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Abstract 

In the last decade lots of research efforts were put in the field of immunotherapy, a relatively 

new class of treatments that boost the body’s natural defenses to fight against cancer. 

In medical research, despite growing evidence that sex (i.e., differences between men and 

women at biological level) might be a disease treatment modifier, sex-based differences in 

the presentation, progression, adverse events as well as in the prophylactic or therapeutic 

treatment of diseases were rarely analyzed and reported. 

Only in 2018, Conforti and colleagues found, for the first time, that considering patients 

affected by several types of advanced cancers, and treated with immune checkpoint 

inhibitors as monotherapy or as a combination therapy, males derive larger effect on OS 

then females do. 

The overall aim of this doctoral thesis was to extend previous (limited) knowledge on sex-

based differences in cancer immunotherapy efficacy and to further explore mechanisms at 

molecular level that regulate anticancer immune response in men and women. 

First, we investigated whether, and confirmed that, women with advanced lung cancer 

derive larger benefit than men from the combination of chemotherapy to an anti-PD-1/PD-

L1. We found also an interaction between patients’ sex and the efficacy in OS of two 

therapeutic strategies (anti-PD-1/PD-L1 alone or in combination with chemotherapy 

compared to standard chemotherapy) with opposite direction of the effect in men and 

women: men derive larger benefit than women with an anti-PD-1 treatment alone, while 

women have better survival with anti-PD-1/PD-L1 plus chemotherapy. 

Then we deeply studied the sex-based dimorphism of the response to lung cancer 

immunotherapy, conjecturing that the heterogeneity of response to different 

immunotherapeutic strategies might be due to differences in the molecular mechanisms that 

drive anticancer immune response in men and women. We observed a less efficient tumor 

recognition and infiltration by immune system in men compared to women. In particular, in 

men, we found a lower abundance of a number of immune cell types in the tumor 

microenvironment (TME), a significantly higher T-cell exclusion score, a smaller T-cell 

receptors repertoire diversity and a lower amount of ubiquitous expanded T-cell receptors. 

We found that such poorer immune infiltration of tumors in men may depend on a less 

efficient tumor neoantigens presentation to the immune-system, due to lower expression 

levels of human leukocyte antigen (HLA) class I and II molecules, higher frequency of HLA 

type I loss of heterozygosity and/or alterations in other component of the antigen 

presentation machinery. We also showed that, among the molecular pathways and biological 



 

 

 

processes most significantly enriched in the TME of women, there were many directly 

related to the anticancer immune response. Contrary, none of the gene sets found 

significantly enriched in tumors arising in men were directly related to anticancer immune 

responses. Moreover, we provided a clear example of the potential clinical implications of 

our findings, showing significant differences in the association between tumor mutational 

burden and survival benefit observed in men and women treated with anti-PD-1/PD-L1 

antibodies. 

We implemented several statistical methods to answer the different questions depending on 

the aim of each study. We used meta-analyses to combine results from several studies and 

to produce estimates of the overall sex-effect of interest. We used cox proportional hazard 

regression model to analyze survival data and, as a mean to investigate departures from 

linearity, restricted cubic splines were applied to model the relationship between continuous 

covariates and the survival outcome of interest. Several bioinformatic tools were used to 

process the data. Moreover, we implemented the Gene Set Enrichment Analysis 

methodology in the statistical software SAS with an extension to meta-analysis. 

Our results have several straightforward implications in the context of both translational and 

clinical research including the need to explore differential therapeutic approaches in men 

and women with cancers, to improve results for both. 
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Chapter 1  

Background 

 

Cancer arises from the transformation of normal cells into tumor cells in a multistage 

process that generally progresses from a pre-cancerous lesion to a malignant tumor. If the 

unregulated cellular proliferation invades other parts of the body, we observe metastases.1 

Cancer is the second leading cause of death worldwide accounting for an estimated 9.6 

million deaths in 2018. The most common types of cancer in men are cancers of the lung, 

prostate, colorectum, stomach and liver while in women are cancers of the breast, 

colorectum, lung, cervix and thyroid.1 

Most cancers, if diagnosed at an early stage, can be cured. The situation is more complex 

when the disease is already advanced since the chance of a cure is significantly reduced and 

treatments like radiotherapy, chemotherapy and surgery most of the time can only improve 

quality of life and prolong survival.2 

Cancer cells are generally unstable and proliferate evading the immune system surveillance. 

