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1 Introduction

There are many interesting superconformal field theories (SCFTs) in 3d, which can be
loosely categorized according to the scaling of their free energies in the planar limit. Fa-
mously, the free energy of the N = 6 ABJM theories with holographic duals in M-theory
scales like N3/2 [1–3]. For N = 2 Chern-Simons-matter theories with duals in massive
type IIA, the scaling is modified to N5/3 [4–6]. A large class of 3d SCFTs, denoted as
T σρ [G], can be obtained by considering 4d N = 4 SYM with gauge group G on an interval,
with boundary conditions specified by two Young tableaux ρ and σ and separated by an
S-duality wall [7]. For G = SU(N) these theories can also be described as IR fixed points
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of 3d Yang-Mills-type quiver gauge theories. Holographic duals for these theories in Type
IIB supergravity were constructed in [8], building on earlier work in [9, 10], and the free
energies for certain theories in this class, including T [SU(N)], were matched to holographic
results in [11]. Remarkably, the free energies were found to scale like N2 lnN .

In this paper we revisit the 3d T σρ [SU(N)] theories, with the motivation to better
understand their planar limit and the scaling of the free energies. From the perspective of
the supergravity duals, the N2 lnN scaling found in [11] is the result of a somewhat peculiar
limit in which certain brane sources run off and stretch out the internal space to produce
the logarithmic scaling. The O(N2) part is sensitive to higher-curvature corrections. From
the field theory perspective the scaling can be understood in a similar way: the 3d SCFTs
considered in [11] are the IR fixed points of quiver gauge theories with a large number of
nodes, with the ranks of the gauge groups of the same order as the length of the quivers.
The matrix models resulting from supersymmetric localization can be reformulated in a way
which is adapted to such long quiver gauge theories, following [12], which was discussed
for the T [SU(N)] theory in [13]. The N2 lnN scaling emerges in this formulation from
singular behavior of the localized partition function when evaluated on the large-N saddle
point, while the O(N2) part is sensitive to corrections.

In this work we discuss a limit of 3d long quiver gauge theories in which the supergravity
duals are free from runaway sources and the field theory computations do not lead to
singularities. We take a large number of nodes, L, and a large number of flavors at isolated
interior nodes. Unlike the limit considered in [11], we take the ranks of the gauge groups
to scale quadratically with L. These theories can be understood as T σρ [SU(N)] with N =
O(L2) where ρ and σ have O(L) rows with O(L) boxes each. We will show that the
free energies scale like L4, or N2, with coefficients given by trilogarithm functions whose
arguments depend on the data characterizing the quiver gauge theories, ρ and σ. These
results will be produced both from field theory and supergravity, and we show that they
match precisely. We also discuss the topologically twisted index, and show that, in the
spirit of the “index theorem” of [14], this index agrees up to a universal overall factor
with the free energy on S3. From the perspective of the 4d N = 4 SYM construction
of the 3d T σρ [SU(N)] theories, the L4 scaling corresponds to the familiar N2 scaling in
4d. The theories considered in [11] will be recovered as special limiting cases, in which
the trilogarithm functions appearing as coefficients of the leading N2 terms reduce to
logarithms.

The quartic scaling of the free energy with the length of the quiver is a feature also
exhibited by a class of 5d SCFTs which arise as UV fixed points of long quiver gauge
theories [12, 15, 16]. The way the SCFTs relate to gauge theories in 3d and 5d differ: the
3d SCFTs arise as IR fixed points of UV-free gauge theories, while the 5d SCFTs arise as
UV fixed points of IR-free gauge theories. The scaling of the ranks of the gauge groups is
quadratic with the length of the quiver in 3d, but only linear in the 5d theories. Moreover,
the constraints that the gauge theories have to satisfy in order to obtain well-defined SCFTs
in 3d and 5d are inequalities constraining the numbers of flavors in opposite directions.
Nevertheless, the constraints overlap for balanced theories. For each 3d quiver gauge
theory with all nodes balanced, we discuss a 5d parent theory for which the matrix model
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resulting from supersymmetric localization is related in a simple way and is dominated by
the same saddle point, leading to simple relations between BPS observables in the planar
limit.

The paper is organized as follows: in section 2 we introduce the 3d quiver gauge
theories whose IR fixed points we will study. We review their brane realization in type IIB
string theory and their supergravity duals. In section 3 we derive general formulae for the
free energies. We establish an “index theorem”, relating the topologically twisted index to
the free energy in section 4. In section 5 we present case studies, and derive explicit results
for a sample of concrete theories. In section 6 we discuss the relation to 5d long quiver
SCFTs. We conclude in section 7.

2 3d long quiver SCFTs

We start with a characterization of the SCFTs to be discussed in the following in terms
of their UV gauge theory descriptions. Brane constructions and supergravity duals will be
discussed afterwards. The theories of interest are 3d Yang-Mills-type N = 4 supersym-
metric U(·) linear quiver gauge theories with L nodes labeled by t = 1, . . . , L. The general
form is

U(N1)−U(N2)− . . .−U(NL−1)−U(NL)
| | | | (2.1)

[k1] [k2] [kL−1] [kL]

The dashes between the gauge nodes denote hypermultiplets in the bifundamental repre-
sentation, and [kt] denotes kt fundamental flavors. The theories in (2.1) are T σρ [SU(N)]
theories,1 which were classified into good, bad and ugly in [7]. The general quivers were
spelled out previously e.g. in [17]. We will focus on the good theories, for which the number
of flavors at each node is at least twice the number of colors.

We will be interested in the limit where the gauge theories have a large number of nodes,
L� 1. In that limit the nodes can be labeled by an effectively continuous coordinate z ∈
[0, 1] along the quiver, and the data {Nt, kt} is encoded in functions N(z), k(z) defined by

z = t

L
, N(z) = NzL , k(z) = kzL . (2.2)

In the limit discussed in [11] the ranks of the gauge groups are O(L). A prime example
is the T [SU(N)] theory, (1) − (2) − . . . − (N − 1) − [N ], which was cast in the above
language in [13]. This is also the scaling considered for 5d quiver theories in [12]. Here
we will consider a different scaling, in which the majority of nodes has rank Nt of O(L2).
Concretely, we will take N(z) to be a continuous, piece-wise linear function of O(L2), and
we will also assume that the leading-order part of N(z) vanishes at the boundaries of the

1We will use T σρ [SU(N)] to refer to the IR SCFT and to the UV gauge theory, hoping that the distinction
will be clear from context.
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. . .

. . .k1 k2 kL

N1 N2 NL

Figure 1. Brane construction for the quiver gauge theories in (2.1). The vertical lines represent D5-
branes oriented along the (012456) directions, the ellipses are NS5-branes oriented along (012789)
and the horizontal lines are D3-branes extending along (0123).

quiver. These assumptions will be relaxed and discussed in more detail later. For now we
assume

N(z) = O(L2) , lim
z→{0,1}

L−2N(z) = 0 . (2.3)

Fundamental hypermultiplets will be attached to isolated nodes, such that their total num-
ber is O(L). The nodes where N(z) is linear, with no additional fundamentals attached,
are balanced. The kinks of N(z) may be convex (curving away from the real axis) or
concave (curving towards the real axis). The nodes at convex kinks have a flavor excess.
Concave kinks need additional fundamental hypermultiplets to bring the number of flavors
at least to twice the number of colors.

2.1 Brane construction

We now review the brane construction of the theories in (2.1), following [7, 18], and discuss
the limit in (2.3) from that perspective. Each U(Nt) gauge node is represented by a stack of
Nt D3-branes suspended between NS5 branes as in figure 1, and the D5-branes represented
by vertical lines in figure 1 add fundamental matter. The limit discussed in the previous
section amounts to taking a large number of NS5-branes, L+ 1, with the numbers of D3-
branes, Nt, of O(L2) such that they fall off towards the boundary nodes. Having a total of
O(L) fundamental hypermultiplets distributed over the gauge nodes means that the total
number of D5-branes is O(L).

One can bring all D5-branes to one side and all NS5-branes to the other side using
Hanany-Witten transitions, as shown for an example in figure 2. The gauge theory data
is now encoded in two Young tableaux, both encoding partitions of the total number of
D3-branes stretched between the stack of D5-branes and the stack of NS5-branes. One of
them, ρ, encodes how the D3-branes end on the NS5-branes. The other one, σ, encodes
how the D3-branes end on the D5-branes. Explicit expressions for the quiver gauge theory
data in terms of (ρ, σ) can be found e.g. in [17, 19]. The constraints for having a ‘good’
theory amount to

ρT > σ . (2.4)

In words, the sum of the boxes in the first i rows of ρT is strictly larger than the same
quantity for σ. This has to hold for all i up to the number of rows in ρT . It implies
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(a) (b)

Figure 2. Moving all D5-branes to one side, for the quiver [2] − (1) − (2) − [3]. Each D5-brane
has as many D3-branes attached as it has crossed NS5-branes. The partitions are ρ = [4, 2, 2],
σ = [2, 2, 2, 1, 1]. The vertical positions of the D3-brane parametrize the Coulomb branch and do
not affect the IR SCFT.

that σ has more rows than ρT . The condition (2.4) is equivalent to σT > ρ so that, when
satisfied, both T σρ [SU(N)] and T ρσ [SU(N)] are ‘good’ theories. They are related by mirror
symmetry [20] and expected to flow to the same SCFT in the infrared. From the brane
perspective, the exchange ρ↔ σ can be understood as S-duality.

To set the stage for the discussion of supergravity duals it will be useful to make the
partitions more explicit: suppose we have p groups of D5-branes, labeled by a = 1, . . . , p,
with N (a)

5 D5-branes in the ath group. Let the total number of D3-branes ending on the
ath group be N (a)

3 , with N (a)
3 /N

(a)
5 D3-branes ending on each individual D5-brane in that

group. Then

σ =
[(
N

(1)
3 /N

(1)
5
)N(1)

5 , . . . ,
(
N

(p)
3 /N

(p)
5
)N(p)

5

]
, (2.5)

where the exponent denotes how often an entry is repeated. One can similarly group the
NS5-branes according to the net number of D3-branes ending on each (number of branes
emerging to the left minus number of branes emerging to the right). Let there be p̂ groups
of NS5-branes, labeled by b = 1, . . . , p̂, with N̂

(b)
5 NS5-branes in the bth group. Let the

total number of D3-branes ending on the bth group be N̂ (b)
3 . Then

ρ =
[(
N̂

(1)
3 /N̂

(1)
5
)N̂(1)

5 , . . . ,
(
N̂

(p̂)
3 /N̂

(p̂)
5
)N̂(p̂)

5

]
. (2.6)

The total number of D3-branes suspended between D5 and NS5 branes, corresponding to
N in T σρ [SU(N)], is N = ∑p

a=1N
(a)
3 = ∑p̂

b=1 N̂
(b)
3 .

