the PF frame-
work.

The growth of crystal is typically characterized by a
net transfer of matter from a gaseous (or liquid) medium
surrounding the crystal into its bulk phase. However, this
mechanism proceeds through the crystal surface, where
adatoms can move, interact or desorb before being incor-
porated in a crystal-lattice site [17,18]. The temporal evo-
lution of the adatom density N at a given point x on the
surface can be described by a continuity equation, includ-
ing an external material supply, i.e. the deposition flux F ,
and a sink corresponding to the incorporation into the crys-
talline phase underneath with rate v:

∂N

∂t
= ∇s · [M∇sµ] + F − v. (1)

M is the adatom mobility, µ is the local adatom chemical
potential and∇s is the surface gradient operator. The diffu-
sion of adatoms follows the gradient of chemical potential
along the surface, J = −M∇sµ, according to the Onsager
linear law. An additional sink term accounting for the loss
of adatoms due to the desorption could be included in the
equation but it is here assumed to be negligible. The ex-
ternal flux can in general depend on the facet orientation
F = F (n̂). For the sake of simplicity, in the following we
shall consider isotropic mobility M .

The attachment/detachment of adatoms into the crys-
tal, resulting in the advancement of the growth front along
its normal direction n̂, directly corresponds to the velocity
v. In a first approximation, the incorporation rate is propor-
tional to the difference between the chemical potential of
an adatom at a location x on the surface and the chemical
potential µeq of an atom incorporated within the crystal at
the same position:

v = (µ− µeq)/τ, (2)

with τ a kinetic coefficient setting the timescale of the
exchange process. More physically, τ corresponds to the
adatom lifetime prior to incorporation and is expected to
depend on the profile orientation, i.e. τ = τ(n̂). By def-
inition, the equilibrium chemical potential is equal to the
variation of the system free energy µeq = δG/δN . As
we here just consider surface energy, µeq ∼ ∇sξ, with
ξ = ∇(rγ(n̂)) the Cahn-Hoffmann vector (r the magni-
tude of vector r = rn̂)[19,20]. In 2D, it can be written in
the simplest form µeq ∼ κ(γ + γ′′(θ)), with κ the pro-
file curvature, γ the surface energy density and θ the local
orientation of the surface.

Following Ref. [11] in the assumption of quasi-
stationary conditions for the adatom densities, i.e. ∂N/∂t ≈
0, eqs. 1 and 2 can be combined into a coupled system of
equations describing the profile evolution due to adatom
incorporation: {

v = ∇s · [M∇sµ] + F

µ = µeq + τv
(3)

As stated by the second equation, the adatom chemical
potential µ includes both the thermodynamic contribution
µeq, accounting for the crystal energetics, and a kinetic
term, proportional to the profile velocity v. In the limit of
infinitely fast incorporation (τ → 0), the adatom chemical
potential reduces to the one of the crystal atoms µ → µeq

and diffusion results only from surface energy differences.
In such a case, the evolution will tend to the ECS in the
absence of deposition [15,21], or to the KCS if mobility is
negligible.

The phase-field approach is well suited to efficiently
solve these coupled equations without any geometrical pre-
scription on the crystal shape. Indeed, the profile is traced
implicitly by means of the phase-field function ϕ, set equal
to 1 within the crystal and 0 outside, and is nominally lo-
cated at the ϕ = 0.5 iso-surface (or iso-line in 2D), as
shown in following plots. In particular, ϕ(x) = 0.5[1 −
tanh(3d(x)/ε)] with d the signed-distance between the
point x and the surface profile and ε a parameter setting
the width of the diffused-interface. The motion of the crys-
tal profile is then expressed in terms of the evolution of the
ϕ-field itself, i.e. v → ∂ϕ/∂t, so that eq. 3 becomes:

∂ϕ

∂t
= ∇ · [M(ϕ)∇µ] + F |∇ϕ|

g(ϕ) · µ = µeq + τ(n̂)ε
∂ϕ

∂t

, (4)

where g(ϕ) = 30ϕ2(1− ϕ)2 is a stabilizing function [22–
24] and ε is included in the second equation as a scaling
factor.M(ϕ) =M0(36/ε)ϕ

2(1−ϕ)2 is the mobility func-
tion restricted to the surface with M0 an effective coef-
ficient, accounting for the energy barrier for site hopping
and following the Arrhenius law.

