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1 Introduction

After the discovery of the Higgs boson in Run I [1, 2], one of the main tasks of the ongoing

LHC Run II is to perform accurate measurements of Higgs properties. This will be done by

a thorough investigation of all Higgs production and decay modes. Higgs boson production

in association with a boson (HV) is the third largest Higgs production mode and so far

has been studied in Run I in different channels, including bb̄ [3, 4], WW ∗ [5, 6], and

ττ [7]. Furthermore, for Higgs production in association with a Z boson, it has been

used to set bounds on invisible Higgs decay modes [8]. Because of the largest branching

ratio of Higgs to bottom quarks, so far the best significance was found in this channel, by

both ATLAS (1.4 σ significance) and CMS (2.2 σ significance). It is expected that these

results will quickly improve in Run II, both because of the increased luminosity and the

higher energy. Higgs to bottom quarks is notably difficult because of the very large QCD

background from g → bb, hence it was suggested that associated production is best studied

in a boosted regime [9]. When boosted cuts are applied this channel becomes one of the

most promising places to constrain the bottom Yukawa coupling.
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In ref. [10] the inclusive HV (V = W,Z) cross section was computed at NNLO. In

refs. [11, 12] a fully differential NNLO calculation of HV including all Drell-Yan type

contributions has been presented. The impact of top-quark loops at this perturbative

order has also been investigated in ref. [13]. In ref. [14] NLO corrections to the H → bb

decay were combined with the NNLO corrections to the production. NLO electroweak

corrections are also known [15, 16] and available in the public code HAWK [17]. Recently,

in ref. [18] a NNLO calculation of HV was presented, that includes both Drell-Yan type

and top Yukawa contributions, and that includes decays of the vector bosons and of the

Higgs boson to bb̄, γγ,WW ∗.

In ref. [11] it was shown that, while NNLO corrections to the inclusive HW cross section

are tiny, of the order of 1-2%, the impact of NNLO corrections can increase substantially at

the LHC when cuts are imposed on the decay products or when jet-veto criteria are applied.

Since a jet-veto can have a large impact on the size of higher-order corrections, it should be

modelled as accurately as possible. In an NNLO calculation, however, a jet is made up of

only one or two partons, and no large all-order logarithms are accounted for. Although in

this particular case large logarithms can be resummed quite precisely (for instance using the

approaches of refs. [19] or [20]), it is often very useful, and at times needed, to model such

effects by means of a fully-differential simulation, where large logarithms are resummed

(although with limited logarithmic accuracy) by a parton shower algorithm. The precision

required for LHC studies also demands that at least the NLO corrections be included in

such event generation tools, providing therefore predictions where NLO effects are matched

to parton showers (NLOPS). Thanks to the various implementations of the MC@NLO [21] and

POWHEG [22] algorithms such tools are now routinely used by experimentalists and theorists.

More specifically, the QCD NLO calculation of associated Higgs production (HV) was

matched to parton showers with the MC@NLO method [23], and, more recently, also using

POWHEG [24]. Ref. [24] also contains NLOPS results for HV + 1 jet, and a merging of the HV

and HV+jet NLOPS simulations, obtained with the so-called “Multiscale improved NLO”

approach (MiNLO in the following).1 The MiNLO approach was formulated in ref. [26] and

subsequently refined in ref. [27]. In the latter work it was shown that for processes where

a colorless system X is produced in a hadronic collision, one can simulate with NLOPS

accuracy both X and X+1 jet production simultaneously, without introducing any external

merging scale. In refs. [27, 28] it was then shown that with a merged generator of X and

X + 1 jet, and the NNLO computation for X production, one can build an NNLO+parton

shower accurate generator (NNLOPS from now on) for X production. This approach was

used to build NNLOPS accurate generators for Higgs via gluon fusion [28] and Drell Yan

production [29]. Recently, the MiNLO method was extended further [30] so that the one can

merge even three units of multiplicity while preserving NLO accuracy. The construction of

these NNLOPS generators based on MiNLO relies on a reweighting which is differential in the

variables describing the inclusive X-production Born phase space. For Higgs production

this amounts to a one-dimensional reweighting in the Higgs rapidity, while for Drell Yan

production a three-dimensional reweighting has been used.

1A merging of HZ and HZ + one jet was also achieved recently using a merging scale to separate the

zero and one-jet regions [25].
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In this paper, we use the aforementioned MiNLO-based approach to match the results

obtained in ref. [24] for HW + 1 jet production, to the exact NNLO QCD computation

of HW presented in ref. [11], thereby obtaining the first NNLOPS accurate results for HW

production, including leptonic decays of the W boson. We remind the reader that, as in

ref. [11], we only include contributions where the Higgs boson is radiated off a vector boson:

top Yukawa contributions, i.e. contributions from diagrams containing a top-quark loop

radiating an Higgs boson, have not been included in this work. Since the Born phase-space

for H`ν production involves six variables, one would need to carry out a six-dimensional

reweighting, which is currently numerically unfeasible. We will describe in the core of the

paper how we deal with this problem.

The paper is organized as follows. In section 2 we outline our method, and discuss in

particular the treatment of the multi-dimensional Born phase space. In section 3 we give

all details about our practical implementation. In section 4 we validate our results, while

in section 5 we present phenomenological results with cuts suggested for the writeup of the

fourth Higgs Cross section working group report. We conclude in section 6. In appendix A

we give few more details about the scale variation uncertainties of the results.

