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Abstract
In this paper we investigate the property of engulfing for H -convex functions defined
on the Heisenberg group H

n . Starting from the horizontal sections introduced by
Capogna and Maldonado (Proc Am Math Soc 134:3191–3199, 2006) , we consider
a new notion of section, called H

n-section, as well as a new condition of engulfing
associated to theH

n-sections, for an H -convex function defined inH
n .These sections,

that arise as suitable unions of horizontal sections, are dimensionally larger; as amatter
of fact, the H

n-sections, with their engulfing property, will lead to the definition of a
quasi-distance in H

n in a way similar to Aimar et al. in the Euclidean case (J Fourier
Anal Appl 4:377–381, 1998). A key role is played by the property of round H -sections
for an H -convex function, and by its connection with the engulfing properties.

Keywords Heisenberg group · H -convex function · Section of H -convex function ·
Engulfing property · Quasi-distance · Round H -sections

Mathematics Subject Classification 52A30 · 26A12 · 26B25

1 Introduction

Given a convex function u : R
n → R, for every x0 ∈ R

n, p ∈ ∂u(x0), and s > 0, we
will denote by Su(x0, p, s) the section of u at x0 with height s, defined as follows

Su(x0, p, s) = {
x ∈ R

n : u(x) − u(x0) − p · (x − x0) < s
} ; (1.1)
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in case u is differentiable at x0, we will denote the section by Su(x0, s), for short. The
related notion of engulfing for convex functions, or, equivalently, for their sections,
is essentially a geometric property, and it is based on a regular mutual behaviour of
the sections of the function. We say that a convex function u satisfies the engulfing
property (shortly, u ∈ E(Rn, K )) if there exists K > 1 such that for any x ∈ R

n,

p ∈ ∂u(x), and s > 0, if y ∈ Su(x, p, s), then Su(x, p, s) ⊂ Su(y, q, Ks), for every
q ∈ ∂u(y).

The functions u in the class E(Rn, K ) have been studied in connection with the
solution to the Monge-Ampère equation det D2u = μ,whereμ is a Borel measure on
R
n . In this framework, a C1, β -estimate for the strictly convex, generalized solutions to

the Monge-Ampère equation was proved by Caffarelli ([7,8]), under the assumption
that the measure μ satisfies a suitable doubling property (see the exhaustive book by
Gutiérrez [19]). This doubling property is actually equivalent to the geometric property
of engulfing for the solution u.

Another issue is related to the properties enjoyed by the family of sections
{Su(x, s)}{x∈Rn , s>0}, in case u is a convex differentiable function in E(Rn, K ). In
[1], it is shown that, in this case, one can define a quasi-distance d on R

n as follows:

d(x, y) := inf {s > 0 : x ∈ Su(y, s), y ∈ Su(x, s)} . (1.2)

In addition, if Bd(x, r) is a d-ball of center x and radius r , then

Su
(
x,

r

2K

)
⊂ Bd(x, r) ⊂ Su(x, r). (1.3)

In the archetypal case u(x) = ‖x‖2, with x ∈ R
n , one has Su(x, s) = BR

n
(x,

√
s),

and hence the family of sections of u consists of the usual balls in R
n .

In the case of convex functions defined in a Carnot group G, in [13] Capogna and
Maldonado introduced some appropriate geometric objects, that can be considered as
the sub-Riemmannian analogue of the classical sections, as well as a naturally related
notion of horizontal engulfing. Given a horizontally convex function ϕ : G → R,

ξ0 ∈ G, p ∈ R
m1 , s > 0, the section SH

u (ξ0, p, s) (H -sections, from now on, where
H stands for horizontal) is defined as follows:

SH
ϕ (ξ0, p, s) := {ξ0 ◦ exp v : v ∈ V1, ϕ(ξ0 ◦ exp v) − ϕ(ξ0) − v · p < s}, (1.4)

where V1 ∼= R
m1 is the first layer of the stratification of the Lie algebra of G; in case

ϕ is horizontally differentiable at ξ0, we will denote such H -section by SH
ϕ (ξ0, s),

for short. The mentioned authors say that a horizontally convex and differentiable
function ϕ satisfies the engulfing property if there exists K > 1 such that, for every
ξ, ξ ′ ∈ G and s > 0, if ξ ′ ∈ SH

ϕ (ξ, s), then ξ ∈ SH
ϕ (ξ ′, Ks). Let us stress that the

definition of H -section in (1.4) and the notion of engulfing are affected by the sub-
Riemannian structure exactly as the notion of horizontal convexity; more precisely,
they rely upon the behaviour of the function on the horizontal lines and planes. In [13]
it is proved that a strictly convex and everywhere differentiable function on a Carnot
group, satisfying this horizontal version of engulfing, belong to the Folland–Stein class
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10338 A. Calogero, R. Pini

�1+1/K , i.e., the horizontal derivatives Xiϕ are 1/K -Hölder continuous with respect
to any left-invariant and homogeneous pseudo-norm in the group. The key point in
their argument is a reduction of the general discussion to the one-dimensional case.
As a matter of fact, the “dimension” of the H -sections in (1.4) is the dimension of
the first layer of the stratification of the Lie algebra of the group; in particular, these
H -sections have empty interior. This fact prevents from building a quasi-distance as
in (1.2) starting from the family of sections associated to every point of the group.

In this paper we focus on horizontally convex functions ϕ (H -convex functions) on
theHeisenberg groupH

n, that is the simplest Carnot group of step 2. Ourmain purpose
is to overcome the dimensional gap between the H -sections, defined in [13], and the
balls related to any quasi-distance inH

n, by introducing and studying a different notion
of section. Our idea takes inspiration from the notion of H -section in (1.4), together
with the property that any pair of points inH

n can be joined by atmost three consecutive
horizontal segments. These facts lead us to define full-dimensional sections that arise
as a sort of composition in three steps of “thin” H -sections. These new objects will be
called H

n-section, and will be denoted by S
H
n

ϕ (ξ0, p, s) (for the precise definition of

S
H
n

ϕ (ξ0, p, s), see Definition 5.1). For these H
n-sections, we introduce the following

engulfing condition:

Definition 1.1 Let ϕ : H
n → R be an H -convex function. We say that ϕ satisfies the

engulfing property E(Hn, K ) if there exists K > 1 such that for any ξ ∈ H
n, p ∈

∂Hϕ(ξ) and s > 0, if ξ ′ ∈ S
H
n

ϕ (ξ, p, s), then

S
H
n

ϕ (ξ, p, s) ⊂ S
H
n

ϕ (ξ ′, q, Ks),

for every q ∈ ∂Hϕ(ξ ′).

It is obvious that a function which satisfies this engulfing property E(Hn, K ), satisfies
the engulfing property introduced by Capogna and Maldonado.

The study of this new notion of engulfing forH
n-sections of full dimension requires

a mix of tools and properties inherited by the Euclidean case R
n , both for the simplest

case n = 1, and for the knotty case n > 1. Following the idea in [21] and, in particular,
the equivalence between iii. and iv in Theorem 7.1 below, we introduce and study a
horizontal notion of round sections for the H -sections (see Definition 3.1). We prove
that every H -convex function with round H -sections satisfies the engulfing property
E(Hn, K ) in Definition 1.1.

Let us summarize our results as follows:

Theorem 1.1 Let ϕ : H
n → R be an H-convex function with round H-sections, then

i. ϕ satisfies the engulfingproperty E(Hn, K ); consequently, in the class of H-convex
functions with round H-sections, the engulfing for H-sections and the engulfing
for H

n-sections are equivalent properties;
ii. the function dϕ : H

n × H
n → [0,+∞) defined by

dϕ(ξ, ξ ′) = inf
{
s > 0 : ξ ∈ S

H
n

ϕ (ξ ′, s), ξ ′ ∈ S
H
n

ϕ (ξ, s)
}
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is a quasi-distance in H
n; moreover, for the dϕ-balls, an H

n-version of the inclu-
sions in (1.3) holds true (see (6.10) below).

Here, the archetypal example in H of the H -convex function ϕ(x, y, t) = x2 + y2

gives SHϕ (ξ, s) = B̃(ξ,
√
s), that is, the family of H-sections of ϕ consists of the

B̃-balls of a left-invariant and homogeneous distance d̃ (see (5.2) and Example 6.1).
The property of round H -sections is actually stronger than the horizontal engulfing;

we are able to provide an example of an H -convex function which satisfies the hori-
zontal engulfing property but does not have round H -sections, and this phenomenon
appears also in the Euclidean case, if n > 1. Nevertheless, the main issue of the
result above relies upon the dimensional gap between the assumptions, where a purely
horizontal property is required, and the final result, where full-dimensional sets are
involved.

The paper is organized as follows. In Sect. 2 we recall some results related to the
engulfing property for a function defined in R

n, together with the structure of H
n

and the notion of horizontal convexity. In Sect. 3 we introduce the H -sections, and
we show that round H -sections and controlled H -slope are equivalent property for
these H -sections (see Theorem 3.1). In Sect. 4 we characterize the functions with
the engulfing property E(H , K ), and prove that the two properties introduced in the
previous section are sufficient conditions for a function to be in E(H , K ). In Sect. 5 we
move to the notion of H

n-sections and the related engulfing property as in Definition
1.1, and we prove Theorem 1.1 i. In Sect. 6 we prove Theorem 1.1 ii. and provide a
concrete example. In the final section we list some open questions.

2 Preliminary Notions and Results

In the paper, we will deal with H -convex functions defined on the Heisenberg group
H

n . As we will see later, the notion of H -convexity requires that, for every point
ξ ∈ H

n, one looks at the behaviour of the function under two points of view. The
first one is one-dimensional, since the restriction of the function to any horizontal line
{ξ ◦ exp tv}t∈R, with v ∈ V1, is an ordinary convex function; the second one is 2n-
dimensional, according to the fact that v ∈ V1 ∼= R

2n, or, equivalently, the horizontal
lines through ξ span the 2n-dimensional horizontal plane Hξ . For these reasons, the
first part of this sectionwill be devoted to some results related to the engulfing property
of convex functions u : R

n → R, both in the case n = 1, and in the case n ≥ 2. In
the second part we will recall the notion of H -convexity, together with some related
results, for functions defined on the Heisenberg group H

n .

2.1 The Engulfing Property for Convex Functions inRRR
n

Let us concentrate, first, on the one-dimensional case, i.e. n = 1. The following
characterization holds (see Theorem 2 in [18], Theorem 5.1 in [14]):

Theorem 2.1 Let u : R → R be a strictly convex and differentiable function. The
following are equivalent:
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i. u ∈ E(R, K ), for some K > 1;
ii. there exists a constant K ′ > 1 such that, if x, y ∈ R and s > 0 verify x ∈ Su(y, s),

then y ∈ Su(x, K ′s);
iii. there exists a constant K ′′ > 1 such that, for any x, y ∈ R,

K ′′ + 1

K ′′
(
u(y) − u(x) − u′(x)(y − x)

) ≤ (u′(x) − u′(y))(x − y)

≤ (K ′′ + 1)
(
u(y) − u(x) − u′(x)(y − x)

)
. (2.1)

As a matter of fact, the assumption of differentiability in the theorem above can be
removed, as proved in [11]:

Theorem 2.2 Let u : R → R be a convex function, with bounded sections, satisfying
the engulfing property. Then, u is strictly convex and is in C1(R).

Given a strictly convex differentiable function u : R → R, one can consider the
associated Monge-Ampère measure μu defined on any Borel set A ⊂ R by

μu(A) = |u′(A)|,

where | · | denotes the Lebesgue measure. We say that the measure μu has the (DC)-
doubling property if there exist constants α ∈ (0, 1) and C > 1 such that

μu(Su(x, s)) ≤ Cμu(αSu(x, s)), (2.2)

for every section Su(x, s) (here αSu(x, s) is the open convex set obtained by α-
contraction of Su(x, s) with respect to its center of mass). In [20] and [17] it was
shown that the (DC)-doubling property of the measure μu is equivalent to the engulf-
ing property for the function u; in particular, given u in E(R, K ), the constants α and
C in (2.2) depend only on K . A Radon measure μ is doubling if and only if there
exists a constant A such that

1

A
≤ μ(Q1)

μ(Q2)
≤ A, (2.3)

for any congruent cubes Q1 and Q2 with nonempty intersection (see, for example,
[22]). We recall that two subsets of R are called congruent if there exists an isometry
of R that maps one of them onto the other. Since every open and bounded interval in
R is a particular section for u, the (DC)-doubling property of μu is trivially equivalent
to the fact that μu is a doubling measure. In particular, the constant A depends only
on K . Now, noticing that μu((x, x + r)) = u′(x + r) − u′(x), by (2.1) we obtain

K ′′ + 1

K ′′
(
u(x + r) − u(x) − u′(x)r

)

≤ rμu((x, x + r))) ≤ (K ′′ + 1)
(
u(x + r) − u(x) − u′(x)r

)
.

These arguments show the central role of the function (x, r) → u(x+r)−u(x)−u′(x)r
in our paper. More precisely in [14] (see Theorem 5.5) the authors prove the following:
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Theorem 2.3 Let u : R → R be a strictly convex and differentiable function. Then
u ∈ E(R, K ) if and only if there exist two constants A1 > 1 and A2 > 1, both of
them depending on K, such that

1

A1
≤ u(x + r) − u(x) − u′(x)r

u(x − r) − u(x) + u′(x)r
≤ A1, ∀x ∈ R, r > 0; (2.4)

1

A2
≤ u(x + 2r) − u(x) − u′(x)2r

u(x + r) − u(x) − u′(x)r
≤ A2, ∀x ∈ R, r > 0. (2.5)

Condition (2.4) says that u is essentially symmetric around every point, and condition
(2.5) says that it satisfies the so-called �2 condition at each point in R.