As detailed in Refs. [15] and [25], the equilibrium
chemical potential for the general case of anisotropic γ is

µeq = −ε∇ · [γ(n̂)∇ϕ] + 1

ε
γ(n̂)B′(ϕ)+

−∇ ·
[(
− ε
2
|∇ϕ|2 + 1

ε
B(ϕ)

)
∇∇ϕγ(n̂)

]
,

(5)

where ∇∇ϕ is the gradient that takes effect along the ∇ϕ
direction. In order to tackle strong anisotropy conditions,
the Willmore regularization [15] is implemented, thus in-
troducing a small corner rounding [26]. This adds an addi-
tional term to µeq in eq. 5:

µW = β

[
−∇2ω +

1

ε2
B′′(ϕ)ω

]
, (6)
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with ω = −ε∇2ϕ + (1/ε)B′(ϕ), and β a coefficient to
set the strength of the rounding. In particular, the length
scale where this term is active is proportional to

√
β [27]

and hence it becomes less effective as the particle grows in
size. By including this regularization the system of partial
differential equations to be solved becomes of sixth order.

In order to set the anisotropic functions F (n̂), γ(n̂) and
τ(n̂) in a convenient way, we follow Refs. [21,28], and use
the generic continuum function:

f(n̂) = f0 +
∑
i

fi(n̂ · m̂i)
w ·Θ(n̂ · m̂i) (7)

with the baseline value f0 and maxima (or minima if fi <
0) at the assigned orientations m̂i, with height (depth) set
by fi and width w. In the following, we set f0=1 for F (n̂)
and γ(n̂), while it is 0 for τ(n̂). w is chosen to exclude any
overlap between the different peaks: it is set to 50 for F (n̂)
and γ(n̂), and to 100 for τ(n̂). Outward-pointing vectors
are only considered thanks to the Heaviside function Θ,
thus permitting to treat systems without inversion symme-
try and to tune each minimum independently.

Numerical solution of eq. 4 is obtained by Finite El-
ement Methods with the AMDiS toolbox [29,30]. It ex-
ploits adaptive mesh refinement allowing for a proper reso-
lution within the diffuse interface region, still guaranteeing
a limited computational cost, and a semi-implicit numeri-
cal scheme for the temporal integration. For the 2D simu-
lations we set ε = 0.05, while for three dimensions (3D) we
set ε = 0.2.

In the following, we shall use dimensionless parame-
ters for F , γ, τ and M as we here focus on the relative
weight of the different contributions in the model with-
out considering any specific material. If experimental time
and size scales had to be matched, a unit measure analy-
sis returns the following scaling of the simulation param-
eters: [F0] = [l][t]−1, [γ0] = [e][l]−2, [τ0] = [t][e][l]−4,
M0 = [l]6[e]−1[t]−1 with respect to the length [l], time [t]
and energy [e] units.

3 Faceting by orientation dependent incorpora-
tion dynamics. In this section we investigate the forma-
tion of faceted crystal shapes during growth as due only to
anisotropic incorporation times τ(n̂). Both isotropic sur-
face energy γ(n̂) = γ0 and material supply F (n̂) = F0

are considered so that the expected ECS and KCS are sim-
ply spheres (or circles in 2D).

