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A Tempered Expectation-Maximization
Algorithm for Latent Class Model Estimation
Un Algoritmo Tempered Expectation-Maximization per la
Stima del Modello a Classi Latenti

Luca Brusa, Francesco Bartolucci and Fulvia Pennoni

Abstract We consider maximum likelihood estimation of the Latent Class model,
which is formulated through individual discrete latent variables. We explore tem-
pering techniques to overcome the problem of multimodality of the log-likelihood
function. A Tempered Expectation-Maximization algorithm is proposed, which can
adequately explore the parameter space and reach the global maximum more fre-
quently than the standard EM algorithm. We assess the performance of the proposed
approach by a Monte Carlo simulation study and an application based on data about
anxiety and depression in oncological patients.
Abstract Consideriamo la stima di massima verosimiglianza del modello a clas-
si latenti che è formulato attraverso variabili latenti discrete a livello individuale.
Esploriamo le tecniche di tempering per fronteggiare il problema della multimo-
dalità della funzione di log-verosimiglianza. Proponiamo un algoritmo denominato
Tempered Expectation-Maximization che permette di esplorare adeguatamente lo
spazio dei parametri e di raggiungere il massimo globale più frequentemente ri-
spetto all’usuale algoritmo EM. Per valutare l’efficacia della proposta utilizziamo
uno studio di simulazione Monte Carlo e un’applicazione basata su dati reali ri-
guardanti misure di ansia e depressione in pazienti oncologici.
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2 Luca Brusa, Francesco Bartolucci and Fulvia Pennoni

1 Introduction

The Latent Class (LC) model [1] is very popular for the analysis of categorical, and
in particular binary, response variables. It is formulated by assuming the existence of
individual-specific latent variables having a discrete distribution. This model may be
seen as semi-parametric since, differently from other models based on continuous
latent variables, no parametric assumptions are formulated on the distribution of
such variables. The LC model may be seen as a finite mixture model, and it is
employed to cluster subjects on the basis of a set of categorical, typically binary,
responses.

Despite maximum likelihood estimation of the LC model may be simply per-
formed using the Expectation-Maximization (EM) algorithm [2, 3], a well-known
drawback of this estimation method is related to the multimodality of the likelihood
function that is due to the inclusion of discrete latent variables. The consequence
is that the global maximum of the likelihood is not ensured to be reached, and a
proper initialization of the estimation algorithm is crucial. A multi-start strategy is
typically adopted based on deterministic and random rules to explore the parameter
space adequately. However, this approach may be computationally intensive, and it
does not guarantee convergence to the global maximum.

In order to face the multimodality of the likelihood function, we propose a
Tempered EM (T-EM) algorithm able to explore the parameter space adequately.
In an optimization context, tempering [4] consists of re-scaling the objective func-
tion depending on a variable, known as temperature, which controls the prominence
of global and local maxima. High temperatures allow us to explore wide regions
of the parameter space, avoiding the maximization algorithm being trapped in non-
global maxima; low temperatures, instead, guarantee a sharp optimization in a local
region of the parameter space. By properly tuning the sequence of temperature val-
ues, the procedure is gradually attracted toward the global maximum, escaping in
this way local sub-optimal solutions. As a future development, this procedure will
also be applied to estimate the parameters of the hidden Markov (HM) models for
the analysis of longitudinal data [5].

The rest of the paper is organized as follows. Section 2 outlines the LC model
formulation and maximum likelihood estimation through the EM algorithm. Sec-
tion 3 provides details on the proposed T-EM algorithm. Section 4 summarizes the
main findings of the simulation study and the results of an application concerning
patients’ responses to ordinal items measuring anxiety and depression.

2 Latent Class Model and Expectation-Maximization Algorithm

Let Yi = (Yi1, . . . ,Yir)
′ denote the vector of r categorical response variables for indi-

vidual i = 1, . . . ,n; each variable has the same number c of categories, labeled from
0 to c− 1. The LC model relies on individual-specific discrete latent variables Ui
with k support points that identify the latent classes in the population. The model
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A Tempered Expectation-Maximization Algorithm for Latent Class Model Estimation 3

parameters are the conditional probabilities of each response variable given the lat-
ent variable, denoted by φ jy|u = p(Yi j = y|Ui = u), and the weight of each latent
class, denoted by πu = p(Ui = u). The resulting manifest distribution is then

p(yi) =
k

∑
u=1

πu

r

∏
j=1

φ jyi j |u,

where yi denotes a realization of Yi.
In order to estimate the model parameters, collected in the vector θ, on the basis

of a sample of n independent observations yi, we rely on the log-likelihood function

!(θ) =
n

∑
i=1

log p(yi) .

