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ON THE MASS OF STATIC METRICS

WITH POSITIVE COSMOLOGICAL CONSTANT – II
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Abstract. This is the second of two works, in which we discuss the definition of an appropriate
notion of mass for static metrics, in the case where the cosmological constant is positive and the
model solutions are compact. In the first part, we have established a positive mass statement,
characterising the de Sitter solution as the only static vacuum metric with zero mass. In this
second part, we prove optimal area bounds for horizons of black hole type and of cosmological
type, corresponding to Riemannian Penrose inequalities and to cosmological area bounds à la
Boucher-Gibbons-Horowitz, respectively. Building on the related rigidity statements, we also deduce
a uniqueness result for the Schwarzschild–de Sitter spacetime.

MSC (2010): 35B06, 53C21, 83C57,

Keywords: Static metrics, Schwarzschild de Sitter solution, Riemannian Penrose Inequality, Black
Hole Uniqueness Theorem.

1. Introduction and statement of the main results

In this paper we continue the study started in [13] about the notion of virtual mass of a static
metric with positive cosmological constant. To make the exposition as much self-contained as
possible, we briefly recall the basic notions and definitions.

1.1. Setting of the problem and preliminaries. In this paper we consider static vacuum
metrics in presence of a positive cosmological constant. These are given by triples (M, g0, u) where
(M, g0) is an n-dimensional compact Riemannian manifold, n ≥ 3, with nonempty smooth boundary
∂M , and u ∈ C∞(M) is a smooth nonnegative function obeying to the following system

uRic = D2u+
2Λ

n− 1
u g0, in M,

∆u = − 2Λ

n− 1
u, in M,

(1.1)

where Ric, D, and ∆ represent the Ricci tensor, the Levi-Civita connection, and the Laplace-Beltrami
operator of the metric g0, respectively, and Λ > 0 is a positive real number called cosmological
constant. We will always assume that the boundary ∂M coincides with the zero level set of u, so
that, in particular, u is strictly positive in the interior of M . For more detailed discussions on the
legitimacy of these assumptions, we refer the reader to [5, 30]. In the rest of the paper the metric
g0 and the function u will be referred to as static metric and static (or gravitational) potential,
respectively, whereas the triple (M, g0, u) will be called a static solution. For a more complete
justification of this terminology as well as for some comments about the physical nature of the
problem, we refer the reader to the introduction of [13] and the references therein. Here, we only
recall that, having at hand a solution (M, g0, u) to (1.1), it is possible to recover a static solution
(X, γ) to the vacuum Einstein field equations

Ricγ −
Rγ

2
γ + Λ γ = 0 , in R×M , (1.2)

just by setting X = R×M and letting γ be the Lorentzian metric defined on X by

γ = −u2dt⊗ dt + g0 .

To complete the setup of our problem, we now list some of the basic properties of static solutions
to system (1.1), whose proof can be found in [5, Lemma 3] as well as in the indicated references.
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• Concerning the regularity of the function u, we know from [21, 56] that u is analytic. In
particular, by the results in [52], we have that its critical level sets are discrete.

• Since the manifold M is compact, ∂M = {u = 0} and u > 0 in M \∂M , the static potential
u achieves its maximum in the interior of M . To fix the notation, we set

umax = max
M

u and MAX(u) = {p ∈M : u(p) = umax} .

Since u is analytic, one has that, according to [42] (see also [38, Theorem 6.3.3]), the
locus MAX(u) is a (possibly disconnected) stratified analytic subvariety whose strata have
dimensions between 0 and n− 1. More precisely, it holds

MAX(u) = Σ0 t Σ1 t · · · t Σn−1 ,

where Σi is a finite union of i-dimensional analytic submanifolds, for every i = 0, . . . , n− 1.
This means that, given a point p ∈ Σi, there exists a neighborhood p ∈ Ω ⊂ M and an
analytic diffeomorphism f : Ω→ Rn such that

f(Ω ∩ Σi) = L ∩ f(Ω) ,

for some i-dimensional linear space L ⊂ Rn. In particular, the set Σn−1 is a smooth
analytic hypersurface and it will play an important role in what follows. We will refer to
the hypersurface Σn−1 as the top stratum of MAX(u).

• Taking the trace of the first equation in (1.1) and substituting the result into the second
one, it is immediate to deduce that the scalar curvature of the metric g0 is constant, and
more precisely it holds

R = 2Λ . (1.3)

In particular, we observe that choosing a normalization for the cosmological constant
corresponds to fixing a scale for the metric g0. Throughout the paper we will choose the
following normalization

Λ =
n(n− 1)

2
. (1.4)

So that in particular the manifold (M, g0) will have constant scalar curvature R ≡ n(n− 1).

• The boundary ∂M = {u = 0}, which is assumed to be a smooth submanifold of M , is also
a regular level set of u. In particular it follows from the equations that it is a (possibly
disconnected) totally geodesic hypersurface in (M, g0). The connected components of ∂M
will be referred to as horizons. In Definition 2 below, we will distinguish between horizons
of black hole type, horizons of cosmological type and horizon of cylindrical type. In order
to simplify the exposition of some of the results in the paper, it is convenient to suppose
that the manifold M is orientable. This of course is not restrictive. In fact, if the manifold
is not orientable, we can consider its orientable double covering, and transfer the results
obtained on this latter to the original manifold by means of the projection. We recall that
an orientation of M induces an orientation on the boundary ∂M , therefore, in particular, if
M is orientable so are the horizons.

• Finally, one has that the quantity |Du| is locally constant and positive on ∂M . Notice that
the value of |Du| at a horizon depends on the choice of the normalization of u. A more
invariant quantity is the so called surface gravity of an horizon S, which can be defined as
the constant

κ(S) =
|Du||S
umax

, (1.5)

where we recall that umax is the maximum of u in M . For a more precise explaination of
the physical motivations behind this definition, we refer the reader to [13].
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Recasting all the normalizations that we have introduced so far, we are led to study the following
system

uRic = D2u+ nu g0, in M

∆u = −nu, in M

u > 0, in M \ ∂M
u = 0, on ∂M

with M compact orientable and R ≡ n(n− 1) . (1.6)

This system is of course equivalent to (1.1), with some of the assumptions made more explicit. In
this work, we are interested in the classification of static triples up to isometry, or at least up to a
finite covering. Even though these notions are quite natural, we recall their precise definitions in
the setting of static triples.

Definition 1. We say that two triples (M, g0, u) and (M ′, g′0, u
′) are isometric if there exists a

Riemannian isometry F : (M, g0) → (M ′, g′0) such that, up to a normalization of u, it holds
u = u′ ◦F . We say that (M, g0, u) is a covering of (M ′, g′0, u

′) if there exists a Riemannian covering
F : (M, g0)→ (M ′, g′0) such that, up to a normalization of u, it holds u = u′ ◦ F .

We conclude this subsection introducing some more terminology, whose meaning will be clarified
in the next subsection by the detailed description of the rotationally symmetric solutions to (1.6).

Definition 2. Let (M, g0, u) be a solution to problem (1.6). A connected component S of ∂M is
called an horizon. An horizon is said to be:

• of cosmological type if: κ(S) <
√
n,

• of black hole type if: κ(S) >
√
n,

• of cylindrical type if: κ(S) =
√
n

where κ(S) is the surface gravity of S defined in (1.5). A connected component N of M \MAX(u)
is called region and we will denote by ∂N the collection of the horizons of M that lie in N , namely

∂N = ∂M ∩N .

A region N is said to be:

• an outer region if all of its horizons are of cosmological type, i.e., if

max
S∈π0(∂N)

κ(S) <
√
n ,

• an inner region if it has at least one horizon of black hole type, i.e., if

max
S∈π0(∂N)

κ(S) >
√
n ,

• a cylindrical region if there are no horizons of black hole type and there is at least one
horizon of cylindrical type, i.e., if

max
S∈π0(∂N)

κ(S) =
√
n .

1.2. Rotationally symmetric solutions. In this subsection, we briefly recall the rotationally
symmetric solutions to (1.6). These have three different qualitative behaviour, depending on the
value of the mass parameter m, which is allowed to vary in the real interval [0,mmax], where

mmax =

√
(n− 2)n−2

nn
. (1.7)

We observe that if the number mmax is defined as above, then for every 0 < m < mmax the equation
fm(r) = 0, where fm(r) = 1 − r2 − 2mr2−n, has exactly two positive solutions 0 < r−(m) <
r+(m) < 1. Moreover, in the interval [r−(m), r+(m)] the function fm(r) assumes its maximum

value at r0(m) = [(n− 2)m]1/n. For m = 0, one has that r0(0) = r−(0) = 0 and r+(0) = 1, whereas

for m = mmax, one has r0(mmax) = r−(mmax) = r+(mmax) = [(n− 2)/n]1/2.
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(a) de Sitter (b) Schwarzschild–de Sitter (c) Nariai

Figure 1. Rotationally symmetric solutions to problem (1.6). The red dot and red lines
represent the set MAX(u) for the three models.

• de Sitter solution [25] (m = 0), Figure 1(a).

M = B(0, 1) ⊂ Rn , g0 =
d|x| ⊗ d|x|

1− |x|2
+ |x|2gSn−1 ,

u =
√

1− |x|2 . (1.8)

It is not hard to check that both the metric g0 and the function u, which a priori are well
defined only in the interior of M \ {0}, extend smoothly up to the boundary and through
the origin. This model solution can be seen as the limit of the following Schwarzschild–de
Sitter solutions (1.9), when the parameter m → 0+. The de Sitter solution is such that
the maximum of the potential is umax = 1, and it is achieved at the origin. Moreover, this
solution has only one connected horizon with surface gravity

|Du| ≡ 1 on ∂M .

Hence, according to Definition 2 below, this horizon is of cosmological type.

• Schwarzschild–de Sitter solutions [36] (0 < m < mmax), Figure 1(b).

M = B(0, r+(m)) \B(0, r−(m)) ⊂ Rn , g0 =
d|x| ⊗ d|x|

1− |x|2 − 2m|x|2−n
+ |x|2gSn−1 ,

u =
√

1− |x|2 − 2m|x|2−n . (1.9)

Here r−(m) and r+(m) are the two positive solutions to 1− r2 −2mr2−n = 0. We notice
that, for r−(m), r+(m) to be real and positive, one needs (1.7). It is not hard to check that
both the metric g0 and the function u, which a priori are well defined only in the interior of
M , extend smoothly up to the boundary. This latter has two connected components with
different character

∂M+ = {|x| = r+(m)} and ∂M− = {|x| = r−(m)} .

In fact, it is easy to check (see formulæ (1.12) and (1.13)) that the normalized surface
gravities satisfy

κ(∂M+) =
|Du||∂M+

umax
<
√
n and κ(∂M−) =

|Du||∂M−
umax

>
√
n .

Hence, according to Definition 2 below, one has that ∂M+ is of cosmological type, whereas
∂M− is of black hole type. Furthermore, it holds

umax =

√
1−

(
m

mmax

)2/n

, MAX(u) = {|x| = r0(m)} , (1.10)
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Figure 2. Plot of the surface gravities |Du|/umax of the two boundaries of the
Schwarzschild–de Sitter solution (1.9) as a function of the mass m for n = 3. The red line
represents the surface gravity of the boundary ∂M+ = {r = r+(m)}, whereas the blue
line represents the surface gravity of the boundary ∂M− = {r = r−(m)}. Notice that for
m = 0 we recover the constant value |Du| ≡ 1 of the surface gravity on the (connected)
cosmological horizon of the de Sitter solution (1.8). The other special situation is when

m = mmax. In this case the plot assigns to mmax = 1/(3
√

3) the unique value
√

3 achieved
by the surface gravity on both the connected components of the boundary of the Nariai

solution (1.11).

where we recall that r0(m) = [(n − 2)m]1/n. Notice that M \MAX(u) has exactly two
connected components: M+ with boundary ∂M+ and M− with boundary ∂M−. According
to Definition 2, we have that M+ is an outer region, whereas M− is an inner region.

• Nariai solution [44] (m = mmax), Figure 1(c).

M = [0, π]× Sn−1 , g0 =
1

n

[
dr ⊗ dr + (n− 2) gSn−1

]
,

u = sin(r) . (1.11)

This model solution can be seen as the limit of the previous Schwarzschild–de Sitter solutions,
when the parameter m → m−max, after an appropriate rescaling of the coordinates and
potential u (this was shown for n = 3 in [29] and then generalized to all dimensions n ≥ 3
in [19], see also [15, 16]). In this case, we have umax = 1 and MAX(u) = {π/2} × Sn−1.
Moreover, the boundary of M has two connected components with the same constant value
of the surface gravity, namely

|Du| ≡
√
n on ∂M .

In Subsection 1.3, we are going to use the above listed solutions as reference configurations in order
to define the concept of virtual mass of a solution (M, g0, u) to (1.6). To this aim, it is useful to
introduce the functions k+ and k−, whose graphs are plotted, for n = 3, in Figure 2. They represent
the normalized surface gravities of the model solutions as functions of the mass parameter m.

• The outer surface gravity function

k+ : [ 0,mmax) −→ [ 1,
√
n ) (1.12)
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is defined by

k+(0) = 1 , for m = 0 ,

k+(m) =

√√√√r2
+(m)

[
1−

(
r0(m)/r+(m)

)n]2
1− (m/mmax)2/n

, if 0 < m < mmax ,

where r+(m) is the largest positive root of the polynomial Pm(r) = rn−2− rn−2m. Loosely
speaking, k+(m) is nothing but the constant value of |Du|/umax at {|x| = r+(m)} for the
Schwarzschild–de Sitter solution with mass parameter equal to m. We also observe that k+

is continuous, strictly increasing and k+(m)→
√
n, as m→ m−max.

• The inner surface gravity function

k− : (0,mmax ] −→ [
√
n,+∞ ) (1.13)

is defined by

k−(mmax) =
√
n , for m = mmax ,

k−(m) =

√√√√r2
−(m)

[
1−

(
r0(m)/r−(m)

)n]2
1− (m/mmax)2/n

, if 0 < m < mmax ,

where r−(m) is the smallest positive root of the polynomial Pm(r) = rn−2 − rn − 2m.
Loosely speaking, k−(m) is nothing but the constant value of |Du|/umax at {|x| = r−(m)}
for the Schwarzschild–de Sitter solution with mass parameter equal to m. We also observe
that k− is continuous, strictly decreasing and k−(m)→ +∞, as m→ 0+.

This concludes the list of rotationally symmetric solutions. However, it is worth mentioning that
in higher dimensions there is a simple generalization of the above model triples. In fact, one can
replace the spherical fibers in the Schwarzschild–de Sitter solution (1.9) with any (n−1)-dimensional
Einstein manifold (En−1, gEn−1) with RicEn−1 = (n−2)gEn−1 . The resulting triple is still a solution
to (1.6), and it will be called generalized Schwarzschild–de Sitter solution

M = [r−(m), r+(m)]× En−1 , g0 =
dr ⊗ dr

1− r2 − 2mr2−n + r2gEn−1 ,

u =
√

1− r2 − 2mr2−n . (1.14)

Analogously, one can define the generalized Nariai solution as the triple

M = [0, π]× En−1 , g0 =
1

n

[
dr ⊗ dr + (n− 2) gEn−1

]
,

u = sin(r) , (1.15)

where, again, (En−1, gEn−1) is an (n−1)-dimensional Einstein manifold with RicEn−1 = (n−2)gEn−1 .
Of course, the generalized solutions (1.14) and (1.15) are relevant only for n ≥ 5, since for n = 3, 4
the only (n− 1)-dimensional Einstein manifold with RicEn−1 = (n− 2)gEn−1 is the round sphere
(Sn−1, gSn−1). We also mention that, exploiting a previous work of Bohm about the existence of
’non round’ Einstein metrics on spheres [12], Gibbons, Hartnoll and Pope in [27] were able to
exhibit infinite families of solutions to problem (1.6), in dimension 4 ≤ n ≤ 8. These solutions are
such that their boundary is connected and diffeomorphic to a (n− 1)-dimensional sphere. However,
they do not have a warped product structure. This suggests that a complete classification of the
solutions to problem (1.6) in dimension n ≥ 4 is a very hard task. On the other hand, in dimension
n = 3, the only known solutions are the de Sitter, Schwarzschild–de Sitter and Nariai triple. The
question of whether these are the only ones is still open, although there are some partial results.
For instance, in [35, 39] it is proven that these models are the only locally conformally flat static
metrics, in [45] this result has been extended to the Bach-flat case and in [24] the case of cyclic
parallel Ricci tensor has been discussed. Some pinching conditions implying the same classification
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are provided in [5, 9]. Moreover, some further characterizations of the de Sitter metric have been
proven in [14, 20, 30].

Since it will be of some importance in the forthcoming discussion, we conclude this section
recalling the definition of Schwarzschild metric with mass parameter equal to m > 0. This is the
simplest (and also the early) example of a non flat static metric in the case where the cosmological
constant in the Einstein Field Equations (1.2) is taken to be zero.

• Schwarzschild solutions [49] (m > 0).

M = Rn \B(0, rs(m)) ⊂ Rn , g0 =
d|x| ⊗ d|x|

1− 2m|x|2−n
+ |x|2gSn−1 ,

u =
√

1− 2m|x|2−n . (1.16)

Here, the so called Schwarzschild radius rs(m) = (2m)1/(n−2) is the only positive solution to
1− 2mr2−n = 0. It is not hard to check that both the metric g0 and the function u, which
a priori are well defined only in the interior of M , extend smoothly up to the boundary.

1.3. The virtual mass. As already discussed in [13], in the case of a positive cosmological constant
there does not seem to be a general consensus about what the right notion of mass should be. For
some possible approaches, as well as for more insights on the problems posed by the case Λ > 0,
we refer the reader to the following references [1, 6, 7, 8, 22, 34, 43, 50, 51, 54]. In our previous
work [13], we have introduced a different point of view, leading to a new notion of mass, that we
now recall.

Definition 3 (Virtual Mass). Let (M, g0, u) be a solution to (1.6) and let N be a connected
component of M \MAX(u). The virtual mass of N is denoted by µ(N, g0, u) and it is defined in
the following way:

(i) If N is an outer region, then we set

µ(N, g0, u) = k−1
+

(
max
∂N

|Du|
umax

)
, (1.17)

where k+ is the outer surface gravity function defined in (1.12).

(ii) If N is an inner region, then we set

µ(N, g0, u) = k−1
−

(
max
∂N

|Du|
umax

)
, (1.18)

where k− is the inner surface gravity function defined in (1.13).

In other words, the virtual mass of a connected component N of M \MAX(u) can be thought as
the mass (parameter) that on a model solution would be responsible for (the maximum value of)
the surface gravity measured at ∂N . In this sense the rotationally symmetric solutions described
in Subsection 1.2 are playing here the role of reference configurations. As it is easy to check, if
(M, g0, u) is either the de Sitter, or the Schwarzschild–de Sitter, or the Nariai solution, then the
virtual mass coincides with the explicit mass parameter m that appears in Subsection 1.2.

It is important to notice that it is not a priori guaranteed that the above definition is well posed.
In fact, it could happen that the boundary of a connected component is empty or that the value of
the normalized surface gravity does not lie in the range of either k+ or k−. The first possibility can
be easily excluded arguing as in the No Island Lemma (see [13, Lemma 5.1]), whereas to exclude
the second possibility we need to invoke [13, Theorem 2.2]. This result tells us that, on any region
N of a solution (M, g0, u), it holds

max
S∈π0(∂N)

κ(S) = max
∂N

|Du|
umax

≥ 1 ,

and the equality is fulfilled only if (M, g0, u) is isometric to the de Sitter solution (1.8). As an
immediate consequence we obtain the following Positive Mass Statement for static metrics with
positive cosmological constant.
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Theorem 1.1 (Positive Mass Statement for Static Metrics with Positive Cosmological Constant).
Let (M, g0, u) be a solution to problem (1.6). Then, every connected component of M \MAX(u)
has well–defined and thus nonnegative virtual mass. Moreover, as soon as the virtual mass of
some connected component vanishes, the entire solution (M, g0, u) is isometric to the de Sitter
solution (1.8).

We refer the reader to [13] for a more detailed discussion about the above statement as well as for
a comparison with the classical Positive Mass Theorem proved by Schoen and Yau [47, 48] (and
with a different proof by Witten [53]) for the ADM-mass of asymptotically flat manifolds with
nonnegative scalar curvature.

1.4. Area bounds. An important feature of the above positive mass statement is that it gives
a complete characterisation of the zero mass solutions. Another very interesting and nowadays
classical characterisation of the de Sitter solution is given by the Boucher-Gibbons-Horowitz area
bound [14], which in our framework can be phrased as follows

Theorem 1.2 (Boucher-Gibbons-Horowitz Area Bound). Let (M3, g0, u) be a 3-dimensional
solution to problem (1.6) with connected boundary ∂M . Then, the following inequality holds

|∂M | ≤ 4π . (1.19)

Moreover, the equality is fulfilled if and only if (M3, g0, u) is isometric to the de Sitter solution (1.8).

Having at hand Theorem 1.1 and Theorem 1.2, it is natural to ask if in the case where the virtual
mass is strictly positive and the boundary of M is allowed to have several connected components,
it is possible to provide a refined version of both statements, whose rigidity case characterises
now the Schwarzschild–de Sitter solutions described in (1.9) instead of the de Sitter solution. In
accomplishing this program, we are inspired by the well known relation between the Positive Mass
Theorem and the Riemannian Penrose Inequality as they are stated in the classical setting, where
M3 is an asymptotically flat Riemannian manifold with nonnegative scalar curvature. To be more
concrete, we report a simplified version of these statements in the case where the 3-manifold has
one end and at most one compact horizon.

Theorem 1.3. Let (M3, g0) be a 3-dimensional complete asymptotically flat Riemannian manifold
with nonnegative scalar curvature and ADM-mass mADM (M3, g0) equal to m ∈ R. Then, the
following statements hold.

(i) Positive Mass Theorem (Schoen-Yau [47, 48], Witten [53]). The number m is always non-
negative

0 ≤ m.

Moreover, the equality is fulfilled if and only if (M3, g0, u) is isometric to the flat Euclidean
space with u ≡ 1.

(ii) Riemannian Penrose Inequality (Huisken-Ilmanen [31], Bray [17]). Assume that the bound-
ary of M is non empty and given by a connected, smooth and compact outermost minimal
surface. Then, the following inequality holds√

|∂M |
16π

≤ m. (1.20)

Moreover, the equality is fulfilled if and only if (M3, g0, u) is isometric to the Schwarzschild
solution (1.8) with mass parameter equal to m.

For the precise definitions of asymptotically flat manifold and ADM-mass, we refer the reader to
the above cited references. We also observe that in the original statement of the Positive Mass
Theorem, the 3-manifold (M3, g) is a priori allowed to have a finite number of ends and that the
rigidity statement holds in a stronger way, meaning that as soon as the mass of one end is vanishing,
then the whole manifold is isometric to the Euclidean space. Concerning the Riemannian Penrose
Inequality, it is worth pointing out that in the original statement by Huisken and Ilmanen [31, Main
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Theorem], the boundary of M is a priori allowed to have a finite number of connected component,
namely ∂M = S0 t S1 t . . . t SK , and the authors are able to prove the following inequality√

max0≤j≤K |Sj |
16π

≤ m,

where m = mADM (M3, g). With a different proof, Bray is able to recover in [17, Theorem 1] a
stronger version of the above inequality, namely√

|S0|+ . . .+ |SK |
16π

≤ m.

Of course, when ∂M is connected, the two inequalities are the same and they reduce to (1.20). To
introduce our first main result, we focus on this simple version of the Riemannian Penrose Inequality
and we observe that, using the definition of the Schwarzschild radius given below formula (1.16), it
can be rephrased as follows

|∂M | ≤ 16πm2 = 4π(2m)2 = 4πr2
0(m) ,

where m = mADM (M3, g). Having these considerations in mind, we can now state one of the main
results of the present paper.

Theorem 1.4 (Refined Area Bounds). Let (M3, g0, u) be a 3-dimensional solution to problem (1.6)
and let N be a connected component of M3 \MAX(u) with virtual mass

m = µ(N, g0, u) ∈
(

0, 1/(3
√

3)
]
.

Let S ⊆ ∂N be the horizon with the largest surface gravity in N , namely

κ(S) =


k+(m) if N is outer ,

k−(m) if N is inner ,
√
n if N is cylindrical .

Then, S is diffeomorphic to the sphere S2. Moreover, the following inequalities hold:

(i) Cosmological Area Bound. If N is an outer region, then

|S| ≤ 4πr2
+(m) . (1.21)

Moreover, if the equality is fulfilled and S = ∂N , then the triple (M3, g0, u) is isometric to
the Schwarzschild–de Sitter solution (1.9) with mass m.

(ii) Riemannian Penrose Inequality. If N is an inner region, then

|S| ≤ 4πr2
−(m) . (1.22)

Moreover, if the equality is fulfilled and S = ∂N , then the triple (M3, g0, u) is isometric to
the Schwarzschild–de Sitter solution (1.9) with mass m.

(iii) Cylindrical Area Bound. If N is a cylindrical region, then

|S| ≤ 4π

3
, (1.23)

Moreover, if the equality is fulfilled and S = ∂N , then the triple (M3, g0, u) is covered by
the Nariai solution (1.11).