In Figure 2 the growth sequence of an octahedral parti-
cle, starting from a spherical nucleus, is simulated by con-
sidering a τ(n̂) having maxima for all [111] orientations,
as shown in the color map in panel (c) for the profile at t=2.
Because of this choice, the chemical potential of adatoms
µ at the center of the {111} facets is maximum as they
accumulate due to the slow incorporation into the crys-
tal. Conversely, in the regions with intermediate orienta-
tions, where adatom incorporation is faster, a lower popu-
lation and hence a lower µ is obtained. This is made evi-

dent in the panel (d) where µ is illustrated by a color map.
In particular, the lowest value of µ is found at the facet
vertices. Accordingly, a continuous transfer of material oc-
curs by surface diffusion from the facets toward the ver-
tices (and edges), enforcing straight facets. It must be noted
that the faceted shape obtained here is not energetically fa-
vored and it can be achieved only during growth. Indeed, as
shown in panel (e), the energetic contribution to the chemi-
cal potential of adatoms µeq corresponds to the profile cur-
vature since γ is isotropic and would hence drive the sys-
tem in the opposite direction, toward a global smoothing.
While this term is practically ruled-out within the facets, it
becomes strong enough at the facet boundaries, causing a
local smearing. As evident in the cross-section profiles in
Figure 2(b), the rounding is more pronounced at the facet
vertices, where the curvature is maximum, while the edges
look sharper as forming a wider angle, i.e. lower curvature.

The same principle of transferring material away from
the orientation of maximum τ discussed above governs the
competing formation and development of different facets.
As far as facets have the same τ , they all grow with the
same rate, tending to the same polyhedron obtained as KCS
by assigning equal F to all facets. However, in the more
realistic case where different facets have different ability
of incorporating atoms , i.e. different τ , they compete for
the incoming material. An example is reported in Figure 3,
showing a growth simulation including both {111} and
{110} planes as local maxima in the τ(n̂) function. In par-
ticular, as shown in the color map in the inset, τ111 < τ110.
As expected, both facets appear in the growing particle as
they tend to slowly incorporate material with respect to
the intermediate orientations. Moreover, as {110} facets
tend to accumulate more adatoms than the {111} ones, a
net transfer of material from {110} to {111} facets is ob-
served, frustrating the lateral expansion of the {111} facets
in advantage of the {110} ones. This is demonstrated by
the µ color map, maximum on {110} facets and slightly
lower on the {111} ones. Figure 3 also reports a view of
µeq having high values at the facet edges and vertices due
to high curvatures, showing thus that the observed faceting
is in contrast with the surface energetics.

The magnitude of material transfer between the facets
directly depends on their difference in incorporation times,
i.e. on their relative population of adatoms. This is made
evident in Figure 4 where the faceted growth of an initially
circular 2D profile, determined by considering local max-
ima of τ in both {10} and {11} directions, is compared
for a case where τ10 is just a 10% greater than τ11 and an-
other where it is twice larger. In the former case, both {10}
and {11} facets coexist, returning an octagonal shape with
{10} segments extending slightly more than {11} ones. In
the latter case, on the contrary, the actual growth rate of
{11} facets is dramatically enhanced by the adatom dif-
fusion from the slow {10} so that it shrinks in size up to
disappear from the crystal shape, leaving a {10}-bounded
square.
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Figure 2 (a) Growth simulation of a
{111} faceted shape with the kinetic in-
corporation term. (b) Time evolution of
cross-section profiles. Color map for (c)
the incorporation time τ , (d) the chem-
ical potential µ and (e) the equilibrium
chemical potential µeq, corresponding to
the surface curvature. τ111 = 20 and M0

= 0.1 .

τ

μ
[110] [110]

μeq min

m

Figure 3 Growth simulation of a faceted
shape with competing {110} and {111}
facets, with τ = 20 and 16 respectively.
Color maps show the the incorporation
time τ , the chemical potential µ and the
equilibrium chemical potential µeq on
the surface. M0 = 0.1 .

