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We present MaREA4Galaxy, a user-friendly tool that allows a user to characterize and to graphically com-
pare groups of samples with different transcriptional regulation of metabolism, as estimated from cross-
sectional RNA-seq data. The tool is available as plug-in for the widely-used Galaxy platform for compar-
ative genomics and bioinformatics analyses. MaREA4Galaxy combines three modules. The Expression2RAS

module, which, for each reaction of a specified set, computes a Reaction Activity Score (RAS) as a function
of the expression level of genes encoding for the associated enzyme. The MaREA (Metabolic Reaction
Enrichment Analysis) module that allows to highlight significant differences in reaction activities
between specified groups of samples. The Clustering module which employs the RAS computed before
as a metric for unsupervised clustering of samples into distinct metabolic subgroups; the Clustering tool
provides different clustering techniques and implements standard methods to evaluate the goodness of
the results.

� 2020 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In the last recent years, life sciences have witnessed a renewed
focus on phenotype level phenomena. Accordingly, there has been
an increasing attention towards cellular metabolism, which is
regarded as the ultimate level of phenotype, reflecting the
response of biological systems to regulatory and environmental
changes.

Alteration of metabolic processes plays a pivotal role in many
pathologies, such as cancer, metabolic syndromes, neurodegenera-
tive diseases [10,16], as well as in aging processes [12].

Although quantification of metabolites has become more and
more feasible [9], the difficulty of inferring changes in metabolic
pathways based on metabolomics data [3] is pushing the need to
understand metabolic alterations by leveraging gene expression
data.

To this end, computational strategies are being proposed to
integrate –omics data into metabolic networks [13,18,14]. Within
this context, we have recently introduced the pipeline MaREA

(Metabolic Reaction Enrichment Analysis) [8]. MaREA character-
izes the metabolic disregulations that distinguish sets of individu-
als, by projecting RNA-seq data onto metabolic networks, without
requiring explicit metabolic measurements.

MaREA computes a Reaction Activity Score (RAS) for each meta-
bolic reaction and each sample/individual, based on the read count
of the set of genes that encode the catalyzing enzyme(s). The scores
are first used as features for cluster analysis and then to visualize
the metabolic disregulations that distinguish the identified clus-
ters, in a form understandable to life scientists.

In [8], we have demonstrated thatMaREA can efficiently stratify
cancer patients according to their metabolic activity, as proven by
significantly different survival expectancy. Moreover, MaREA

proved to be able to readily capture metabolic differences between
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two conditions, such as the properties that distinguish normal
from tumor samples.

TheMaREA pipeline is highly versatile and can be applied to vir-
tually any study aiming at comparing the metabolism of samples
in different conditions or experimental settings.

In [8], we released a MATLAB-based tool that implements the
methodology. However, some technical barriers current limit the
application of the pipeline: MATLAB is a proprietary software and
many life scientists do not have the software licence; moreover,
the tool is not web-based and, therefore, it requires local resources;
also, most life scientists are not familiar with the MATLAB
environment.

To overcome these limitations, we present here the freely avail-
able open source web-based tool MaREA4Galaxy which embeds the
MaREA pipeline within the widely-used platform Galaxy [1].

Galaxy is a user-friendly web-based workflow system that
allows biomedical researchers to use computational biology tools
even without sophisticated computer science skills.

As compared to other user-friendly web-based metabolic net-
work visualization tools, such as Escher [11] or Fame [2], which
mainly focus on Flux Balance Analysis, MaREA4Galaxy specifically
enables metabolic reaction enrichment analysis of gene expression
data which may have been obtained directly within the Galaxy
environment, for instance by using Galaxy tools to produce read
counts from raw RNA-seq data.MaREA4Galaxy automatically recog-
nizes most common gene nomenclature systems. It also enables
cluster analysis of samples based on reaction activities, as well as
on any other features. The cluster analysis module implements
new functionalities, as compared to the previously released
MATLAB-based MaREA tool. New clustering algorithms have been
included, as well as new instruments for the evaluation of cluster-
ing goodness and for the selection of optimal number of clusters.

