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We extend the GENEVA Monte Carlo framework using the transverse momentum of a color-singlet
system as the resolution variable. This allows us to use next-to-next-to-next-to-leading-logarithm (N3LL)
resummation via the RADISH formalism to obtain precise predictions for any color-singlet production
process at the fully exclusive level. Thanks to the implementation of two different resolution variables
within the GENEVA framework, we are able to assess the impact of such a choice on differential observables
for the first time. As a first application, we present predictions for Drell-Yan lepton-pair production at next-
to-next-to-leading order (NNLO) in QCD interfaced to a parton shower simulation that includes additional
all-order radiative corrections. We provide fully showered and hadronized events using PYTHIA8, while
retaining the NNLO QCD accuracy for observables which are inclusive over the additional radiation. We
also show that it is possible to obtain a numerically good agreement between showered GENEVA predictions
and the N3LL resummation for the transverse momentum spectrum by choosing a more local recoil
scheme. We compare our final predictions to LHC data at 13 TeV, finding good agreement across several
distributions.
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I. INTRODUCTION

The rich and vast physics program at the Large Hadron
Collider (LHC) has delivered an outstanding amount of
data so far. Thanks to these impressive performances,
particle physics has entered an era where high precision
is ubiquitous. With the forthcoming start of the Run 3 and
the future upgrade to the High-Luminosity LHC, the

amount of data that will be collected will increase signifi-
cantly. This ground-breaking machine will thus be able to
detect extremely rare phenomena and further improve the
precision of measurements.
Theoretical predictions of the Standard Model processes

are one of the most fundamental ingredients for the inter-
pretation of collider data. The vast majority of experimental
analyses rely on theoretical predictions in the form of
perturbative calculations at parton level or in combination
with parton showers (PSs) in fully exclusive Monte Carlo
(MC) event generators. The advantage of MC event gen-
erators is the ability to produce hadron-level events that can
be directly interfaced to detector simulations.
In order to completely exploit the precision of present

and future experimental data, it becomes therefore man-
datory to refine MC event generators including the state-of-
the-art corrections available. For this reason, in recent years
there has been increasing interest in obtaining theoretical
predictions where fixed-order predictions at next-to-next-
to-leading-order (NNLO) accuracy are consistently
matched with PS simulations. There are currently four
available methods which can reach NNLOþ PS accuracy
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[1–7], which have been initially applied to 2 → 1 processes
such as Higgs [1,5] and Drell-Yan (DY) [3,4,8] production.
The number of applications at hadron colliders has been
rapidly growing in the last few years, and the methods have
been extended to more complex processes such as
Higgsstrahlung [9–11], hadronic Higgs boson decays
[12,13], WþW− [14], diphoton [15], Zγ [16], and tt̄
production [17].
In this paper, we focus on the GENEVA framework, which

has been developed in Refs. [2,3,18,19]. This method
attains NNLOþ PS accuracy by combining fixed-order
predictions at NNLO accuracy with the higher-order
resummation of an N-jet resolution variable and matching
the ensuing predictions with the PS. The N-jet resolution
variable partitions the phase space into regions with a
different number of resolved emissions in the final state,
such that infrared (IR) divergent final states withM partons
are translated into finite final states with N-partonic jets
(where M ≥ N). This ensures that the IR divergences
cancel on an event-by-event basis yielding physical and
IR-finite events.
Although the GENEVA method is completely general to

the point that several different resolution variables can be
used, so far the only practical implementations employed
N-jettiness T N [20] to achieve the separation between the
N- and (N þ 1)-jet events. Nonetheless, any other reso-
lution variable which can be resummed at high enough
accuracy can be used. In this paper, we extend the GENEVA

method using the transverse momentum q⊥ of a color-
singlet system as a 0-jet separation variable. The choice of
this variable is principally dictated by the availability of
higher-order resummation up to the next-to-next-to-next-
to-leading logarithm (N3LL) and by the extreme precision
at which it is measured by the LHC experiments for
different processes. However, the peculiar vectorial nature
of this observable deserves further comment, especially in
view of its usage as 0-jet resolution. Indeed, at variance
with N-jettiness, it does not completely single out the soft
and collinear limits when q⊥ → 0. The reason is that there
are two competing mechanisms which can drive q⊥ to
small values: The first is the usual ensemble of soft and/or
collinear partonic emissions with k⊥;i ≃ 0 recoiling against
the produced color singlet; the second proceeds instead
through a combination of two or more relatively hard
emissions balancing each other, such that the resulting
vectorial sum of their k⃗t;i is zero. It happens that the latter
mechanism is the one that dominates at small q⊥ and is
responsible for the behavior of the differential cross section
in the small q⊥ limit: Indeed, in the low q⊥ region the
spectrum vanishes as dσ=dq⊥ ∼ q⊥ instead of vanishing
exponentially as the Sudakov suppression of the first
mechanism would suggest [21].
The presence of these two competing mechanisms seems

to prevent the usage of q⊥ as a 0-jet resolution observable.
However, both effects which lead to a vanishing q⊥ are

properly included in the 0-jet cross section by performing
the resummation of q⊥ in the Fourier-conjugate impact-
parameter space [22]. The problem of resummation in
direct space is more delicate, and only recently was it
shown that it is possible to directly resum the transverse
momentum spectrum in direct space without spoiling the
scaling at low q⊥ [23,24]. This problem was also addressed
in Ref. [25] within a soft-collinear effective theory (SCET)
approach, where the renormalization- group evolution is
solved directly in momentum space. The remaining non-
singular contribution stemming from two or more relatively
hard emissions resulting in a system with small q⊥ is
strongly suppressed and can be neglected. As a result, it is
possible to use q⊥ as a proper 0-jet resolution variable. In
particular, in this work we consider the RADISH approach of
Refs. [23,24], which allows us to resum the transverse
momentum spectrum at N3LL.
Here we focus on neutral DY production at the LHC

(pp → Z=γ� → lþl−) as a case study, but this approach
can immediately be applied also to the charged current case
and to other color-singlet processes. Differential distribu-
tions of electroweak gauge bosons play a paramount role in
the precision program at the LHC. These observables are
measured at the level of their leptonic decays and are
typically characterized by particularly small experimental
uncertainties, which can reach the few per mille level in
neutral DY production [26–41]. This further motivates the
inclusion of higher-order calculations in MC event gen-
erators for this process.
On the theory side, fixed-order predictions for neutral DY

production have been known at NNLO accuracy for quite
some time at the inclusive [42–50] and at the differential level
[51–56]. Because of the outstanding precision of the exper-
imental data, the theoretical calculations are currently being
pushed at next-to-next-to-next-to-leading order (N3LO), and
the inclusive cross section for lepton-pair production through
a virtual photon has been recently calculated at this accuracy
in Ref. [57]. Electroweak (EW) corrections for this process
are known [58–66]. The computation of mixed QCD-EW
corrections is an active area of research [67–72], and they
were recently computed for the production of an on-shell Z
boson and its decay to massless charged leptons has become
available [73].
In this work, we improve the fully differential NNLO

calculation with the N3LL resummation for the transverse
momentum, and we subsequently shower and hadronize the
events with PYTHIA8 [74], while maintaining NNLO
accuracy for the underlying process and a numerically
good agreement with the resummed q⊥ spectrum. We
compare our predictions with recent data collected at the
LHC by the ATLAS [40] and CMS [41] Collaborations at a
center-of-mass energy of 13 TeV.
The manuscript is organized as follows: In Sec. II we

introduce the theoretical framework; we first review the
GENEVA method by discussing its extension to a different
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0-jet resolution variable and recap the resummation of the
transverse momentum within the RADISH formalism. In
Sec. III, we discuss the details of the implementation and
present the validation of our results by performing com-
parisons against fixed-order predictions at NNLO. We also
study the differences with respect to the original GENEVA

implementation of Refs. [3,19], which uses the beam thrust
as the 0-jet resolution variable. We then compare our
predictions with the experimental data in Sec. IV and
finally draw our conclusions in Sec. V.

II. THEORETICAL FRAMEWORK

In this section, we briefly review the theoretical frame-
work used in this work. We start by providing a short
description of the GENEVA method, focusing especially on
the separation between 0- and 1-jet events. This is par-
ticularly relevant in our case due to the change in the 0-jet
resolution variable. We then discuss the resummation of the
transverse momentum spectrum in direct space using the
RADISH formalism.

A. The GENEVA method

The GENEVA method is based on the definition of
physical and IR-finite events at a given perturbative
accuracy, with the condition that IR singularities cancel
on an event-by-event basis. This is achieved by mapping
IR-divergent final states with M partons into IR-finite final
states with N jets, with M ≥ N. Events are classified
according to the value of N-jet resolution variables rN
which partition the phase space into different regions
according to the number of resolved emissions. In particu-
lar, the GENEVA Monte Carlo cross section dσMC

N receives
contributions from both N-parton events and M-parton
events where the additional emission(s) are below the
resolution cut rcutN used to separate resolved and unresolved
emissions. The unphysical dependence on the boundaries
of this partitioning procedure is removed by requiring that
the resolution parameters are resummed at high enough
accuracy. Considering events with up to two resolved
emissions necessary to achieve NNLO accuracy for
color-singlet production, one has

Φ0 events∶
dσMC

0

dΦ0

ðrcut0 Þ;

Φ1 events∶
dσMC

1

dΦ1

ðr0 > rcut0 ; rcut1 Þ;

Φ2 events∶
dσMC

≥2

dΦ2

ðr0 > rcut0 ; r1 > rcut1 Þ; ð1Þ

where by using the notation rN > rcutN we indicate that the
events are differential in the N-jet resolution variable, while
with the notation rcutN , we indicate that the MC cross section
contains events in which the resolution variable has been

integrated up to the resolution cut. As mentioned in the
Introduction, the definition of the partonic jet bins is based on
the definition of a suitable phase-space mapping ΦNðΦMÞ,
where N and M denote the number of jets and partons,
respectively. This ensures the finiteness of the dσMC

N cross
section; however, they must not be mistaken for the jet bins
commonly used in experimental analyses, which instead
define jets according to a particular jet algorithm.1

Defining the events as in Eq. (1), the cross section for a
generic observable X is