As the faceting behavior due to the incorporation ki-
netics has been so far discussed in terms of dominance
of the slowest growing facets, it closely relates with the
principles of the KCS. Indeed, the hierarchy of incorpora-
tion times roughly corresponds to the hierarchy of the facet
growth rates. However, at variance with the KCS construc-
tion, facet velocities are not assigned constants but are dy-
namically determined by the redistribution of adatoms be-
tween the competing facets. This process is enabled by the
surface diffusion and it is then effective only over a dis-
tance within the actual diffusion length. The finite extent
of the diffusion length has a great impact on the faceting
evolution, as made evident in the Figure 5 where the ef-
fect of changing the particle size or the surface mobility
on the {10} vs. {11} facets is shown for two ratios of
incorporation times. Panels (a) and (b) illustrate the evo-
lution sequence for two τ ratios, starting from an initial
circle of small size. As already discussed, the facets with

higher τ , here the {10}, are going to prevail in the growing
shape. In (a), the transfer of material toward {11} facets
is larger so that they shrink and quickly disappear, leav-
ing a square shape. In (b), the transfer of material is lower
as the incorporation on the two facets is more similar, so
that {11} facets persist for a longer time. To better com-
pare the different timescale in the two cases, the ratio of
the length of {10} vs. {11} segments is plotted against the
evolution time in Figure 5(c). In both cases, the shrinkage
of {11} facets is exponential, with a lower velocity for the
smaller τ ratio. Indeed, as the facet size decreases, the same
amount of material coming from the {10} facets is spread
over a shorter length and hence result in an increment of
the growth rate.

By repeating the evolution starting from a particle with
a four-times larger diameter, the {10}/{11} ratio grows
significantly slower for both cases since the diffusion can-
not cover the whole facet size, thus making the facet com-
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Figure 4 Comparison of the shape evolution from circular
to faceted shape for different τ10/τ11 ratios, by using the
anisotropy functions shown in the top panel.

petition less effective. It is then worth mentioning that this
size dependency makes an important difference with re-
spect to the kinetic Wulff construction, which on the con-
trary always returns a self-similar morphology. A similar
effect can be achieved by decreasing the surface mobility
as reported by the shallowest curves in the plot. Even if
material always tends to flow from the facets with slower
incorporation with respect to the neighboring ones, the
timescale for this process can become slow enough to con-
sider the multifaceted morphology as metastable.

4 Competing regimes driving the crystal faceting
The faceting induced by orientation-dependent incorpora-
tion times requires surface diffusion to be established.
Moreover, in order to enforce the faceting by τ -anisotropy,
the kinetic term entering µ must be larger than µeq (see
eq. 3). This competition is made evident in Figure 6, where
simulation profiles obtained for different incorporation
times (a) and deposition fluxes (b) are compared at the
same growth stage. Longer incorporation times τ and
larger material supply by means of larger F values, en-
force the kinetic regime. In the opposite case, µeq prevails
in driving the diffusion toward a rounded shape, corre-
sponding to the ECS since γ is isotropic. More precisely,
the balance between the kinetic and energetic contribution
is given by the ratio µeq/(τv) = (κγ)/(τv) and hence it
also depends on the actual profile, as due to the local cur-
vature κ. Indeed, high curvature regions will be strongly
contrasted by surface energy, thus resulting in smoothed
profiles even if a kinetic faceting is achieved elsewhere.
This can be observed in the intermediate profile of Fig-
ure 6(a) where a faceted squared-shape is obtained except
for a local rounding at the vertices. More generally, as
sharp vertices correspond to singularities in the local cur-

D=0.5 F/M=1

τ10/τ11=1.5 τ10/τ11=2.0

{1
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0
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Figure 5 (a-b) Time evolution of the surface contours for
two different τ10/τ11 ratios. (c) Plot of the {10}/{11}
area ratio for two sets of τ (blue as in panel (a), red as
in panel (b)) for different diameters D of the initial shape
and F0/M0 ratios.

vature, they will always tend to smooth, on a local scale
as small as the τv term dominates. Also, as for a circle
the curvature directly relates to its radius κ = 1/R, the
strength of µeq will progressively decrease as the growth
proceed so that those rounded profiles in Figure 6 will
eventually tend to facets when their radius becomes large
enough.

