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medicina e chirurgia, Università di Milano-Bicocca, Monza, Italy
fLaboratorio di chimica clinica, Ospedale Papa Giovanni XXIII, Bergamo, Italy

gIRCCS Ospedale San Raffaele, Via Olgettina, 60, 20132, Milano, Italy

Abstract

Background and Objective Medical machine learning (ML) models tend to
perform better on data from the same cohort than on new data, often due to
overfitting, or co-variate shifts. For these reasons, external validation (EV) is a
necessary practice in the evaluation of medical ML. However, there is still a gap
in the literature on how to interpret EV results and hence assess the robustness
of ML models.
Methods We fill this gap by proposing a meta-validation method, to assess
the soundness of EV procedures. In doing so, we complement the usual way
to assess EV with an assessment in terms of the dataset cardinality, as well
as with a novel method that considers the similarity of the EV dataset with
respect to the training set. We then investigate how the notions of cardinality
and similarity can be used to inform on the reliability of a validation procedure,
by integrating them into two summative data visualizations.
Results We illustrate our methodology by applying it to the validation of a
state-of-the-art COVID-19 diagnostic model on 8 EV sets, collected across 3
different continents. The model performance was moderately impacted by data
similarity (Pearson ρ = .38, p < .001). In the EV, the validated model reported
good AUC (average: .84), acceptable calibration (average: .17) and utility (aver-
age: .50). The validation datasets were adequate in terms of dataset cardinality
and similarity, thus suggesting the soundness of the results. We also provide
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a qualitative guideline to evaluate the reliability of validation procedures, and
we discuss about the importance of proper external validation in light of the
obtained results.
Conclusions In this paper, we propose a novel, lean methodology to: 1) study
how the similarity between training and validation sets impacts on the gen-
eralizability of a ML model; 2) assess the soundness of EV evaluations along
three complementary performance dimensions: discrimination, utility and cali-
bration; 3) draw conclusions on the robustness of the model under validation.
We applied this methodology to a state-of-the-art model for the diagnosis of
COVID-19 from routine blood tests, and showed how to interpret the results in
light of the presented framework.

Keywords: Medical Machine Learning, Validation, Dataset Similarity, Dataset
Cardinality, COVID-19

1. Introduction

The validation of machine learning (ML) classification models represents
one of the most important, and yet most critical, steps in the development of
this class of decision support tools [61]. In this respect, to “validate” means to
provide evidence that the model is valid, that is it will properly work with new
data that the model has never examined or processed before.

In the specialist literature, validation of ML models is often intended and
performed as internal validation [70]: this refer to validation protocols, includ-
ing, e.g. hold-out, bootstrap or cross- validation, that attempt to estimate the
performance of the ML models by partitioning the whole training dataset into
multiple smaller datasets, and by testing the model, trained on one part of the
original dataset, on a different, usually smaller, part [33, 61]. This class of ap-
proaches has prompted the researchers to focus on an important aspect to assess
the soundness of the validation procedure, namely the size of the dataset used,
or its cardinality [49]. We argue, however, that sample cardinality alone is not
sufficient for understanding the reliability of a validation procedure, and must
be complemented with an equally important aspect, which is often completely
overlooked: dataset similarity.

While internal validation procedures are widely used, especially for their
convenience, they are not considered sufficiently conservative in so-called critical
settings, like the medical one [5, 51, 58, 61]. In these settings, ML models must
be robust, that is capable to reliably work also in contexts that may be more
or less subtly different from the one from which the training data has been
obtained [30, 59, 66]. This is sometimes called the requirement for cross-site
transportability [57]. This requirement is due either because the model must be
deployed in a different setting, as it is the case of medical ML models that are to
be deployed in multiple hospitals or countries [25]; or because the distribution of
the underlying phenomenon of interest and predictive variables may change over
time (a phenomenon known as concept drift [31]), making the original setting
of model deployment a new setting for any practical purpose.

2



Furthermore, the results of internal validation procedures are sometimes
incorporated in the development of ML models, for example as a means to
perform model selection [16, 58]: as a consequence, ML models are often not
capable to generalize well beyond their training distribution and may be at risk
of data leakage and overfitting, thus leading to highly inflated estimates of their
prospective accuracy [16, 38].

Therefore, in critical settings, external validation has been advocated as
necessary [5, 19, 35, 59]. External data, in this case, refers to a set of new
data points that come from other cohorts, facilities, or repositories other than
the data used for model creation. Most of the times, performance observed on
external datasets is significantly poorer than performance appraised on original
datasets (e.g., [39]), so that the following question should be addressed any time
researchers develop a ML model: will its performance be reproduced consistently
across different sites [54]?

In what follows, we will share a general method to assess the soundness of an
external validation procedure grounding on the two notions mentioned above,
dataset cardinality and dataset similarity.

To illustrate this method, we will apply it to the case of the COVID-19
diagnosis [12]. In particular, we will report about the challenges that we met
in the validation of a state-of-the-art ML model with external datasets coming
from across three continents, as well as of the lessons that we learnt in the
interpretation of the results. Finally, we will share a set of practical recommen-
dations for the meta-validation of external validation procedures (that is their
validation), so as to meet the requirements of generalizability and reproducibil-
ity that diagnostic and prognostic ML models must guarantee in daily (clinical)
practice [4].

2. Methods

In this Section, we describe our methodological contribution for the assess-
ment of the soundness of external validation procedures. This contribution
combines recent metrics and formulas, and integrates them together to get a
tool for the qualitative (also visual) assessment of the validity of an external
validation procedure. For this reason, we see our proposal as a lean method for
meta-validation.

As said above, this method integrates two different sets of metrics. One set of
metrics is aimed at evaluating the minimum dataset cardinality that is necessary
to extract meaningful estimates of accuracy from a validation procedure; these
metrics are based on the formulas proposed in [8, 49]. By contrast, the other
metric was proposed by us in [13] to get an estimate of the (multi-variate)
similarity between two datasets: here we apply it to compare the (external)
validation set and the training set. In what follows, we briefly present both
metrics and then we discuss how we used them to build up a meta-validation
procedure.
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2.1. Dataset Cardinality Evaluation

As anticipated in the Introduction, high-quality ML studies require that ex-
ternal validation is performed, to assess the capability of an existing model to
generalize across different sites, and thus to provide a reliable and reproducible
estimate of its performance. To this aim, the sample size of the external vali-
dation datasets is an important criterion [2, 49, 64]. Indeed, small sample sizes
can result in imprecise or overly optimistic performance estimates [5].

For these reasons, several studies have developed metrics to evaluate the ad-
equacy of a sample size to perform sound external validations, that is to deter-
mine a Minimum Sample Size (MSS) sufficient to guarantee the generalizability
of the results of an external validation procedure. Traditionally, formulas for
computing the MSS have been based on rules-of-thumb approaches [20, 62, 64].
However, recent studies [55] have raised awareness on several limitations of
rules-of-thumb formulas, due to the fact that these techniques do not take into
account the variance of the ML model with respect to the validation population,
or its expected performance.