The scaling discussed around (2.3) can be characterized in terms of ρ and σ by having

N
(a)
5 = O(L) , N̂

(b)
5 = O(L) ,

N
(a)
3 = O(L2) , N̂

(b)
3 = O(L2) . (2.7)

That is, generically entries in ρ and σ are O(L) and appear O(L) times. We also take p
and p̂ to be O(1). The total number of gauge nodes is given by the number of NS5-branes
minus one, which is O(L). The total number of flavors along the quiver is given by the
total number of D5-branes, and also O(L). The D5-branes typically have a large number
of D3-branes ending on them, so they realize flavors at nodes well in the interior of the
quiver.
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2.2 Supergravity duals

Holographic duals for the 3d T σρ [SU(N)] theories were constructed in [8], building on the
general local Type IIB supergravity solutions of [9]. The geometry is a warped product of
AdS4 and two 2-spheres, S2

1 and S2
2 , over a Riemann surface Σ. The Einstein frame metric

and axio-dilaton are

ds2 = f2
4ds

2
AdS4 + f2

1ds
2
S2

1
+ f2

2ds
2
S2

2
+ 4ρ2|dz|2 , τ =

√
N1
N2

. (2.8)

The 3-form and 5-form field strengths are

H(3) = volS2
1
∧db1 , F(3) = volS2

2
∧db2 ,

F(5) = −4 volAdS4 ∧dj1 + 4f2
1 f

2
2 f
−4
4 volS2

1
∧ volS2

2
∧(?2dj1) , (2.9)

where ?2 denotes Poincaré duality on Σ. The solutions are parametrized by a pair of
harmonic functions h1, h2 on Σ. The metric functions are

f8
4 = 16N1N2

W 2 , f8
1 = 16h8

1
N2W 2

N3
1

, f8
2 = 16h8

2
N1W 2

N3
2

, ρ8 = N1N2W 2

h4
1h

4
2

, (2.10)

where

W = ∂∂̄(h1h2) , Ni = 2h1h2|∂hi|2 − h2
iW . (2.11)

The quantities b1, b2, j1 appearing in the fluxes will not be needed here; they can be found
in [8].

For the holographic duals of the T σρ [SU(N)] theories, Σ is a strip, Σ =
{
z|0 ≤ Im(z) ≤

π
2
}
, and the harmonic functions are (section 4.1 of [11])

h1 = −
p∑
a=1

α′

4 N
(a)
5 ln

[
tanh

(
iπ

4 −
z − δa

2

)]
+ c.c.

h2 = −
p̂∑
b=1

α′

4 N̂
(b)
5 ln

[
tanh

(
z − δ̂b

2

)]
+ c.c. (2.12)

On each boundary component of Σ one of the two spheres collapses, closing off the internal
space smoothly: S2

1 shrinks at Im(z) = 0 and S2
2 at Im(z) = π

2 . The points Re(z) → ±∞
are regular. The parameters encode the brane configurations as in (2.5), (2.6). The p
D5-brane stacks with N (a)

5 D5-branes in the ath stack are at z = δa + iπ
2 ; the p̂ NS5-brane

stacks with N̂
(b)
5 NS5-branes in the bth stack are at z = δ̂b. The locations δa and δ̂b are

determined from the conditions

N
(a)
3 = N

(a)
5

p̂∑
b=1

N̂
(b)
5

2
π

arctan eδ̂b−δa , N̂
(b)
3 = N̂

(b)
5

p∑
a=1

N
(a)
5

2
π

arctan eδ̂b−δa . (2.13)

Summing the first set of conditions over a is equivalent to summing the second set of
conditions over b. This ensures that the total number of D3-branes agrees. With the
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scaling in (2.7), the left hand sides of the equations, N (a)
3 and N̂ (b)

3 , are of O(L2), and so
are the coefficients N (a)

5 N̂
(b)
5 on the right hand sides. Thus, the arctan eδ̂b−δa factors are

generically O(1): the brane sources are at finite locations on the upper/lower boundary of
the strip, and they are separated by finite amounts. With p and p̂ of O(1) the solutions
have a finite number of brane sources.

The free energy can be obtained holographically from the on-shell action. The general
expression for the AdS4 × S2

1 × S2
2 × Σ solutions (see (4.39) and (4.40) of [11]) reads

Fsugra = SIIB = − 32
π3α′4

∫
Σ
d2z h1h2∂∂̄(h1h2) . (2.14)

This will be used to discuss the free energies from the supergravity perspective in section 5.
A general evaluation of the free energies obtained from this expression can also be found
in [21].

3 Free energies from localization

The free energy on S3 for T [SU(N)] for general N (not necessarily large) was obtained
in [19, 22]. A formula for the more general T σρ [SU(N)] theories was proposed in [19],
and passed several consistency checks. Here we work directly in the planar limit and
derive explicit expressions for the free energies from the matrix models resulting from
supersymmetric localization.

We start by spelling out the continuum formulation of the matrix models for generic
long quiver theories of the form (2.1) on S3, following [12, 13]. The matrix models will be
formulated inN = 2 language and we will allow for more general R-charge assignments than
would be allowed by N = 4 supersymmetry. We then derive the saddle point equations,
with no assumption on the specific scaling of N(z) other than that it is large, and discuss
the general solution for balanced quivers. Differences to the 5d discussion in [12] arise for
theories with unbalanced nodes, reflecting the differences in the flavor bounds.

The localized partition function for 3d N = 2 gauge theories was derived in [23–25]
(for a review see [26]). For a theory with Nf chiral multiplets it is given by

Z = 1
|W |

∫
Cartan

dλ
∏
α>0

(2 sinh(πα(λ)))2 ×
Nf∏
f=1

∏
ρf

e`(1−rf+iρf (λ)) , (3.1)

where α > 0 are the positive roots of the gauge group, W is the Weyl group, ρf are
the weights of the representations of the chiral multiplets and rf is their R-charge. The
function ` is given by

`(z) = −z ln
(
1− e2πiz

)
+ i

2

(
πz2 + 1

π
Li2

(
e2πiz

))
− iπ

12 . (3.2)

In specializing to the theories in (2.1) we note that anN = 4 vector multiplet consists of
an N = 2 vector and an N = 2 adjoint chiral multiplet, while the N = 4 hypermultiplets

– 7 –



J
H
E
P
0
6
(
2
0
2
1
)
0
3
8

correspond to pairs of N = 2 chiral and anti-chiral multiplets. Choosing a uniform R-
charge r for the bifundamental and fundamental fields fixes the R-charge of the adjoint
chiral multiplets to r̃ = 2(1− r). Thus,

Z = 1
|W |

∫ [ L∏
t=1

Nt∏
i=1

dλ
(t)
i

]
e−F ,

F =
L∑
t=1

Nt∑
`,m=1

FV
(
λ

(t)
` − λ(t)

m

)
+
L−1∑
t=1

Nt∑
`=1

Nt+1∑
m=1

FH
(
λ

(t)
` − λ(t+1)

m

)
+

L∑
t=1

Nt∑
`=1

ktFH
(
λ

(t)
`

)
, (3.3)

where the N = 4 vector and hypermultiplet contributions are collected in

FV (λ) = −1
2 ln

(
4 sinh2(πλ)

)
− 1

2 [`(1− r̃ + iλ) + `(1− r̃ − iλ)] ,

FH(λ) = −`(1− r + iλ)− `(1− r − iλ) , (3.4)

with the first term in FV understood to vanish for argument zero to implement the
product over positive roots in (3.1). For R-charge r = 1

2 , the functions simplify due
to `

(
1
2 + iλ

)
+ `

(
1
2 − iλ

)
= −1

2 ln
(
4 cosh2(πλ)

)
. To pass to the continuum description

in (2.2), we introduce an eigenvalue density for each gauge node, ρt(λ), and a fuction of
two effectively continuous variables ρ(z, λ) ≡ ρzL(λ). This allows to combine the contribu-
tions from the vector and bifundamental hypermultiplets to form derivatives along z. In
parallel to [12, 13], the integrand F becomes

F =L

∫ 1

0
dz

∫
dλ dλ̃L − 1

2
∑

z∈{0,1}

∫
dλ dλ̃N(z)2ρ(z, λ)ρ(z, λ̃)FH(λ− λ̃)

+ L

∫ 1

0
dz

∫
dλN(z)ρ(z, λ)k(z)FH(λ) , (3.5)

where, with F0(x) ≡ (FH(x) + FV (x))/(2r)2,

L = N(z)2ρ(z, λ)ρ(z, λ̃)(4r2)F0(λ− λ̃)− 1
2L2∂z

(
N(z)ρ(z, λ)

)
∂z
(
N(z)ρ(z, λ̃)

)
FH(λ− λ̃) .

(3.6)

The free energy at large N is given by F evaluated on the dominant saddle point,

FS3 = − lnZ ≈ F
∣∣
ρ=ρs . (3.7)

In the following only the behavior of F0 and FH for large real argument will be needed. It
is given by (see [13] for a detailed discussion)

F0(x) = π

2 (1− r)δ(x) , FH(x) = 2π(1− r)|x| . (3.8)

We can compare the expression for F in (3.5) to the analogous expression for a 5d SU(·)
quiver of the form (2.1), given in eq. (2.20) of [12] (ignoring the Chern-Simons terms). The
form of the first line in (3.5) is identical to the one in 5d, up to an overall factor of L2.
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However, the functions FH and F0 are different. In particular, compared to 5d the scaling
of FH and F0 in (3.8) is reduced. The contribution of flavors in the second line of (3.5)
again takes the same general form as in 5d, up to the same factor L2 that appeared in the
first line.