σðXÞ ¼
Z

dΦ0

dσMC
0

dΦ0

ðrcut0 ÞMXðΦ0Þ

þ
Z

dΦ1

dσMC
1

dΦ1

ðr0 > rcut0 ; rcut1 ÞMXðΦ1Þ

þ
Z

dΦ2

dσMC
≥2

dΦ2

ðr0 > rcut0 ; r1 > rcut1 ÞMXðΦ2Þ; ð2Þ

where by MXðΦNÞ we indicate the measurement function
used to compute the observable X for the N-jet final state
ΦN . We stress that the expression σðXÞ is not exactly
equivalent to the result of a fixed-order calculation at
NNLO accuracy, as for unresolved emissions the observ-
able is calculated on the projected phase space ΦNðΦMÞ
rather than on ΦM. However, the difference is of non-
singular nature and vanishes in the limit rcutN → 0. The value
of the resolution cut rcutN should therefore be chosen as
small as possible. In this limit, the result contains large
logarithms of the resolution variable rN (and of rcutN ), which
one should resum to all orders in perturbation theory to
yield meaningful results.
Let us start by discussing the separation between the 0-

jet and the 1-jet regimes and the associated resummation of
the 0-jet resolution variable. The expressions for the MC
cross sections in the exclusive 0-jet bin and in the inclusive
1-jet bin are

dσMC
0

dΦ0

ðrcut0 Þ ¼ dσres

dΦ0

ðrcut0 Þ þ dσnons0

dΦ0

ðrcut0 Þ ð3Þ

and

dσMC
≥1

dΦ1

ðr0 > rcut0 Þ ¼ dσres

dΦ0dr0
PðΦ1Þθðr0 > rcut0 Þ

þ dσnons≥1

dΦ1

ðr0 > rcut0 Þ; ð4Þ

respectively. The label “res” stands for “resummed” and the
nonsingular contributions labeled “nons”must only contain
terms which are nonsingular in the r0 → 0 limit. When

1In principle, nothing prevents the usage of a resolution
variable based on a standard jet algorithm to define the GENEVA

jet bins, e.g., pT;jet, if not for the lack of the corresponding higher-
order logarithmic resummation.
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working at NNLO accuracy, to ensure that the second
contribution on the right-hand side of Eqs. (3) and (4) is
genuinely nonsingular, the resummed contribution must
include all the terms singular in the resolution variable r0 at
order α2s ; i.e., it should be evaluated at least at NNLL0
accuracy. In the context of hadron collider processes, the
GENEVA implementations have so far only employed the
beam thrust T0 as 0-jet resolution variable, whose resum-
mation was performed at NNLL0 in SCET. In this work, we
extend the GENEVA framework to use the transverse
momentum of the color-singlet q⊥ as 0-jet resolution
parameter, which we resum at N3LL accuracy; see
Sec. II B. It is worth emphasizing again that when one
chooses q⊥ as the 0-jet resolution, one is not only singling
out configurations without any hard emission, as there exist
configurations with two or more partons with transverse
momenta balancing each other such that the vectorial sum
of their k⊥ is small. These contributions are included by the

resummation in dσMC
0

dΦ0
ðqcut⊥ Þ, but they are only described in

the soft and/or collinear approximation, missing power-
suppressed nonsingular corrections which are progressively
important at increasing values of k⊥. However, as long as
one keeps qcut⊥ sufficiently small, the chance of obtaining a
small vectorial sum from larger and larger individual
transverse momenta is heavily suppressed, and therefore,
the contribution to this region stemming from hard jets can
be safely neglected. In Sec. III B, we will discuss the value
of qcut⊥ necessary to make the power-suppressed terms
sufficiently small that they may be neglected.
In order to make the r0 spectrum fully differential in the

Φ1 phase space, Eq. (4) contains a splitting function PðΦ1Þ
fulfilling the normalization conditionZ

dΦ1

dΦ0dr0
PðΦ1Þ ¼ 1: ð5Þ

This function is used to extend the differential dependence
of dσres including the full radiation phase space written as a
function of r0 and two additional variables, which we
choose to be the energy fraction z and the azimuthal angle ϕ
of the emission.
The nonsingular contributions entering in Eqs. (3) and

(4) are

dσnons0

dΦ0

ðrcut0 Þ ¼ dσNNLO0

0

dΦ0

ðrcut0 Þ −
�
dσres

dΦ0

ðrcut0 Þ
�
NNLO0

ð6Þ

and

dσnons≥1

dΦ1

ðr0>rcut0 Þ¼dσNLO1

≥1

dΦ1

ðr0>rcut0 Þ

−
�

dσres

dΦ0dr0
PðΦ1Þ

�
NLO1

θðr0>rcut0 Þ; ð7Þ

where NNLO0 and NLO1 indicate the accuracy at which
one should compute the fixed-order contributions for each
jet bin. The terms in square brackets are the expansion of
the resummed result at Oðα2SÞ of the cumulant and of the
spectrum.
By writing explicitly the expressions for the fixed-order

cross sections, one has

dσMC
0

dΦ0

ðrcut0 Þ ¼ dσres

dΦ0

ðrcut0 Þ −
�
dσres

dΦ0

ðrcut0 Þ
�
NNLO0

þ ðB0 þ V0 þW0ÞðΦ0Þ

þ
Z

dΦ1

dΦ0

ðB1 þ V1ÞðΦ1Þθðr0ðΦ1Þ < rcut0 Þ

þ
Z

dΦ2

dΦ0

B2ðΦ2Þθðr0ðΦ2Þ < rcut0 Þ ð8Þ

for the 0-jet bin and

dσMC
≥1

dΦ1

ðr0 > rcut0 Þ

¼
�

dσres

dΦ0dr0
−
�

dσres

dΦ0dr0

�
NLO1

�
PðΦ1Þθðr0 > rcut0 Þ

þ ðB1 þ V1ÞðΦ1Þθðr0ðΦ1Þ > rcut0 Þ

þ
Z

dΦ2

dΦr0
1

B2ðΦ2Þθðr0ðΦ2Þ > rcut0 Þ ð9Þ

for the inclusive 1-jet bin.
In the above equations, BM are the M-parton tree-level

contributions, VM are theM-parton one-loop contributions,
and finally, W0 is the two-loop contribution. In Eq. (9), we
also introduced the notation

dΦ2

dΦr0
1

≡ dΦ2δ½Φ1 −Φr0
1 ðΦ2Þ�Θr0ðΦ1Þ ð10Þ

to indicate that the integration is performed over a region of
Φ2 while keeping the values of r0 and of theΦ1 observables
that we use to parametrize the 1-jet phase space fixed. This
is required since the expression for dσMC

≥1 is differential in
the 0-jet resolution parameter r0, meaning that we should
also parametrize the 2-parton contribution B2 in the same
terms. This means that the mapping used in the projection
dΦ2=dΦ

r0
1 should preserve r0, i.e.,

r0ðΦr0
1 ðΦ2ÞÞ ¼ r0ðΦ2Þ; ð11Þ

to guarantee the pointwise cancellation of the singular r0
contributions in Eq. (9).
The Θr0ðΦ1Þ in Eq. (10) limits the integration to the

singular points for which it is possible to construct such a
projection. The nonprojectable region of the Φ2 phase
space, which only includes nonsingular events, must
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therefore be included in the 2-jet event cross section, as
shown later. We finally notice that Eq. (9) should be
supplemented by including in dσMC

1 1-jet events with r0 <
rcut0 which cannot be mapped into 0-jet events. In the 1 → 0

case, we use the Frixione-Kunszt-Signer (FKS) mapping
[75], which implies that the only nonprojectable events are
those which would result in an invalid flavor configuration
that is not present at the LO level (e.g., qg → lþl−q
projected to gg → lþl−). By denoting the nonprojectable
region with the symbol Θ̄FKS

map , we supplement the formulas
above with

dσMC
1

dΦ1

ðr0 ≤ rcut0 Þ ¼ ðB1 þ V1ÞðΦ1Þθðr0 < rcut0 ÞΘ̄FKS
map ðΦ1Þ:

ð12Þ
Before we move on to discuss the N3LL resummation of

the transverse momentum, we shall briefly review the
separation of the 1-jet cross section into an exclusive
1-jet cross section and an inclusive 2-jet cross section.
This separation can be performed in analogy to the 0-/1-jet
separation discussed above, with r1 now being the relevant
resolution variable:

dσMC
1

dΦ1

ðr0 > rcut0 ; rcut1 Þ ¼ dσres1

dΦ1

ðr0 > rcut0 ; rcut1 Þ þ dσmatch
1

dΦ1

ðr0 > rcut0 ; rcut1 Þ; ð13Þ

dσMC
≥2

dΦ2

ðr0 > rcut0 ; r1 > rcut1 Þ ¼ dσres≥2

dΦ2

ðr0 > rcut0 ; r1 > rcut1 Þ þ dσmatch
≥2

dΦ2

ðr0 > rcut0 ; r1 > rcut1 Þ: ð14Þ

In these equations, the resummation accuracy can be lowered with respect to the 0-/1-jet separation and is set to NLL. The
full expressions for the exclusive 1-jet and the inclusive 2-jet cross section read [3,11]

dσMC
1

dΦ1

ðr0 > rcut0 ; rcut1 Þ ¼
�

dσres

dΦ0dr0
PðΦ1Þ −

�
dσres

dΦ0dr0
PðΦ1Þ

�
NLO1

þ ½B1 þ VC
1 �ðΦ1Þ

�
×U1ðΦ1; rcut1 Þθðr0 > rcut0 Þ

þ
�Z �

dΦ2

dΦr0
1

B2ðΦ2Þθðr0ðΦ2Þ > rcut0 Þθðr1 < rcut1 Þ − dΦ2

dΦC
1

C2ðΦ2Þθðr0 > rcut0 Þ
��

− B1ðΦ1ÞUð1Þ
1 ðΦ1; rcut1 Þθðr0 > rcut0 Þ; ð15Þ

dσMC
≥2

dΦ2

ðr0 > rcut0 ; r1 > rcut1 Þ

¼
��

dσres

dΦ0dr0
PðΦ1Þ−

�
dσres

dΦ0dr0
PðΦ1Þ

�
NLO1

þ ðB1 þVC
1 ÞðΦ1Þ

�
U1

0ðΦ1; r1Þ× θðr0 > rcut0 Þ
�
Φ1¼Φr0

1
ðΦ2Þ

PðΦ2Þθðr1 > rcut1 Þ

þ fB2ðΦ2Þθðr1 > rcut1 Þ−B1ðΦr0
1 ÞUð1Þ0

1 ðΦr0
1 ; r1ÞPðΦ2Þθðr1 > rcut1 Þg× θðr0ðΦ2Þ> rcut0 Þ: ð16Þ

In these formulas,U1ðΦ1; rcut1 Þ is the Sudakov form factor that resums the dependence on rcut1 at NLL,U0
1ðΦ1; r1Þ denotes

its derivative with respect to rcut1 , and Uð1Þ
1 and Uð1Þ0

1 are theirOðαSÞ expansions. The C2 term is the singular approximant of
the double-real matrix element B2, which acts as a standard NLO subtraction reproducing the singular behavior of B2. The
term VC