The following mechanisms may be exploited: 

• genetic changes of tumor cells that make them less visible to the immune system; 

• proteins on the surface of tumor cells that turn off immune cells; 

• changes in the normal cells around the tumor able to interfere with how the immune 

system responds to the cancer cells.3 

 

1.1 Immune-checkpoint inhibitors 

Immunotherapy is the new emerging class of treatments for certain types of cancer (also in 

advanced stages). It can be used as monotherapy or combined with other types of treatment, 

like chemotherapy or radiotherapy. Also called biotherapy or biologic therapy, it boosts the 

body’s natural defenses to fight against cancer, ideally resulting in the eradication of the 

disease.4–6 

Several types of immunotherapy are used to treat cancer, like T-cell transfer therapy, 

monoclonal antibodies, vaccines and immune system modulators. A revolutionary 

milestone in the field was the development of immune-checkpoint inhibitors (ICIs).3  
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T-cells are a type of lymphocyte that play a central role in the immune response. On the 

surface of T-cells proteins (called ‘Checkpoints’) are expressed. These proteins act as ‘Off’ 

switches and naturally prevent T-cells from attacking other healthy cells in the body.4 

ICIs strengthen the antitumor immune response by interrupting the inhibition of T-cells 

allowing the body to recognize the tumor cells and triggering the immune system to attack 

and eliminate the cancerous cells. Antibodies have been developed and tested for most of 

the inhibitory receptors and only few of them have already been approved for use in 

humans.4,7  

Immune checkpoint molecules that suppress the T-cell activity include cytotoxic T-

lymphocyte-associated antigen-4 (CTLA-4), programmed cell death protein 1 (PD-1) and 

programmed death-ligand 1 (PD-L1). 

 

CTLA-4 inhibitor therapy: CTLA-4 is a protein on the surface of T-cells and its main 

function is to regulate the amplitude of early stage T-cell activation.6 Initial T-cell activation 

involves antigen presentation by the major histocompatibility complex (MHC) molecules 

on the antigen presenting cells (APCs) to the corresponding T-cell receptor (TCR) on naïve 

T-cells. The interaction of the costimulatory T-cell receptor CD28 with the B7 ligand is 

required for full activation. T-cells lose the capacity to recognize cancer cells when CTLA-

4 attaches to protein B7 on the APC surface (T-cell exhaustion). CTLA-4 inhibitors bind 

CTLA-4 and allow the T-cells to be activated and to kill cancer cells (Figure 1.1).6,8  

Ipilimumab and Tremelimumab are CTLA-4 inhibitors.  

 

 

Figure 1.1 CTLA-4 inhibitor. The binding of B7-1/B7-2 to CTLA-4 

keeps the T-cells in the inactive state so they are not able to kill tumor 

cells in the body (left panel). Blocking the binding of B7-1/B7-2 to 

CTLA-4 with an immune checkpoint inhibitor (anti-CTLA-4 

antibody) allows the T-cells to be active and to kill tumor cells (right 

panel).5 
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PD-1 and PD-L1 inhibitor therapy: PD-1 is a protein on the surface of T-cells while PD-L1 

is a protein found on some types of cancer cells.5 The main role of PD-1 is to down-regulate 

T-cell activity in peripheral tissues to avoid autoimmunity reactions during inflammatory 

response to infection.6 When PD-1 binds PD-L1, signals that prevent phosphorylation of 

key signaling intermediates in the T-cells are generated; as a consequence, T-cells are down-

regulated and are unable to kill cancer cells. PD-1 and PD-L1 inhibitors keep PD-1 and PD-

L1 proteins from attaching to each other and this allows the T-cells activation, expansion 

and effector functions (Figure 1.2).8  

Pembrolizumab, Nivolumab and Cemiplimab are PD-1 inhibitors while Atezolizumab, 

Avelumab and Durvalumab are PD-L1 inhibitors. 