Crucially, the relation between FH and F0 is identical in 3d and 5d, and in both cases
given by

8F0(x) = F ′′H(x) . (3.9)

As a result, the scaling of the eigenvalues is identical: the scaling is determined by balancing
the two terms in L, for which the relation between FH and F0 is crucial. The scaling of
N(z) does not enter, since both terms in L are quadratic in N(z). The eigenvalues thus
scale linearly with L. We introduce new variables x of O(1), defined by

λ = 2rLx , (3.10)

where O(1) factors were included to simplify the dependence on r. The properly normalized
density for x is defined by ρ̂(z, x)dx = ρ(z, λ)dλ. It is actually convenient to further
introduce

%(z, x) ≡ N(z)ρ̂(z, x) , (3.11)

which encodes the densities normalized to N(z). Then (3.5) with (3.6) simplifies to
F
2r =

∫ 1

0
dz

∫
dx dyL − 1

2L
∑

z∈{0,1}

∫
dx dy %(z, x)%(z, y)FH(x− y)

+ L2
∫ 1

0
dz

[∫
dx %(z, x)k(z)FH(x) + µ(z)

(∫
dx%(z, x)−N(z)

)]
, (3.12)

where a Lagrange multiplier has been added to enforce the correct normalization of %, and

L = %(z, x)%(z, y)F0(x− y)− 1
2∂z%(z, x)∂z%(z, y)FH(x− y) . (3.13)

The next step is to discuss the extremality conditions. The identical relation between
FH and F0 in (3.9) implies that the local saddle point equation is identical to the one in
5d, and given by

1
4∂

2
x%(z, x) + ∂2

z%(z, x) + Lδ(x)
L∑
t=1

ktδ(z − zt) = 0 . (3.14)

All three terms are of the same order for the scalings discussed around (2.3), i.e. for
N(z) = O(L2) and kt of O(L). The derivation of the boundary conditions at z = 0 and
z = 1 also proceeds in parallel to the 5d case and we refer to [12] for details. Assuming
that the number of flavors at the boundary nodes is of the same order as the rank of the
boundary gauge group, they are given by

%(zb, x) = N(zb)δ(x) , zb ∈ {0, 1} . (3.15)

For the quivers described in section 2, N(z) is subleading at the boundary nodes compared
to generic z. For the leading-order results it is thus sufficient to impose vanishing Dirichlet
boundary conditions.
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3.1 Junction conditions

The remaining ingredient are the junction conditions at unbalanced nodes, which differ
between 3d and 5d. The expression for F in terms of FH and F0 is identical in 3d and 5d
(up to an overall factor L2). The boundary term at an interior unbalanced node z = zt
resulting from variation of F is analogous to (2.46) of [12], and given by

δF = 2r
∫
dx δ%(zt, x)

[∫
dy [∂z%(z, y)]z=zt+εz=zt−ε FH(x− y) + LktFH(x) + Lµt

]
. (3.16)

From the requirement for this variation to vanish we find the necessary junction condition

T (x) ≡
∫
dy [∂z%(z, y)]z=zt+εz=zt−ε FH(x− y) + LktFH(x) + Lµt

!= 0 . (3.17)

For large |x| the condition simplifies due to FH(x− y) ≈ FH(x), which grows linearly. The
integral over y can be performed in the leading term, and one finds that the condition
T (x) = 0 is consistent at large |x| only if [∂zN(z)]zt+εzt−ε = −Lkt. This is precisely the
requirement for the node at zt to be balanced. If the node is not balanced, the support of
% needs to be constrained,

%(zt, x) = 0 for x /∈ (x−, x+) . (3.18)

This goes along with the variations being constrained to (x−, x+) and only requires (3.17)
to be satisfied on that interval.

One way to evaluate the condition in (3.17) is to note that upon taking three derivatives
w.r.t. x the left hand side vanishes, T ′′′(x) = 0. This allows to express T (x) as a polynomial
of degree 2 in x and leads to 3 conditions. The condition (3.17) takes the same general form
as in 5d; however, since FH scales differently in 5d one obtains 5 conditions. This is to be
contrasted with only one less parameter in 3d, due to a missing Lagrange multiplier (since
the gauge nodes are U(·) in 3d as opposed to SU(·) in 5d). We show in appendix A that
the condition (3.17) merely fixes µt. However, the condition (3.17) in the interior of the
interval (x−, x+) is not in general sufficient for the variation (3.16) to vanish. Rather, (3.17)
has to be interpreted in a distributional sense — what has to vanish is T (x) is integrated
against δ% as in (3.16). As also derived explicitly in appendix A, this leads to an additional
requirement constraining the allowed singularities at the end points,

lim
x→x±

%(zt, x)
√
x− x± = 0 . (3.19)

This is a stronger requirement than in 5d, where the corresponding condition (see ap-
pendix A) is limx→x±(x − x±)3/2%(zt, x) = 0 and square root singularities are allowed.
This adds a constraint in 3d compared to 5d and balances the counting. The differences in
the junction conditions reflect the different flavor bounds in 3d and 5d, as will be discussed
in more detail below.

3.2 Balanced quivers

The saddle points and free energies for generic quivers with all nodes balanced can be
obtained straightforwardly. The derivation proceeds in parallel to the discussion for 5d
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theories in section 3 of [12], leading up to the solution %s encoding the saddle point eigen-
value densities given in (3.14) there. Assuming fundamental flavors at a finite number of
nodes zt,

%s(z, x) = N(0) sin(πz)
cosh(2πx)− cos(πz) + N(1) sin(πz)

cosh(2πx) + cos(πz)

− L

2π

L−1∑
t=2

kt ln
(cosh(2πx)− cos (π(z − zt))

cosh(2πx)− cos (π(z + zt))

)
, zt = t

L
. (3.20)

This encodes the normalized densities for x defined in (3.10), ρ̂s(z, x), via %s(z, x) =
N(z)ρ̂s(z, x).

Differences to the 5d discussion arise in the evaluation of the free energies, due to the
different scalings of FH and F0, which leads to subtleties at the boundary nodes. Evaluating
F in (3.5) using integration by parts in L and the saddle point equation (3.14) leads to

F
∣∣
%=%s = −r

∫
dx [N(z)∂z%s(z, x)]z=1

z=0 FH(x) + rL
L−1∑
t=2

kt

∫
dx %s(zt, x)FH(x) . (3.21)

For the theories discussed in section 2 with the scalings as in (2.3), the first term in (3.21)
is O(L3) and subleading with respect to the second term, which is O(L4). Among the
contributions to %s in (3.20), only the second line contributes to the leading-order result
for F , which evaluates to

F
∣∣
%=%s = −rL

2

2π

L−1∑
s,t=2

ktks

∫
dxFH(x) ln

(cosh(2πx)− cos (π(zt − zs))
cosh(2πx)− cos (π(zt + zs))

)

= −r(1− r)
π2 L2

L−1∑
s,t=2

ktks Re
[
Li3

(
eiπ(zs+zt)

)
− Li3

(
eiπ(zs−zt)

)]
. (3.22)

Via (3.7) this yields the general free energy for balanced quivers of the form (2.1) with the
scaling (2.3). With the kt of O(L), F scales like L4, i.e. quartic in the length of the quiver
and quadratic in the ranks of the largest gauge nodes. The matrix models have O(L3)
integration variables, so the issue with the validity of the large-N approximation discussed
in [13] does not arise.

The logarithmic scaling found for the theories of [11] can also be understood from the
expressions above. The theories of [11] have large numbers of flavors at the boundary nodes,
and naïvely the two terms in (3.21) are of the same order. However, as discussed in [13] for
the T [SU(N)] theory, the integral in the first term of (3.21) is actually divergent in that case.
The integral was regularized in [13] by introducing a cut-off replacing [ ·]z=1

z=0 → [ ·]z=1−1/L
z=1/L ,

which results in a logarithmic enhancement of the naive scaling with the leading term
independent of the precise choice of cut-off. It makes the first term in (3.21) the leading
contribution and reproduces the result of [11]. The results can also be recovered from the
expression in (3.22), as will be discussed in detail in section 5.4.
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4 Topologically twisted indices

Let us now consider the topologically twisted index, namely the partition function on
Σg × S1 with a topological twist on the Riemann surface Σg, where g denotes the genus
of the surface. The topologically twisted index is expressed in terms of complex fugacities
y for the global symmetries and a set of integer magnetic fluxes n on Σg, parametrizing
inequivalent twists. Using the localization results of [27–29], the index for a N ≥ 2 theory
with gauge group G can be written as

ZΣg×S1 = 1
|W |

∑
m∈Γ

∮
C
Z(λ, y,m, n)

(
det ∂

2 logZ(λ, y,m, n)
∂iu∂m

)g

, (4.1)

where the sum is over magnetic fluxes in the co-root lattice Γ of G. With λ = eiu, we have

Z =
∏

Cartan
(idu)

∏
α∈G

(1− λα)1−g∏
I

∏
ρI∈RI

(
λρI/2y

1/2
I

1− λρIyI

)ρI(m)−nI+1−g

. (4.2)

In this expression, α are the roots of G and I labels the chiral fields in the theory, trans-
forming in the representation RI of G which has weights ρI . The integration contour
in (4.1) can be formulated in terms of Jeffrey-Kirwan residues [27–29]. We also choose the
parametrization for which, to each chiral field, we associate a fugacity yI and a flux nI .
More precisely, in terms of an assignment mf

a for background global symmetries, we have
the relation

nI = mf
I + (1− g)rI (4.3)

with rI the R-charge of the chiral field. Therefore, the requirement for the superpotential to
be invariant under the global symmetries and to have charge 2 under R-symmetry results in∑

I

nI = 2(1− g) , (4.4)

where the sum runs over each monomial term in the superpotential. Following [28, 29],
one can rewrite the index as

ZΣg×S1 = (−1)rank G

|W |
∑

saddle
Z|m=0

(
det ∂

2 logZ
∂m∂iu

)g−1

, (4.5)

where the sum is over the saddle points of the two-dimensional twisted superpotential
W, obtained by compactifying the theory on a finite-size circle. We will shortly review
the expression of W for the theories in (2.1). The formulation of the twisted index as a
sum over critical points of W has been first derived in the context of the Gauge/Bethe
correspondence [30–34]. See also [35–38].

