
Dirichlet-Neumann preconditioning for
stabilised unfitted discretization of high contrast
problems

B. Ayuso de Dios, K. Dunn, M. Sarkis, and S Scacchi

Abstract We present a Dirichlet-Neumann preconditioner for a Nitsche stabilised
unfitted method for high-contrast interface elliptic problems. We demonstrate nu-
merical optimality and robustness of the solver in the soft and hard inclusion cases.

1 Introduction

Let Ω ⊂ R2 be a polygonal domain with an immersed simple closed smooth inter-
face Γ ∈ C 2, such that Ω = Ω

− ∪ Ω
+

, and Γ := Ω
− ∩Ω

+
is far away from ∂Ω

(i.e, either Ω+ or Ω− is a floating subdomain; i.e., one of them does not touch ∂Ω ).
Given f ∈ L2(Ω) we set f± = f|

Ω±
and consider the problem of finding u∗ such that{

−∇ · (ρ±∇u±∗ ) = f± in Ω
±, u±∗ = 0 on ∂Ω

±\Γ
[u∗] = 0 on Γ , [ρ∇u∗] = 0 on Γ ,

(1)

where u±∗ = u∗|Ω± and n± denote the unit normal outward to Ω±. The jump con-
ditions on Γ enforce the continuity of the solution and its flux across the interface.
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The jump operators are defined by

[ρ∇u∗] = ρ+∇u+∗ ·n++ρ−∇u−∗ ·n− and [u∗] = u+∗ −u−∗ . (2)

We also assume that the diffusion coefficients ρ± > 0 are constant and satisfy
ρ− ≤ ρ+. Note that u±∗ ∈ H2(Ω±), but u∗ ∈ H1+ε(Ω) with ε > 0. To approximate
(1) we consider the stabilised unfitted FE approximation from [Burman et al., 2018].

A class of unfitted finite element methods were introduced in the seminal works
of [Barrett and Elliott, 1987] and in recent years there has been a renewed interest
in these type of approaches, giving rise to numerous novel methods; the immersed
boundary method [Boffi and Gastaldi, 2003], XFEM [Chessa et al., 2002], the finite
cell method (FCM) [Dauge et al., 2015], and CutFEM [Burman and Hansbo, 2012,
Hansbo and Hansbo, 2002]. The use of unfitted meshes is particularly relevant for
interface problems. However, in spite of the upsurge in research for unfitted ap-
proaches, the design and analysis of robust solvers for the resulting linear and non-
linear systems still seem elusive. Simple preconditioning strategies are explored for
finite cell discretizations in [de Prenter et al., 2017] and multigrid-type method are
proposed in [Ludescher et al., 2018]. In the present contribution we focus on the
construction of a simple Dirichlet-Neumann (DN) domain decomposition precon-
ditioner for the CutFEM method introduced in [Burman et al., 2018] and demon-
strate its robustness also in the hard inclusion case. Due to space restrictions, we
focus on a very simple version and stick to the algebraic description of the solver.
Details on the analysis as well as further tailored preconditioners will be found in
[Ayuso de Dios et al., 2019].

2 Basic Notation and Unfitted Stabilized Discretization

Let {Th}h>0 be a family of uniform partitions of Ω into squares T of diameter h.
We assume that for each T , Γ ∩∂T , is either empty or occurs at exactly two different
edges of ∂T 1. We also define:

T ±
h := {T ∈Th : T ∩Ω

± 6= /0}, T Γ
h := {T ∈Th : T ∩Γ 6= /0}.