Hence, the behaviour of the measure μu is related to the functions mu, Mu :
R × R

+ → R
+ defined by

mu(x, r) := min{z: |z−x |=r}
(
u(z) − u(x) − u′(x)(z − x)

)

Mu(x, r) := max{z: |z−x |=r}
(
u(z) − u(x) − u′(x)(z − x)

)
,

(2.6)

for every x ∈ R, r ∈ R
+. These functions will be naturally extended to the n-

dimensional case and in H
n , and will play a crucial role in the investigation of the

engulfing for H -convex functions.
For every fixed x ∈ R, denote by ux the function

s → ux (s) = u(x + s) − u(x) − u′(x)s. (2.7)

Then, Mu(x, r) ∈ {ux (±r)}, and Mu(x, 2r) ∈ {ux (±2r)}. Let us suppose, for
instance, that the following equalities hold true:

Mu(x, 2r) = ux (2r), mu(x, 2r) = ux (−2r),

Mu(x, r) = ux (r), mu(x, r) = ux (−r).

Then, by (2.4) and (2.5), we obtain

Mu(x, 2r) = ux (2r) ≤ A2ux (r) = A2Mu(x, r),

mu(x, 2r) = ux (−2r) ≤ A1ux (2r) ≤ A1A2ux (r) ≤ A2
1A2ux (−r) = A2

1A2mu(x, r),

Mu(x, r) = ux (r) ≤ A1ux (−r) = A1mu(x, r).

The other possible combinations can be treated similarly, and we obtain the following
fundamental estimates:

Remark 2.1 Let u ∈ E(R, K ) be a strictly convex and differentiable function. Then,

Mu(x, 2r) ≤ B1Mu(x, r), ∀x ∈ R, r ≥ 0 (2.8)

mu(x, 2r) ≤ B2mu(x, r), ∀x ∈ R, r ≥ 0 (2.9)

Mu(x, r) ≤ B3mu(x, r), ∀x ∈ R, r ≥ 0 (2.10)
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where B1, B2 and B3 depend only on K (and Bi > 1).

It is worthwhile to note that inequality (2.10) is false if n ≥ 2, despite the engulfing
property holds; the function in (4.9), due to Wang, will provide a counterexample to
this phenomenon.

The next result provides another estimate for the function mu :

Proposition 2.1 Let u ∈ E(R, K ) be a convex function with bounded sections. Then,

B4mu(x, r) ≤ mu(x, 2r), ∀x ∈ R, r ≥ 0, (2.11)

with B4 > 1 which depends only on K .

Proof Let us fix x ∈ R. The function ux defined in (2.7) is strictly convex and differ-
entiable (see [11]), and belongs to E(R, K ); moreover,

K ′′ + 1

K ′′ ux (y) ≤ u′
x (y)y, ∀y ∈ R,

where K ′′ depends only on K (for all the details, see Theorem 4 and its proof in [18]).
Hence, for every fixed r > 0, the Gronwall inequality gives

ux (|y|) ≥ ux (r)

( |y|
r

) K ′′+1
K ′′

, ∀|y| ≥ r .

Therefore, we obtain that ux (±2r) ≥ 2
K ′′+1
K ′′ ux (±r). Let mu(x, r) = ux (r). Then,

B4mu(x, r) ≤ ux (2r). Suppose that B4mu(x, r) > ux (−r). In this case, ux (−2r) ≥
B4ux (−r), and thus B4ux (−r) < B4mu(x, r), a contradiction. Then, (2.11) follows.

��
Let us now move to the case n ≥ 2. Given a differentiable function u : R

n → R,

as in the one-dimensional case (2.6), the functions mu, Mu : R
n × R

+ → R
+ are

defined by

mu(x, r) := min{z: ‖z−x‖=r} (u(z) − u(x) − ∇u(x) · (z − x))

Mu(x, r) := max{z: ‖z−x‖=r} (u(z) − u(x) − ∇u(x) · (z − x)) ,

for every x ∈ R
n, r ∈ R

+.
Let us recall the following property, that will be critical when dealing with the

engulfing in H
n .

Definition 2.1 (see Definition 2.1 in [21]) Let u : R
n → R be a convex function. We

say that u has round sections if there exists a constant τ ∈ (0, 1) with the following
property: for every x ∈ R

n, p ∈ ∂u(x), and s > 0, there is R > 0 such that

B(x, τ R) ⊂ Su(x, p, s) ⊂ B(x, R).
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In [21] (see Theorem 7.1 below) it is proved that a convex function u : R
n → R has

round sections if and only if u is differentiable, but not affine, and has controlled slope,
i.e., there exists a constant H ≥ 1 such that

Mu(x, r) ≤ Hmu(x, r), ∀x ∈ R
n, r ≥ 0. (2.12)

This equivalence is quantitative, in the sense that the constants involved in each state-
ment depend only on each other and n, but not on u. Furthermore, if u : R

n → R

satisfies one of the two equivalent conditions above, then u ∈ E(Rn, K ), for a suitable
K > 1 (see Theorem 3.9 in [21]). Let us finally notice that condition (2.12) is the
n-dimensional version of condition (2.10): in the case n ≥ 2, hence, the controlled
slope for a function, or, equivalently, the property of round sections, is only a sufficient
condition for a function to have the engulfing property.

2.2 Convexity in the Heisenberg GroupHHH
n

The Heisenberg group H
n is the simplest Carnot group of step 2. We will recall some

of the notions and background results used in the sequel. We will focus only on those
geometric aspects that are relevant to our paper. For a general overview on the subject,
we refer to [6] and [12].

The Lie algebra h of H
n admits a stratification h = V1 ⊕ V2 with V1 =

span{Xi , Yi ; 1 ≤ i ≤ n} being the first layer of the so-called horizontal vector fields,
and V2 = span{T } being the second layer which is one-dimensional. We assume
[Xi ,Yi ] = −4T and the remaining commutators of basis vectors vanish. The expo-
nential map exp : h → H

n is defined in the usual way. By these commutator rules we
obtain, using the Baker-Campbell-Hausdorff formula, that H

n can be identified with
R
n × R

n × R endowed with the non-commutative group law given by

ξ ◦ ξ ′ = (x, y, t) ◦ (x ′, y′, t ′) = (x + x ′, y + y′, t + t ′ + 2(x ′ · y − x · y′)),

where x, y, x ′ and y′ are in R
n , t and t ′ in R, and where ′·′ is the inner product in

R
n . Let us denote by e the neutral element in H

n . Transporting the basis vectors of
V1 from the origin to an arbitrary point of the group by a left-translation, we obtain
a system of left-invariant vector fields written as first order differential operators as
follows

X j = ∂x j + 2y j∂t , Y j = ∂y j − 2x j∂t , j = 1, ..., n. (2.13)

Via the exponential map exp : h → Hwe identify the vector
∑n

i=1(αi Xi +βi Yi )+
γ T in h with the point (α1, . . . , αn, β1, . . . , βn, γ ) in H

n; the inverse ξ : H
n → h of

the exponential map has the unique decomposition ξ = (ξ1, ξ2), with ξi : H
n → Vi ,

and we identify V1 with R
2n when needed.

For every positive λ, the non-isotropic Heisenberg dilation δλ : H
n → H

n is

defined by δλ(x, y, t) = (λx, λy, λ2t). Let N (x, y, t) = ((‖x‖2 + ‖y‖2)2 + t2)
1
4 be

the gauge norm in H
n . The function dg : H

n × H
n → [0,+∞) defined by

dg(ξ, ξ ′) := N ((ξ ′)−1 ◦ ξ)
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satisfies the triangle inequality, thereby defining a distance on H
n : this distance is

the so-called Korányi-Cygan distance which is left-invariant and homogeneous, i.e.
dg(δλ(ξ), δλ(ξ

′)) = λdg(ξ, ξ ′) for every λ > 0, ξ, ξ ′ ∈ H
n . We will set dg(e, ξ) =

‖ξ‖g for every ξ ∈ H
n . The Korányi-Cygan ball of center ξ0 ∈ H

n and radius r > 0
is given by Bg(ξ0, r) = {ξ ∈ H

n : dg(ξ0, ξ) ≤ r}.
The horizontal structure relies on the notion of horizontal plane. Given ξ0 ∈ H

n ,
the horizontal plane Hξ0 associated to ξ0 = (x0, y0, t0) is the plane in H

n defined by

Hξ0 := {
ξ = (x, y, t) ∈ H

n : t = t0 + 2(y0 · x − x0 · y)} .

This is the plane spanned by the horizontal vector fields {Xi , Yi }i at the point ξ0; note
that ξ ′ ∈ Hξ if and only if ξ ∈ Hξ ′ . A horizontal segment is a convex subset of a
horizontal line, which is a line lying on a horizontal plane Hξ and passing though the
point ξ ∈ H

n ; if ξ ′ ∈ Hξ , with ξ ′ �= ξ , then Hξ ∩ Hξ ′ is a horizontal line.
Let  ⊂ H

n be an open set. The main idea of the analysis in the Heisenberg
group is that the regularity properties of functions defined in H

n can be expressed in
terms only of the horizontal vector fields (2.13). In particular, the appropriate notion
of gradient for a function is the so-called horizontal gradient, which is defined as the
2n-vector ∇Hϕ(ξ) = (X1ϕ(ξ), ..., Xnϕ(ξ), Y1ϕ(ξ), ..., Ynϕ(ξ)) for a function ϕ ∈
�1(). Here, �k() denotes the Folland–Stein space of functions having continuous
derivatives up to order k with respect to the vector fields Xi and Yi , i ∈ {1, ..., n}. We
say that ϕ :  → R is H -differentiable at ξ , if there exists a mapping DHϕ : H

n → R

which is H -linear, i.e. DHϕ(x, y, t) = DHϕ(x, y, 0) for every (x, y, t) ∈ H
n , such

that ϕ(ξ ◦ ξ ′) = ϕ(ξ) + DHϕ(ξ ′) + o(‖ξ ′‖g); the vector associated to DHϕ with
respect to the fixed scalar product is the horizontal gradient ∇Hϕ(ξ).

For general non-smooth functions ϕ :  → R, the horizontal subdifferential
∂Hϕ(ξ0) of ϕ at ξ0 ∈  is given by

∂Hϕ(ξ0) =
{
p ∈ R

2n : ϕ(ξ) ≥ ϕ(ξ0) + p · (Pr1(ξ) − Pr1(ξ0)), ∀ξ ∈  ∩ Hξ0

}
,

where Pr1 : H
n → R

2n is the projection defined by Pr1(ξ) = Pr1(x, y, t) = (x, y).
It is easy to see that if ϕ ∈ �1() and ∂Hϕ(ξ) �= ∅, then ∂Hϕ(ξ) = {∇Hϕ(ξ)}. A
function ϕ :  → R is called H−subdifferentiable on  if ∂Hϕ(ξ) �= ∅ for every
ξ ∈ .

A central object of study within this paper is provided by the H -convex functions.
First of all, we recall that a set  ⊂ H

n is said to be horizontally convex (H -convex)
if, for every ξ1, ξ2 ∈ , with ξ1 ∈ Hξ2 and λ ∈ [0, 1], we have ξ1 ◦ δλ(ξ

−1
1 ◦ ξ2) ∈ .

It is clear that if  is convex (i.e. it is convex in the R
2n+1-sense), then it is also

H -convex. Given a function ϕ :  → R, where  is H -convex, there are several
equivalent ways to define the concept of H -convexity for ϕ. The most intuitive one is
to require the classical convexity of the function when restricted to any horizontal line
within . The same definition can be rephrased by considering the group operation:
the function ϕ :  → R is said to be H -convex if, for every ξ1, ξ2 ∈  with ξ1 ∈ Hξ2
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and λ ∈ [0, 1], we have that

ϕ(ξ1 ◦ δλ(ξ
−1
1 ◦ ξ2)) ≤ (1 − λ)ϕ(ξ1) + λϕ(ξ2). (2.14)

If the strict inequality holds in (2.14), for every ξ1 �= ξ2 and λ ∈ (0, 1), then ϕ is
said to be strictly H -convex. H -convex functions have been extensively studied in
the last few years; their characterizations, as well as their regularity properties, like
their continuity, for instance, will come into play through the paper, and we refer to
[5,9,15,23]. Let us recall, in particular, that ϕ : H

n → R is H -convex if and only if ϕ

is H -subdifferentiable.

3 H-Convex Functions with Round H-Sections and with Controlled
H-Slope

As already seen in the Introduction, a horizontal notion of section was given in [13]
for functions defined on a general Carnot group G. We will consider the particular
case G = H

n .

Let ϕ : H
n → R be an H -convex function, and let us fix ξ0 ∈ H

n, p0 ∈ ∂Hϕ(ξ0),

and s > 0. The H-section of ϕ at ξ0, p0, with height s, is the set

SH
ϕ (ξ0, p0, s) = {ξ ∈ Hξ0 : ϕ(ξ) − ϕ(ξ0) − p0 · (Pr1(ξ) − Pr1(ξ0)) < s}. (3.1)

If ϕ is H -differentiable, then ∂Hϕ(ξ0) = {∇Hϕ(ξ0)}, and we simply write SH
ϕ (ξ0, s)

for the corresponding H -section. For every fixed (ξ0, p0, s), the set SH
ϕ (ξ0, p0, s)

is H -convex, and is contained in a horizontal plane; this dimensional gap between
H -sections and open sets in H

n is a crucial difference with respect to the Euclidean
case.

In this section we essentially introduce the notions of round H -sections (see Defi-
nition 3.1) and controlled H -slope (see Definition 3.2), proving their equivalence (see
Theorem 3.1). Let us emphasize that these two properties for an H -convex function
are horizontal properties, i.e. they give information on the behaviour of the function
only when restricted to the horizontal planes, exactly as the notion of H -section,
H -convexity and H -subdifferential.