1 is defined from the relation

ðB1 þ V1ÞðΦ1Þ þ
Z

dΦ2

dΦC
1

C2ðΦ2Þ≡ ðB1 þ VC
1 ÞðΦ1Þ: ð17Þ

The normalized splitting function PðΦ2Þ satisfies the unitarity condition [cf. the 0-/1-jet case Eq. (5)]

U1ðΦ1; rcut1 Þ þ
Z

dΦ2

dΦr0
1

U0
1ðΦ1; r1ÞPðΦ2Þθðr1 > rcut1 Þ ¼ 1: ð18Þ

Analogous to the case of the normalized splitting function PðΦ1Þ, the function PðΦ2Þ extends the differential dependence
of dσres including the radiation phase space for two emissions, where the second emission should now be parametrized in
terms of r1 and of the same two additional radiation variables. Despite having used the same notation, we stress that the
mapping used in Eqs. (16) and (18) does not need to correspond to the one used to implement the subtraction in Eq. (15).
Indeed the latter does not need to be written as a function of r1.
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The formulas above should be supplemented by includ-
ing nonprojectable 2-jet events with r1 < rcut1 , namely,

dσMC
≥2

dΦ2

ðr0 > rcut0 ; r1 ≤ rcut1 Þ

¼ B2ðΦ2ÞΘ̄r0
mapðΦ2Þθðr1 < rcut1 Þθðr0ðΦ2Þ > rcut0 Þ; ð19Þ

where we use the symbol Θ̄r0
mapðΦ2Þ to denote the region of

phase space which cannot be projected on the physical Φ1

phase space via the Φr0
1 ðΦ2Þ mapping. In principle, in the

r0 < rcut0 region also, events with two hard emissions
contribute at NNLO. However, we stress again that when
the 0-jet resolution variable is q⊥ and one keeps qcut⊥ small
enough, these nonsingular contributions from events with
two hard jets are negligible, and we therefore set

dσMC
≥2

dΦ2

ðq⊥ < qcut⊥ Þ≡ 0: ð20Þ

This concludes our review of the GENEVA method.
In the following, we will use the transverse momentum as

0-jet resolution variables and 1-jettiness as a 1-jet resolution
variable. We shall use the notation GENEVAq⊥ to label our
predictions, while we will use the notation GENEVAT 0

when referring to the original GENEVA implementation using
beam thrust. In the next section, we discuss the resummation
of the transverse momentum distribution in color-singlet
productionwithin theRADISH framework.We refer the reader
to Refs. [11,19] for the discussion of the NLL resummation
of T 1 within the GENEVA formalism.

B. Transverse momentum resummation
in the RADISH formalism

Various formalisms to perform the resummation of the
transverse momentum in color-singlet processes have been
developed over the last four decades [21–25,76–86]. All the
ingredients for the N3LL q⊥ resummation have been
computed in Refs. [87–95], and state-of-the-art predictions
for DY production now reach this accuracy [24,96–101]. In
this section, we summarize the RADISH resummation
formalism developed in Refs. [23,24], which we use in
this work to resum the transverse momentum spectrum
at N3LL.
The RADISH formalism allows one to resum any trans-

verse observable (i.e., not depending on the rapidity of the
radiation) which fulfills recursive infrared collinear (RIRC)
safety [102]. The resummation is formulated directly in
momentum space by exploiting factorization properties of
squared QCD amplitudes. The resummation is then evalu-
ated numerically via MC methods. The RADISH formulas
are more conveniently expressed at the level of the
cumulative cross section

Σðqcut⊥ Þ≡
Z

qcut⊥

0

dq⊥
dσðq⊥Þ
dq⊥

¼
Z

dΦ0

dσres

dΦ0

ðqcut⊥ Þ; ð21Þ

where q⊥ ¼ q̂⊥ðΦ0; k1;…; knÞ is a function of the Born
phase space Φ0 of the produced color singlet and of the
momenta k1;…; kn of n real emissions.
For example, in the soft limit, the all-order structure of

Σðqcut⊥ Þ fully differential in the Born phase space can be
written as

dσres

dΦ0

ðqcut⊥ Þ ¼ VðΦ0Þ
X∞
n¼0

Z Yn
i¼1

½dki�jMðΦ0; k1;…; knÞj2

× θðqcut⊥ − q̂⊥ðΦ0; k1;…; knÞÞ: ð22Þ

Here, ½dki� and dΦ0 denote the phase spaces of the ith
emission ki and of the Born configuration, respectively,M
denotes the matrix element for n real emissions in the soft
approximation, and VðΦ0Þ is the resummed form factor in
the soft limit, which encodes the purely virtual corrections;
see [103–105]. To obtain the resummation, it is first
necessary to establish a well-defined logarithmic counting
in the squared amplitude. The counting is established by
decomposing the squared amplitude defined in Eq. (22) in
n-particle-correlated blocks, which contain the correlated
portion of the squared n-emission soft amplitude and its
virtual corrections [24,102,106]. In particular, blocks with
n particles start contributing one logarithmic order higher
than blocks with (n − 1) particles, which allows one to
systematically identify all the relevant contributions enter-
ing at a given logarithmic order.
Thanks to the RIRC safety of the observables, the

divergences appearing at all perturbative orders in the real
matrix elements cancel exactly those of virtual origin, which
are contained in the VðΦ0Þ factor of Eq. (22). The cancella-
tion of the singularities is achieved by introducing a
resolution scale q0. Radiation softer than q0 is dubbed
unresolved and can be exponentiated to cancel the diver-
gences of virtual origin. Radiation harder than q0 (resolved)
must instead be generated exclusively as it is constrained by
the measurement function θðqcut⊥ − q̂⊥ðΦ0; k1;…; knÞÞ in
Eq. (22). Recursive IRC safety ensures that neglecting
radiation softer than q0 (unresolved) in the computation of
q̂⊥ðΦ0; k1;…; knÞ only produces terms suppressed by
powers of q0, thus ensuring that the limit q0 → 0 can be
taken safely.
In the RADISH formalism, the resolution scale q0 is set to

a small fraction δ > 0 of the transverse momentum of the
correlated block with the largest k⊥, which we henceforth
denote as k⊥;1. The cumulative cross section at N3LL
accuracy for the production of a color singlet of mass M
fully differential in the Born kinematic variables and
including also the effect of collinear radiation can then
be written as [24]
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dσres

dΦ0

ðqcut⊥ Þ ¼
Z

dk⊥;1

k⊥;1

dϕ1

2π
∂Lð−e−Rðk⊥;1ÞLN3LLðk⊥;1ÞÞ

Z
dZ½fR0; kig�Θðqcut⊥ − jk⃗⊥;1 þ � � � þ k⃗⊥;nþ1jÞ

þ
Z

dk⊥;1

k⊥;1

dϕ1

2π
e−Rðk⊥;1Þ

Z
dZ½fR0; kig�

Z
1

0

dζs
ζs

dϕs

2π

�
ðR0ðk⊥;1ÞLNNLLðk⊥;1Þ − ∂LLNNLLðk⊥;1ÞÞ

×

�
R00ðk⊥;1Þ ln

1

ζs
þ 1

2
R000ðk⊥;1Þln2

1

ζs

�
− R0ðk⊥;1Þ

�
∂LLNNLLðk⊥;1Þ − 2

β0
π
α2Sðk⊥;1ÞP̂ð0Þ ⊗ LNLLðk⊥;1Þ ln

1

ζs

�
þ α2Sðk⊥;1Þ

π2
P̂ð0Þ ⊗ P̂ð0Þ ⊗ LNLLðk⊥;1Þ

�
fΘðqcut⊥ − jk⃗⊥;1 þ � � � þ k⃗⊥;nþ1 þ k⃗⊥;sjÞ

− Θðqcut⊥ − jk⃗⊥;1 þ � � � þ k⃗⊥;nþ1jÞg

þ 1

2

Z
dk⊥;1

k⊥;1

dϕ1

2π
e−Rðk⊥;1Þ

Z
dZ½fR0; kig�

Z
1

0

dζs1
ζs1

dϕs1

2π

Z
1

0

dζs2
ζs2

dϕs2

2π
R0ðk⊥;1Þ

×

�
LNLLðk⊥;1ÞðR00ðk⊥;1ÞÞ2 ln

1

ζs1
ln

1

ζs2
− ∂LLNLLðk⊥;1ÞR00ðk⊥;1Þ

�
ln

1

ζs1
þ ln

1

ζs2

�
þ α2Sðk⊥;1Þ

π2
P̂ð0Þ ⊗ P̂ð0Þ ⊗ LNLLðk⊥;1Þ

�
× fΘðqcut⊥ − jk⃗⊥;1 þ � � � þ k⃗⊥;nþ1 þ k⃗⊥;s1 þ k⃗⊥;s2jÞ − Θðqcut⊥ − jk⃗⊥;1 þ � � � þ k⃗⊥;nþ1 þ k⃗⊥;s1jÞ
− Θðqcut⊥ − jk⃗⊥;1 þ � � � þ k⃗⊥;nþ1 þ k⃗⊥;s2jÞ þ Θðqcut⊥ − jk⃗⊥;1 þ � � � þ k⃗⊥;nþ1jÞg: ð23Þ

In the equation above, the first line enters already at
NLL, the first set of curly brackets (second to fifth line)
starts contributing at NNLL, and the last set of curly
brackets (from line six) enters at N3LL.
The functions L are luminosity factors evaluated at

different orders which involve, besides the parton lumi-
nosities, the process-dependent squared Born amplitude
and hard-virtual corrections HðnÞ as well as the coefficient
functionsCðnÞ

ci ,which have been evaluated to secondorder for
qq̄-initiated processes in Refs. [88,89,91]. The factors P̂ð0Þ

denote the regularized splitting functions. The interested
reader is referred to Sec. 4 ofRef. [24] for the definition of the
luminosity factors and their ingredients. We defined ζsi ≡
k⊥;si=k⊥;1 and we introduced the notation dZ½fR0; kig� to
denote an ensemble describing the emission of n identical
independent blocks. The average of a function GðΦ0; fkigÞ
over the measure dZ as (ζi ≡ k⊥;i=k⊥;1) is defined asZ

dZ½fR0; kig�GðΦ0; fkigÞ

¼ e−R
0ðk⊥;1Þ ln1δ

X∞
n¼1

1

n!