 

 

Figure 1.2 PD-1 and PD-L1 inhibitor. The binding of PD-L1 to PD-1 

keeps T-cells from killing tumor cells in the body (left panel). Blocking 

the binding of PD-L1 to PD-1 with an immune checkpoint inhibitor 

(anti-PD-L1 or anti-PD-1) allows the T-cells to kill tumor cells (right 

panel).5 

 

CTLA-4 therapies are considered ‘leaders’ of the immune checkpoint inhibitors because 

CTLA-4/B7 synapse stops potentially autoreactive T-cells at initial stage of naïve T-cells 

activation, mainly within lymph nodes. Whereas, the PD-1/PD-L1 pathway acts later 

protecting the tumor cells from T-cells attack through the PD-L1 expression. Thus, the 

PD1/PD-L1 pathway represents an adaptive immune resistance mechanism exerted by 

tumor cells in response to endogenous anti-tumor activity.8 

In 2011 the Food and Drug Administration (FDA) approved an anti-CTLA-4 (Ipilimumab) 

for the treatment of melanoma. In 2014, Nivolumab and Pembrolizumab were approved for 

the treatment of melanoma and received indications for use in other type of cancers, like 

non-small cell lung cancer (NSCLC), renal cell carcinoma, head and neck squamous cell 
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carcinoma, urothelial carcinoma and microsatellite instability-high colorectal cancer. 

Recently, Cemiplimab was approved for the treatment of metastatic cutaneous squamous 

cell carcinoma.6,9  

 

The clinical use of anti-CTLA-4 and anti-PD-1/PD-L1 therapies has extraordinarily 

increased overall survival (OS) in patients with cancer.10 Despite the potential success and 

advantages of ICIs, only a fraction of patients benefit from ICIs.4,7,9  

Failure of the ICI therapy can occur when there is a lack of anti-tumor T-cells generation, 

when there is an inadequate tumor-specific T-cells function or when a damage in the T-cell 

memory occurred.4 A crucial part of this game is played by tumor-infiltrating T-cells and, 

in many cases, the effectiveness of ICIs is limited by the lack of adequate antitumor 

immunity in the tumor microenvironment (TME) (it consists of factors extrinsic to cancer 

cells like immune and stromal cells, vasculature, extracellular matrix and cytokines that 

influence response to therapy).9–11 Analyzing the TME, three major types of scenario of 

infiltration of immune cells can be seen: immune desert, immune excluded and immune 

inflamed. Immune desert is characterized by the absence of T-cells in the TME and the lack 

of suitable T-cell priming or activation. The immune excluded phenotype exhibits the 

presence of multiple chemokines, vascular factors or mediators and stromal-based 

inhibition; however, accumulated T-cells are unable to infiltrate the TME. Immune inflamed 

tumors demonstrate infiltration of multiple immune cell subtypes, recruited to help them 

shield from attack by the immune system.7,8,11  

Moreover, patients undergoing ICI treatment might develop, at some point in time, an innate 

and adaptive resistance to immunotherapy restricting its effectiveness.4,9 They might also 

develop severe immune-related adverse events because of the immunologic hyper-

activation of normal tissues.7  

Therefore, the development of predictive biomarkers is critical for differentiating responders 

and non-responders, to avoid any adverse effects, and to identify subgroups of patients that 

can potentially derive the greatest benefit from ICI treatment.4,7,12  

PD-L1 immunohistochemistry, T-cell infiltration levels, T-cell receptor clonality, gene 

expression signatures, and peripheral blood markers have been correlated with clinical 

response.13 Additionally, in small cohorts of melanoma patients treated with anti-CTLA-4 

and in NSCLC, melanoma, and bladder cancer patients treated with PD-1/PD-L1 inhibitors, 

an association between high mutational load, measured by tumor mutational burden (TMB), 

and clinical benefit was observed.13 However, tumors with similar TMB can have very 
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different response to ICI so additional mechanisms are under play and should be 

investigated.9 

 

1.2 Sex-based differences in response to immune-checkpoint inhibitors 

In medical research, despite growing evidence that sex (i.e., differences between men and 

women at biological level) might be a disease treatment modifier, sex-based differences in 

the presentation, progression, adverse events as well as in the prophylactic or therapeutic 

treatment of diseases were rarely analyzed and reported.14 

This is an inheritance from decades of inadequate representation of females in biomedical 

and clinical studies that began in 1977 when the U.S. FDA recommended to exclude females 

of childbearing age from clinical trials of drugs. Clearly this decision was taken to protect 

pregnant females and their fetuses from adverse outcomes but, as an obvious consequence, 

now there is a medical and social need to understand how drugs work in the overall 

population, which includes females. Only in the early 1990s, the FDA and the National 