For T ∈T Γ
h we denote TΓ = T ∩Γ . We also introduce the discrete domains

Ω
±
h := Int

 ⋃
T∈T ±h

T

 Ω
Γ
h := Int

 ⋃
T∈T Γ

h

T

 , and Ω
±
h,0 = Ω

±
h \Ω

Γ

h ,

where Int(K) denotes the interior of the set K. Note that Ω
+
h ∪Ω

−
h = Ω is an

overlapping partition of Ω while a non-overlapping partition is given by Ω =

1 This assumption is only needed in the stability and error analysis of the method.
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Ω
+
h,0∪Ω

Γ

h ∪Ω
−
h,0 (see Figure 1.) Finally we introduce the following subsets of edges

of elements in T Γ
h :

E Γ ,±
h := {e = Int(∂T1∩∂T2) : T1 6= T2 ∈T ±

h , and T1 ∈T Γ
h or/and T2 ∈T Γ

h }.

Note that E Γ ,+
h (resp. E Γ ,−

h ) does not contain any edges on ∂Ω
+
h (resp. ∂Ω

−
h ).

Fig. 1: Domain
configurations:
Soft inclusion
(leftmost),
Hard inclusion
(center) cases

• Finite Element Spaces: We consider FE spaces of piecewise bilinear polynomials
whose support is contained in Ω

±
h , Ω

±
h,0 and ΩΓ

h , respectively:

V± = {v ∈ C (Ω±h ) : v|T ∈Q1(T ),∀T ∈T ±
h , and v|

∂Ω
±
h ∩∂Ω

≡ 0},

V±0 = {v ∈V± : v|T ≡ 0 ∀ T ∈Ω
Γ
h }, W± = {v restricted to Ω

Γ
h , v ∈V±} .

With a small abuse of notation, we set Vh =V+×V− where it is understood

uh ∈Vh =V+×V− uh = (u+,u−) with u+ ∈V+ , u− ∈V− .

That is, the FE space Vh is defined by a copy of two FE piecewise functions: one
from V+ defined on Ω

+
h and another from V− defined over Ω

−
h .

• The stabilised unfitted Nitsche approximation: the method reads: find uh =
(u+,u−) ∈Vh =V+×V−, such that:

ah(uh,vh) = ( f+,v+)Ω+ +( f−,v−)Ω− , for all vh = (v+,v−) ∈V+×V− , (3)

where (·, ·)Ω± denotes the L2(Ω±) inner product and ah : Vh×Vh −→R is given as:

ah(uh,vh) =
∫

Ω−
ρ−∇u− ·∇v−dx+

∫
Ω+

ρ+∇u+ ·∇v+dx (4)

+
∫

Γ

(
{ρ∇vh}w ·n

− [uh]+{ρ∇uh}w ·n
− [vh]

)
ds+ ∑

T∈T Γ
h

γΓ

hT
{ρ}H

∫
TΓ

[uh] [vh]ds

+ ∑
e∈E Γ ,−

h

γ−|e|
∫

e
ρ−[∇u−] [∇v−]ds+ ∑

e∈E Γ ,+
h

γ+|e|
∫

e
ρ+[∇u+] [∇v+]ds,
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where γΓ ,γ−, and γ+ are positive (moderate) constants and |e| is the diameter of the
edge e. Here, [·] refers to the jump operator as in (2) while {·}H and {·}

ω
denote the

harmonic and weighted averages defined by:

{ρ}H =
2ρ+ρ−

ρ++ρ−
, {ρ∇vh}ω

:=(ω−ρ
−

∇v−+ω+ ρ
+

∇v+), ω∓=
ρ±

ρ++ρ−
.

Continuity and coercivity of ah(·, ·) in (4) can be shown with respect to the norm:

‖vh‖2
Vh

:= |v+|2V+ + |v−|2V− + ∑
T∈T Γ

h

γΓ

hT
{ρ}H

∫
TΓ

[vh]
2 ds ∀vh ∈Vh , with

|v±|2V± :=
∫

Ω±
ρ±|∇v±|2 dx+ ∑

e∈E Γ ,±
h

γ±|e|
∫

e
ρ±[∇v±]2 ds, ∀v± ∈V± . (5)

We remark that the semi-norm | · |V+ is a norm if Ω+ is non floating. We will denote
by (·, ·)V+ to its originating inner product. Optimal and robust error estimates are
proved in [Burman et al., 2018].