2 Outline of the method

The method we use in this work is based on achieving NNLOPS accuracy by reweighting

Les Houches events produced by the MiNLO-improved POWHEG HW plus one jet generator

(HWJ-MiNLO). Each event, with a given weight, contains a final state made of the colorless

system (the Higgs boson and the lepton pair from the W boson) and 1 or 2 additional light

QCD partons. NNLOPS accuracy is obtained by an appropriate rescaling of the original

weight associated to each event. As described in detail in refs. [28, 29], the rescaling

must be differential in the variables describing the Born kinematics of the colorless system.

Concretely, for each event one computes the Born variables using the kinematics of the

colourless partons in the event kinematics, as is. Using these observables, a rescaling factor

for each weight is computed. In its simplest form, the rescaling factor can be written as

W(ΦB) =

dσNNLO

dΦB
dσMiNLO

dΦB

, (2.1)

where dσNNLO

dΦB
(dσ

MiNLO

dΦB
) is a multi-differential distribution obtained at pure NNLO level

(using HWJ-MiNLO events), and ΦB denotes the Born phase space.

It is clear that, by construction, Born variables will be described with NNLO accuracy.

Furthermore, since the HWJ-MiNLO is NLO accurate for distributions inclusive on all radia-

tion, it is straightforward to prove (along the lines of the proofs presented in refs. [28, 29])

that this rescaling does not spoil the NLO accuracy of HWJ-MiNLO generator. As a conse-

quence of these two facts, after rescaling, one obtains full NNLO accuracy for HW.

One might worry that once events undergo a parton shower, the NNLO accuracy might

be lost. It is however easy to see that this is not the case: the second emission is generated

by POWHEG precisely in such a way as to preserve the NLO accuracy of 1-jet observables.
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Hence the first emission generated by the parton shower is the third one, i.e. the effect of

the parton shower starts at O(α3
s), and is therefore beyond NNLO.

In the present case, the Born kinematics is fully specified by six independent variables.

For instance one can choose the rapidity of the HW-system (yHW), the difference in rapidity

between the Higgs and the W boson (∆yHW), the Higgs transverse momentum (pt,H), the

dilepton pair invariant mass (m`ν) and two angular variables. A convenient standard

choice for the angular variables is to use the Collins-Soper angles [31] defined as follows.

One considers a boost from the laboratory frame to the rest frame of the W boson (the O′
frame). Using the positive and negative rapidity beam momenta, respectively p′A and p′B
in O′, one defines a z-axis in this frame such that it bisects the angle between p′A and −p′B.

One then introduces a transverse unit vector q̂T , orthogonal to the z axis and lying in the

(p′A, p
′
B) plane, pointing away from p′A + p′B. The Collins-Soper angles are defined as the

polar angle θ∗ of the lepton momentum l′ in O′ with respect to the z-axis (~l′ · ẑ = |l′| cos θ∗)

and the azimuthal angle φ∗ of l′ (~l′ · q̂T = |l′| sin θ∗ cosφ∗).

Since the decay of a massive spin one particle is at most quadratic in the lepton

momentum ~l′ in the frame O′, one can parametrize the angular dependence in terms of

the nine spherical harmonic functions Ylm(θ∗, φ∗) with l ≤ 2 and |m| ≤ l. This can be

understood from the observation that the decay of a massive spin one particle is associated

to 9 degrees of freedom (the spin-density matrix is a 3x3 matrix). One of these coefficients

is then fixed by the normalisation of the cross section, so that eight independent coefficients

are sufficient to parametrize the angular dependence. As it is done in the case of Drell-Yan,

it is convenient to introduce the following parametrisation for the angular dependence,

dσ

dΦB

=
d6σ

dyHW d∆yHW dpt,H dm`ν d cos θ∗dφ∗

=
3

16π

(
dσ

dΦHW∗
(1 + cos2 θ∗) +

7∑
i=0

Ai(ΦHW∗)fi(θ
∗, φ∗)

)
, (2.2)

where we introduced for simplicity the four dimensional phase space of the HW∗ system,

ΦHW∗ = {yHW,∆yHW, pt,H,m`ν} and dσ
dΦHW∗

corresponds to the fully differential cross section

integrated just over the Collins-Soper angles. The functions fi(θ
∗, φ∗) are essentially given

by spherical harmonics

f0(θ∗, φ∗) =
(
1− 3 cos2 θ∗

)
/2 ,

f2(θ∗, φ∗) = (sin2 θ∗ cos 2φ∗)/2 ,

f4(θ∗, φ∗) = cos θ∗ ,

f6(θ∗, φ∗) = sin 2θ∗ sinφ∗ ,

f1(θ∗, φ∗) = sin 2θ∗ cosφ∗ ,

f3(θ∗, φ∗) = sin θ∗ cosφ∗ ,

f5(θ∗, φ∗) = sin θ∗ sinφ∗ ,

f7(θ∗, φ∗) = sin2 θ∗ sin 2φ∗ .

(2.3)

They have the property that their integral over the solid angle dΩ = d cos θ∗dφ∗ vanishes.