Institute for Health in the USA recommended the inclusion of female subjects in clinical 

trials. Although females are now included in clinical trials, analyses of whether outcomes 

differ between females and males and whether there are different mechanisms mediating the 

difference are still inadequate.14 

Sex is an important factor in the pathogenesis and prognosis of many diseases including 

cancers (outside the reproductive tract) and can modulate pharmacokinetics, 

pharmacodynamics, and toxicities of drugs.15  

Throughout the life course, males have a higher risk of malignancies and two-times higher 

risk of mortality from cancers than females (greatest differences observed for larynx, 

esophagus, bladder, and lung cancers).14 

Sex affects also innate and adaptive immune response. In fact, on average, women mount 

stronger innate and adaptive immune responses than men do, clearing more rapidly 

pathogens on one side, and developing more systemic autoimmune diseases on the other 

side (roughly 80% of patients with systemic autoimmune diseases are women). At the 

cellular level, sex-based differences in innate and adaptive immune response were reported 

in previous studies, and this probably reflects complex interactions between genes, 

hormones, the environment, and commensal microbiome composition.14–16  

The X chromosome contains a large number of immune-related genes that code for proteins 

involved in the regulation of innate and adaptive immunity. Immune-related genes encoded 
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on the X chromosome may escape X inactivation, resulting in higher expression levels in 

women than men.14  

Also, sex hormones modulate the development and function of multiple immune-cell 

populations and proteins, like PD-1 and PD-L1, and constitute another major determinant 

of sex differences in immunity.16–19 

Moreover, sex-related differences have been described also in the composition and amount 

of intratumoral immune infiltrates as well as in tumor expression levels of PD-L1 across a 

large spectrum of tumors.20,21 It has been shown that an intratumoral immune infiltrate, 

enriched of CD8+ T-cells expressing high levels of CTLA-4 and PD-1, strongly correlates 

with higher response to anti-PD-1 monotherapy. Additionally, tumors of male patients with 

melanoma had a statistically significantly larger proportion of these immune infiltrate cells 

compared with those of women’ tumors.21  

 

Despite the growing acknowledged sex-related dimorphism in immune system response, 

little is known about the effect of patients’ sex on the efficacy of different regimens of ICI 

as cancer treatment. 

In 2017, Botticelli et al.22 performed a meta-analysis on phase II and III randomized 

controlled trials (RCTs) in order to determine sex-differential effects of anti-CTLA-4, anti-

PD-1 and anti-PD-L1 treatment in cancer patients. They analyzed nine trials with available 

information on OS and six trials on progression-free survival (PFS). They observed a benefit 

in OS for males treated with anti-CTLA-4 compared to females (male OS-HR 0.65, 95% CI 

0.55 to 0.77 vs female OS-HR 0.79, 95% CI 0.65 to 0.96, p-value=0.08), while no relevant 

results were observed with anti-PD-1 treatment, neither for OS nor for PFS.  

Later in 2018, Conforti and colleagues23 hypothesized that male patients could derive a 

larger relative benefit from ICIs than female patients, and they published a systematic 

review and meta-analysis to assess the heterogeneity of ICI efficacy on different solid 

tumors. They found, for the first time, that male patients affected by several types of 

advanced cancers, and treated with ICIs as monotherapy or as a combination therapy (anti-

CTLA-4 plus anti-PD-1 antibodies), had a significantly reduced risk of death compared with 

men in control groups (pooled OS-hazard ratio (HR) 0.72, 95% confidence interval (CI) 

0.65 to 0.79), while in females the benefit obtained with immune checkpoint inhibitors 

compared with control groups was smaller (pooled OS-HR 0.86, 95% CI 0.79 to 0.93; 

interaction p-value=0.002).23  
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However in 2019, Wallis et al.24 reproduced the meta-analysis of Conforti et al.23 adding 

seven recently published RCTs and reported similar efficacy of cancer immunotherapy in 

men and women. 