Remark 1. Notice that the rigidity statements are only in force when ∂N is connected. Concerning
the rigidity statement in point (iii) of the above theorem, we observe that there is only one orientable
triple which is not isometric to the 3-dimensional Nariai solution but that is covered by it, which is
the quotient of the Nariai triple by the involution

ι : [0, π]× S2 → [0, π]× S2 , ι(t, x) = (π − t,−x) ,

where we have denoted by −x the antipodal point of x on S2. The existence of this solution was
pointed out in [5, Section 7].
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About the previous statement some comments are in order. First, the fact that S is necessarily
diffeomorphic to a sphere is not a new result. In fact, a stronger result is already known from [5,
Theorem B], where it is shown that every connected component of the boundary of a static solution
to problem (1.6) is diffeomorphic to a sphere. Our approach allows to prove the same topological
result, but only in the case where the horizons of (M3, g0, u) are somehow separated from each
other by the locus MAX(u). Concerning the area bounds, we observe that, conceptually speaking,
the inequality (1.21) should be compared with the Boucher-Gibbons-Horowitz Area Bound (1.19),
since it involves the cosmological horizons of the solution, whereas the inequality (1.22) should be
compared with (1.20) since it is a statement about horizons of black hole type.

An analogous statement holds in higher dimension, giving the natural analog of the inequality

|∂M | ≤
ˆ
∂M

R∂M

(n− 1)(n− 2)
dσ , (1.24)

which has been obtained by Chrus̀ciel in [20, Section 6] in the case of connected boundary, extending
the Boucher-Gibbons-Horowitz method to every dimension n ≥ 3. Of course, in the above inequality
R∂M stands for the scalar curvature of the boundary. Moreover, the equality is fulfilled if and only
if (M, g0, u) coincides with the de Sitter solution.

Theorem 1.5. Let (M, g0, u) be a solution to problem (1.6) of dimension n ≥ 3, and let N be a
connected component of M \MAX(u) with connected smooth compact boundary ∂N . We then let
m ∈ (0,mmax] be the virtual mass of N , namely

m = µ(N, g0, u) .

Let S ⊆ ∂N be the horizon with the largest surface gravity in N , namely

κ(S) =


k+(m) if N is outer ,

k−(m) if N is inner ,
√
n if N is cylindrical .

Then, the following inequalities hold:

(i) If N is an outer region, then

|S| ≤
(ˆ

S

RS

(n− 1)(n− 2)
dσ

)
r2

+(m) , (1.25)

Moreover, if the equality is fulfilled and S = ∂N , then (M, g0, u) is isometric to the
Schwarzschild–de Sitter solution (1.9) with mass m, for n = 3, 4. Whereas for n ≥ 5 it is
isometric to some generalized Schwarzschild–de Sitter solution (1.14) with Einstein fiber.

(ii) If N is an inner region, then

|S| ≤
(ˆ

S

RS

(n− 1)(n− 2)
dσ

)
r2
−(m) . (1.26)

Moreover, if the equality is fulfilled and S = ∂N , then (M, g0, u) is isometric to the
Schwarzschild–de Sitter solution (1.9) with mass m, for n = 3, 4. Whereas for n ≥ 5 it is
isometric to some generalized Schwarzschild–de Sitter solution (1.14) with Einstein fiber.

(iii) If N is a cylindrical region, then

|S| ≤
ˆ
S

RS

n(n− 1)
dσ . (1.27)

Moreover, if the equality is fulfilled and S = ∂N , then (M, g0, u) is covered by the Nariai
solution (1.11), for n = 3, 4. Whereas for n ≥ 5 it is covered by some generalized Nariai
solution (1.15) with Einstein fiber.
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The proof of the above statement will be given in Section 5, except for the rigidity statements,
whose proof will be discussed in Section 6, and for the cylindrical case, that will be discussed in
Section 8. It is clear that Theorem 1.4 follows directly from Theorem 1.5, applying the Gauss-Bonnet
formula. We also mention that the rigidity statement for Theorem 1.5 will be deduced by some
more general statements (see Corollaries 6.1, 6.5 and 8.7) which correspond to some balancing
formulas, in the case where the boundary of N is allowed to have several connected components.
The inequalities proven in Theorem 1.5 share some analogies with the ones developed in [26, 55],
see in particular [55, Theorem B].

Our approach will also allow us to prove some area lower bounds on the horizons. These lower
bounds do not require the connectedness of the boundary of our region N and depend on the area
of the hypersurface ΣN ⊆ MAX(u) that separates N from the rest of the manifold.

Theorem 1.6 (Area Lower Bound). Let (M, g0, u) be a solution to problem (1.6) of dimension
n ≥ 3, and let N be a connected component of M \ MAX(u) with connected smooth compact
boundary ∂N . We let m ∈ (0,mmax] be the virtual mass of N , namely

m = µ(N, g0, u) .

Let ΣN = N ∩M \N be the possibly stratified hypersurface separating N from the rest of the
manifold M . Then, the following inequalities hold:

(i) If N is an outer region, then

|∂N | ≥
[
r+(m)

r0(m)

]n−1

|ΣN | , (1.28)

and the equality is fulfilled if and only if (M, g0, u) is isometric to the Schwarzschild–de
Sitter solution (1.9) with mass m, for n = 3, 4. Whereas for n ≥ 5 it is isometric to some
generalized Schwarzschild–de Sitter solution (1.14) with Einstein fiber.

(ii) If N is an inner region, then

|∂N | ≥
[
r−(m)

r0(m)

]n−1

|ΣN | , (1.29)

and the equality is fulfilled if and only if (M, g0, u) is isometric to the Schwarzschild–de
Sitter solution (1.9) with mass m, for n = 3, 4. Whereas for n ≥ 5 it is isometric to some
generalized Schwarzschild–de Sitter solution (1.14) with Einstein fiber.

(iii) If N is a cylindrical region, then

|∂N | ≥ |ΣN | , (1.30)

and the equality is fulfilled if and only if (M, g0, u) is covered by the Nariai solution (1.11),
for n = 3, 4. Whereas for n ≥ 5 it is covered by some generalized Nariai solution (1.15)
with Einstein fiber.

In the notations of Theorem 1.6, if we also assume that ∂N is connected we can combine the
lower and upper bounds proved in Theorems 1.4 and 1.6 to obtain an area lower bound for the
hypersurface ΣN . The general statement of this result is given in Theorem 5.3. Here we report the
special 3-dimensional case, in which the bound turns out to be particularly nice.

Corollary 1.7. Let (M, g0, u) be a 3-dimensional solution to problem (1.6), and let N be a connected
component of M \MAX(u) with connected smooth compact boundary ∂N . We let m ∈ (0,mmax] be
the virtual mass of N , namely

m = µ(N, g0, u) .

Let ΣN = N ∩M \N be the possibly stratified hypersurface separating N from the rest of the
manifold M . Then it holds

|ΣN | ≤ 4π r2
0(m) ,

and the equality is fulfilled if and only if (M, g0, u) is either isometric to the Schwarzschild–de Sitter
solution (1.9) with mass 0 < m < mmax or (M, g0, u) is covered by the Nariai solution (1.11).
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Figure 3. In this plot we have numerically analyzed the relation between formulæ (1.32)
and (1.33), in function of the values of m+ (on the x-axis) and of m− (on the y-axis). The
red line represents the points where m+ = m−, so that the Schwarzschild–de Sitter solutions
lie on this line. The coloured region is the one where (1.33) is stronger than (1.32). The
darker the colour, the better our formula is. To give also a quantitative idea, the black
region at the bottom is where the difference between the right hand side of (1.32) and the
right hand side of (1.33) is greater than 3.

We conclude this subsection with a comparison of our Theorem 1.4 with the following recent
result due to Ambrozio.

Theorem 1.8 ([5, Theorem C]). Let (M, g0, u) be a 3-dimensional solution to problem (1.6), let
S0, . . . , Sp be the connected components of ∂M and let κ0, . . . , κp be their surface gravities. If
(M, g0, u) is not isometric to the de Sitter solution (1.16), then∑p

i=0 κi|Si|∑p
i=0 κi

≤ 4π

3
. (1.31)

Moreover, if the equality holds, then (M, g0, u) is isometric to the Nariai solution (1.11).

Of course Ambrozio’s result is slightly different from ours under certain aspects, as Theorem 1.8
does not require any assumption on MAX(u) and has a global nature, whereas our Theorem 1.4
uses the locus MAX(u) to decompose the manifold into several connected components and provides
on each of these components a (local) weighted inequality in the spirit of the above (1.31). Let us
compare the two statements in a couple of special cases. First of all, if our solution (M, g0, u) has a
single horizon and it is not isometric to the de Sitter solution, then Theorem 1.8 gives

|∂M | ≤ 4π

3
,

which is a neat improvement of the classical Boucher-Gibbons-Horowitz inequality (1.19). In this
respect, our Theorem 1.4 gives the same inequality if the horizon is of cylindrical type, a stronger
inequality when the horizon is of black hole type and a worse result if the horizon is of cosmological
type.

Let us now compare the two statements in the case upon which our result is modelled, that is,
suppose that our solution (M, g0, u) is such that

M \MAX(u) = M+ tM− ,
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where M+ is an outer region with connected boundary ∂M+ and M− is an inner region with
connected boundary ∂M−. If we denote by

m+ = µ(M+, g0, u) , m− = µ(M−, g0, u) ,

the virtual masses of M+ and M−, then inequality (1.31) in Theorem 1.8 writes as

k+(m+) |∂M+| + k−(m−) |∂M−| ≤
4π

3
[k+(m+) + k−(m−)] . (1.32)

On the other hand, inequalities (1.21) and (1.22) in Theorem 1.4 give

k+(m+) |∂M+| + k−(m−) |∂M−| ≤ 4π
[
k+(m+)r2

+(m+) + k−(m−)r2
−(m−)

]
. (1.33)

The two inequalities (1.32), (1.33) are compared in Figure 3, where we have highlighted the values
of m+,m− for which our formula (1.33) improves (1.32). This comparison suggests that our result
is particularly effective when the set MAX(u) separates the manifold into an outer region and
an inner one, and motivates in turn our definition of a 2-sided solution to problem (1.6) (see
Definition 4 below), providing us with the natural setting for the uniqueness statement described
in the next subsection.

1.5. Uniqueness results. In this subsection, we discuss a characterization of both the Schwarz-
schild–de Sitter and the Nariai solution, which is in some ways reminiscent of the well known
Black Hole Uniqueness Theorem proved in different ways by Israel [33], zum Hagen, Robinson and
Seifert [57], Robinson [46], Bunting and Masood-ul Alam [18] and recently by the second author in
collaboration with Agostiniani [4]. This classical result states that when the cosmological constant
is zero, the only asymptotically flat static solutions with nonempty boundary are the Schwarzschild
triples described in (1.16). In order to clarify what should be expected to hold in the case of
positive cosmological constant, let us briefly comment the asymptotic flatness assumption. Without
discussing the physical meaning of this assumption nor reporting its precise definition – which on
the other hand can be easily found in the literature – we underline the fact that it amounts to both
a topological and a geometric requirement. More precisely, each end of the manifold is a priori
forced to be diffeomorphic to [ 0,+∞)× Sn−1 and the metric has to converge to the flat one at a
suitable rate, so that, up to a convenient rescaling, the boundary at infinity of the end is isometric
to a round sphere. Another important feature of the asymptotic flatness assumption is that the
static potential approaches its maximum value at infinity.

From this last property, it seems natural to guess that the boundary at infinity of an asymptotically
flat static solution with Λ = 0 should correspond in our framework to the set MAX(u). The same
analogy is also proposed in [16, Appendix], where it is used to justify the physical meaning of
the normalization (1.5) for the surface gravity. Before presenting the precise statement of this
uniqueness result, it is important to underline another feature of the set MAX(u), that is peculiar of
our setting. In fact, in sharp contrast with the Λ = 0 case, we observe that MAX(u) may in principle
disconnect our manifold. On the other hand, this situation is not only possible but even natural,
since it is realized in the model examples given by the Schwarzschild–de Sitter solutions (1.9) and
the Nariai solutions (1.11). Here, the set MAX(u) separates the manifold into two regions, one of
which is either outer or cylindrical, while the other is either inner or cylindrical. Having this in
mind, it is natural to introduce the notion of a 2-sided solution to problem (1.6).

Definition 4 (2-Sided Solution). A triple (M, g0, u) is said to be a 2-sided solution to problem (1.6)
if

M \MAX(u) = M+ tM− ,

where M+ is either an outer or a cylindrical region, that is

max
S∈π0(∂M+)

κ(S) = max
∂M+

|Du|
umax

≤
√
n ,
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Figure 4. The drawing represents the possible structure of a generic 2-sided solution
to problem (1.6). The red line represents the set MAX(u), with the separating stratified
hypersurface Σ put in evidence. The blue colour of a boundary component indicates a black
hole horizon, whereas the green colour indicates a cosmological horizon. Cylindrical horizons
are not considered in this figure since they are non generic.

and M− is either an inner or a cylindrical region, that is

max
S∈π0(∂M−)

κ(S) = max
∂M−

|Du|
umax

≥
√
n .

The generic shape of a 2-sided solution is shown in Figure 4. We recall that, by a classical
theorem of  Lojasiewicz [42], the set MAX(u) is given a priori by a possibly disconnected stratified
analytic subvariety of dimensions ranging from 0 to (n− 1). In particular, it follows that a 2-sided
solution contains a stratified (possibly disconnected) hypersurface Σ ⊆ MAX(u) which separates
M+ and M−, that is, M+ ∩M− = Σ. This hypersurface will play an important role in our analysis,
as it represents the junction between the regions M+ and M−. We are now ready to state the main
result of this subsection.

A careful analysis along Σ, combined with the area upper and lower bounds for the horizons
stated in Subsection 1.4, will lead to the proof of the following 3-dimensional Black Hole Uniqueness
Theorem:

Theorem 1.9. Let (M, g0, u) be a 3-dimensional 2-sided solution to problem (1.6), and let Σ ⊆
MAX(u) be the stratified hypersurface separating M+ and M−. Let also

m+ = µ(M+, g0, u) , and m− = µ(M−, g0, u)

be the virtual masses of M+ and M−, respectively. Suppose that the following conditions hold

• mass compatibility m+ = m = m− for some 0 < m ≤ mmax,

• connected cosmological horizon ∂M+ is connected.

Then the triple (M, g0, u) is isometric to either the Schwarzschild–de Sitter solution (1.9) with mass
0 < m < mmax or to the Nariai solution (1.11) with mass m = mmax.

The hypothesis of connected cosmological horizon is motivated by the beautiful result in [5,
Theorem B], where it is proven that any static solution (M, g0, u) admits at most one unstable
horizon. From a physical perspective, one may expect that the unstable horizons should be the
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ones of cosmological type, whereas the horizons of black hole type should be stable. This is what
happens for the model solutions, as one can easily check. This observation leads us to formulate
the following conjecture, which, if proven to be true, would allow to remove the assumption of
connected cosmological horizon from Theorem 1.9.

Conjecture. An horizon of cosmological type is necessarily unstable. In particular, every static
solution to problem (1.6) has at most one horizon of cosmological type.

1.6. Summary. In the remainder of the paper we will prove the results stated in this introduction.
We will first focus on outer and inner regions, since the analysis of these two cases is similar. Our
study is based on the so called cylindrical ansatz, introduced in [2, 3, 4], which consists is finding
an appropriate conformal change of the original metric g0 in terms of the static potential u.

After some preliminaries (Section 2) in 3 we will describe this method, we will set up the
formalism and we will provide some preliminary lemmata and computations that will be used
throughout the paper. Building on this, we will prove in Section 4 a couple of integral identities in
the conformal setting.

In Section 5 we will proceed to the proof of the inequalities in Theorems 1.4, 1.5 and 1.6, for
both the cases of outer and inner regions. In Section 6 we will translate the integral identities
proven in Section 4 in terms of the original metric g0. As a consequence, we will prove the rigidity
statements for Theorems 1.4, 1.5, together with some weighted area inequalities for the horizons.

In Section 7 we will show that our analysis can be improved under the assumption that the
solution is 2-sided, and this will lead us to the proof of Theorem 1.9 stated in Subsection 1.5, in
the case where m+ < mmax.

Finally, in Section 8 we will focus on the cylindrical regions. The analysis of the cylindrical case
is slightly different, as our model solution will be the Nariai triple instead of the Schwarzschild–de
Sitter triple, however the ideas behind our analysis are completely analogous. In this section we
will establish the results stated in Subsection 1.4 for cylindrical regions and we will complete the
proof of Theorem 1.9 by studying the case m+ = mmax.

2. Analytic preliminaries

This section is devoted to the setup of the cylindrical ansatz, which will be the starting point of
the proofs of our main results. We will work on a single region N of our manifold M , and we will
always suppose that N is not cylindrical, that is

max
S∈π0(∂N)

κ(S) 6=
√
n .

The case of equality requires a different analysis, and will be studied separately in Section 8.
The cylindrical ansatz is inspired by the analogous technique used in [2, 3, 4], and consists in an

appropriate conformal change of the original triple. The idea comes from the observation that the
Schwarzschild–de Sitter metric can be made cylindrical via a division by |x|2. In fact, the metric

1

|x|2

(
d|x| ⊗ d|x|

1− |x|2 − 2m|x|2−n
+ |x|2gSn−1

)
=

d|x| ⊗ d|x|
|x|2(1− |x|2 − 2m|x|2−n)

+ gSn−1 ,

after a rescaling of the coordinate |x|, is just the standard metric of the cylinder R × Sn−1. We
would like to perform a similar change of coordinates on a general solution (M, g0, u).

To this end, in Subsection 2.1 we are going to define on a region N of a general triple (M, g0, u)
a pseudo-radial function Ψ : N → R. The function Ψ will be constructed starting from the static
potential u, and in the case where u is as in the Schwarzschild–de Sitter solution (1.9), it will
simply coincide with |x|.

Subsection 2.2 is devoted to the proof of the relevant properties of the pseudo-radial function.
Most of the results in this subsection are quite technical, and the reader is advised to simply
ignore this part of the work and to come back only when needed. However, there is one result that
deserves to be mentioned. In Proposition 2.3 we will prove that static potentials satisfy a reverse
 Lojasiewicz inequality. The proof does not depend so deeply on the equations in (1.6), and can
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thus be adapted to a much larger family of functions. This will be the object of further studies.
For the purposes of this work, the reverse  Lojasiewicz inequality will be crucial in the Minimum
Principle argument that leads to Proposition 3.3. It is interesting to notice that Proposition 3.3, in
turn, will allow to improve the reverse  Lojasiewicz inequality, as explained in Remark 6. However,
since the proof of Proposition 3.3 exploits the equations in (1.6), we do not know if the improved
 Lojasiewicz inequality still holds outside the realm of static potentials.

2.1. The pseudo-radial function. Let (M, g0, u) be a solution to problem (1.6), and let N be a
connected component of M \MAX(u). As already discussed above, in this subsection we focus on
inner and outer region. In other words, the quantity

max
S∈π0(∂N)

κ(S) = max
∂N

|Du|
umax

will always be supposed to be different from
√
n. In particular, the virtual mass

m = µ(N, g0, u) ,

is strictly less than mmax. The special case m = mmax will be discussed later, in Section 8.
The aim of this subsection is that of defining a pseudo-radial function, that is, a function that

mimic the behavior of the radial coordinate |x| in the Schwarzschild–de Sitter solution. First of all,
we recall that our problem is invariant under a normalization of u, hence we first rescale u in such
a way that its maximum is the same as the maximum of the Schwarzschild–de Sitter solution with
mass m.

Notation 1. We will make use of the notations mmax, umax introduced in (1.7), (1.10). We recall
their definitions here

mmax =

√
(n− 2)n−2

nn
, umax(m) =

√
1−

(
m

mmax

)2/n

.

We emphasize that umax = umax(m) is a function of the virtual mass m of N . We will explicitate
that dependence only when it will be significative.

Normalization 1. We normalize u in such a way that its maximum is umax(m), where m is the
virtual mass of N and umax(m) is defined as in Notation 1.

As usual, we let r+(m) > r−(m) ≥ 0 be the two positive roots of the polynomial Pm(x) =

xn−2 − xn − 2m, we set r0(m) = [(n− 2)m]1/n and we define the function

Fm : [0, umax(m)]× [r−(m), r+(m)] −→ R
(u, ψ) 7−→ Fm(u, ψ) = u2 − 1 + ψ2 + 2mψ2−n

It is a simple computation to show that ∂Fm/∂ψ = 0 if and only if ψ = 0 or ψ = r0(m). Therefore,
as a consequence of the Implicit Function Theorem we have the following.

Proposition 2.1. Let u be a positive function and let umax be its maximum value. Then there
exist functions

ψ− : [0, umax] −→ [r−(m), r0(m)] , ψ+ : [0, umax] −→ [r0(m), r+(m)] ,

such that Fm(u, ψ−(u)) = Fm(u, ψ+(u)) = 0 for all u ∈ [0, umax(m)].

Let us make a list of the main properties of ψ+ and ψ−, that can be derived easily from their
definition.

• First of all, we can compute ψ+, ψ− and their derivatives using the following formulæ

u2 = 1− ψ2
± − 2mψ2−n

± . (2.1)

ψ̇± = − u

ψ±
[
1−

(
r0(m)/ψ±

)n] , ψ̈± = n
ψ̇3
±
u

+ (n− 1)
ψ̇2
±
ψ±

+
ψ̇±
u
. (2.2)



ON THE MASS OF STATIC METRICS WITH POSITIVE COSMOLOGICAL CONSTANT – II 17

• The function ψ− takes values in [r−(m), r0(m)], hence ψn− ≤ rn0 (m) = (n − 2)m and
from (2.2) we deduce

ψ̇− ≥ 0 , ψ̈− ≥ 0 , lim
u→u−max

ψ̇− = +∞ .

• The function ψ+ takes values in [r0(m), r+(m)], hence ψn+ ≥ rn0 (m) = (n− 2)m and from

the first formula in (2.2) we deduce that ψ̇+ is nonpositive and diverges as u approaches
umax. Moreover, the second formula in (2.2) can be rewritten as

ψ̈+ =
ψ̇+

u

{
1 +

[
1 + (n− 1)(n− 2)mψ−n+

]
ψ̇2

+

}
,

from which it follows ψ̈+ ≤ 0. Summing up, we have

ψ̇+ ≤ 0 , ψ̈+ ≤ 0 , lim
u→u−max

ψ̇+ = −∞ .

Let us now come back to our case of interest, that is, let us consider a region N ⊆M \MAX(u).
We want to use the functions ψ± in order to define a pseudo-radial function on N . To this end, we
distinguish between the case where N is an outer or an inner region, according to Definition 2.

• If N is an outer region, then our reference model will be the outer region of the Schwarzschild–
de Sitter solution (1.9). Accordingly, we define the pseudo-radial function Ψ+ as

Ψ+ : N −→ [r0(m), r+(m)]

p 7−→ Ψ+(p) := ψ+(u(p)) .
(2.3)

Notice that, if N is the outer region of the Schwarzschild–de Sitter solution (1.9) with mass
m, for every p ∈ N the value of Ψ+(p) is equal to the value of the radial coordinate |x| at p.

• If N is an inner region, then our reference model will be the inner region of the Schwarzschild–
de Sitter solution (1.9). Accordingly, we define the pseudo-radial function Ψ− as

Ψ− : N −→ [r−(m), r0(m)]

p 7−→ Ψ−(p) := ψ−(u(p)) .
(2.4)

Notice that, if N is the inner region of the Schwarzschild–de Sitter solution (1.9) with mass
m, for every p ∈ N the value of Ψ−(p) is equal to the value of the radial coordinate |x| at p.

In the case of 2-sided solutions we will need a global version of the definition above.

• If (M, g0, u) is a 2-sided solution in the sense of Definition 4, then we define the global
pseudo-radial function as

Ψ : M −→ [r−(m), r+(m)]

p 7−→ Ψ(p) :=


ψ+(u(p)) if p ∈M+ ,

ψ−(u(p)) if p ∈M− ,
r0(m) if p ∈ MAX(u) .

(2.5)

If (M, g0, u) is isometric to the Schwarzschild–de Sitter solution (1.9) with mass m, then Ψ
coincides with the radial coordinate |x|. The function Ψ is continuous by construction, but
a priori we have no more information about its regularity near the set MAX(u). However,
in Subsection 2.2 we will prove that Ψ is always Lipschitz. Moreover, we will also show that
Ψ is C 2 at the points of the top stratum of the hypersurface Σ ⊆ MAX(u) that separates
M+ and M−.

By definition, we have the following relation between the derivatives of the pseudo-radial function
Ψ and the potential u.

DΨ± = (ψ̇± ◦ u) Du , D2Ψ± = (ψ̇± ◦ u) D2u + (ψ̈± ◦ u) du⊗ du . (2.6)
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Figure 5. Relation between u2 (on the x-axis) and the pseudo-radial functions (on the
y-axis) for different values of the virtual mass m. The blue lines represent the relation with
ψ− whereas the red lines represent the relation with ψ+. We have also included in the plot
a dashed line showing the relation between the radial coordinate and the static potential in
the de Sitter solution (1.8), which represents the limit case when m→ 0.

Notation 2. In the following sections, we will perform several formal computations. In order
to simplify the notations, we will avoid to indicate the subscript ±, and we will simply denote by
Ψ = ψ ◦ u the pseudo-radial function on a region N of M \MAX(u), where we understand that Ψ
is defined by (2.3) if we are in an outer region and by (2.4) if we are in an inner region. When
there is no risk of confusion, we will also avoid to explicitate the composition with u, namely, we
will write ψ instead of ψ ◦ u. For instance, the formulæ in (2.6) will be simply written as

DΨ = ψ̇Du , D2Ψ = ψ̇D2u + ψ̈ du⊗ du ,

2.2. Preparatory estimates. Here we collect some lemmata that will be useful in the following.
The first one shows an important connection between the value of the pseudo-radial function at the
boundary and the surface gravity.