Since the angular dependence is fully expressed in terms of the fi(θ
∗, φ∗) functions,

the coefficients of the expansion Ai(ΦHW∗) are functions only of the remaining kinemati-

cal variables ΦHW∗ . The coefficients Ai(ΦHW∗) can then be extracted using orthogonality
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properties of the spherical harmonics. We find

A0(ΦHW∗) = 4 (dσ/dΦHW∗)− 〈10 cos2 θ∗〉 ,
A2(ΦHW∗) = 〈10 sin2 θ∗ cos 2φ∗〉 ,
A4(ΦHW∗) = 〈4 cos θ∗〉 ,
A6(ΦHW∗) = 〈5 sin 2θ∗ sinφ∗〉 ,

A1(ΦHW∗) = 〈5 sin 2θ∗ cosφ∗〉 ,
A3(ΦHW∗) = 〈4 sin θ∗ cosφ∗〉 ,
A5(ΦHW∗) = 〈4 sin θ∗ sinφ∗〉 ,
A7(ΦHW∗) = 〈5 sin2 θ∗ sin 2φ∗〉 ,

(2.4)

where the expectation values 〈f(θ∗, φ∗)〉 are functions of ΦHW∗ defined as

〈f(θ∗, φ∗)〉 =

∫
d cos θ∗dφ∗

dσ

dΦB

f(θ∗, φ∗) . (2.5)

Hence, in order to compute both the numerator and denominator in eq. (2.1), as

required for the reweighting, we can use eq. (2.2) with the angular functions defined in

eq. (2.3) and the coefficients computed using eq. (2.4). In summary, by using the Collins-

Soper angles one can turn the problem of computing differential distributions in six vari-

ables, into the determination of nine four-dimensional distributions, i.e. dσ/dΦHW∗ and the

eight distributions Ai(ΦHW∗) of eq. (2.4).

3 Practical implementation

In the previous section we have outlined the method that we will use in the following to

achieve NNLOPS accuracy. Here, we will provide details about the choices that we made in

our practical implementation, we outline the setup that we have adopted to present the

results of this paper, and we give the procedure that we used to estimate the theoreti-

cal uncertainty.

3.1 Procedure

A first consideration is that when using multi-differential distributions one needs to decide

the number of bins in each distribution. Previous experience suggests that having about

25 bins per direction is sufficient for practical purposes, hence we will adopt this choice

here. In order to improve the numerical precision, we find it useful to use bins that

contain approximately the same cross-section, as opposed to bins that are equally spaced.

Practically, we perform (moderate statistics) warm-up runs at NLO using HWJ-MiNLO. From

the differential cross sections obtained from these runs, we determine the appropriate bins.

We then read in the bin values when performing high-statistic runs to extract the needed

distributions.

We have simplified our procedure by noting that the m`ν invariant mass distribution

has a flat K-factor. This is true even when examining the dσ/dm`ν distribution in different

bins of ΦHW = {yHW,∆yHW, pt,H}. Therefore, in eq. (2.2) we replace ΦHW∗ with ΦHW

and in eq. (2.5) we integrate over m`ν , meaning that instead of having four-dimensional

distributions, we use three-dimensional ones. This is an approximation, however we believe

that it works extremely well, as discussed in section 4.
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A further point to note is that, as observed already in ref. [28], a reweighting of the

form eq. (2.1) spreads the NNLO/NLO K-factor uniformly, even in regions where the HW

system has a large transverse momentum, i.e. a region that is described equally well by a

pure NNLO HW calculation, or by the HWJ-MiNLO generator. However, it is also possible to

introduce a reweighting that goes smoothly to one in the regions where both generators have

the same accuracy to start with. In order to do this, one introduces a smooth function of

pT , that goes to one at pT = 0 and that vanishes at infinity. For instance, one can introduce

h(pT ) =
(MH +MW )2

(MH +MW )2 + p 2
T

, (3.1)

to split the cross-section into

dσA = dσ h(pT ) , dσB = dσ (1− h(pT )) . (3.2)

One then reweights the HWJ-MiNLO events using

W (ΦHW, pT) = h (pt)
∫ dσNNLO δ (ΦHW − ΦHW (Φ))− ∫ dσMiNLO

B δ (ΦHW − ΦHW (Φ))

∫ dσMiNLO
A δ (ΦHW − ΦHW (Φ))

+ (1− h (pt)) . (3.3)

This reweighting factor preserves the exact value of the NNLO differential cross-section(
dσ

dΦHW

)NNLOPS

=

(
dσ

dΦHW

)NNLO

. (3.4)

We choose pT to be the transverse momentum of the leading jet when clustering events

with the inclusive kT -algorithm with R = 0.4 [32, 33]. The reason for this is choice is that

h(pT ) goes to one when no radiation is present, since the leading jet transverse momentum

vanishes. On the contrary, when hard radiation is present, the transverse momentum of

the leading jet becomes large, h(pT ) goes to zero, and accordinglyW(ΦHW, pT ) goes to one.

3.2 Settings

We give here a complete description of the setup used for the results presented in this

paper. The specific process studied is

pp −→ HW+ −→ H`+ν` , (3.5)

where `+ = {e+, µ+}.2 We note that we leave the Higgs boson in the final state, rather

than decaying it.

We used the code HVNNLO [34] to obtain NNLO predictions, and the HWJ-MiNLO code [24]

implemented in the POWHEG BOX [35] to produce Les Houches events.3 Throughout this work

2When running the code we fixed the W boson decay to the electron channel and multiplied the result

by two to include the muon channel.
3As specified in section 1, we have neglected contributions where the Higgs boson is produced by a top-

quark loop. This has been achieved by setting the flag massivetop to zero when running the HWJ-MiNLO

program.
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we consider 13 TeV LHC collisions and use the MMHT2014nnlo68cl parton distribution

functions [36], corresponding to a value of αs(MZ) = 0.118. We set MW = 80.399 GeV

and ΓW = 2.085 GeV. Furthermore we use αem = 1/132.3489 and sin2 θW = 0.2226.

Finally we use MH = 125 GeV. Jets have been constructed using the anti-kt algorithm

with R = 0.4 [37] as implemented in FastJet [38, 39]. For HWJ-MiNLO events the scale

choice is dictated by the MiNLO procedure; for the NNLO we have used for the central

renormalisation and factorisation scales µ0 = MH +MW .