The N = 4 theories in (2.1) have R-symmetry SU(2)H × SU(2)C , so that different
topological twists can be realized, with different choices of the N = 2 R-symmetry U(1).
They leave an additional global U(1) symmetry with an associated fugacity and a flux
(see [29] for a discussion). We will keep nI generic, without fixing the R-charge in (4.3),
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so that we do not restrict to a particular twist. More precisely our choice is to assign a
uniform flux n to each N = 2 chiral coming from the N = 4 hypermultiplets and a flux ñ

to each adjoint chiral, constrained by

2n + ñ = 2(1− g) . (4.6)

Similarly, we associate a uniform fugacity y = ei∆ to each chiral coming from the N = 4
hypermultiplets. Due to the N = 4 superpotential this fixes the fugacity ỹ for the adjoint
chirals:

y2ỹ = 1 , ∆̃ + 2∆ = 2π , (4.7)

where we choose the phases such that 0 ≤ ∆, ∆̃ < 2π.
In principle, more general assignments of fugacities and fluxes are possible. For ex-

ample, we could associate fugacities yf and y′f to the fundamentals and antifundamentals
appearing at nodes with flavors, together with fluxes nf and n′f . However, those contri-
butions would be subleading in the large N limit, due to the conditions yfy′f = 1 and
nf = −n′f imposed by the superpotential.2

With these conventions, the twisted superpotential for the long quivers in (2.1) can be
written in a form analogous to the form found for the free energy on S3 in (3.12). Indeed,
retracing the procedure discussed in section 3 and, performing the scaling

u = 2iL∆x , (4.8)

leads to [13]

W
i∆ =

∫ 1

0
dz

∫
dxdy

[
%(z, x)%(z, y)V0(x− y)− 1

2VH(x− y)∂z%(z, x)∂z%(z, y)
]

− L

2
∑

z∈{0,1}

∫
dxdy%(z, x)%(z, y)VH(x− y) + L2

∫
dz

∫
dx%(z, x)k(z)VH(x)

(4.9)

with
V0(x) = π

2

(
1− ∆

π

)
δ(x) , VH(x) = 2π

(
1− ∆

π

)
|x| . (4.10)

The expression for the twisted superpotential can be obtained from the expression (3.12)
for the free energy by the substitution r → ∆/π as follows

W = iπ

2 F
∣∣∣
r→∆/π

. (4.11)

2Indeed, writing yf = ei∆f , y′f = ei∆
′
f at each node, in the large N limit and for each pair of funda-

mental and anti-fundamental (see for example eq. (A.34) in [14]), the leading contribution to the twisted
superpotential is

W(anti)-fund ∼
∫
dxρt(x)|x|

[
∆f + ∆′f

]
=
∫
dxρt(x)|x| [∆f −∆f ] = 0 .

A similar argument holds for the contribution to the topologically twisted index, using the relation nf = −n′f .
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Analogous relations between free energy and twisted superpotential have been found in [14,
39, 40]. The expression for W in (4.9) depends on ∆ only through an overall factor, since
V0 and VH have the same dependence on ∆. Similarly, F in (3.12) depends on r only
through an overall factor. Therefore, the saddle points of W and F are independent of r
and ∆, and identical

%s,W(z, x) = %s,F (z, x) = %s(z, x) . (4.12)

The topologically twisted index can now be obtained from (4.5). The meaningful
quantity in the large N limit is the logarithm of the absolute value of the index. Moreover,
the determinant in (4.5), for the theories we are considering, turns out to be subleading,
using the same argument as in [13]. So the expression for the index in the continuum limit
can be written, in a straightforward generalization of the results in [13], as

ln |Z|Σg×S1 =
∫ 1

0
dz

∫
dxdy

[
%s(z, x)%s(z, y)Z0(x− y)− 1

2∂z%s(z, x)∂z%s(z, y)ZH(x− y)
]

− L2
∑

z∈{0,1}

∫
dxdy %s(z, x)%s(z, y)ZH(x− y) +L2

∫
dz k(z)

∫
dx %s(z, x)ZH(x)

(4.13)
with

Z0(x) = 1
2 [n(−2π + 3∆)−∆(1− g)] δ(x) , ZH(x) = 2∆ [n− (1− g)] |x| . (4.14)

4.1 Index theorem

Evaluating the twisted index starting from (4.13) is, in general, not trivial. However, in
the spirit of [14], we can derive an “index theorem”, extending results obtained for other 3d
N ≥ 2 theories [14, 39–42] to the theories considered here. This theorem relates ln |Z|Σg×S1

to the twisted superpotential evaluated on the saddle point configuration (denoted byW) by

ln |Z|Σg×S1 = (1− g)
(

2i
π
W(∆) + i

(
n

1− g
− ∆
π

)
∂W(∆)
∂∆

)
. (4.15)

The argument of [14] is based on promoting, in W, the explicit factors of π to a formal
variable. The important observation for the theories in [14] is that, as a function of π
and the chemical potentials, W is homogenous of degree 2. This is in general not true
for the theories considered here. But we can follow a similar approach to establish the
relation (4.15) for the theories discussed in section 2.

We start from the expressions (4.9) and (4.13), and define a “deformed” version of
the twisted superpotential (4.9), with a parameter a such that a = 1 corresponds to the
expression in (4.9),

Wa = i∆(πa−∆)
[ ∫ 1

0
dz

∫
dxdy

(1
2%(z, x)%(z, y)δ(x− y)− |x− y|∂z%(z, x)∂z%(z, y)

)

− L
∑

z∈{0,1}

∫
dxdy %(z, x)%(z, y)|x− y|+ 2L2

∫
dz k(z)

∫
dx %(z, x)|x|

]
.

(4.16)
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The dependence on ∆ and a has been isolated as an overall factor. The saddle point
configuration %s,Wa is therefore independent of ∆ and a (analogously to (4.12)). The
twisted superpotential Wa evaluated on %s,Wa thus is a homogeneous function of degree 2
in a and ∆, and satisfies

∆∂Wa

∂∆ + a
∂Wa

∂a
= 2Wa . (4.17)

With this relation in hand we move on to rescale x→ x/2∆, resulting in

Wa

i
=
∫ 1

0
dz

∫
dxdy

[
%̂(z, x)%̂(z, y)V (a)

0 (x− y)− 1
2V

(a)
H (x− y)∂z%̂(z, x)∂z%̂(z, y)

]
− L

2
∑

z∈{0,1}

∫
dxdy %̂(z, x)%̂(z, y)V (a)

H (x− y) + L2
∫
dz

∫
dx %̂(z, x)k(z)V (a)

H (x)

(4.18)

where %̂(z, x) is the eigenvalue density in the new variables and

V
(a)

0 (x) = π∆2
(
a− ∆

π

)
δ(x) , V

(a)
H (x) = π

(
a− ∆

π

)
|x| . (4.19)

With the rescaling x→ x/2∆ the expression for ln |Z|Σg×S1 in (4.13) similarly becomes

ln |Z|Σg×S1 =
∫ 1

0
dz

∫
dxdy

[
%̂s(z, x)%̂s(z, y)Ẑ0(x− y)− 1

2 ẐH(x− y)∂z%̂s(z, x)∂z%̂s(z, y)
]

− L2
∑

z∈{0,1}

∫
dxdy %̂s(z, x)%̂s(z, y)ẐH(x− y) +L2

∫
dz k(z)

∫
dx ẐH(x)%̂s(z, x)

(4.20)

with

Ẑ0(x) =
[
∆(−2π + 3∆)n−∆2(1− g)

]
δ(x) , ẐH(x) = (n− 1 + g)|x| . (4.21)

The functions V (a)
0 , V (a)

H entering the twisted superpotentialWa are related to the functions
Ẑ0, ẐH entering the expression for ln |Z|Σg×S1 by

(1− g)

− 1
π

∂V
(a)

0/H
∂a

−
(

n

1− g

) ∂V (a)
0/H
∂∆


a=1

= Ẑ0/H(x) , (4.22)

so that on shell (namely, on the saddle point configuration)

(1− g)
(
i

π

∂Wa

∂a
+ i

(
n

1− g

)
∂Wa

∂∆

)
a=1

= log |Z|Σg×S1 + i

π

∂W
∂%̂

∂%̂

∂a︸ ︷︷ ︸
=0 on shell

+i
(

n

1− g

)
∂W
∂%̂

∂%̂

∂∆︸ ︷︷ ︸
=0 on shell

.

(4.23)
Using, in the left hand side, eq. (4.17), we can finally write

ln |Z|Σg×S1 = (1− g)
(

2i
π
W(∆) + i

(
n

1− g
− ∆
π

)
∂W
∂∆

)
. (4.24)
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For T [SU(N)] this relation has been verified in [13]. Note that we did not use the explicit
form of the saddle point eigenvalue density. Finally, using (4.11) and (4.12), the index
theorem can be expressed in terms of the free energy. With the dependence of the free
energy on r explicitly indicated as FS3 = FS3(r), the relation takes the form

ln |Z|Σg×S1 = (1− g)
(
−FS3

(∆
π

)
− π

2

(
n

1− g
− ∆
π

)
∂FS3(∆/π)

∂∆

)
. (4.25)

Moreover, as clear from the expression (3.12), the free energy only depends on r through
an overall factor r(1− r). Hence, we can rewrite the relation (4.25) as

ln |Z|Σg×S1 = π (n(π − 2∆) + ∆(1− g))
2∆(∆− π) FS3

(∆
π

)
. (4.26)

This general expression will be applied in further concrete theories in section 5. Note that
for a particular choice of ∆, n, the so-called universal twist

n = ∆̄
π

(1− g) , ∆̄ = π

2 , (4.27)

the relation between twisted index and the free energy simplifies to

ln |Z|Σg×S1 = (g− 1)FS3

(
∆̄
π

)
. (4.28)

This relation can be interpreted from the holographic perspective. Following the insight
of [43], the index is expected to account for the entropy of magnetically charged AdS4 black
holes (see [44] for a review), while the S3 free energy corresponds to the action of a vanilla
AdS4 solution. The two are related as in (4.28) for 3d SCFTs whose holographic duals
admit a consistent trunction to 4d gauged supergravity [42]. For the holographic duals of
the T σρ [SU(N)] theories, a consistent truncation has not been constructed to our knowledge.
But we certainly expect it to exist, in line with the general conjecture of [45]. This would
allow to uplift the solutions of [46, 47] to asymptotically-AdS4 black hole solutions of Type
IIB supergravity and the relation (4.28) would explain their entropy.