Ynþ1

i¼2

Z
1

δ

dζi
ζi

×
Z

2π

0

dϕi

2π
R0ðk⊥;1ÞGðΦ0; k1;…; knþ1Þ: ð24Þ

Note that the ln 1=δ divergence appearing in the exponential
prefactor of Eq. (24) cancels exactly that in the resolved real
radiation encoded in the nested sums of products on the right-
hand side of Eq. (24).

Equation. (23) has been obtained by expanding all the
ingredients around k⊥;1 since ζi ¼ k⊥;i=k⊥;1 ∼Oð1Þ; see
Ref. [24]. Thanks to RIRC safety, blocks with k⊥;i ≪ k⊥;1

are fully canceled by the term expf−R0ðk⊥;1Þ lnð1=δÞg of
Eq. (24). Although such an expansion is not strictly
necessary, it makes a numerical implementation much
more efficient [24]. Because of this expansion, Eq. (23)
contains explicitly the derivatives

R0 ¼ dR=dL; R00 ¼ dR0=dL; R000 ¼ dR00=dL ð25Þ

of the radiator R, which is given by

Rðk⊥;1Þ ¼ −Lg1ðαSβ0LÞ − g2ðαSβ0LÞ

−
αS
π
g3ðαSβ0LÞ −

α2S
π2

g4ðαSβ0LÞ; ð26Þ

with αS ¼ αSðμRÞ and μR ∼M being the renormalization
scale, where M is the hard scale of the process. Here
L ¼ lnðQ=k⊥;1Þ, where Q ∼M is the resummation scale,
whose variation is used to probe the size of missing
logarithmic higher-order corrections in Eq. (23). The
functions gi are reported in Eqs. (B.8)–(B.11) of Ref. [24].
The above formulas are implemented in the code

RADISH, which evaluates them using MC methods. We
refer the reader to Sec. 4.3 of Ref. [24] for the technical
details.
The resummed result provided by RADISH is valid in the

soft/collinear region, i.e., q⊥=M ≪ 1, and must be matched
with fixed-order predictions at large values of q⊥.
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Resummation effects should thus vanish in the large q⊥
region. This is enforced by mapping the limit k⊥;1 → Q,
where the logarithms vanish onto k⊥;1 → ∞ via modified
logarithms

ln
Q
k⊥;1

→ L̃≡ 1

p
ln

��
Q
k⊥;1

�
p
þ 1

�
; ð27Þ

where p is a positive real parameter whose value is chosen
such that the resummed component decreases faster than
the fixed-order spectrum for q⊥=M ≳ 1. In the following,
we took p ¼ 4. Therefore, the logarithms L in the Sudakov
radiator Eq. (26), its derivatives Eq. (25), and the lumi-
nosity factors have to be replaced by L̃.
For consistency, one must supplement Eq. (23) with the

following Jacobian:

J ðk⊥;1Þ ¼
�

Q
k⊥;1

�
p
��

Q
k⊥;1

�
p
þ 1

�
−1
: ð28Þ

This prescription leaves the measurement functions in
Eq. (23) unchanged. The final result is modified beyond
the nominal accuracy by power corrections in ðQ=k⊥;1Þp.

III. IMPLEMENTATION DETAILS

In this section, we discuss the interface of the RADISH

code with GENEVA and the implementation of the DY
process in GENEVA using q⊥ as a 0-jet resolution variable.
We validate our framework by comparing our results with
NNLO predictions obtained with MATRIX [107] and discuss
the interface with PSs.

A. Interfacing GENEVA with RADISH

The resummation formulas discussed in Sec. II B are
implemented in the FORTRAN90 code RADISH. For each
Born event, the code produces the initial-state radiation and
performs the resummation of large logarithmic contribu-
tions using MC methods as described in Sec. 4.3 of
Ref. [24]. As a result, the cumulative distribution is filled
on the fly yielding dσres=dΦ0ðq⊥cutÞ. The spectrum can be
calculated by differentiating the cumulative histogram
numerically.
We note that our need to obtain the spectrum at a given

value of q⊥ as in Eq. (4) poses some technical challenges
which need to be addressed in order to interface RADISH

with GENEVA. Indeed, the RADISH code has been designed
to compute the whole cumulant distribution by generating a
MC ensemble of soft and/or collinear emissions. The
simplest solution would be to run the MC algorithm with
a very large number of events for each Born configuration
provided by GENEVA in order to yield sufficiently stable
results for the numerical derivative of the cumulant.
However, despite the effectiveness of the MC generation,
this on-the-fly computation is rather inefficient.

A better approach is to first compute the RADISH

cumulant with a very large number of Born points,
exploiting run-time parallelization. This is done before
starting the main GENEVA runs. From these parallel RADISH
runs, we build an interpolation grid, which is then used to
provide the cumulant and the spectrum for the GENEVA runs
on an event-by-event basis. To this end, we first parametrize
the Born phase space using two variables2 and construct a
discrete lattice in these two parameters. We then compute
the resummed cumulant in each bin and for each combi-
nation of perturbative scales up to the maximal value of q⊥
kinematically allowed. The resulting grids are then loaded
and interpolated on the fly by means of Chebyshev
polynomials as implemented in the GSL library [108],
yielding a fast evaluation of the cumulant and of its
derivative. Since the shape of the resummed result depends
only mildly on the Born variables, it is sufficient to rescale
the resummation by the Born squared amplitude to obtain a
result differential in the Born kinematics. We found that a
(10 × 10)-dimensional grid in the Born variables provides a
sufficiently fine discretization of the Born phase space.
The other ingredient which is provided by RADISH is the

expansion of the resummation to remove the double
counting between resummation and fixed order. In this
case, the use of interpolation routines is not advisable, since
one must ensure the exact cancellation of the large
logarithmic terms at low q⊥ to avoid spurious and poten-
tially large effects on the final results.3 However, since the
expansion is computed semianalytically in RADISH (for
additional details, we refer the reader to Sec. 4.2 of [24]),
we can avoid the interpolation altogether and compute it on
the fly without affecting the speed of the code.
Once the values of the resummation and the expansion

are available, the matched results for the spectrum of
Eq. (4) can be obtained by means of a standard additive
matching. The use of modified logarithms (27) automati-
cally ensures that the effect of the resummation vanishes in
the fixed-order region. However, numerical instabilities
could arise since, while the expansion is exact, the
resummed result is obtained by means of a Chebyshev
interpolation. This can induce tiny but visible numerical
artifacts in the region where the cumulant flattens and its
derivative approaches zero. In order to avoid this unwanted
feature, we introduce a function which further suppresses
both the resummed and the resummed expanded results
smoothly in the fixed-order region, where a complete
cancellation between them should be achieved. In this
way, undesired numerical instabilities in this region are
removed. In particular, we use the following function:

2Specifically, we use the rapidity of the virtual boson Yll and
all ¼ arctanððm2

ll −m2
ZÞ=ðmZΓZÞÞ for DY production. The

latter variable is chosen to flatten the mll distribution; see,
e.g., Ref. [9].

3Indeed, in a first attempt using an interpolation also for the
resummed expanded contribution, we observed numerical insta-
bilities in the Yll distribution.
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fdampðq⊥Þ ¼

8>>><>>>:
1; q⊥ < l;

1−erfð2ðq⊥−mÞ
w Þ

1−erfð2ðl−mÞ
w Þ ; l < q⊥ < r;

0; q⊥ > r

ð29Þ

withm ¼ ðrþ lÞ=2, w ¼ ðr − lÞ=2, and where we take l ¼
2Q and r ¼ 3Q and “erf” is the standard Gaussian error
function. We observe that with this choice there is a very
tiny discontinuity at q⊥ ¼ r, which, however, does not give
any visible effect since fdampðr − ϵÞ ≃ 0. The damping
function is plotted as a function of q⊥=Q in Fig. 1.

B. Power-suppressed corrections
to the nonsingular cumulant

In Eq. (8), we wrote the expression for the NNLO
accurate 0-jet cross section fully differential in the Born
phase space, whose implementation would require a local
NNLO subtraction scheme. In our implementation, the
NNLO0 accuracy is instead achieved replacing Eq. (8) with
the following expression:

gdσMC
0

dΦ0

ðrcut0 Þ ¼ dσres

dΦ0

ðrcut0 Þ −
�
dσres

dΦ0

ðrcut0 Þ
�
NLO0

þ ðB0 þ V0ÞðΦ0Þ

þ
Z

dΦ1

dΦ0

ðB1ÞðΦ1Þθðr0ðΦ1Þ < rcut0 Þ; ð30Þ

which only involves a local subtraction at OðαSÞ and the
expansion of the resummation at the same order. The
formula assumes an exact cancellation between the fixed-
order and the resummed expanded contribution below the
value of rcut0 at order α2S. The cancellation is guaranteed for
the singular contributions due to the accuracy of the r0
cumulant (we stress again that in order to achieve NNLO0

accuracy, the resummation accuracy must be at least
NNLL0); however, the formula fails to capture nonsingular
contributions at Oðα2SÞ. These nonsingular contributions
can be expressed as

dσnons0

dΦ0

ðrcut0 Þ ¼ ½αSf1ðrcut0 ;Φ0Þ þ α2Sf2ðrcut0 ;Φ0Þ�rcut0 ; ð31Þ

and their integral over the phase space is

Σnsðrcut0 Þ ¼
Z

dΦ0

dσnons0

dΦ0

ðrcut0 Þ: ð32Þ

The nonsingular cumulant vanishes in the limit rcut0 → 0

since the functions fiðrcut0 ;Φ0Þ contain at worst logarithmic
divergences. As discussed above, our calculation includes
the term f1ðrcut0 ;Φ0Þ since we implement a NLO1 FKS local
subtraction. On the contrary, f2ðrcut0 ;Φ0Þ is not included in
Eq. (31). Neglecting the Oðα2SÞ power corrections is accept-
able as long as we choose rcut0 to be very small.
So far, the GENEVA method has been based onN-jettiness

subtraction [109–111]. In this work, we take r0 equal to q⊥;
effectively, this corresponds to basing GENEVA on a qT
subtraction scheme [112]. The availability of different
resolution parameters in GENEVA is beneficial, as the size
and the scaling of the power corrections can be different.
The size of the missing Oðα2SÞ power corrections as a
function of qcut⊥ can be calculated as