Lemma 2.2. Let (M, g0, u) be a solution to problem (1.6) and let N ⊆M \MAX(u) be a region
with virtual mass m = µ(N, g0, u) < mmax. If N is outer, then

max
∂N

∣∣∣∣∣ Du

r+(m)
[
1−

(
r0(m)/r+(m)

)n]
∣∣∣∣∣ = 1 .

If N is inner, then

max
∂N

∣∣∣∣∣ Du

r−(m)
[
1−

(
r0(m)/r−(m)

)n]
∣∣∣∣∣ = 1 .

Proof. The proof is an easy computation. We recall from the definition of the virtual mass m of
N , that max∂N |Du|/umax = k±(m), where k± are the surface gravity functions defined by (1.12)



ON THE MASS OF STATIC METRICS WITH POSITIVE COSMOLOGICAL CONSTANT – II 19

and (1.13), and the sign ± depends on whether N is an outer or inner region. Therefore, we have

max
∂N

∣∣∣∣∣ Du

r±(m)
[
1−

(
r0(m)/r±(m)

)n]
∣∣∣∣∣ =

umax

r±(m)
∣∣1− (r0(m)/r±(m)

)n∣∣ max
∂N

|Du|
umax

=
umax

r±(m)
∣∣1− (r0(m)/r±(m)

)n∣∣ k±(m)

= 1 ,

where the last equality follows from the definition of k+ and k−. �

Remark 2. Following the proof of Lemma 2.2, it is easy to see that, if N is an outer region, then,
for every µ(N, g0, u) ≤ m ≤ mmax it holds

max
∂N

∣∣∣∣∣ Du

r+(m)
[
1−

(
r0(m)/r+(m)

)n]
∣∣∣∣∣ ≤ 1 .

Similarly, if N is an inner region, one can see that for every 0 ≤ m ≤ µ(N, g0, u) it holds

max
∂N

∣∣∣∣∣ Du

r−(m)
[
1−

(
r0(m)/r−(m)

)n]
∣∣∣∣∣ ≤ 1 .

This remark will be useful in Section 7, where we will work with parameters m that do not necessarily
coincide with the virtual mass.

We now pass to discuss an estimate for the gradient of the potential u near the maximum points.
This estimate will be an important ingredient in the proof of Lemma 2.5 below, which is the result
that we will actually need in the following. However, Proposition 2.3 is also interesting on its own.
In fact, it can be interpreted as a reverse  Lojasiewicz inequality for the function u (for the original
 Lojasiewicz inequality, see [41, Théorèm 4]). Proposition 2.3 is stated for solutions to problem (1.6),
but we emphasize that a similar property can be proven for a much larger class of functions, as it
will be discussed in a forthcoming work.

Proposition 2.3. Let (M, g0, u) be a solution to problem (1.6) and let umax be the maximum of u.
Then, for every 0 < β < 1, there exists a constant Kβ and an open neighborhood Ωβ ⊃ MAX(u)
such that

|Du|2(x) ≤ Kβ [umax − u(x)]β ,

for all x ∈ Ωβ.

Proof. We consider the function

w = |Du|2 −K(umax − u)β ,

where K > 0 is a constant that will be chosen conveniently later. We compute

Dw = D|Du|2 + βK(umax − u)−(1−β)Du ,

and diverging the above formula

∆w = ∆|Du|2 + βK(umax − u)−(1−β)∆u+ β(1− β)K(umax − u)−(2−β)|Du|2

= 2|D2u|2 + 2Ric(Du,Du) + 2〈D∆u |Du〉+ βK
∆u

(umax − u)1−β + β(1− β)K
|Du|2

(umax − u)2−β ,

where in the second equality we have used Bochner formula. Since |Du| goes to zero as we
approach MAX(u), so does the quantity h = 2Ric(Du,Du) + 2〈D∆u|Du〉. Moreover, we have
|D2u| ≥ (∆u)2/n = nu2 > 0 in a neighborhood of MAX(u). From the compactness of the level sets
of u, it follows that we can choose η > 0 small enough such that

|h| ≤ 2 |D2u|2 on {umax − η ≤ u ≤ umax} .



20 S. BORGHINI AND L. MAZZIERI

Therefore, from the identity above we find

∆w ≥ βK
∆u

(umax − u)1−β + β(1− β)K
|Du|2

(umax − u)2−β

= βK
∆u

(umax − u)1−β + β(1− β)K
w

(umax − u)2−β + β(1− β)K2 1

(umax − u)2−2β
,

where in the second equality we have used |Du|2 = w + K(umax − u)β. It follows that, on
{umax − η ≤ u ≤ umax}, it holds

∆w − β(1− β)K
1

(umax − u)2−βw ≥ βX [∆u+ (1− β)X] , (2.7)

where

X =
K

(umax − u)1−β .

On {umax − η ≤ u ≤ umax} we have

X =
K

(umax − u)1−β ≥
K

η1−β ,

Moreover, ∆u is continuous and thus bounded in a neighborhood of MAX(u). This means that, for
any K big enough, we have (1 − β)X + ∆u ≥ 0 on the whole {umax − η ≤ u ≤ umax}. For such
values of K, the right hand side of (2.7) is nonnegative, that is,

∆w − β(1− β)K
1

(umax − u)2−βw ≥ 0 , on {umax − η ≤ u ≤ umax} .

Therefore, we can apply the Weak Maximum Principle [28, Corollary 3.2] to w in any open set
where w is C 2 –that is, on any open set of {umax− η ≤ u ≤ umax} that does not intersect MAX(u).
Up to increasing the value of K, if needed, we can suppose

K ≥ max
{u=umax−η}

|Du|2

(umax − u)β
=

max{u=umax−η} |Du|2

ηβ
,

so that w ≤ 0 on {u = umax − η}. Now we apply the Weak Maximum Principle to the function w
on the open set Ωε = {umax − η ≤ u ≤ umax − ε}, obtaining

w ≤ max
∂Ωε

(w) = max

{
max

{u=umax−ε}
(w) , max

{u=umax−η}
(w)

}
≤ max

{
max

{u=umax−ε}
(w) , 0

}
.

Taking the limit as ε→ 0, from the continuity of u and the compactness of the level sets, we have
limε→0 max{u=umax−ε}(w) = 0, hence we obtain w ≤ 0 on {umax − η ≤ u ≤ umax}. Recalling the
definition of w, we have proved that the inequality

|Du|2 ≤ K(umax − u)β

holds in Ω = {umax − η ≤ u < umax}, which is a collar neighborhood of MAX(u). �

The above result can actually be improved in the following way. Take α < β < 1. In the
neighborhood Ωβ given by Proposition 2.3, we have

|Du|2

(umax − u)α
=

|Du|2

(umax − u)β
· (umax − u)β−α ≤ Kβ (umax − u)β−α ,

for some constant Kβ . Since β > α, the right hand side goes to zero as we approach MAX(u) and
we obtain the following corollary.

Corollary 2.4. Let (M, g0, u) be a solution to problem (1.6) and let umax be the maximum of u.
Then, for every p ∈ MAX(u), it holds

lim
x6∈MAX(u), x→p

|Du|2

(umax − u)α
(x) = 0 ,

for all 0 < α < 1.
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Of course, we have specified x 6∈ MAX(u) in the limit above because otherwise the function in the
argument is not defined. Corollary 2.4, in turn, allows us to prove the following useful estimate
near MAX(u).

Lemma 2.5. Let (M, g0, u) be a solution to problem (1.6) and let Ψ = ψ ◦ u be defined by (2.3)
or (2.4) with respect to a parameter m ∈ (0,mmax). Then, for every p ∈ MAX(u), it holds

lim
x→p

ψ̇2α|Du|2(x) = 0 ,

for every 0 < α < 1.

Proof. First, we compute

umax − u[
1−

(
r0(m)/ψ

)n]2 =
1

umax + u

u2
max − u2[

1−
(
r0(m)/ψ

)n]2
=

1

umax + u

1− (m/mmax)2/n − 1 + ψ2 + 2mψ2−n[
1−

(
r0(m)/ψ

)n]2
=

1

(umax + u)
[
1−

(
r0(m)/ψ

)n]
[
ψ2 − nm

2
n

(n− 2)
n−2
n

1−
(
r0(m)/ψ

)n−2

1−
(
r0(m)/ψ

)n
]
.

We want to show that the quantity above has a finite nonzero limit as we approach MAX(u). If we
denote z = r0(m)/ψ, the equation above can be rewritten as

umax − u[
1−

(
r0(m)/ψ

)n]2 =
umax − u
(1− zn)2

=
r2

0(m)

(umax + u)(1− zn)

[
z−2 − n

n− 2

1− zn−2

1− zn

]
=

r2
0(m)

(umax + u)(1− zn)

[
z−2 − n

n− 2

1 + z + · · ·+ zn−3

1 + z+ · · ·+ zn−1

]
=

r2
0(m) z−2

(umax + u)(1 + z + · · ·+ zn−1)2
·

1 + z − 2
n−2z

2
(
1 + z + · · ·+ zn−3

)
1− z

.

It is clear that the first factor above has a finite nonzero limit as we approach MAX(u), that is,
when z goes to 1. Concerning the second factor, one easily computes

1 + z − 2
n−2z

2
(
1 + z + · · ·+ zn−3

)
1− z

= n− 2

n− 2
(1− z)

n−2∑
k=1

(n− k − 1)(1 + z + · · ·+ zk−1) ,

Substituting, we easily obtain

umax − u[
1−

(
r0(m)/ψ

)n]2 =
r2

0(m)

2numax
[1 + f(z)] , (2.8)

where f(z) is a function that is analytic near z = 1 and such that f(1) = 0. In particular, recalling

formula (2.2), we have proved that (umax − u)ψ̇2 has a finite limit as we approach the set MAX(u).
Therefore, for any p ∈ MAX(u) and 0 < α < 1, we compute

lim
x→p

ψ̇2α|Du|2(x) = lim
x→p

[
(umax − u)ψ̇2

]α |Du|2

(umax − u)α
(x) ,

and, since (umax − u)ψ̇2 has a finite limit on MAX(u), from Corollary 2.4 we conclude. �

Lemma 2.5 will be crucial later in the proof of Proposition 3.3, where a Minimum Principle argument
will be used to prove a stronger result, namely, that the quantity ψ̇|Du| is bounded near MAX(u),
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see Remark 6. In particular, since (umax − u)ψ̇2 is also bounded near MAX(u), as shown in the
proof of Lemma 2.5, it follows that the quantity

4
∣∣∣D(√umax − u

)∣∣∣2 =
|Du|2

umax − u
.

is bounded near MAX(u). In other words, the function
√
umax − u is always Lipschitz continuous

on M .
It is worth remarking that, in the neighborhood of the points of the top stratum of MAX(u), we

can actually prove a much more precise result about the behavior of the static potential u. We
recall that with top stratum of MAX(u) we mean the open subset Σ ⊂ MAX(u) which is a (n− 1)-
dimensional analytic submanifold. In other words, the points p ∈ Σ are the ones such that there
exists a neighborhood Ω of p and an analytic function f : Ω→ R such that MAX(u) ∩ Ω = f−1(0)
and |df | 6= 0 in Ω.

Proposition 2.6. Let (M, g0, u) be a solution to problem (1.6) and let p ∈ MAX(u) be a point
in the top stratum of MAX(u). Let Ω be a small neighborhood of p such that Σ = Ω ∩MAX(u)
is contained in the top stratum and Ω \ Σ has two connected components Ω+,Ω−. We define the
signed distance to Σ as

r(x) =

{
+ d(x,Σ) , if x ∈ Ω+ ,

− d(x,Σ) , if x ∈ Ω− .

Then the following expansion holds:

u = umax

[
1− n

2
r2 +

n

6
H r3 − 1

24

(
2n |̊h|2 +

n(n+ 1)

n− 1
H2 − n2

)
r4 +O(r5)

]
, (2.9)

where H is the mean curvature of Σ with respect to the normal pointing towards Ω+.

Proof. Let (x1, . . . , xn) be a chart centered at p, with respect to which the metric g0 and the
function u are analytic. From the fact that p belongs to the top stratum of MAX(u), it follows
that we can choose an open neighborhood Ω of p in M , where the signed distance r(x) is a well
defined analytic function (see for instance [37], where this result is discussed in full details in the
Euclidean space, however the proofs extend with small modifications to the Riemannian setting).
More precisely, we have

r = φ(x1, . . . , xn) ,

where φ is an analytic function. Since r is a signed distance function, we have |Dr| = 1, which
implies in particular that one of the partial derivatives of φ has to be different from zero. Without
loss of generality, let us suppose ∂φ/∂x1 6= 0 in a small neighborhood Ω of p. As a consequence, we
have that the function

H : Rn+1 → R , H(r, x1, . . . , xn) = r − φ(x1, . . . , xn) .

satisfies ∂H/∂x1 = −∂φ/∂x1 6= 0 in Ω. We can then apply the Real Analytic Implicit Function
Theorem (see [38, Theorem 2.3.5]), from which it follows that there exists an analytic function
h : Rn → R such that

H(r, h(r, x2, . . . , xn), x2, . . . , xn) = 0 .

In other words, the change of coordinates from (r, x2, . . . , xn) to (x1, . . . , xn), which is obtained
setting x1 = h(r, x2, . . . , xn), is analytic, and in particular u is an analytic function also with
respect to the chart (r, x2, . . . , xn). In the following computation, it is convenient to denote this
new analytic chart as y = (y1, . . . , yn), where y1 = r and yi = xi for i = 2, . . . , n. In particular, in
this new chart, the smooth hypersurface Σ ∩ Ω coincides with the points with y1 = 0. Since u is
analytic, we can take its Taylor expansion in p

umax − u(y) =
∞∑
k=2

∑
|I|=k

AI y
I , (2.10)
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where I = (I1, . . . , In) is a multi-index and |I| = I1+· · ·+In. Since umax−u ≡ 0 on Σ∩Ω = {y1 = 0},
the summand on the right hand side of (2.10) must be identically zero when we set y1 = 0. From
this it follows that AI = 0 whenever I1 = 0.

We now prove that AI = 0 also when I1 = 1. In fact, suppose that this is not true, and let k
be the smallest integer such that there exists a multi-index I with |I| = k, I1 = 1 and AI 6= 0.
Consider points of the form

y1 = εkσ1 , yi = ε σi ,

where ε ∈ R, σ1 = 1 and σi ∈ R \ {0} for all i = 2, . . . , n. Recalling that AI = 0 whenever I1 = 0
and whenever |I| < k and I1 = 1, at these points it holds

umax − u = ε2k−1
∑

|I|=k, I1=1

AI σ
I + O(ε2k) .

We recall that we are supposing that there are some nonzero coefficients in the sum on the right
hand side, hence we can choose the values of σ2, . . . , σn in such a way that

∑
|I|=k, I1=1AI σ

I < 0.

Therefore, for small values of ε > 0, we would have umax − u < 0, against the hypothesis that umax

is the maximum value of u.
From these considerations, it follows that we can write

umax − u(y) = (y1)2 · (A(2,0,...,0) + y1 f) , (2.11)

where f is an analytic function. Notice that, at the point p, we have ∂αu = 0 for all α = 1, . . . , n,
and from the second equation in (1.6) we find

−numax = ∆u = gαβ0 [∂2
αβu− Γγαβ∂γu] = −2 g11

0 A(2,0,...,0) = −2A(2,0,...,0) .

It follows that A(2,0,...,0) = numax/2 > 0.
Now that we have found a good expansion of u around the point p, it is convenient to come back

to the old notation (r, x2, . . . , xn). Namely, we set again r = y1 and xi = yi for all i = 2, . . . , n.
Rewriting (2.11) recalling also that a = numax/2, we obtain the following expansion

u(r, x) = umax −
n

2
umax r

2 + r3 f , (2.12)

We now want to gather more information on the analytic function f . To this end, set Σρ = {r = ρ}
and observe that all Σρ with ρ small enough are smooth, since (r, x) = (r, x2, . . . , xn) is an analytic
chart and |Dr| = 1 6= 0. In particular, of course, we have Σ0 = Σ ∩ Ω. On each Σρ, the laplacian of
u satisfies the following well known formula

∆u = D2u(nρ,nρ) + HΣρ 〈Du |nρ〉 + ∆Σρu , (2.13)

where nρ = ∂/∂r is the g0-unit normal to Σρ, HΣρ is the mean curvature of Σρ with respect to nρ
and ∆Σρu is the laplacian of the restriction of u to Σρ with respect to the metric induced by g0 on
Σρ. Evaluating (2.13) at ρ = 0, since u ≡ umax and |Du| = 0 on Σ0, recalling also that ∆u = −nu,
we immediately get

D2u(ν, ν) = ∆u = −numax ,

in agreement with expansion (2.12). We now differentiate formula (2.13) two times with respect to
r, obtaining the following

−n∂u
∂r

=
∂3u

∂r3
+ HΣr ∂

2u

∂r2
+
∂HΣr

∂r

∂u

∂r
+

∂

∂r
∆Σru .

−n∂
2u

∂r2
=

∂4u

∂r4
+ HΣr ∂

3u

∂r3
+ 2

∂HΣr

∂r

∂2u

∂r2
+
∂2HΣr

∂r2

∂u

∂r
+

∂2

∂r2
∆Σru .

Let us focus first on the terms involving ∆Σru. Calling g(r) the metric induced by g0 on Σr and
Γ(r) the Christoffel symbols of g(r), we have

∆Σru = gij(r)
∂2u

∂xi∂xj
+ gij(r) Γ

k
(r) ij

∂u

∂xk
,
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where the indices i, j, k vary between 2 and n. On the other hand, notice from (2.12) that

∂2u

∂xi∂xj |r=0

=
∂2u

∂r∂xi |r=0

=
∂3u

∂r2∂xi |r=0

=
∂4u

∂r2∂xi∂xj |r=0

= 0 ,

for all i, j = 2, . . . , n. From this, it easily follows

∂

∂r
∆Σru|r=0

=
∂2

∂r2
∆Σru|r=0

= 0 .

Since we also know that ∂u/∂r = 0 and ∂2u/∂r2 = −numax when r = 0, from the expansions above
we deduce

∂3u

∂r3 |r=0

= numax H .

∂4u

∂r4 |r=0

= 2numax
∂HΣr

∂r |r=0

− numax H2 + n2 umax ,

where we have denoted by H the mean curvature of Ω ∩ Σ = Σ0 for simplicity. Furthermore,
from [32, Lemma 7.6] and the first equation in (1.6) we get

∂HΣr

∂r |r=0

= − |h|2 −Ric(ν, ν) = −
(
|̊h|2 +

H2

n− 1

)
−
[

D2u(ν, ν)

u
+ n 〈 ν| ν〉

]
= − |̊h|2 − H2

n− 1
,

where we have used D2u(ν, ν) = −numax, as proven above. Now that we have computed the third
and fourth derivative of u, we can use this information to improve (2.12) and get the desired
expansion of the static potential u. �

Proposition 2.6 has some very useful consequences for our analysis. Let us start from the simplest
one. From expansion (2.9), we can compute the explicit formula for the gradient of u as we approach
a point p in the top stratum of MAX(u) as

lim
x6∈MAX(u), x→p

|Du|2(x)

umax − u(x)
= lim

r→0

n2 u2
max r

2 + O(r3)

(n/2)umax r2 + O(r3)

= 2numax . (2.14)

In particular, recalling formula (2.8), at each point of the top stratum we deduce the following
identity

lim
x 6∈MAX(u), x→p

|Du|2(x)

ψ2(x)
[
1−

(
r0(m)/ψ(x)

)n]2 = 1 . (2.15)

We will see that the left hand side of formula (2.15) admits an interpretation as the norm of the
gradient of a pseudo-affine function (see formula (3.10)) that will be of extreme importance in the
rest of the work.

A second important consequence of Proposition 2.6 is the following regularity result for the
pseudo-radial function Ψ.

Proposition 2.7. Let (M, g0, u) be a solution to problem (1.6) and let p ∈ MAX(u) be a point
in the top stratum of MAX(u). Let Ω be a small neighborhood of p such that Σ = Ω ∩MAX(u)
is contained in the top stratum and Ω \ Σ has two connected components Ω+,Ω−. We define the
function

Ψ(x) =

{
Ψ+(x) , if x ∈ Ω+ ,

Ψ−(x) , if x ∈ Ω− ,

where Ψ+ is the pseudo-radial function defined by (2.3) with respect to a parameter m ∈ [0,mmax)
and Ψ− is the pseudo-radial function defined by (2.4) with respect to the same parameter m. Then
the function Ψ is C 3 in Ω.
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Proof. Let us start from formula (2.8) obtained in the proof of Proposition 2.5, where we recall
that we had set z = r0(m)/ψ. It is clear that it is possible to refine (2.8) by expanding around
z = 1 the function f(z) appearing in it. Namely, we can write

umax − u[
1−

(
r0(m)/ψ

)n]2 =
r2

0(m)

2numax

[
1 + A (1− z) + B (1− z)2 + O

(
(1− z)3

)]
, (2.16)

for suitable A,B ∈ R. The computation of the precise values of the coefficients A,B is tedious and
it will not be necessary in our proof, as for our argument it is sufficient that such coefficients exist.
If we also expand 1−

(
r0(m)/ψ

)n
= 1− zn in terms of 1− z, from (2.16) we obtain

umax − u
(1− z)2

=
r2

0(m)

2numax

[
1 + C (1− z) + D (1− z)2 + O

(
(1− z)3

)]
, (2.17)

for suitable coefficients C,D ∈ R that, once again, we avoid to compute explicitly. We want to
use (2.17) in order to prove that 1− z can be expanded in terms of r close to Σ. We do this by
applying (2.17) repeatedly as follows

1− z =
1− z√
umax − u

√
umax − u

=

√
2numax

r2
0(m)

√
umax − u√

1 + C(1− z) +D(1− z)2 +O ((1− z)3)

=

√
2numax

r2
0(m)

√
umax − u√

1 + C
√

2numax

r20(m)

√
umax−u√

1+C(1−z)+O((1−z)2)
+D 2numax

r20(m)
umax−u

1+O(1−z) +O ((1− z)3)

=

√
2numax

r2
0(m)

√
umax − u√√√√1 + C

√
2numax

r20(m)

√
umax−u√

1+C
√

2numax
r20(m)

√
umax−u√
1+O(1−z)

+O((1−z)2)

+D 2numax

r20(m)
umax−u

1+O(1−z) +O ((1− z)3)

.

We observe, again from (2.17), that O(1−z) = O(umax−u)1/2 = O(r). Now we use Proposition 2.6
to substitute umax − u with its expansion (2.9). Using the known expansions for square roots and
fractions, the cumbersome formula above reduces to

1− z = E + F r + Gr2 + O(r3) .

for suitable coefficients E,F,G. Notice that these coefficients are not necessarily constant, as they
can depend on H and |̊h| coming from the expansion of u. Finally, we can substitute back in (2.16)
to obtain

umax − u[
1−

(
r0(m)/ψ

)n]2 =
r2

0(m)

2numax
+ P r + Qr2 + O(r3) , (2.18)

for suitable coefficients P,Q (that again, may not be constant). We are now ready to prove the
regularity of Ψ. Recalling (2.2), and using again the expansion (2.9) of u, we compute

∂(Ψ2)

∂r
= 2ψ ψ̇

∂u

∂r

=
2u

1− (r0(m)/ψ)n
∂u

∂r

=
2u√

umax − u

√
umax − u

1− (r0(m)/ψ)n
∂u

∂r
.

We can now expand the three factors using (2.9) and (2.18), obtaining

∂(Ψ2)

∂r
= R + S r + T r2 + O(r3) ,
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where the coefficients R,S, T depend only on H and |̊h|. It is then clear that ∂(Ψ2)/∂r, and also
its first and second derivatives, are continuous along r = 0. A completely analogous reasoning can
be done for ∂(Ψ2)/∂xi, for all i = 2, . . . , n. It follows that Ψ2, and thus Ψ, is C 3.

It should be mentioned that it is possible to compute precisely the coefficients of the expansion
of Ψ. A sufficiently simple way of doing it is to recall that Ψ = r0(m) on MAX(u) and then write

Ψ = r0(m) + W r + X r2 + Y r3 +O(r4) ,

where W,X, Y are functions of the coordinates x2, . . . , xn only. Now one can compute the expansions
of the left and right hand sides of the relation u2 = 1−Ψ2 − 2mΨ2−n to obtain information on
the functions W,X, Y . With some lenghty (but standard) computations, one obtains

Ψ = r0(m) + umax r +
umax

12

[
|̊h|2 + (n+ 1)(n− 1)

(
H2

(n− 1)2
− u2

max

r2
0(m)

)
− 2n

]
r3 +O(r4) .

Anyway, this expansion will not be useful in what follows. �

Finally, we conclude this subsection with another important consequence of Proposition 2.6,
which is the following regularity result on the top stratum of MAX(u).

Proposition 2.8. Let (M, g0, u) be a solution to problem (1.6) and let Σ be the top stratum of
MAX(u). Then Σ is a C 1 hypersurface (possibly with boundary).