In the followingof the paper, for every functionϕ : H
n → R, and for every ξ0 ∈ H

n ,
p0 ∈ ∂Hϕ(ξ0) and v0 ∈ V1 \ {0}, we will consider the functions ϕξ0,p0 : H

n → R and
ϕ̂ξ0,v0 : R → R defined by

ϕξ0,p0(ξ) := ϕ(ξ) − ϕ(ξ0) − p0 · (Pr1(ξ) − Pr1(ξ0)), ∀ξ ∈ H
n, (3.2)

ϕ̂ξ0,v0(α) := ϕ(ξ0 ◦ exp(αv0)), ∀α ∈ R. (3.3)

If ϕ is H -differentiable, then wewill set ϕξ0,∇Hϕ(ξ0) = ϕξ0 . The following result holds:

Proposition 3.1 Let ϕ : H
n → R be a strictly H-convex function. Then, all its H-

sections are bounded sets.
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Proof For every ξ0 ∈ H
n and v ∈ V1 \ {0} let us consider the function ϕ̂ξ0,v as in

(3.3). By contradiction, let us suppose that there exists a sequence {(vn, αn)}n , with
vn ∈ V1, ‖vn‖ = 1, αn → +∞, such that ξ0 ◦ exp(αnvn) ∈ SH

ϕ (ξ0, p0, s). Clearly,
there exists a subsequence such that vn → v0 ∈ V1.

Let us denote by α0 = sup
{
α ≥ 0 : ξ0 ◦ exp(αv0) ∈ SH

ϕ (ξ0, p0, s)
}

. If α0 =
+∞, then the section Sϕ̂ξ0,v (0, s) of the function ϕ̂ξ0,v is unbounded; this is impossible,
since ϕ̂ξ0,v is strictly convex. Let s0 be finite, and let us consider the function ϕξ0,p0
in (3.2); the set A = {ξ ∈ H

n : ϕξ0,p0(ξ) ≤ s} is H -convex, since the function ϕξ0,p0
is H -convex. Now, the previous arguments give

{
ξ ∈ Hξ0 : ξ=ξ0 ◦ exp(αvn), 0 ≤ α ≤ αn

} ⊂ A, ∀n, and ξ ′=ξ0 ◦ exp(α0v0) ∈ ∂A.

This contradicts Theorem 1.4 in [3]. ��
The next definition is related to a purely geometric property of the sections, and it

will play a crucial role in the following of the paper.

Definition 3.1 We say that an H -convex function ϕ : H
n → R has round H-sections

if there exists a constant K0 ∈ (0, 1) with the following property: for every ξ ∈ H
n ,

p ∈ ∂Hϕ(ξ) and s > 0, there exists R > 0 such that

Bg(ξ, K0R) ∩ Hξ ⊂ SH
ϕ (ξ, p, s) ⊂ Bg(ξ, R) ∩ Hξ . (3.4)

In particular, (3.4) implies that every H -section of a function with round H -sections
is a bounded set. Clearly, Definition 3.1 is the H

n-version of Definition 2.1; let us
stress that it relies upon the subriemannian structure of H

n since, for every point ξ,

we restrict our attention only to the horizontal plane Hξ .

Remark 3.1 Let ϕ : H
n → R be H -convex, and consider the convex function ϕ̂ξ0,v :

R → R defined by (3.3). Then, if the nonempty convex set ∂Hϕ(ξ0) is not a singleton,
there exists v ∈ V1 such that ∂ϕ̂ξ0,v(0) is not a singleton. Indeed, suppose that p+λq ∈
∂Hϕ(ξ0), for every λ ∈ [0, 1], with q �= 0. Then, by taking v = q, we have that

ϕ̂ξ0,q(α) = ϕ(ξ0 ◦ exp(αq)) ≥ ϕ̂ξ0,q(0) + α(p · q + λ‖q‖2), ∀λ ∈ [0, 1], α ∈ R.

Hence p · q + λ‖q‖2 ∈ ∂ϕ̂ξ0,q(0) for every λ ∈ [0, 1]. This implies that, if ϕ̂ξ0,v is
differentiable at 0 for every v ∈ V1, then ϕ is H -differentiable at ξ0.

In the previous remark and in the following result, the H -convexity plays a fundamental
role in order to obtain some regularity properties of the function involved.

Proposition 3.2 If ϕ : H
n → R is an H-convex function with round H-sections, then

it is H-differentiable and strictly H-convex. Moreover, there exists a constant C such
that, for every ξ0 ∈ H

n and v ∈ V1, we have

ϕξ0(ξ0 ◦ exp(2v)) ≤ Cϕξ0(ξ0 ◦ exp v), (3.5)

where the constant C depends only on K0 in (3.4).
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Proof First of all note that, for every ξ0 ∈ H
n and v ∈ V1 \ {0}, the function ϕ̂ξ0,v

defined in (3.3) is convex, with round sections (with constant K0). Therefore, Lemma
3.2 in [21] implies that it is differentiable and strictly convex. In particular, ϕ is strictly
H -convex. Let us first show thatϕ is H -differentiable at ξ0 ∈ H

n . Sinceϕ is H -convex,
this is equivalent to prove that the nonempty convex set ∂Hϕ(ξ0) is a singleton (see
Theorem 4.4, Prop. 5.1 in [9], Theorem 1.4 in [23]). Suppose, by contradiction, that
∂Hϕ(ξ0) is not a singleton; then, by Remark 3.1, there exists v ∈ V1 such that ∂ϕ̂ξ0,v(0)
is not a singleton. This contradicts the fact that ϕ̂ξ0,v(0) is differentiable.

Finally, taking into account that the function ϕ̂ξ0,v is convex, differentiable and with
round sections with constant K0 , for every ξ0 ∈ H

n and v ∈ V1, again, by Lemma
3.2 in [21], one has that there exists a constant C depending only on K0 such that

ϕξ0(ξ0 ◦ 2v) ≤ Cϕξ0(ξ0 ◦ exp v).

��
In the sequel, given an H -differentiable function ϕ : H

n → R, wewill deal with the
functions mH

ϕ , MH
ϕ : H

n × R
+ → R

+ that will take the place in H
n of the functions

mu and Mu in R
n . They are defined as follows:

mH
ϕ (ξ, r) := min

{ξ ′∈Hξ : dg(ξ,ξ ′)=r}
(
ϕ(ξ ′) − ϕ(ξ) − ∇Hϕ(ξ) · (Pr1(ξ

′) − Pr1(ξ))
)

MH
ϕ (ξ, r) := max

{ξ ′∈Hξ : dg(ξ,ξ ′)=r}
(
ϕ(ξ ′) − ϕ(ξ) − ∇Hϕ(ξ) · (Pr1(ξ

′) − Pr1(ξ))
)
,

for every ξ ∈ H
n, r > 0.

A simple exercise shows that, if ϕ : H
n → R is an H -differentiable and strictly

H -convex function, then for every ξ ∈ H
n, and r > 0,

SH
ϕ (ξ,mH

ϕ (ξ, r)) ⊂ Bg(ξ, r) ∩ Hξ ⊂ SH
ϕ (ξ, MH

ϕ (ξ, r)). (3.6)

Thenext definition, inherited from the correspondingone inR
n (see (2.12)), pertains

to the mutual behaviour of mH
ϕ and MH

ϕ , always from a horizontal point of view:

Definition 3.2 We say that an H -convex function ϕ : H
n → R has controlled H-slope

if ϕ is H -differentiable, and there exists a constant K1 > 0 such that, for every ξ ∈ H
n

and r > 0,
MH

ϕ (ξ, r) ≤ K1m
H
ϕ (ξ, r). (3.7)

Like in theEuclidean case (seeTheorem7.1) controlled H -slope and round H -sections
properties are strictly related:

Theorem 3.1 Let ϕ : H
n → R be an H-convex function. The following conditions are

equivalent:

a. ϕ is an H-differentiable function, with bounded H-sections and controlled H-
slope;

b. ϕ has round H-sections.
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Moreover, the constants K0 and K1 in (3.4) and in (3.7) are related, and they depend
only on ϕ.

Proof Let a. be true. Let SH
ϕ (ξ0, s) be a bounded H -section, and let R =

max
{
dg(ξ, ξ0) : ξ ∈ SH

ϕ (ξ0, s)
}
. Pick a point ξ ′ such that dg(ξ ′, ξ0) = R; then,

ξ ′ ∈ ∂SH
ϕ (ξ0, s) and ξ ′ = ξ0 ◦ exp v′. From the H -convexity of ϕξ0 on H

n, we have
that

ϕξ0(ξ0 ◦ exp(v′/K1)) ≤
(
1 − 1

K1

)
ϕξ0(ξ0) + 1

K1
ϕξ0(ξ

′) = s

K1
,

where K1 is as in (3.7). Now, for every ξ ∈ Hξ0 such that dg(ξ, ξ0) = R
K1

, by (3.7)
we have

ϕξ0(ξ) ≤ MH
ϕ

(
ξ0,

R

K1

)
≤ K1m

H
ϕ

(
ξ0,

R

K1

)
≤ ϕξ0(ξ

′) ≤ s.

Hence,

B

(
ξ0,

R

K1

)
⊂ SH

ϕ (ξ0, s) ⊂ B (ξ0, R) .

Suppose now that condition b. holds true. Proposition 3.2 entails that ϕ is H -
differentiable. Consider K0 as in (3.4), and fix ξ ∈ H

n and r > 0: we have to prove
(3.7), where K1 is uniform, i.e. it does not depend on ξ and r . Set s = mH

ϕ (ξ, r) and
define

R =
{
R′ > 0 : Bg(ξ, K0R

′) ∩ Hξ ⊂ SH
ϕ (ξ, s) ⊂ Bg(ξ, R′) ∩ Hξ

}
.

Since ϕ has round H -sections,R is not empty. Set R = minR; trivially, R = r , and

ϕ(ξ ◦ exp(K0v)) − ϕ(ξ) − ∇Hϕ(ξ) · (K0v) ≤ s,

for every v ∈ V1, ‖v‖ = R. The two relations above imply that

MH
ϕ (ξ, K0r) ≤ mH

ϕ (ξ, r). (3.8)

Take α ∈ N such that K0 > 2−α, and note that relation (3.5) implies

MH
ϕ (ξ, R1) ≤ CMH

ϕ (ξ, R1/2),

for every R1 > 0, where C depends only on K0. By iterating this relation, we obtain

MH
ϕ (ξ, r) ≤ CMH

ϕ (ξ, 2−1r) ≤ C2MH
ϕ (ξ, 2−2r)

≤ . . . ≤ CαMH
ϕ (ξ, 2−αr) ≤ CαMH

ϕ (ξ, K0r).
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This last inequality, together with (3.8), leads to the assertion, with K1 = C−α in
(3.7). ��

In the next result we investigate the properties of the function mH
ϕ , in order to shed

some light on a finer behaviour of the H -sections.

Proposition 3.3 Let ϕ : H
n → R be an H-differentiable and strictly H-convex func-

tion. For every fixed ξ ∈ H
n, the function r → mH

ϕ (ξ, r) is strictly increasing,

continuous, and it goes to+∞, if r → +∞. Then, the functionmH
ϕ (ξ, ·) : [0,+∞) →

[0,+∞) is one-to-one and onto, and its inverse is defined on [0,+∞).A similar result
holds for the function MH

ϕ .

Proof For every ξ ∈ H
n , r > 0 and v ∈ V1, with ‖v‖ = 1, set

m̂H
ϕ (ξ, v, r) = min{ϕ(ξ ◦ exp rv), ϕ(ξ ◦ exp(−r)v)}.

The function m̂H
ϕ is continuous, and strictly increasing w.r.t. r , since ϕ is strictly

H -convex; thus,

m̂H
ϕ (ξ, v, r) < m̂H

ϕ (ξ, v, r ′), ∀ 0 ≤ r < r ′.

Hence, by the Berge Maximum Theorem (see, for instance, [2]) mH
ϕ is continuous,

and

mH
ϕ (ξ, r) ≤ mH

ϕ (ξ, r ′), ∀ 0 ≤ r < r ′.

Let us show that the previous inequality is strict. The set {v ∈ V1 : ‖v‖ = 1} is com-
pact, and m̂H

ϕ (ξ, ·, ·) is continuous, then there exist v and v′ such that m̂H
ϕ (ξ, v, r) =

mH
ϕ (ξ, r) and m̂H

ϕ (ξ, v′, r ′) = mH
ϕ (ξ, r ′). This implies that

mH
ϕ (ξ, r) = m̂H

ϕ (ξ, v, r) ≤ m̂H
ϕ (ξ, v′, r) < m̂H

ϕ (ξ, v′, r ′) = mH
ϕ (ξ, r ′).

Let us show that mH
ϕ (ξ, ·) is unbounded, for every ξ. Suppose, by contradiction,

that there exists L = L(ξ) > 0 such that mH
ϕ (ξ, r) ≤ L for every r ≥ 0. From the

continuity of the function v → m̂H
ϕ (ξ, v, r), for every r there exists vr , with ‖vr‖ = 1,

such that mH
ϕ (ξ, r) = m̂H

ϕ (ξ, vr , r). Let rn → +∞; then, there exists {vrnk } such that
vrnk → v. We have that

lim
k→+∞ m̂H

ϕ (ξ, vrnk , rnk ) = lim
k→+∞ m̂H

ϕ (ξ, v, rnk ) = +∞,

contradicting the assumption that mH
ϕ (ξ, r) = m̂H

ϕ (ξ, vr , r) ≤ L for every r > 0. ��
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4 Engulfing Property for H-Sections of H-Convex Functions

This section is devoted to the study of the engulfing property E(H , K ) for the H -
sections of an H -convex function. Our notion is different when compared with the
one introduced by Capogna and Maldonado, and it generalizes the usual notion in
the literature (see for example [19]); however, we will see that these notions are
equivalent (see Proposition 4.2). In the second part of the section we prove that a
sufficient condition for a function to satisfy the engulfing property E(H , K ) is to have
the round H -sections property, or, equivalently, the controlled H -slope (see Theorem
3.1). Finally, we will show, with an example, that the previous mentioned condition is
only sufficient.