 

To strengthen the results of Conforti et al.23, we showed with a preliminary ‘exercise’ in this 

field (Study I)25, that tumors categorized in four groups based on both TMB and T-cell 

inflamed GEP (a gene expression signature of 18 genes) of patients treated with 

Pembrolizumab as monotherapy were differently distributed in males and females. The four 

groups were defined as follows: GEP low and TMB low, GEP low and TMB high, GEP 

high and TMB low, GEP high and TMB high. In particular, we re-analyzed patient-level 

data publicly available from Cristescu et al.26 according with patients’ sex and found that, 

in the entire patient population, the percentage of tumors with low levels of both TMB and 

GEP score (a condition that strongly predicts the absence of response to Pembrolizumab) 

was nearly double in women as compared with men (29% in women versus 15% in men, 

prevalence ratio 1.9, 95% CI 1.22 to 2.96; Figure 1.3). By contrast, the percentage of tumors 

characterized by high TMB and high GEP score (associated with a high probability of 

response to Pembrolizumab) was almost halved in women compared with men (26% in 

women versus 42% in men, prevalence ratio 0.61, 95% CI 0.43 to 0.88). We observed these 

differences in all the three independent cohorts of patients analyzed in the original 

publication (i.e., melanoma, head and neck squamous cell carcinoma and the pancancer 

cohort, that includes 20 different cancer types). Results remained stable after controlling for 

age and tumor histotype in a logistic multivariable model (p-value=0.03). 

Given the limited and contrasting literature available, further studies are needed to deeply 

evaluate the role of sex in cancer immunotherapy efficacy. 
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Figure 1.3 Tumors distribution among the four biomarker-defined groups according 

with patients’ sex25 
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Chapter 2 

Hypotheses and Aims 

 

2.1 Hypotheses 

Sex dimorphism of the immune system is complex. On average, women mount stronger 

immune response then men.27 Potential consequences of this are the following: 

• the risk of mortality from cancer might be lower in women;14 

• tumors in women might develop a more intense immune-editing process to become 

metastatic and this could make advanced female tumors less immunogenic and 

enriched with stronger mechanisms of immune escape;23 

• women could become more resistant to immunotherapies and develop more ICI-

related adverse events.12,23 

 

First, following Conforti et al.23, we hypothesized that women could derive larger benefit 

than men from strategies other than therapy with ICI alone. The reason underlying the 

investigation of sex-based efficacy of ICI plus chemotherapy strategies compared to ICI 

alone was that chemotherapy can increase the mutational load of tumors and, consequently, 

the immunogenicity of tumor cells. The already strong immune environment of the female 

body can then eliminate these tumors with high antigenicity more efficiently than the male 

body.27 

On the basis of the results of the previous work, we designed the second study conjecturing 

that the heterogeneity of response to different immunotherapy strategies might be due to 

differences in the molecular mechanisms that drive anticancer immune response in men and 

women. We hypothesized sex-based differences in cell type composition of the immune 

infiltrate and expression levels of immune checkpoint molecules in the TME, as well as sex-

based differences in the mechanisms of immune evasion. 

 

3.2 Aims 

The overall aim of this doctoral thesis was to extend previous (limited) knowledge about 

sex-based differences in cancer immunotherapy efficacy and to further explore mechanisms 

at molecular level that regulate anticancer immune response in men and women. 

More specifically the aims were:  
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• to investigate, through meta-analysis on published data, the interaction between the 

efficacy of anti-PD-1/PD-L1 combined with chemotherapy (compared to standard 

chemotherapy) and patients’ sex (Study II); 

• to assess, through meta-analysis on published data, the interaction between the 

efficacy of anti-PD-1/PD-L1 given alone or combined with chemotherapy 

(compared to standard chemotherapy) and patients’ sex (Study II); 

• to study, through meta-analysis of public database on genetic patient-level data, sex-

based differences in key elements of anticancer immune response (Study III); 

• to develop and implement a new statistical method to perform meta-analysis of gene 

set enrichment analysis (GSEA) data (Study III). 

 

All the analyses were based on patients with lung cancer due to the great availability of 

RCTs publications and publicly available patient-level data. 
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Chapter 3 

Statistical methods 

 

3.1 Meta-analysis 

During the review process, the quantitative analysis of the data extracted from each study is 

called ‘meta-analysis’. 

A meta-analysis28,29 combines results from several studies to produce an estimate of the 

overall, or average, effect of interest. The overall estimate is a weighted mean of the 

estimated effects from all the studies, with weights generally equal to the inverse of the 

variance of each estimate. Artificially increasing the number of patients included, a meta-

analysis has a higher study power and precision compared with those of the original studies.  