Proof. We already know that the top stratum Σ is an analytic hypersurface, meaning that each
point p ∈ Σ admits a neighborhood Ω such that there exists an analytic function f : Ω→ R with
Ω ∩ Σ = f−1(0) and |df | 6= 0 on the whole Ω. It remains to prove that Σ is a C 1 hypersurface
also at the points that do not belong to Σ. Let then p ∈ Σ \ Σ and let Ω 3 p be a small open
neighborhood. From the  Lojasiewicz Structure Theorem [38, Theorem 6.3.3], it follows that we can
choose Ω small enough so that

Σ ∩ Ω = Σ1 ∪ · · · ∪ Σk (2.19)

for some k ∈ N, where the Σi’s are connected analytic hypersurfaces contained in the top stratum
Σ and p ∈ Σi for all i = 1, . . . , k. For every i = 1, . . . , k and for every x ∈ Σi, let us denote by ni(x)
the unit normal to Σi at the point x.

We now show that the following limit

lim
x∈Σi, x→p

ni(x) (2.20)

exists for every i = 1, . . . , k. To this end, suppose that this is not the case, that is, suppose that,
for some i, there exists a sequence of points {xj}j∈N on Σi with xj → p as j → ∞ and such
that the sequence of normal vectors ni(xj) does not converge. Considering an orthonormal basis
ni(xj), X2(xj), . . . , Xn(xj) of TxjM , we easily see from formula (2.11) that the hessian D2u at the
point xj is represented by the following matrix

−numax 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

 . (2.21)

Since the normal vectors ni(xj) belong to Sn−1 (viewed as a subspace of TxjM), which is compact,

we can find two subsequences {x(1)
jk
}, {x(2)

jk
} of {xj}j∈N such that the corresponding normal vectors

ni(x
(1)
jk

), ni(x
(2)
jk

) converge to X(1), X(2) ∈ Sn−1 (viewed as a subspace of TpM) with X(1) 6= ±X(2).

Up to pass to subsubsequences, we can also suppose that X2(x
(`)
jk

), . . . , Xn(x
(`)
jk

) converge to

some vectors X
(`)
2 , . . . , X

(`)
n in TpM for ` = 1, 2. Notice that the continuity of g0 grants us that

X(1), X
(1)
2 , . . . , X

(1)
n and X(2), X

(2)
2 , . . . , X

(2)
n are both orthonormal bases of TpM . Since u is analytic,

its hessian is continuous, hence passing to the limit along the subsequence {x(1)
jk
} we deduce that
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(a) Transversal point (b) Cuspidal point (c) Touching point

Figure 6. Visual 1-dimensional representation of the possible singularities of Σ. The first
part of the proof of Proposition 2.8 is concerned with showing that the normal to Σ is well
defined everywhere, thus ruling out transversal singularities like the one pictured in 6(a).
To exclude folding singularities (cuspidal points 6(b) or multiple hypersurfaces touching
tangentially 6(c)) one needs a different argument, which is presented in the second part of
the proof.

D2u at the point p is represented by the matrix (2.21) with respect to the basis X(1), X
(1)
2 , . . . , X

(1)
n .

Analogously, if we take the limit of D2u along the second subsequence, we get that D2u at the point

p is represented by the matrix (2.21) with respect to X(2), X
(2)
2 , . . . , X

(2)
n . On the other hand, since

X(1) 6= ±X(2), it is clear that the change of basis from X(1), X
(1)
2 , . . . , X

(1)
n to X(2), X

(2)
2 , . . . , X

(2)
n

must modify the first line and the first row of the hessian matrix, hence we have a contradiction.
Therefore necessarily the limit in (2.20) must exist. Let us also observe that the limit in (2.20)
cannot depend on the index i ∈ {1, . . . , k}, otherwise we could repeat the same argument working
with two sequences on two different hypersurfaces to obtain the same contradiction. Therefore, up
to a suitable choice of the orientation, all of the Σi’s share the same normal at the point p ∈ Σ \ Σ.
In particular, the tangent space TpΣ is well defined.

We are not finished yet, as it may happen that p is a cuspidal point or that there are multiple
hypersurfaces touching at p, see Figure 6. We now show that such folding singularities cannot
happen by proving that Σ is uniformly distant from itself along its normal direction. Let us start
by considering a point x ∈ Σ and a unit speed geodesic γ with γ(0) = x and γ̇(0) orthogonal to Σ.
Since M is compact and complete, there exists a positive constant K > 0 such that every such γ(t)
exists (that is, it does not reach the boundary ∂M) and is smooth for |t| ≤ K. From the above
observations on the hessian of u, it follows that the restriction of u to γ satisfies the following

(u ◦ γ)(t) = umax −
n

2
umax t

2 + σ(t) ,

where σ(t) is an error term such that, for all t,

|σ(t)| ≤ (u ◦ γ)′′′(ξ)

3!
|t|3 ,

for some ξ ∈ R with |ξ| < t. Since u and γ are smooth and M is compact, in particular we have
that the derivatives of u ◦ γ are bounded, hence there exists a constant C such that |σ(t)| < C |t|3.
But this implies that, for every |t| ≤ min{numax/(2C),K} it holds

(u ◦ γ)(t) = umax −
n

2
umax t

2 + σ(t) < umax −
(numax

2C
− |t|

)
C t2 ≤ umax .

This means that every point of γ(t) with |t| ≤ min{numax/(2C),K}, t 6= 0, does not belong to
MAX(u). This must hold for every unit speet geodesic starting from a point of Σ and directed
orthogonally to Σ. From this property it follows that there cannot be folding pathologies at our
point p. In fact, if there exist Σ1,Σ2 in the decomposition (2.19) that form a fold, this would mean
that orthogonal geodesics starting from points of Σ1 arbitrarily close to p would intersect Σ2 (which
is also contained in MAX(u)) for arbitrarily small values of t. This is in contradiction with what
we have just proven, hence such singularities cannot exist. This concludes our proof. �
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Remark 3. The authors are deeply indebted to P. T. Chruściel, who suggested the argument used
in Proposition 2.8 to rule out folding singularities.

Remark 4. We emphasize that in Proposition 2.8 we are not claiming any regularity of the
boundary of Σ, which in principle can be any stratified submanifold of dimension n− 2. However,
we will need Proposition 2.8 only in the study of the separating hypersurface of a 2-sided solution,
and it is clear that such hypersurface has empty boundary. In other words, Proposition 2.8 tells us
that the separating hypersurface of a 2-sided solution is C 1. In Section 7, starting from this, we
will refine the analysis to show that such hypersurface is actually C∞.

3. The cylindrical ansatz

In Subsection 3.1 we will finally use the pseudo-radial function Ψ to set up our cylindrical ansatz.
More precisely, on a region N of our initial manifold, we will consider the new metric

g =
g0

Ψ2
,

and we will also define a pseudo-affine function ϕ. The definitions are chosen in such a way that, if
(M, g0, u) is isometric to the Schwarzschild–de Sitter solution, then the metric g is just the standard
cylindrical metric and ϕ is an affine function, that is, the norm of ∇ϕ with respect to the metric g
is constant on M (here we have denoted by ∇ the Levi-Civita connection of g). Conversely, the
general idea in the future proofs will be to find opportune conditions that force ϕ to be affine
and g to be cylindrical, thus proving the isometry with the Schwarzschild–de Sitter solution. The
highlight of this subsection is Proposition 3.1, where we will translate the equations in problem (1.6)
in terms of g and ϕ.

In Subsection 3.2 we will analyze the level sets of ϕ, and in particular we will write down the
relations between the mean curvature and second fundamental form of the level sets with respect
to g0 and g.

In Subsection 3.3 we will apply the Bochner formula and the equations of the conformal
reformulation of problem (1.6) written down in Proposition 3.1, in order to deduce an elliptic
inequality for the quantity

w = β
(
1− |∇ϕ|2g

)
,

where β is a suitably chosen positive function. A Minimum Principle argument, together with
an estimate on the behavior of |∇ϕ|g near MAX(u) (which is provided by the reverse  Lojasiewicz
inequality proved in Subsection 2.2) will allow us to prove that w is positive on our region N . This
will give us an important bound from above on the norm of the gradient of ϕ, which will be of
great importance in the next sections.

As a first consequence of this bound on |∇ϕ|g, in Subsection 3.4 we will prove the monotonicity
along the level sets of u of the function Φ defined in (3.28). From this we will deduce an area lower
bound for the boundary of our region N .

3.1. Conformal reformulation of the problem. Let (M, g0, u) be a solution to problem (1.6),
and let N be a connected component of M \MAX(u). As already observed, when (M, g0, u) is the
Schwarzschild–de Sitter solution, the pseudo-radial function Ψ = ψ ◦ u, defined by (2.3) or by (2.4)
depending on whether N is outer or inner, coincides with the radial coordinate |x|, provided the
parameter m in the definition of Ψ coincides with the virtual mass of N . As anticipated, we want
to proceed via a cylindrical ansatz, that is, on N we consider the following conformal change

g =
g0

Ψ2
, (3.1)

and we rephrase problem (1.6) in terms of g. We fix local coordinates in N and we compute the
relation between the Christoffel symbols Γγαβ, G

γ
αβ of g, g0

Γγαβ = Gγαβ −
1

ψ

(
δγα∂βΨ + δγβ∂αΨ− (g0)αβ(g0)γη∂ηΨ

)
. (3.2)



ON THE MASS OF STATIC METRICS WITH POSITIVE COSMOLOGICAL CONSTANT – II 29

Denote by ∇,∆g the Levi-Civita connection and the Laplace-Beltrami operator of g. For every
z ∈ C∞, we compute

∇2
αβz = D2

αβz +
1

ψ

(
∂αz∂βΨ + ∂αΨ∂βz − 〈Dz |DΨ 〉 g(0)

αβ

)
(3.3)

∆gz = ψ2∆z − (n− 2)ψ〈Dz |DΨ 〉 (3.4)

Substituting z = Ψ in formulæ (3.3) and (3.4), and using the equations in (1.6) we compute

∇2Ψ = D2Ψ +
1

ψ

(
2dΨ⊗ dΨ− |DΨ|2 g0

)
= ψ̇D2u+

(
1

uψ̇
+
n+ 1

ψ
+ n

ψ̇

u

)
dΨ⊗ dΨ− |DΨ|2

ψ
g0

= uψ̇Ric +

(
1

uψ̇
+
n+ 1

ψ
+ n

ψ̇

u

)
dΨ⊗ dΨ−

|∇Ψ|2g
ψ

g − nuψ2ψ̇ g , (3.5)

∆gΨ = ψ2∆Ψ− (n− 2)ψ|DΨ|2

= ψ2ψ̇∆u+

(
ψ2

uψ̇
+ ψ + n

ψ2ψ̇

u

)
|DΨ|2

= −nuψ2ψ̇ +

(
1

uψ̇
+

1

ψ
+ n

ψ̇

u

)
|∇Ψ|2g . (3.6)

On the other hand, we know from [11, Theorem 1.159] that the Ricci tensors of g0 and g are related
by the formula

Ric = Ricg −
n− 2

ψ
∇2Ψ +

2(n− 2)

ψ2
dΨ⊗ dΨ−

(
1

ψ
∆gΨ +

n− 3

ψ2
|∇Ψ|2g

)
g

= Ricg −
n− 2

ψ
∇2Ψ +

2(n− 2)

ψ2
dΨ⊗ dΨ +

[
nuψψ̇ −

(
n− 2 + n

ψψ̇

u
+

ψ

uψ̇

) |∇Ψ|2g
ψ2

]
g . (3.7)

Substituting (3.7) in (3.5) we obtain

Ricg =

[
n− 2

ψ
+

1

uψ̇

]
∇2Ψ−

[
2(n− 2)

ψ2
+

n

u2
+

1

u2ψ̇2
+
n+ 1

uψψ̇

]
dΨ⊗ dΨ

+

[
nψ
(
ψ − uψ̇

)
+

(
n− 2 + n

ψψ̇

u
+

2ψ

uψ̇

) |∇Ψ|2g
ψ2

]
g . (3.8)

In order to simplify the above expressions, we notice that, a posteriori, in the rotationally symmetric
case we expect the equality |Du|2 = (u/ψ̇)2, or equivalently |∇Ψ|2g = (uψ)2, to hold pointwise
on N . For this reason, it is convenient to introduce a function ϕ ∈ C∞(N) which satisfies
|∇ϕ|2g = |∇Ψ|2g/(uψ)2, so that, a posteriori, we expect |∇ϕ|g = 1 pointwise on N , that is, we expect
ϕ to be an affine function. Such a function ϕ can be defined in several ways. In fact, if ϕ is such a
function, also c± ϕ, with c ∈ R, satisfies the same equality |∇ϕ|g = 1. However, all these choices
are actually equivalent for our analysis, hence we will fix ϕ now, once and for all. We define the
pseudo-affine function ϕ as

ϕ(p) =

ˆ r+(m)

Ψ(p)

dt

t
√

1− t2 − 2mt2−n
. (3.9)
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Despite the integrand has a singularity for t = r±(m), the integral in (3.9) is finite. In fact, setting

s = 1− t2 − 2mt2−n, fixed η > [(n− 2)m]1/n, we have
ˆ r+(m)

η

dt

t
√
s

=

ˆ 0

1−η2−2mη2−n

−ds
2t2[1− (n− 2)mt−n]

√
s

≤ 1

2η2[1− (n− 2)mη−n]

ˆ 1−η2−2mη2−n

0

ds√
s

=

√
1− η2 − 2mη2−n

η2[1− (n− 2)mη−n]
< ∞ .

The singularity of the integrand when t = r−(m) can be handled in the same way. It follows that ϕ
is well defined and smooth on N . However, a priori we do not know if the gradient of ϕ is bounded
when we approach MAX(u), because both the numerator and the denominator of formula (3.10)
below go to zero. This point will be addressed in Proposition 3.3, where we will show that |∇ϕ|g is
bounded above by 1 on the whole N . Notice that the definition of ϕ is chosen in such a way that,
when N is outer and p ∈ ∂N , we have ϕ = 0 on ∂N . Instead, when N is inner and p ∈ ∂N , that is,
Ψ(p) = r−(m), the function ϕ assumes its maximum value.

For future convenience, we also write down some formulæ for the gradient and the hessian of ϕ

|∇ϕ|2g =
|∇Ψ|2g
u2ψ2

=
ψ̇2

u2
|Du|2 =

|Du|2

ψ2
[
1−

(
r0(m)/ψ

)n]2 , (3.10)

∇ϕ = − ψ̇

uψ
Du =

Du

ψ2
[
1−

(
r0(m)/ψ

)n] , (3.11)

∇2ϕ = − ∇
2Ψ

ψu
+

1

ψ2u2

(
u+

ψ

ψ̇

)
dΨ⊗ dΨ

= − ψ̇

uψ
D2u +

ψ̇2

uψ2
|Du|2g0 − n

ψ̇2

u2ψ2

(
u+ ψψ̇

)
du⊗ du (3.12)

Combining equations (3.10), (3.12) with (3.6), (3.8), we arrive with some computations to a
conformal reformulation of system (1.6).

Proposition 3.1. Let (M, g0, u) be a solution to problem (1.6), and let N be an outer or inner
region with virtual mass

m = µ(N, g0, u) .

Let also Ψ = ψ ◦ u be the pseudo-radial function defined by (2.3) or (2.4), depending on whether N
is an outer or inner region, respectively. Then the metric g = g0/Ψ

2 and the pseudo-affine function
ϕ defined in (3.9) satisfy the following system of differential equationsRicg = −

[
(n− 2)u+

ψ

ψ̇

]
∇2ϕ− (n− 2)dϕ⊗ dϕ+

[
(n− 2)|∇ϕ|2g −

(
u− ψ

ψ̇

)
∆gϕ

]
g, in N,

∆gϕ = nψψ̇
(
1− |∇ϕ|2g

)
, in N,

(3.13)

with boundary conditions
ϕ = 0 on ∂N,

ϕ = ϕ0 :=

ˆ r+(m)

r0(m)

dt

t
√

1− t2 − 2mt2−n
on N ∩MAX(u),

if N outer , (3.14)


ϕ = ϕmax :=

ˆ r+(m)

r−(m)

dt

t
√

1− t2 − 2mt2−n
on ∂N,

ϕ = ϕ0 :=

ˆ r+(m)

r0(m)

dt

t
√

1− t2 − 2mt2−n
on N ∩MAX(u),

if N inner . (3.15)
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Tracing the first equation of (3.13), one obtains

Rg

(n− 1)(n− 2)
= 1−

(
1 +

2nuψψ̇ − nψ2

n− 2

)(
1− |∇ϕ|2g

)
(3.16)

where Rg is the scalar curvature of g. In the cylindrical situation, which is the conformal counterpart
of the Schwarzschild–de Sitter solution, Rg has to be constant. In this case, the above formula
implies that also |∇ϕ|g has to be constant and equal to 1, as already anticipated. For these reasons,
also in the situation, where we do not know a priori if g is cylindrical, it is natural to think of ∇ϕ
as to a candidate splitting direction and to investigate under which conditions this is actually the
case. A first important observation is that the splitting is in force when ϕ is an affine function,
that is, when its hessian ∇2ϕ and the quantity 1− |∇ϕ|g vanish everywhere in our region.

Proposition 3.2. Let (M, g0, u) be a solution to problem (1.6), and let N be an outer or inner
region with virtual mass

m = µ(N, g0, u) .

Let Ψ = ψ ◦u be the pseudo-radial function defined by (2.3) or (2.4), depending on whether N is an
outer or inner region, respectively. Finally, let g = g0/Ψ

2 and let ϕ be the pseudo-affine function
defined by (3.9). If ∇2ϕ ≡ 0 and |∇ϕ|g ≡ 1 on N , then (M, g0, u) is isometric to a generalized
Schwarzschild–de Sitter solution (1.14) with mass m.

Proof. Let us suppose that N is an outer region, the inner case being completely equivalent.
Proceeding as in the proof of [2, Theorem 4.1], we obtain that ({0 ≤ ϕ < ϕ0}, g) is isometric to the
product (

[0, ϕ0)× ∂N , dϕ⊗ dϕ+ g∂N
)
,

where g∂N is the metric induced by g on ∂N . From the first equation in (3.13) we deduce that
Ricg∂N = (n− 2)g∂N . Recalling the definition of ϕ and the relation between g and g0, we deduce
that g0 is isometric to

dΨ⊗ dΨ

u2
+ ψ2g∂N .

This proves that (N, g0, u) is isometric to the outer region of a generalized Schwarzschild–de Sitter
solution (M s, gs0, u

s) defined by (1.14), where Ψ is the radial coordinate. It remains to prove that
this isometry between the outer regions extends to an isometry between the whole (M, g0, u) and
the whole (M s, gs0, u

s). To this end, we distinguish two cases, depending on whether the (possibly

stratified) hypersurface ΣN = N ∩M \N ⊆ MAX(u) is orientable or not.

• Let us start by considering the case in which ΣN is an orientable hypersurface. Since M is
orientable by hypothesis, the hypersurface ΣN is orientable if and only if it is two sided,
meaning that any neighborhood of ΣN contains both points of N and points outside N .
Considering the corresponding chart in (M s, gs0, u

s), by analytic continuation we can extend
the isometry between (N, g0, u) and the outer region of (M s, gs0, u

s) to all the points in the
chart. That way, the isometry pass through Σ, and we can continue to argue chart by chart
until we finally cover all the manifold M , thus proving the global isometry of (M, g0, u) and
(M s, gs0, u

s).

• If ΣN is not orientable, this means that it is one sided, that is, every point of ΣN has
a neighborhood that is entirely contained inside N . Therefore, it easily follows that
(M, g0, u) = (N, g0, u) is isometric to (M

s
+, g

s
0, u

s)/ ∼, where ∼ is a relation on the points of

MAXs(u) = {p ∈M s : us(p) = umax} ⊂ ∂M
s
+ .

We first observe that this relation is induced by an involution

ι∼ : MAXs(u) → MAXs(u) .

In fact, the neighborhood of a point x ∈ MAXs(u) inside (M
s
+, g0) is isometric to an half

space Rn+ endowed with a metric such that the boundary ∂Rn+ is smooth. In order for the

manifold (M
s
+, g0)/ ∼ to be smooth at x it is necessary that there exists exactly one point
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ι∼(x) ∈ MAXs(u), ι∼(x) 6= x, such that x ∼ ι∼(x). Moreover, ι∼ has to be continuous and
to reverse the orientation. It is also clear that ι2∼ is the identity, so that ι∼ is indeed an
involution.

We now notice that the mean curvature vector ~H of the hypersurface MAXs(u) has
constant nonzero norm and it always points outside M s

+ on the whole MAXs(u), hence

the same holds on MAXs(u)/ ∼. In particular, at the points x and ι∼(x) the vector ~H
points outside M s

+. Therefore, in a chart centered at x = ι∼(x) in the quotient manifold we

would have that ~H points in one direction according to the measure at x, and points in the
opposite direction if measured at ι∼(x), which means that the mean curvature of ΣN at x is
not well defined. Since the same reasoning can be repeated at each point x ∈ ΣN , we would
have that the mean curvature in nowhere defined on ΣN , against the fact that we know that
ΣN = MAX(u) is a stratified hypersurface, so that in particular it is smooth H n−1-almost
everywhere. We have reached a contradiction, hence ΣN is necessarily oriented and the
first case applies.

This concludes the proof. �

3.2. The geometry of the level sets. In the forthcoming analysis a crucial role is played by
the study of the geometry of the level sets of ϕ, which coincide with the level sets of u in N , by
definition. Hence, we pass now to describe the second fundamental form and the mean curvature of
the regular level sets of ϕ (or equivalently of u) in both the original Riemannian context (N, g0)
and the conformally related one (N, g). To this aim, we fix a regular level set {ϕ = s0} and
we construct a suitable set of coordinates in a neighborhood of it. Note that {ϕ = s0} must be
compact, by the properness of ϕ. In particular, there exists a real number δ > 0 such that in
the tubular neighborhood Uδ = {s0 − δ < ϕ < s0 + δ} we have |∇ϕ|g > 0 so that Uδ is foliated
by regular level sets of ϕ. As a consequence, Uδ is diffeomorphic to (s0 − δ, s0 + δ) × {ϕ = s0}
and the function ϕ can be regarded as a coordinate in Uδ. Thus, one can choose a local system
of coordinates {ϕ, ϑ1,...., ϑn−1}, where {ϑ1,...., ϑn−1} are local coordinates on {ϕ = s0}. In such a
system, the metric g can be written as

g =
dϕ⊗ dϕ
|∇ϕ|2g

+ gij(ϕ, ϑ
1,...., ϑn−1) dϑi⊗ dϑj ,

where the latin indices vary between 1 and n − 1. We now fix in Uδ the g-unit vector field
νg = −∇ϕ/|∇ϕ|g. We also define ν as the g0-unit vector field that points in the same direction as
νg at every point, that is

ν =

{
−Du/|Du| , if N outer,

Du/|Du| , if N inner.

We will denote by h and H the second fundamental form and mean curvature with respect to the
metric g0 and the normal ν. We will denote by hg and Hg the second fundamental form and mean
curvature with respect to the metric g and the normal νg. According to these choices, the second
fundamental forms of the level sets of u or ϕ are given by

h
(0)
ij =


−

D2
iju

|Du|
, if N outer,

D2
iju

|Du|
, if N inner,

h
(g)
ij = −

∇2
ijϕ

|∇ϕ|g
, for i, j = 1,...., n− 1. (3.17)

Taking the traces of the above expressions with respect to the induced metrics we obtain the
following expressions for the mean curvatures in the two ambients

H =


− ∆u

|Du|
+

D2u(Du,Du)

|Du|3
, if N outer,

∆u

|Du|
− D2u(Du,Du)

|Du|3
, if N inner,

Hg = − ∆gϕ

|∇ϕ|g
+
∇2ϕ(∇ϕ,∇ϕ)

|∇ϕ|3g
. (3.18)
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Taking into account expressions (3.10), (3.12), one can show that the second fundamental forms
are related by

h
(g)
ij =

1

ψ
h

(0)
ij −

|ψ̇|
ψ2
|Du| g(0)

ij . (3.19)

The analogous formula for the mean curvatures reads

Hg = ψH − (n− 1) |ψ̇| |Du| . (3.20)

Concerning the nonregular level sets of ϕ, we first observe that, since u is analytic on M
(see [21, 56]), then ϕ is analytic on the whole N . As anticipated in Subsection 1.1, it follows from
the results in [42] (see also [38, Theorem 6.3.3]) that there exists an hypersurface S ⊆ Crit(ϕ) such
that H n−1(Crit(ϕ) \ S) = 0. In particular, the (n− 1)-dimensional Hausdorff measure of the level
sets of ϕ is locally finite. Moreover, the unit normal to a level set is well-defined H n−1-almost
everywhere, and so are the second fundamental form hg and the mean curvature Hg. We now
compute the relation between hg,Hg and h,H at a point y0 ∈ S. Let ν, νg be the unit normal
vector fields to S at y0 with respect to g0, g respectively. Since |νg|2g = 1 = |ν|2 = ψ2 |ν|2g,
we deduce that νg = ψ ν. Let (∂/∂x1, . . . , ∂/∂xn−1) be a basis of Ty0S, so that in particular
(∂/∂x1, . . . , ∂/∂xn−1, νg) is a basis of Ty0M . Recalling (3.2) and observing that the derivatives of
u and Ψ in y0 are all zero since y0 ∈ Crit(ϕ) = Crit(u), we have

h
(g)
ij =

〈
∇i

∂

∂xj

∣∣∣ νg〉
g

= Γnij = Gn
ij =

〈
Di

∂

∂xj

∣∣∣ νg〉
g

=
1

ψ

〈
Di

∂

∂xj

∣∣∣ ν〉 =
1

ψ
h

(0)
ij .