Let us start with our notion of engulfing for H -convex functions defined in H
n .

Definition 4.1 Let ϕ : H
n → R be an H -convex function. We say that ϕ satisfies the

engulfing property E(H , K ) (shortly, ϕ ∈ E(H , K )) if there exists K > 1 such that,
for any ξ ∈ H

n and s > 0, if ξ ′ ∈ SH
ϕ (ξ, p, s) with p ∈ ∂Hϕ(ξ), then

SH
ϕ (ξ, p, s) ∩ Hξ ′ ⊂ SH

ϕ (ξ ′, q, Ks) ∩ Hξ ,

for every q ∈ ∂Hϕ(ξ ′).

As a matter of fact, as mentioned previously, in [13] a slightly different definition of
engulfing is investigated in the framework of Carnot groups; if G = H

n, it can be
stated as follows:

{∃K > 1 : for every ξ, ξ ′ ∈ H
n and s > 0,

if ξ ′ ∈ SH
ϕ (ξ, s), then ξ ∈ SH

ϕ (ξ ′, Ks)
(engH )

(we will refer to (engH )K in case the constant K plays a role). Trivially, ϕ ∈
E(H , K ) implies that ϕ satisfies (engH )K . The condition (engH ) is essentially one-
dimensional, as proved in the next

Proposition 4.1 (see [13]). Let ϕ : H
n → R be a strictly H-convex and H-

differentiable function. The functionϕ satisfies (engH )K if and only if for every ξ ∈ H
n

and v ∈ V1 the function ϕξ,v : R → R satisfies condition ii. in Theorem 2.1.

The following characterization provides an H
n-version of the result in Theorem

2.1:

Proposition 4.2 Let ϕ : H
n → R be a strictly H-convex function. The following are

equivalent:

i. ϕ satisfies the engulfing property E(H , K ), for some K > 1;
ii. ϕ satisfies condition (engH )K ′ , for some K ′ > 1;
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iii. there exists a constant K ′′ > 1 such that, for any ξ ∈ H
n, ξ ′ ∈ Hξ , for any

p ∈ ∂Hϕ(ξ) and q ∈ ∂Hϕ(ξ ′),

K ′′ + 1

K ′′
(
ϕ(ξ ′) − ϕ(ξ) − p · (Pr1(ξ

′) − Pr1(ξ))
)

≤ (q − p) · (Pr1(ξ
′) − Pr1(ξ))

≤ (K ′′ + 1)
(
ϕ(ξ ′) − ϕ(ξ) − p · (Pr1(ξ

′) − Pr1(ξ))
)
.

In particular, if any of the conditions above holds, ϕ is H-differentiable.

Proof Trivially, i. implies ii., and one can take K ′ = K . Let us show that ii. implies
i. Let ξ ′ = ξ ◦ exp v be a point in SH

ϕ (ξ, p, s), and consider the convex function
ϕ̂ξ,v : R → R defined in (3.3). Note that

SH
ϕ (ξ, p, s) ∩ Hξ ′ = {ξ ◦ exp sv : s ∈ Sϕ̂ξ,v (0, p · v, s)},

and the function ϕ̂ξ,v satisfies condition ii. in Th. 2.1 with constant K ′. From Theorem
1 in [11], ϕ̂ξ,v ∈ C1(R). Since this holds for every ξ, v, from Remark 3.1 ϕ is H -
differentiable everywhere and ∂Hϕ(ξ) = {∇Hϕ(ξ)}. Moreover, from Theorem 5.1 in
[14], the function ϕ̂ξ,v satisfies the engulfing condition with constant 2K ′(K ′ + 1).
This is equivalent to say that

{α ∈ R : ϕ̂ξ,v(α) − ϕ̂ξ,v(0) − ϕ̂′
ξ,v(0)α < s}

⊂ {α ∈ R : ϕ̂ξ,v(α) − ϕ̂ξ,v(1) − ϕ̂′
ξ,v(1)(α − 1) < 2K ′(K ′ + 1)s}. (4.1)

From (4.1), we get that

{α ∈ R : ϕ(ξ ◦ expαv) − ϕ(ξ) − ∇Hϕ(ξ) · vα < s}
⊂ {α ∈ R : ϕ(ξ ◦ expαv) − ϕ(ξ ◦ exp v) − ∇Hϕ(ξ ◦ exp v) · v(α − 1) < 2K ′(K ′ + 1)s},

i.e., ϕ is in E(H , 2K ′(K ′ + 1)).
In order to prove that ii. implies iii., let ξ ′ = ξ ◦ exp v and consider the convex

function ϕ̂ξ,v. Note that p · v ∈ ∂ϕ̂ξ,v(0) and q · v ∈ ∂ϕ̂ξ,v(1). Then, by applying
Proposition 2.1 in [11], we have that iii. holds with K ′′ = K ′. To conclude, let us
show that iii. implies ii. Take ξ ′ = ξ ◦ exp v ∈ SH

ϕ (ξ, p, s), where p ∈ ∂Hϕ(ξ), and
let q ∈ ∂Hϕ(ξ ′). Then,

ϕ(ξ) − ϕ(ξ ◦ exp v) − q · (−v) ≤ K ′′

K ′′ + 1
(q − p) · v.

The second inequality in iii. gives

(p − q) · (−v) ≤ (K ′′ + 1)(ϕ(ξ ◦ exp v) − ϕ(ξ) − p · v) ≤ (K ′′ + 1)s.
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Then,

ϕ(ξ) − ϕ(x ◦ exp v) − q · (−v) ≤ K ′′s,

thus, ξ ∈ SH
ϕ (ξ ◦ exp v, q, K ′′s), i.e., condition (engH )K ′′ is fulfilled. ��

Let us recall that a set-valued map T : H
n → P(V1) is said to be H -monotone if,

for all ξ ∈ H
n, ξ ′ ∈ Hξ , p ∈ T (ξ), q ∈ T (ξ ′), then

(q − p) · (Pr1(ξ
′) − Pr1(ξ)) ≥ 0

(here V1 ∼= R
2n) In particular, if ϕ is an H -convex function, then the H -subdifferential

map ∂Hϕ is an H -monotone set-valuedmap (see [10]). The property iii. above requires,
in fact, a stronger control on the H -monotonicity, both from below and from above.

Let us now state the following crucial result, that provides a sufficient condition
for E(H , K ) via the round H -sections property; the relationship between round H -
sections, or, equivalently, controlled H -slope, and the engulfing property corresponds
to the similar one in R

n , for n ≥ 2:

Theorem 4.1 If ϕ : H
n → R is an H-convex function with round H-sections, then ϕ

satisfies the engulfing property E(H , K ), where K depends only on K0 in (3.4).

Proof Since ϕ has round H -sections, Proposition 3.2 implies that ϕ is strictly H -
convex and H -differentiable. Let ξ ′ ∈ SH

ϕ (ξ, s) be such that ξ ′ = ξ ◦ exp(r ′v) for
some v in V1, with ‖v‖ = 1 and r ′ > 0; we will prove that ξ ∈ SH

ϕ (ξ ′, Ks) where K
depends only on K0 in (3.4).

Let R be such that

Bg(ξ, K0R) ∩ Hξ ⊂ SH
ϕ (ξ, s) ⊂ Bg(ξ, R) ∩ Hξ . (4.2)

Since SH
ϕ (ξ, s) is bounded, let us consider

r∂ = max
{
r ≥ 0 : ξ ◦ exp(rv) ∈ SH

ϕ (ξ, s)
}

, ξ ∂ = ξ ◦ exp(r∂v) ∈ ∂SH
ϕ (ξ, s).

Hence,
K0R ≤ r∂ ≤ R, (4.3)

and 0 < r ′ ≤ r∂ . From the H -monotonicity of the map ξ → ∂Hϕ(ξ) we have that

0 ≤ (∇Hϕ(ξ ′) − ∇Hϕ(ξ)
) · v ≤

(
∇Hϕ(ξ∂) − ∇Hϕ(ξ)

)
· v. (4.4)

Let us introduce the function � : R → R defined by

�(α) = ϕ̂ξ,v(α), ∀α ∈ R;
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this function is strictly convex, with �(0) = �′(0) = 0. Let us consider the function
� : R → R defined by

�(α) = �(r∂ ) + �′(r∂ )(α − r∂ ), ∀α ∈ R;

clearly, it represents the tangent to the graph of � at (r∂ ,�(r∂ )) with �(r∂ ) > 0 and
�′(r∂ ) > 0; hence we have

�(α) = ϕ(ξ ◦ exp(r∂v)) − ϕ(ξ) − ∇Hϕ(ξ) · vr∂ +
+

(
∇Hϕ(ξ ◦ exp(r∂v)) − ∇Hϕ(ξ)

)
· v(α − r∂ )

= ϕ(ξ ◦ exp(αv)) − ϕ(ξ) − ∇Hϕ(ξ) · vα +
−

(
ϕ(ξ ◦ exp(αv)) − ϕ(ξ ◦ exp(r∂v)) − ∇Hϕ(ξ ◦ exp(r∂v)) · v(α − r∂ )

)

Since ϕ is H -convex, the previous equalities and (3.2) give

�(α) ≥
(
∇Hϕ(ξ∂) − ∇Hϕ(ξ)

)
· v(α − r∂ ), ∀α (4.5)

�(α) ≤ ϕξ (ξ ◦ exp(αv)), ∀α (4.6)

From (4.4) and (4.5) we get

(∇Hϕ(ξ ′) − ∇Hϕ(ξ)
) · v ≤

(
∇Hϕ(ξ∂) − ∇Hϕ(ξ)

)
· v ≤ �(2r∂ )

r∂
.

The inequality above, together with (4.3) and (4.6), give

(∇Hϕ(ξ ′) − ∇Hϕ(ξ)
) · v ≤ ϕξ (ξ ◦ exp(2r∂v))

K0R
.

The H -convexity of ϕ and (4.3) imply that ϕξ (ξ ◦ exp(2r∂v)) ≤ ϕξ (ξ ◦ exp(2Rv));
hence we obtain

(∇Hϕ(ξ ′) − ∇Hϕ(ξ)
) · v ≤ ϕξ (ξ ◦ exp(2Rv))

K0R
. (4.7)

Let us consider α ∈ N such that K0 > 2−α. By iterating relation (3.5), we obtain

ϕξ (ξ ◦ exp(2Rv)) ≤ Cϕξ (ξ ◦ exp(Rv))

≤ C1+αϕξ (ξ ◦ exp(R2−αv)) ≤ C1+αϕξ (ξ ◦ exp(K0Rv)),

where C depends only on K0. The previous inequality, and relations (4.2) and (4.7),
give

(∇Hϕ(ξ ′) − ∇Hϕ(ξ)
) · v ≤ C1+α s

K0R
. (4.8)
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At this point, since SH
ϕ (ξ, s) is open, there exists ξ̃ = ξ ◦ exp(r̃v) ∈ SH

ϕ (ξ, s) with

r̃ < 0. Taking into account that ξ ′ ∈ SH
ϕ (ξ, s) and ξ̃ ∈ SH

ϕ (ξ, s), and using (4.8) and
(4.2), we obtain

ϕ(ξ̃ ) − ϕ(ξ ′) − ∇Hϕ(ξ ′) · (Pr1(ξ̃ ) − Pr1(ξ
′)) =

= ϕ(ξ̃ ) − ϕ(ξ) − ∇Hϕ(ξ) · (Pr1(ξ̃ ) − Pr1(ξ)) +
− (

ϕ(ξ ′) − ϕ(ξ) − ∇Hϕ(ξ) · (Pr1(ξ
′) − Pr1(ξ))

) +
− (∇Hϕ(ξ ′) − ∇Hϕ(ξ)

) · (Pr1(ξ̃ ) − Pr1(ξ
′))

< s + (∇Hϕ(ξ ′) − ∇Hϕ(ξ)
) · v(r ′ − r̃)

≤ s

(
1 + 2C1+α

K0

)
.

This implies that ξ̃ ∈ SH
ϕ (ξ ′, Ks), with K = 1 + 2C1+α

K0
: since ξ belongs to the

horizontal segment which joins ξ̃ and ξ ′, and since SH
ϕ (ξ ′, Ks) is H -convex, then

ξ ∈ SH
ϕ (ξ ′, Ks). By Proposition 4.2 the assertion is proved. ��

The following example is crucial in order to shed some light on the relationship
between round sections and engulfing; indeed, it shows that the converse of the previous
theorem fails. The idea is taken from an example due to Wang (see [24]) and set in
R
2; we adapt his idea to the case of the first Heisenberg group H.

Example 4.1 Consider the following differentiable and strictly convex function u :
R
2 → R,

u(x, y) =

⎧
⎪⎨

⎪⎩

x4 + 3y2

2x2
|y| ≤ |x |3

1

2
x2|y|2/3 + 2|y|4/3 |y| > |x |3.