Moreover, MaREA4Galaxy inherits the benefits of Galaxy. In par-
ticular, Galaxy allows to build multi-step computational analyses.
It allows users to upload their own data, as well as to interface with
public databases, and enables researchers to perform the text
Fig. 1. Screenshot of theMaREA4Galaxy interface. The module for RAS computation is illus
dataset’ field there is the RNA-seq dataset which has been previously uploaded and tha
manipulation required to properly format data for analysis without
requiring advanced programming skills. Galaxy can be down-
loaded, customized and installed either locally or on a dedicated
server. It also provides a comprehensive documentation.

In order to illustrate the functionalities of MaREA4Galaxy, we
show a novel example on real data obtained from The Cancer Gen-
ome Atlas (TCGA) [17]. In particular, we perform an unsupervised
cluster analysis of the gene expression of liver hepatocellular car-
cinoma tumors and we analyze the obtained clusters.
2. Implementation and availability

Following the recommendation by Galaxy’s core developers’
team, the back-end development of MaREA4Galaxy is based on
Python and the front-end development on XML. The interaction
between front-end and back-end is based on the template engine
Cheetah. MaREA4Galaxy is built on top of the following libraries:
lxml, svglib, reportlab, pandas, scipy, python-libsbml,
matplotlib, numpy and scikit-learn for clustering analysis.

MaREA4Galaxy is stored in a versioned code archive in ToolShed,
at: https://toolshed.g2.bx.psu.edu/repos/bimib/marea. ToolShed
allows the administrators of the hundreds of public and private
Galaxy servers worldwide to easily install MaREA4Galaxy, as well
as any other Galaxy utility, into their instances.

Once installed,MaREA4Galaxy appears in the Galaxy toolbar (left
bar) under the name MaREA (see Fig. 1 for an example). A demo of
MaREA4Galaxy is available at:http://bimib.disco.unimib.it:5555.
3. Functionalities and workflow

MaREA4Galaxy processes datasets stored in the history panel of
Galaxy. These datasets can be uploaded directly from the user’s
computer as structured text file by using, e.g., the Galaxy built-in
tool Get Data, or obtained as output of intermediary analyses per-
formed with other tools.
trated. In particular, the built-in (default) HMRcore GPR rules are chosen. In the ‘add
t appears in green in the History panel on the right.

http://bimib.disco.unimib.it:5555
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MaREA4Galaxy consists in three interconnected modules that
may also work independently.

� The RASs computation module (Expression2RAS).
� The metabolic reaction enrichment analysis module (MaREA).
� The cluster analysis module (Clustering).

As better detailed in the following sections, the Expression2RAS

module computes a RAS for each reaction in each sample. The
MaREA module allows to visualize on a metabolic map the meta-
bolic reactions that are up- or down- regulated in different groups
of samples either defined a priori or identified by the Clustering

module. The Clusteringmodule allows to identify sample subgroups
(or clusters) that share similar metabolic properties, ideally by
employing the RAS computed by the Expression2RAS module. Any
other data can however be used as feature for unsupervised clus-
tering of samples. The metabolic differences between the clusters
thus obtained can, in turn, be analyzed with the MaREA module.

3.1. Computation of reaction activity scores

The Expression2RAS tool selects and extracts metabolic genes
from a gene-expression dataset and, by solving Gene-Protein-
Reaction (GPR) association rules, computes a Reaction Activity Score
(RAS) for metabolic reactions of interest, as illustrated in [8]. The
assumption is that enzyme isoforms contribute additively to the
overall activity of a given reaction, whereas enzyme subunits limit
its activity, by requiring all the components to be present for the
reaction to be catalyzed [8].

3.1.1. Input
The Expression2RAS tool (Fig. 1) takes two main inputs: 1) the

list of GPRs; 2) the normalized read count of genes from a given
cross-sectional RNA-seq dataset, as, e.g., RPKM (Reads per Kilobase
per Million mapped reads) or TPM (Transcripts Per Kilobase
Million).