Taking the trace we obtain Hg = ψH. This proves that formulæ (3.19) and (3.20) hold also at any
point y0 ∈ S, so that in particular they hold H n−1-almost everywhere on any level set.

3.3. Consequences of the Bochner formula. Starting from the Bochner formula and using the
equations in (3.13), we find

∆g|∇ϕ|2g = 2|∇2ϕ|2g + 2Ricg(∇ϕ,∇ϕ) + 2〈∇∆gϕ | ∇ϕ〉

= 2|∇2ϕ|2g −
[
(n− 2)u+

ψ

ψ̇
+ 2nψψ̇

]
〈∇|∇ϕ|2g | ∇ϕ〉g − 2

[
(n+ 1)u+ nψψ̇

]
|∇ϕ|2g ∆gϕ . (3.21)

We will use (3.21) to compute the laplacian of the function

w = β
(
1− |∇ϕ|2g

)
, where β = ψ2

∣∣1− (n− 2)mψ−n
∣∣ = ψ2

∣∣∣∣ uψψ̇
∣∣∣∣ .

The function β is smooth in N . We will denote by β′ the derivative of β with respect to ϕ, more
precisely, β′ ∈ C∞(N) is the function that satisfies ∇β = β′∇ϕ. One computes

β′

β
= nψψ̇ + (n− 2)u , (3.22)

∇w = −β∇|∇ϕ|2g +
β′

β
w∇ϕ . (3.23)

In order to compute the laplacian of w, we take the divergence of (3.23)

∆gw = −β
′

β

〈
β∇|∇ϕ|2g

∣∣∇ϕ〉
g
− β∆g|∇ϕ|2g +

(β′
β

)′
w|∇ϕ|2g +

β′

β
〈∇w | ∇ϕ〉g +

β′

β
w∆gϕ

and using formula (3.21) we obtain

∆gw = −2β

[
|∇2ϕ|2g −

(∆gϕ)2

n

]
−
[
(n− 2)u+

ψ

ψ̇
+ 2nψψ̇ − 2

β′

β

]
〈∇w|∇ϕ〉g + nψψ̇

(
β′

β
− 2ψψ̇

)
w

+

[(β′
β

)′
−
(β′
β

)2
+

(
(n− 2)u+

ψ

ψ̇
+ nψψ̇

)
β′

β
+ 2n(n+ 1)uψψ̇ + 2n(n+ 1)ψ2ψ̇2

]
|∇ϕ|2gw

≤
[
(n− 2)u− ψ

ψ̇

]
〈∇w | ∇ϕ〉g + n(n− 2)mψ2−nψ̇2

[
(n− 2) + (n+ 2)|∇ϕ|2g

]
w . (3.24)
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In particular, w satisfies an elliptic inequality on our connected component N and, as a consequence
of the Minimum Principle, we obtain the following relevant bound on the gradient of the pseudo-affine
function ϕ.

Proposition 3.3. Let (M, g0, u) be a solution to problem (1.6) and let N ⊆ M \MAX(u) be an
outer or inner region with virtual mass m = µ(N, g0, u). Let also g, ϕ be defined by (3.1), (3.9).
Then it holds

|∇ϕ|g ≤ 1 , (3.25)

on the whole N . Moreover, if |∇ϕ|g = 1 at a point in the interior of N , then |∇ϕ|g ≡ 1 on the
whole N and (M, g0, u) is isometric to a generalized Schwarzschild–de Sitter solution (1.14) with
mass m.

Proof. We recall from (3.10) that it holds

|∇ϕ|g =
|Du|

ψ
∣∣1− (r0(m)/ψ

)n∣∣ ,
therefore, from Lemma 2.2 we deduce that w ≥ 0 on ∂N . On the other hand, from the definition
of w, we compute

w = β(1− |∇ϕ|2g) = ψ2

∣∣∣∣ uψψ̇
∣∣∣∣− ∣∣∣∣ψψ̇u

∣∣∣∣ |Du|2 .
Since β goes to 0 as we approach MAX(u), and also ψ̇|Du|2 goes to 0 by Lemma 2.5, we have w → 0
as we approach MAX(u). We also recall that ϕ, g, thus also w, are analytic in the interior of N .
As observed in Subsection 1.1, this implies that the critical level sets of w are discrete. Therefore
there exists η > 0 such that any 0 < ε < η is a regular values for w. In particular, the set

Nε = {|w| ≥ ε}
has a smooth boundary. Since we have already observed that w → 0 as we approach ∂N and
MAX(u), we have that Nε is a compact domain contained in the interior of N . In particular, the
coefficients of the elliptic inequality (3.24) are bounded in Nε and we can apply the Weak Minimum
Principle (see for instance [28, Corollary 3.2]) to deduce that

min
Nε

w ≥ min
∂Nε

w ≥ −ε , (3.26)

where in the latter inequality we have used the fact that the boundary of Nε is contained in
{w = ε} ∪ {w = −ε}. Since inequality (3.26) holds for all 0 < ε < η, taking the limit as ε→ 0 we
obtain w ≥ 0 on the whole N , and (3.25) follows.

Now we pass to the proof of the second part of the statement. Let x be a point in the interior of
N such that |∇ϕ|g(x) = 1. In particular it holds w(x) = 0 and we have proved above that w ≥ 0
on the whole N . Applying the Strong Minimum Principle on an open set Ω containing x, we obtain
w ≡ 0, or equivalently |∇ϕ|g ≡ 1, on Ω. From the arbitrariness of Ω we deduce |∇ϕ|g ≡ 1 on N ,
and plugging this information inside the Bochner formula (3.21), we obtain |∇2ϕ|g ≡ 0. We can
now invoke Proposition 3.2 to conclude. �

Remark 5. Proposition 3.3 should be compared with [10, Proposition 1], where an analogous
result is obtained for a vast class of static perfect fluid solutions. The proof in [10] is based on the
application of the Maximum Principle to an elliptic inequality which seems to be closely related to
the one used in our proof.

Remark 6. Translating the thesis of Proposition 3.3 back in terms of u, g0, we have that ψ̇|Du| is
bounded in N , and recalling formula (2.8), we deduce that the quantity |Du|2/(umax− u) is bounded
on N . In particular, for any p ∈ N ∩MAX(u) there exists a collar neighborhood p ∈ Ωp ⊂ N and a
constant Kp such that

|Du|2(x) ≤ Kp [umax − u(x)] (3.27)

for any x ∈ Ωp. The same proof can be repeated on each inner and outer region, and a similar result
will also be shown for cylindrical regions, see Proposition 8.2. It follows from these considerations
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that inequality (3.27) is always in force in a neighborhood of any p ∈ MAX(u). This is an
improvement of Proposition 2.3 proved above.

3.4. Area lower bound. In this subsection, we will study the function

Φ(s) =

ˆ
{ϕ=s}

|∇ϕ|g dσg . (3.28)

which is defined on s ∈ [0, ϕ0) or s ∈ (ϕ0, ϕmax] depending on whether max∂N |Du|/umax is less or
greater than

√
n, respectively. As an application of Proposition 3.3, one can prove the following

monotonicity result for Φ.

Proposition 3.4. Let (M, g0, u) be a solution to problem (1.6), let N be a connected component
of M \MAX(u) with virtual mass m < mmax, and let Φ(s) be the function defined by (3.28), with
respect to the metric g and the pseudo-affine function ϕ defined by (3.1), (3.9).

(i) If N is an outer region, then the function Φ(s), defined for s ∈ [0, ϕ0), is monotonically
nonincreasing. Moreover, if Φ(s1) = Φ(s2) for two different values 0 ≤ s1 < s2 < ϕ0, then
the triple (M, g0, u) is isometric to a generalized Schwarzschild–de Sitter triple (1.14) with
mass m.

(ii) If N is an inner region, then the function Φ(s), defined for s ∈ (ϕ0, ϕmax], is monotonically
nondecreasing. Moreover, if Φ(s1) = Φ(s2) for two different values ϕ0 < s1 < s2 ≤ ϕmax,
then the solution (M, g0, u) is isometric a generalized Schwarzschild–de Sitter triple (1.14)
with mass m.

Proof. Consider the case N outer, that is, max∂N |Du|/umax <
√
n. In particular, the determination

of ψ is (2.3), ϕ ∈ [0, ϕ0), ψ̇ ≤ 0 and ∆gϕ ≤ 0 (this last inequality is a consequence of the second
equation of system (3.13) and of Proposition 3.3). Integrating ∆gϕ ≤ 0 in {s1 ≤ ϕ ≤ s2} for any
0 ≤ s1 < s2 < ϕ0, we get ˆ

{s1≤ϕ≤s2}

∆gϕdσg ≤ 0 . (3.29)

Applying the Divergence Theorem to inequality (3.29), we easily obtain Φ(s2) ≤ Φ(s1), therefore Φ
is nonincreasing. To prove the rigidity statement, we observe that, if the equality Φ(s1) = Φ(s2)
holds for some 0 ≤ s1 < s2 < ϕ0, then ∆gϕ ≡ 0 on {s1 ≤ ϕ ≤ s2}, hence by the analyticity of ϕ
we deduce ∆gϕ ≡ 0 on N . Recalling the definition of ∆gϕ, this in turn implies |∇ϕ|g ≡ 1 on N .
Substituting this information in the Bochner formula (3.21) we obtain |∇2ϕ|g ≡ 0, hence we can
apply Proposition 3.2 to conclude.

If instead N is an inner region, that is, max∂N |Du|/umax >
√
n, then ψ is as in (2.4), ϕ ∈

(ϕ0, ϕmax] and ∆gϕ ≥ 0. Proceeding in the same way as above, we obtain the opposite monotonicity
for Φ. The rigidity statement is proved in the same way as in the preceding case. �

If the limit of Φ(s) exists as s → ϕ0, then this limit is finite since |∇ϕ|g is bounded (this is a
consequence of Proposition 3.3) and the level sets are compact. Therefore, from the monotonicity
of Φ we can deduce the following global monotonicity property.

Corollary 3.5. Let (M, g0, u) be a solution to problem (1.6), let N be a connected component
of M \ MAX(u) with virtual mass m < mmax, and let g and ϕ be defined by (3.1), (3.9). Let

ΣN = N ∩M \N be the possibly stratified hypersurface separating N from the rest of the manifold
M . Then

|ΣN |g ≤ |∂N |g . (3.30)

Moreover, if the equality holds, then (M, g0, u) is isometric to a generalized Schwarzschild–de Sitter
triple (1.14) with mass m.
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Proof. If N is outer, then we know that the function Φ(s), defined for 0 ≤ ϕ < ϕ0, is monotonically
nonincreasing by Proposition 3.4, hence lims→ϕ0 Φ(s) ≤ Φ(0). Moreover, from Lemma 2.2, we know
that |∇ϕ|g ≤ 1 on ∂N , thus Φ(0) ≤

´
∂N dσg = |∂N |g. This proves the following

|∂N |g ≥ lim
s→ϕ0

ˆ
{ϕ=s}

|∇ϕ|g dσg .

It remains to show that the right hand side is greater than or equal to |ΣN |g. To this end, for a
small value ε > 0, consider a set Sε ⊂ ΣN such that |Sε|g < ε and ΣN \ Sε is contained in the top
stratum of ΣN . From Proposition 2.7 and formula (3.10) we know that g, ϕ are C 2 and

|∇ϕ|2g =
|Du|2

ψ2
[
1−

(
r0(m)/ψ

)n]2 → 1

as we approach the top stratum of ΣN . In particular, for every value s close enough to ϕ0, the flow
of ∇ϕ gives a diffeomorphism between ΣN \ Sε and an open subset Vs ⊂ {ϕ = s}. Therefore, from
the continuity of g and |∇ϕ|g, we get

lim
s→ϕ0

ˆ
{ϕ=s}

|∇ϕ|g dσg ≥ lim
s→ϕ0

ˆ
Vs

|∇ϕ|g dσg = |ΣN \ Sε|g .

Taking the limit as ε→ 0 we obtain the wished inequality. The case N inner is proved in the exact
same way. �

Recalling the definition of g, if we rewrite formula (3.30) in terms of g0, we obtain

|∂N | ≥
[
r±(m)

r0(m)

]n−1

|ΣN | ,

where the sign ± depends on whether N is outer or inner. This proves Theorem 1.6, stated in the
introduction, except for the case where N is a cylindrical region, which will be studied in Section 8.

4. Integral identities

In this section we use the pseudo-affine function ϕ in order to construct a vector field with a
nonnegative divergence. As an application of the Divergence Theorem, we will then deduce a couple
of important integral identities. In particular, in Propositions 4.1 and 4.2 we show two functions
that give a nonnegative value when integrated along any level set of ϕ. Moreover, the integral on a
level set is zero only in the case of the Schwarzschild–de Sitter solution.

The analysis of the case where N is an outer region and the case where N is an inner region
are slightly different. The outer case will be studied in Subsection 4.1 and the inner case will be
studied in Subsection 4.2.

4.1. Integral identities in the outer regions. We start by considering the case where N is an
outer region, that is, in this subsection we will suppose

max
S∈π0(∂N)

κ(S) = max
∂N

|Du|
umax

<
√
n ,

and the pseudo-radial function Ψ = ψ ◦ u is chosen as in (2.3). Consider the vector field

Y = ∇|∇ϕ|2g + ∆gϕ∇ϕ .
From the Bochner formula (3.21) and the equations in (3.13) we compute

divg(Y ) = ∆g|∇ϕ|2g + divg(∆gϕ∇ϕ)

= −
[
(n− 2)u+

ψ

ψ̇
+ 3nψψ̇

]
〈∇ϕ |Y 〉g + 2|∇2ϕ|2g + (∆gϕ)2 − 2n(n+ 2)uψψ̇|∇ϕ|2g(1− |∇ϕ|2g) .

Since

uψψ̇ = ψ2ψ̇2

(
u

ψψ̇

)
= −ψ2ψ̇2[1− (n− 2)mψ−n]
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is negative when the chosen determination of ψ is (2.3), we have

divg(Y ) +

[
(n− 2)u+

ψ

ψ̇
+ 3nψψ̇

]
〈∇ϕ |Y 〉g =

= 2|∇2ϕ|2g + (∆gϕ)2 − 2n(n+ 2)uψψ̇|∇ϕ|2g(1− |∇ϕ|2g) ≥ 0 . (4.1)

Now consider the function

γ = −u
2ψ2n−1

ψ̇3
=

ψ2(n+1)

u

[
1− (n− 2)mψ−n

]3
(4.2)

(notice that γ ≥ 0 when Ψ = ψ ◦ u is as in (2.3)). We compute

γ′

γ
=

ψ̇3

u2ψ2n−1
· du
dϕ
·

[
2
uψ2n−1

ψ̇3
+ (2n− 1)

u2ψ2n−2ψ̇

ψ̇3
− 3

u2ψ2n−1ψ̈

ψ̇4

]

= − ψ̇2

uψ2n−2

[
2
uψ2n−1

ψ̇3
+ (2n− 1)

u2ψ2n−2ψ̇

ψ̇3
− 3

u2ψ2n−1ψ̈

ψ̇4

]

= −2
ψ

ψ̇
− (2n− 1)u+ 3

uψψ̈

ψ̇2

= −2
ψ

ψ̇
− (2n− 1)u+ 3nψψ̇ + 3(n− 1)u+ 3

ψ

ψ̇

= (n− 2)u+
ψ

ψ̇
+ 3nψψ̇ .

Therefore, formula (4.1) rewrites as

divg(γY ) = γ
[
2|∇2ϕ|2g + (∆gϕ)2 − 2n(n+ 2)uψψ̇|∇ϕ|2g

(
1− |∇ϕ|2g

)]
≥ 0 . (4.3)

Integrating (4.3) in N , we obtain the following proposition.

Proposition 4.1. Let (M, g0, u) be a solution to problem (1.6), let N ⊆M \MAX(u) be an outer
region with virtual mass m = µ(N, g0, u), and let Ψ, g and ϕ be defined by (2.3), (3.1) and (3.9).
For any 0 ≤ s < ϕ0 it holds
ˆ
∂N
|∇ϕ|g

[
Ricg(νg, νg)−

3

2
nr2

+(m)(1− |∇ϕ|2g)
]

dσg =

= − 1

C

ˆ
N
γ

[
|∇2ϕ|2g +

1

2
(∆gϕ)2 − n(n+ 2)uψψ̇|∇ϕ|2g(1− |∇ϕ|2g)

]
dσg ≤ 0 . (4.4)

where C = C(m,n) = r2n+1
+ (m)[1 − (n − 2)mr−n+ (m)]2 and γ is the function defined by (4.2).

Moreover, if the equalityˆ
∂N
|∇ϕ|g

[
Ricg(νg, νg)−

3

2
nr2

+(m)(1− |∇ϕ|2g)
]

dσg = 0 , (4.5)

holds, then the solution (M, g0, u) is isometric to a generalized Schwarzschild–de Sitter triple (1.14)
with mass m.

Proof. Let us recall from Subsection 1.1 that u is an analytic function. In particular, also ϕ is
analytic in the interior of N , hence its critical level sets are discrete. It follows that we can choose
0 < s < S < ϕ0, with s arbitrarily close to zero and S arbitrarily close to ϕ0 such that both s
and S are regular values for ϕ. Integrating divg(γY ) on {s ≤ ϕ ≤ S} and using the Divergence
Theorem we obtainˆ

{s≤ϕ≤S}

divg(γY )dσg =

ˆ

{ϕ=S}

γ(S)
〈
Y
∣∣∣ ∇ϕ|∇ϕ|g

〉
g
dσg −

ˆ

{ϕ=s}

γ(s)
〈
Y
∣∣∣ ∇ϕ|∇ϕ|g

〉
g
dσg , (4.6)



38 S. BORGHINI AND L. MAZZIERI

First of all, we notice that it holds

lim
S→ϕ0

γ(S)

ˆ
{ϕ=S}

〈
Y
∣∣∣ ∇ϕ|∇ϕ|g

〉
g
dσg = 0 . (4.7)

In fact, using formulæ (3.10), (3.12) and (3.13) to translate the integrand in terms of u, g0, we find

γ
〈
Y
∣∣∣ ∇ϕ|∇ϕ|g

〉
g

= γ

(
〈∇|∇ϕ|2g | ∇ϕ〉g

|∇ϕ|g
+ ∆gϕ |∇ϕ|g

)
= γ |∇ϕ|g

[
2∇2ϕ(νg, νg) + ∆gϕ

]
=

ψ2n

ψ̇
|Du|

[
− 2 D2u(ν, ν)− 2

ψ̇

uψ

(
n− 1 + n

ψψ̇

u

)
|Du|2 + n

(
1− ψ̇2

u2
|Du|2

)]
,

where ν = Du/|Du|, νg = ∇ϕ/|∇ϕ|g = ψ ν are the unit normals to {ϕ = S}, which exist everywhere

because {ϕ = S} is a regular level set. Since |∇ϕ|2g = (ψ̇2/u2)|Du|2 ≤ 1 by Proposition 3.3, we
deduce that the limit of the term in square bracket as S → ϕ0 (or equivalently u → umax) is
bounded from above. Therefore, in order to prove (4.7), it is enough to show that

lim
t→1−

ˆ
{u=t}∩N

1

ψ̇
|Du| dσ = 0 .

But this can be done proceeding exactly as in the proof of [13, Theorem 4.4], via a simple argument

using the coarea formula and the facts that (ψ̇2/u2)|Du|2 ≤ 1 and ψ̇ → +∞ as u→ umax. Therefore,
taking the limit as S → ϕ0 of (4.6), we deduceˆ

{ϕ=s}
γ(s)

〈
Y
∣∣∣ ∇ϕ|∇ϕ|g

〉
g
dσg = −

ˆ
{s≤ϕ<ϕ0}

divg(γY )dσg ≤ 0 , (4.8)

where in the last inequality we have used (4.3). Now we compute the integral on the left hand side.
Using the equations in (3.13), we obtain

1

ψ̇

〈
Y
∣∣∣ ∇ϕ|∇ϕ|g

〉
g

= 2
∇2ϕ(∇ϕ,∇ϕ)

|∇ϕ|g
+ ∆gϕ|∇ϕ|g

= |∇ϕ|g
[
− 2

(n− 2)u+ (ψ/ψ̇)
Ricg(νg, νg) +

(
1− 2

u− (ψ/ψ̇)

(n− 2)u+ (ψ/ψ̇)

)
∆gϕ

]
,

and taking the limit as s→ 0, since u→ 0, ψ → r+(m) and ψ̇ → 0, we get

lim
s→0

[
1

ψ̇

〈
Y
∣∣∣ ∇ϕ|∇ϕ|g

〉
g

]
|{ϕ=s}

=

{
|∇ϕ|g

[
− 2

r+(m)
Ricg(νg, νg) + 3nr+(m)

(
1− |∇ϕ|2g

)]}
|∂N
. (4.9)

Moreover, recalling from (2.2) the relation between ψ, ψ̇ and u, we find

lim
s→0

(ψ̇γ)|{ϕ=s} = − lim
s→0

(
u2

ψ̇2
ψ2n−1

)
|{ϕ=s}

= − lim
s→0

{
ψ2n+1[1− (n− 2)mψ−n]2

}
|{ϕ=s}

= − r2n+1
+ (m)[1− (n− 2)mr−n+ (m)]2 . (4.10)

Taking the limit of (4.8) as s→ 0 and using the information given by (4.9) and (4.10), we obtain
te desired inequality (4.4).

To prove the rigidity statement, we start by observing that, if the equality (4.5) holds, then
necessarily the right-hand side of (4.4) is null. In particular, |∇ϕ|g ≡ 1 on N . Substituting this
information in the Bochner formula (3.21) we obtain |∇2ϕ|g ≡ 0, hence we can apply Proposition 3.2
to conclude. �
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4.2. Integral identities in the inner regions. In this subsection, we deal with the case in which
N is an inner region, that is,

max
S∈π0(∂N)

κ(S) = max
∂N

|Du|
umax

>
√
n ,

and the pseudo-radial function Ψ = ψ ◦ u is defined by (2.4). This case is slightly more complicated
than the outer one, and requires a generalization of the computations of the previous subsection.
Let

Yα = ∇|∇ϕ|2g + α∆gϕ∇ϕ ,

where α ∈ R. From the Bochner formula (3.21) and the equations in (3.13) we compute

divg(Yα) +

[
(n− 2)u+

ψ

ψ̇
+ 3nψψ̇

]
〈∇ϕ |Yα 〉g =

= 2|∇2ϕ|2g + α(∆gϕ)2 + nψ2ψ̇2

[
n(α− 1)(α+ 2)− 2(n+ α+ 1)

u

ψψ̇

]
|∇ϕ|2g(1− |∇ϕ|2g) .

In order for the term 2|∇2ϕ|2g + α(∆gϕ)2 to be positive, we want α ≥ −2/n. Recalling

u

ψψ̇
= −[1− (n− 2)mψ−n] ,

we have

divg(Yα) +

[
(n− 2)u+

ψ

ψ̇
+ (α+ 2)nψψ̇

]
〈∇ϕ |Yα 〉g =

= 2|∇2ϕ|2g +α(∆gϕ)2 +nψ2ψ̇2

[
n(nα+ 2)(α+ 1)− 2(n+ α+ 1)(n− 2)

m

ψn

]
|∇ϕ|2g(1− |∇ϕ|2g) .

(4.11)

The term in square brackets is positive if and only if

ψn

m
≥ 2(n− 2)

n+ α+ 1

(nα+ 2)(α+ 1)
. (4.12)

Since the term on the right hand side goes to zero as α→∞, there exists an α big enough so that

rn−(m)

m
= 2(n− 2)

n+ α+ 1

(nα+ 2)(α+ 1)
. (4.13)

Notice that the value of α that satisfies (4.13) is greater than or equal to 1 (in fact, if we set α = 1
in (4.12) we have ψn ≥ (n− 2)m, which is never satisfied on N). If we choose α as in (4.13), we

have that the square bracket above is positive for any ψ ∈ [r−(m),
(
(n− 2)m

)1/n
]. In particular,

for that α we have

divg(Yα) +

[
(n− 2)u+

ψ

ψ̇
+ (α+ 2)nψψ̇

]
〈∇ϕ |Yα 〉g ≥ 0 . (4.14)

on the whole N . Now we choose

γ =
uα+1ψnα+n−α

ψ̇α+2
=

ψnα+n+2

u

[
1− (n− 2)mψ−n

]α+2 ≥ 0 , (4.15)
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(notice that γ ≥ 0 when Ψ = ψ ◦ u is as in (2.4)). We compute

γ′

γ
=

ψ̇α+2

uα+1ψnα+n−α ·
du

dϕ
·
[
(α+ 1)

uαψnα+n−α

ψ̇α+2
+ (nα+ n− α)

uα+1ψnα+n−α−1ψ̇

ψ̇α+2

− (α+ 2)
u2ψnα+n−αψ̈

ψ̇α+3

]
= − ψ̇α+1

uαψnα+n−α−1

[
(α+ 1)

uαψnα+n−α

ψ̇α+2
+ (nα+ n− α)

uα+1ψnα+n−α−1ψ̇

ψ̇α+2

− (α+ 2)
u2ψnα+n−αψ̈

ψ̇α+3

]
= −(α+ 1)

ψ

ψ̇
− (nα+ n− α)u+ (α+ 2)

uψψ̈

ψ̇2

= −(α+ 1)
ψ

ψ̇
− (nα+ n− α)u+ (α+ 2)nψψ̇ + (α+ 2)(n− 1)u+ (α+ 2)

ψ

ψ̇

= (n− 2)u+
ψ

ψ̇
+ (α+ 2)nψψ̇ .