(4.9)

The Monge-Ampère measure μu (we recall that μu is defined by μu(E) = |∂u(E)|
for every Borel set E ⊂ R

2) is absolutely continuous with respect to the Lebesgue
measure | · |, and it verifies the condition μ∞, i.e. for any δ1 ∈ (0, 1) there exists
δ2 ∈ (0, 1) such that: for every section Su(z, s), with z ∈ R

2, and for every Borel set
B ⊂ Su(z, s),

|B|
|Su(z, s)| < δ2 ⇒ μu(B)

μu(Su(z, s))
< δ1

(see Definition 3.7 in [21]). This condition μ∞ is stronger than the (DC)-doubling
property (see, for example, relation (3.1.1) in [19]), i.e., there exist constantsα ∈ (0, 1)
and C > 1 such that

μu(Su(z, s)) ≤ Cμu(αSu(z, s)),

for every z, s > 0 (here αSu(z, s) denotes the open convex set obtained by α-
contraction of Su(z, τ ) with respect to its center of mass). In [20] and [17] it was
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shown that the (DC)-doubling property of the measure μu is equivalent to the engulf-
ing property of the function u. Therefore, u satisfies the engulfing property.

Since the second derivative of u w.r.t. x2 is unbounded near the origin, so is ‖D2u‖;
thus, u is not quasiuniformly convex (see Theorem 7.1-i. and [21] for further details).
However, a simpler argument can be advanced to prove that u is not quasiuniformly
convex, that is one can show that u has not controlled slope in (2.12): in order to do
that, we only remark that, taking into account that u(0, 0) = 0 and ∇u(0, 0) = (0, 0),
we have, for large r ,

mu((0, 0), r) = min
{z∈R2: ‖z‖=r}

u(z) ≤ ϕ(0, r) = 2r4/3

Mu((0, 0), r) = max
{z∈R2: ‖z‖=r}

u(z) ≥ ϕ(r , 0) = r4.

Now let us consider the function ϕ : H → R defined by ϕ(x, y, t) = u(x, y), for all
(x, y, t) ∈ H. This function ϕ is R

3-convex, and hence H -convex. Since

mu((0, 0), r) = mH
ϕ ((0, 0, 0), r), Mu((0, 0), r) = MH

ϕ ((0, 0, 0), r).

ϕ has not controlled H -slope, and hence has not round H -sections. However, since

(x, y) ∈ Su((x0, y0), s) ⇐⇒ (x, y, t) ∈ SH
ϕ ((x0, y0, t0), s),

it is easy to see that ϕ enjoys the engulfing property.

5 H
nH
n

H
n-Sections of H-Convex Functions and Their Engulfing Properties

In this section we will present our new definition of section in H
n . First of all, we will

prove that these H
n-sections are full-dimensional, i.e., they contain a Korányi-Cygan

ball. This allows to construct a topology in H
n, as we will see in the next Sect. 6. In

the second part, we introduce the condition of engulfing E(Hn, K ) for these new H
n-

sections. It will not be a surprise that ϕ ∈ E(Hn, K ) implies that ϕ ∈ E(H , K ), while
the converse implication is very hard and mysterious (at least to us). In order to shed
some light on this, let us focus our attention on the functions having round H -sections,
or, equivalently, controlled H -slope. As we will see, some technical estimates allow
us to prove the first part of our main result in Theorem 1.1.

Let us start with our new notion of H
n-section:

Definition 5.1 Let ϕ : H
n → R be an H -convex function and let us fix ξ0 ∈ H

n . For
a given s > 0, an H

n-section of ϕ at height s, with p0 ∈ ∂Hϕ(ξ0), is the set

S
H
n

ϕ (ξ0, p0, s) =
⋃

ξ1 ∈ SH
ϕ (ξ0, p0, s), p1 ∈ ∂Hϕ(ξ1),

ξ2 ∈ SH
ϕ (ξ1, p1, s), p2 ∈ ∂Hϕ(ξ2)

SH
ϕ (ξ2, p2, s). (5.1)
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In case ϕ is H -differentiable at ξ0, we will denote the H
n-section at ξ0 with height s

by S
H
n

ϕ (ξ0, s), for short.

Let us spend a few words on the definition above. Lemma 1.40 in the fundamental
book by Folland and Stein [16] guarantees that, in every stratified group (G, ◦) with
homogeneous norm ‖ · ‖G, there exists a constant C > 0 and an integer k ∈ N such
that any ξ ∈ G can be expressed as ξ = ξ1 ◦ ξ2 ◦ . . . ◦ ξk , with ξi ∈ exp(V1) and
‖ξi‖G ≤ C‖ξ‖G, for every i . If G = H

n, the mentioned k is exactly 3, for every
n ≥ 1. In other words, every point ξ ∈ H

n can be reached from the origin e following
a path of three consecutive horizontal segments. The idea behind Definition 5.1 takes
inspiration from this result, in view of providing a family of sets with nonempty
interior. Let us define, for every ξ ∈ H

n and r > 0,

B̃(ξ, r) = {
ξ ′ ∈ H

n : ξ ′ = ξ ◦ exp(v1) ◦ exp(v2) ◦ exp(v3); vi ∈ V1, ‖vi‖ ≤ r
}
.

(5.2)
Clearly, δλ

(
B̃(e, r)

) = B̃(e, λr), and the associated distance d̃ in H
n is left-invariant

and homogeneous; hence, it is bi-Lipschitz equivalent to dg and to any other left-
invariant and homogeneous distance in H

n . Moreover, due to the Folland–Stein
Lemma, we have that, for every ξ ∈ H

n and r > 0,

B̃(ξ, r) ⊂ Bg(ξ, 3r) ⊂ B̃(ξ, 3Cr), (5.3)

where C is the constant in the mentioned lemma.
Let us prove thefirst fundamental property of theH

n-sections, namelyS
H
n

ϕ (ξ0, p0, s)
is full-dimensional.

Proposition 5.1 Let ϕ : H
n → R be an H-convex function. Then, for every ξ0 ∈

H
n, p0 ∈ ∂Hϕ(ξ0) and s > 0, there exists r > 0 such that

Bg(ξ0, r) ⊂ S
H
n

ϕ (ξ0, p0, s).

Proof Without loss of generality, we set ξ0 = e. Since the H -subdifferential map ∂Hϕ

brings compact sets into compact sets (see, for instance, Proposition 2.1 in [4]), there
exists a positive constant R such that

∂Hϕ(B̃(e, 1)) ⊂ BR
2n

(0, R). (5.4)

Moreover, since ϕ is locally Lipschitz (see Theorem 1.2 in [5]), there exists a positive
constant L such that

|ϕ(ξ) − ϕ(ξ ′)| ≤ Ldg(ξ, ξ ′), ∀ξ, ξ ′ ∈ B̃(e, 1). (5.5)

Set

r = min

{
s

(L + R)C
,
1

C

}
,
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where C is the constant in the Folland–Stein Lemma. We will show that Bg(e, r) ⊂
S
H
n

ϕ (e, p0, s).

Take any ξ ∈ Bg(e, r); then, ξ = exp(v1)◦exp(v2)◦exp(v3) for suitable {vi }3i=1 ⊂
V1 such that ‖vi‖ ≤ C‖ξ‖g, for i = 1, 2, 3. Set

ξ1 := exp(v1), ξ2 := ξ1 ◦ exp(v2), ξ = ξ3 := ξ2 ◦ exp(v3).

Note that ξi ∈ B̃(e, r) for i = 1, 2, 3. Then, for every pi ∈ ∂Hϕ(ξi ) (i = 1, 2), by
(5.4) and (5.5) we have

ϕ(ξ) − ϕ(ξ2) − p2 · v3 ≤ (L + R) ‖v3‖ < s, (5.6)

and
ϕ(ξ2) − ϕ(ξ1) − p1 · v2 ≤ (L + R) ‖v2‖ < s. (5.7)

Since ϕ(ξ1) − ϕ(e) − p0 · v1 ≤ (L + R) ‖v1‖ < s, from (5.6) and (5.7) we get the
claim. ��

Starting from these H
n-sections, we introduce the following engulfing property:

Definition 5.2 Let ϕ : H
n → R be an H -convex function. We say that ϕ satisfies the

engulfing property E(Hn, K ) if there exists K > 1 such that, for any ξ ∈ H
n, p ∈

∂Hϕ(ξ) and s > 0, if ξ ′ ∈ S
H
n

ϕ (ξ, p, s), then

S
H
n

ϕ (ξ, p, s) ⊂ S
H
n

ϕ (ξ ′, q, Ks),

for every q ∈ ∂Hϕ(ξ ′).

The engulfing property E(H , K ) is related to this engulfing property E(Hn, K ) as
well as condition (engH ) is related to the following condition:

{∃K > 1 : for every ξ ∈ H
n, p ∈ ∂Hϕ(ξ) and s > 0

if ξ ′ ∈ S
H
n

ϕ (ξ, p, s), then ξ ∈ S
H
n

ϕ (ξ ′, q, K ′s) for every q ∈ ∂Hϕ(ξ ′).
(engHn )

We will refer to (engHn )K in case we need to specify the constant K in the previous
condition.

It is clear that

Remark 5.1 If ϕ satisfies the engulfing property E(Hn, K ), then condition (engHn )K
holds.

The converse of the previous remark is a delicate question: the aim of this section is,
essentially, to prove that, under further conditions on ϕ, the converse of Remark 5.1
holds.

The relationship between conditions (engH ) and (engHn ) is the following:
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Proposition 5.2 Let ϕ : H
n → R be an H-convex function. Then ϕ satisfies condition

(engH )K if and only if ϕ satisfies condition (engHn )K .

Proof Ifϕ satisfies (engHn )K , it is clear that (engH )K holds. Let us prove the converse.
Take any ξ ′ ∈ S

H
n

ϕ (ξ, p, s), i.e. ξ ′ = ξ ◦ exp(v1) ◦ exp(v2) ◦ exp(v3), with vi ∈ V1
and with

ξ1 := ξ ◦ exp(v1) ∈ SH
ϕ (ξ, p, s),

ξ2 := ξ ◦ exp(v1) ◦ exp(v2) ∈ SH
ϕ (ξ1, p1, s), with p1 ∈ ∂Hϕ(ξ1),

ξ ′ ∈ SH
ϕ (ξ2, p2, s), with p2 ∈ ∂Hϕ(ξ2);

we have to show that ξ ∈ S
H
n

ϕ (ξ ′, q, K ′s), for every q ∈ ∂Hϕ(ξ ′). The assumption
implies

ξ ∈ SH
ϕ (ξ1, p1, K

′s), ∀p1 ∈ ∂Hϕ(ξ1),

ξ1 ∈ SH
ϕ (ξ2, p2, K

′s), ∀p2 ∈ ∂Hϕ(ξ2),

ξ2 ∈ SH
ϕ (ξ ′, q, K ′s), ∀q ∈ ∂Hϕ(ξ ′).

Hence, for every q ∈ ∂Hϕ(ξ ′),

ξ ∈
⋃

ξ2 ∈ SH
ϕ (ξ ′, q, K ′s), p2 ∈ ∂Hϕ(ξ2),

ξ1 ∈ SH
ϕ (ξ2, p2, K ′s), p1 ∈ ∂Hϕ(ξ1)

SH
ϕ (ξ1, p1, K

′s) = S
H
n

ϕ (ξ ′, q, K ′s).

��
Clearly, if ϕ is a strictly H -convex function satisfying the engulfing property

E(Hn, K ), then Remark 5.1, Proposition 5.2 and Proposition 4.2 imply that ϕ is
H -differentiable.

The next result will be crucial to our purposes:

Proposition 5.3 Let ϕ : H
n → R be an H-differentiable and strictly H-convex func-

tion. Then, for every ξ ∈ H
n, r > 0, we have

⋃

ξ1 ∈ SH
ϕ (ξ,mH

ϕ (ξ, r))
ξ2 ∈ SH

ϕ (ξ1,mH
ϕ (ξ1, r))

SH
ϕ (ξ2,m

H
ϕ (ξ2, r)) ⊂ B̃(ξ, r) (5.8)

⊂
⋃

ξ1 ∈ SH
ϕ (ξ, MH

ϕ (ξ, r))
ξ2 ∈ SH

ϕ (ξ1, MH
ϕ (ξ1, r))

SH
ϕ (ξ2, M

H
ϕ (ξ2, r)). (5.9)

Let us emphasize that, despite its appearance, the first set in (5.8) is not an H
n-

section, since mH
ϕ (ξ1, r), for ξ1 ∈ SH

ϕ (ξ,mH
ϕ (ξ, r)), and mH

ϕ (ξ2, r), for ξ2 ∈
SH
ϕ (ξ1,mH

ϕ (ξ1, r)), are not fixed values. A similar comment holds for the set in (5.9).
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Proof of Proposition 5.3 By the inclusions in (3.6), we easily have

⋃

ξ1 ∈ SH
ϕ (ξ,mH

ϕ (ξ, r))
ξ2 ∈ SH

ϕ (ξ1,mH
ϕ (ξ1, r))

SH
ϕ (ξ2,m

H
ϕ (ξ2, r)) ⊂

⋃

ξ1 ∈ SH
ϕ (ξ,mH

ϕ (ξ, r))
ξ2 ∈ SH

ϕ (ξ1,mH
ϕ (ξ1, r))

Bg(ξ2, r) ∩ Hξ2

⊂
⋃

ξ1 ∈ Bg(ξ, r) ∩ Hξ

ξ2 ∈ Bg(ξ1, r) ∩ Hξ1

Bg(ξ2, r) ∩ Hξ2

⊂
⋃

ξ1 ∈ Bg(ξ, r) ∩ Hξ

ξ2 ∈ Bg(ξ1, r) ∩ Hξ1

SH
ϕ (ξ2, M

H
ϕ (ξ2, r))

⊂
⋃

ξ1 ∈ SH
ϕ (ξ, MH

ϕ (ξ, r))
ξ2 ∈ SH

ϕ (ξ1, MH
ϕ (ξ1, r))

SH
ϕ (ξ2, M

H
ϕ (ξ2, r))

for every ξ ∈ H
n, r > 0. Hence the assertion holds. ��

In order to prove our main result concerning the engulfing property of the H
n-

sections, an extension to the Heisenberg case of the inequalities (2.8), (2.9) and (2.11)
turns out to be quite useful:

Proposition 5.4 Let ϕ be a strictly H-convex function in E(H , K ). Then, for every
r ≥ 0 and ξ ∈ H

n, we have

MH
ϕ (ξ, 2r) ≤ B1M

H
ϕ (ξ, r), (5.10)

mH
ϕ (ξ, 2r) ≤ B2m

H
ϕ (ξ, r), (5.11)

B4m
H
ϕ (ξ, r) ≤ mH

ϕ (ξ, 2r), (5.12)

where B1, B2 and B4 depend only on K , and Bi > 1.