3 Dirchlet-Neumann preconditioner

We describe now a preconditioner for the linear system resulting from (3) based
on the non-overlapping decomposition Ω

+
h,0 ∪Ω

Γ

h ∪Ω
−
h,0. Associated with such a

decomposition, and owing to the fat interface we consider the somehow asymmetric
splitting of the space Vh = (V+

0 ,W+)×V−, we first introduce some notation. We
denote by R± : Vh−→V± the restriction operators to Ω

±
h such that R±uh = u±. The

corresponding prolongation operators RT
± : V± −→Vh are defined as the extension

to Vh by zero, i.e., RT
+u+ = (u+,0) and RT

−u− = (0,u−). Similarly, we introduce
the restriction and prolongation operators

RW± : Vh −→W± R0± : Vh −→V±0 RW : Vh −→Wh

RT
W± : W± −→Vh RT

0± : V±0 −→Vh RT
W : Wh −→Vh

We define the bilinear forms a+0 : V+
0 ×V+

0 −→ R and a− : V−×V− −→ R

a+0 : V+
0 ×V+

0 −→ R a+0 (u
+
0 ,v

+
0 ) := ah(R

T
0+u+0 ,R

T
0+v+0 ) ∀u+0 ,v+0 ∈V+

0

a− : V−×V− −→ R a−(u−,v−) := ah(R
T
−u−,RT

−v−) ∀u− ,v− ∈V−

We now introduce the local solvers. Let u+f ,0 ∈ V+
0 and u−f ∈ V− be the local solu-

tions with support in Ω
+
h,0 and Ω

−
h , respectively, defined by:

a+0 (u
+
f ,0,v

+
0 ) = ( f+,v+0 )Ω+ ∀v+0 ∈V+

0 a−(u−f ,v
−) = ( f−,v−)Ω− v− ∈V− .
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We set Phuh = RT
0+u+f ,0 +RT

−u−f and note that uh−Phuh lies in the orthogonal
complement of RT

0+V+
0 +RT

−V− in Vh with respect to the inner product ah(·, ·).
This suggests the splitting uh =Phuh +Hhuh, with Hhuh = (H+uh,H−uh) ∈Vh a
suitable discrete harmonic extension of (u+h )|ΩΓ

h
that we briefly sketch next. Recall

that W+ is the restriction of the space V+ to ΩΓ
h . Given η+ ∈W+, we define H± :

W+ −→V± to be the discrete harmonic extension of η+ such that

ah(R
T
+H+η

+,RT
0+v+0 ) = 0 ∀v+0 ∈V+

0 and RW+RT
+H+η

+ = η
+

and
ah
(
(R+RT

W+η
+,H−η

+),RT
−v−

)
= 0 ∀v+ ∈V−.

Finally, we set Hhη+ = (H+η+,H−η+) and introduce the Schur complement op-
erator S : W+ −→W+:

< S η ,w >:= ah(Hhη
+,Hhw+) ∀η

+,w+ ∈W+ . (6)

From the definition of Phuh it follows

ah(Hhuh,Hhvh) = ( f ,vh)Ω
−ah(Phuh,vh) ∀ vh ∈Vh . (7)

We focus now on constructing preconditioners B−1 for the operator S and hence
for the system (7). The basic guide to ensure robustness will be to use, when possi-
ble, the local Schur complement corresponding to the largest coefficient, ρ+:

< S+η ,w >:= (H+η ,H+w+)V+ ∀η ,w ∈W+ , (8)

where (·, ·)V+ is the originating inner-product for the norm | · |V+ in (5). We need to
distinguish two cases:

• Ω+ is not floating subdomain and we set B−1 = S −1
+ .

• Ω+ is a floating subdomain; since S+ is not invertible, we define B−1 as a
suitable regularisation of S+. We propose one level and two level methods.