From formulæ (4.11), (4.14) we deduce

divg(γYα) = 2|∇2ϕ|2g + α(∆gϕ)2+

+ nψ2ψ̇2

[
n(nα+ 2)(α+ 1)− 2(n+ α+ 1)(n− 2)

m

ψn

]
|∇ϕ|2g(1− |∇ϕ|2g) ≥ 0 . (4.16)

Integrating (4.16) on N , we obtain the following statement.

Proposition 4.2. Let (M, g0, u) be a solution to problem (1.6), let N ⊆M \MAX(u) be an inner
region with virtual mass m = µ(N, g0, u), and let Ψ, g and ϕ be defined by (2.3), (3.1) and (3.9).
For any 0 ≤ s < ϕ0 it holds

ˆ
∂N
|∇ϕ|g

[
Ricg(νg, νg)−

α+ 2

2
nr2
−(m)(1− |∇ϕ|2g)

]
dσg = − 1

C

ˆ
N
γ

[
|∇2ϕ|2g +

α

2
(∆gϕ)2+

+ ψψ̇

(
1

2
n(nα+ 2)(α+ 1)− (n+ α+ 1)(n− 2)

m

ψn

)
|∇ϕ|2g∆gϕ

]
dσg ≤ 0 , (4.17)

where α ≥ 1 is the solution of equation (4.13), γ is the function defined by (4.2) and C =

C(α,m, n) = r
(α+1)n+1
− (m)[1− (n− 2)mr−n− (m)]α+1. Moreover, if the equality

ˆ
∂N
|∇ϕ|g

[
Ricg(νg, νg)−

α+ 2

2
nr2
−(m)(1− |∇ϕ|2g)

]
dσg = 0 , (4.18)

holds, then the solution (M, g0, u) is isometric to a generalized Schwarzschild–de Sitter triple (1.14)
with mass m.

Proof. Let us recall from Subsection 1.1 that u is an analytic function. In particular, also ϕ is
analytic in the interior of N , hence its critical level sets are discrete. It follows that we can choose
ϕ0 < S < s < ϕmax, with S arbitrarily close to ϕ0 and s arbitrarily close to ϕmax such that both s
and S are regular values for ϕ. Integrating divg(γYα) on {S ≤ ϕ ≤ s} and using the Divergence
Theorem we obtainˆ

{S≤ϕ≤s}

divg(γYα)dσg =

ˆ

{ϕ=s}

γ(s)
〈
Yα

∣∣∣ ∇ϕ|∇ϕ|g
〉
g
dσg −

ˆ

{ϕ=S}

γ(S)
〈
Yα

∣∣∣ ∇ϕ|∇ϕ|g
〉
g
dσg , (4.19)
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First of all, with analogous computations to the ones employed in the proof of Proposition 4.1, we
obtain

lim
S→ϕ0

γ(S)

ˆ
{ϕ=S}

〈
Yα

∣∣∣ ∇ϕ|∇ϕ|g
〉
g
dσg = 0 .

Therefore, taking the limit as S → ϕ0 of (4.19), we deduceˆ
{ϕ=s}

γ(s)
〈
Yα

∣∣∣ ∇ϕ|∇ϕ|g
〉
g
dσg =

ˆ
{ϕ0<ϕ≤s}

divg(γYα)dσg ≥ 0 , (4.20)

where in the last inequality we have used (4.16). Now we compute the integral on the left hand
side. Using the equations in (3.13), we obtain

1

ψ̇

〈
Yα

∣∣∣ ∇ϕ|∇ϕ|g
〉
g

= 2
∇2ϕ(∇ϕ,∇ϕ)

|∇ϕ|g
+ ∆gϕ|∇ϕ|g

= |∇ϕ|g
[
− 2

(n− 2)u+ (ψ/ψ̇)
Ricg(νg, νg) +

(
α− 2

u− (ψ/ψ̇)

(n− 2)u+ (ψ/ψ̇)

)
∆gϕ

]
,

and taking the limit as s→ ϕmax, since u→ 0, ψ → r−(m) and ψ̇ → 0, we get

lim
s→ϕmax

[
1

ψ̇

〈
Yα

∣∣∣ ∇ϕ|∇ϕ|g
〉
g

]
|{ϕ=s}

=

=

{
|∇ϕ|g

[
− 2

r−(m)
Ricg(νg, νg) + (α+ 2)nr−(m)

(
1− |∇ϕ|2g

)]}
|∂N
. (4.21)

Moreover, recalling from (2.2) the relation between ψ, ψ̇ and u, we find

lim
s→ϕmax

(ψ̇γ)|{ϕ=s} = lim
s→ϕmax

(
uα+1

ψ̇α+1ψα+1
ψ(α+1)n+1

)
|{ϕ=s}

= lim
s→ϕmax

{
ψ(α+1)n+1[1− (n− 2)mψ−n]α+1

}
|{ϕ=s}

= r
(α+1)n+1
− (m)[1− (n− 2)mr−n− (m)]α+1 . (4.22)

Taking the limit of (4.20) as s → ϕmax and using (4.21) and (4.22), we obtain the desired
inequality (4.17).

The rigidity statement is proved in the same way as in Proposition 4.1. If the equality in (4.18)
holds, then necessarily the right hand side of (4.17) is null. In particular, |∇ϕ|g ≡ 1 on N .
Substituting this information in the Bochner formula (3.21) we obtain |∇2ϕ|g ≡ 0, hence we can
apply Proposition 3.2 to conclude. �

5. Area bounds

Subsection 5.1 is devoted to the proof of the inequalities in Theorems 1.4 and 1.5 for outer and
inner regions. The proof of the corresponding rigidity statements will be discussed in Section 6,
whereas the cylindrical case will be addressed in Section 8. In Subsection 5.2 we will discuss some
area bounds for the hypersurface separating our region from the rest of the manifold. In particular,
we will recover Corollary 1.7.

5.1. Area bounds for the horizons. Let N be a connected component of M \MAX(u), let
µ = µ(N, g0, u) be its virtual mass and let S ⊆ ∂N be an horizon with maximum surface gravity.
We now follow [23] (see also [40, Section 4]) to prove area bounds for the horizon S. We start by
noticing that, if we define g,Ψ, ϕ as usual with respect to the mass m, the definitions are chosen in
such a way that

|∇ϕ|2g(p) =

∣∣∣∣∣ Du

ψ
[
1− (n− 2)mψ−n

]∣∣∣∣∣
2

(p) =
|Du|2(p)

W (u(p))
,
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where W (t) is the constant value of |Du|2 on the level set {u = t} ∩M± of the Schwarzschild–de
Sitter solution, where of course the sign ± depends on whether we are on an outer or inner region.

From Lemma 2.2 we have |∇ϕ|g = 1 on S, whereas Proposition 3.3 tells us that |∇ϕ|g ≤ 1 on
the whole N . In other words, we have |Du|2 ≤W (u) on the whole N and the equality holds on S.
Let now p ∈ S and γ : [0, ε)→ R be a geodesic such that γ(0) = p and γ′(0) = ν, where ν is the
unit normal to S pointing inside N . Applying [5, (11)] in N we have

|Du|2 ◦ γ(s) = W (0)
[
1 + (Ric(ν, ν)− n)s2 +O(s4)

]
= W (0)

[
1 +

(
n(n− 3)

2
− RS

2

)
s2 +O(s4)

]
, (5.1)

where in the second identity we have used the Gauss-Codazzi equation and the fact that the horizon
S is totally geodesic. Of course we can apply the same formula on the model solution, obtaining
the same expansion with R∂M± in place of RS . Since |Du|2 ≤W as observed above, necessarily we
have RS ≥ R∂M± . In other words, we have proven the following:

Theorem 5.1. Let (M, g0, u) be a solution to problem (1.6), let N ⊆M \MAX(u) be a region with
virtual mass m = µ(N, g0, u). Let also S ⊂ ∂N be an horizon with maximum surface gravity. Then

• If N is outer, it holds

RS ≥ (n− 1)(n− 2)r−2
+ (m) .

• If N is inner, it holds

RS ≥ (n− 1)(n− 2)r−2
− (m) .

Integrating the inequalities in Theorem 5.1 on S, we obtain the following formulaˆ
S

RS

(n− 1)(n− 2)
dσ ≥ r−2

± (m)|S| . (5.2)

This gives a particularly nice result in the case n = 3.

Theorem 5.2. Let (M, g0, u) be a 3-dimensional solution to problem (1.6), and let N ⊆M\MAX(u)
be a region with virtual mass m = µ(N, g0, u). Let also S ⊂ ∂N be an horizon with maximum
surface gravity in N . Then S is diffeomorphic to S2 and it holds

|S| ≤ 4πr2
±(m) ,

where the sign ± depends on whether N is an outer or inner region.

Proof. Substituting n = 3 in inequality (5.2) and using the Gauss-Bonnet formula, we immediately
obtain

4πχ(S) ≥ 2r−2
± (m) |S| .

In particular, χ(S) has to be positive, hence S is necessarily a sphere and we obtain the thesis. �

5.2. Area bounds for the disconnecting hypersurface. Combining the results of this section
with Corollary 3.5, it is straightforward to obtain an area bound on the hypersurface ΣN that
separates N from the rest of the manifold.

Theorem 5.3. Let (M, g0, u) be a solution to problem (1.6), let N ⊆M \MAX(u) be a region of

M with connected boundary ∂N and with virtual mass m < mmax. Let ΣN = N ∩M \N be the
hypersurface separating N from the rest of the manifold M .

• If N is an outer region, then

|ΣN | ≤
(ˆ

∂N

R∂N

(n− 1)(n− 2)
dσ

)
rn−1

0 (m)

rn−3
+ (m)

, (5.3)

and, if the equality holds, then (M, g0, u) is isometric to a generalized Schwarzschild–de
Sitter triple (1.14) with mass m.
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• If N is an inner region, then

|ΣN | ≤
(ˆ

∂N

R∂N

(n− 1)(n− 2)
dσ

)
rn−1

0 (m)

rn−3
− (m)

, (5.4)

and, if the equality holds, then (M, g0, u) is isometric to a generalized Schwarzschild–de
Sitter triple (1.14) with mass m.

Proof. Let us study the case where N is outer, the inner case being completely analogous. From
Corollary 3.5, recalling the definitions of g, ϕ, we get

r1−n
0 (m)|ΣN | = |ΣN |g ≤ |∂N |g = r1−n

+ (m)|∂N | .

Now we conclude using formula (5.2). �

This result becomes particularly nice in dimension n = 3. Combining Theorem 5.2 with
Corollary 3.5 we immediately obtain Corollary 1.7, which we recall here for the reader’s convenience.

Corollary 5.4. Let (M, g0, u) be a 3-dimensional solution to problem (1.6), let N ⊆M \MAX(u)

be a region with connected boundary ∂N and with virtual mass m < mmax. Let ΣN = N ∩M \N
be the hypersurface separating N from the rest of the manifold M . Then

|ΣN | ≤ 4π r2
0(m) . (5.5)

Moreover, if the equality holds, then (M, g0, u) is isometric to the Schwarzschild–de Sitter triple (1.9)
with mass m.

6. Balancing inequalities and rigidity of area bounds

Here we translate the integral identities obtained in Section 4 in terms of u and g0. Some
computations will lead to the proof of the rigidity statements in Theorem 1.5 in the case where N
is outer (Theorem 6.3) and inner (Theorem 6.7). As a consequence of the Gauss-Bonnet formula
we will then deduce Theorem 1.4 (see Theorems 6.2 and 6.6). We will also prove some more general
statements, in the cases where N has more than one horizon.

6.1. Area bounds for outer regions. Here we focus on the case where our region N is outer
and translate Proposition 4.1, proved in Subsection 4.1, in terms of u, g0. To do that, it is useful to
let A : ∂N → (0, 1] be the locally constant function defined for every x ∈ ∂N by

A(x) =
|Du|

max∂N |Du|
(x) . (6.1)

Theorem 6.1. Let (M, g0, u) be a solution to problem (1.6) and let N ⊆M \MAX(u) be an outer
region with virtual mass m = µ(N, g0, u). Then it holdsˆ
∂N
A3 dσ ≤

(ˆ
∂N
A

R∂N

(n− 1)(n− 2)
dσ

)
r2

+(m) − n(n− 4)

(n− 1)(n− 2)

(ˆ
∂N
A
(
1−A2

)
dσ

)
r2

+(m) .

where R∂N is the scalar curvature of the metric induced by g0 on ∂N and A is the step function
defined in (6.1). Moreover, if the equality holds, then the solution (M, g0, u) is isometric to a
generalized Schwarzschild–de Sitter triple (1.14) with mass m.

Proof. It is enough to translate formula (4.4) in terms of u and g0, using the relations developed in
Subsection 3.1. In particular, let us notice that

|∇ϕ|2g =
ψ̇2

u2
|Du|2 , and max

∂N
|∇ϕ|g = 1 ,

where the second identity follows from Lemma 2.2. Therefore( ψ̇2

u2

)
|∂N

max
∂N
|Du|2 = 1 ,
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which in turn implies |∇ϕ|2g = |Du|2/max∂N |Du|2. Now we translate Ricg(νg, νg) in terms of
Ric(ν, ν), where ν = Du/|Du| and νg = ∇ϕ/|∇ϕ|g = ψν are the unit normals to the level sets of u
with respect to g0 and g. Recalling the equations in systems (1.6), (3.13), using also formula (3.12)

and the fact that ψ̇ → 0 as u→ 0, we obtain that on ∂N = {u = 0} ∩N it holds

Ricg(νg, νg) = −
[
(n− 2)u+

ψ

ψ̇

]
∇2ϕ(νg, νg) −

(
u− ψ

ψ̇

)
∆gϕ

= ψ2 D2u(ν, ν)

u
+

[
(n− 1)u

ψ

ψ̇
+ nψ2

]
ψ̇2

u2
|Du|2 + nψ2

(
1− ψ̇2

u2
|Du|2

)

= ψ2

[
Ric(ν, ν)− n+ n

ψ̇2

u2
|Du|2 + (n− 1)

u

ψψ̇

ψ̇2

u2
|Du|2 + n

(
1− ψ̇2

u2
|Du|2

)]

= ψ2

[
Ric(ν, ν) + (n− 1)

u

ψψ̇

|Du|2

max∂N |Du|2

]
Substituting the above computations inside formula (4.4), and recalling that ψ = r+(m) on ∂N
(because N is an outer region and ψ is defined as specified in (2.3)), we obtainˆ

∂N

|Du|
[
Ric(ν, ν) + (n− 1)

u

ψψ̇
−
(

3

2
n+ (n− 1)

u

ψψ̇

)(
1− |Du|2

max∂N |Du|2

)]
dσ ≥ 0 ,

where we recall that the equality holds if and only if the solution is isometric to the Schwarzschild–de
Sitter solution. Notice that the above formula is slightly imprecise, as, rigorously, the quantity
u/(ψψ̇) is not defined on ∂N , because ψ̇ → 0 as u→ 0. However, from formula (2.2) that quantity
can be explicitated as

u

ψψ̇
= −

[
1− (n− 2)mψ−n

]
,

which has a finite value on the boundary, as ψ = r+(m) on ∂N . Moreover, using the Gauss-Codazzi
equation we have 2Ric(ν, ν) = R−R∂N = n(n− 1)−R∂N , and substituting in the inequality above
we get
ˆ
∂N
|Du|

[
R∂N − (n− 1)(n− 2)

(
1 + 2mr−n+ (m)

)]
dσ ≥

≥ −
ˆ
∂N
|Du|

[(
n+ 2 + 2(n− 1)(n− 2)mr−n+ (m)

)(
1− |Du|2

max∂N |Du|2

)]
dσ .

Moreover, since r+(m) satisfies 1− r2
+(m)− 2mr2−n

+ (m) = 0, we have

1 + 2mr−n+ (m) = r−2
+ (m) ,

hence the integral inequality above becomes
ˆ
∂N

A

[
R∂N − (n− 1)(n− 2)r−2

+ (m)

]
dσ ≥

≥ −
ˆ
∂N

A

[(
(n+ 2) + 2(n− 1)(n− 2)mr−n+ (m)

) (
1−A2

) ]
dσ .

where A is the function defined in (6.1). The thesis follows from this inequality with some
straightforward algebra. �

Notice that A ≤ 1 on ∂N by definition, hence for n ≥ 4 Theorem 6.1 gives the following formulaˆ
∂N
A3 dσ ≤

(ˆ
∂N
A

R∂N

(n− 1)(n− 2)
dσ

)
r2

+(m) .

Instead, in dimension n = 3, we can make Theorem 6.1 more explicit by means of the Gauss-
Bonnet formula.
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Theorem 6.2. Let (M, g0, u) be a 3-dimensional solution to problem (1.6) and let N ⊆M \MAX(u)
be an outer region with virtual mass m = µ(N, g0, u). Then

∑p
i=0

[(
κi
κ0

)2
− 3

2r
2
+(m)

(
1−

(
κi
κ0

)2)]
κi|Si|∑p

i=0 κi
≤ 4πr2

+(m)

where ∂N = S0 t · · · t Sp and κ0 ≥ · · · ≥ κp are the surface gravities of S0, . . . , Sp. Moreover, if
the equality holds then ∂N is connected and (M, g0, u) is isometric to the Schwarzschild–de Sitter
solution with mass m.

Proof. For n = 3, the formula in Corollary 6.1 rewrites as

p∑
i=0

ˆ
Si

κi

[
RSi − 2r−2

+ (m) +
[
5 + 4mr−3

+ (m)
](

1− κ2
i

κ2
0

)]
dσ ≥ 0 .

Since 1 − r2
+(m) − 2mr−1

+ (m) = 0 by definition, we compute 5 + 4mr−3
+ (m) = 3 + 2r−2

+ (m).

Moreover, from the Gauss-Bonnet formula, we have
´
Si

RSidσ = 4πχ(Si) for all i = 0, . . . , p.

From [5, Theorem B], we also know that each Si is diffeomorphic to a sphere, hence χ(Si) = 2.
Substituting these pieces of information inside the above formula, with some manipulations we
arrive to the thesis. �

The local formula proven in Theorem 6.2 may be compared with Theorem 1.8 by Ambrozio [5].
Although our result has the virtue of being sharp for the Schwarzschild–de Sitter solutions, the
formula that we obtain is much more cumbersome. On the other hand, our results become
particularly nice when the boundary ∂N is connected. In fact, in this case, the constancy of the
quantity |Du| on the whole boundary allows to obtain the following stronger results.

Corollary 6.3. Let (M, g0, u) be a solution to problem (1.6) and let N ⊆M \MAX(u) be an outer
region with virtual mass m. If ∂N is connected, then it holds

|∂N | ≤
(ˆ

∂N

R∂N

(n− 1)(n− 2)
dσ

)
r2

+(m) .

Moreover, if the equality is fulfilled, then the solution (M, g0, u) is isometric to a generalized
Schwarzschild–de Sitter triple (1.14) with mass m.

Proof. The result is an immediate consequence of Corollary 6.1 and the fact that |Du| is constant
on ∂N . �

Theorem 6.4. Let (M, g0, u) be a 3-dimensional solution to problem (1.6) and let N ⊆M \MAX(u)
be an outer region with virtual mass m. If ∂N is connected, then ∂N is diffeomorphic to S2 and it
holds

|∂N | ≤ 4πr2
+(m) .

Moreover, if the equality holds, then the solution (M, g0, u) is isometric to the Schwarzschild–de
Sitter triple (1.9) with mass m.

Proof. Substituting n = 3 in Corollary 6.3 and using the Gauss-Bonnet formula, we immediately
obtain

4πχ(∂N) ≥ 2r−2
+ (m) |∂N | .

In particular, χ(∂N) has to be positive, hence ∂N is necessarily a sphere and we obtain the
thesis. �
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6.2. Area bounds for inner regions. Here we proceed as in Subsection 6.1 to prove analogous
integral identities when N is an inner region.

Theorem 6.5. Let (M, g0, u) be a solution to problem (1.6) and let N ⊆M \MAX(u) be an inner
region with virtual mass m = µ(N, g0, u). Then it holds
ˆ
∂N
A3 dσ ≤

(ˆ
∂N
A

R∂N

(n− 1)(n− 2)
dσ

)
r2
−(m) − n[n− (α+ 3)]

(n− 1)(n− 2)

(ˆ
∂N
A
(
1−A2

)
dσ

)
r2
−(m) .

where R∂N is the scalar curvature of the metric induced by g0 on ∂N , α ≥ 1 is the solution of (4.13)
and A is the step function defined in (6.1). Moreover, if the equality holds, then the solution
(M, g0, u) is isometric to a generalized Schwarzschild–de Sitter triple (1.14) with mass m.

Proof. As in the proof of Corollary 6.1, it is enough to translate formula (4.17) in terms of u and
g0, using the relations developed in Subsection 3.1. Again one starts by noticing that

|∇ϕ|2g =
ψ̇2

u2
|Du|2 , and max

∂N
|∇ϕ|g = 1 ,

where the second identity follows from Lemma 2.2. In particular we have( ψ̇2

u2

)
|∂N

max
∂N
|Du|2 = 1 ,

which in turn implies |∇ϕ|2g = |Du|2/max∂N |Du|2. Translating also Ricg in terms of Ric, with
similar computations to the ones done in the proof of Corollary 6.1, from formula (4.4) we obtain

ˆ

∂N

|Du|
[
− Ric(ν, ν) − (n − 1)

u

ψψ̇
+

(
α+ 2

2
n+ (n− 1)

u

ψψ̇

)(
1− |Du|2

max∂N |Du|2

)]
dσ ≥ 0 ,

where we recall that the equality holds if and only if the solution is isometric to the Schwarzschild–de
Sitter solution). We remark that the above formula is not completely rigorous, as the quantity

u/(ψψ̇) is not defined on ∂N , because ψ̇ → 0 as u→ 0. However, from formula (2.2) that quantity
can be explicitated as

u

ψψ̇
= −

[
1− (n− 2)mψ−n

]
,

which has a finite value on the boundary, as ψ = r−(m) on ∂N (because N is an inner region
and ψ is defined as specified in (2.4)). Moreover, using the Gauss-Codazzi equation we have
2Ric(ν, ν) = R− R∂N = n(n− 1)− R∂N , hence we can rewrite the above inequality as

ˆ
∂N
|Du|

[
R∂N − (n− 1)(n− 2)

(
1 + 2mr−n− (m)

)]
dσ ≥

≥ −
ˆ
∂N

[(
αn+ 2 + 2(n− 1)(n− 2)mr−n− (m)

)(
1− |Du|2

max∂N |Du|2

)]
dσ .

We also recall that r−(m) satisfies 1− r2
−(m)− 2mr2−n

− (m) = 0, hence we easily compute

1 + 2mr−n− (m) = r−2
− (m) .

Substituting in the integral inequality above we obtain

ˆ
∂N

A

[
R∂N − (n− 1)(n− 2)r−2

− (m)

]
dσ ≥

≥
ˆ
∂N

[(
(αn+ 2) + 2(n− 1)(n− 2)mr−n− (m)

) (
1−A2

) ]
dσ ,

where A is the step function defined in (6.1). The thesis follows with some easy algebra. �
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Since A ≤ 1 on ∂N by definition, for n ≥ 4 Theorem 6.5 gives the following formulaˆ
∂N
A3 dσ ≤

(ˆ
∂N
A

R∂N

(n− 1)(n− 2)
dσ

)
r2
−(m) .

Concerning dimension n = 3, the above result can be made more explicit using the Gauss-Bonnet
formula.

Theorem 6.6. Let (M, g0, u) be a 3-dimensional solution to problem (1.6) and let N ⊆M \MAX(u)
be an inner region with virtual mass m = µ(N, g0, u). Then∑p

i=0

[(
κi
κ0

)2
− 3

2αr
2
−(m)

(
1−

(
κi
κ0

)2)]
κi|Si|∑p

i=0 κi
≤ 4πr2

−(m)

where α ≥ 1 is the solution to equation (4.13), ∂N = S0 t · · · t Sp and κ0 ≥ · · · ≥ κp are the
surface gravities of S0, . . . , Sp. Moreover, if the equality holds then ∂N is connected and (M, g0, u)
is isometric to the Schwarzschild–de Sitter solution with mass m.

Proof. For n = 3, the formula in Corollary 6.5 rewrites as

p∑
i=0

ˆ
Si

κi

[
RSi − 2r−2

− (m) +
(
3α+ 2 + 4mr−3

− (m)
)(

1− κ2
i

κ2
0

)]
dσ ≥ 0 .

Since 1− r2
−(m)− 2mr−1

− (m) = 0 by definition, we compute 3α+ 2 + 4mr−3
− (m) = 3α+ 2r−2

− (m).

Moreover, from the Gauss-Bonnet formula, we have
´
Si

RSidσ = 4πχ(Si) for all i = 1, . . . , p.

From [5, Theorem B], we also know that each Si is diffeomorphic to a sphere, hence χ(Si) = 2.
Substituting this information inside the above formula, with some manipulations we arrive to the
thesis. �

As in the outer case, when ∂N is connected, the constancy of the quantity |Du| on the whole
boundary allows to obtain stronger results.

Corollary 6.7. Let (M, g0, u) be a solution to problem (1.6) and let N ⊆M \MAX(u) be an inner
region with virtual mass m. If ∂N is connected, then it holds

|∂N | ≤
(ˆ

∂N

R∂N

(n− 1)(n− 2)
dσ

)
r2
−(m) .

Moreover, if the equality is fulfilled, then the solution (M, g0, u) is isometric to a generalized
Schwarzschild–de Sitter triple (1.14) with mass m.