Σð2Þ
NSðqcut⊥ Þ ¼ δσNNLO − ΣN3LL

asymp þ ΣN3LL
asympjαs

−
Z

∞

qcut⊥
dq⊥

�
dσNLO1

dq⊥
−
dσN

3LL

dq⊥

����
α2s

�
þ
Z

∞

qcut⊥
dq⊥

�
dσLO1

dq⊥
−
dσN

3LL

dq⊥

����
αs

�
; ð33Þ

where δσNNLO ¼ σNNLO − σNLO, ΣN3LL
asymp is the cumulant of

the resummed contribution [see Eq. (21)]

ΣN3LL
asymp ¼

Z
dΦ0

Z
qmax⊥

0

dq0⊥
dσN

3LL

dΦ0dq0⊥
; ð34Þ

and q⊥max is the maximum value allowed by the kinematics
for each Φ0 point. Finally, jαnS indicates the expansion up to
order αnS.
We have calculated δσNNLO by computing σNNLO with

MATRIX. Note that MATRIX also achieves NNLO accuracy
via qT subtraction, and therefore potentially misses power
corrections at Oðα2SÞ. However, MATRIX includes an esti-
mate of these power corrections by interpolating the result
to qcut⊥ ¼ 0, and including an estimate of this interpolation
procedure in its error.
We show the size of the missing power corrections in

Fig. 2, where we consider values of qcut⊥ down to 1 GeV. We
consider pp → lþl− production at 13 TeV in an inclusive
setup by applying a cut only on the invariant mass of the
produced color singlet. We observe that the power correc-
tions are below the 2‰ level for log10ðqcut⊥ Þ≲ 0.5, corre-
sponding to a value of qcut⊥ ≲ 3 GeV, in accordance with

FIG. 1. Damping function used to further suppress the resum-
mation at large values of q⊥; see text for details.
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what was observed in Ref. [107]. Motivated by this plot, we
choose qcut⊥ ¼ 1 GeV as our default value. The negligible
size of the missing power correction allows us to avoid the
need for the reweighting of the Φ0 events, which was
instead the approach followed in the previous application of
the GENEVA method. Our choice is further justified by a
detailed comparison between GENEVA and an independent
NNLO calculation for distributions differential in the Φ0

variables, as we will show in Sec. III E.

C. NLO1 calculation and phase-space mapping

In this section, we discuss the implementation of the
Φr

1ðΦ2Þ mapping introduced in Eq. (15) and of that
introduced in Eq. (18). As we anticipated in Sec. II A,
these phase-space mappings do not necessarily need to
coincide, since only the latter needs to be written as a
function of the 1-jet resolution variable T 1.
We start by discussing the mapping used to implement

the NLO1 calculation. Let us first notice that the Φr
1ðΦ2Þ

mapping used in the B2 term and theΦC
2 ðΦ1Þ used for the C

term in Eq. (15) can be different, but provided that both are
IR safe, they must be equivalent in the IR singular limit.
However, as we discussed in Sec. II A, the Φr

1ðΦ2Þ
mapping must have the additional property that it preserves
the 0-jet resolution variable q⊥ in order to guarantee that the
NLO1 is pointwise consistent with the q⊥ resummation.
Moreover, the mapping must be invertible, meaning that
one should be able to reconstruct all the Φ2 points which
can be projected on a given Φ1 configuration. The addi-
tional requirement that the mapping should preserve q⊥
poses some challenges as discussed in Sec. A6 of Ref. [3].
In addition to preserving the 0-jettiness T 0 which was used
as 0-jet resolution variable,4 the T FR

0 mapping introduced in
Ref. [3] also preserves the four-momentum of the vector
boson qμðΦ2Þ ¼ qμðΦT

1 ðΦ2ÞÞ and thus the full transverse

momentum q⃗⊥. Therefore, in our study one could in
principle use the same mapping to implement the NLO1

calculation and the splitting function PðΦ2Þ used in the T 1

resummation. It happens, however, that the T FR
0 mapping

creates undesired higher-order artifacts in a few NLO1

differential distributions when used also in the T 1 resum-
mation. In particular, one observes the effects on quantities
such as the rapidity separation between the leading jet and
the vector boson. For this reason, in all recent applications
of the GENEVA method based on the resummation of T 0, the
T FR

0 mapping has been modified, relaxing the condition
that it preserves the transverse momentum of the vector
boson. Therefore, while one could use the q⃗⊥-preserving
T FR

0 mapping for the subtraction, one needs a new phase-
space mapping which preserves q⃗⊥ for the T 1 resummation
projection. For the initial-state radiation (ISR), we found
that the qμ-preserving mapping introduced in Ref. [113]
does not create distortions in any differential distribution,
and we have therefore implemented this mapping in the
GENEVA code. For final-state radiation (FSR), a mapping
preserving the four-momentum qμ of the vector boson is
uniquely defined once one decides how to map the
(massive) jet with momentum pμ

12 ¼ pμ
1 þ pμ

2 of the 2-jet
configuration into a massless jet with momentum p̄μ in the
1-jet configuration. In particular, we choose to conserve the
longitudinal component of the jet, i.e., pz

1 þ pz
2 ¼ p̄z, as

described in Appendix.
We have verified that these mappings can be used both in

the NLO1 calculation [in Eq. (15)] as well as in the T 1

resummation [in Eq. (16)]. We have, however, preferred to
maintain the (q⃗⊥-preserving) T FR

0 mapping in the NLO1

calculation due to slightly better convergence properties,
while we resort to the new ISR and FSR mappings in the
implementation of the T 1 resummation. In this way, we
avoid unnecessarily large higher-order effects in the
distributions.

D. Validation of the N3LL resummation

In this section, we validate the implementation of the
N3LL resummation in GENEVA by comparing the matched
q⊥ spectrum with an independent calculation obtained
using the MATRIX + RADISH interface [114]. We note that
the approach taken in the GENEVA framework is somewhat
different from that taken in MATRIX + RADISH. In the
GENEVA approach, each event generated is assigned a
resummed weight according to the value of the chosen
resolution parameter; as a consequence, the information
about the physical event, which is characterized by a
particular value of q⊥, is always retained throughout the
calculation. As shown in Ref. [100], by retaining the exact
lepton kinematics the GENEVAq⊥ result effectively resums
also the linear power corrections which appear as soon as
one imposes fiducial cuts [115] beyond theOðα2SÞ, which is
in any case included after the matching to NNLO. This is

FIG. 2. Nonsingular cumulant at order α2S as a function of qcut⊥ .

4More precisely, the mapping preserves a recursive definition
of T 0 dubbed T FR

0 ; see Ref. [3] for additional details.
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not the case in the MATRIX + RADISH calculation, where the
matching is instead performed at the level of the final
distribution, and therefore the linear power corrections
associated with fiducial cuts are included only up to
order Oðα2SÞ.5
The predictions for the q⊥ spectrum obtained in the two

approaches are equivalent in the absence of fiducial cuts on
the Born-level variables (see, e.g., the discussion in Sec. 4.3
of [15]). In the presence of cuts, the two approaches are
equivalent only in the limit q⊥ → 0, unless the quantity
subject to the cuts is preserved by the phase-space mapping
Φr

NðΦNþ1Þ. For the following validation, the only process-
defining cut is applied to the invariant mass of the resulting
color singlet, which is preserved by our mappings.
Therefore, we expect full agreement above qcut⊥ between
our results and those obtained with MATRIX + RADISH,
which we can use to validate our implementation.
To produce our predictions we use the NNLO

NNPDF3.1 parton distribution function set [116] with
αSðMZÞ ¼ 0.118 through the LHAPDF interface [117]. We
set the central renormalization and factorization scales to

mT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ll þ q2⊥
q

, while the central resummation scale is

set to Q ¼ mll=2. The uncertainty band is constructed as
the envelope of a canonical seven-point variation of the
renormalization (μR) and factorization (μF) scales and of
two additional variations ofQ by a factor of 2 for central μR
and μF. The comparison is presented in Fig. 3, where we
show the resummed and the matched results for the q⊥ ≡
pll⊥ spectrum up to 100 GeV, on a scale which is linear up
to 20 GeV and logarithmic for larger values. In both cases,

we observe a very good agreement between the two
calculations, both for the central prediction and for the
theory uncertainty bands. We observe marginal deviations
at large q⊥ in the resummed result, which can be traced
back to the additional damping present in the GENEVA

implementation as discussed in Sec. III A. As expected, this
difference cancels in the matched result. The difference in
the first bin of the matched result, on the other hand,
originates from the sensitivity to the different IR cutoffs
employed in the two calculations necessary to regularize
the q⊥ → 0 limit in the NLO1 calculation. We observe that
after matching, the uncertainty bands are significantly
reduced between 10 and 25 GeV and are at the 1%–2%
level, which might not reflect the actual size of missing
higher-order effects. However, since we are not including
further sources of uncertainty such as parton distribution
function (PDF) errors, mass effects, etc., one should not
regard this as the full theoretical uncertainty. Including all
these additional effects in order to provide a fully realistic
error estimate is beyond the scope of this work.

E. Comparison with NNLO predictions and validation

In this section, we proceed with the validation of the
GENEVA implementation by comparing our results with
those obtained with an independent NNLO calculation
using MATRIX. In Fig. 4, we compare four distributions
already defined at the Born level, which allows us to assess
the agreement of the NNLO corrections. In particular, we
compare the invariant mass mll and the rapidity yll of the
dilepton system, the rapidity of the hardest lepton yl;hardest,
and the transverse momentum of the hardest lepton
pT;l;hardest. We use the same settings as specified in the
previous section, but we now use a canonical seven-point
scale uncertainty prescription by keeping the resummation
scale fixed to its central value Q.

FIG. 3. Comparison between the resummed N3LL (left panel) and matched N3LLþ NLO1 (right panel) results obtained with MATRIX

+ RADISH and with GENEVA + RADISH.

5Note that this is not an intrinsic limitation, since by imple-
menting an appropriate recoil scheme directly in RADISH one
could achieve the same result.
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For the first three observables we find an excellent
agreement between GENEVA and MATRIX, with differences
at the few percent level, which is within the size of the
statistical fluctuations. In the case of pT;l;hardest, we expect
possible differences because the distribution is NNLO
accurate only below the Jacobian peak at mll=2. The
presence of resummation effects in the GENEVA results
improves the description of this observable above the peak
with respect to the pure fixed-order result, smearing out the
unphysical behavior of the distribution around the Sudakov
shoulder [118]. Indeed, we observe that the two predictions
are in good agreement up to ∼40 GeV. Above this value,
the two predictions start to differ, and the two uncertainty
bands barely overlap between 50 and 70 GeV. At larger
values of pT;l;hardest, the two predictions approach each
other again.
In conclusion, the comparison between the GENEVA and

the MATRIX predictions provides a robust check of our
implementation. In particular, the agreement observed at
the differential level fully justifies the value of the qcut⊥ of
1 GeV which we shall use to produce our results.