5 T σρ [SU(N)] case studies

In this section we study a sample of concrete theories, including theories which have at
least one quiver gauge theory description with all nodes balanced, and theories in which
neither of the two mirror-dual gauge theory descriptions has all nodes balanced. When
there is a gauge theory description with all nodes balanced, the field theory results can be
taken from section 5.1. For theories with unbalanced nodes, where the difference in the
flavor bounds in 3d compared to 5d is crucial, we will illustrate how the differences are
reflected in the localization computations.
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5.1 General balanced quivers

Balanced quivers can be obtained by taking T σρ [SU(N)] with N = R1R2, and with ρ and
σ partitions of N that are given by

ρ = [RR2
1 ] , σ = [tk1

1 , . . . , t
k`
` ] , (5.1)

with ta < R2 for all a = 1, . . . `. That is, there are R2 NS5-branes and each of them has a
net number of R1 D3-branes ending on it. There are ` groups of D5-branes, with ka D5-
branes in the ath group on each of which a net number of ta D3-branes end. These brane
configurations generally realize balanced quivers.3 If ` = 1 the mirror dual is balanced as
well; in general the mirror duals are not balanced. The limit (2.3) is realized by taking
R1, R2 and ta, ka all of the same order.

To avoid confusion with the notation for similar but not identical quantities in (2.1)
we have set (ka, ta) in a different font. The gauge theory for (5.1) can be characterized as
follows: the total number of nodes is R2 − 1. The nodes which have fundamental flavors,
in the notation as in (2.1), are at t = ta. There are ka flavors at the node with t = ta. The
quiver takes the form

U
(∑̀
a=1

ka −R1

)
− . . .−U(Nt1)− . . .−U(Nt2)− . . . . . .−U(Nt`)− . . .−U(R1)

| | · · · | (5.2)
[k1] [k2] · · · [k`]

Between the node with rank Nta at t = ta and the node with rank Nta+1 at t = ta+1, the
rank changes in increments of ∆Na with

∆Na = −R1 +
∑̀
i=a+1

ki . (5.3)

∆Na can be positive or negative. Between the first node at t = 1 and the node at t = t1
the rank changes by ∆N0 with the definition above; between the node at t = t` and the last
node it changes in increments of −R1. With the given assumptions the ta are generically
well in the interior of the quiver. However, one can allow for t1 = 1 and t` = R2 − 1, i.e.
flavors at boundary nodes. The tails on the left and right of (5.2) are then absent.

The leading-order saddle point eigenvalue distribution, with the scalings assumed
in (2.3), i.e. no O(N2) flavors at the boundary nodes, is given by the second line of (3.20),

%s(z, x) = −R2
2π

∑̀
a=1

ka ln
(cosh(2πx)− cos (π(z − za))

cosh(2πx)− cos (π(z + za))

)
, za = ta

R2
. (5.4)

3In the configuration as in figure 2b, there are (R2 − t)R1 D3-branes between the tth and (t + 1)th

NS5-branes, and each node considered in isolation would be balanced. Moving the D5-branes to the node
where they realize flavors does not change the flavor balance: if D5-branes pass a pair of NS5-branes, the
ranks of the node and its neighbors are reduced equally. If D5-branes end up between a pair of NS5-branes,
the rank of the neighboring node to one side is reduced, and a corresponding number of bifundamentals is
converted to fundamental flavors.
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The free energy is given by (3.22)

FS3 = −rR
2
2

π2 (1− r)
∑̀
a,b=1

kakb Re
[
Li3

(
eiπ(za+zb)

)
− Li3

(
eiπ(za−zb)

)]
. (5.5)

With all ka of O(R2), the free energy is O(R4
2), which is quartic in the length of the quiver.

In terms of the rank of the gauge group in the 4d N = 4 SYM theory on an interval, N ,
the scaling of the free energy is quadratic. The topologically twisted index is obtained
from (4.25) as

ln |Z|Σg×S1 = R2
2

2π3 (∆(1− g) + n(π− 2∆))
∑̀
a,b=1

kakb Re
[
Li3

(
eiπ(za+zb)

)
−Li3

(
eiπ(za−zb)

)]
.

(5.6)

It exhibits the same scaling and the same dependence on the flavor locations as the free
energy, and differs only in an overall factor.

5.1.1 Supergravity duals

The general supergravity duals for the T σρ [SU(N)] theories with at least one balanced quiver
description, as in (5.1), can be spelled out explicitly starting from (2.12). The solutions
involve one NS5-brane source on the real line, p̂ = 1, and ` D5-brane sources, p = `, on
the second boundary component with Im(z) = π/2. The appropriate brane charges are
realized for

N̂
(1)
5 = R2 , N̂

(1)
3 = R1R2 ,

N
(a)
5 = ka , N

(a)
3 = kata , a = 1, . . . ` . (5.7)

The regularity conditions in (2.13) are solved by

δ̂1 = 0 , δa = ln tan πta
2R2

. (5.8)

For ta and R2 of the same order, the δa are at finite locations. The functions h1, h2 are
given by

h1 = −
∑̀
a=1

α′

4 ka ln
[
tanh

(
iπ

4 −
z − δa

2

)]
+ c.c., h2 = −α

′

4 R2 ln tanh
(
z

2

)
+ c.c. (5.9)

The free energy obtained from (2.14) can be expressed as

Fsugra = − R
2
2

8π3
∑̀
a,b=1

kakb
∫
d2z Xa∂∂̄Xb , Xa = ln

∣∣∣∣tanh
(
iπ

4 −
z − δa

2

)∣∣∣∣2 ln
∣∣∣∣tanh z2

∣∣∣∣2 .
(5.10)

With all brane sources at finite locations, i.e. δa finite, and the ka of O(R2), the free energy
is O(R4

2). The matching of this supergravity free energy to (5.5) for r = 1
2 amounts to∫

d2z Xa∂∂̄Xb = 2πRe
[
Li3

(
eiπ(za+zb)

)
− Li3

(
eiπ(za−zb)

)]
, (5.11)

– 18 –



J
H
E
P
0
6
(
2
0
2
1
)
0
3
8

with Xa defined in (5.10) and za in (5.4). The left hand side is a function of two variables,
ta/R2, tb/R2 ∈ (0, 1), which one can evaluate numerically to compare to the right hand
side. This shows that the relation (5.11) is indeed satisfied.

We thus find that the supergravity free energy computed from (2.14) with h1 and h2
in (5.9) precisely matches the field theory free energy in (5.5), including the L4 scaling
and the coefficient functions involving trilogarithms. More generally, with the scalings
assumed in (2.7), the functions h1 and h2 are O(L), so the free energy in (2.14) is O(L4).
Regarding the validity of supergravity approximation, we note that the residues of ∂hi
at the brane singularities are O(L). So following the comments in section 4.5 of [11] we
expect corrections to the supergravity approximation of O(L2). These corrections are
strongly subleading now.

5.2 TR,M,k[SU(N)] theories

The theories discussed in the previous section have at least one balanced quiver description.
In this section we take a special case of the theories in (5.1) and discuss the localization
computations for the unbalanced mirror dual. This will illustrate how the difference in
the flavor bounds in 3d compared to 5d is implemented in the localization computation
through the junction conditions.

A minimally non-trivial example, in the sense that the mirror dual has one unbalanced
node, is when σ involves two groups of D5-branes with different numbers of D3-branes
ending on them. Take T σρ [SU(N)] with N = RkM (R1 = R and R2 = kM in the notation
of (5.1)) and

ρ = [RkM ] , σ = [((k − 1)M)R,MR] . (5.12)

We consider the limit where R and M are homogeneously large while k is of order one.
For k = 2 the partitions become equal and the mirror is balanced as well. The constraint
ρT = [(kM)R] > σ is satisfied if k ≥ 2, with ρT − σ large.

We will discuss the balanced quiver first, and the unbalanced one afterwards. The
balanced UV quiver is

U(R)−U(2R)− . . .−U(MR)− . . .−U(MR)−U((M − 1)R)− . . .−U(R)
| |

[R ] [R ] (5.13)

Along the first ellipsis the rank increases in increments of R. Along the second ellipsis the
rank is constant, with a total of (k − 2)M + 1 gauge nodes of rank MR. Along the third
ellipsis the rank decreases in steps of R.

For the theory in (5.13), the number of nodes is L = kM − 1. It has two flavor
contributions from z1 = 1/k and z2 = 1 − 1/k, with R flavors each. From (5.5), the free
energy is

FS3 = (1− r)r
2π2 (kMR)2 Re

(
4 Li3

(
−e 2iπ

k

)
− 4 Li3

(
e

2iπ
k

)
+ 7ζ(3)

)
. (5.14)
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This shows the quartic scaling with the length of the quiver and the quadratic scaling
with N . For k ∈ {2, 3, 4, 6} the result can be expressed in terms of ζ(3), but in general
this is not possible. Applying the index theorem (4.25) for the theory in (5.13) yields the
topologically twisted index

ln |Z|Σg×S1 = (kMR)2

4π3 (n(2∆− π)− (1− g)∆) Re
(
4 Li3

(
−e 2iπ

k

)
− 4 Li3

(
e

2iπ
k

)
+ 7ζ(3)

)
.

(5.15)
We verified that this expression agrees with the result obtained by directly evaluating (4.13).

Before moving on to the mirror dual, we note that a quiver very similar to (5.13) has
been discussed in 5d in [48]: aside from the gauge nodes being U(·) instead of SU(·), the
quivers for the 5d +N,M,j,k theories take the same form. Concretely, (5.13) matches to
the 5d +N,M,j,k quiver with N (5d) = RM , M (5d) = kM , j(5d) = k(5d) = M . Compared
to 5d, where the natural planar limit amounts to N (5d) and M (5d) large and of the same
order while j(5d) = k(5d) are O(1), the scaling we considered in 3d is different. This will be
discussed further in section 6.

5.2.1 Localization for mirror dual

We now turn to the mirror-dual theory, which is described by the UV quiver

U(M)−U(2M)− . . .−U((R− 1)M)−U(RM)−U((R− 1)M)− . . .U(2M)−U(M)
|

[kM ] (5.16)

The central node is not balanced for k > 2 and has a flavor excess, as appropriate for ‘good’
theories in the sense of [7]. The number of excess flavors is small compared to the rank of
the gauge group at the central node and the rank function is concave.