Proof Proposition 4.2 implies that ϕ is H -differentiable and, if we consider its restric-
tion to any horizontal segment, we obtain a strictly convex and differentiable function.
To be precise, for every ξ ∈ H

n and v ∈ V1 with ‖v‖ = 1 the function ϕ̂ξ,v : R → R,
defined as in (3.3), satisfies condition ii. in Th. 2.1. By (2.8) in Remark 2.1 we obtain

Mϕ̂ξ,v (0, 2r) ≤ B1Mϕ̂ξ,v (0, r),

where B1 depends only on K . Hence we have

max{w∈V1: w=±2rv} (ϕ(ξ ◦ expw) − ϕ(ξ) − ∇Hϕ(ξ) · w) ≤
≤ B1 max{w∈V1: w=±rv} (ϕ(ξ ◦ expw) − ϕ(ξ) − ∇Hϕ(ξ) · w) ;
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taking the maximum w.r.t. to v, with ‖v‖ = 1, we obtain (5.10).
A similar proof, via inequality (2.9) in Remark 2.1 and inequality (2.11) in Propo-

sition 2.1, shows (5.11) and (5.12), respectively. ��
In the final part of this section we will prove our main result concerning the rela-

tionship between round H -sections and the engulfing property of theH
n-sections. The

proof will be quite technical, deserving a few previous estimates.
Let ϕ : H

n → R be an H -convex function with round H -sections (with constant
K0). Then, ϕ ∈ E(H , K ), and has controlled H -slope (with constant K1), where both
K , K1 depend on K0. Denote by γ any positive integer such that

K1 ≤ Bγ
4 . (5.13)

Thus, from (3.7), and by iterating inequality (5.12), we obtain

MH
ϕ (ξ, r) ≤ K1m

H
ϕ (ξ, r) ≤ K1

Bγ
4

mH
ϕ (ξ, 2γ r) ≤ mH

ϕ (ξ, 2γ r).

Then, we have that
MH

ϕ (ξ, r) ≤ mH
ϕ (ξ, 2γ r), (5.14)

for every r > 0 and ξ ∈ H
n , where γ > 1 depends only on K0 in (3.4).

The next proposition holds:

Proposition 5.5 Let ϕ : H
n → R be a function with round H-sections (with K0 as in

(3.4)). Then, there exists a constant C1 > 0 such that, if ξ ′ ∈ SH
ϕ (ξ, s), then

mH
ϕ (ξ ′, r) ≤ C1m

H
ϕ (ξ, r),

for r such that s = mH
ϕ (ξ, r). The constant C1 depends only on K0.

Proof Since ϕ has round H -sections, it is strictly H -convex, H -differentiable and it
satisfies the engulfing property E(H , K ), where K depends only on K0. Let ξ ′ =
ξ ◦ exp v ∈ SH

ϕ (ξ, s), and set r such that s = mH
ϕ (ξ, r): clearly,

ξ ′ ∈ SH
ϕ (ξ,mH

ϕ (ξ, r)) ⊂ SH
ϕ (ξ, MH

ϕ (ξ, r)) ⊂ SH
ϕ (ξ, MH

ϕ (ξ, 2r)).

Moreover, since ξ ′ ∈ SH
ϕ (ξ,mH

ϕ (ξ, r)), by (3.6) we have that

ξ ′ ◦ exp(±rv/‖v‖) ∈ Bg(ξ, 2r) ∩ Hξ ⊂ SH
ϕ (ξ, MH

ϕ (ξ, 2r)).

Furthermore, since ϕ ∈ E(H , K ), we have that ξ ′ ∈ SH
ϕ (ξ, MH

ϕ (ξ, 2r)) gives

SH
ϕ (ξ, MH

ϕ (ξ, 2r)) ∩ Hξ ′ ⊂ SH
ϕ (ξ ′, K ′MH

ϕ (ξ, 2r)) ∩ Hξ .
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This implies ξ ′ ◦ exp(±rv/‖v‖) ∈ SH
ϕ (ξ ′, KMH

ϕ (ξ, 2r)). Now, by (5.10) and (3.4),
we have

ξ ′ ◦ exp(±rv/‖v‖) ∈ SH
ϕ (ξ ′, KMH

ϕ (ξ, 2r)) ⊂ SH
ϕ (ξ ′, K B1M

H
ϕ (ξ, r))

⊂ SH
ϕ (ξ ′, K B1K0m

H
ϕ (ξ, r)),

where B1 depends only on K0. Then,

mH
ϕ (ξ ′, r) ≤ ϕ(ξ ′ ◦ exp(±rv/‖v‖)) − ϕ(ξ ′) − ∇Hϕ(ξ ′) · (±rv/‖v‖)

≤ K B1K0m
H
ϕ (ξ, r).

��
A result similar to Proposition 5.5, involving now theH

n-sections S
H
n

ϕ (ξ, s), holds,
but the proof is much more delicate:

Proposition 5.6 Let ϕ : H
n → R be a function with round H-sections (with K0 as in

(3.4)). Then, there exists a constant B5 > 0 such that, if ξ ′ ∈ S
H
n

ϕ (ξ, s), then

mH
ϕ (ξ ′, r) ≤ B5m

H
ϕ (ξ, r), (5.15)

for r such that s = mH
ϕ (ξ, r). The constant B5 depends only on K0.

Proof Since ϕ has round H -sections, it belongs to E(H , K ), where K depends only
on K0, and for every r ≥ 0 and ξ ∈ H

n the inequality (5.12) holds. In addition, by
Proposition 3.3, the function mH

ϕ (ξ, ·) : [0,+∞) → [0,+∞) is invertible.

Take any ξ3 ∈ S
H
n

ϕ (ξ0, s), i.e. ξ1 ∈ SH
ϕ (ξ0, s), ξ2 ∈ SH

ϕ (ξ1, s) and ξ3 ∈ SH
ϕ (ξ2, s),

with s such that s = mH
ϕ (ξ0, r). By Proposition 5.5 and ξ1 ∈ SH

ϕ (ξ0, s), we have

(
mH

ϕ (ξ0, ·)
)−1

(s) ≤
(
mH

ϕ (ξ1, ·)
)−1

(C1s). (5.16)

Similarly, since ξ2 ∈ SH
ϕ (ξ1, s), we have

(
mH

ϕ (ξ1, ·)
)−1

(s) ≤
(
mH

ϕ (ξ2, ·)
)−1

(C1s). (5.17)

Let us prove that there exists a constant C , which depends only on C1 and B4, and
hence on K0, such that

(
mH

ϕ (ξ, ·)
)−1

(C1s) ≤ C
(
mH

ϕ (ξ, ·)
)−1

(s), ∀ξ ∈ H
n . (5.18)

Inequality (5.12) is equivalent to

(
mH

ϕ (ξ, ·)
)−1

(B4s̃) ≤ 2
(
mH

ϕ (ξ, ·)
)−1

(s̃), ∀s̃ ≥ 0;
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by choosing β ∈ N such that C1 ≤ Bβ
4 , iterating the previous inequality and taking

into account that s̃ → (
mH

ϕ (ξ, ·))−1
(s̃) is an increasing function we obtain

(
mH

ϕ (ξ, ·)
)−1

(C1s) ≤ 2β
(
mH

ϕ (ξ, ·)
)−1

(
C1s

Bβ
4

)

≤ 2β
(
mH

ϕ (ξ, ·)
)−1

(s). (5.19)

Hence, (5.18) holds with C = 2β ; now, by (5.16), (5.19) and (5.17), we obtain

(
mH

ϕ (ξ0, ·)
)−1

(s) ≤
(
mH

ϕ (ξ1, ·)
)−1

(C1s)

≤ 2β
(
mH

ϕ (ξ1, ·)
)−1

(s)

≤ 2β
(
mH

ϕ (ξ2, ·)
)−1

(C1s).

A similar argument proves that ξ3 ∈ SH
ϕ (ξ2, s) implies

(
mH

ϕ (ξ0, ·)
)−1

(s) ≤ 22β
(
mH

ϕ (ξ3, ·)
)−1

(C1s).

Now, recalling that s = mH
ϕ (ξ0, r), the previous inequality gives

mH
ϕ (ξ3, 2

−2βr) ≤ C1m
H
ϕ (ξ0, r). (5.20)

Finally, (5.11) and (5.20) implies

mH
ϕ (ξ3, r) ≤ B2β

2 C1m
H
ϕ (ξ3, r) ≤ B2β

2 C1m
H
ϕ (ξ0, r),

and the proof in finished. ��
In order to introduce and prove the main result of the section, we need the following

Lemma 5.1 Let ϕ : H
n → R be an H-convex function with round H-sections.

a. If ξ ′ ∈ SH
ϕ (ξ,mH

ϕ (ξ, r)) for some r > 0, then

mH
ϕ (ξ, r) ≤ mH

ϕ (ξ ′, 21+γ r), (5.21)

with γ as in (5.13);
b. if ξ ′ ∈ SH

ϕ (ξ, MH
ϕ (ξ, r)) for some r > 0, then

MH
ϕ (ξ ′, r) ≤ mH

ϕ (ξ, 22+3γ+γ̃ r), (5.22)

with γ̃ as in (5.27) which depends only on K0.
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Proof Let us consider ξ ′ = ξ ◦ exp v ∈ SH
ϕ (ξ,mH

ϕ (ξ, r)): by (3.6) we have

‖v‖ ≤ r . (5.23)

The H -convexity of ϕ and the H -monotonicity of ∇Hϕ give

ϕ(ξ) − ϕ(ξ ◦ exp v) − ∇Hϕ(ξ ◦ exp v) · v ≥ 0 (5.24)

(∇Hϕ(ξ ◦ exp v) − ∇Hϕ(ξ)) · v
r

‖v‖ ≥ 0; (5.25)

Again the H -convexity of ϕ and (5.23)-(5.25) give

mH
ϕ (ξ, r) ≤ ϕ

(
ξ ◦ exp

(
− v

‖v‖r
))

− ϕ(ξ) − ∇Hϕ(ξ) ·
(

− v

‖v‖r
)

≤ ϕ

(
ξ ◦ exp

(
− v

‖v‖r
))

− ϕ(ξ ◦ exp v)

−∇Hϕ(ξ ◦ exp v) ·
(

−v
r

‖v‖ − v

)

≤ MH
ϕ (ξ ′, 2r).

Therefore (5.21) follows from (5.14).
Let us prove b. Take any ξ ′ ∈ SH

ϕ (ξ, MH
ϕ (ξ, r)); since ϕ ∈ E(H , K ), with K

depending on K0 only (see Theorem 4.1), then ξ ∈ SH
ϕ (ξ ′, KMH

ϕ (ξ, r)). From (5.14)
we have ξ ′ ∈ SH

ϕ (ξ, MH
ϕ (ξ, r)) ⊂ SH

ϕ (ξ,mH
ϕ (ξ, 2γ r)), and (5.21) implies that

KMH
ϕ (ξ, r) ≤ KmH

ϕ (ξ, 2γ r) ≤ KmH
ϕ (ξ ′, 22γ+1r). (5.26)

Now, let γ̃ ∈ N be such that
K ≤ B γ̃

4 . (5.27)

By iterating inequality (5.12) and (5.14), inequality (5.26) gives

KMH
ϕ (ξ, r) ≤ KmH

ϕ (ξ ′, 22γ+1r) ≤ K

B γ̃
4

mH
ϕ (ξ ′, 21+2γ+γ̃ r)

≤ mH
ϕ (ξ ′, 21+2γ+γ̃ r). (5.28)

Hence, ξ ∈ SH
ϕ (ξ ′, KMH

ϕ (ξ, r)) ⊂ SH
ϕ (ξ ′,mH

ϕ (ξ ′, 21+2γ+γ̃ r)). Finally, the inequal-
ities (5.14) and (5.21) imply

MH
ϕ (ξ ′, r) ≤ mH

ϕ (ξ ′, 2γ r) ≤ mH
ϕ (ξ ′, 21+2γ+γ̃ r) ≤ mH

ϕ (ξ, 22+3γ+γ̃ r).