For these reasons, in recent years, researchers have focused on the devel-
opment of more precise evaluation formulas, based on either simulation ap-
proaches [55] or concentration bounds [45, 49]. Both these methods provide a
quantitative indication of a minimum sample size which is sufficient to ensure
that the performance estimation, on an external validation set having that sam-
ple size, is representative of the true performance of the ML model with high
probability.

In what follows, we describe the formulas and computation methods of the
MSS for the AUC, the Standardized Net Benefit and the Brier Score. These
three performance metrics are targeted at different, but important, dimensions
of model performance, namely discrimination, utility and calibration (respec-
tively). In particular, in regard to the AUC and the Standardized Net Benefit,
we adopt the formulas for MSS evaluation proposed by Riley et al. [49]. On
the other hand, for the Brier score, we adopt the formula for MSS evaluation
proposed by Bradley et al. [8]. We chose to adopt these techniques because,
compared to other existing proposals, they requires minimal assumptions and
provide data-dependent bounds.

In regard to the AUC, let C be the AUC of the ML model on the external
validation set, Φ be the proportion of the positive class in the external vali-
dation set, and SE(C) the targeted value of the standard error for C. Then,
fixed a value for SE(C) (which determines the size of the confidence interval
associated with the MSS), the MSS for the AUC can be computed according
to the following formula:

MSS(AUC) = minn ∈ N s.t.

SE(C) ≤

√√√√C(1− C)
(

1 + (n/2− 1) 1−C
2−C + n/2−1

1+C

)
n2Φ(1− Φ)

(1)
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In regard to the Standardized Net Benefit, let sNBτ be the Standardized Net
Benefit of the ML model on the external validation set (at fixed probability
threshold τ), Φ be the proportion of the positive class in the external validation
set, Sens (resp. Spec) the sensitivity (resp. specificity) of the ML model on
the external validation dataset, SE(sNBτ ) the targeted valued of the standard

error for sNBτ , and w = (1−φ)τ
φ(1−τ) . Then, fixed a value for SE(sNBτ ) (which de-

termines the size of the confidence interval associated with the MSS), the MSS
for the Standardized Net Benefit can be computed according to the following
formula:

MSS(sNB) =

Sens(1−Sens)
φ + w2Spec(1−Spec)

1−φ + w2(1−Spec)2
phi(1−φ)

SE(sNBτ )2
(2)

Lastly, in regard to the Brier Score, let B be the Brier Score of the ML
model on the external validation set, pi the predicted probability score for the
i-th case in the external validation set, yi the true target class for the i-th case
in the external validation set, n the cardinality of the external validation set, ε
be the targeted size of the confidence interval associated with the MSS. Then,
the SE(B) and the MSS can be estimated from the external validation dataset
as:

SE(B) =
1

n

∑
i

p4i −
4

n

∑
i

p3i yi +
6

n

∑
i

p2i yi −
4

n

∑
i

piyi +
∑
i

pi −B2 (3)

MSS(B) =

(
2 · tε · SE(B)

0.05

)2

(4)

where tε is the ε-critical value for a Student’s t distribution with n− 1 degrees
of freedom.

As mentioned above, the main advantage of the adopted MSS formulas lies
in their being distribution-free and in their capability to take into account data-
dependent information, namely by relying on the observed performance values
in the validation datasets. By contrast, their main disadvantage lies in the
inability to take into account either model complexity (e.g., regularized models
are more robust than data interpolators, and thus they could require a smaller
MSS), or feature dimensionality (e.g., due to the curse of dimensionality, a
higher MSS would be required when the number of features is large). Future
work should be aimed at the development of MSS formulas that can better take
into account these contextual information.

2.2. Dataset Similarity Metric

The relationship between data similarity and generalization properties of
ML models was first proposed by Bousquet et al. [7]: The authors observed
that datasets found to be strongly dissimilar likely originated from different
distributions. As a consequence, information about similarity could provide
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useful indications to understand why a ML model performs poorly on a valida-
tion set [36], and how to perform domain adaptation successfully [48]. To this
aim, different metrics to measure data similarity have since been proposed in
the literature: Bousquet et al. [7] proposed a metric (called Data Agreement
Criterion - DAC), based on the Kullback-Leibler divergence, which has been
widely adopted to evaluate the similarity between distributions [63]; Schat et
al. [53] proposed an adjustment on the DAC metric (called Data Representa-
tiveness Criterion - DRC), and studied the relationship between data similarity
and generalization performance; Cabitza et al. [13] proposed a different met-
ric, called Degree of Correspondance (denoted as Ψ), based on a multi-variate
statistical testing procedure. Notably, both the metric proposed by Bousquet
et al. [7] and Schat et al. [53] are based on a parametric approach. Thus,
they cannot be easily applied when expert knowledge about appropriate dis-
tributions for the data and phenomenon under study is scarce, or when it is
not possible to reliably estimate the parameters of the generating distribu-
tions [1, 6]. For this reason, for our meta-validation procedure we adopt the
Degree of Correspondance (Ψ) proposed in [13]. Since this latter technique
is non-parametric and distribution-free it is not subject to the above limita-
tions. The procedure to compute the Degree of Correspondance is reported
in Algorithm 1 as a reference. Intuitively, the Ψ among the two datasets is
defined as the p-value for a multi-variate topological test for equality of distri-
butions. As regards the ∂ deviation metrics in Algorithm 1, we employed the
Maximum Mean Discrepancy metrics proposed in [28], as the authors of [13]
previously showed this version of the Degree of Correspondance to be more ro-
bust than others. A Python implementation of this algorithm is available at
https://github.com/AndreaCampagner/qualiMLpy/ and a sandbox is provi-
sionally running at https://reprdeg-test.herokuapp.com/.

Algorithm 1 The algorithm procedure to compute the similarity between the
two dataset T and V , using the Degree of Correspondance (Ψ).

procedure Ψ(T, V : datasets, d: distance, ∂ deviation metrics)
dT = {d(t, t′) : t, t′ ∈ T}
For each v ∈ V , find tv ∈ T , nearest neighbor of v in T
T|V = {t ∈ T : @v ∈ V.t = tv} ∪ V
dT|V = {d(t, t′) : t, t′ ∈ T|V }
δ = ∂(dT , dT|V )
Compute Ψ = Pr(δ′ ≥ δ) using a permutation procedure
return Ψ

end procedure

As previously mentioned, the main advantage of this metric lies in its non-
parametric, distribution-free and multivariate nature, as well as in its computa-
tional efficiency. The main disadvantage lies in it being inscrutable in regard to
the extent specific features could influence the score. For this reason, extensions
of this metric would consider the predictivity of the features, and further re-
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search could assess the extent few significantly different feature distributions in
each dataset (acting as a sort of outliers) could impact the score and therefore
the reliability of any conclusion about the practical relevance of the heterogene-
ity between the datasets at hand.

2.3. Meta-validation method

In this section, we introduce our proposal for a lean meta-validation pro-
cedure, which takes into account both the dataset cardinality (as measured
through the MSS formula) and the dataset similarity (as measured through
the Ψ metric) within a two-step procedure.

Our procedure encompasses both quantitative and qualitative (in particular
visual) elements articulated in two different steps. The first step is aimed at
getting a first estimate of the robustness of the ML model, interpreted in terms
of the susceptibility and dependence of its performance on the dis(similarity)
between training and (internal) test sets. For this reason, this step does not
require an external validation dataset and it can be performed by exploiting a
cross validation, or bootstrap, procedure.