At the central node of the theory in (5.16) the junction conditions for the saddle point
eigenvalue densities corresponding to z > 1/2 and z < 1/2 are dictated by (3.16). The
large-|x| behavior of the terms in the square brackets of (3.16) for k > 2 requires the
support of the eigenvalue density at z = 1/2 to be constrained. The problem is symmetric
in x → −x. For a saddle point we therefore seek a function %s(z, x) satisfying the bulk
saddle point equation (3.14) with the appropriate sources and the condition %s(1/2, x) = 0
for |x| > x1, for some x1 to be determined, along with (3.19). It is convenient to map the
strip {(z, x) ∈ [0, 1]× R} to the complex plane with coordinate v as follows,

v = ue4πx1 + 1
u+ e4πx1

, u = e4πx+2πiz . (5.17)

In the v coordinate %s has to vanish on the positive real axis, and there is a source at v = −1.
It is convenient to unfold this, by considering the upper half plane with coordinate i

√−v,
and vanishing Dirichlet boundary condition on the entire real axis. This leads to the general
expression (cf. (3.13) in [12])

%s = −1
2L

L−1∑
t=2

ktG(i
√
−v, i√−vt) , G(u, v) = 1

π
ln
∣∣∣∣u− vu− v̄

∣∣∣∣2 . (5.18)
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For the theory in (5.16), with v as defined in (5.17),

%s = −RMkG(i
√
−v, i) = −RMk

π
ln
∣∣∣∣∣1−

√−v
1 +
√−v

∣∣∣∣∣ . (5.19)

This %s satisfies the saddle point equation and the constraint in (3.19). The value of x1
is fixed by normalization. One can only find acceptable solutions for k ≥ 2, which is the
localization manifestation of the 3d flavor bound. For k ≥ 2,

2πx1 = ln tan
(
π

4 + π

2k

)
. (5.20)

For k = 2 the quiver is balanced and x1 = +∞. With this choice %s satisfies the junction
condition (3.17) with

µR = −2(1− r)kM
π

D2

(
i cot

(
π

k

))
, (5.21)

where D2(z) = Im(Li2(z) + ln(1− z) ln |z|) is the Bloch-Wigner function.
The free energy is obtained by evaluating F in (3.12) on the saddle point %s. Using

integration by parts in L, one obtains

F = 2r
∫
dx %s

(1
2 , x

) [∫
dy

1
2 [∂z%s(z, y)]z=

1
2 +ε

z= 1
2−ε

FH(x− y) + LkRFH(x)
]
. (5.22)

Using further the junction condition, this can be simplified to

F = r

∫
dx%s

(1
2 , x

)
[LkRFH(x)− LµR] = rLkR

∫
dx%s

(1
2 , x

)
FH(x)− rLN

(1
2

)
µR .

(5.23)

With µR in (5.21) one finally obtains

FS3 = k2M2R2(1− r)r
2π2

(
4 Re Li3

(
−e 2iπ

k

)
− 4 Re Li3

(
e

2iπ
k

)
+ 7ζ(3)

)
. (5.24)

This is identical to the result for the mirror-dual in (5.14), as it should be, thus validating
the discussion of the saddle point conditions in section 3 also for unbalanced theories.
The supergravity dual for the mirror theory is given by an S-duality transformation of
the solution for the theory in (5.13), which is a special case of the solutions discussed in
section 5.1.1.

The computation shown above highlights the differences to the 5d case, which we
discuss briefly. The theory in (5.16) has a flavor excess which is small compared to the
rank of the gauge group at the central node. This may be compared to the 5d XN theory,
which has a small flavor deficit at the central node and otherwise a rank function of similar
shape. The free energy for the 5d XN theory was derived in appendix A of [49]. The
eigenvalue density ansatz for the 5d XN theory is

%XN = a(1− v)√−v + c.c. , (5.25)
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with real a. This %XN satisfies the saddle point equation (3.14) with no sources. It would
thus seem that %XN could be added to %s in (5.19), giving a flat direction: the normalization
constraint would now fix x1 in terms of a, and allow for x1 to move further inwards at the
expense of increasing the admixture of %XN . However, this is not correct; the free energy
would depend on a and there is no flat direction. The key is the constraint in (3.19), which,
as discussed below (3.19), is more restrictive than in 5d. It is not satisfied by %XN , forcing
its coefficient to zero for a saddle point in 3d. In turn, in 5d the junction condition (3.17)
is stronger than in 3d and prevents a flavor excess.

5.3 Unbalanced quiver pairs

As a further application we consider theories in which both of the mirror-dual gauge theories
include unbalanced nodes. In particular, we consider the subclass of T σρ [SU(N)] defined by

ρ = [RM1
1 , RM2

2 ] , σ = [MR3
3 ,MR4

4 ] , (5.26)

with R1, . . . , R4 and M1, . . . ,M4 homogeneously large and R1M1 + R2M2 = R3M3 +
R4M4 = N . As explained in section 2.1, in order to have a good theory we need σT >

ρ, with
σT =

[
(R3 +R4)M4 , RM3−M4

3

]
. (5.27)

The partitions (5.26) correspond to a quiver of length L = M1 +M2−1, with an unbal-
anced node at t = M1 and fundamental flavors which in the notation of (2.1) correspond
to kM3 = R3, kM4 = R4. In the notation of section 5.1, the flavors correspond to

k1 = R4 at z1 = M4/L ,

k2 = R3 at z2 = M3/L .
(5.28)

The relative positions of the unbalanced node and the flavored nodes depend on the choice
of parameters. The rank of the gauge group for t < M1,3,4, is Nt = (R3 + R4 − R1)t.
Along the other tail of the quiver, identified by t > M1,3,4, the rank decreases with rate
∆N = −R2 until reaching the boundary rank NL = R2. Since general interior nodes have
rank of O(N), boundary terms are subleading in the free energy. The general structure of
the mirror dual, obtained by swapping ρ and σ, is completely analogous. In particular the
mirror dual has an unbalanced node at t = R3.

In order to find a solution of the saddle point equation which, at the unbalanced node,
vanishes outside of an interval (−x1, x1), we follow the procedure of the previous section.
Denoting by z̃ = M1/L the position of the unbalanced node, we perform the change of
variables

v = ue4πx1 + 1
u+ e4πx1

, u = e4πx+2πiw , w(z) = z(1− z̃)
z + z̃ − 2zz̃ (5.29)

where we chose w in such a way that w(0) = 0, w(1) = 1 and w(z̃) = 1/2. Now the problem
is analogous to the one solved in section 5.2.1 but with sources at

va = uae
4πx1 + 1

ua + e4πx1
, ua = e2πiw(za) (5.30)
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and za given in equation (5.28). As before, it is then convenient to consider the half upper
plane, using the coordinate i

√−v, and to read off the density from (5.18)

%s = −(M1 +M2)
2π

∑
a∈{1,2}

ka ln
∣∣∣∣∣ i
√−v − i√−va
i
√−v + i

√−v̄a

∣∣∣∣∣
2

. (5.31)

The parameter x1 can be fixed by considering the derivative of the rank function on
the left end of the quiver, which is

∂zN(z)|z=0=
∫
dx ∂z%s(z, x)

∣∣∣∣
z=0

= L(R3 +R4 −R1) . (5.32)

Solving this integral, one obtains a relation fixing the value of x1

i
(1− z̃)
z̃

∑
a∈{1,2}

ka ln
(
i
√−va + e2πx1

1 + ie2πx1
√−va

)
= π(R3 +R4 −R1) . (5.33)

Since va is a function of x1 (see eq. (5.30)) this equation can be complicated, and we will
provide an explicit solution in particular cases.4

Once x1 is fixed, the Lagrange multiplier µ can by determined from the junction
condition, as explained in the appendix, and we can compute the free energy via the
expression

F = 2r
∫
dx dy %s(z̃, x)1

2 [∂z%s(z, y)]z=z̃+εz=z̃−ε FH(x− y) + rL2
∫
dz k(z)

∫
dx %s(z, x)FH(x) .

(5.34)

5.3.1 A mirror pair of unbalanced theories

To apply the results just obtained in an example, we consider the theory defined by the
partitions

ρ =
[(4

3R
)M

,

(2
3R
)M]

, σ =
[(3

2M
)R

,

(1
2M

)R]
. (5.35)

In this case the theory is symmetric with respect to the central node z̃ = 1
2 , which is

unbalanced. There are R flavors at z1 = 1/4 and z2 = 3/4 so that the quiver is

U

(2R
3

)
− . . .− U

(
MR

3

)
− . . .− U

(
MR

6

)
− . . .− U

(
MR

3

)
− . . .− U

(2R
3

)
| |

[R ] [R ] (5.36)

Along the first ellipsis the rank of the group increases in steps of 2R/3, along the second
ellipsis it decreases in steps of R/3. The other ellipses follow by symmetry. Equation (5.33)
is solved by

x1 = 1
2π ln

(
1 +
√

2
)
. (5.37)

4We note that upon substituting the data of the theory in section 5.2.1, eq. (5.33) is correctly solved
by (5.20).
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The free energy obtained from (5.34) is given by

FS3 = r(1− r)
2π2 R2M2

[
16L3

(
1 + 6√−1

)
− 8L3

(
6√−1

)
+ 16L3

( 6√−1
√

3
)

+ 8L3
(
(2 +

√
3)i
)

+ 8L3
( 3√−1(2 +

√
3)
)− 2L3

(
7 + 4

√
3
)− 5ζ(3)

]
, (5.38)

with the single-valued trilogarithm L3(z)=Re
[
Li3(z)−ln |z| Li2(z)− 1

3 ln2|z| ln(1−z)
]
[50].