F. Interface with the PYTHIA8 parton shower

In order to make a calculation fully differential at higher
multiplicities the GENEVA, partonic predictions must be
matched to a PS. The shower adds extra radiation to the
exclusive 0- and 1-jet cross section and extends the
inclusive 2-jet cross section by including higher jet mul-
tiplicities. For the sake of definiteness in this study, as in the
previous ones, we focus on the PYTHIA8 shower. The
GENEVA interface to PYTHIA8 for hadronic processes is
discussed in detail in Ref. [3]; here we briefly summarize
the most relevant features, and we discuss the modifications
to the interface needed to accommodate the change in the
0-jet resolution variable. In the previous GENEVA imple-
mentations based on T 0 resummation, the shower con-
straints aim to preserve as far as possible the NNLL0
accuracy of the T 0 distribution. In particular, it was shown
that for the majority of the events the first emission of the
shower produces a distortion of the T 0 distribution at the
Oðα3S=T0Þ level, i.e., beyond NNLL0 [3]. However, due to
the vectorial nature of q⊥, one cannot readily apply the
same argument in this case. In general, one expects that any

FIG. 4. Comparison between the NNLO results obtained with MATRIX and the results obtained with GENEVA + RADISH. Upper panel:
invariant mass (left) and rapidity (right) of the lepton pair. Lower panel: rapidity (left) and transverse momentum (right) of the hardest
lepton.

SIMONE ALIOLI et al. PHYS. REV. D 104, 094020 (2021)

094020-12



emission of the shower could alter the transverse momen-
tum distribution of the color-singlet system, and ultimately,
the logarithmic accuracy for the transverse momentum
spectrum after the shower is therefore dictated by the
shower accuracy. Hence, in this work we refrain from
making any claims about the formal accuracy of the
predictions for the q⊥ spectrum after the showering.
However, we will show below that it possible, with a
suitable choice of the shower recoil scheme, to obtain an
excellent numerical agreement between the analytic N3LL
resummation and the GENEVA showered results. Lastly, one
can get an excellent description of the data at small q⊥ by
tuning the PYTHIA8 nonperturbative parameters. However,
in any calculation obtained by matching higher-order
calculations with PS, one has to carefully evaluate which
parameters are truly encoding nonperturbative effects and
should therefore be tuned.
In order to discuss the details of the matching, let us start

by analyzing the interface to the PYTHIA8 k⊥-ordered PS,
starting with the 0-jet event case. For this set of events, the
shower should simply restore the emissions which were
integrated over in the construction of the 0-jet cross section.
In our implementation, we set the starting scale to these
events to the natural scale qcut⊥ ; to avoid double countingwith
events above the cut, we require that after the shower the
transverse momentum of the boson does not exceed qcut⊥ ,
though we allow for a small spillover if the showered event
has q⊥ > 1.05 × qcut⊥ to avoid an hard cutoff. Events which
do not fulfill this constraint are reshowered. In practice, this
spillover has a negligible effect, since 0-jet events account for
Oð1%Þ or less of the total cross section, and are therefore a
very small fraction of the total; moreover, since the starting
scale for the showering of these events is ∼1 GeV; the
majority of them automatically satisfy the constraint.
The showering of 1- and 2-jet events is more delicate. As

discussed in Sec. II A, the separation between 1- and 2-jet
events is achieved by means of a Sudakov form factor
U1ðΦ1; T 1Þ, which suppresses the 1-jet cross section at small
values of T 1. The mapping used preserves the 0-jet reso-
lution parameter r0, i.e., T 0 in the original GENEVA imple-
mentation and q⊥ in this work. Even with T cut

1 ¼ 1 GeV,
σMC
1 remains sizeable and must be handled with certain care.

In the original GENEVA implementation, it was necessary to
reduce its size to avoid further distortions of the T 0

distribution after the shower. Here we prefer to follow the
same approach, which also helps to reduce the size of the
nonsingular contributions in Eq. (19). Properly, to fully
account for configurations where q⊥ ∼ T 1 ≪ Q, one should
extend the resummation framework used here and include a
joint resummation for the two jet resolutions. Unfortunately,
this is not yet available at the required logarithmic order.6 In
the T 1 ≪ q⊥ limit, it is however possible to approximate the

correct behavior and suppress the size of the 1-jet cross
section σMC

1 by multiplying it by an additional LL Sudakov
form factor U1ðT cut

1 ;Λ1Þ; see Ref. [11]. The new 1-jet
exclusive cross section becomes

dσMC
1

dΦ1

ðr0 > rcut0 ; T cut
1 ;Λ1Þ

¼ dσMC
1

dΦ1

ðr0 > rcut0 ; T cut
1 ÞU1ðT cut

1 ;Λ1Þ; ð35Þ

while the 2-jet inclusive reads

dσMC
≥2

dΦ2

ðr0 > rcut0 ; T cut
1 ; T 1 > Λ1Þ

¼ dσMC
≥2

dΦ2

ðr0 > rcut0 ; T 1 > T cut
1 Þ

þ d
dT 1

dσMC
1

dΦ1

ðr0 > rcut0 ; T cut
1 ; T 1Þ × PðΦ2ÞθðT 1 > Λ1Þ:

ð36Þ

The parameter Λ1 is set to be much smaller than T cut
1 and

constitutes the ultimate 1-jet resolution cutoff (in the
present work, we set this cutoff to 0.0001 GeV). The
1-jet cross section is therefore extremely suppressed and
accounts for a negligible fraction of the cross section, at the
few per mille level.
As a result, the inclusive 2-jet cross section accounts for

almost all events. The starting scale of the shower for this
set of events is chosen to be sufficiently large to completely
fill the phase space available to the k⊥-ordered shower (in
particular, in the present work we choose the largest relative
k⊥ with respect to the direction of the sister parton for the
second emission). The events are then showered, vetoing
events which have a T 2 value larger than the initial T 1

value once showering is complete. Events which do not
pass this veto are reshowered again until they do. This in
practice corresponds to the implementation of a truncated-
vetoed shower [123] and thus preserves the LL accuracy of
the shower for observables other than q⊥.
Having discussed the matching conditions of the shower,

we now move to discuss the results. We match the NNLO
calculation to the PYTHIA8.245 PS, and we use the general-
purpose CMS MonashStar Tune (Tune:pp = 18). As
previously discussed, it would be desirable to maintain an
agreement between the precise parton level predictions and
the showered result. This is possible by choosing a
more local recoil scheme in PYTHIA through the option
SpaceShower:dipoleRecoil = on, which affects
the color-singlet kinematics less compared to the standard
recoil scheme [7,124].
This scheme does not change the transverse momentum

of the colorless system when there is an emission involving
an initial-final dipole, and it was shown to improve the

6Results for the joint resummation at lower orders or for other
observables are, e.g., available in Ref. [119–122]
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agreement between parton level and showered predictions
for the transverse momentum of a diphoton pair in our
previous work [15]. We stress that the choice of the recoil
scheme has important implications on the accuracy of PSs
[125–130] and might induce spurious effects at NLL.
Nonetheless, since in this work we assume that the
accuracy of our predictions is dictated by the PS, we leave
a study of the formal accuracy to future work.
Nonperturbative effects are another possible source of

modification of the q⊥ distribution induced by the matching
with a PS. In general, the values of the nonperturbative
parameters in PYTHIA8 have been tuned starting from
predictions which were lacking the higher-order effects that
are instead included in this work. Therefore, it is not clear
whether their values reflect real nonperturbative effects or
simply the lack of perturbative ingredients. When matching
to a NNLO computation, it would be advisable to investigate
this and eventually perform a retuning. While the determi-
nation of an optimal tune is beyond the scope of this
work, we observed that the description of the spectrum in
the small q⊥ region strongly depends on the value
of the intrinsic (or primordial) k⊥ transverse momentum
of the incoming partons determined by the PYTHIA option
BeamRemnants:primordialKThard. In the CMS
MonashStar tune, the value for this parameter is set to
1.8 GeV; nonetheless, we observed that this value is
responsible for a shift in the spectrum outside scale variation
bands up to values of q⊥ ∼ 10 GeV, i.e., in a region where
one would naively expect nonperturbative effects to play a
minor role. Therefore, we preferred to lower this value to
∼0.6 GeV, such that the uncertainty bands before and after
the shower overlap. In the following, we shall use this value
as our default.
The effect of changing the recoil scheme is shown in

Fig. 5 for the rapidity distribution of the dilepton pair and

for the transverse momentum of the vector boson. In
the plots, we compare the parton level predictions with
the results after the shower with different recoil schemes, in
the absence of hadronization and multiparticle interactions
(MPI) effects. The difference in the rapidity distribution is
negligible almost everywhere: The dipole recoil scheme is
indistinguishable from the parton level results, while there
are tiny discrepancies for the default recoil scheme, but
these appear only at very large rapidities. On the other
hand, the effect on the transverse momentum distribution is
somewhat more pronounced, although the two schemes are
in good agreement within the scale uncertainty bands, with
differences at the few percent level. In particular, when the
more local recoil scheme is chosen, the agreement between
the showered result and the N3LLþ NLO1 result at the
parton level is excellent across the whole spectrum.
We now compare the partonic, showered, and hadron-

ized result for a selected set of distributions. In order to
keep the analysis simple, we do not include QED effects in
the showered results. In the following, we always include
MPI effects in our hadronized results. We start by present-
ing this comparison in Fig. 6 for the rapidity distribution of
the lepton pair and for the transverse momentum of the
hardest lepton. In the left panel, we observe that for the
rapidity distribution, the NNLO accuracy is maintained at a
very precise level after the showering and the hadronization
stages, as should be expected by the inclusive nature
of this distribution. In the right panel, the same excellent
agreement is also seen in the case of the pT;l;hardest
distribution case, with differences well inside statistical
fluctuations.
Next, in Fig. 7 we focus on the transverse momentum

distribution of the lepton pair, comparing the partonic result
to the result after showering (upper row) and after hadro-
nization and MPI (lower row). We present three separate

FIG. 5. Comparison between the parton level and the showered results with and without the PYTHIA8 DIPOLERECOIL option for the
rapidity distribution (left) and for the transverse momentum distribution (right) of the lepton pair.
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plots, in the peak, transition, as well as in the tail region of
the distribution. An extremely good agreement between the
showered and the partonic results is observed in all three
regions, both for the central predictions and for the scale

uncertainty bands. When the hadronization (andMPI) stage
is also added, some differences arise, localized in the small
q⊥ region. There we observe that the peak becomes more
pronounced, and the spectrum is more suppressed at small

FIG. 6. Comparison of the partonic, showered, and hadronized results for the rapidity of the lepton pair (left) and the transverse
momentum of the hardest lepton (right).