In case of no evidence of statistical heterogeneity, a fixed-effects model can be fitted. This 

model assumes that the true effect of interest is the same in each study, so that all included 

studies come from the same population, and variations observed are solely due to sampling 

errors. This is hardly ever the case since studies are not conducted according to a standard 

common protocol and there will be always variations in patients’ groups, clinical setting, 

methods of delivery of treatments/interventions, etc. Thus, we cannot assume that all studies 

come from the same ‘population’ of studies and a random-effects model becomes a better 

choice.  

The random-effects model not only assumes that the effects of the individual studies deviate 

from the true effect due to sampling errors (within-study variability), but that there is another 

source of variability introduced by the fact that the studies do not stem from one single 

population, but are drawn from a ‘universe’ of different populations (between-study 

variability). In a random-effects model the variance of the average effect of interest 

incorporates both the within- and the between-study variability and therefore the standard 

error of the estimate is greater, the confidence interval for the true average effect wider and 

its p-value larger, than the comparable quantities obtained from a fixed-effects model.  

 

In a fixed-effects model, the pooled estimate 𝜃𝐼𝑉 is equal to: 

𝜃𝐼𝑉 =
∑ 𝜔𝑖𝜃𝑖

𝑘
𝑖=1

∑ 𝜔𝑖
𝑘
𝑖=1

 

 

with 𝜃𝑖 the parameter of interest in each study (𝑖 = 1, … , 𝑘). 
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In case of the most common ‘inverse variance method’, weights are the following: 

𝜔𝑖 =
1

𝑆𝐸(𝜃𝑖)2
 

The standard error of 𝜃𝐼𝑉 is given by: 

𝑆𝐸(𝜃𝐼𝑉) =
1

√∑ 𝜔𝑖
𝑘
𝑖=1

 

 

The Q statistic, which investigates whether the variation in the individual effects is 

compatible with a hypothesis of chance alone, is used to perform the test for heterogeneity. 

It follows a Chi-square distribution with (𝑘 − 1) degrees of freedom and it is equal to:  

𝑄 = ∑ 𝜔𝑖(𝜃𝑖 − 𝜃𝐼𝑉)2

𝑘

𝑖=1

 

 

Under a random-effects model, 𝜃𝑖 is assumed to follow a Normal distribution with mean 𝜃 

and variance 𝜏2. According to DerSimonian and Laird30, 𝜏2 has the following equation: 

𝜏2 =  
𝑄 − (𝑘 − 1)

∑ 𝜔𝑖
𝑘
𝑖=1 − (

∑ 𝜔𝑖
2𝑘

𝑖=1

∑ 𝜔𝑖
𝑘
𝑖=1

)

 

 

Once the between-study variability 𝜏2 is calculated, it is possible to estimate new weights 

and summary measures: 

𝜔𝑖
′ =

1

𝑆𝐸(𝜃𝑖)2 + 𝜏2
 

𝜃𝐼𝑉 =
∑ 𝜔𝑖

′𝜃𝑖
𝑘
𝑖=1

∑ 𝜔𝑖
′𝑘

𝑖=1

 

𝑆𝐸(𝜃𝐼𝑉) =
1

√∑ 𝜔𝑖
′𝑘

𝑖=1

 

 

Note that when 𝜏2 = 0, weights reduce to those given in a fixed-effects model (𝜔𝑖
′ = 𝜔𝑖). 

 

The 100(1 − 𝛼)% confidence interval for the overall estimate 𝜃𝐼𝑉 is given by the equation: 

{𝜃𝐼𝑉 − (𝑧
1−

𝛼
2

× 𝑆𝐸(𝜃𝐼𝑉))  ;   𝜃𝐼𝑉 + (𝑧
1−

𝛼
2

× 𝑆𝐸(𝜃𝐼𝑉))}  
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Finally, another measure of interest is the percentage of the total variation across studies due 

to heterogeneity: 

𝐼2 = 100 ×
[𝑄 − (𝑘 − 1)]

𝑄
 

 

It takes values from 0% to 100%, with a value of 0% indicating no observed heterogeneity. 

 

3.2 Meta-analysis of treatment effect in subgroups (analysis of 

interaction) 

Single studies are typically underpowered to explore whether the treatment effect differs 

between groups of participants and the only way to reliably detect interactions is often 

through meta-analysis. The analysis of the interaction between the treatment effect and a 

covariate of interest in a meta-analytical context raises additional complications compared 

to the ones faced by standard meta-analysis. These complications are often overlooked by 

reviewers.31 

Suppose we are interested in the analysis of the interaction between the treatment effect and 

the participants’ sex. The research question is: dose the effect of the experimental treatment 

compared to the effect of the control treatment differ between females and males? 