Proof. The result is an immediate consequence of Corollary 6.5 and the fact that |Du| is constant
on ∂N . �

Theorem 6.8. Let (M, g0, u) be a 3-dimensional solution to problem (1.6) and let N ⊆M \MAX(u)
be an inner region with virtual mass m. If ∂N is connected, then ∂N is diffeomorphic to S2 and it
holds

|∂N | ≤ 4πr2
−(m) .

Moreover, if the equality holds, then the solution (M, g0, u) is isometric to the Schwarzschild–de
Sitter triple (1.9) with mass m.

Proof. Substituting n = 3 in Corollary 6.7 and using the Gauss-Bonnet formula, we immediately
obtain

4πχ(∂N) ≥ 2r−2
− (m) |∂N | .

In particular, χ(∂N) has to be positive, hence ∂N is necessarily a sphere and we obtain the
thesis. �
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7. Black Hole Uniqueness Theorem

In this section we will prove the Black Hole Uniqueness Theorem 1.9 stated in Subsection 1.5,
in the case where m+ < mmax. The case m+ = mmax requires a different analysis, as the model
solution will be the Nariai triple (1.11), and it will be studied in Section 8. The hypothesis
m+ < mmax allows us to use the metric g and the functions Ψ, ϕ defined in the previous sections by
formulæ (3.1), (2.1), (3.9). We recall the definitions here, for the reader convenience. The function
Ψ = ψ ◦ u is defined as

Ψ : M −→ [r−(m), r+(m)]

p 7−→ Ψ(p) :=


ψ+(u(p)) if p ∈M+ ,

ψ−(u(p)) if p ∈M− ,
r0(m) if p ∈ MAX(u) ,

where we recall that ψ+ : M+ → [r+(m), r0(m)] and ψ− : M− → [r0(m), r−(m)] are defined
implicitly as the two determinations of the equation

u2 = 1− ψ2 − 2mψ2−n .

In turn, the metric g and the function ϕ are defined as

ϕ(p) =

ˆ r+(m)

Ψ(p)

dt

t
√

1− t2 − 2mt2−n

g =
g0

Ψ2
.

We start by stating a lemma on the regularity of the pseudo-radial function along the hypersurface
separating the two regions M+ and M−.

Lemma 7.1. Let (M, g0, u) be a 2-sided solution to problem (1.6), let Ψ be the global pseudo-radial
function defined by (2.5) with respect to a parameter m ∈ [0,mmax) and let g, ϕ be defined by (3.1)
and (3.9). Then, at each point in the top stratum of Σ, we have that g, Ψ and ϕ are C 3 and that
|∇ϕ|g = 1.

Proof. Proposition 2.7 tells us that Ψ is C 3 at each point of the top stratum of Σ. The regularity
of g and ϕ follows immediately from their definition. Finally, recalling formula (2.15), we get

|∇ϕ|2g =
|Du|2

ψ2 [1− (n− 2)mψ−n]2
= 1 .

This concludes the proof. �

Lemma 7.1 will play an important role in the proof of the following theorem. which will be a
crucial step in the proof of Theorem 1.9.

Theorem 7.2. Let (M, g0, u) be a 3-dimensional 2-sided solution to problem (1.6), and let Σ ⊆
MAX(u) be the stratified hypersurface separating M+ and M−. Let also

m+ = µ(M+, g0, u) , and m− = µ(M−, g0, u)

be the virtual masses of M+ and M−, respectively. Then

m− ≤ m+ .

Moreover, if m+ = m− then Σ is a C∞ hypersurface and it holds

H = 2

√
m
−2/3
+ − 3 , (7.1)

h =

√
m
−2/3
+ − 3 gΣ

0 , (7.2)

RΣ = 2m
−2/3
+ , (7.3)

Ric(ν, ν) = 0 , (7.4)



ON THE MASS OF STATIC METRICS WITH POSITIVE COSMOLOGICAL CONSTANT – II 49

where ν is the g0-unit normal to Σ pointing towards M+, H and h are the mean curvature and
second fundamental form of Σ with respect to ν, RΣ is the scalar curvature of the metric gΣ

0 induced
on Σ by g0.

Proof. If m+ = mmax the first part of the statement is trivial, whereas the second part will be
proved in Section 8. Therefore, from now on we focus on the case m+ < mmax. To prove the first
part of the statement let us suppose that m+ < m− and then deduce from this a contradiction.
Fix a value m ∈ [m+,m−] and define the global pseudo-radial function Ψ = ψ ◦ u with respect to
this parameter. We recall from Lemma 7.1 that the function Ψ is C 3 in a neighborhood of the
points in the top stratum of Σ. In turn, also the pseudo-affine function ϕ defined by (3.9) is C 3

in a neighborhood of Σ, and so is the metric g = g0/Ψ
2. In particular, the scalar curvature Rg is

continuous, and from formula (3.16) we deduce that

lim
x→p, x∈M+

ψ̇(1− |∇ϕ|2g) = lim
x→p, x∈M−

ψ̇(1− |∇ϕ|2g)

for every p in the top stratum of Σ. As observed in Remark 2, following the proof of Lemma 2.2 it
is easily seen that, since m ∈ [m+,m−], it holds

|∇ϕ|g =

∣∣∣∣ Du

ψ(1−mψ−3)

∣∣∣∣ ≤ 1

on the whole boundary ∂M = ∂M+ t ∂M−. We can then apply the Minimum Principle to the
elliptic inequality (3.24) on M+ and M−, as we have done in Proposition 3.3. This proves that

|∇ϕ|g ≤ 1 on the whole M \MAX(u). Furthermore, we recall that ψ̇ has positive sign on M− and

negative sign on M+. Therefore ψ̇(1− |∇ϕ|2g) has to change sign when passing through Σ, hence

lim
x→p

ψ̇(1− |∇ϕ|2g) = 0

for every p in the top stratum of Σ. In particular, ∆gϕ = 0 and |∇ϕ|g = 1 on Σ. Moreover, |∇ϕ|g has
a maximum on Σ, hence ∇|∇ϕ|2g = 0 on Σ. In particular, ∇2ϕ(νg, νg) = 〈∇ϕ | ∇|∇ϕ|2g〉g/|∇ϕ|2g = 0,
where νg = ∇ϕ/|∇ϕ|g = ∇ϕ is the g-unit normal vector field to Σ. At the points in the top stratum
of Σ, the mean curvature Hg of Σ with respect to g and the normal νg can be computed using
formulæ (3.17) and (3.18). Using the fact that ∆gϕ = ∇2ϕ(νg, νg) = 0 on Σ, from (3.18) we deduce

Hg = 0 , (7.5)

on Σ. Translating (7.5) in terms of g0 using (3.20), and recalling that |∇ϕ|g = |ψ̇/u| |Du| = 1 on
Σ, we obtain

H = 2
umax(m)

r0(m)
= 2

√
m−2/3 − 3 . (7.6)

Notice that the formula for H depends on the parameter m, which can be chosen freely in the range
[m+,m−]. But this is a contradiction, as the value of H cannot vary depending on m but depends
only on the geometry of Σ. This proves that m+ cannot be smaller than m−.

To prove the second part of the statement, let us define Ψ, ϕ, g with respect to the parameter
m+ = m−. We have already observed that Ψ, ϕ and g are C 3 in a neighborhood of the points of
the top stratum of Σ. We also recall that, as computed above, on the top stratum of Σ we have
∆gϕ = ∇2ϕ(νg, νg) = Hg = 0. Now we choose a point p in the top stratum of Σ and we consider an
embedding

F0 : B2 →M

such that Σ0 = F0(B2) is contained in the top stratum of Σ. We know from Lemma 7.1 that
|∇ϕ|g = 1 at each point in the top stratum of Σ. Given a small enough number ε > 0 we can use

the gradient ∇ϕ to extend the map F0 to a cartesian product [−ε, ε]×B2, obtaining a new map

F : [−ε, ε]×B2 ↪→M , (s, θ1, θ2) 7→ F (s, θ1, θ2) ,
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satisfying the initial value problem

dF

ds
=
∇ϕ
|∇ϕ|2g

◦ F , F (0, ·) = F0(·) .

It is not hard to check that ϕ(F (s, θ1, θ2)) = ϕ0 + s, so that, for all s ∈ [−ε, ε], the image

Σs = F (s,B2) belongs to the level set {ϕ = ϕ0+s}. Let us denote by Cε the cylinder F ([−ε, ε]×B2).
Integrating Bochner’s formula on Cε, we obtain

ˆ
Cε

|∇2ϕ|2gdµg =

ˆ
Cε

[
1

2
∆g|∇ϕ|2g − Ricg(∇ϕ,∇ϕ) − 〈∇ϕ | ∇∆gϕ〉g

]
dµg

=
1

2

ˆ
∂Cε

〈∇|∇ϕ|2g |ng〉gdσg −
ˆ
Cε

Ricg(∇ϕ,∇ϕ)dµg +

ˆ
Cε

(∆gϕ)2dµg −
ˆ
∂Cε

∆gϕ〈∇ϕ |ng〉gdσg

where ng is the g-unit outward normal vector field to ∂Cε and in the second equality we have
integrated by parts. We can rewrite the above formula as follows:

1

2ε

ˆ
Cε

[
|∇2ϕ|2g − (∆gϕ)2 + Ricg(∇ϕ,∇ϕ)

]
dµg =

=
1

4ε

ˆ
∂Cε

[
〈∇|∇ϕ|2g | ng〉g − 2∆gϕ〈∇ϕ |ng〉g

]
dσg . (7.7)

Let us study in more details the right hand side of this formula. First of all, we notice that the
integrand goes to zero as we approach Σ0. We also know that ng = ∇ϕ/|∇ϕ|g on Σε = F (ε,B2)

and ng = −∇ϕ/|∇ϕ|g on Σ−ε = F (−ε,B2). Moreover, from the second equation in (3.13) it
follows that ∆gϕ is positive on M− and negative on M+, so that in particular ∆gϕ > 0 on Σε and
∆gϕ < 0 on Σ−ε. Concerning the function 〈∇|∇ϕ|2g | ∇ϕ〉g, we first notice that it is differentiable

since ϕ, g are C 3. We now distinguish two cases: either its gradient ∇〈∇|∇ϕ|2g | ∇ϕ〉g is zero in

p or it is not. If its gradient is zero, this means that the function 〈∇|∇ϕ|2g | ∇ϕ〉g goes to zero

at the first order as we approach p, which in turn implies that 〈∇|∇ϕ|2g | ∇ϕ〉g = o(ε). If instead

∇〈∇|∇ϕ|2g | ∇ϕ〉g(p) 6= 0, then up to restricting Cε we can assume ∇〈∇|∇ϕ|2g | ∇ϕ〉g 6= 0 on the

whole Cε. This implies that inside Cε the level sets of 〈∇|∇ϕ|2g | ∇ϕ〉g form a foliation of regular
hypersurfaces, the zero level set corresponding to Σ0. Since |∇ϕ|g assumes its maximum value 1 on
Σ0, it is easily seen that 〈∇|∇ϕ|2g | ∇ϕ〉g ≤ 0 on M− (in particular on Σε) and 〈∇|∇ϕ|2g | ∇ϕ〉g ≥ 0

on M+ (in particular on Σ−ε). In other words, we have 〈∇|∇ϕ|2g |ng〉g ≤ 0 on Σε and on Σ−ε. In
particular, in both cases we have shown that the integrand on the right hand side over Σε ∪ Σ−ε is
bounded from above by a function going to zero faster than ε as we approach p. We also notice that
the H n−1-measure of ∂Cδ \ (Σ−ε ∪Σε) is of the order of ε. Therefore, using the coarea formula on
the left hand side, equation (7.7) gives

1

2ε

ˆ ε

−ε

[ˆ
Σs

1

|∇ϕ|g
(
|∇2ϕ|2g − (∆gϕ)2 + Ricg(∇ϕ,∇ϕ)

)
dσg

]
ds < δ , (7.8)

where δ → 0 as ε→ 0. Since ϕ is C 3, we can use the mean value property on the function

s 7→
ˆ

Σs

1

|∇ϕ|g
(
|∇2ϕ|2g − (∆gϕ)2 + Ricg(∇ϕ,∇ϕ)

)
dσg

to deduce that there exists a value χ ∈ (−ε, ε) such that

ˆ
Σχ

1

|∇ϕ|g
(
|∇2ϕ|2g − (∆gϕ)2 + Ricg(∇ϕ,∇ϕ)

)
dσg =

=
1

2ε

ˆ ε

−ε

[ˆ
Σs

1

|∇ϕ|g
(
|∇2ϕ|2g − (∆gϕ)2 + Ricg(∇ϕ,∇ϕ)

)
dσg

]
ds < δ .
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Recalling that ∆gϕ = ∇2ϕ(νg, νg) = 0 on Σ, from the first equation in (3.13) we find Ricg(νg, νg) = 0
on Σ. Therefore, taking the limit as ε→ 0 of the above inequality, we getˆ

Σ0

|∇2ϕ|2g dσg ≤ 0 .

It follows that ∇2ϕ ≡ 0 on Σ0, which we recall is a neighborhood of p in Σ. Therefore, from
formula (3.19) we also deduce that hg ≡ 0 at each point in the top stratum of Σ. Since the points
in the top stratum of Σ are dense in Σ, it follows that hg ≡ 0 at each point where hg is well defined,
that is, at each point where Σ is a C 2 hypersurface. Since later we will show that Σ is C∞, a
posteriori we will have that hg ≡ 0 on the whole Σ.

Substituting formula (7.6) in (3.19), we also find 0 = |hg|2g = m
2/3
+ |̊h|2. Therefore, h̊ = 0 and it

follows

h =
H

2
gΣ

0 =
√
m−2/3 − 3 gΣ

0 .

Now we pass to compute the scalar curvature of Σ. We have proven above that Ricg(νg, νg) =
|hg|g = Hg = 0 on the top stratum of Σ. Moreover, from (3.16) we have Rg = 2 on Σ. Therefore,
from the Gauss-Codazzi equation we find

RΣ
g = Rg − 2Ricg(νg, νg)− |hg|2g + H2

g = 2 . (7.9)

Noticing that RΣ
g = m

2/3
+ RΣ, where RΣ is the scalar curvature of the metric induced by g0 on Σ,

from identity (7.9) we obtain

RΣ = m
−2/3
+ RΣ

g = 2m
−2/3
+ .

Finally, recalling that D2u(ν, ν) = −3umax on Σ, we obtain

Ric(ν, ν) =
D2u(ν, ν)

u
+ 3〈ν | ν〉 = 0 .

This concludes the proof of the formulæ stated in Theorem 7.2.
It remains to show that, under the hypothesis m+ = m−, the hypersurface Σ is necessarily C∞.

We start by recalling from Proposition 2.8 that Σ is a C 1 hypersurface, so that in particular its
unit normal vector is defined everywhere. Let us start by computing the derivative of the normal
vector ν at a point p of the top stratum of Σ. Let ν,X2, X3 be an orthonormal basis of TpM .
Differentiating the identity |ν|2 = 1 we deduce that

0 = 〈Dνν | ν〉 ,
0 = 〈DXiν | ν〉 = 〈DνXi | ν〉 = −〈Xi |Dνν〉 , for i = 2, 3 ,

at each point in the top stratum of Σ. This shows that Dνν = 0. Moreover, from our previous
computations we get

〈DXiν |Xj〉 = h(Xi, Xj) =
√
m−2/3 − 3 δij .

Now that we know the components of Dν on the top stratum, since the points in the top stratum
are dense in Σ, it is clear that the limit of Dν exists when we approach every point of Σ. It follows
that the normal vector is differentiable, that is, Σ is C 2. Differentiating again the formulæ

〈DXiν | ν〉 = 0 , 〈DXiν |Xj〉 =
√
m−2/3 − 3 δij , and Dνν = 0 ,

we easily get D2ν ≡ 0 on the top stratum. From this it follows that Dkν ≡ 0 on the top stratum
for every k ≥ 2, hence the limit of all the derivatives of ν exist when we approach every point of Σ.
This proves that the normal vector is smooth, which in turn implies that Σ is C∞. �

The next result follows combining Theorem 7.2 with Corollary 3.5, in order to obtain lower bound
on |∂M+|.
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Proposition 7.3. Let (M, g0, u) be a 2-sided solution to problem (1.6), and let Σ ⊆ MAX(u) be
the stratified hypersurface separating M+ and M−. Let also

m+ = µ(M+, g0, u) , m− = µ(M−, g0, u)

be the virtual masses of M+ and M−. Suppose m+ = m− < mmax. Then it holds
ˆ

Σ

RΣ

2
dσ =

|Σ|
m

2/3
+

≤ |∂M+|
r2

+(m+)
.

Moreover, if the equality holds in the latter inequality, then (M, g0, u) is isometric to a generalized
Schwarzschild–de Sitter solution (1.14) with mass m+ = m−.

Proof. The proof is just a collection of the previous results. From formula (7.3), we get

m
2/3
+

ˆ
Σ

RΣ

2
dσ = |Σ| .

We also recall that |∇ϕ|g → 1 as we approach Σ, as proven in Theorem 7.2 above. Therefore, from
Corollary 3.5 we deduce

|Σ|g ≤ |∂M+|g ,
where we recall that the metric g is defined by g = g0/Ψ

2. In particular, it holds

|∂M+|g =
|∂M+|
r2

+(m+)
, |Σ|g =

|Σ|
m

2/3
+

.

Putting together these formulæ we easily obtain the thesis. �

If we also assume the hypothesis that ∂M+ is connected, we can use Corollary 6.3 to obtain a bound
from above on ∂M+. Combining this bound with the bound from below given by Proposition 7.3,
we obtain the chain of inequalitiesˆ

Σ

RΣ

2
dσ ≤ |∂M+|

r2
+(m+)

≤
ˆ
∂M+

R∂M+

2
dσ . (7.10)

Combining this inequality with the Gauss-Bonnet formula, we obtain the following uniqueness
theorem.

Theorem 7.4. Let (M, g0, u) be a 3-dimensional 2-sided solution to problem (1.6), and let Σ ⊆
MAX(u) be the stratified hypersurface separating M+ and M−. Let also

m+ = µ(M+, g0, u) , m− = µ(M−, g0, u)

be the virtual masses of M+ and M−. If the following conditions are satisfied

• mass compatibility m+ = m− < mmax,

• connected cosmological horizon ∂M+ is connected,

then (M, g0, u) is isometric to the Schwarzschild–de Sitter triple (1.9) with mass m+ = m−.

Proof. The chain of inequalities (7.10) tells us thatˆ
Σ

RΣ dσ ≤
ˆ
∂M+

R∂M+ dσ ,

and the equality holds if and only if (M, g0, u) is isometric to the Schwarzschild–de Sitter solu-
tion (1.9). Applying the Gauss-Bonnet formula to both sides of the above inequality, we obtain

4π
k∑
i=1

χ(Σi) ≤ 4πχ(∂M+) .
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We recall from Theorem 6.4 that if ∂M+ is connected then ∂M+ is diffeomorphic to a sphere, hence
we get

k∑
i=1

χ(Σi) ≤ 2 , (7.11)

where Σ1, . . . ,Σk are the connected components of Σ. Moreover, the equality holds in (7.11) if and
only if (M, g0, u) is equivalent to the Schwarzschild–de Sitter solution.

On the other hand, from formula (7.3) we get

RΣ = 2m
−2/3
+ > 0 ,

hence
k∑
i=1

χ(Σi) =

ˆ
Σ

RΣdσ > 0 .

Since Σ is a separating surface, Σ is necessarily orientable, therefore its Euler characteristic is
necessarily an even number. Since χ(Σ) > 0, it follows χ(Σ) ≥ 2. Therefore, the equality must hold
in (7.11) and this triggers the rigidity statement. �

8. The cylindrical case

In this section we deal with the case where the virtual mass of a region N is equal to mmax. We
notice that the metric and the static potential of the Schwarzschild–de Sitter solution (1.9) collapse
as the mass m approaches mmax. Nevertheless, it is well known (see for instance [29, 15, 16, 19])
that, if one rescales the static potential and the coordinates during the limit process in order to
avoid singularities, then the limit of the Schwarzschild–de Sitter solution as the mass m approaches
mmax can be seen to be the Nariai triple (1.11). Therefore, in this section, the Nariai triple will
play the role of the reference model. While the following computations are different from the ones
shown in the preceding sections, the ideas and the conclusions will be analogue.

Normalization 2. According to the Nariai solution (1.11), throughout all this section, the static
potential u is normalized in such a way that umax := maxM (u) = 1.

8.1. Conformal reformulation. Let (M, g0, u) be a solution to system (1.6), and let N be a
connected component of M \MAX(u) such that max∂N |Du| =

√
n. On N , consider the metric

g =
n

n− 2
g0 . (8.1)

We want to reformulate problem (1.6) in terms of g.

Remark 7. We notice that this conformal change is analogue to the conformal change (3.1) (in fact,

the value of the pseudo-radial function Ψ defined in Section 2.1 goes to
√

(n− 2)/n as m→ mmax).
In this case, the conformal change (8.1) is just a rescaling of the metric, hence it is not really
necessary for the following analysis. However, we have preferred to introduce it, since it allows
for an easier comparison between the following computations and the ones shown in the previous
sections for m 6= mmax.

We fix local coordinates in M and we denote by Γγαβ, G
γ
αβ the Christoffel symbols of g, g0. It

is clear that Γγαβ = Gγαβ. Denote by ∇,∆g the Levi-Civita connection and the Laplace-Beltrami

operator of g. For every z ∈ C∞, we compute

∇2
αβz = D2

αβz (8.2)

∆gz =
n− 2

n
∆z (8.3)

Moreover, since the Ricci tensor is invariant under rescaling, we have Ricg = Ric. Consider now
the function

ϕ =
arcsin(u)√
n− 2

. (8.4)
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Since u is normalized in such a way that umax = 1, the function ϕ is well defined, is zero on ∂N
and goes to π/(2

√
n− 2) when we approach MAX(u). Moreover, the gradient and hessian of ϕ

satisfy the following identities

|∇ϕ|2g =
1

n

|Du|2

1− u2
, (8.5)

∇2ϕ =
1

√
n− 2

√
1− u2

[
D2u +

u

1− u2
du⊗ du

]
. (8.6)

Some more calculations show that, with respect to (ϕ, g), the equations in (1.6) rewrites in N as



Ricg =

√
n− 2

tan(
√
n− 2ϕ)

∇2ϕ− (n− 2)dϕ⊗ dϕ+ (n− 2) g, in N

∆gϕ = −
√
n− 2 tan(

√
n− 2ϕ)

(
1− |∇ϕ|2g

)
, in N

ϕ = 0, on ∂N

ϕ = ϕ0 :=
π

2
√
n− 2

on N ∩MAX(u).

(8.7)

We observe that, since g is just a rescaling of g0, we have Ricg = Ric. In particular the scalar
curvature of g is constant and more precisely

Rg = (n− 1)(n− 2) . (8.8)

We can also prove the analogue of Proposition 3.2.

Proposition 8.1. Let (M, g0, u) be a solution to problem (1.6), and let N be a cylindrical region.
Let g = [n/(n− 2)]g0 and let ϕ be the pseudo-affine function defined by (8.4).

If ∇2ϕ ≡ 0 and |∇ϕ|g ≡ 1 on N , then (M, g0, u) is covered by a generalized Nariai solution (1.15).

Proof. Proceeding as in the proof of Proposition 3.2 one shows that (N, g0, u) is isometric to a
region (Mn

+, g
n
0 , u

n) of a Nariai solution (1.11), that we denote in this proof as (Mn, gn0 , u
n). We

then distinguish two cases, depending on whether the hypersurface ΣN = N ∩MAX(u) is two-sided
or one-sided.

• If ΣN is two sided, then one can proceed exactly as in Proposition 3.2 to prove that the
isometry extends beyond ΣN . Therefore, (M, g0, u) is isometric to the Nariai solution (1.11).

• If Σ is one sided then, reasoning as in Proposition 4.1, we have that (M, g0, u) = (N, g0, u)
is isometric to (M

n
+, g

n
0 , u

n)/ ∼, where ∼ is a relation on the points of

MAXn(u) = {p ∈Mn : un(p) = umax} ⊂ ∂M
n
+ .

induced by an involution of MAXn(u). Notice that MAXn(u), with the metric induced
by gn0 , is isometric to an Einstein manifold (E, gE), hence the relation ∼ gives rise to an
isometric involution ι∼ : E → E. But then one can check that

(M
n
+, g

n
0 , u

n)/ ∼= (Mn, gn0 , u
n)/ι

where ι : Mn →Mn is the involution defined, for any (r, x) ∈ [0, π]× E = Mn, by

ι(r, x) = (π − r, ι∼(x)) .

In particular, (M
n
+, g

n
0 , u

n)/ ∼ is covered by the Nariai solution (1.11) with fiber E, and so

the same holds for our initial manifold (M, g0, u) = (N, g0, u).