The first input is a representation of the metabolic model being
studied and it is basically a dictionary (key-value data structure),
which associates a set of genes to each metabolic reaction. Both
reactions and genes must be defined by a unique identifier.

Boolean operators AND and OR define the relationship between
genes and enzymes. The AND operator joins genes that encode for
different subunits of the same enzyme, whereas the OR operator
joins genes that encode for isoforms of the same enzyme.

For the user’s convenience, two human metabolic network
models have been made directly available within the tool: HMRcore

and Recon 2.2. HMRcore corresponds to the set of GPR rules
included in the core model of central carbon metabolism intro-
duced in [6] and was used and curated in [4,7,5,8], whereas Recon

2.2 [15] is a genome-wide model encompassing virtually all reac-
tions encoded in human metabolism. However, the user can also
opt to upload any custom metabolic network model of her/his
choice.

The ID of genes in the dataset must of course coincide with the
ID used in the GPR rules. In case built-in GPRs are used, the follow-
ing gene nomenclatures are automatically recognized: HUGO ID,
Ensemble ID, HUGO symbol, Entrez ID.

In case of missing expression value, referred to as NaN (Not a
Number), for a gene joined with an AND operator in a given GPR
rule, the user can choose to solve the rule ‘A AND NaN’ as A, or
to disregard it tout-court (i.e., treated as NaN).

3.1.2. Output
The tool simply returns as output a dataset reporting the RAS

computed for each sample for each reaction in the chosen meta-
bolic network. The RAS dataset is displayed in the History panel.
3.2. Metabolic reaction enrichment analysis

The MaREA tool statistically compares the RAS of user-defined
groups of samples [8] and visualizes the identified differences.

According to the user’s preference the tool performs the follow-
ing comparisons.

� Pairwise comparison of each group against all other groups.
� Comparison of each group against the rest of the samples.
� Comparison of each group against a user-defined control group.

3.2.1. Input
The MaREA tool (Fig. 2) takes as main input the Reaction Activ-

ity Scores of each sample, as computed by the Expression2RASmod-
ule and, if given, the eventual partition of samples/patients into
distinct classes.

The input RAS dataset can be organized in two alternative ways:
1) two or more separate RAS datasets, each relative to a different
set of samples/patients; 2) a unique RAS dataset for all samples/pa-
tients, plus a file that associates to each sample its affiliation to a
set.

As (optional) input, the user may also supply a graphical map of
the metabolic network for an efficient visualization of the analysis
outputs. If the HMRcore model is chosen, the corresponding map is
included within the tool and does have not to be uploaded. The
metabolic map format is a svg file, reporting metabolites and
products of each reaction linked with an arrow, whose ID matches
the name of the reaction in the GPR file.

The following advanced options can also be displayed and
specified.

� The P-Value threshold, used for significance Kolmogorov-
Smirnov (KS) test, to verify whether the distributions of RASs
over the samples in two sets are significantly different.

� The threshold of the fold-change between the average RAS of
two groups. Among the reactions that pass the KS test, only
fold-change values larger than the indicated threshold will be
visualized on the output metabolic map.

� optional outputs to be displayed in the History panel.

The reader is referred to [8] for further theoretical aspects
regarding the options above, whereas further technical details
regarding formatting of input files are available in the help section
in Galaxy.

3.2.2. Output
MaREA returns for each evaluated comparison, a collection out-

put in the History including the following items.

� A table reporting the fold-change between RASs and p-value of
the Kolmogorov-Smirnov test.

� The modified metabolic map (whenever supplied as input).
Reactions up-regulated in the first class as compared to the sec-
ond class are marked in red, whereas reactions down-regulated
in the former are marked in blue. Thickness of arrows is propor-
tional to the fold-change between the average RASs of the two
classes. Non-Classified reactions, i.e., reactions without infor-
mation about the corresponding gene-enzyme rule, are marked
in black. Reactions that display a non-significant p-value or a
RAS fold-change below the threshold are marked in gray color.
The pdf of the map can be directly visualized within Galaxy. The
user can also download the svg format of the map in order to
apply changes.