In this step, a linear regression should be derived by modelling the rela-
tionship between the dataset similarity (measured by means of the degree of
correspondence presented above), seen as an explanatory variable, and any bal-
anced performance metric of choice (e.g. Balanced Accuracy, F-score), seen as
the dependent variable. In particular, we suggest to used balanced performance
metrics to better account for potential imbalances in the target distribution [9].
Obviously, the resulting model makes no pretensions at being general, as it is
highly dependent on (among other things) the model architecture, the selected
features, the hyper-parameter settings and the task target. That notwithstand-
ing, such a linear model could give developers informative hints about the extent
the heterogeneity of unseen data (of similar kind and pertinent to that particu-
lar task) is relevant, with respect to the data patterns the model could learn, in
terms of impact on the expected performance of the model and, hence, its ro-
bustness. These hints regard three different, but related, elements of the linear
model, namely the correlation coefficient (r, and its statistical significance); the
coefficient of determination (that is, R2); and the angular coefficient (b). More
precisely, the correlation coefficient provides information in regard to the im-
pact of dataset similarity on model generalization: low correlation values imply
stronger generalizability, while higher correlation values imply greater impact of
dataset heterogeneity on the reproducibility of the model’s results. To guide the
interpretation of the correlation values, a widely known convention [18] suggests
to interpret correlation coefficients (r) lower than .1 as either absent or negligi-
ble correlation between data similarity and model performance; between .1 and
.3 as weak or low correlation; values between .3 and .5 as moderate correlations;
values between .5 and .7 as strong correlations; and above .7 as very strong cor-
relations. The correlation coefficient can also be given an interpretation in terms
of the corresponding R2 value, which can be analytically expressed as R2 = r2.
Consequently, strong correlations are those for which linear regressions models
explain at least one quarter of the variation in model performance by variations
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in the value of the similarity between datasets (indeed, in these cases the coeffi-
cient of determination R2 is greater than .25). Finally, the relationship between
b and r (indeed, b = r

σy

σx
) can be used to derive a graphical representation of

the “strength” of the relationship between dataset similarity and model per-
formance, according to the diagram represented in Figure 1, which we call the
potential robustness diagram, a sort of extended scatterplot.

Figure 1: The potential robustness diagram, proposed to support the proposed meta-validation
methodology at step 1.

In this diagram, the top half should represent a scatterplot of the relation-
ship between dataset similarity and model performance, as obtained through
the above mentioned cross-validation, or similar, procedures. The bottom half,
on the other hand, represents four “correlation regions”, which allow to classify
the measured correlation: low angular coefficients could be seen as an indirect
indicator of model robustness and tolerance to data variability, as they corre-
spond to either weak (i.e. r < 0.3) or absent (r < 0.1) correlation. By contrast,
high angular coefficients, associated with at least a moderate correlation (i.e.
r > 0.3) would hint at a potentially relevant impact of data variability on the
performance and robustness of the ML model. The potential robustness dia-
gram allows to compare and interpret actual performance results, as they are
produced in the following step of the procedure, in light of the extent they either
confirm or challenge this sort of “simulation of generalizability”.
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The second step of the meta-validation procedure, on the other hand, re-
quires to have at least one external validation dataset (and the more datasets,
the better). This step is aimed at assessing the performance of the ML model in
light of two different dimensions: dataset similarity (of the external validation
dataset, with respect to the training set of the ML model); and dataset cardinal-
ity, in terms of sufficient sample size. The performance is evaluated in terms of
discrimination, calibration, and utility, three dimensions of equal importance in
the comprehensive evaluation of a model quality (although they usually attract
different attention at development time, with the former being the most pursued
one [62]). The second step requires then to perform a meta-evaluation of the
validation procedure, to understand if this latter procedure can be considered
conservative and reliable enough. On a practical level, we suggest to perform
this evaluation by means of a graphical representation of the above mentioned
information, as shown in the diagram in Figures 2, that we call the external per-
formance diagram. This diagram allows to depict, for any external validation
dataset considered, whether the Minimum Sample Size (MSS) has been achieved
(or, possibly, exceeded), in terms of opacity; and three complementary quality
dimensions in light of the similarity with respect to the internal datasets: model
discrimination power (AUC); model utility (Net Benefit); and model calibration
(Brier Score).

In order to maintain consistent naming conventions when describing the
relative dataset similarity associated with the degree of correspondance Ψ, the
following labels (see Table 1), inspired by the famous nomenclature adopted by
Landis and Koch [37], are assigned to the corresponding ranges of the Degree of
Correspondance (Ψ) and adopted in the proposed diagram.

Ψ Level of similarity
<.001 extremely low
.001-.2 low
.21-.4 slight
.41-.6 moderate
.61-.8 substantial
.81-1 essential

Table 1: Levels of similarity with respect to the value of the Degree of Correspondance (Ψ).

Thus, as a rule of thumb, a similarity higher than 60% (i.e., substantial or
essential) should make readers wary of the utility of such a validation to tell
something about the actual replicability of the model performance. Conversely,
good performance exhibited by the model on external datasets that are less than
40% similar with respect to the training set (slight or low similarity) should be
considered a reliable test bench in terms of conservative estimates of model
performance.

A similar terminology is also adopted in regard to the model performance.
In particular, with respect to AUC, values greater than 0.7 are deemed accept-
able [41]; while values greater than 0.8, or 0.9, are termed, respectively, good
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Figure 2: The external performance diagram, proposed to support the meta-validation pro-
cedure at step 2.

and excellent. Similar thresholds are also adopted for the (Standardized) Net
Benefit [52] and the Brier Score [60]. Obviously, other thresholds may be more
appropriate for different metrics, such as the Matthews Correlation Coefficient
[17] or the Index of Balanced Accuracy [26, 27].

This notions are then represented graphically in the diagram in Figure 2.
In particular, in each of the three figures in the diagram, the bottom portion
represents the area of low similarity. If the performance of a validation dataset
falls into this region, then the validation process can be considered conservative
enough; moreover, if a score falls into the right-bottom region then the validation
process can be considered as providing a conservative indication of good cross-
site transportability.

Figure 2 also provides an evaluation of the external validation procedure in
terms of the adequacy of the dataset cardinality, with respect to the Minimum
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Sample Size in terms of hue brightness or opacity.
As a rule of thumb, results that are only acceptable on datasets that are either

substantially or essentially similar to the training set should be considered not
valid ; conversely, an external validation where at least acceptable AUC scores
are observed on at most slightly similar external datasets would suggest that
the model is valid and robust (with respect to that performance dimension).

Figure 3: Above: Heat map of the temporal evolution of the rolling 7-day average of the
number of the confirmed COVID-19 positive cases (in purple), negative cases (in green) col-
lected in the training dataset: the brighter the color, the higher the number of cases. Below:
temporal series the Age, White Blood Count and Lymphocites of the patients admitted at
the HSR, with their 95% confidence intervals, chosen for their high predictive value in the
diagnostic ML model. The vertical dotted line indicates the 1st of May 2020, when visual
inspection allowed to notice some changes in the temporal patterns of the features, while the
number of admissions of positive patients was significantly decreasing.