To shower partonic events we have used Pythia8 [40] (version 8.185) with the “Monash

2013” [41] tune. To define leptons from the boson decays we use the Monte Carlo truth,

i.e. we assume that if other leptons are present, the ones coming from the W decay can be

identified correctly. To obtain the results shown in the following sections, we have switched

on the “doublefsr” option introduced in ref. [42]. The plots shown throughout the paper

have been obtained keeping the veto scale equal to the default POWHEG prescription.

3.3 Estimating uncertainties

We outline here the procedure that we use to estimate the uncertainties in our NNLOPS

event generator. This procedure is similar to the one already used in refs. [28, 29], but we

find it useful to recall it here for completeness. As is standard, the uncertainties in the

HWJ-MiNLO generator are obtained by varying by a factor 2 up and down independently

all renormalisation scales appearing in the MiNLO procedure by KR (simultaneously) and

the factorisation scale by KF, keeping 1/2 ≤ KR/KF ≤ 2. This leads to 7 different scale

choices given by

(KR,KF) = (0.5, 0.5), (1, 0.5), (0.5, 1), (1, 1), (2, 1), (1, 2), (2, 2) . (3.6)

The seven scale variation combinations have been obtained by using the reweighting feature

of the POWHEG BOX.

For the pure NNLO results the uncertainty band is the envelope of the same 7-scale

variations as used for HWJ-MiNLO uncertainties. Currently, in the next-to-next-to-leading

order computation in HVNNLO, the only way of doing scale variations is to re-run the entire

program with new scales. To be more efficient, one can instead compute the NNLO result

at just 3 scale choices for µF , e.g. (KR,KF) = (1, 0.5), (1, 1), (1, 2), along with pure LO

and NLO results. One can then use renormalisation group equations to predict results at

different renomalization scales.

For the NNLOPS results, we have first generated a single HWJ-MiNLO event file with

all the weights needed to compute the integrals dσMINLO

A/B /dΦB entering eq. (3.3) for all 7

scale choices.

The differential cross-section dσNNLO/dΦ was tabulated for each of the seven scale

variation points corresponding to 1/2 ≤ K ′R/K
′
F ≤ 2. The analysis is then performed by

processing the MiNLO event for given values of (KR,KF), and multiplying its weight with

the factor

h (pt)×
∫ dσNNLO

(K′R,K
′
F) δ (ΦB − ΦB(Φ))− ∫ dσMiNLO

B,(KR,KF) δ (ΦB − ΦB(Φ))

∫ dσMiNLO

A,(KR,KF) δ (ΦB − ΦB(Φ))
+ (1− h (pt)) . (3.7)
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Figure 1. Comparison of HWJ-MiNLO(LHE) (blue), NNLO (green) and HW-NNLOPS(LHE) (red) for

m`ν (left) and a`ν (right) defined in eq. (4.1).

The central value is obtained by setting (KR,KF) = (K ′R,K
′
F) = (1, 1), while to obtain

the uncertainty band we apply this formula for all the seven (KR,KF) and seven (K ′R,K
′
F)

choices. This yields 49 scale variations in the final NNLOPS accurate events.4

As explained in refs. [28, 29], the motivation to vary scales in the NNLO and HWJ-MiNLO

results independently is that, in the same spirit of the efficiency method [43], we regard

uncertainties in the overall normalisation of distributions as being independent of the re-

spective uncertainties in the shapes.

4 Validation

4.1 Validation of the NNLOPS method

Our method uses the approximation that the K-factor of the dilepton system invariant mass

is flat in the whole phase space. Hence, we first discuss how good this approximation is.

Figure 1 (left) shows the distribution of the (l, ν)-invariant mass m`ν integrated over

the whole phase space. The right plot shows the distribution of

a`ν = arctan

(
m`ν −mW

mWΓW

)
(4.1)

which is constructed in order to flatten the m`ν distribution. The upper panels show the pre-

dictions from HWJ-MiNLO(LHE) at pure Les Houches event (LHE) level, i.e. including NLO

and Sudakov effects, but prior to parton shower (blue), predictions at HW-NNLOPS(LHE)

level, i.e. including NNLO corrections and Sudakov effects but no parton shower (red)

and NNLO results (green). The lower panels show the ratio to the NNLO result. The

uncertainty bands are computed as described in section 3.3. We notice that NNLO

and HW-NNLOPS(LHE) predictions agree very well within their small uncertainty bands.

HWJ-MiNLO(LHE) predictions are about 5% lower, but, as expected, the NNLO/NLO K-

factor is flat over the whole region. In fact, the distributions have a Breit-Wigner shape,

hence one expects higher-order corrections to affect the shape only very mildly, if at all.

4We have checked that performing instead a 21-point variation, i.e. doing only a 3-point scale variation

in the NNLO result, leads in general to only moderately smaller uncertainties, as discussed in appendix A.
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Figure 2. Comparison of HWJ-MiNLO(LHE) (blue) and NNLO (green) for Born variables ΦHW chosen

to perform reweighting. Left-panel: boxes represent results integrated over whole phase space (with

theoretical uncertainty), whereas lines come from various a`ν bins (as described in the text). Right-

panel: boxes represent the overall K-factor (integrated over a`ν) with statistical uncertainty, while

lines represent K-factors corresponding to various a`ν bins (bin 3, 8, 13, 18, 23).

Since our reweighting procedure is differential in all Born variables, but for m`ν , we

need to also verity that the NNLO/NLO K-factor is flat in bins of all other Born variables.