A similar competition can be illustrated for the more
realistic case of anisotropic surface energy. In such a case,
if the τ maxima coincide with the γ minima, both incor-
poration kinetics and surface energy will enforce the same
faceting, eventually accelerating the shape transformation.
Viceversa, if the set of expected facets for τ and γ differs,
the resulting shape will depend on their relative strength.
As an example, in Figure 7 we consider a γ = γ(n̂) with
deep minima along <10> directions dominating the ECS,
while τ has maxima in the <11> directions, where γ has
only shallow minima (panel a). If the τ/γ is small enough
(panel b), the main driving force causing the redistribu-
tion of the (isotropically) deposited material is the energy
minimization, so that the profile tends to the ECS expos-
ing the most stable {10} facets despite their fast incorpo-
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τ=10
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τ11=10(a)

F0=10(b)

Figure 6 Comparison of the out-of-equilibrium conditions
needed for the kinetic faceting. (a) Profiles obtained by
changing the deposition flux, for a fixed τ11 = 10. (b) Pro-
files obtained by changing τ11, for the same F0 = 10. All
the profiles have the same volume, and the initial stage is a
circle. M0 = 0.1 .

ration rate. Viceversa, when increasing the τ/γ ratio, the
role of the different kinetics becomes dominant, hindering
the growth of the most stable {10} facets in favor of the
slower growing {11} facets. Then, a rotated {11}-faceted
squared profile tends to form (panel c and d), even if a
much higher energy compared to the ECS is retained. Ev-
idently, if the growth would be interrupted, the following
evolution would drive the system toward the ECS, eventu-
ally following a kinetic path influenced by the anisotropic
τ .

The distribution of material supply can be anisotropic
as well, F = F (n̂), driving the system toward the KCS,
and then compete with the anisotropic incorporation times
in determining the crystal morphology, as illustrated in
Fig. 8. If maxima in τ coincide with minima of F , both
terms will lead to the same faceting, as in the case of the
panel (b). On the contrary, if τ -maxima and F -minima do
not correspond, as in panels (c) and (d) where they are out-
of-phase by 45◦, the actual faceting results from the com-
petition between them. In particular, since the faceting due
to τ(n̂) requires diffusion, it is expected to prevail only in
the case of a smaller F/M ratio and only if the size does
not exceed the actual diffusion length. These conditions are
not fulfilled in the case in panel (c), where the diffusion is
frustrated by the fast growth rate, so that the faceting is
given by the minima in F , as for the KCS. A small trace of
diffusion from the {11} vertices to the {10} facets is barely
distinguishable and too weak for altering the shape evolu-
tion. On the contrary, by reducing the F/M ratio it is pos-

0

10

τ
max

0° 90° 360°180° 270°

[10] [01] [10][10] [01][11] [11] [11] [11]

γ
9

τmax=10 τmax=50 τmax=100

0.5 0.5 0.5

(a)

(b) (c) (d)

Figure 7 Competing role of incorporation time and sur-
face energy anisotropy. For larger τ (center and right) the
kinetic faceting dominates over the thermodynamic one re-
sembling the ECS (left). Corner regularization is used with
β = 0.05, while the anisotropy functions for τ(n̂) and γ(n̂)
are plotted in the top panel.

sible to significantly enhance the transfer of the deposited
material prior to the incorporation into the crystal so that
the shape evolution depends more on the different τ . This
is the case for the first evolution stages in the Figure 8(d),
where the {11} facets, corresponding to τ maxima, are
clearly recognizable despite corresponding to the F max-
ima. However, the extent of material transfers is limited
by the diffusion length while the profile size becomes in-
definitely large as the growth proceeds. Therefore, at some
point, the faceting sustained by diffusion is out-ruled by
the anisotropy of the growth rates F and the shape tends
to the expected KCS as evident in the latest stages of the
reported evolution. Notice that a certain broadening due to
local diffusion is always present at the {11} corners, trying
to preserve the slow incorporating facets. However, it re-
mains limited in a region as long as the diffusion length and
hence it becomes negligible for a very large diameter. This
example allows us to conclude that the faceting induced by
orientation-dependent incorporation times τ plays a major
role for particle sizes as small as the diffusion length while
it loses efficacy for larger sizes where the system tends to
the KCS determined by the anisotropy in the growth rates
F .