Similarly, the mirror dual theory, obtained by exchanging ρ and σ, has an unbalanced
node at z̃ = 1

2 . The quiver is again symmetric with respect to the unbalanced central node.
There are M flavors at z = 1/3 and at z = 2/3, so that we have

U

(
M

2

)
− . . .− U

(
MR

3

)
− . . .− U

(
MR

6

)
− . . .− U

(
MR

3

)
− . . .− U

(
M

2

)
| |

[M ] [M ] (5.39)

Along the first ellipses the rank increases in steps of M/2 until reaching z = 1/3; then it
decreases in steps of −M/2. Equation (5.33) is now solved choosing

x1 = 1
4π ln

(
2 +
√

3
)
, (5.40)

and computing the free energy via (5.34) reproduces (5.38).
The supergravity duals for these theories can be obtained from the formulas in sec-

tion 2.2. The brane charges are

N
(1)
3 = 3

2MR , N
(2)
3 = 1

2MR , N
(1)
5 = N

(2)
5 = R ,

N̂
(1)
3 = 4

3MR , N̂
(2)
3 = 1

3MR , N̂
(1)
5 = N̂

(2)
5 = M . (5.41)

The regularity conditions in (2.13) are solved by

δ1 = −δ2 = ln
(√

3−
√

2
)
, δ̂1 = −δ̂2 = ln

(
1 +
√

2
)
. (5.42)

With these parameters and the functions h1, h2 in (2.12), the expression for the supergravity
free energy in (2.14) matches the field theory free energy in (5.38) for r = 1/2.

5.4 Theories with N2 lnN scaling

We close this part with a more detailed discussion of how the general results of [11] for
the theories with N2 lnN scaling can be obtained as a limiting case of the free energy for
balanced quivers in (5.5). We start with the T [SU(N)] theory, corresponding to

ρ = σ = [1N ] . (5.43)

The total number of D3-branes suspended between the D5 and NS5 branes is N , and the
gauge theory reads

[N ]− (N − 1)− (N − 2)− . . .− (1) . (5.44)
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This theory can be seen as special case of (5.1) with R1 = 1, R2 = N and ` = 1, t1 = 1 and
k1 = N . The scaling of the rank function is not of the form (2.3), but the free energy can
nevertheless be recovered from the general expression in (5.5) as a limiting case. Namely,
by setting z1 = 1/N and expanding Li3 for small argument. For small real x,

Re
[
Li3(eix)

]
= ζ(3) + 1

4x
2 ln x2 +O(x2) . (5.45)

With this expansion the expression in (5.5) leads to

F
T [SU(N)]
S3 = 1

2N
2 lnN , (5.46)

in agreement with the result of [11]. This result was recovered in [13] by introducing a
cut-off on the quiver coordinate (see the comments at the end of section 3.2). The way the
result is recovered here may be seen as an alternative regularization procedure, in which
the logarithmic enhancement arises as the flavors approach the boundary node.

In the supergravity duals spelled out in section 5.1.1, there is one D5-brane source at
z = δ1, whose location is fixed by the regularity conditions to δ1 = ln tan(π/(2N)). As
N becomes large, δ1 → −∞. In the large-N limit the brane source approaches the point
where the two boundary components, on which different S2 collapse, connect. The volume
of the internal space contributes a factor lnN in that limit, leading to the enhanced scaling
also in the holographic result.

The more general theories considered in [11] can be discussed accordingly. They are
T σρ [SU(N)] theories with

ρ = [l̂Nγ̂ ] , σ = [(Nκ1λ(1))N1−κ1γ1 , . . . , (Nκ`λ(`))N1−κ`γ` ] , (5.47)

where 0 ≤ κa < 1 for all a = 1, . . . , ` and l̂γ̂ = 1 = ∑
a γaλ

(a). In the limit considered
in [11], N is taken large and the other quantities are finite. These theories can be obtained
by the following replacements and scalings in the partitions (5.1)

R1 → l̂ , R2 → Nγ̂ , ta → Nκaλ(a) , ka → N1−κaγa . (5.48)

The free energies for the theories in (5.47) can again be recovered from the general result
for balanced quivers in (5.5). The crucial point for the scaling is that the quiver description
of (5.47), in the notation of (2.1), has ka = N (1−κa)γa flavors at nodes za with

za = Nκa−1λ(a) l̂ . (5.49)

Since κa < 1, all za approach zero in the large-N limit, although at different rates dictated
by κa. That is, all flavors accumulate at one end of the quiver. The free energies can be
recovered from (5.5) by expanding the trilogarithm functions using (5.45). This leads to

FS3 = −r(1− r)(Nγ̂)2

2
∑̀
a,b=1

kakb
(
(za + zb)2 ln |za + zb| − (za − zb)2 ln |za − zb|

)
, (5.50)
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where (za− zb)2 ln |za− zb| is understood to be zero if a = b. With the substitutions (5.48)
and (5.49), and using that ∑a γaλ

(a) = 1, one arrives at

FS3 = 2r(1− r)N2 lnN

1−
∑̀
a=1

(γaλ(a))2κa − 2
∑
a<b

(γaλ(a)γbλ
(b))κa

 . (5.51)

For r = 1/2 this is exactly the result given in (3.30) of [11]. If all κα are zero one recovers
the T [SU(N)] theory.

In the supergravity solutions spelled out in section 5.1.1, the replacement (5.48) leads
to the locations of the D5-brane sources at z = δa with

δa = ln tan
(
Nκa−1πλ

(a)

2γ̂

)
. (5.52)

The position of the sources thus depends on N . For κa < 1 all sources accumulate at z =
−∞, which again is the cause of the logarithmic scaling from the supergravity perspective.

6 Comparison to 5d

In this section we summarize and discuss relations between long quiver theories with all
nodes balanced in 3d and 5d, first at the level of the matrix models and then of their
supergravity duals.

The 5d theories discussed in [12] are the strong-coupling limits of linear quiver gauge
theories with SU(·) nodes and possibly Chern-Simons terms, whose levels are denoted ct,
of the form

5d : SU(N1)c1 − SU(N2)c2 − . . .− SU(NL−1)cL−1 − SU(NL)cL
| | | | (6.1)

[k1] [k2] [kL−1] [kL]

The flavor excess compared to a balanced node with 2Nt flavors is captured by Nt+1 −
Nt−1 + kt − 2Nt. While non-negative for ‘good’ theories in 3d, this quantity is bounded
from above in 5d, with the bound depending on the Chern-Simons level.5 Theories with no
Chern-Simons terms and all nodes balanced are admissible in 3d and in 5d, and we focus
on these in the following.

For the planar limit in 5d the rank function N (5d)(z) was O(L) in [12], with order-one
flavor numbers at interior nodes and up to O(L) flavors at boundary nodes. For the 3d
theories, on the other hand, we took N (3d)(z) of O(L2) with O(L) flavors at interior nodes
(other scalings will be discussed below). For each balanced 3d theory a 5d partner can thus
be identified by

N (3d)(z) = LN (5d)(z) , k(3d)(z) = Lk(5d)(z) . (6.2)
5The bounds of [51] make the flavor excess non-positive. However, these bounds can be relaxed (see

e.g. [52]).
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The matrix models for these theories take an identical general form (compare (3.12) in 3d
to (2.27) of [12] for 5d theories), with different F0 and FH but with the same relation (3.9).
The saddle point eigenvalue densities are obtained from the same electrostatics problem,
and are both encoded in (3.20). Many observables are thus related between the 3d and
5d theories, in particular quantities which depend on the eigenvalues only, like expectation
values of Wilson loops.6

The free energies for 3d theories with no large flavor numbers at boundary nodes are
given by (3.22); for the corresponding 5d theories they can be obtained from (3.17) of [12]:

F
(3d)
S3 = − L2

4π2

L∑
s,t=1

ktks Re
[
Li3

(
eiπ(zs+zt)

)
− Li3

(
eiπ(zs−zt)

)]
,

F
(5d)
S5 = 27L4

16π4

L∑
s,t=1

ktks Re
[
Li5

(
eiπ(zs+zt)

)
− Li5

(
eiπ(zs−zt)

)]
. (6.3)

The flavors at interior nodes are O(L) in 3d and O(1) in 5d, so the scaling is O(L4) for
both. The free energies are thus related by a rescaling and an adjustment of the weights
of the polylogarithms, resulting from the different scalings of the functions F0 and FH in
the matrix models. This relation extends to the topologically twisted indices, since these
are related to the free energy in the planar limit in both cases, as shown for 3d in section 4
and for a sample of 5d theories in [53].

3d theories with large flavor numbers at the boundary nodes, like T [SU(N)], are also
related to 5d theories. The discussion of the saddle points proceeds as before, and the free
energies can be understood from the expressions in (6.3): for flavors at boundary nodes,
e.g. non-zero kt such that zt is O(1/L), one can expand the corresponding terms in (6.3)
accordingly. For a 5d theory with O(L) boundary flavors this leads to a combination of Li3,
Li4 and Li5 terms contributing at the same order (cf. (3.17) in [12]). In 3d, the expansion
of Li3 produces a logarithmically enhanced contribution, as discussed in section 5.4 (the
subleading term in (5.45) is enhanced compared to the analogous term in Li5). Thus, terms
corresponding to large flavor numbers at boundary nodes dominate the free energy in 3d,
leading to expressions in terms of logarithms only.

The relation between SCFT and gauge theory description is different in 3d and 5d:
in 3d the SCFT arises as IR fixed point and in 5d as UV fixed point. In 3d the Yang-
Mills terms are exact and FS3 is constant along the flow, while in 5d FS5 grows towards
the UV and takes the form given in (6.3) at the fixed points. The relations between the
gauge theory matrix models imply relations between the SCFTs for quantities that can
be computed from the zero-instanton matrix models, such as the planar free energies and
topologically twisted indices. For such relations it is sufficient for one of the perhaps
multiple (S-dual) gauge theory descriptions in 5d and mirror-dual descriptions in 3d to be
balanced. From other perspectives, however, different pairings between 3d and 5d theories
are more natural. For example, the relations discussed above connect the gauge theory

6Wilson loops in 5d were discussed in [49]. The example theories considered there have no flavors at
interior nodes; they include the 5d TN theories and are related to 3d theories with N2 lnN scaling like the
T [SU(N)] theory.
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L+ 1 NS5

K D7
ND5 D5ρ:

L+ 1 (p, 1)

(a) (b) (c)

Figure 3. Left: junction of L + 1 NS5-branes, L + 1 (p, 1) 5-branes, and ND5 D5-branes ending
on K D7-branes as specified by ρ in (6.4). Center: gauge theory for ρ = [32, 2, 12] and p = 2, after
moving D7-branes into the web (the dashed lines show the branch cuts). Right: 5d TN theory,
corresponding to ρ = [1N ].

description of the 3d T [SU(N)] theory with SU(N)2 global symmetry to the gauge theory
description of the 5d TN theory with SU(N)3 global symmetry, while we have not discussed
the star-shaped quiver for the 3d TN theory with SU(N)3 symmetry [54].