��
We are now in the position to prove the first part of our main result in Theorem 1.1:
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Proof of Theorem 1.1 i Let ϕ : H
n → R be an H -convex function with round H -

sections. Let us prove that ϕ satisfies the engulfing property E(Hn, K ). Fix ξ ∈ H
n

and s > 0. Let us suppose that ξ ′ ∈ S
H
n

ϕ (ξ, s): we have to prove that S
H
n

ϕ (ξ, s) ⊂
S
H
n

ϕ (ξ ′, Ks), where K is a constant which depends only on K0 in (3.4).
Let r be such that s = mH

ϕ (ξ, r). By definition,

S
H
n

ϕ (ξ, s) =
⋃

ξ1 ∈ SH
ϕ (ξ,mH

ϕ (ξ, r))
ξ2 ∈ SH

ϕ (ξ1,mH
ϕ (ξ, r))

SH
ϕ (ξ2,m

H
ϕ (ξ, r)). (5.29)

For every ξ1 ∈ SH
ϕ (ξ,mH

ϕ (ξ, r)), by applying a. in Lemma 5.1, we get

mH
ϕ (ξ, r) ≤ mH

ϕ (ξ1, 2
1+γ r) (5.30)

and, by (5.29), we get

S
H
n

ϕ (ξ, s) ⊂
⋃

ξ1 ∈ SH
ϕ (ξ,mH

ϕ (ξ, r))
ξ2 ∈ SH

ϕ (ξ1,mH
ϕ (ξ1, 21+γ r))

SH
ϕ (ξ2,m

H
ϕ (ξ, r)). (5.31)

For every ξ2 ∈ SH
ϕ (ξ1,mH

ϕ (ξ1, 21+γ r)) with ξ1 ∈ SH
ϕ (ξ,mH

ϕ (ξ, r)), via a. in Lemma
5.1 we get

mH
ϕ (ξ1, 2

1+γ r) ≤ mH
ϕ (ξ2, 2

2+2γ r). (5.32)

Using now (5.30) and (5.32), relation (5.31) becomes

S
H
n

ϕ (ξ, s) ⊂
⋃

ξ1 ∈ SH
ϕ (ξ,mH

ϕ (ξ, r))
ξ2 ∈ SH

ϕ (ξ1,mH
ϕ (ξ1, 21+γ r))

SH
ϕ (ξ2,m

H
ϕ (ξ2, 2

2+2γ r)).

Since γ > 0, we have the following inclusions:

S
H
n

ϕ (ξ, s) ⊂
⋃

ξ1 ∈ SH
ϕ (ξ,mH

ϕ (ξ, 22+2γ r))
ξ2 ∈ SH

ϕ (ξ1,mH
ϕ (ξ1, 22+2γ r))

SH
ϕ (ξ2,m

H
ϕ (ξ2, 2

2+2γ r))

⊂ B̃(ξ, 22+2γ r), (5.33)

where the last inclusion comes from (5.8). Then, using the inclusions in (5.3), we get

S
H
n

ϕ (ξ, s) ⊂ B̃(ξ, 22+2γ r) ⊂ Bg(ξ, 3 22+2γ r)n

⊂ Bg(ξ
′, 3 23+2γ r) ⊂ B̃(ξ ′, 3C23+2γ r), (5.34)
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where C is the constant in the Folland–Stein Lemma. Inclusions (5.9) and (5.34) give

S
H
n

ϕ (ξ, s) ⊂
⋃

ξ3 ∈ SH
ϕ (ξ ′, MH

ϕ (ξ ′, 3C23+2γ r))
ξ4 ∈ SH

ϕ (ξ3, MH
ϕ (ξ3, 3C23+2γ r))

SH
ϕ (ξ4, M

H
ϕ (ξ4, 3C23+2γ r)).

Now, applying twice (5.22) in Lemma 5.1, we have, by the previous inclusion,

S
H
n

ϕ (ξ, s) ⊂
⋃

ξ3 ∈ SH
ϕ (ξ ′, MH

ϕ (ξ ′, 3C23+2γ r))
ξ4 ∈ SH

ϕ (ξ3, MH
ϕ (ξ3, 3C23+2γ r))

SH
ϕ (ξ4, M

H
ϕ (ξ3, 3C25+5γ+γ̃ r))

⊂
⋃

ξ3 ∈ SH
ϕ (ξ ′, MH

ϕ (ξ ′, 3C25+5γ+γ̃ r))
ξ4 ∈ SH

ϕ (ξ3, MH
ϕ (ξ3, 3C25+5γ+γ̃ r))

SH
ϕ (ξ4, M

H
ϕ (ξ3, 3C25+5γ+γ̃ r))

⊂
⋃

ξ3 ∈ SH
ϕ (ξ ′, MH

ϕ (ξ ′, 3C25+5γ+γ̃ r))
ξ4 ∈ SH

ϕ (ξ3, MH
ϕ (ξ ′, 3C27+8γ+2γ̃ r))

SH
ϕ (ξ4, M

H
ϕ (ξ ′, 3C27+8γ+2γ̃ r))

⊂
⋃

ξ3 ∈ SH
ϕ (ξ ′, MH

ϕ (ξ ′, 3C27+8γ+2γ̃ r))
ξ4 ∈ SH

ϕ (ξ3, MH
ϕ (ξ ′, 3C27+8γ+2γ̃ r))

SH
ϕ (ξ4, M

H
ϕ (ξ ′, 3C27+8γ+2γ̃ r))

= S
H
n

ϕ

(
ξ ′, MH

ϕ (ξ ′, 3C27+8γ+2γ̃ r)
)

. (5.35)

Set C̃ = 3C27+8γ+2γ̃ , and take any δ ∈ N such that C̃ ≤ 2δ; clearly, both C̃ and δ

they depend only on K0. Hence, we have the following inclusions:

S
H
n

ϕ (ξ, s) ⊂ S
H
n

ϕ

(
ξ ′, MH

ϕ

(
ξ ′, C̃r

))

⊂ S
H
n

ϕ

(
ξ ′, Bδ

1M
H
ϕ

(
ξ ′, C̃2−δr

))
(by 5.10))

⊂ S
H
n

ϕ

(
ξ ′, Bδ

1M
H
ϕ

(
ξ ′, r

))

⊂ S
H
n

ϕ

(
ξ ′, K1B

δ
1m

H
ϕ

(
ξ ′, r

))
(by (3.7))

⊂ S
H
n

ϕ

(
ξ ′, B5K1B

δ
1m

H
ϕ (ξ, r)

)
(by (5.15))

⊂ S
H
n

ϕ

(
ξ ′, B5K1B

a
1 s

)
.

��
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6 Balls and Quasi-distances via the H
n-Sections of H-Convex

Functions

It is known that there is a deep connection between the existence of a quasi-distance d
on a given set X and the existence of a family of subsets {S(x, s)}{x∈X , s>0} enjoying
the following properties

(P1)
⋂

s>0 S(x, s) = {x}, for every x ∈ X ;
(P2)

⋃
s>0 S(x, s) = X , for every x ∈ X ;

(P3) for each x ∈ X , s → S(x, s) is a non decreasing map;
(P4) there exists a constant H such that, for all y ∈ S(x, s),

S(x, s) ⊂ S(y, Hs), (6.1)

S(y, s) ⊂ S(x, Hs). (6.2)

As a matter of fact, the following result holds:

Lemma 6.1 (see Lemma 1 in [1]) Let X be a set and S : X × R
+ → P(X) be a

set-valued map such that the family {S(x, s)} has the properties (P1)-(P4). Then, the
function d : X × X → [0,+∞) defined by

d(x, y) = inf {s : x ∈ S(y, s), y ∈ S(x, s)}

is a quasi-distance. On the other hand, given a quasi-distance d defined on X, the
family of the d-balls in X satisfies the properties (P1)-(P4).

In particular, in [1] the authors prove that the sections Su(x, r) of a convex function
u : R

k → R satisfying the engulfing property, generate a quasi-distance.
Let us now consider an H -convex function ϕ : H

n → Rwith round H -sections; by
taking all s > 0 and ξ ∈ H

n = R
2n+1 we obtain a family of sets {SH

ϕ (ξ, s)}{ξ∈Hn , s>0}
(the H

n-sections) for which conditions (P1)-(P3) trivially hold; moreover, due to
Theorem 1.1, such family satisfies the engulfing property E(Hn, K ), i.e. condition
(6.1).

The next result shows that the family of H
n-sections satisfies condition (6.2) too:

Theorem 6.1 Let ϕ : H
n → R be an H-convex function with round H-sections. Then,

there exists a constant K̃ , which depends only on K0, such that, if ξ ′ ∈ S
H
n

ϕ (ξ, s),

then S
H
n

ϕ (ξ ′, s) ⊂ S
H
n

ϕ (ξ, K̃ s).

Proof The proof follows the ideas in the proof of Theorem 1.1. Fix ξ ∈ H
n s > 0

and ξ ′ ∈ S
H
n

ϕ (ξ, s); let r be such that s = mH
ϕ (ξ ′, r). Theorem 1.1 guarantees that

ϕ satisfies the engulfing property E(Hn, K ), where K depends only on K0. Hence,
ξ ∈ S

H
n

ϕ (ξ ′, Ks). Proposition 5.6 implies that

mH
ϕ (ξ, r̂) ≤ B5m

H
ϕ (ξ ′, r̂),
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for r̂ such that Ks = mH
ϕ (ξ ′, r̂) (the constant B5 depends only on K0). Since, by

Proposition 3.3, the function r → mH
ϕ (ξ, r) is an increasing function, we obtain

mH
ϕ (ξ, r) ≤ B5m

H
ϕ (ξ ′, r̂) = B5Ks. (6.3)

By definition,
S
H
n

ϕ

(
ξ ′, s

) =
⋃

ξ1 ∈ SH
ϕ (ξ ′,mH

ϕ (ξ ′, r))
ξ2 ∈ SH

ϕ (ξ1,mH
ϕ (ξ ′, r))

SH
ϕ (ξ2,m

H
ϕ (ξ ′, r)). (6.4)

Using exactly the same arguments as in the proof of Theorem 1.1, that allow us to
pass from (5.29) to (5.33) (essentially, by exchanging the role of ξ and ξ ′), we obtain

S
H
n

ϕ

(
ξ ′, s

) ⊂ B̃(ξ ′, 22+2γ r) ⊂ Bg(ξ
′, 3 22+2γ r). (6.5)

Now, taking into account the definition of γ̃ in (5.27) and iterating inequality (5.12),
we get

Ks = KmH
ϕ (ξ ′, r) ≤ K

B γ̃
4

mH
ϕ (ξ ′, 2γ̃ r) ≤ mH

ϕ (ξ ′, 2γ̃ r). (6.6)

Since ξ ∈ S
H
n

ϕ (ξ ′, Ks), we obtain

S
H
n

ϕ

(
ξ ′, Ks

) ⊂
⋃

ξ1 ∈ SH
ϕ (ξ ′,mH

ϕ (ξ ′, 2γ̃ r))
ξ2 ∈ SH

ϕ (ξ1,mH
ϕ (ξ ′, 2γ̃ r))

SH
ϕ (ξ2,m

H
ϕ (ξ ′, 2γ̃ r)). (6.7)

Using exactly the same arguments that allow us to pass from (6.4) to (6.5) (essentially,
by exchanging the role of r with 2γ̃ r ), we obtain

ξ ∈ B̃(ξ ′, 22+2γ+γ̃ r) ⊂ Bg(ξ
′, 3 22+2γ+γ̃ r). (6.8)

Now, taking into account that γ̃ > 0, relations (6.5) and (6.8) give

S
H
n

ϕ

(
ξ ′, s

) ⊂ Bg(ξ
′, 3 22+2γ r) ⊂ Bg(ξ, 3 23+2γ+γ̃ r) ⊂ B̃(ξ, 3C23+2γ+γ̃ r), (6.9)

where C in the previous inclusions is the constant in the Folland–Stein Lemma. Using
the same arguments that allow us to pass from (5.34) to (5.35) (essentially, by replacing
3C23+2γ r with 3C23+2γ+γ̃ r ), we obtain

S
H
n

ϕ

(
ξ ′, s

) ⊂ S
H
n

ϕ

(
ξ, MH

ϕ (ξ, 3C27+8γ+3γ̃ r)
)

.
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Set Ĉ = 3C27+8γ+3γ̃ and take δ̂ ∈ N such that Ĉ ≤ 2δ̂; clearly, Ĉ and δ̂ depend only
on K0. We have the following inclusions:

S
H
n

ϕ

(
ξ ′, s

) ⊂ S
H
n

ϕ

(
ξ, MH

ϕ

(
ξ, Ĉr

))

⊂ S
H
n

ϕ

(
ξ, B δ̂

1M
H
ϕ

(
ξ, Ĉ2−δ̂r

))
(by 5.10))

⊂ S
H
n

ϕ

(
ξ, B δ̂

1M
H
ϕ (ξ, r)

)

⊂ S
H
n

ϕ

(
ξ, K1B

δ̂
1m

H
ϕ (ξ, r)

)
(by (3.7))

⊂ S
H
n

ϕ

(
ξ, B5KK1B

δ̂
1s

)
(by (6.3))

which concludes the proof. ��

We are now in the position to prove the second part of our main result in Theorem
1.1:

Proof of Theorem 1.1 ii. Let ϕ : H
n → R be an H -convex function with round H -

sections. The previous arguments, together with Lemma 6.1 and Lemma 2 in [1], give
that

dϕ(ξ, ξ ′) = inf
{
s > 0 : ξ ∈ S

H
n

ϕ (ξ ′, s), ξ ′ ∈ S
H
n

ϕ (ξ, s)
}

is a quasi-distance in H
n . Moreover, if Bϕ(ξ, r) denotes the dϕ-ball of center ξ ∈ H

n

and radius r > 0, we have that there exists H which depends only on K0 in (3.4) such
that

S
H
n

ϕ

(
ξ,

r

2H

)
⊂ Bϕ(ξ, r) ⊂ S

H
n

ϕ (ξ, r) . (6.10)

��

The definition of H
n-sections via subsequent constructions of H -sections makes

hard its description in terms of functional inequalities. However, in the very simple
case of the function ϕ : H → R defined by ϕ(x, y, t) = x2 + y2, we are able to fully
describe the set SH

ϕ (e, r) by providing explicitly the equation of its boundary. While in
the Euclidean case the function u(x) = ‖x‖2, with x ∈ R

n , gives rise to the sections
Su(x0, s) = BR

n
(x0,

√
s), i.e., the usual balls inR

n, in the case of the first Heisenberg
group H and with the mentioned function ϕ we obtain SHϕ (ξ0, s) = B̃(ξ0,

√
s), and

the family of H-sections of ϕ consists of the B̃-balls in (5.2).