3. Use case: external validation of models supporting COVID-19 di-
agnosis

In this section, we describe the experimental setting where we applied our
methodological approach, the characteristics of the training and validation datasets,
and we briefly discuss the results of the validation of a ML model to diagnose
COVID-19.
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3.1. Related Works on COVID-19 Diagnosis

Since its initial spread in January 2020, the COVID-19 pandemic has so far
affected more than 180 million people in 18 months, and caused almost four
million deaths worldwide (if not more). For these reasons, different ML models
have been applied to aid clinicians in the detection of COVID-19, using different
methods, e.g. deep learning model based on imaging data [3, 10, 32, 44, 46]
or statistical learning approaches, mainly based on hematochemical parame-
ters [12, 47, 56, 67, 69]. These latter methods, in particular, have been consid-
ered particularly interesting for clinical purposes. Indeed, while most imaging-
based studies have been found lacking in terms of methodological soundness [50,
68], hematochemical-based models are often more rapid and cost-effective [23],
and also more safe, especially when compared to CT procedures [29].

Nonetheless, although the potential of ML methods for COVID-19 detection
is high, only a few models have been subjected to external validation [50, 68].
For instance, if we limit ourselves to ML models grounding on hematological
data, among tens of publications [68] only the following publications report an
external validation procedure to date: [12, 47, 56, 67, 69].

This striking lack of validation studies makes COVID-19 a paradigmatic
case, not only for the urgent need of reliable studies and good models through
which to improve practice and ultimately health outcomes during health crises,
but also for the related lack of reproducibility [50], which has been recently
denoted as one of the main challenges to overcome for the real-world adoption
of ML-based approaches in medical practice [4, 68].

For this reason, in what follows we will consider the application of the pro-
posed methodological framework to the external validation of one of the few
proposals in the literature to have undergone external validation, namely the
state-of-the-art ML model proposed in [12].

3.2. Experimental Setting

In what follows, we describe the experimental setting for our study, by which
we aim to illustrate the proposed meta-validation methodology. To this purpose,
as previously mentioned, we will describe our experience on the external valida-
tion of a state-of-the-art COVID-19 diagnostic model [12], based on complete
blood count (CBC) data.

This ML model was developed on the basis of a training set encompassing
1736 instances and 21 features, collected upon admission at the emergency de-
partments (ED) of two hospitals in the Milan area (northern Italy) that are 15
km apart: the IRCCS Hospital San Raffaele (HSR), a large teaching hospital
of 1,350 beds, serving a catchment area of 39,000 citizens, which was heavily
impacted by the first wave of the COVID pandemic; and the IRCCS Istituto
Ortopedico Galeazzi (IOG), a teaching hospital specialized in musculoskeletal
disorders of 364 beds, serving a catchment area of 15,000 citizens2.

2https://www.dati.lombardia.it/Sanit-/Bacino-di-utenza-delle-strutture-per-
ospedale/gbyc-bhps/data
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The data were collected between March 5, 2020, and May 26, 2020, that is
during the first wave of the COVID-19 pandemic in Northern Italy (see Fig-
ure 4). The requirement for the collection phase was to get a training set
which was sufficiently balanced and heterogeneous: for this reason, we collected
test results from patients admitted in a hospital that was specifically devoted
to manage COVID-19 patients (the HSR) with the results of patients who had
been mostly admitted to another hospital (the IOG) for other problems (mainly
trauma) and were found COVID-positive. Moreover, focusing on the HSR sub-
set, we noticed that the number and case mix of the patients admitted into the
ED changed over time, from the first phase of the pandemic (February - April)
to the last phase of the first wave (see Figure 3), also reflecting the number of
cases at national level (see Figure 4).

Figure 4: Temporal series of the rolling 7-day average of the number of daily new confirmed
COVID-19 cases per million people in the countries where the data (horizontal bars) have
been collected for the development and validation of the diagnostic ML model considered in
this study. Adapted from ourworldindata.org.

We performed eight external validation procedures on the basis of as many
corresponding external datasets, namely:

1. The Italy-1 dataset: This dataset was collected at the Desio Hospital, a
general hospital of 383 beds, 25 kilometres due north of Milan, serving a
catchment area of approximately 12,000 citizens1. This dataset encom-
passes 337 instances (163 positive, 174 negative) collected in March/April
2020, that is during the first wave of the COVID-19 pandemic in Northern
Italy.

2. The Italy-2 dataset: this dataset was collected at the ‘Papa Giovanni
XXIII’ Hospital of Bergamo, a general hospital of 1080 beds, 54 kilome-
tres due east of Milan, serving a catchment area of approximately 28,000
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citizens: This dataset encompasses 249 instances (104 positive, 145 nega-
tive) collected in March/April 2020, during the first wave of the pandemic.

3. The Italy-3 dataset (from the IRCCS Hospital San Raffaele, that is the
same from where the training cases had been collected), which encom-
passes 224 instances (118 positive, 106 negative) collected in November
2020, that is 5 months later the collection of the training set, during the
peak of the second wave of COVID-19 in Italy;

4. The Spain dataset. This dataset was collected at the University Hospital
Santa Lućıa in Cartagena, a city of 215,000 inhabitants in the Region of
Murcia, in Spain: This dataset encompasses 120 instances (78 positive,
42 negative) collected in October 2020, in one of the two hospitals of the
above Region.

5. The 3 Brazil datasets: The first dataset, Brazil-1, was collected in the
Fleury private clinics thorough Brazil; while the other 2 datasets, Brazil-2
and Brazil-3, com respectively from the Albert Einstein Israelite Hospital,
and the Hospital Śırio-Libanês. These latter two hospitals of, respectively
627 and 466 beds, are both located in Sao Paulo (Brazil), with a catchment
area of approximately 23 million people, and are considered two of the
most important hospitals in Brazil and South America. The 3 Brazil
datasets encompass, respectively, 1301 (352 positive, 949 negative), 2335
(375 positive, 1960 negative) and 345 (334 positive, 11 negative) instances,
all collected between February 2020 and June 2020, during the first wave
of the pandemic in Brazil;

6. The Ethiopia dataset. This dataset was collected at the National Refer-
ence Laboratory for Clinical Chemistry, Millenium COVID-19 Treatment
and Care Center, of the Ethiopian Public Health Institute in Addis Ababa,
and encompasses 400 (200 positive, 200 negative) instances collected be-
tween January and March 2021.

The set of predictive features is reported in Table 2, while the characteristics of
the datasets are summarized in Table 3. The four most predictive quantitative
features [12] and the prevalence of suspect symptoms are reported in Figures 5
and 6.

In regard to the characteristics of the ML model, we evaluated a pipelined
model encompassing: a missing data imputation step (based on K-Nearest
Neighbors); a data standardization step; and a classification model based on
Support Vector Machine classifier with RBF kernel (see [12] for details on
model development and optimization). As previously mentioned, this model
was trained on a dataset encompassing 1736 instances and 21 features, collected
at the HSR and IOG hospitals, and reported an AUC of 0.76 in the internal-
external validation, assessed through 10-fold nested cross-validation. See [12]
for further detail about internal and internal-external validation.