Finally, it is worth noting that the balance between the
different contributions driving the faceting holds on a local
scale so that, the same growing system may behave dif-
ferently from one region to the other. This is not unusual
if one considers directional deposition [31,32] or shield-
ing effects [18,33] with material arriving only on a certain
portion of a sample and possibly diffusing on other regions.
To illustrate this situation, in Figure 8(e) the evolution of
an initially circular profile with material supply only from
the right-hand side is considered. As expected the growth
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Figure 8 Combination of anisotropic incorporation time
and material supply. (a) Plot of the F (n̂) and τ(n̂)
anisotropy functions used. (b) Both anisotropies lead to the
{11} square (M0=0.001). (c) The flux anisotropy is rotated
by 45◦ (dotted line in panel (a)) and imposes {10} faceting
(M0=0.001). (d): the mobility is increased (M0=0.007),
while keeping the opposite anisotropies for flux and kinet-
ics as in (c). (e) The flux F0 = 5 is directed on one side of
the crystal, following the arrow.

proceeds asymmetrically, with material accumulation on
this latter side. Kinetic faceting is obtained there as the de-
posited material is redistributed according to the different
incorporation times. On the opposite side, a small amount
of material diffuses by surface diffusion under the influ-
ence of the thermodynamic driving force thus favoring a
rounded profile of larger radius, due to the isotropic γ.
Then, on the same particle a faceted growing region, con-
trolled by the incorporation times τ , and a smooth circular
one, driven by the energy reduction, coexist.

5 Applications to realistic structures As observed
in the previous section, the kinetically faceted shapes ex-
ist only in connection with growth and do not necessarily
correspond to the most stable morphologies. Post-growth,
high-temperature processes, e.g. annealing, could drive
further changes in the crystal shape, still influenced by
the incorporation kinetics (see [13]), but directed toward
the ECS. Nonetheless, kinetic faceting is fully meaningful
in experiments when growth is the only high temperature
process at which surface diffusion is active. The model
discussed here finds a direct application to several differ-
ent experimental systems where out-of-equilibrium growth
conditions return peculiar faceting different from both the

ECS and the KCS. To validate this, here we show a couple
of examples where taking into account the incorporation
dynamics is essential to capture the details of the growth
mechanism.

In Figure 9 we simulate the growth of a faceted crys-
tal starting from a simple parallelepiped, laterally bounded
by {110} planes and terminated by a (001) top facet. In-
corporation times are assumed to be maximum for these
facets and for {111} planes, with τ001 one order of mag-
nitude smaller. A vertical deposition flux oriented along
the [00-1] direction is considered. The growth sequence
for a small base structure is reported in panel (a). Since
the early stages, {111} facets nucleate and tend to grow
larger at the expenses of the (001) top, up to form a pyra-
midal tip. This process results from a continuum transfer
of material from the slow incorporating {111} facets to the
faster (001), resulting in a significant enhancement of its
growth rate. The process is not linear in time as it would be
expected by simply assigning different facet velocities as
in a KCS construction, but proceeds exponentially. Indeed,
the larger the {111} grows the more material is driven by
diffusion to the (001), whose area is continuously shrink-
ing at a faster pace. In panel (b), an intermediate profile
obtained for the same conditions but considering a larger
base width is shown and compared with a case obtained
for lower mobility (panel c). Reasonably, the larger dimen-
sions lead to a delay of the closure of the {111} pyramid,
requiring a greater amount of material to diffuse onto the
(001) top. Furthermore, the selected size is large enough to
exceed the diffusion length and hence, the material moved
from the {111} facets to the borders of the (001) top can-
not spread uniformly on it, as in the case of panel (a), thus
producing overgrowth mounds along the (001) perimeter.
These are better noticeable in the plot in panel (d) where
the profile is traced in cross-section along the [110] di-
rection. Evidently, the lateral extension of the mounds di-
rectly depends on the actual diffusion length as the peaks
are much broader and shallower in the high mobility case.
These simulations closely compare with the experiments
of micro-crystals growth on pillar-patterned substrates re-
ported in Refs.[18,34–36]. Indeed, therein the growth con-
ditions were pushed toward a kinetic regime by exploiting
a Low-Energy Plasma-Enhanced Chemical Vapour Depo-
sition, allowing for the deposition of several µm of Ge by
high growth rates (4-7.5 nm s−1) at relatively low tem-
peratures (400-600 ◦C). Our results offer a deeper insight
on the possible mechanisms responsible for the observed
temperature dependence of the crystal morphology, chang-
ing from nearly planar at low temperature to pyramidal at
higher temperature. Indeed, according to the simulations,
the pyramidal shape is achieved only if diffusion is ac-
tive, which is the case of high enough temperature. The
consistency of the simulation results with the experimental
evidences is also corroborated by the overgrowth features
recognized on larger structures. A more quantitative anal-
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ysis, aimed at the determination of the characteristic facet
incorporation times, is left to a future, more focused work.