The easiest way to answer this question might be, first, to estimate the meta-analytical 

treatment effect separately in female and male patients and then to compare the two meta-

analytical estimates with a classical test of heterogeneity. Despite being powerful, this 

approach is prone to ecological bias since the variations of the treatment effect in the 

subgroups at the participant level (within-study interaction) could be exaggerated or masked 

by the across-trial interaction.31  

To avoid the risk of ecological bias, the best approach should be, first, to assess the 

interaction of interest within each relevant trial and then to combine the single studies 

interactions using standard meta-analytical techniques. Despite losing power compared to 

the previous method (studies that contributes to only one subgroup are not included) this is 

the solely approach to study interaction avoiding the risk of ecological bias.31 

 

3.3 Cox Proportional Hazard Regression Model 

The Cox Proportional Hazard (PH) Model32 is the most common regression method for 

analyzing survival data. The Cox model is a semi-parametric model and has the form: 
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ℎ(𝑡) = ℎ0(𝑡)exp(𝑋𝑖𝛽) 

 

where 𝑡 is the survival time, ℎ(𝑡) is the hazard function, 𝑋𝑖 are the covariates and 𝛽 their 

estimated coefficients.  

The term ℎ0(𝑡) is the baseline hazard and it corresponds to the value of the hazard when all 

the 𝑋𝑖 are equal to zero. The model is semi-parametric since no assumptions about the shape 

of the baseline hazard function are made. 

The focus of the model is on the hazard ℎ(𝑡), that can be interpreted as the instantaneous 

risk of experiencing the event of interest at time 𝑡. Formally, it is the conditional probability 

of the event of interest to occur in the interval [𝑡, 𝑡 + 𝑑𝑡), given that it has not yet occurred. 

The measure of association between the exposure and the outcome is given by the HR, 

defined as the hazard in the exposed, divided by the hazard in the unexposed. It simply 

corresponds to exp(𝛽) for a given covariate. Values of HR>1 indicate covariates positively 

associated with the event probability, values of HR<1 indicate covariates whose exposure 

reduce the hazard of event, while HR=1 indicates no association between the exposure and 

the outcome. 

The strongest assumption of the model is the proportionality of the hazards which means 

that the effects of the predictor variables upon survival are constant over time. The hazards 

may vary over time, but their ratio is supposed to be the same at all time points. The 

underlying PH assumption can be tested with both graphical and formal methods (e.g., using 

Schoenfeld residuals’ test) and extensions of the traditional Cox model are available in case 

of departures from proportionality. 

 

3.4 Restricted Cubic Splines 

Including a continuous variable as a predictor in a regression model is not straightforward.  

The simplest, and often reasonable, relationship we can think of, between a continuous 

variable and an outcome, is the linear one. The problem is that if the assumption of linearity 

does not hold, the model will be misspecified.  

A naïve solution is to divide the continuous variable into categories. This is very attractive 

from a decision-making point of view, but the effect of the predictor is forced to be flat 

within each category and, if the model is used for prediction, the predictive power of the 

variable is reduced. Possible alternatives are (i) to include the predictor as a continuous 

variable finding a transformation that produces a linear relationship, (ii) to use quadratic or 
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cubic polynomials to model the relationship, or (iii) to use splines or fractional 

polynomials.33 

A spline function is a smoothly joined piecewise polynomial of degree 𝑛. The term 

‘piecewise’ means that the range of values of the predictor is subdivided using a set of knots 

and separate regression lines or curves (‘polynomial’) are fitted between the knots. 