6.1 Supergravity duals

We now spell out a brane construction for balanced SU(·) quiver gauge theories in 5d and
briefly discuss the relation to 3d from the holographic perspective. 5d quiver gauge theories
can be engineered by (p, q) 5-brane webs [55, 56]. We take the (p, q) 5-branes to span the
(01234) directions and a line in the (56) plane determined by ∆x5 + i∆x6 = p+ iq. (p, q)
5-branes may end on [p, q] 7-branes spanning the (01234789) directions, and if multiple
5-branes end on the same 7-brane their junctions with other 5-branes are constrained by
the s-rule [57, 58].

Balanced 5d quiver gauge theories with no Chern-Simons terms can be engineered
by 5-brane junctions of the form shown in figure 3a, where the gray disc schematically
represents the internal structure of the web. The junction involves L + 1 NS5-branes and
L+1 (p, 1) 5-branes which are unconstrained by the s-rule, and a number ND5 of D5-branes
whose distribution over K D7-branes is specified by a Young tableau ρ. For a balanced
quiver of the form (6.1), let

ρ =
[
LkL , . . . , 2k2 , 1k1

]
, ND5 =

L∑
t=1

tkt . (6.4)

That is, there are L groups of D7-branes (some of which may be empty), with kt D7-branes
in the tth group and with t D5-branes ending on each D7-brane. The charge p of the (p, 1)
5-branes is

p = ND5
L+ 1 = Nt +

L∑
s=t+1

ks −Nt+1 . (6.5)

The first expression follows from overall charge conservation in figure 3a, the second from
considering sub-webs for individual gauge nodes. Due to the balancing condition Nt+1 +
Nt−1 − 2Nt − kt = 0 the second expression is independent of t.
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L+ 1 NS5

K − p D7
ÑD5 D5

p D7
N̂D5 D5

(a) (b)

Figure 4. Left: the junction shown in figure 3a after moving p D7-branes to the right and rotating
their branch cuts accordingly. Right: the gauge theory of figure 3b. The broken lines are avoided
intersections due to the s-rule. The closed (gauge theory) faces are shaded.

Similarly to the discussion for 3d theories in section 2.1, one can move the D7-branes
into the brane web, to faces where they have no D5-branes attached and describe flavors at
the corresponding gauge node. An example is shown in figure 3b, for a gauge theory with
L = 4 and (N1, k1) = (3, 2), (N2, k2) = (4, 1), (N3, k3) = (4, 2), (N4, k4) = (2, 0). Figure 3c
shows the gauge theory deformation of the 5d TN theory, [N ]−SU(N−1)− . . .−SU(2)− [2]
(see [59]).

The brane web in figure 3a can be brought into the form shown in figure 4a by moving
p of the D7-branes from the left to the right, while rotating their branch cuts clockwise
from pointing West to pointing East. A D7-brane which initially has t D5-branes attached
from the right ends up with L+ 1− t D5-branes attached from the left, while rotating the
branch cuts turns the (p, 1) 5-branes into NS5-branes.

In the form in figure 4 the relation between 5d balanced gauge theories and 3d balanced
T σρ [SU(N)] gauge theories amounts to replacing (D7, D5, NS5) branes by (D5, D3, NS5)
branes, which can be achieved by T-dualizing two of the (01234) directions. Upon taking
appropriate scaling limits this relates the brane constructions for 3d and 5d theories with
related matrix models as discussed above. Relating fixed-point theories with identical
global symmetries is more involved. For the 5d TN theory with SU(N)3 global symmetry,
for example, the 3d version was identified in [54], by separately treating the three ‘arms’
of the TN 5-brane junction with SL(2,Z) and T-duality, leading to a T [SU(N)] theory for
each arm, joined to form a star-shaped quiver. This picture extends to the supergravity
duals. Supergravity solutions for 5-brane webs that are unconstrained by the s-rule were
constructed in [60–62], and solutions for 5-brane webs with mutually local 7-branes in [63].
The latter include general junctions of the form in figure 3a and 4a (some examples were
discussed in [48, 64]). The supergravity duals represent the features of the SCFTs e.g.
regarding the global symmetries, and have qualitative differences in 3d and 5d. But certain
quantities, like on-shell actions and black hole entropies, can be related between the duals
for 3d SCFTs and 5d SCFTs arising as fixed points of gauge theories that have related
(planar) matrix models.
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7 Discussion

We discussed a planar limit of the 3d T σρ [SU(N)] theories in which the free energy shows
polynomial scaling. It is the standard N2 scaling from the perspective of the N = 4 SYM
theory on an interval from which these theories can be derived, and a quartic scaling in
terms of the length of their 3d quiver gauge theory description. This scaling arises naturally
in the supergravity duals, in which the brane sources remain fixed and well separated in
the planar limit, and we have shown for a sample of (classes of) theories that the free
energies match perfectly. For the topologically twisted index we have shown that the
leading-order expression is related in a universal way to the sphere free energy, in line
with the ‘index theorem’ of [14] and the recent discussion in [65]. For theories with all
nodes balanced we discussed relations to 5d gauge theories, which relate certain quantities
between SCFTs obtained as IR fixed points in 3d and as UV fixed points in 5d, and connect
their supergravity duals. We have not considered squashed spheres, but certainly expect
a universal dependence of the free energy on squashing parameters, much like for the 5d
theories in [12]. This would imply that the central charge CT , which can be obtained from
the squashed-sphere free energy [66], is also related to FS3 in a universal way.

We close with a discussion of future directions. It would be interesting to extend the
localization computations to circular quivers, for which holographic duals were constructed
in [67]. Similarly, it would be interesting to discuss theories with Chern-Simons terms, for
which the discussion in [68] may be a good starting point, or generalizations of the S-fold
theories of [69]. More general supergravity solutions may be constructed by incorporating
orientifold planes, e.g. to realize T σρ [SO(N)] and T σρ [Sp(N)] theories. More generally, long
quivers are studied in other dimensions, e.g. [70–80], and it would be interesting to apply
similar localization methods to gain further insights.

A different class of 3d theories with quartic scaling of the free energies are the theories of
class F obtained by compactifying 5d SCFTs engineered by (p, q) 5-brane webs on Riemann
surfaces. Their holographic duals can be obtained by uplifting the 6d AdS4 × Σ solution
of [81] to Type IIB solutions based on [60–63], using the uplifts of [82, 83]. It would be
interesting to develop a detailed field theory understanding of these theories (and of the
black holes constructed recently in [84]).
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A Junction condition

In this appendix we discuss the junction condition (3.16) for unbalanced nodes. The matrix
models are invariant under λ → −λ (individually for each node), so we can assume the
same for the saddle point.
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Consider an unbalanced node zt with kt flavors. We first show that the condition (3.17)
is solved by fixing µt. With xε± = x± ∓ ε and z± = zt ± ε,∫ xε+

xε−

dy [∂z%(z, y)]z=z+z=z− FH(x− y) =
∫ xε+

xε−

dy

∫ z+

z−
dz FH(x− y)∂2

z%(z, y)

= −LktFH(x)− 1
4

∫ xε+

xε−

dy

∫ z+

z−
dz FH(x− y)∂2

y%(z, y)

(A.1)

where the bulk saddle point equation has been used for the second line. Successive inte-
grations by parts in the last term lead to∫ xε+

xε−

dy

∫ z+

z−
dz FH(x− y)∂2

y%(z, y) =

∫ z+

z−
dz

([
FH(x− y)∂y%(z, y)− F ′H(x− y)%(z, y)

]y=xε+
y=xε−

+
∫ xε+

xε−

dy F ′′H(x− y)%(z, y)
)
.

(A.2)

Using that in the definition of T (x) gives

T (x) = Lµt +
∫
y∈R\(xε−,xε+)

dy [FH(x− y)∂z%(z, y)]z=z+z=z− −
1
4

∫ z+

z−
dz [FH(x− y)∂y%(z, y)]y=xε+

y=xε−

+ 1
4

∫ z+

z−
dz

([
F ′H(x− y)%(z, y)

]y=xε+
y=xε−

−
∫ xε+

xε−

dy F ′′H(x− y)%(z, y)
)
.

(A.3)

Now assume that xε− < x < xε+. Using %(z, y) = %(z,−y),

T (x) = Lµt + 4π(1− r)
∫ ∞
xε+

dy y [∂z%(z, y)]z=z+z=z− − π(1− r)xε+
∫ z+

z−
dz ∂y%(z, y)|y=xε+

+ π

2 (1− r)
∫ z+

z−
dz
(
2%(z, xε+)− %(z, x)

)
. (A.4)

Only the last term in the second line depends on x, and it is O(ε). Thus, T (x) is a constant,
and the junction condition T (x) = 0 is solved by fixing µt.

We now discuss the allowed behavior of %(zt, x) at the end points of the interval on
which % has support, x±. Assume that % satisfies the bulk saddle point equation, so T (x)
vanishes for x ∈ (x−, x+). Assume that, near the end points,

%(zt, x) ∼ (x− x±)a . (A.5)

To allow variations of the end points, δ% ∼ ∂x±% should be allowed as variation. Thus,
we have to allow for δ% ∼ (x − x±)a−1 in (3.16). To avoid a δ-function contribution from
x = x± we need

δF =
∫
dx δ%(zt, x)T (x) ∼

∫
dx (x− x±)a−1T (x) (A.6)
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to be continuous across the end points. With the assumed behavior of % we find, for x
approaching the end points from outside of (x−, x+),

T ′′(x) = 2π(1− r) [∂z%(z, x)]z=zt+εz=zt−ε ∼ (x− x±)a−1 . (A.7)

This leads to T (x) ∼ (x− x±)a+1, and to avoid a δ-function contribution in (A.6) we need
a > −1/2.

The constraint on the behavior near x± is different in 5d: due to the steeper scaling of
FH in 5d, we have T (4)(x) ∼ [∂z%(z, x)]z=zt+εz=zt−ε, leading to T (x) ∼ (x−x±)a+3 and a > −3/2.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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