This function is maximized through the EM algorithm on the basis of the complete
data log-likelihood, which may be written as

!∗ (θ) =
r

∑
j=1

k

∑
u=1

c−1

∑
y=0

a juy logφ jy|u +
k

∑
u=1

bu logπu,

where a juy = ∑n
i=1 I (ui = u,yi j = y) is the frequency of subjects that are in latent

class u and responded by y at the j-th response variable and bu = ∑n
i=1 I (ui = u)

is the number of sample units in latent class u, with I(·) denoting the indicator
function. The EM algorithm alternates the following two steps until a suitable con-
vergence criterion is satisfied:

• E-Step: compute the conditional expected value of !∗(θ), given the observed
data and the value of the parameters at the previous step;

• M-Step: maximize the expected value of the log-likelihood function !∗ (θ) and
so update the model parameters.

In particular, the E-step is based on the posterior probabilities

q(u|yi) = p(Ui = u|Yi = yi) =
πu ∏r

j=1 φ jyi j |u

p(yi)
,

on the basis of which the expected values of the frequencies a juy and bu are simply
obtained.

The EM algorithm is straightforward to implement, it is able to converge in a
stable way to a local maximum of the log-likelihood function, and it is used for
parameter estimation in many available packages [3]. However, this log-likelihood
function may be multimodal, especially when the model has many latent classes.
For this reason, several starting values of the parameters in θ are typically used, and
the solution corresponding to the highest log-likelihood is then selected as the max-
imum likelihood estimate, denoted by θ̂. In the next section, we show an alternative
solution based on the proposed T-EM algorithm.
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4 Luca Brusa, Francesco Bartolucci and Fulvia Pennoni

3 Tempered Expectation-Maximization Algorithm

We introduce a T-EM algorithm [6, 7] by defining the following modified posterior
probabilities:

q̃(Th)(u|yi)
·
=

q(u|yi)
1/Th

∑k
u=1 q(u|yi)

1/Th
,

where (Th)h≥1 is a suitable sequence of temperature values, under the constraint that
Th → 1 as h → ∞, where h is the algorithm iteration number.

The E-step and M-step of the T-EM algorithm are implemented as follows by
modifying those of the original EM algorithm:

• E-Step: compute

b̃(Th)
u =

n

∑
i=1

q̃(Th) (u|yi) and ã(Th)
juy =

n

∑
i=1

I (yi j = y) q̃(Th) (u|yi) ;

• M-Step: update the parameters as

π(Th)
u =

b̃(Th)
u

n
and φ (Th)

jy|u =
ã(Th)

juy

b̃(Th)
u

.

Given the above setting, it is clear that the tempering profile (i.e., the sequence
(Th)h≥1) may have a deep impact on the performance of the proposed algorithm. In
fact, increasing the temperature value has the effect of flattening the profile of the
log-likelihood, thereby reducing the chance that the algorithm will get trapped into
local maxima. In particular, Th → +∞ yields q̃(Th)(u|yi) to a uniform distribution,
while Th = 1 makes q̃(Th)(u|yi) equal to the standard posterior probability q(u|yi).
Therefore, the only necessary condition for proper convergence is that the temper-
ature value Th tends towards 1 as the iteration counter increases.

We consider the following two tempering profiles: (i) a decreasing exponential
profile:

Th =
1+ eh/α−β

eh/α−β , (1)

with constants α ≥ 1 and β ≥ 0, which has the advantage to be easy to tune; (ii) a
non-monotonic profile [6] with oscillations of gradually smaller amplitude:

Th = tanh
(

h
2r

)
+

(
T0 −β · 2

√
2

3π

)
·αh/r +β · sinc

(
3π
4

+
h
r

)
, (2)

with constants r, T0, β > 0, and 0 < α < 1. The latter choice has more parameters
to tune, but it guarantees a very high level of flexibility. The proposed procedure
requires selecting the set of tempering parameters by a grid-search.

186



A Tempered Expectation-Maximization Algorithm for Latent Class Model Estimation 5

4 Simulation Results and Applicative Example

Within the simulation study, we randomly drew several samples of size n = 500
from an LC model with r = 6 responses, having c = 3 categories, assuming k = 3
latent classes, and for each of these samples we estimated a misspecified LC model
with k = 4 latent classes. In particular, we fitted the LC model 100 times for each
sample, always using different sets of random starting values. We used the stand-
ard EM algorithm and the proposed T-EM algorithms denoted by M. T-EM, when
the monotonic tempering profile (1) is used, and by O. T-EM, when the oscillating
tempering profile (2) is employed. The convergence of the algorithms is checked
on the basis of the relative log-likelihood difference; regarding the algorithm initial-
ization, we adopted a random starting rule based on normalized random numbers
drawn from a uniform distribution from 0 to 1.