As previously mentioned, our aim was then to illustrate the application
of the proposed meta-validation methodology. To this purpose, we performed
two experiments, to illustrate both steps of the above mentioned methodology.
First, we considered the first step of the methodology, by means of a simulation
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Feature Italy-1 Italy-2 Italy-3 Spain Brazil-1 Brazil-2 Brazil-3 Ethiopia

Age
(years)

66.35 ± 0.1 54.38 ± 0.2 60.53 ± 0.2 56.68 ± 0.3 47.01 ± 0.0 42.87 ± 0.0 54.40 ± 0.1 59.73 ± 0.1

HCT
(%)

38.20 ± 0.0 37.77 ± 0.1 39.67 ± 0.1 40.19 ± 0.1 41.47 ± 0.0 41.18 ± 0.0 40.75 ± 0.0 41.01 ± 0.0

HGB
(g/dL)

13.21 ± 0.0 12.86 ± 0.0 13.11 ± 0.0 13.40 ± 0.0 13.82 ± 0.0 14.11 ± 0.0 13.74 ± 0.0 13.81 ± 0.0

MCH
(pg/Cell)

29.62 ± 0.0 30.41 ± 0.0 29.51 ± 0.0 29.39 ± 0.0 29.37 ± 0.0 29.59 ± 0.0 29.60 ± 0.0 29.88 ± 0.0

MCHC
(g Hb/dL)

34.49 ± 0.0 33.98 ± 0.0 33.00 ± 0.0 33.32 ± 0.0 33.31 ± 0.0 34.25 ± 0.0 33.68 ± 0.0 33.48 ± 0.0

MCV
(fL)

85.72 ± 0.0 89.44 ± 0.1 89.41 ± 0.1 88.08 ± 0.1 88.19 ± 0.0 86.39 ± 0.0 87.90 ± 0.0 88.68 ± 0.0

RBC

(1012/L)
4.49 ± 0.0 4.25 ± 0.0 4.46 ± 0.0 4.58 ± 0.0 4.72 ± 0.0 4.78 ± 0.0 4.65 ± 0.0 4.74 ± 0.0

WBC

(109/L)
9.81 ± 0.0 8.31 ± 0.1 9.53 ± 0.1 9.43 ± 0.1 6.70 ± 0.0 7.66 ± 0.0 6.30 ± 0.0 9.66 ± 0.1

PLT1

(109/L)
220.23 ± 0.5 204.00 ± 0.9 218.00 ± 0.7 220.07 ± 1.2 246.96 ± 0.1 239.92 ± 0.1 199.81 ± 0.4 259.03 ± 0.5

NE
(%)

75.03 ± 0.1 67.54 ± 0.1 72.48 ± 0.1 72.81 ± 0.2 56.79 ± 0.0 61.02 ± 0.0 65.78 ± 0.1 68.81 ± 0.1

LY
(%)

16.56 ± 0.1 21.90 ± 0.1 18.30 ± 0.1 17.96 ± 0.2 31.10 ± 0.0 27.57 ± 0.0 23.14 ± 0.1 21.76 ± 0.1

MO
(%)

7.17 ± 0.0 8.86 ± 0.0 8.13 ± 0.0 7.87 ± 0.1 9.29 ± 0.0 8.64 ± 0.0 9.64 ± 0.0 6.76 ± 0.0

EO
(%)

0.74 ± 0.0 1.23 ± 0.0 0.60 ± 0.0 1.00 ± 0.0 2.30 ± 0.0 2.27 ± 0.0 1.05 ± 0.0 2.11 ± 0.0

BA
(%)

0.18 ± 0.0 0.46 ± 0.0 0.32 ± 0.0 0.36 ± 0.0 0.52 ± 0.0 0.48 ± 0.0 0.30 ± 0.0 0.56 ± 0.0

NET

(109/L)
7.47 ± 0.0 5.62 ± 0.0 6.76 ± 0.0 7.20 ± 0.1 3.92 ± 0.0 4.82 ± 0.0 4.35 ± 0.0 7.13 ± 0.0

LYT

(109/L)
1.63 ± 0.0 1.84 ± 0.0 1.82 ± 0.1 1.43 ± 0.0 2.01 ± 0.0 2.00 ± 0.0 1.31 ± 0.0 1.33 ± 0.0

MOT

(109/L)
0.64 ± 0.0 0.73 ± 0.0 0.64 ± 0.0 0.69 ± 0.0 0.59 ± 0.0 0.63 ± 0.0 0.56 ± 0.0 0.52 ± 0.0

EOT

(109/L)
0.06 ± 0.0 0.09 ± 0.0 0.05 ± 0.0 0.09 ± 0.0 0.15 ± 0.0 0.17 ± 0.0 0.06 ± 0.0 0.14 ± 0.0

BAT

(109/L)
0.02 ± 0.0 0.03 ± 0.0 0.02 ± 0.0 0.03 ± 0.0 0.03 ± 0.0 0.03 ± 0.0 0.02 ± 0.0 0.04 ± 0.0

Sex
(M/F)

65%/35% 68%/32% 63%/37% 53%/47% 43%/57% 53%47% 64%/36% 57%/43%

Suspect
(Y/N)

48%/0% 42%/5% 82%/18% 85%/15% 0%/0% 0%/0% 0%/0% 50%/50%

Table 2: The quantitative features (along with units of measure, in parentheses) of the con-
sidered datasets: for each feature and dataset we report the mean and the 95% confidence
interval. In regard to the Suspect feature, when the Yes (Y) and No (N) values do not sum
up to 100%, the remaining percentage of values was missing.

experiment in which we generated from the original training dataset 100 ran-
dom and 2 non-random (namely, using the data collected at the HSR during
March/April as training set, and the data collected at the HSR during May, as
well as the data collected at the IOG, as test sets) hold-out splits. Second, we
considered the second step of the methodology, by means of the evaluation of the
previously described ML model on the 8 external validation datasets. To illus-
trate the broad applicability of the proposed methodology, we also evaluated the
correlation between dataset similarity and predictive performance: Statistical
significance was evaluated using a confidence threshold of 95% (α = .05).

3.3. Results

According to the first step of the proposed methodology, we first evaluated
the correlation between similarity (measured through the Ψ metric) and the
balanced accuracy of the ML model, on the basis of the 100 random splits
and 2 non-random partitions (the IOG and HSR May partitions) of the original
training set. The results are reported in the potential robustness diagram, shown
in Figure 7. The top half of this diagram reports a scatter-plot of the 100 random
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Figure 5: Violinplots of the most predictive features for the training set (train) and each of the
external validation sets considered in this study. In clockwise order: age (years), lymphocyte
count (%), white blood count (109/L), and platelet count (109/L).

splits: the average similarity was .43± .06, while the average balanced accuracy
was .76± .004. In particular, the IOG partition was found to be very different
from the rest of the training set, with a similarity of only .1 and an accuracy
of .70, while the data collected at the HSR during May 2020 had a similarity
of .43 (with respect to the data collected between March and April 2020) and
an accuracy of .82. The bottom half of Figure 7 reports the regression line
within the diagram proposed in Section 2. The dataset similarity and balanced
accuracy were moderately correlated (Pearson ρ = .38) and the correlation was
statistically significant (p < .001). The corresponding regression model had an
angular coefficient of b = 0.03 and an intercept of a = 0.76, with R2 = 0.14.