FIG. 7. Comparison of the q⊥ spectra between the partonic N3LLþ NLO1 and the showered results, after interfacing to PYTHIA8,
before the inclusion of nonperturbative effects (above), and after hadronization and MPI (below). The peak (left), transition (center), and
tail (right) regions are shown.
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q⊥, while at large q⊥ the showered and hadronized results
are again in agreement, as one expects from factorization.

G. Comparison of resolution variables

The implementation of two different 0-jet resolution
variables opens up the possibility of comparing the pre-
dictions after shower, hadronization, and MPI obtained
using GENEVA in the two cases. Moreover, we can also
compare the results to the parton level predictions, where
the higher-order resummation is guaranteed by construc-
tion for each 0-jet resolution variable. We show this
comparison in Figs. 8 and 9 for the q⊥ and T0 spectra,
respectively. There, the N3LLþ NLO1 (NNLL0 þ NLO1)
results at the parton level for each 0-jet resolution variable
are compared to the results after showering and after

hadronization obtained using q⊥ and T 0 in GENEVA. For
the transverse momentum distribution, we observe
differences at the 10%–20% level between the results
obtained with GENEVAq⊥ and GENEVAT 0

after the
shower up to values of q⊥ close to 30 GeV, though the
uncertainty bands always overlap. The GENEVAT 0

result
is more suppressed at small q⊥ and slightly harder above
the peak. The differences are reduced at larger values of q⊥,
although the GENEVAT 0

spectrum is somewhat harder
than that of GENEVAq⊥ . A similar pattern is visible after
hadronization and MPI.
Analogous differences can be observed when comparing

the T 0 spectra obtained using the two different implemen-
tations. The showered results are in good agreement for
values of T 0 larger than 30 GeV, while they start to differ

FIG. 8. Comparison between parton level and showered results (left) and between parton level and results after shower, hadronization,
and MPI (right) for the transverse momentum distribution of the dilepton pair using GENEVAq⊥ and GENEVAT 0

.

FIG. 9. Same as Fig. 8, now comparing the T 0 distribution.
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below. The differences are as large as 50% at small values
of T 0, where the GENEVAq⊥ result is considerably harder
than the NNLL0 þ NLO1 result. The hadronization and
especially the addition of MPI effects significantly modify
the T 0 distribution, and bring the two results closer also at
small values of T 0. To accommodate this larger difference,
instead of the usual ratio with respect to the partonic result,
in the right panel of Fig. 9 we show the ratio with respect to
the GENEVAT 0

result after hadronization and MPI.
Finally, we show the same comparison for the ϕ�

variable [131] in Fig. 10. Although this observable is
not fully resummed at N3LL accuracy in the GENEVAq⊥
implementation, we expect to observe good agreement
between the GENEVAq⊥ and the resummed results since
the two observables are closely related. Indeed, we observe
that after showering, the GENEVAq⊥ result is close to the
N3LLþ NLO1 result obtained with MATRIX + RADISH. The
GENEVAT 0

result displays instead differences similar to
those seen for the q⊥ distribution, both before and after
hadronization.

IV. RESULTS AND COMPARISON TO LHC DATA

In this section, we compare our predictions against
13 TeV data collected at the LHC by the ATLAS [40]
and the CMS [41] experiments. We have generated events
using the same settings as detailed in Sec. III D regarding
the choice of PDF and central scales, and we use the shower
settings as described in Sec. III F. We remind the reader that
our predictions thus include hadron decay and MPI effects,
but do not include QED shower effects.

A. Comparison to ATLAS data

We start by showing the comparison of our predictions
with the ATLAS data of Ref. [40]. The Z boson is

reconstructed by selecting the two hardest same-flavor
opposite-sign leptons in the final state. We then apply
the following cuts to our events:

pl⊥ > 27 GeV; jηlj< 2.47; mll ∈ ½66;116� GeV:
ð37Þ

In Fig. 11, we compare our predictions for the normalized
q⊥ and ϕ� distributions. For q⊥, we use a scale which is
linear up to 30 GeV and logarithmic for larger values. The
former are in very good agreement with the data in the
whole q⊥ range. Below 30 GeV, the central prediction is
within a few percent of the data, and only in the first two
bins, where hadronization and nonperturbative effects play
a prominent role, do the scale uncertainty bands fail to
cover the experimental data. Our predictions are also in
good agreement with the ϕ� measurements, matching them
within scale uncertainty bands down to values of ϕ� ∼ 0.01;
at lower values, the differences reach the 20% level in the
first bin, and the perturbative uncertainty does not cover the
data. Here, the inclusion of shower and nonperturbative
uncertainties as well as the development of a dedicated
tuning could help ameliorate the agreement.
Finally, in Fig. 12 we can compare our predictions with

parton level results at N3LLþ NNLO1 accuracy [97] for the
q⊥ andϕ� distributions obtained bymatching RADISH results
with fixed-order predictions from NNLOJET [132–134] in
the ATLAS fiducial region. In the q⊥ case, we also show the
GENEVA parton level predictions at N3LLþ NLO1 accuracy
for reference. Our results for the q⊥ spectrum are in good
agreement with the parton level predictions across thewhole
range. In particular, the results are within a few percent from
the N3LLþ NNLO1 result up to 30 GeV; at larger values,
whereNNLO1 corrections become dominant, the differences
can reachOð10%Þ.We observe a similar agreement in theϕ�

FIG. 10. Comparison between the N3LLþ NLO1 prediction and showered results (left) and between the N3LLþ NLO1 prediction
and results after hadronization and MPI (right) for the ϕ� distribution using GENEVAq⊥ and GENEVAT 0

.
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case, with differences at most at the 10% level
around ϕ� ∼ 0.01.

B. Comparison to CMS data

Finally, we compare our predictions with the CMS data
of Ref. [41]. The fiducial region in this case is defined by
the selection cuts

pl⊥ > 25 GeV; jηlj < 2.4; ð38Þ

jmll − 91.1876 GeVj < 15 GeV: ð39Þ

We compare our predictions both at the absolute level and
for normalized distributions. We note that in the analysis of
Ref. [41], the latter are defined by dividing by the sum of

the weights rather than by the integrated cross section; i.e.,
it is not normalized by the fiducial cross section.
In Fig. 13, we show the comparison for the absolute

rapidity jyllj and for the q⊥ and ϕ� distributions. In the first
row, we observe a reasonably good agreement for the
rapidity distribution. The theoretical predictions are a few
percent higher than the experimental data at the absolute
level, and oscillate around the data in the normalized
distribution. In the central row, the predictions for q⊥
are also in good agreement with the CMS data, repeating
the same pattern already observed when comparing
to ATLAS data. This is especially true at the normal-
ized level.
In the last row, we observe that the theoretical predictions

display statistical fluctuations more pronounced than in the
ATLAS case. This is due to the very fine binning at small

FIG. 12. Comparison between GENEVA results and N3LLþ NNLO1 predictions for the transverse momentum distribution (left) and
for the ϕ� observable (right) within ATLAS fiducial cuts.

FIG. 11. Comparison between GENEVA predictions and the ATLAS data for the transverse momentum distribution (left) and for the ϕ�
observable (right).
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values of ϕ�. Moreover, the normalized predictions seem to
consistently undershoot the data. A possible explanation for
this effect could lie in the interplay between the statistical
fluctuations at small values of ϕ� and the atypical nor-
malization chosen for this particular analysis, which
enhances the impact of the low ϕ� region across the whole
spectrum. This can be further appreciated by noticing that

the relative size of the uncertainty bands is somewhat larger
in the normalized ϕ� distribution, defying a naive expect-
ation. Finally, in Fig. 14 we compare our predictions for the
transverse momentum distribution in different rapidity
slices with the CMS data. In all cases, we observe a good
agreement, with larger differences localized in the first few
bins where hadronization effects are more significant.

FIG. 13. Comparison between GENEVA and the CMS data for different observables. Normalized distributions are shown on the right;
see text for details.
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V. CONCLUSION

In this work, we have presented an extension of the
GENEVA method which uses the transverse momentum of
the color singlet as the 0-jet resolution variable. As a first
application, we have provided an NNLOþ PS description
of DY pair production by matching the parton level
calculation with the PYTHIA8 PS. The method presented
here is fully general and can be readily applied to other
color-singlet processes.
In this specific implementation, the transverse momen-

tum resummation is performed at N3LL accuracy by
interfacing GENEVA with the RADISH code. We have
validated our predictions of the transverse momentum
resummation by comparing with the N3LLþ NNLO0

results obtained with the MATRIX + RADISH interface.
The use of the transverse momentum as the 0-jet resolution
variable has allowed us to reduce the impact of missing
power corrections in the NNLO calculation. Setting
qcut⊥ ¼ 1 GeV, we have found that the missing power
corrections contribute below the per mille level. We have
validated our NNLO differential predictions by comparing
a few selected distributions against the MATRIX program.

The availability of a fully exclusive event generator at this
accuracy allows for the evaluation of any fiducial cross
section, also correctly resumming linear power corrections
associated with cuts on the lepton kinematics.
We have then studied the impact of PS and hadronization

on our predictions and have found that the NNLO descrip-
tion of inclusive observables is preserved after both shower
and hadronization. An important outcome of this study is
the observation that it is possible to maintain an extremely
good agreement between the N3LLþ NLO1 result for the
transverse momentum spectrum and the GENEVA results
after the shower by choosing a more local recoil scheme in
PYTHIA8. We have also quantified the impact of non-
perturbative corrections after hadronization on the trans-
verse momentum distribution, finding, as expected, that
they are localized below the peak.
The construction of a NNLOþ PS event generator is

subject to several assumptions, and the choice of which
resolution variables are used is of particular importance.
The availability of two different 0-jet resolution variables
within the GENEVA framework has allowed us to robustly
assess the impact of such choices on differential observ-
ables for the first time. We have studied the effect of the

FIG. 14. Comparison between GENEVA and the CMS data for the q⊥ distribution in different rapidity slices.
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shower and hadronization (including MPI effects) on the
higher-logarithmic partonic predictions using both T 0 and
q⊥ as the 0-jet resolution variable. The major differences
are observed below the peak region, where the higher-order
resummation of the correct logarithms is necessary to
reproduce the correct behavior. Nonetheless, the two
predictions are in reasonable agreement, with the size of
the differences never exceeding 15% for the q⊥ and ϕ�
distributions.
Finally, we have compared our predictions, including

hadronization and MPI effects, to LHC data at 13 TeV. A
good agreement has been observed both for inclusive and
for more exclusive distributions, such as the transverse
momentum spectrum of the dilepton system as well as the
ϕ� variable, across the whole spectrum. The description at
very small q⊥ and ϕ� is sensitive to the details of the
hadronization procedure, suggesting that dedicated studies
are needed in order to determine the optimal value of the
nonperturbative parameters in a NNLOþ PS computation.
It should be emphasised, however, that at this level of
precision, the inclusion of EW corrections and a careful
study of the impact of mass effects become relevant. We
have refrained from including these effects in this study,
leaving them to future work. Another direction in which our
predictions could be improved concerns the inclusion of
higher-order matrix elements, beyond what is available in a
NNLO calculation for DY with no additional jets.
This work could be expanded even further by extending

the study to the use of alternative 1-jet resolution variables
and their resummation, as well as the interplay between the
0-jet and 1-jet resummations. In particular, in view of the
recent advancements in the development of PSs beyond LL
accuracy, the choice of a suitable 1-jet resolution variable
might prove crucial in order to ensure that the matching of
NNLO calculations to PS preserves the shower accuracy.