4 Algebraic formulation of the DN preconditioner

After choosing standard Lagrangian basis for V±, problem (3) reduces to a linear
algebraic system AU = F. We consider the block structure of A that results from
splitting the degrees of freedom (dofs) of the discrete space Vh into three sets:

• dofs associated with V+
0 (in the interior of Ω+) are indicated by I+;

• dofs related to W+, indicated by W+;
• dofs associated with V−(dofs related to V−0 and W−), indicated by V−.
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AW+I+ A+
W+W+ +A−W+W+ AW+V−

0 AV−W+ AV−V−


UI+

UW+

UV−

=

FI+

FW+

FV−

 .
Here, we have highlighted that the stiffness block with dofs from W+ in the fat
interface has contributions from Ω

+
h and Ω

−
h . Performing static condensation of the

interior variables I+ and V− we obtain the Schur complement system

SUW+ =GW+ , S= S++S− ,

where GW+ = FW+ −AW+I+A−1
I+I+FI+ −AW+V−A−1

V−V−FV− , and S is given by

S= S++S− with
{

S+ = A+
W+W+ −AW+I+A−1

I+I+AI+W+

S− = A−W+W+ −AW+V−A−1
V−V−AV−W+ ,

Soft inclusion: Ω
+
h in Non-Floating Subdomain Case: In this case we set

B−1 = S −1
+ since the operator is invertible. At the algebraic level we arrive at

S−1
+ SUW+ = S−1

+ GW+ . The action of the DN preconditioner S−1
+ on a generic resid-

ual vector RW+ consists of solving the linear system[
AI+I+ AI+W+

AW+I+ A+
W+W+

][
VI+

VW+

]
=

[
0
RW+

]
.

and letting VW+ := S−1
+ RW+ .

Hard inclusion: Ω
+
h is the Floating Subdomain: Since S+ is not invertible we

consider two different strategies: a regularisation and the use of a one dimensional
coarse solver to account for the kernel of S+.

• One-Level DN: The action of the preconditioner amounts to solving([
AI+I+ AI+W+

AW+I+ A+
W+W+

]
+
{ρ}H

D2
+

[
M+

I+I+ M+
I+W+

M+
W+I+ M+

W+W+

])[
VI+

VW+

]
=

[
0
RW+

]
,

and setting S−1
+,oneRW+ =VW+ . Here, M+ stands for the mass matrix associated with

V+ (i.e., defined over Ω
+
h ), and D+ :=diam(Ω+

h ) and is used to regularise S+.

• Two Level DN preconditioner: The idea is to first solve in the space orthogonal
to the (one-dimensional) kernel of S+ and then correct with a coarse solver that
accounts for the contribution in ker(S+). Hence, the practical implementation of the
two level solver S−1

+,two amounts to first solving[
AI+I+ AI+W+

AW+I+ A+
W+W+

][
VI+

VW+

]
+

[
M+

I+I+ M+
I+W+

M+
W+I+ M+

W+W+

][
1I+

1W+

]
λ =

[
0
RW+

]
,

with the constraint
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1I+

1W+

]T [ M+
I+I+ M+

I+W+

M+
W+I+ M+

W+W+

][
VI+

VW+

]
= 0

and then define S†
+RW+ = VW+ . Here 1+I+ and 1+W+ are vectors of ones in V+

0
and W+, respectively. The matrix representation of the two level preconditioner
(with coarse space) is defined via S−1

+,two = S†
++1W+(1W+ ,S1W+)−11T

W+ . Note that
S1W+ = S−1W+).

5 Numerical Results

We consider the domain Ω = [0,1]2 and study the performance of the Dirichlet-
Neumann (DN) preconditioner for the CutFEM approximation (3) to (1) with Ω∓

a disk of radius 0.15 and Ω± = (0,1)2 \Ω
∓

and always ρ− ≤ ρ+. We use CG and
PCG as a solver with zero initial guess and tolerance 10−6 for the relative residual.
In the tables we report the estimated (via Lanzcos algorithm) condition numbers (de-
noted by κ2) and the number of iterations (denoted by it) required by CG and PCG
for convergence. Table 1 reports the results in the case where Ω+ is non-floating,