In regard to the second step of the methodology, as described in the previous
section, we evaluated the ML model on 8 external validation datasets. The
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Figure 6: Prevalence of suspect symptoms, stratified by target and dataset.

Dataset Type Instances CBC Analyzer
Missing rate

(CBC + Age)
Missing Rate

(Suspect)

Distance from
training setting

(km)
Collection Period

IOG Internal 58 iSysmex XN-2000 1% 0% 7.5 February-April 2020
HSR-May Internal 235 Sysmex XE 2100 28% 0% 0 May 2020

Italy-1 External 337 Sysmex XN-9000 0% 57% 15 March-April 2020
Italy-2 External 249 Sysmex XN-9000 0% 53% 36 March-April 2020
Italy-3 External 224 Sysmex XE 2100 3% 0% 0 November 2020
Spain External 120 Roche XN 1000 0% 0% 1225 October 2020

Brazil-1 External 1301 NA 0% 100% 9500 February-June 2020
Brazil-2 External 2335 NA 0% 100% 9600 February-June 2020
Brazil-3 External 345 NA 0% 100% 9550 February-June 2020
Ethiopia External 400 Beckman Coulter DXH 3% 0% 4930 January-March 2021

Table 3: Characteristics of the eight external validation datasets and two relevant partitions of
the training set: the IOG dataset and the HSR-May dataset. In the Ethiopia dataset, the Age
feature was missing for all the COVID-19 negative patients; while for the Italy-3 dataset, the
formula features (i.e. NET, LYT, BAT, EOT, MOT and the respective percentage features)
were missing for 11 patients.

performance of the ML model on the external validation datasets is reported
in Table 4. Although the specificity was very high across all datasets (average
90% ± 6%), the model reported varying sensitivity (average 60% ± 19%), with
higher performance on the Italian datasets (average F2 score 87% ± 3%), and
the worst performance obtained on the Brazilian datasets (average F2 score
37%± 4%); the decrease in performance was largely due to a large presence of
false negative classifications: indeed, the model reported much lower sensitivity
on the Brazilian datasets.

Table 4 also reports the values of the dataset similarity Ψ. In regard to
the second step, the external performance diagram, reporting the correlation
between the Ψ and, respectively, the AUC, the Net Benefit and the Brier Score,
of the ML model on the external validation sets, is shown in Figure 8. The
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Figure 7: The potential robustness diagram, displaying the results of the “simulation of gen-
eralizability” step (i.e., step 1) for the study on the COVID-19 diagnosis. The correlation,
shown by the dotted line, is moderate and statistically significant. Each circle represents a
dataset from the repeated hold-out procedure; red circles represent two particular hold-out
validation sets: the data collected at HSR in May 2020 (above) and the data collected at
IOG (below). The black segment indicates the average similarity found among the partition
datasets and its 95% confidence interval, indicating a ‘moderate’ similarity (see Table 1).

Dataset Accuracy Sensitivity Specificity AUC
Balanced
Accuracy

F2 Score
Brier
Score

Standardized
Net Benefit

Ψ

Italy-1 90% 91% 89% 97% 90% 91% 0.08 79% 0.439
Italy-2 93% 84% 99% 98% 91% 87% 0.08 83% 0.445
Italy-3 81% 85% 77% 89% 81% 83% 0.14 64% 0.447
Spain 68% 60% 81% 66% 71% 63% 0.27 50% 0.315

Brazil-1 77% 29% 95% 75% 62% 34% 0.16 16% 0.341
Brazil-2 86% 31% 97% 83% 64% 36% 0.10 15% 0.444
Brazil-3 39% 37% 91% 80% 64% 42% 0.39 37% 0.348
Ethiopia 79% 66% 90% 87% 78% 69% 0.15 56% 0.323

Table 4: The performance of the ML model on the external validation datasets.

correlation between the AUC and the dataset similarity was very strong (r =
.74) and significant (p = .035); the correlation between the Net Benefit and
dataset similarity was moderate (r = .39) but not significant (p = 0.345); while
the correlation between the Brier score and dataset similarity was strong (r =
.66) but not significant (p = .076), likely due to the relatively small number of
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datasets. Thus, in light of the results of the first step of the methodology, we can
see that the findings of the external validation confirm the observed moderate
impact of data heterogeneity on model performance, since the best reported
performance was mostly associated with the more similar external datasets (i.e.
the Italian dataset).

Based on what said in Section 2, the model can be considered externally val-
idated, as, for all three performance metrics, at least one external dataset was
associated with slight similarity and acceptable (or better) performance. Fur-
thermore, for all three performance metrics, most external validation datasets
could be considered of sufficient cardinality: indeed, most datasets exceeded
the MSS for the three performance metrics, whereas only the Spain dataset was
associated with a dataset cardinality smaller than the MSS for all the three
performance metrics. That said, the variability in the observed results prompts
for further discussion in the next section.

4. Discussion

The external validation of ML models is increasingly being proposed as the
main (and only) means to certify the supposed validity of the model on (vir-
tually any) unseen data [19, 59]. However, as also the findings shown above
illustrate, the result from an external validation cannot guarantee reliability
per se [25]: if the external validation had been performed only on the Italy-2
dataset, where the diagnostic model performed even better than on the origi-
nal test set and exhibited very high AUC scores, the external validation would
have been considered a clear success; if, conversely, the external validation had
been performed on the Spain dataset, where the model accuracy dropped by
losing almost 30 percent points (see Figure 8) such a claim would have seemed
inflated at best. Thus, as the old saying runs, only time can tell and, as we also
argued elsewhere [14], only “eating the pudding can prove its quality”. How-
ever, we proposed to take some informed guess by performing a meta-validation
procedure, including the external validation itself.

Indeed, when considering external validation, two main questions must be
addressed: “is my validation actually reliable enough?”; and “Is my model
actually valid?”. The first question is addressed by the first step of the procedure
we propose (see Section 2), by evaluating the extent the validation data are
different from training data and the extent the model performance seems to
be susceptible in that respect. The potential robustness diagram is a visual
aid to address these latter aspects. On the other hand, the second question is
addressed by the second step of the procedure we propose (see Section 2). To this
respect, the vertical axis of the external performance diagram helps understand
how much the validation is actually external (hence, how conservative), while
the horizontal axis of this diagram is suggestive of the comprehensive validity
of the model on the external dataset(s).

Lastly, since accuracy scores are always probabilistic estimates (despite the
fact they are seldom presented as such, e.g., with confidence intervals), the
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Figure 8: The external performance diagram, displaying the results from the external val-
idation study on the COVID-19 diagnosis (second step of the meta-validation procedure).
Information about the MSS is rendered in terms of hue brightness. The width of the ellipses
is equal to the width of the 95% confidence interval w.r.t. the given performance metrics.

external performance diagram gives also clues about the significance of the per-
formance scores, in terms of the degree to which the ‘minimum sample size’
requirement has been met (or not).