This is equivalent to saying that the NNLO/NLO K-factors for all other Born variables

should be the same in every bin in m`ν (or equivalently in a`ν). In figure 2 (left) we show
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the comparison between HWJ-MiNLO(LHE) and NNLO for the three Born variables yHW,

pt,H and ∆yHW. Here the blue and green bands represent the usual theoretical uncertainty.

In the right panels the black line shows the K-factor integrated over the whole a`ν range

and the five red lines show the same K-factor in a fixed a`ν bin.5 Now, the grey band

corresponds to the statistical uncertainty of the K-factor integrated over the whole alν
range, multiplied by a factor 5. Since we are probing 25 bins in a`ν , one expects that

the statistical uncertainty for a particular bin is bigger by
√
Nbins (we recall that the a`ν

distribution is by construction fairly flat). Therefore this band provides an estimate of the

uncertainty of the K-factor on each a`ν bin. We see that, within statistical fluctuations,

the red lines lie within the grey band. This shows that, within the statistical uncertainties,

the K-factor is independent of the value of a`ν .

For further validation we should check whether the distributions of the Born vari-

ables ΦHW obtained with HW-NNLOPS(LHE) reproduce the results from the HVNNLO code. In

figure 3 we can see rebinned distributions that we have used for reweighting (left) and unre-

binned distributions (right) of the rapidity of the HW system yHW, the transverse momen-

tum of Higgs boson pt,H and the rapidity difference between Higgs and W-boson ∆yHW. We

see that in the rebinned distributions we find perfect agreement between HW-NNLOPS(LHE)

and NNLO results. For the unrebinned distributions we see that, when rebinned bins are

large, e.g. for |yHW| & 3, minor artifacts are present. These can be always reduced using a

suitable, finer binning for the 3D-histograms used for the reweighting.

As expected, the HW-NNLOPS(LHE) results reproduce very well results from HVNNLO and

the uncertainty band of HWJ-MiNLO(LHE) shrinks from around ±10% to about ±2% in the

HW-NNLOPS(LHE) case, which is a result of including NNLO corrections.

4.2 Validation of the use of Collins-Soper angles

As discussed in the previous section the Collins-Soper (CS) frame is a natural choice for

the description of spin one vector boson decay. This frame is convenient since it allows

the angular dependence of the vector decay to be parametrized in terms of only eight

coefficients. Here we want to verify how well the CS parametrization works in practice.

In the case of θ∗ distributions the only terms in eq. (2.2) that contribute are A0 and

A4, since the other terms drop out when integrating over φ∗. The φ∗ distributions on the

other hand depend only on A2, A3, A5 and A7.

In the upper left panel of figure 4 we show the dependence of the coefficient A4 on yHW,

whereas in the upper right plot we present the θ∗ distribution integrated over the whole

range of pt,H, ∆yHW and, as an example, in the range of yHW marked on the left upper

plot by a yellow band. The red and green bands denote the theoretical uncertainty, as

described before. The orange line shows the prediction from eq. (2.2) with the coefficients

computed for the central scale choice from eq. (2.4) at pure NNLO level. Notice that the

θ∗ distribution is not symmetric since we have restricted ourselves to yHW values where A4

is always positive, hence the functional dependence encoded in f4(θ∗, φ∗) is visible. From

5For clarity, we show only 5, rather than all lines. We have verified that the picture does not change

when all lines are displayed.
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Figure 3. Comparison of HWJ-MiNLO(LHE) (blue), HW-NNLOPS(LHE) (red) and NNLO (green) pre-

dictions for the Born variables ΦHW chosen to perform reweighting. Left panels show rebinned dis-

tributions (used for reweighting), right panels show differential distributions with equispaced bins.
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Figure 4. Upper panel: the left plot shows the A4 coefficient as a function of yHW. The right plot

shows the distribution of θ∗ integrated over all variables with yHW restricted to the region marked

as yellow band in the left panel. Lower panel: the left plot shows the A2 coefficient as a function

of pt,H. The right plot shows the distribution of φ∗ integrated over all variables with pt,H restricted

to the region marked as yellow band in the left panel.

the r.h.s. plot we can see that the central NNLO result is fully compatible with f(θ∗), i.e.

the prediction from eq. (2.2). Furthermore, we see that the NNLO prediction is consistent

with the HW-NNLOPS(LHE) one, both for the central scale and for the scale variation, as was

the case for the other Born variables used for reweighting.

Similar considerations apply to the φ∗ dependence, whose shape is determined by the

Ai coefficients, as the first term in eq. (2.2) integrates to a constant factor. We show in

the lower left panel of figure 4 the dependence of the coefficient A2 on pt,H while integrated

over the remaining variables. In the lower right plot we display the distribution of φ∗

integrated over whole range of yHW and ∆yHW, but restricted to the pt,H interval highlighted

with a yellow band in the left plot. As for the θ∗ distribution, we have good agreement

between the HW-NNLOPS(LHE) result and the differential cross section reconstructed from

the CS parametrization. As expected, the NNLO prediction is also consistent with the

HW-NNLOPS(LHE) one. These and similar plots validate our use of the extraction of the Ai
coefficients and their use to parametrize the angular dependence.
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HWJ-MiNLO HVNNLO HVNNLOPS

σtot 152.49(5) fb±7.0% 158.75(8) fb±1.0% 159.21(30) fb±1.0%

Table 1. Fiducial cross-section of pp→ HW+ → H`+ν` at
√
s = 13 TeV with leptonic cuts. The

uncertainty band is obtained with the scale variation procedure described in the text. Numerical

errors for each prediction are quoted in brackets, and relative details are given in the text.