ρ− full CG schur NO precond. schur DN preconditioned
κ2 it κ2 it κ2 it

1 3.32e+3 (218) 388.40 (75) 1.95 (14)
10−2 2.06e+4 (575) 362.15 (91) 1.01 (15)
10−4 2.01e+6 (2828) 361.71 (93) 1.00 (4)
10−6 2.01e+8 (5418) 361.70 (93) 1.00 (3)

Table 1: Robustness with respect to ρ: Ω− is the floating subdomain. Here, ρ+ = 1 and h = 1/64.

therefore using S −1
+ as a preconditioner. S −1

+ performs robustly when the ratio
ρ+/ρ− increases. In the case where Ω+ is the floating subdomain, we use one level
and two level DN preconditioners. The results regarding optimality and robustness
of these preconditioners are reported in Table 2 and 3, respectively. Notice that both
preconditioners perform optimally and show robustness with respect to the jump-
ing coefficient. In particular, the one-level DN preconditioner seems to be enough
effective for the considered setting.

References

[Ayuso de Dios et al., 2019] Ayuso de Dios, B., Dunn, K., Sarkis, M., and Scacchi, S. (2019).
Simple preconditioners for cutfem methods. (work in preparation).

[Barrett and Elliott, 1987] Barrett, J. W. and Elliott, C. M. (1987). Fitted and unfitted finite-
element methods for elliptic equations with smooth interfaces. IMA J. Numer. Anal., 7(3):283–
300.



8 B. Ayuso de Dios, K. Dunn, M. Sarkis, and S Scacchi

1/h full CG schur NO precond. DN Two-Level DN one-level
κ2 it κ2 it κ2 it κ2 it

8 6.38e+3 252 4.09e+2 79 6.76 11 3.51 14
16 1.77e+4 520 8.60e+3 224 6.39 15 2.11 14
32 5.83e+4 863 1.09e+4 423 6.29 16 2.09 14
64 2.14e+4 1625 1.86e+4 551 6.34 16 2.08 14
128 8.19e+5 3163 3.79e+4 832 6.37 16 2.13 14
256 3.20e+6 6140 7.43e+4 1148 6.39 16 2.19 14

Table 2: Optimality with respect to h: floating circle Ω+ embedded in [0,1]2. ρ+ = ρ− = 1.

ρ+ full CG schur NO precond. DN Two-Level DN one-level
κ2 it κ2 it κ2 it κ2 it

1 2.14e+5 1625 1.86e+4 539 6.37 16 2.13 14
102 2.00e+7 12906 1.81e+6 765 6.33 6 1.83 5
104 2.00e+9 >100000 1.81e+8 897 6.33 4 1.83 4
106 5.70e+10 >100000 1.81e+10 1026 6.33 3 1.83 3
108 4.20e+12 >100000 1.83e+12 1326 6.33 3 1.83 3

Table 3: Robustness with respect to ρ . Floating Ω+ with jumping coefficients. Here, ρ− = 1,
1/h = 64.

[Boffi and Gastaldi, 2003] Boffi, D. and Gastaldi, L. (2003). A finite element approach for the
immersed boundary method. Comput. & Structures, 81(8-11):491–501. In honour of Klaus-
Jürgen Bathe.

[Burman et al., 2018] Burman, E., Guzmán, J., Sánchez, M. A., and Sarkis, M. (2018). Robust
flux error estimation of an unfitted Nitsche method for high-contrast interface problems. IMA J.
Numer. Anal., 38(2):646–668.

[Burman and Hansbo, 2012] Burman, E. and Hansbo, P. (2012). Fictitious domain finite element
methods using cut elements: II. A stabilized Nitsche method. Appl. Numer. Math., 62(4):328–
341.

[Chessa et al., 2002] Chessa, J., Smolinski, P., and Belytschko, T. (2002). The extended finite
element method (XFEM) for solidification problems. Internat. J. Numer. Methods Engrg.,
53(8):1959–1977.
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