This concludes the proof. �

Proceeding as in Subsection 3.2, from identity (8.6) one can also prove the following formulæ for
the second fundamental form and mean curvature of a level set {ϕ = s}

hg |∇ϕ|g =
1√
n− 2

|Du|√
1− u2

h , Hg |∇ϕ|g =

√
n− 2

n

|Du|√
1− u2

H . (8.9)
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Furthermore, starting from the Bochner formula and using the equations in (8.7), we find

∆g|∇ϕ|2g −
√
n− 2

[
1 + 2 tan2(

√
n− 2ϕ)

tan(
√
n− 2ϕ)

]
〈∇|∇ϕ|2g | ∇ϕ〉g =

= 2|∇2ϕ|2g − 2(n− 2) tan2(
√
n− 2ϕ) |∇ϕ|2g (1− |∇ϕ|2g) . (8.10)

Let w = β(1 − |∇ϕ|2g), where β = cos(
√
n− 2ϕ). With computations analogous to the ones

shown in Subsection 3.3, we arrive to the following equation

∆gw −
√
n− 2

tan(
√
n− 2ϕ)

〈∇ϕ | ∇w〉 − (n− 2) tan2(
√
n− 2ϕ)

[
(n+ 2)|∇ϕ|2g + (n− 2)

]
w =

= −2 cos(
√
n− 2ϕ)

[
|∇2ϕ|2g −

(∆gϕ)2

n

]
≤ 0 . (8.11)

In particular, we can apply a Minimum Principle to find the following analogue of Proposition 3.3.

Proposition 8.2. Let (M, g0, u) be a solution to problem (1.6), let N be a connected component
of M \MAX(u) with virtual mass m = mmax, and let g, ϕ be defined by, (8.1), (8.4). Then

|∇ϕ|g ≤ 1

on the whole N .
Moreover, if |∇ϕ|g = 1 at a point in the interior of N , then |∇ϕ|g ≡ 1 on the whole N and

(M, g0, u) is isometric to a generalized Nariai solution (1.15).

Proof. The proof is completely analogue to the proof of Proposition 3.3 for the case m 6= mmax, so
we will not give all the details.

Since max∂N |Du| =
√
n, from (8.5) we deduce w ≥ 0 on ∂N . Moreover, again from (8.5),

and Lemma 2.5, we have that w goes to zero as we approach MAX(u). In particular, since
cos(
√
n− 2ϕ) → 0 as ϕ → ϕ0, we have w → 0 as we approach MAX(u). In particular, for any

ε > 0 we can find a small neighborhood Ωε of MAX(u) such that w ≥ −ε on ∂(N \Ωε). The thesis
follows applying the Minimum Principle in N \ Ωε, and then letting ε and the volume of Ωε go to
zero.

Now we pass to the proof of the second part of the statement. Let x be a point in the interior of
N such that |∇ϕ|g(x) = 1. In particular it holds w(x) = 0 and we have proved above that w ≥ 0
on the whole N . Applying the Strong Minimum Principle on an open set Ω containing x, we obtain
w ≡ 0, or equivalently |∇ϕ|g ≡ 1, on Ω. From the arbitrariness of Ω we deduce |∇ϕ|g ≡ 1 on N ,
and plugging this information inside the Bochner formula (8.10), we obtain |∇2ϕ|g ≡ 0. We can
now invoke Proposition 8.1 to conclude. �

Now we consider the function

Φ(s) =

ˆ
{ϕ=s}

|∇ϕ|g dσg . (8.12)

which is defined on s ∈ [0, ϕ0], where we recall that we have set ϕ0 = π/(2
√
n− 2). Proceeding as

in the proof of Proposition 3.4, as an application of Proposition 8.2 one can prove the following
monotonicity result for Φ.

Proposition 8.3. Let (M, g0, u) be a solution to problem (1.6), let N ⊆ M \ MAX(u) be a
cylindrical region, and let Φ(s) be the function defined by (8.12), with respect to the metric g
and the pseudo-affine function ϕ defined by (8.1), (8.4). Then the function Φ(s) is monotonically
nonincreasing. Moreover, if Φ(s1) = Φ(s2) for two different values 0 ≤ s1 < s2 < ϕ0, then the
solution (M, g0, u) is isometric to a generalized Nariai triple (1.15).

From Proposition 2.7 and formula (2.14) we also know that |∇ϕ|g goes to 1 as we approach the
points where MAX(u) is an analytic hypersurface. Proceeding as in the proof of Corollary 3.5 we
obtain the following.
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Corollary 8.4. Let (M, g0, u) be a solution to problem (1.6), let N ⊆M \MAX(u) be a cylindrical

region, and let g and ϕ be defined by (8.1), (8.4). Let also ΣN = N ∩M \N be the hypersurface
separating N from the rest of the manifold M . Then

|∂N |g ≥ |ΣN |g .

Moreover, if the equality holds, then (M, g0, u) is isometric to a generalized Nariai triple (1.15).

In order to make use of Corollary 8.4, we need some information on the set MAX(u) and on the
behavior of ∇ϕ at the limit ϕ→ ϕ0. In Section 8.4 we will see how to recover some more explicit
information from Corollary 8.4 in the case where our solution is 2-sided according to Definition 4.

8.2. Integral identities. Consider the vector field Y = ∇|∇ϕ|2g + ∆gϕ∇ϕ. Starting from the
Bochner formula (8.10), we easily compute

divg(Y ) −
√
n− 2

[
1 + 3 tan2(

√
n− 2ϕ)

tan(
√
n− 2ϕ)

]
〈∇ϕ |Y 〉g = 2|∇2ϕ|2g + (∆gϕ)2 ≥ 0 .

If we introduce the function

γ =
cos3(

√
n− 2ϕ)

sin(
√
n− 2ϕ)

, (8.13)

the identity above can be rewritten as

divg(γ Y ) = γ
[
2 |∇2ϕ|2g + (∆gϕ)2

]
≥ 0 . (8.14)

As an application of the Divergence Theorem, we obtain the following result, which is the analogue
of Propositions 4.1 and 4.2.

Proposition 8.5. Let (M, g0, u) be a solution to problem (1.6), let N ⊆ M \ MAX(u) be a
cylindrical region, and let g and ϕ be defined by (8.1) and (8.4). For any 0 ≤ s < ϕ0 it holds

ˆ
∂N
|∇ϕ|g

[
Ricg(νg, νg)−

3

2
(n− 2)(1− |∇ϕ|2g)

]
dσg =

= −
√
n− 2

ˆ
N
γ

[
|∇2ϕ|2g +

1

2
(∆gϕ)2

]
≤ 0 . (8.15)

where γ is the function defined by (8.13). Moreover, if the equality
ˆ
∂N
|∇ϕ|g

[
Ricg(νg, νg)−

3

2
(n− 2)(1− |∇ϕ|2g)

]
dσg = 0 , (8.16)

holds, then the solution (M, g0, u) is covered by a generalized Nariai triple (1.15).

Proof. Let us recall from Subsection 1.1 that u is an analytic function. In particular, also ϕ is
analytic in the interior of N , hence its critical level sets are discrete. It follows that we can choose
0 < s < S < ϕ0, with s arbitrarily close to 0 and S arbitrarily close to ϕ0 such that both s and S
are regular values for ϕ. Integrating divg(γY ) on {s ≤ ϕ ≤ S} and using the Divergence Theorem
we obtainˆ

{S≤ϕ≤s}

divg(γY )dσg =

ˆ

{ϕ=S}

γ(S)
〈
Y
∣∣∣ ∇ϕ|∇ϕ|g

〉
g
dσg −

ˆ

{ϕ=s}

γ(s)
〈
Y
∣∣∣ ∇ϕ|∇ϕ|g

〉
g
dσg , (8.17)

First of all, we notice that it holds

lim
S→ϕ0

γ(S)

ˆ
{ϕ=S}

〈
Y
∣∣∣ ∇ϕ|∇ϕ|g

〉
g
dσg = 0 . (8.18)
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In fact, using formulæ (8.5), (8.6) and (8.7) to translate the integrand in terms of u, g0, we find

γ
〈
Y
∣∣∣ ∇ϕ|∇ϕ|g

〉
g

= γ

(
〈∇|∇ϕ|2g | ∇ϕ〉g

|∇ϕ|g
+ ∆gϕ |∇ϕ|g

)
= γ |∇ϕ|g

[
2∇2ϕ(νg, νg) + ∆gϕ

]
=

√
n− 2

n

√
1− u2

u
|Du|

[
2

n

(
D2u(ν, ν) +

u

1− u2
|Du|2

)
−
(

1− 1

n

|Du|2

1− u2

) ]
,

where ν = Du/|Du|, νg = ∇ϕ/|∇ϕ|g =
√

(n− 2)/n ν are the unit normals to {ϕ = S} which exist
everywhere because {ϕ = S} is a regular level set. Since |∇ϕ|2g = (1/n)|Du|2/(1 − u2) ≤ 1 by
Proposition 8.2, we deduce that the limit of the term in square bracket as S → ϕ0 (or equivalently
u→ 1) is bounded from above. Therefore, in order to prove (8.18), it is enough to show that

lim
u→1

ˆ
{u=t}

(1− u2) |Du|dσ = 0 .

But this can be done proceeding exactly as in the proof of [13, Theorem 4.4], via a simple argument
using the coarea formula and the fact that u→ 1 and |Du| → 0 (more precisely |Du|2/(1− u2) is
bounded) as u→ 1. Therefore, taking the limit as S → ϕ0 of (8.17), we deduceˆ

{ϕ=s}
γ(s)

〈
Y
∣∣∣ ∇ϕ|∇ϕ|g

〉
g
dσg = −

ˆ
{s≤ϕ<ϕ0}

divg(γY )dσg ≤ 0 , (8.19)

where in the last inequality we have used (8.14). Now we compute the integral on the left hand
side. Using the equations in (8.7), we obtain

1

tan(
√
n− 2ϕ)

〈
Y
∣∣∣ ∇ϕ|∇ϕ|g

〉
g

=
1

tan(
√
n− 2ϕ)

[
2
∇2ϕ(∇ϕ,∇ϕ)

|∇ϕ|g
+ ∆gϕ|∇ϕ|g

]
= |∇ϕ|g

[
2√
n− 2

Ricg(νg, νg) − 3
√
n− 2

(
1− |∇ϕ|2g

) ]
. (8.20)

Moreover, recalling the definition (8.13) of γ, we find

lim
s→0

[
tan(
√
n− 2ϕ) γ

]
|{ϕ=s}

= lim
s→0

[
cos2(

√
n− 2ϕ)

]
|{ϕ=s}

= 1 . (8.21)

Taking the limit of (8.19) as s → 0 and using (8.20) and (8.21), we obtain the desired inequal-
ity (8.15).

Concerning the rigidity statement, if the equality in (8.16) holds, then necessarily the right hand
side of (8.15) is null. In particular, |∇ϕ|g ≡ 1 on N . Substituting this information in the Bochner
formula (8.10) we obtain |∇2ϕ|g ≡ 0, hence we can apply Proposition 8.1 to conclude. �

8.3. Proof of the area bounds. The area bounds for cylindrical regions is proven in the exact
same way as in the outer and inner case discussed in Subsection 5.1. Namely, one compares
formula (5.1) with the gradient estimate proven in Proposition 8.2, obtaining that the scalar
curvature of ∂N is necessarily greater that or equal to the one of the sections of the Nariai solution.

Theorem 8.6. Let (M, g0, u) be a solution to problem (1.6) of dimension n ≥ 3, and let N ⊆
M \MAX(u) be a cylindrical region. Then

R∂N ≥ n(n− 1) . (8.22)

We pass now to discuss the consequences of Proposition 8.5 proved above. First of all, translating
it in terms of u and g0, we obtain the following result.

Corollary 8.7. Let (M, g0, u) be a solution to problem (1.6) and let N ⊆ M \ MAX(u) be a
cylindrical region. Then it holdsˆ

∂N
A
[
R∂N − n(n− 1) + 3n

(
1−A2

)]
dσ ≥ 0 ,
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where R∂N is the scalar curvature of the metric induced by g0 on ∂N . Moreover, if the equality
holds, then the solution (M, g0, u) is covered by a generalized Nariai triple (1.15).

Proof. It is enough to translate formula (8.15) in terms of u and g0, using the relations developed
in Subsection 8.1. In particular, let us notice that

|∇ϕ|2g =
1

n

|Du|2

1− u2
, and max

∂N
|∇ϕ|g = 1 ,

where the second identity follows from Lemma 2.2. Therefore

1

n
max
∂N
|Du|2 = 1 ,

which in turn implies |∇ϕ|2g = |Du|2/max∂N |Du|2. Since we have already observed that Ricg = Ric

and νg =
√

(n− 2)/n ν, from formula (8.15) we obtain
ˆ
∂N
|Du|

[
− 1

n
Ric(ν, ν) +

3

2

(
1− |Du|2

max∂N |Du|2

)]
dσ ≥ 0 ,

where we remark that the equality holds if and only if the solution is covered by the Nariai triple.
Using the Gauss-Codazzi equation we have 2Ric(ν, ν) = R−R∂N = n(n−1)−R∂N . Substituting

in the inequality above we easily obtain the thesis. �

In dimension n = 3, the above formula can be made more explicit using the Gauss-Bonnet
formula.

Theorem 8.8. Let (M, g0, u) be a 3-dimensional solution to problem (1.6) and let N ⊆M \MAX(u)
be a cylindrical region. Then∑p

i=0

[(
κi
κ0

)2
− 1

2

(
1−

(
κi
κ0

)2)]
κi|Si|∑p

i=0 κi
≤ 4π

3

where ∂N = S0 t · · · t Sp and κ0 ≥ · · · ≥ κp are the surface gravities of S0, . . . , Sp. Moreover, if
the equality holds then ∂N is connected and (M, g0, u) is covered by the Nariai triple (1.11).

Proof. For n = 3, the formula in Corollary 8.7 rewrites as

p∑
i=0

ˆ
Si

κi

[
RSi − 6 + 9

(
1− κ2

i

κ2
0

)]
dσ ≥ 0 .

From the Gauss-Bonnet formula, we have
´
Si

RSidσ = 4πχ(Si) for all i = 0, . . . , p. From [5,

Theorem B], we also know that each Si is diffeomorphic to a sphere, hence χ(Si) = 2. Substituting
these pieces of information inside formula above, with some manipulations we arrive to the thesis. �

In the case when ∂N is connected, the constancy of the quantity |Du| on the whole boundary
allows to obtain the following stronger results.

Corollary 8.9. Let (M, g0, u) be a solution to problem (1.6) and let N ⊆ M \ MAX(u) be a
cylindrical region. If ∂N is connected, then it holdsˆ

∂N
R∂N dσ ≥ n(n− 1)|∂N | .

Moreover, if the equality holds, then the solution (M, g0, u) is covered by a generalized Nariai
triple (1.15).

Proof. The result is an immediate consequence of Corollary 8.7 and the fact that |Du| is constant
on ∂N . �
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Theorem 8.10. Let (M, g0, u) be a 3-dimensional solution to problem (1.6) and let N ⊆ M \
MAX(u) be a cylindrical region. If ∂N is connected, then ∂N is diffeomorphic to S2 and it holds

|∂N | ≤ 4π

3
.

Moreover, if the equality holds, then the solution (M, g0, u) is covered by the Nariai triple (1.11).

Proof. Substituting n = 3 in Corollary 8.9 and using the Gauss-Bonnet formula, we immediately
obtain

4πχ(∂N) ≥ 6 |∂N | .
In particular, χ(∂N) has to be positive, hence ∂N is necessarily a sphere and we obtain the
thesis. �

We now pass to investigate the hypersurface ΣN that separates N from the rest of the manifold.
Combining the results of this section with Corollary 8.4, it is straightforward to obtain the following
area bound.

Theorem 8.11. Let (M, g0, u) be a solution to problem (1.6), let N be a cylindrical region with

smooth compact boundary ∂N . Let ΣN = N∩M \N be the possibly stratified hypersurface separating
N from the rest of the manifold M . Then

|ΣN | ≤
ˆ
∂N

R∂N

n(n− 1)
dσ , (8.23)

and, if the equality holds, then (M, g0, u) is covered by a generalized Nariai triple (1.15).

Proof. Let us study the case where N is outer, the inner case being completely analogous. From
Corollary 8.4, recalling the definitions of g, ϕ, we get(

n

n− 2

)n−1
2

|ΣN | = |ΣN |g ≤ |∂N |g =

(
n

n− 2

)n−1
2

|∂N | .

Now we conclude using Corollary 8.9. �

In particular, in dimension n = 3, applying Gauss Bonnet Theorem to the right hand side of
formula (8.23), we obtain the cylindrical case of Corollary 1.7, which we recall here for the reader’s
convenience.

Corollary 8.12. Let (M, g0, u) be a 3-dimensional solution to problem (1.6), let N ⊆M \MAX(u)

be a cylindrical region with connected boundary ∂N . Let ΣN = N ∩M \N be the possibly stratified
hypersurface separating N from the rest of the manifold M . Then

|ΣN | ≤
4π

3
. (8.24)

Moreover, if the equality holds, then (M, g0, u) is covered by a generalized Nariai triple (1.14).

8.4. Black Hole Uniqueness. In this section we will complete the proof of Theorem 1.9, started
in Theorem 7.4, by discussing the missing case m+ = mmax. To this end, on M = M+ ∪M− we
define the metric g as in (8.1), and the function ϕ as follows

ϕ =


arcsin(u)√
n− 2

, on M+ ,

π − arcsin(u)√
n− 2

, on M− .

(8.25)

The function ϕ defined here is equal to 0 on ∂M+, it is equal to ϕ0 = π/(2
√
n− 2) on Σ = M+∩M−

and is equal to ϕmax = π/
√
n− 2 on ∂M−. Moreover, it is easily checked that ϕ, g satisfy the

equations in (8.7) on M+ and M−. In particular, the elliptic inequality (8.11) holds on every
connected component of M+ and M−, and this leads to the following global estimate for the
gradient of ϕ (which is defined a priori only on M− ∪M+ and not on Σ).
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Proposition 8.13. Let (M, g0, u) be a 2-sided solution to problem (1.6) such that the virtual
masses m+ = µ(M+, g0, u), m− = µ(M−, g0, u) satisfy m+ = m− = mmax, and let g, ϕ be defined
by (8.1), (8.25). Then |∇ϕ|g ≤ 1 on the whole M \MAX(u).

Proof. The proof is an easy adjustment of the proof of Proposition 3.3. First of all, we notice that
our function ϕ satisfies formula (8.5) hence, thanks to the assumption, we have

|∇ϕ|g =
1

n
|Du|2 ≤ 1

on the whole boundary ∂M = ∂M+ t ∂M−. The thesis follows applying the Minimum Principle to
the elliptic inequality (8.11) on each connected component of M+ and M−. �

A second important remark is that the regularity of
√
umax − u implies the regularity of ϕ.

Proposition 8.14. Let (M, g0, u) be a 2-sided solution to problem (1.6), and let ϕ be defined
by (8.25). Then the function ϕ is C 3 in a neighborhood of each point in the top stratum of Σ.

Proof. From the definition of ϕ, it is clear that it is enough to show that arcsin(u) is C 3. This is
an easy exercise of analysis starting from the expansion (2.9) for u proven before. �

As an easy consequence of the above results, we obtain the following analogue of Theorem 7.2.

Theorem 8.15. Let (M, g0, u) be a 3-dimensional 2-sided solution to problem (1.6), and let
Σ ⊆ MAX(u) be the stratified hypersurface separating M+ and M−. Suppose that the virtual masses
of M+ and M− satisfy

µ(M+, g0, u) = µ(M−, g0, u) = mmax .

Then Σ is a C∞ hypersurface and it holds

H = 0 , (8.26)

h = 0 , (8.27)

RΣ = 6 , (8.28)

Ric(ν, ν) = 0 , (8.29)

where ν is the g0-unit normal to Σ pointing towards M+, H and h are the mean curvature and
second fundamental form of Σ with respect to ν, RΣ is the scalar curvature of the metric gΣ

0 induced
on Σ by g0.

Proof. This proof follows the scheme of the proof of Theorem 7.2. Define ϕ and g as in (8.25)
and (8.1), consider a point p ∈ Σ and consider a neighborhood Ω 3 p such that Σ ∩ Ω is contained
in the top stratum of Σ. From Proposition 8.14 we know that ϕ is C 3 in Ω. Therefore ∆gϕ is
continuous in Ω, thus from the second formula in (8.7) we deduce that also tan(ϕ)(1− |∇ϕ|2g) can
be extended to a continuous function along Σ ∩ Ω. We also notice that |∇ϕ|g ≤ 1 everywhere by
Proposition 8.13, whereas tan(ϕ) has positive sign on M+ and negative sign on M−. Therefore,
tan(ϕ)(1 − |∇ϕ|2g) has to change sign when passing through Σ, hence tan(ϕ)(1 − |∇ϕ|2g) = 0 on
Σ ∩ Ω. In particular, ∆gϕ = 0 and |∇ϕ|g = 1 on Σ ∩ Ω. Furthermore, |∇ϕ|g has a maximum on
Σ, hence ∇|∇ϕ|2g = 0 on Σ ∩ Ω. In particular, ∇2ϕ(νg, νg) = 〈∇ϕ | ∇|∇ϕ|2g〉g/|∇ϕ|2g = 0, where
νg = ∇ϕ/|∇ϕ|g = ∇ϕ is the g-unit normal vector field to Σ, and substituting in the first formula
in (8.7), we obtain Ricg(νg, νg) = 0 on Σ ∩ Ω. The second fundamental form hg and the mean
curvature Hg of Σ can be computed using formulæ (8.9). Since ∆gϕ = ∇2ϕ(νg, νg) = 0 on Σ ∩ Ω,
from (8.9) we deduce

Hg = 0 , (8.30)

on Σ ∩Ω. Proceeding exactly as in Proposition 7.2, one also shows that |hg| ≡ 0 and that Σ is C∞.
Moreover, from the Gauss-Codazzi equation we find

RΣ
g = Rg − 2Ricg(νg, νg)− |hg|2g + H2

g

= Rg

= 2 , (8.31)
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where in the last equality we have used from (8.8).
Translating (8.30) in terms of g0 recalling (8.9), and using the fact that |∇ϕ|2g = (1/3) |Du|2/(1−

u2) = 1 on Σ, we obtain

H = 0 , |̊h|2 = |h|2 =
1

3
|hg|2g = 0 .

Finally, noticing that RΣ
g = RΣ/3, where RΣ is the scalar curvature of the metric induced by g0 on

Σ, from identity (8.31) we obtain

m2/3
max

(
RΣ + |̊h|2

)
=

RΣ + |̊h|2

3
= RΣ

g + |hg|2g = 2 .

This concludes the proof. �

The next result follows combining Propositions 8.3, 8.15 and the results in Subsection 8.3.

Proposition 8.16. Let (M, g0, u) be a 3-dimensional 2-sided solution to problem (1.6), and let
Σ ⊆ MAX(u) be the stratified hypersurface separating M+ and M−. Suppose that the virtual masses
of M+ and M− satisfy

µ(M+, g0, u) = µ(M−, g0, u) = mmax .

Then it holds ˆ
Σ

RΣ

6
dσ = |Σ| ≤ |∂M+| .

Moreover, if the equality holds, then (M, g0, u) is isometric to the Nariai solution (1.11).

Proof. The proof is just a collection of the previous results. From (8.28), we immediately get
ˆ

Σ

RΣ

6
dσ = |Σ| .

Since µ(M+, g0, u) = mmax, we have |∇ϕ|2g = (1/3)|Du|2 ≤ 1 on ∂M+. Moreover, we recall from
the proof of Proposition 8.15 that |∇ϕ|g, where g and ϕ are defined by (8.1) and (8.4) as usual,
goes to 1 as we approach Σ. Therefore, from Corollary 8.4 we obtain

3 |Σ| = |Σ|g ≤ |∂M+|g = 3 |∂M+|

This concludes the proof of the inequality. The rigidity statement follows from the corresponding
rigidity statements in Proposition 8.3. �

If we also assume that ∂M+ is connected, then we can combine Proposition 8.16 with Corollary 8.9
and we obtain the following inequalityˆ

Σ
RΣ dσ ≤

ˆ
∂M+

R∂M+ dσ . (8.32)

Combining this inequality with the Gauss-Bonnet formula we obtain the following result, which
concludes the proof of the Black Hole Uniqueness Theorem 1.9 by addressing the cylindrical case.

Theorem 8.17. Let (M, g0, u) be a 3-dimensional 2-sided solution to problem (1.6), and let
Σ ⊆ MAX(u) be the stratified hypersurface separating M+ and M−. Let also

m+ = µ(M+, g0, u) , m− = µ(M−, g0, u)

be the virtual masses of M+ and M−. If the following conditions are satisfied

• mass compatibility m+ = m− = mmax,

• connected cylindrical horizon ∂M+ is connected,

then (M, g0, u) is isometric to the Nariai triple (1.11).
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Proof. Inequality (8.32) tells us thatˆ
Σ

RΣ dσ ≤
ˆ
∂M+

R∂M+ dσ ,

and the equality holds if and only if (M, g0, u) is isometric to the Nariai solution (1.11). Recalling
that Σ has no conical singularities as proved in Theorem 7.2, applying the Gauss-Bonnet formula
to both sides of the above inequality, we obtain

4π
k∑
i=1

χ(Σi) ≤ 4πχ(∂M+) .

We recall from Theorem 8.10 that if ∂M+ is connected then ∂M+ is diffeomorphic to a sphere,
hence we obtain

k∑
i=1

χ(Σi) ≤ 2 , (8.33)

where the equality holds if and only if the solution is isometric to the Nariai solution.
On the other hand, in dimension n = 3, formula (8.28) gives

RΣ = 6 .

In particular, again from the Gauss-Bonnet formula, it follows

k∑
i=1

χ(Σi) =
1

4π

ˆ
Σ

RΣdσ > 0 ,

but
∑k

i=1 χ(Σi) can only assume even integer values, hence
∑k

i=1 χ(Σi) ≥ 2. Therefore the equality
holds in (8.33), as wished. �
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