We make the point that combining information about similarity and perfor-
mance susceptibility together (first step), and about similarity and statistical
significance (second step, and related diagrams) is important to allow the quali-
tative interpretation of the representativeness of the external datasets and their
role to make claims of robustness reliable.

As we have seen in the COVID-19 case study, many factors can influence the
representativeness of datasets for assessing the robustness of a model in a given
classification task: differences in testing equipment [43, 24] (cf. the concepts
of harmonization and analytical variability), in reference ranges [15, 40] (cf.

20



ethnic variability), in disease manifestations (cf. phenotypic variability) and
how humans react to diseases, also due to contextual factors (cf., biological
intra-individual variability and the clinical inter-group variability ) [21] make the
reference population extremely vast and various, from which also very dissimilar
datasets can be drawn to challenge the model’s performance.

In this respect, our work is among the first ones to assert the obvious, but
seriously neglected fact, that external datasets are not all the same [50]. Thus,
given a classification task, researchers who are diligent in the external validation
of their models should acquire multiple datasets and test the performance of
their models over these datasets. Furthermore, in this paper we make the point
of the need to also assess how diverse the external datasets are with respect to
the training set [7, 13, 53] , and how large the external datasets are with respect
to what would be required to achieve reliable performance estimates [49, 55, 64].

For instance, with reference to our case study and, in particular, to Fig-
ure 8, we can see that the validated model performed well (either ‘good’ or
‘excellent’) on three/four datasets that were ‘moderately’ dissimilar and of ad-
equate sample size (as indicated by the border of their corresponding circles).
As a general rule of thumb, an external validation can be considered success-
ful when the model exhibits an at-least-good performance on (the majority of)
the at-least-moderately-similar external dataset(s) at hand (with respect to the
training set). However, validating the model on multiple external datasets allow
for some more fine-grained considerations. In our COVID-19 case, for instance,
the performance exhibited on the Ethiopian dataset (E in Figure 8) is more
interesting than it might seem at first sight, because it was obtained on one
of the most diverse datasets, even more different than the Brazilian ones (B1,
B2 and B3 in Figure 8), which, on the other hand, are the most distant ones
(geographically speaking). Conversely, the model performance on the Brazilian
datasets suggests great caution in adopting the validated model on any compa-
rable datasets that: (i) exhibit the same imbalance or similar data distributions
(in particular the patients in the Brazil-1 and Brazil-2 datasets were of signif-
icantly younger age); (ii) are collected from different or unknown equipment;
(iii) or similarly lack important predictive features (in the case of the Brazilian
cohorts, the Suspect feature, recognized as one of the most important predictive
features [42], was systematically missing). With respect to this latter point, and
looking at Figure 6, we can also observe that the ML model exhibited better
performance on those datasets where the diagnosis agreed with the reported
symptoms. In light of this latter observation, the performance obtained on the
Spain and Italy-3 datasets can be considered interesting, as both datasets con-
tained a significant portion of instances whose symptoms could be considered
misleading with respect to the assigned diagnosis.

The COVID-19 case study presented here represents a real-world case, in
which we tested a state-of-the-art model on a delicate and relevant task (like
COVID-19 early diagnosis) with data coming from settings thousands of kilo-
metres apart in three continents. The application of the proposed methodology
allowed us to externally validate the above model, as this latter achieves ade-
quate performance levels in all the three dimensions considered (see Figure 8).
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These results should be interpreted also in light of the results of the first step
of the methodology. Since susceptibility to data heterogeneity was found to
be moderate (see Figure 7), caution should be exercised when the model is to
be applied to other external (and different) datasets. We made the point (and
proved it) that these aspects play an important role in the sound evaluation of
medical ML [11].

This case study allows us to recognize the main advantages and limits of
the meta-validation method proposed in this contribution. The main advantage
regards the simple and lean nature of the two-step method, which yet does not
sacrifice comprehensiveness, as it allows to evaluate a classification model in
terms of complementary dimensions, like discrimination, calibration and utility.
Its qualitative approach to the interpretation of performance scores is both and
advantage and a limit: a model can be very good in discriminative terms while
being poor in terms of utility; it is then up to the designer, or the prospective
user, to decide what dimensions are more important according to their purposes
and needs. Our method, particularly so through the first step of the methodol-
ogy, also allows to get a qualitative idea of the impact of dataset heterogenity
on the model performance and robustness: while no one can exactly predict how
a model will perform with some unseen data, our potential robustness diagram
allows to get an idea of the susceptibility of the model to data heterogeneity, in
terms of data similarity, and this is the first time such an approach is pursued.

In regard to possible future works, first of all, we note that while in the first
step of the proposed methodology we focused on linear relationships between
the dataset similarity and model performance, the proposed approach could in
principle be extended also to more general, non-linear relationships. Obviously,
such generalization would necessitate the development of different visualizations
for the potential robustness diagram. Similarly, the second step of the proposed
methodology could in principle be adapted to other performance metrics. A
possible research direction, then, would regard the development of novel MSS
formulas and the definition of appropriate performance thresholds.

Finally, we mention that even though here we focused on the validation
of ML models, assessing similarity and cardinality of an external dataset can
also be useful for other phases that are not directly related to validation. For
instance, a similarity score could, in principle, be used to efficiently improve
the model over time and cope with changes in the phenomenon to be classi-
fied [48] (e.g., disease manifestation, for changes in the catchment area, case
mix, data collection policies, employed tests or the mutating pathogen): to this
aim, efficiency would be achieved by using similarity scoring to identify the
most dissimilar data points that the model should learn to classify, and the
by focusing on those data. Also procurement managers can leverage similarity
scores to inform their decisions: to this aim, they could ask vendors to com-
pare their training set (not necessarily disclosed) with a representative sample
of local instances, so as to assess the similarity between these two datasets in
terms of some metric (e.g., in case of tabular data, the Data Representativeness
Criterion [53] or the Degree of Correspondance [13] adopted in this article). If
the datasets are found to be too dissimilar, any statement on the accuracy of
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the model should be taken with extreme caution and require further inquiries.

5. Conclusions and final recommendations

The external validation of a medical machine learning model is very im-
portant for a number of reasons [19, 59]. This is also the case because an
external validation corroborates the reputation on the model, and hence the
users’ trust and performance expectancy, which are known to be positively cor-
related with the behavioral intention to adopt and use the system in the actual
practice [22, 34]. However, for external validation to provide a sounder basis
for more reliable estimates (than internal validation) of the prospective perfor-
mance of the model on new, unseen cases in multiple setting, just to make it
“external”, that is based on data coming from other settings than the training
one, is simply not enough.

For this purpose, in this paper, we proposed a meta-validation methodol-
ogy to assess any validation procedure through two qualitative, graphical tools
that allow to evaluate the robustness w.r.t. data similarity (i.e., the potential
robustness diagram) as well as the results of an external validation, in light of
data similarity and data cardinality (i.e., the external performance diagram).
Furthermore, through a real-world case study, we described the application of
our methodology and have shown that the performance of an accurate model to
detect COVID-19 from routine blood tests (whose analytical variability is negli-
gible across laboratories from all over the world [65]) significantly degrades when
these tests are taken in different settings, by means of different equipment, or
on heterogeneous populations. These results corroborate and extend the results
obtained in the previous literature [53, 55] studying the impact of data similar-
ity and data cardinality on model generalization. Furthermore, we emphasize
that the model we “validated” in this article, grounds on the most stable and
less variable hematochemical exam [65], the complete blood count: and yet, the
correlation between accuracy and similarity that we reported should serve as
a warning sign that reproducing good performances across very heterogeneous
settings can be overambitious and unrealistic. The same reasoning obviously
applies, and if possible even exacerbated, in the case of models that rely on less
stable tests, such as imaging [50].