� A log file, reporting possible warning or error messages. Prob-
lems that prevent the pipeline’s functioning, such as wrong for-
mat of files, gene ID type not supported or duplicated IDs,



Fig. 2. Screenshot of the MaREA4Galaxy interface. The module for metabolic reaction enrichment analysis is illustrated. The input format option ‘RNAseq dataset of all
samples + sample group specification’ has been selected and the best clustering obtained with the k-means algorithm in the History has been selected as sample group
specification.
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insufficient number of classes, as well as minor problems, such
as extra-columns, duplicated labels, missing gene values, or
empty classes, are properly notified in detail.

3.3. Cluster analysis

The Clustering tool has been conceived to cluster gene expres-
sion data, by using the RAS scores computed by MaREA4Galaxy as
features, given its efficacy in stratifying cancer patients according
to metabolic phenotype, as demonstrated in [8]. However, it is sui-
ted to cluster observations in any dataset in which rows indicate
different variables/features and columns different observations.

The Clustering tool implements three of the main existing algo-
rithms to cluster data, namely: K-means, agglomerative clustering
and DBSCAN (Density Based Spatial Clustering of Applications with
Noise). Parameters and outputs of the tool are specific of each algo-
rithm as briefly described in the following. A screenshot of this fea-
ture of the tool is reported in Fig. 3.

3.3.1. K-means
Given that K-means clustering requires the number of clusters k

to be set by the user, and that it is usually difficult to know the cor-
rect number of clusters a priori, the Clustering tool allows to evalu-
ate different values of k and provides standard methods to
estimate the goodness of each clustering in order to choose the
best one. In particular, the elbow plot is generated, which allows
to identify the ‘‘elbow” (the point of inflection on the curve) as
the best candidate. The tool also generates a silhouette plot for each
k, which reports the cohesion and the separation indexes of each
element. The tool also computes the silhouette score of each ele-
ment, as well as the average silhouette of each k, returning the k
with the best (highest) silhouette. The user can specify the mini-
mum and maximum number of clusters to be evaluated and
whether elbow and dendrogram plots must be generated.
3.3.2. Agglomerative clustering
In the case of agglomerative clustering, the hierarchical output

illustrated by the dendrogram facilitates the choice of the best
clustering. The Clustering tool returns the set of clusters obtained
when cutting the dendrograms at different points. The user can
specify the minimum and maximum number of clusters to be
tested and whether the dendrogram plot must be generated.
3.3.3. DBSCAN
The DBSCANmethod automatically chooses the number of clus-

ters, based on parameters that define when a region is to be con-
sidered dense. Custom parameters may be used, namely the
maximum distance between two samples for one to be considered
as in the neighborhood of the other and the number of samples in a
neighborhood for a point to be considered as a core point.
4. Application example

To illustrateMaREA4Galaxy functioning, we show here an exam-
ple of application. We analyze a liver hepatocellular carcinoma
RNA-seq dataset taken from the TCGA pancancer study, including
372 patients. The original data is available at:http://download.
cbioportal.org/blca_tcga.tar.gz.

The goal of our example is to identify patients’ cohorts with dif-
ferent metabolic features, without assuming any prior knowledge
about the dataset. To this end, we first upload our dataset in the
History panel of Galaxy by means of the Get Data tool. Based on
the HMRcore metabolic map, we then compute the RAS for each
reaction in each patient, by means of Expression2RAS tool, see Fig. 1.

We then switch to the Clustering tool and we select as input
dataset the RASs computed before. As a proof of principle, we
choose K-means as clustering algorithm. We test a number of clus-
ters k from 2 to 5, and we indicate that we want to generate both

http://download.cbioportal.org/blca_tcga.tar.gz
http://download.cbioportal.org/blca_tcga.tar.gz


Fig. 3. Screenshot of theMaREA4Galaxy interface. The module for cluster analysis is illustrated. The RAS computed by theMaREA tool have been selected as input dataset and
K-means has been chosen as clustering method. 2 to 5 number of clusters will be tested. The elbow and silhouette plots will be generated.
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elbow and silhouette plots for each tested k (see a screenshot of the
tool in Fig. 3).