Example 6.1 Let us consider ϕ : H → R defined by ϕ(x, y, t) = x2 + y2. This
function is R

3-convex, and hence H -convex. Since ∂Hϕ(x, y, t) = {2(x, y)}, the
horizontal section SH

ϕ (ξ0, s) is given by

SH
ϕ (ξ0, s) = {ξ = (x, y, t) ∈ Hξ0 : (x − x0)

2 + (y − y0)
2 < s},
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for ξ0 = (x0, y0, t0) and s > 0. Hence, for this particular ϕ, we have that

SH
ϕ (ξ0, s) = Bg(ξ0,

√
s) ∩ Hξ0 , (6.11)

and, therefore,

SH
ϕ (ξ0, s) = B̃(ξ0,

√
s).

Since, from the definition of H-section, S
H
ϕ (ξ0, s) = ξ0 ◦ S

H
ϕ (e, s), we will focus on

the particular case ξ0 = e. We claim that, for every r > 0,

SH
ϕ (e, r) = B̃(e,

√
r)

=
{
ξ = (x, y, t) : |t | ≤

√
3r + 2‖(x, y)‖√r − ‖(x, y)‖2 (√

r + ‖(x, y)‖)
}

.

(6.12)

Let us try to give the idea of its construction. Fix r > 0. First of all, note that

• B̃(e,
√
r) is radial with respect to the t-axis;

• B̃(e,
√
r) is symmetric with respect to the xy-plane.

In particular, it is sufficient to identify the points of the set ∂ B̃(e,
√
r) in H ∩ {t ≥ 0}.

To this purpose, for every θ ∈ [−2π/3, 0] let us consider the points
ηθ = (√

r , 0, 0
) ◦ (√

r cos θ,
√
r sin θ, 0

) ◦ (√
r cos(2θ),

√
r sin(2θ), 0

)
, (6.13)

Trivially, η0 = (3
√
r , 0, 0) ∈ ∂ B̃(e,

√
r). Let us motivate our choice in (6.13). Let

vi ∈ V1 ∼= R
2, for i = 1, 2, 3, and consider the point

η = (x, y, t) = exp(v1) ◦ exp(v2) ◦ exp(v3); (6.14)

we have (x, y) = v1 + v2 + v3, and |t |/4 is equal to the area of the polygon P =
co{(0, 0), v1, v1 + v2, v1 + v2 + v3} ⊂ R

2, where “co” denotes the convex hull (for
details on this application of Stokes’ Theorem, see, for example, Section 2.3 in [12]).
In order to construct ∂ B̃(e,

√
r) ∩ {(x, y, t) ∈ H : t ≥ 0} we restrict our attention to

the points η in (6.14) with the following features:

• ‖vi‖ = √
r;

• the angles v̂1, v2 and v̂2, v3 are equal to θ

(this choice will be explained later on). Due to the symmetries of B̃(e,
√
r), we set

v1 = √
r(1, 0), v2 = √

r(cos θ, sin θ), v3 = √
r(cos(2θ), sin(2θ)). (6.15)

With this choice, from (6.13) one simply gets that

ηθ = (x(θ), y(θ), t(θ))

= (√
r (1 + cos θ + cos(2θ)) ,

√
r (sin θ + sin(2θ)) ,−4r sin θ(1 + cos θ)

)
.

(6.16)
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Clearly, t(θ) ≥ 0 for θ ∈ [−π, 0]. In the case θ = −2π/3, P turns out to be an
equilateral triangle, and η−2π/3 = (0, 0,

√
3r); in the case θ ∈ [−π,−2π/3), we

have that ηθ is an interior point of B̃(e,
√
r). Therefore, we restrict our attention to

the points ηθ as in (6.13). Simple computations give that, for θ ∈ [−2π/3, 0],

d(θ) := ‖(x(θ), y(θ))‖ = √
r(1 + 2 cos θ)

t(θ) = 4r
√
1 − cos θ(1 + cos θ).

Note that, if θ = −π/3, the function t(θ) reaches its maximum 3
√
3r and, in this

case, d(−π/3) = 2
√
r . Consider the change of variable z = √

r(1 + 2 cos θ); due to
the symmetry of B̃(e,

√
r), we obtain that

(
z, 0,

√
3r + 2z

√
r − z2

(√
r + z

)) ∈ ∂ B̃(e,
√
r), for z ∈ [0, 3√r ],

and thus we get the expression in (6.12).

The profile in the plane (x, 0, t) of the -section j (e, r) of the function j : Æ defined by
j (x, y, t) = x2 + y2, for r = 1.

Finally, let us explain briefly the restrictions imposed in (6.15) to obtain (6.12).
First, it is easy to see that, if in (6.14) we set ‖vi‖ = √

r ′, with 0 < r ′ < r , we
obtain that η in (6.14) is in ∂ B̃(e,

√
r ′) ⊂ B̃(e,

√
r); a similar argument holds for η

in (6.14), with the choice ‖vi‖ <
√
r .

Secondly, let us motivate the restriction v̂1, v2 = v̂2, v3 = θ in (6.16). Fix θ ∈
(−2π/3, 0), consider vi as in (6.15) and the mentioned polygon P; using (6.16), the
area of P is exactly − sin θ(1 + cos θ). If one looks for the triplet of vectors vi , with
‖vi‖ = √

r for i = 1, 2, 3, such that v1 + v2 + v3 = (x(θ), y(θ)) and such that
the area of the associated polygon P is the biggest one, then one obtains exactly the
vectors vi in (6.15). This proves that ηθ belongs to the boundary of our H-section. We
leave the details and their tedious calculations to the interested reader.
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7 Final Remarks and Open Questions

Question 1 The assumption of the round H -sections property for an H -convex func-
tion ϕ is a sufficient condition in order to guarantee that ϕ satisfies the engulfing
property E(Hn, K ). It would be nice to weaken this assumption and prove that a func-
tion with the engulfing property E(H , K ) satisfies the engulfing property E(Hn, K ).

Question 2 In [13] the authors study the engulfing property for convex functions in
a generic Carnot group G; as a matter of fact, in this more general framework, the
related definition ofG-sections (as in Definition 5.1) would be affected by the different
geometry of the group G, by the number of the steps and, especially, by the number
of consecutive horizontal segments needed to connect any pair of points. Moreover,
in a Carnot group with step greater than 2, a so-called horizontal line, i.e., a set
{ξ ◦exp sv}s∈R, is not a line in the Euclidean sense, as well as a horizontal plane is not
a hyperplane in the Euclidean sense. This leads us to think that the G-sections may
have a very peculiar shape.

Question 3 By Theorem 3.3.10 in [19], the engulfing property for a convex function
ϕ : R

n → R implies the existence of C > 0 and p ≥ 1 such that for every 0 < r <

s ≤ 1, x0 ∈ R
n, t > 0, and x ∈ Sϕ(x0, r t) we have the inclusion

Sϕ(x,C(s − r)pt) ⊂ Sϕ(x0, st);

note that, under the assumptions above, the function ϕ is differentiable (see [11]).
Under any suitable version of the engulfing property in H

n, can a similar inclusion be
proved in H

n?

Question 4 In [21] the authors prove, among other things, that the notion of round
sections in Definition 2.1, controlled slope in (2.12), quasi uniform convexity, and
quasiconformity are strictly related properties. To be precise, the next result holds (see
Theorem 3.1 in [21]):

Theorem 7.1 Let n ≥ 2, and let u : R
n → R be a convex function. The following are

equivalent:

i. u is quasiuniformly convex function, i.e. u is not affine, u ∈ W 2,n
loc and there exists

a constant K ≥ 1 such that

‖∇2u(x)‖n ≤ Kdet∇2u(x), a.e. x ∈ R
n; (7.1)

ii. u is differentiable and∇u : R
n → R

n is quasiconformal, recalling that an injective
map F : R

n → R
n is quasiconformal if F ∈ W 1,n

loc and there exists a constant
K ≥ 1 such that

‖∇F(x)‖n ≤ Kdet∇F(x), a.e. x ∈ R
n; (7.2)

iii. u is differentiable, but not affine, and has controlled slope;
iv. u has round sections.
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On the other hand, it is well known that the notion of quasiconformal map on H
n

has been introduced and intensively studied (see for example [12]). In this paper we
introduce the notion of H -controlled slope and round H -sections for an H -convex
function but, at least to our knowledge, a horizontal notion of quasiuniform convexity
for H -convex function does not exist in the literature. Our future aim will be to
investigate a horizontal version of Theorem 7.1.

Funding Open access funding provided by Universitá degli Studi di Milano - Bicocca within the CRUI-
CARE Agreement.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Aimar, H., Forzani, L., Toledano, R.: Balls and quasi-metrics: a space of homogeneous type modeling
the real analysis related to the Monge-Ampère equation. J. Fourier Anal. Appl. 4, 377–381 (1998)

2. Aliprantis, C.D., Border, K.: Infinite Dimensional Analysis. Springer, Berlin (2006)
3. Arena, G., Caruso, A., Monti, R.: Regularity properties of H-convex sets. J. Geom. Anal. 22, 583–602

(2012)
4. Balogh, Z.M.,Calogero,A.,Kristály,A.: Sharp comparison andAleksandrov-typemaximumprinciples

in Heisenberg groups. J. Funct. Anal. 269, 2669–2708 (2015)
5. Balogh, Z.M., Rickly, M.: Regularity of convex functions on Heisenberg groups. Ann. Scuola Norm.

Sup. Pisa Cl. Sci 2, 847–868 (2003)
6. Bonfiglioli, A., Lanconelli, E., Uguzzoni, F.: Stratified Lie Groups and Potential Theory for their

Sub-Laplacians. Springer, New York (2007)
7. Caffarelli, L.A.: Some regularity properties of solutions of Monge-Ampère equation. Commun. Pure

Appl. Math. 44, 965–969 (1991)
8. Caffarelli, L.A.: Boundary regularity of maps with convex potentials. Commun. Pure Appl. Math. 45,

1141–1151 (1992)
9. Calogero, A., Pini, R.: Horizontal normal map on the Heisenberg group. J. Nonlinear Convex Anal.

12(2), 287–307 (2011)
10. Calogero, A., Pini, R.: On Minty’s theorem in the Heisenberg group. Nonlinear Anal. 104, 12–20

(2014)
11. Calogero, A., Pini, R.: The engulfing property from a convex analysis viewpoint. J. Optim. Theory

Appl. 187, 408–420 (2020)
12. Capogna, L., Danielli, D., Pauls, S., Tyson, J.T.: An Introduction to the Heisenberg Group and the

Sub-Riemannian Isoperimetric Problem. Birkhäuser, Basel (2007)
13. Capogna, L., Maldonado, D.: A note on the engulfing property and the �1+α−regularity of convex

functions in Carnot groups. Proc. Am. Math. Soc. 134, 3191–3199 (2006)
14. Cruz-Uribe, D., Forzani, L., Maldonado, D.: The structure of increasing weights on the real line.

Houston J. Math. 34(3), 951–983 (2008)
15. Danielli, D., Garofalo, N., Nhieu, D.M.: Notions of convexity in Carnot groups. Commun. Anal. Geom.

11, 263–341 (2003)
16. Folland,G.B., Stein, E.M.:Hardy Spaces onHomogeneousGroups. PrincetonUniversity Press, Prince-

ton (1982)
17. Forzani, L., Maldonado, D.: On geometric characterizations for Monge-Ampère doubling measures.

J. Math. Anal. Appl. 275(2), 721–732 (2002)

123

http://creativecommons.org/licenses/by/4.0/


The Engulfing Property for Sections of Convex Functions... 10373

18. Forzani, L., Maldonado, D.: Properties of the solution to theMonge-Ampère equation. Nonlinear Anal.
57, 815–829 (2004)

19. Gutiérrez, C.E.: The Monge-Ampère Equation. Birkhäuser, Boston, MA (2001)
20. Gutiérrez, C.E., Huang, Q.: Geometric properties of the sections of solutions to the Monge-Ampère

equation. Trans. Am. Math. Soc. 352(9), 4381–4396 (2000)
21. Kovalev, L.V., Maldonado, D.: Mappings with convex potentials and the quasiconformal Jacobian

problem. Illinois J. Math. 49(4), 1039–1060 (2005)
22. Kovalev, L.V., Maldonado, D., Wu, J.-M.: Doubling measures, monotonicity, and quasiconformality.

Math. Z. 257, 525–545 (2007)
23. Magnani, V., Scienza, M.: Characterizations of differentiability for H–convex functions in stratified

groups. Ann. Sc. Norm. Super. Pisa Cl. Sci., XIII:675–697, (2014)
24. Wang, X.J.: Some counterexamples to the regularity of Monge-Ampère equations. Proc. Am. Math.

Soc. 123, 841–845 (1995)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	The Engulfing Property for Sections of Convex Functions on the Heisenberg Group and the Associated Quasi-distance
	Abstract
	1 Introduction
	2 Preliminary Notions and Results
	2.1 The Engulfing Property for Convex Functions in mathbbR-.4n
	2.2 Convexity in the Heisenberg Group mathbbH-.4n

	3 H-Convex Functions with Round H-Sections and with Controlled H-Slope
	4 Engulfing Property for H-Sections of H-Convex Functions
	5 mathbbHn-.4-Sections of H-Convex Functions and Their Engulfing Properties
	6 Balls and Quasi-distances via the mathbbHn-Sections of H-Convex Functions
	7 Final Remarks and Open Questions
	References