5 Phenomenological results

We will now discuss a few phenomenological results obtained with our new code. We remind

the reader that the specific process studied here is pp → H`+ν`, with `+ = {e+, µ+} and

that we do not consider decays of the Higgs boson.

For all the results presented in this section we apply the cuts that were suggested in the

context of the Higgs Cross section Working Group (HXSWG) activity for the preparation of

the fourth Yellow Report. We consider 13 TeV LHC collisions. We require one positively

charged lepton with |y`| < 2.5 and pt,` > 15 GeV, while we do not impose a missing

energy cut. When applying a jet-cut or a jet-veto we define a jet as having pt,j > 20 GeV

and |yj | < 4.5. Jets are reconstructed using the anti-kt algorithm [37] with R = 0.4, as

implemented in Fastjet [39]. At the moment we do not apply any cuts on the Higgs boson,

however our code produces Les Houches events, which can be interfaced with any tool that

provides the decay of the Higgs in the narrow width approximation. For example, this can

be obtained easily by allowing Pythia8 to treat the Higgs boson as an unstable object.

5.1 Fiducial cross-section

The fiducial cross section at
√
s = 13 TeV, together with its theoretical uncertainty, at

different levels of the simulation, is given in table 1. From these results we obtain a K-

factor between HVNNLOPS and HWJ-MiNLO equal to 1.04. We also see that the reweighting

procedure of HWJ-MiNLO events to NNLOPS accuracy gives a result compatible with the fixed

order NNLO calculation. In particular, the sizes of scale uncertainties for the HVNNLOPS

and HVNNLO results are fully comparable, providing a reduction of almost one order of

magnitude with respect to the HWJ-MiNLO result. The number quoted in bracket for the

HWJ-MiNLO and HVNNLO results is the statistical error, and it is entirely due to Monte Carlo

integration. The HVNNLOPS statistical uncertainty was found to be compatible with the one

of HWJ-MiNLO. The numerical error quoted for the HVNNLOPS result is larger because it also

contains a systematic component, that we added in quadrature to the statistical one, and

which is due to bin-size effects in the reweighting procedure.6

5.2 Higgs and leptonic observables

In the following we consider cross-sections obtained at various levels: at Les Houches event

level before shower at NLO or NNLO accuracy, HWJ-MiNLO(LHE) and HW-NNLOPS(LHE), re-

6This error has been estimated by varying the number of bins in the reweighting procedure described

in section 3, and also by performing a reweighting without taking into account the dependence on the

Collins-Soper angles.
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Figure 5. Comparison of HWJ-MiNLO (blue), NNLO (green), and HW-NNLOPS (red) predictions for

pt,W (left) and pt,HW (right).

spectively; after showering the HWJ-MiNLO(LHE) and HW-NNLOPS(LHE) events with Pythia8,

HWJ-MiNLO(Pythia8) and HW-NNLOPS(Pythia8), both with and without hadronization.

We start by showing in figure 5 the distributions for the transverse momenta of the

W boson and the HW system, respectively. NNLO results are compared against those

obtained with HWJ-MiNLO and HVNNLOPS. For observables that are fully inclusive over QCD

radiation, such as pt,W, the agreement among the HVNNLO and NNLOPS predictions is perfect,

as expected. As in the case of the fiducial cross-section one notices the sizable reduction of

the uncertainty band from around 7% in HWJ-MiNLO to about 1% in the case of HVNNLO and

HVNNLOPS. As no particularly tight cuts are imposed, the NNLO/NLO K-factor is almost

exactly flat.

The right panel shows instead the effects due to the Sudakov resummation. At small

transverse momenta, the NNLO cross section becomes larger and larger due to the sin-

gular behaviour of the matrix elements for HW production in association with arbitrarily

soft-collinear emissions. The MiNLO method resums the logarithms associated to these

emissions, thereby producing the typical Sudakov peak, which for this process is located at

2 GeV . pt,HW . 5 GeV, as expected from the fact that the LO process is Drell-Yan like.

It is also interesting to notice here two other features that occur away from the collinear

singularity, and which are useful to understand the plots which are shown later. Firstly, the

pt-dependence of the NNLO reweighting can be explicitly seen in the bottom panel, where

one can also appreciate that at very large values not only the NNLOPS and MiNLO results

approach each other, but also that the uncertainty band of HVNNLOPS becomes progres-

sively larger (in fact, in this region, the nominal accuracy is NLO). Secondly, in the region

30 GeV . pt,HW . 250 GeV, the NNLO and NNLOPS lines show deviations of up to 10 %:

these are due to both the compensation that needs to take place in order for the two results

to integrate to the same total cross section, and the fact that the scale choices are different

(fixed for the NNLO line, dynamic and set to pt,HW in MiNLO). When pt,HW & 250 GeV the

two predictions start to approach, as this is the region of phase space where the MiNLO

scale is similar to that used at NNLO (µ = MH + MW ). At even higher transverse mo-

menta, pt,HW & 400 GeV, the MiNLO Sudakov is not active, however the MiNLO scale is set
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Figure 6. Azimuthal angle between the Higgs boson and the W+ boson (∆φHW, left) and azimuthal

angle between the Higgs boson and the charged lepton (∆φH`+ , right).

to the transverse momentum which is higher than the scale in the NNLO calculation. As

consequence, the NNLOPS results are lower than the NNLO one.