In light of this study we can finally share some recommendations when de-
veloping a ML model in medical settings (and other similarly critical domains):

1. Do an external validation;

2. If doing an external validation is not feasible, perform a hold-out internal
validation where the hold-out dataset has been chosen among a not-so-
small set of candidates so as to be the most diverse one, by computing
some apt similarity score (e.g., the Degree of Correspondance Ψ adopted
herein; in this case the similarity should be low or extremely low – see
Table 1). Alternatively, perform a cross-validation but report the average
performance on the most diverse 20% of the test partitions. As shown
in Figure 7 (see its leftmost part), doing so does not prevent “good”
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scores, but it may yield more conservative (and hence reliable) estimates
of model’s robustness;

3. When doing the external validation, take into account the similarity be-
tween the training set and the external validation set, and the cardinality
of the latter. Be aware that if similarity is substantial or higher (see Ta-
ble 1), or if the cardinality is less than the minimum sample size, then
the external validation may not yield estimates of future performance of
sufficient reliability; Visual aids like the potential robustness diagram and
the external performance diagram depicted in Figure 7 and Figure 8, re-
spectively, can be conveniently used to support result interpretation: the
code to generate them is available online3 and free to use for any interested
researcher.

4. And then, again: do an external validation, even if you won’t like the
results.

Acronyms and abbreviations

• BA: Basophils

• CBC: Complete Blood Count

• DAC: Data Agreement Criterion

• DRC: Data Representativeness Criterion

• ED: Emergency Department

• EO: Eosinophils

• HCT: Hematocrit

• HGB: Hemoglobin

• HSR: Hospital San Raffaele

• IOG: Istituto Ortopedico Galeazzi

• LY: Lymphocytes

• MCH: Mean Corpuscular Hemoglobin

• MCHC: Mean Corpuscular Hemoglobin Concentration

• MCV: Mean Corpuscular Volume

• ML: Machine Learning

• NE: Neutrophils

3https://github.com/AndreaCampagner/qualiMLpy
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• PLT1: Platelets

• RBC: Red Blood Cells

• RBF: Radial Basis Function

• WBC: White Blood Cells
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Mendrik. Learning an mr acquisition-invariant representation using siamese
neural networks. In 2019 IEEE 16th International Symposium on Biomed-
ical Imaging (ISBI 2019), pages 364–367. IEEE, 2019.

[37] J Richard Landis and Gary G Koch. The measurement of observer agree-
ment for categorical data. biometrics, pages 159–174, 1977.

28



[38] Jake Lever, Martin Krzywinski, and Nicole Altman. Model selection and
overfitting. Nature Methods, 13:703–704, 2016.

[39] Xiangchun Li, Sheng Zhang, Qiang Zhang, Xi Wei, Yi Pan, Jing Zhao,
Xiaojie Xin, Chunxin Qin, Xiaoqing Wang, Jianxin Li, et al. Diagnosis
of thyroid cancer using deep convolutional neural network models applied
to sonographic images: a retrospective, multicohort, diagnostic study. The
Lancet Oncology, 20(2):193–201, 2019.

[40] E-M Lim, George Cembrowski, M Cembrowski, and G Clarke. Race-specific
wbc and neutrophil count reference intervals. International journal of lab-
oratory hematology, 32(6p2):590–597, 2010.

[41] Jayawant N Mandrekar. Receiver operating characteristic curve in diagnos-
tic test assessment. Journal of Thoracic Oncology, 5(9):1315–1316, 2010.

[42] Cristina Menni, Ana Valdes, Maxim B Freydin, Sajaysurya Ganesh, Julia
El-Sayed Moustafa, Alessia Visconti, Pirro Hysi, Ruth CE Bowyer, Mas-
simo Mangino, Mario Falchi, et al. Loss of smell and taste in combination
with other symptoms is a strong predictor of covid-19 infection. MedRxiv,
2020.

[43] W Greg Miller. Harmonization: its time has come. Clinical Chemistry,
63(7), 2017.

[44] Tulin Ozturk, Muhammed Talo, Eylul Azra Yildirim, Ulas Baran Baloglu,
Ozal Yildirim, and U Rajendra Acharya. Automated detection of covid-19
cases using deep neural networks with x-ray images. Computers in biology
and medicine, 121:103792, 2020.

[45] Menelaos Pavlou, Chen Qu, Rumana Z Omar, Shaun R Seaman, Ewout W
Steyerberg, Ian R White, and Gareth Ambler. Estimation of required sam-
ple size for external validation of risk models for binary outcomes. Statistical
Methods in Medical Research, page 09622802211007522, 2021.

[46] Rodolfo M Pereira, Diego Bertolini, Lucas O Teixeira, Carlos N Silla Jr,
and Yandre MG Costa. Covid-19 identification in chest x-ray images on flat
and hierarchical classification scenarios. Computer Methods and Programs
in Biomedicine, 194:105532, 2020.

[47] Timothy B Plante, Aaron M Blau, Adrian N Berg, Aaron S Weinberg, Ik C
Jun, Victor F Tapson, Tanya S Kanigan, and Artur B Adib. Development
and external validation of a machine learning tool to rule out covid-19
among adults in the emergency department using routine blood tests: A
large, multicenter, real-world study. Journal of medical Internet research,
22(12):e24048, 2020.

[48] Ievgen Redko, Emilie Morvant, Amaury Habrard, Marc Sebban, and
Younes Bennani. Advances in domain adaptation theory. Elsevier, 2019.

29



[49] Richard D Riley, Thomas PA Debray, Gary S Collins, Lucinda Archer, Joie
Ensor, Maarten van Smeden, and Kym IE Snell. Minimum sample size for
external validation of a clinical prediction model with a binary outcome.
Statistics in Medicine, 2021.

[50] Michael Roberts, Derek Driggs, Matthew Thorpe, Julian Gilbey, Michael
Yeung, Stephan Ursprung, Angelica I Aviles-Rivero, Christian Etmann,
Cathal McCague, Lucian Beer, et al. Common pitfalls and recommen-
dations for using machine learning to detect and prognosticate for covid-
19 using chest radiographs and ct scans. Nature Machine Intelligence,
3(3):199–217, 2021.

[51] Sherri Rose. Machine learning for prediction in electronic health data.
JAMA network open, 1(4):e181404–e181404, 2018.

[52] Valentin Rousson and Thomas Zumbrunn. Decision curve analysis revis-
ited: overall net benefit, relationships to roc curve analysis, and applica-
tion to case-control studies. BMC medical informatics and decision making,
11(1):1–9, 2011.

[53] Evelien Schat, Rens van de Schoot, Wouter M Kouw, Duco Veen, and
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