The execution of the tool returns the clustering output for each
value of k, and indicates as best clustering the one that maximizes
the average silhouette coefficient. In this case, the tools returns
k ¼ 2 as the best clustering. The generated elbow and silhouette
plots are reported in Fig. 4. It can be noticed that, although we have
identified a good stratification of liver cancer patients, by qualitative
observation of the elbow plot one may also choose k ¼ 3 as best
clustering.

Finally, we can use the MaREA tool to promptly analyze the dif-
ferences between the two patients’ cohorts. As shown in the
screenshot in Fig. 2, we select this time the input format option
‘RNAseq of all samples +sample group specification’ and we select
the best clustering output obtained with Clustering as sample group
Fig. 4. Evaluation of clustering goodness byMaREA4Galaxy. Left panel: elbow plot generat
generated by the Clustering module for k ¼ 2, which has been returned as best clusterin
specification file. We flag the option of generating the pdf map and
once we execute the tool we obtain the map reported in Fig. 5.

Although a few reactions significantly differ between the two
cluster, an expert who is familiar with this classical representation
of central carbon metabolism can immediately notice (Fig. 5) the
main metabolic features that distinguish the two patients
cohorts.

For example, in the first group, the upper glycolytic pathway is
up-regulated, whereas lower glycolysis, upstream of lactate pro-
duction, is down-regulated. Lactate production from pyruvate is
instead up-regulated, indicating that pyruvate production derives
from alternative routes, such as from the amino acid serine derived
from glucose. The reactions that go from serine to pyruvate are
indeed up-regulated. Other differences involve the utilization of
glutamine and synthesis of amino acids derived from glutamine,
ed by the Clusteringmodule, showing an elbow for k ¼ 3. Right panel: silhouette plot
g according to the average silhouette score reported in the plot’s title.



Fig. 5. Example of metabolic map generated byMaREA4Galaxy. In the example, red arrows indicate reactions up-regulated, whereas blue arrows reactions down-regulated, in
a subgroup of liver hepatocellular carcinoma patients. Black arrows refer to reactions without information about the corresponding gene-enzyme rule. Dashed gray arrows
refer to non significant disregulations according Kolmogorov-Smirnov test with p-value 0.01. Solid gray arrows refer to reactions with a variation lower then 20%. As output
maps are provided as vector graphics (in svg/pdf file formats), they can be zoomed-in at will.
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such as asparagine and aspartate, as well as production of putres-
cine and urea in the urea cycle.

5. Conclusion

We have shown how with a few intuitive steps, without the
need to set technical parameters, and in a very short time,MaREA4-

Galaxy enables to uncover and characterize the differences in meta-
bolic activity observed in different sample subgroups, as in the case
of cancer patients.

Being empowered by the well-known open and web-based
platform Galaxy for performing accessible, reproducible, and trans-
parent bioinformatics science,MaREA4Galaxy can support many life
scientists who may have little knowledge of computational meth-
ods for analyzing the metabolic variability underlying gene-
expression datasets, no matter whether collected in their labs or
available in public databases, thus paving the way to tackle meta-
bolic plasticity and heterogeneity.

As an example, we have shown a novel application of the
MaREA pipeline to liver hepatocellular carcinoma and we have
identified two groups with well distinct metabolic features. Inves-
tigating the implications of these differences is out of the scope of
this work. However, it would be interesting to analyze whether the
two groups of patients differ in other aspects, such as their progno-
sis, (epi) genomic makeup or regulation of signaling pathways.

A better understanding of the fundamental causes of metabolic
heterogeneity is important for personalised treatment of the many
diseases involving metabolic alterations, as well as for targeted
nutrition recommendations and intervention the field of personal-
ized nutrition.
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