It is interesting to look at a variable describing the decay of the HW resonance, e.g. the

azimuthal angle between the W+ boson and the Higgs particle (∆φHW). At leading order

the two particles are back-to-back, ∆φHW = π, but real radiation moves the bosons away

from this configuration. In figure 6 (left) we show the distribution of ∆φHW comparing the

HVNNLO result to the result of our simulation after including parton shower effects, before

and after the NNLO rescaling. For moderate values of ∆φHW (. 2.0) we have a very flat

correction, as this region is dominated by events with high transverse momentum of the

HW-system, and dominant effects captured by fixed order NNLO calculation. However, the

limit with nearly back-to-back emission of H and W+ corresponds to the low-pt,HW region

which is sensitive to the effects of soft radiation. Hence there are pronounced differences

in the region ∆φHW & 2.5 between the NNLOPS simulation, and the NNLO prediction that

diverges at ∆φHW = π. On the contrary, the distribution of the azimuthal angle between `+

and Higgs, shown in the right panel of figure 6, has no divergence in the NNLO calculation.

It therefore has a much flatter K-factor throughout the whole range, and the theoretical

uncertainty bands of the HVNNLO and HVNNLOPS simulations mostly overlap.

We next present in figure 7 the distributions of the transverse momentum (left) and the

rapidity (right) of the positive lepton `+. We can see that there is a clear agreement between

NNLO predictions and NNLOPS results. Other interesting variables are the azimuthal angle

between `+ and the neutrino, ∆φ`+ν , and the transverse mass of the W+ boson, defined as

mT,W =
√

2pt,ν pt,`+(1− cos(∆φ`+,ν)) . (5.1)

These two variables have characteristic shapes and we show in figure 8 that, as expected,

our NNLOPS code agrees very well with pure NNLO predictions.

5.3 Jet observables

We present now the study of observables involving final state jets. We will focus on the

differences in distributions coming from NNLO, and HVNNLOPS at both parton and hadron

level. In figure 9 we show the transverse momentum of two hardest jets. The distributions
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Figure 7. Transverse momentum and rapidity of the positively charged lepton `+.
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Figure 8. The transverse mass of the W+ boson (left) and the azimuthal angle between `+ and

the neutrino (right).
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Figure 9. The transverse momentum of the two hardest jets at NNLO (green), HW-NNLOPS before

hadronization (blue) and HW-NNLOPS with hadronization (red).
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are cut at the minimum transverse momentum used for jets, i.e. 20 GeV, but, from the

ratio plot, one can see that the fixed order NNLO calculation starts increasing sharply as

it approaches a divergence at low-pt. As we identify only jets with pt > 20 GeV we do not

see the Sudakov peak in the HW-NNLOPS simulations, which sits below the cut.

We will first discuss differences between the pure fixed order calculation (green) and

the NNLOPS result before hadronization (blue). At large transverse momenta, theoretical

uncertainties for the first jet (figure 9, left) are of comparable size in all simulations, even if

they are slightly smaller in the NNLO calculation. We should also note that, as in the case of

pt,HW, the HVNNLO result is larger than the HVNNLOPS one for large-pt values. This behaviour

is a result of using a fixed scale in the former, and a dynamical scale in the latter code.

For the second jet transverse momentum distribution (figure 9, right), we note that, as

expected, the theoretical uncertainty is larger than in the previous case, as the second jet

is described only with LO accuracy. However we note that the scale variation procedure

now gives smaller bands for the HVNNLOPS simulation, compared to the NNLO calculation.

This is due to the fact [28] that POWHEG produces additional radiation (the second jet

in the case of HWJ-MiNLO) with a procedure that is insensitive to scale variation. The

second jet spectrum is multiplied by the NLO cross section kept differential only in the

underlying Born variables, i.e. the B̄ function. Scale variation affects only the computation

of this function (which is NLO accurate), hence as a result the uncertainty due to scale

variation for the pt,j2 spectrum is underestimated with respect to a standard fixed-order

computation. We recall that this is a known issue in POWHEG simulations, and was discussed

in several previous publications [35, 44]. In order to get a more reliable uncertainty band,

one can split the real contribution into a singular part (which enters in both the B̄ function

and the POWHEG Sudakov) and a finite one, corresponding to two resolved emissions. By

not including the latter contribution in the B̄ function and in the POWHEG Sudakov, the

estimation of scale uncertainty would be more similar to what one expects for an observable

which is described at LO, as the second-jet high-pT tail.

Next we find it interesting to examine the size of non-perturbative effects. Hadroniza-

tion has a sizable impact on the shapes of jet distributions: differences up to 7−8 % can

be seen in the pt,j1 spectrum at small values, and are still visible at a few percent level

till relatively hard jets are required (pt,j1 > 100 GeV). For the second jet, hadronization

corrections are similar and only slightly more pronounced. Even larger effects can be seen

in the rapidity distribution of the two leading jets at large rapidities, as can be seen from

figure 10. This is not surprising since the large rapidity region is dominated by small

transverse momenta.

We have also studied a few dijet observables. In figure 11 we present a comparison

between the various simulations for the rapidity difference (left) and the invariant mass of

the two hardest jets (right). We can see that ∆yj1,j2 displays a peak in the bin just above

∆y = 0.4 which is consistent with the jet radius (R = 0.4) we used for clustering jets.

A similar peak is present also in the distribution of the azimuthal angle between the jets

∆φj1,j2 . We notice that the invariant mass distribution has a peak and a noticeable shoulder

(partially washed away after hadronization) at about 55-60 and 20-35 GeV, respectively.