We carried out a grid-search for the tempering parameters for each sample, and
we evaluated the setting that ensures the best performance. We noticed that the
method is not excessively sensitive to the tempering parameters: once the grid-
search sets such parameters, they remain valid over datasets sharing the same fea-
tures (e.g., the same number of response variables and categories). Therefore, this
preliminary procedure may be less time consuming than the current practice of es-
timating the model many times with random initial parameters.

In Table 1 we show some results obtained as described above about the EM and
T-EM algorithms: for each of six considered samples, we report the mean and the
median of the 100 log-likelihood values at convergence. From this table, it is clear
the advantage of the use of the tempering modification. In particular, the oscillating
version of the T-EM algorithm exhibits the best performance, slightly outperforming
also the monotonic version in most cases. We also considered the following criteria:
(i) dispersion of the resulting maxima measured by the standard deviation; (ii) pro-
portion of times the obtained maximum is close enough to the global one (based on
the 100 repetitions); (iii) dispersion of the estimated probability vectors (π, sorted
into descending order). From the results reported in Table 2 we notice a clear su-
periority of T-EM algorithm over the standard EM algorithm: in each scenario the
best results are obtained with the modified algorithm, and only for the fourth sample
the improvement is mild.

Table 1 Mean and median of log-likelihood values at the maximum, with EM and T-EM algorithm
using monotonic (M. T-EM) and oscillating (O. T-EM) tempering profiles on simulated data; each
row refers to a specific sample, and values in bold highlight the best results.

Mean Median

EM M. T-EM O. T-EM EM M. T-EM O. T-EM

-2,847.2879 -2,846.5392 -2,845.4207 -2,846.7726 -2,844.9000 -2,844.8369
-2,864.7102 -2,864.8438 -2,864.6754 -2,864.8575 -2,864.7875 -2,864.7336
-2,848.3929 -2,846.4819 -2,846.4817 -2,849.0982 -2,846.4819 -2,846.4817
-2,798.8988 -2,798.7510 -2,798.3810 -2,799.5792 -2,797.9326 -2,797.5355
-2,846.4159 -2,843.4433 -2,843.4672 -2,847.5666 -2,843.4433 -2,843.4449
-2,832.5526 -2,831.5140 -2,831.5808 -2,831.9158 -2,831.2970 -2,831.2970
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6 Luca Brusa, Francesco Bartolucci and Fulvia Pennoni

Table 2 Dispersion (SD) and proportion (Freq) of global maxima and dispersion of the estimated
probabilities (π); each row refers to a specific sample, and values in bold highlight the best results.

SD (Max.) Freq. (Glob. Max.) Dispersion of π

EM M. T-EM O. T-EM EM M. T-EM O. T-EM EM M. T-EM O. T-EM

2.2106 2.0383 1.3565 0.63 0.67 0.91 0.0057 0.0042 0.0009
1.1132 0.7430 1.0831 0.89 0.93 0.85 0.0029 0.0024 0.0023
1.9395 0.0000 0.0000 0.64 1.00 1.00 0.0067 0.0000 0.0000
1.7738 1.6139 1.5742 0.49 0.51 0.62 0.0038 0.0033 0.0029
2.8364 0.0000 0.0298 0.47 1.00 1.00 0.0024 0.0000 0.0002
1.5343 0.3525 0.3404 0.88 1.00 1.00 0.0043 0.0005 0.0004

Comparing the two types of tempering profile, we note that the oscillating pro-
file often outperforms the monotonic one; only when the results exhibit an almost
absolute perfection (dispersion approximately equal to 0 and proportion of global
maxima close to 1, as in samples 3 and 5), the monotonic profile reaches a slightly
better performance. This observation suggests that if the model is not too complex,
this choice is generally preferable, while in other cases, the oscillating profile guar-
antees better results. Similar T-EM algorithms are implemented for estimating the
HM model and preliminary results of the simulation study show the same improve-
ments with respect to the standard EM algorithm.

We also considered data deriving from the administration of 14 ordinal items
with three categories measuring anxiety and depression in 201 oncological patients
[3]. A misspecified LC model is estimated with k = 4 latent classes with the follow-
ing tempering parameters: α = 42 and β = 1.5 for the monotonic profile; r = 90,
T0 = 10, β = 20, and α = 0.8 for the oscillating profile. We notice that the T-EM
algorithms outperform the classic version of the EM algorithm because they always
converge to the same value that is presumably the global maximum, while the clas-
sical EM algorithm spreads out over a wide range of estimates.
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