The code used to produce the results presented in this
work is available upon request from the authors, and will be
made public in a future GENEVA release [135].
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APPENDIX: 2 → 1 MAPPING FOR FINAL-STATE
RADIATION

In this appendix, we describe the q⃗T-preserving mapping
used for the implementation of the T 1 resummation. We
define the phase space for the emission of N particles by
also including the momentum fractions xa, xb of the two
incoming partons, such that

dΦNðxa; xb;p1;…pNÞ
≡ dxadxbdΦNðxaPa þ xbPb;p1;…pNÞ; ðA1Þ

where

dΦNðQ;p1;…pNÞ ¼ ð2πÞ4δðQ −
X

piÞ

×
YN
i¼1

d4pi

ð2πÞ3 δðp
2
i −m2

i Þθðp0
i Þ ðA2Þ

is the N-body Lorentz-invariant phase space. The momenta
of the incoming hadrons are

Pa ¼ Ecm
na
2
; Pb ¼ Ecm

nb
2
; ðA3Þ

where Ecm is the hadronic center-of-mass energy. For later
convenience, we have introduced light-cone coordinates
relative to the beam axis as

nμ ≡ nμa ¼ ð1; 0; 0; 1Þ; n̄μ ≡ nμb ¼ ð1; 0; 0;−1Þ; ðA4Þ

such that

P−
a ¼ Pþ

b ¼ Ecm; Pþ
a ¼ P−

b ¼ 0; ðPa þPbÞ2 ¼ E2
cm:

ðA5Þ

The momenta of the incoming partons are then

pa ¼ xaPa; p−
a ¼ xaEcm; pþ

a ¼ 0;

pb ¼ xbPb; pþ
b ¼ xbEcm; p−

b ¼ 0; ðA6Þ

and we define
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s ¼ ðpa þ pbÞ2 ¼ xaxbE2
cm: ðA7Þ

The phase-space projection is a variable transformation
from the N þ 1 phase space onto the underlying Born
phase space Φ̄N , such as

ΦNþ1ðxa; xb;p1;…pN; pNþ1Þ
↔ fΦ̄Nðx̄a; x̄b; p̄1;…p̄NÞ;Φradðξ; y;ϕÞg; ðA8Þ

where Φradðξ; y;ϕÞ is the phase space of the radiation, and
ξ, y, ϕ are the radiation variables which parametrize the
emission.
In particular, we are interested in the case in which

p1;…; pM, with M < N, are the momenta of colorless
particle, and

q≡XM
1

pi ðA9Þ

is the total momentum of the color-singlet system. For the
DY production process studied in this paper, we specifi-
cally consider the mapping

Φ2ðxa; xb; q; p1; p2Þ ↔ fΦ1ðx̄a; x̄b; q̄; p̄Þ;Φradðξ; y;ϕÞg;
ðA10Þ

where the number of particles in the phase-space label has
now been reduced to match the notation adopted in the
main text by omitting the number of leptons from the count.
In order to construct the projection, we start from the

relations of momentum conservation

xaEcm ¼ p−
1 þ p−

2 þ q−; x̄aEcm ¼ p̄− þ q̄−;

xbEcm ¼ pþ
1 þ pþ

2 þ qþ; x̄bEcm ¼ p̄þ þ q̄þ;

0 ¼ p⃗1;⊥ þ p⃗2;⊥ þ q⃗⊥; 0 ¼ ⃗p̄⊥ þ ⃗q̄⊥: ðA11Þ

Imposing also the conservation of the four-momentum of
the vector boson q, we have

q− ¼ q̄−; qþ ¼ q̄þ; q⃗⊥ ¼ ⃗q̄⊥: ðA12Þ

This immediately gives the relation

⃗p̄⊥ ¼ p⃗1;⊥ þ p⃗2;⊥: ðA13Þ

The projection is uniquely defined once we decide how
to map the (massive) jet with momentum

p12 ¼ p1 þ p2 ðA14Þ

into the massless parton p̄. We choose to fix the longi-
tudinal component

p̄z ¼ pz
1 þ pz

2: ðA15Þ

From the on-shell relation

0 ¼ p̄2 ¼ ðp̄0Þ2 − ðp̄zÞ2 − ð ⃗p̄⊥Þ2; ðA16Þ

one can now easily determine p̄0. Having fixed p̄z and p̄0,
the barred system and therefore the complete projection is
fully determined, since we can obtain

p̄þ ¼ p̄0 − p̄z; p̄− ¼ p̄0 þ p̄z; ðA17Þ

and solve Eq. (A11) for x̄a and x̄b.
To construct the inverse mapping, it is convenient to first

reconstruct the total momentum p12. Once p12 is known,
p1 and p2 can be constructed by decaying p12 in its rest
frame with decay angles fcos ϑ;ϕg. Here, ϕ is the
azimuthal radiation angle, while cosϑ can be determined
by the variable ξ from the relation

2p0
2 ¼ ξEcm ¼ p0

12 þ jp⃗12j cosϑ: ðA18Þ

Note that the Φrad variables are defined in the hadronic
center-of-mass frame, i.e.,

ξ ¼ 2p0
2

Ecm
¼ 2p0

12ð1 − zÞ
Ecm

; ðA19Þ

y ¼ p⃗1 · p⃗2

jp⃗1jjp⃗2j
¼ 1 −

p2
12

2p0
1p

0
2

: ðA20Þ

To reconstruct p12, we then must solve the system(
p2
12 ¼ 2p0

1p
0
2ð1 − yÞ ¼ ð2p0

12 − ξEcmÞξEcm
1−y
2
;

p2
12 ¼ ðp0

12Þ2 − ðpz
12Þ − q2⊥ ¼ ðp0

12Þ2 − ðp̄zÞ − q2⊥
ðA21Þ

for p2
12 and p

0
12. One obtains two solutions, but only one of

them is physical such that p2
12 > 0 and p0

12 > 0:

p2
12¼

1

2
ð−E2

cmξ
2yþE2

cmξ
2y2

þEcmξ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðp̄zÞ2þ4q2⊥−E2

cmξ
2þE2

cmξ
2y2

q
−Ecmξy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðp̄zÞ2þ4q2⊥−E2

cmξ
2þE2

cmξ
2y2

q
Þ; ðA22Þ

p0
12 ¼

1

2
ðEcmξð1 − yÞ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðp̄zÞ2 þ 4q2⊥ − E2

cmξ
2 þ E2

cmξ
2y2

q
Þ: ðA23Þ

This is enough information to fully reconstruct p12, since
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p̄0
12 ¼

p−
12 þ pþ

12

2
; p̄z ¼ pz

12 ¼
p−
12 − pþ

12

2
; ðA24Þ

which allows us to obtain p�
12.

The Jacobian can be derived starting by the relation
between dΦ2 and dΦ1,

dΦ2

dΦ1dΦrad
¼ 1

ξE2
cm

p̄
p0
12

q̄þ

qþ
dpz

12d
2q⊥dqþdp2

12d cos ϑdϕ
dp̄zd2q̄2⊥dq̄þdξdydϕ

:

ðA25Þ

Since the mapping is defined such as q ¼ q̄, pz
12 ¼ p̄z, one

has

dΦ2

dΦ1dΦrad
¼ 1

ξE2
cm

p̄
p0
12

dp2
12d cosϑ
dξdy

; ðA26Þ

which can be calculated by using Eqs. (A18) and (A22).
Since the expression is not particularly compact, we refrain
from reporting it here.

Finally, we show how one can write the inverse map in
terms of T 1 and the energy fraction z. In order to do that,
one should first express p12 as a function of T 1. Since

T 1 ¼ Ê12 − jp̂12j; ðA27Þ

where ^ denotes that the variable is evaluated in the center-
of-mass frame of the leptonic system, we have

T 1 ¼
e−Yp−

12 þ eYpþ
12

2
−
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðe−Yp−

12 − eYpþ
12Þ þ 4q2⊥

q
;

ðA28Þ

where

Y ¼ ln
ffiffiffiffiffiffiffiffiffiffiffiffiffi
q−=qþ

p
: ðA29Þ

Since the mapping uniquely fixes ðp−
12 − pþ

12Þ=2 ¼
pz
12 ¼ p̄z, and p2

12 ¼ pþ
12p

−
12 − q2⊥, one can fully recon-

struct p12. One finds that

p0
12 ¼ T 1 coshY þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp̄zÞ2 þ q2⊥ − T 2

1 þ T 2
1cosh

2Y − 2T 1p̄z sinhY
q

; ðA30Þ

p2
12 ¼ T 1ðT 1 cosh 2Y − 2p̄z sinhYþ coshY

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ððp̄zÞ2 þ q2⊥Þ þ 2T 1ðT 1 cosh 2Y − 4p̄z sinhYÞ − 2T 2

1

q
Þ; ðA31Þ

which allows one to determine ξ and y and to compute the Jacobian ðdξdyÞ=ðdT1dzÞ using

ξ ¼ 2p0
12ð1 − zÞ
Ecm

;

y ¼ 1 −
p2
12

ξEcmðp0
12 − ξEcm=2Þ

: ðA32Þ

Also in this case, we refrain from reporting the rather lengthy expression for the Jacobian. The interested reader can find
them well documented in the GENEVA code.
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