Their origin can be understood from the peaks in the ∆yj1,j2 and ∆φj1,j2 distributions.
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Figure 10. The rapidity of the two hardest jets in NNLO (green), HW-NNLOPS before hadronization

(blue) and HW-NNLOPS with hadronization (red).
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Figure 11. Rapidity difference (left) and invariant mass (right) of two hardest jets in NNLO

(green), HW-NNLOPS (blue) and HW-NNLOPS with hadronization (red).

In fact the invariant mass can be written as Mj1j2
= 2pt,j1pt,j2(cosh ∆yj1,j2 − cos ∆φj1,j2).

It is easy to roughly estimate the positions of the structures present in the Mj1j2
plot:

they correspond to when the transverse momenta of the jets are close to the transverse

momentum cut, one of the variables (∆yj1,j2 or ∆φj1,j2) is close to its peak and the other

one is integrated over.

Finally, we examine production rates when binned into six regions according to the

transverse momentum of the Higgs boson (3 bins corresponding to 0 < pt,H < 150 GeV,

150 < pt,H < 250 GeV, and 250 GeV< pt,H) and the presence or absence of an additional jet

(with jet-veto or with one or more jets). In figure 12 we show the six cross-sections, after

showering HW-NNLOPS(LHE) events with Pythia8 (HW-NNLOPS) with and without hadroniza-

tion, and the pure NNLO predictions. We notice that, due to radiation that ends up out-

side the jet, jets may be softened during parton shower evolution and hence the jet-veto

cross-sections are larger at HW-NNLOPS at parton level level compared to pure NNLO level.

Differences can reach up to about 15% in the zero-jet bin when the Higgs boson has large

transverse momentum. This effect is strengthened once hadronization is applied, since
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and |yj | < 4.5. Results are shown at various levels of the simulation, see text for more details.

hadronization soften the leading jet spectrum even further. In this case differences up to

about 20% can be found compared to pure NNLO predictions. One reason for these sizable

differences between NNLO and HW-NNLOPS predictions is that the jet threshold used here

is relatively soft (20 GeV). In this region the NNLO prediction is starting to diverge and

the the leading jet transverse momentum spectrum is particularly sensitive to soft emis-

sions and hadronization effects, as shown in figure 9. Furthermore, increasing the value of

the jet radius would limit the impact of out-of-jet radiation. Nevertheless, these numbers

demonstrate that the merging NNLO calculations to parton showers can be very important

when realistic fiducial cuts are applied.

6 Conclusion

In this paper we have used the MiNLO-based merging method to obtain the first NNLO

accurate predictions for HW production consistently matched to a parton shower, including

the decay of the W boson to leptons. The method requires a multi-differential reweighting

of the weight of HWJ-MiNLO events to the NNLO accurate Born distributions. We have

used that the K−factor, within our statistical accuracy, is independent of the mass of the

dilepton system over the whole phase space, hence we have performed the reweighting in the

three Born variables {yHW,∆yHW, pt,H} and in the two Collins-Soper angles that describe

the decay of the W boson. For the latter variables, we have exploited the fact that the

kinematic dependence can be parametrized in terms of spherical harmonics of degree up

to two.
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For our phenomenological results, we have considered a setup suggested recently in

the context of the Higgs cross section working group. We find that including NNLO

corrections in the MiNLO simulation reduces scale variation uncertainties from about 10%

to about 1-2%. Compared to a pure NNLO calculation, while the perturbative accuracy is

the same, our tool allows one to perform fully realistic simulations, including the study of

non-perturbative effects and multi-parton interactions.

By construction, for leptonic observables we find that the NNLO and NNLOPS simu-

lations agree when no cut on additional radiation is imposed. However, we find sizable

differences between the two simulations when realistic cuts are imposed. This is particu-

larly the case in the region where the Higgs boson is boosted and a jet-veto condition is

imposed. In this case differences amount to about 15% at the 13 TeV LHC. This large

effect is due to a migration of events that, before the parton shower, have a soft jet (whose

transverse momentum is just above the veto scale) from the one-jet to the zero-jet cate-

gory. In fact, with our setup, the main effect of the parton shower is to soften the leading

jet, therefore increasing the fraction of events that fall into the zero-jet category. Differ-

ent jet-thresholds and jet-radii leads to quite different conclusions. Still, these differences

are in general outside the scale-variation uncertainties of the NNLO calculation, hence the

NNLOPS accurate prediction becomes important to provide a more realistic uncertainty esti-

mate. The HVNNLOPS generator we have developed will allow to simulate these features in a

fully-exclusive way, retaining at the same time all the virtues of an NNLO computation for

fully inclusive observables, as well as resummation effects, thanks to the interplay among

POWHEG, MiNLO and parton showering.
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A Pure NNLO uncertainties

This section we compare the 49 scale method we used, as detailed in section 3.3, to the 21

scale method used for HNNLOPS [28] and DYNNLOPS [29]. To do this we repeated our analysis

using the 21 scale uncertainty method, with (KR,KF) = (0.5, 0.5), (1, 1), (2, 2) for the

fixed order NNLO results. We find that in general both methods result in uncertainty

bands they are very similar, with the 49 scale uncertainty band being only 1-2 permille

larger in some bins.
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Figure 13. Comparison of the uncertainty from the envelope of 49 scale variations (blue) vs 21

scale variations (green) for pt,H (upper left), pt,` (upper right), for mHW (lower left), and for ∆y`ν .

Statistical error of the central scale result shown for reference.

There are however few cases where having only 21 scales results in noticeably smaller

uncertainty bands than 49 scales. To quantify better the differences between the two

uncertainties from the two methods, we show in figure 13 four observables for which we

found the largest differences in uncertainties bands.
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