In a recent study [37], the growth by Selective-Area
Epitaxy of GaAs nanomembranes [38] has been demon-
strated to proceed in a kinetic regime dominated by the
large difference in the adatom incorporation times of the
exposed facets. In particular, by performing a Molecu-
lar Beam Epitaxy growth (with 1 Ås−1 deposition rate
for 60 min.), µm-long trapezoidal fins bounded by {110}
facets and a (111)B at the top were observed to evolve to-
ward a triangular shape, with a progressive shrinkage of
the (111)B facet. This mechanism was explained by con-
sidering that incorporation of the top facet is faster than
on {110} ones and a difference of an order of magnitude
was estimated between the respective incorporation times:
τ110 ≈ 10τ111. In Figure 10 we show a comparison of
growth simulations of a fin-like structure by taking into ac-
count both orientation dependent incorporation times and
anisotropic surface energy (neglected in Ref. [37]). In par-
ticular, the sequence in panel (a) is obtained by considering
just anisotropic surface energy γ(n̂), compatible with lit-
erature values from Ref. [39]. This is compared with the
sequence in panel (b), achieved when admitting also the
expected differences in the incorporation times. Evidently,
in the former case the criterion of free-energy minimiza-
tion causes a strong redistribution of material into a com-
pact shape, faceted according to the relative stability of the
considered facets. Indeed, at the latest stages of the evolu-
tion, the growing crystal closely resemble the ECS, except
for the bottom portion within the slit that is distorted by
the non-contact boundary condition imposed at the sides
of the slit to mimic the effect of the oxide mask. Vicev-
ersa, in the case of panel (b), the thermodynamic driving
forces are cancelled by the strong difference in incorpo-
ration times. Thus, the morphology evolves in a kinetic
regime where {110} facets extend from the slit perimeter
returning a shape evolution very similar to the experimen-
tal one. It is worth noting how in this example both γ and τ
anisotropies are considered as expected for the real system
thus showing how the latter plays a major role at the exper-
imental conditions, still maintaining the energy differences
between the facets. If, after growth, the fins were annealed
at high temperature, material would possibly evolve to re-
store the most convenient facets more similar to the case of
panel (a).

6 Conclusions The role of orientation-dependent in-
corporation kinetics in driving the faceting of a crystal has
been in-depth analyzed by means of growth simulations. It
has been shown that large differences in the incorporation
times can play a major role in the faceting of a crystal dur-
ing growth, and compete with the anisotropies in surface
energy and material supply. The interplay of all of these
factors has been discussed in details and it is shown to al-
low for crystal shapes beyond the simplistic description of

ECS and KCS. This makes the approach well suitable to
tackle realistic cases.

It must be however noted that, as for the growth rates
in the KCS, also the incorporation times τ are not sim-
ple to be estimated a-priori as this would require an ex-
tensive and dedicated analysis of the atomistic processes
behind adsorption and redistribution of atoms within the
surface of a crystal under out-of-equilibrium growth condi-
tions. Nonetheless, at variance with the growth velocities,
incorporation times are expected to be independent of the
growth parameters and hence to be real properties of the
material.
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