‘Smoothly joined’ means that the function has the constraint to be continuous, with 

continuous derivative, at the join points (knots). The researcher has to choose both the 

number and position of knots and the degree of polynomials to be used between the knots.34 

 

 

Figure 3.1 Example of a restricted cubic spline35 

 

Cubic splines are frequently used since they are really flexible for fitting data, visually 

smooth, and include fewer constants for fit than higher degree splines do. Restricted cubic 

splines (RCS) are a particular type of cubic spline with the additional constraint to be linear 

in the tails (Figure 3.1) and are represented by the following equation34: 

 

𝑆(𝑥) = 𝛽00 + 𝛽01𝑥 + ∑ 𝛽𝑖3 [(𝑥 − 𝑡𝑖)+
3 −

(𝑥 − 𝑡𝐾−1)+
3 × (𝑡𝐾 − 𝑡𝑖)

𝑡𝐾 − 𝑡𝐾−1

+
(𝑥 − 𝑡𝐾)+

3 × (𝑡𝐾−1 − 𝑡𝑖)

𝑡𝐾 − 𝑡𝐾−1

]

𝐾−2

𝑖=1

 

 

where 𝑖 = 1, … , 𝐾 is the number of nodes, (𝑥 − 𝑡𝑖)+
3  is equal to (𝑥 − 𝑡𝑖)3 if (𝑥 − 𝑡𝑖) > 0 

and equal to 0 if (𝑥 − 𝑡𝑖) ≤ 0. 

 

Modelling the effect of a predictor using splines simply involves the introduction into the 

(linear, logistic, Cox, etc.) model of new variables. To evaluate the significance of the non-

linearity of the relationship between the predictor of interest and the outcome, we can simply 

compare, using a likelihood ratio test (LRT), the log-likelihood for a model with the spline 

variable to the log-likelihood for a model with only a linear effect of the covariate.34 
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3.5 Gene Set Enrichment Analysis 

In 2005, Subramanian et al.36 developed a method called Gene Set Enrichment Analysis 

(GSEA) to evaluate microarray data at the level of gene set and to determine whether the 

gene set(s) analyzed is(are) correlated with the phenotypic class of interest (e.g., normal 

samples vs tumor samples, females vs males, etc.). The identification of the enriched gene 

set(s) can provide crucial information of molecular functions and mechanisms underlying 

different diseases. It directly answers the question whether a certain pathway is activated in 

a given tissue, under some phenotypic condition of interest, and whether the pathway is 

more active than other pathways.37  

A gene set is an a priori collection of genes, defined on the basis of biological knowledge, 

encoding products in a metabolic pathway or located in the same cytogenetic band or sharing 

the same gene ontology (GO) category.36 

 

The original methodology proposed by Subramanian et al.36 requires the following input 

information: 

• an expression dataset D with N genes (rows) and k samples (columns); 

• a correlation/ranking metric between the expression level of N genes and the 

phenotype of interest (e.g., T-test statistic, signal-to-noise ratio, etc.); 

• an exponent value p to control the weight of the step; 

• a selected gene set S composed of 𝑁𝐻 genes. 

 

The Enrichment Score (ES) reflects the degree to which the set of genes in S is 

overexpressed at the extremes (top or bottom) of the entire ranked list L, built on the basis 

of the chosen correlation metric. The score is calculated by walking down the list L, 

increasing a running-sum statistic when it is encountered a gene in S and decreasing it when 

genes not in S are encountered. The magnitude of the increment depends on the correlation 

of the gene with the phenotype. So, genes with very low correlations do not contribute so 

much to the enrichment score of the set.36 
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More specifically, as described in Subramanian et al.36, the ES is calculated as follows: 

 

1) Order the N genes in D according to the correlation/ranking metric [𝑟𝑖 = 𝑟(𝑔𝑖)] of 

the individual gene 𝑔𝑖 with the phenotype, to form the ranked list 𝐿 = {𝑔1, … , 𝑔𝑁}, 

with 𝑖 = 1, … , 𝑁 number of genes. 

2) Evaluate the fraction of genes in S (‘hit’) weighted by their correlation and the 

fraction of genes not in S (‘miss’) present up to a given position 𝑖 in L: 

 

𝑃ℎ𝑖𝑡(𝑆, 𝑖) = ∑
|𝑟𝑗|𝑝

𝑁𝑅𝑔𝑗∈𝑆

𝑗≤𝑖

, where 𝑁𝑅 = ∑ |𝑟𝑗|𝑝

𝑔𝑗∈𝑆

 

𝑃𝑚𝑖𝑠𝑠(𝑆, 𝑖) = ∑
1

(𝑁 − 𝑁𝐻)
𝑔𝑗∉𝑆

𝑗≤𝑖

 

 

The ES for the gene set S [ES(S)] will be the maximum deviation from zero of 𝑃ℎ𝑖𝑡 − 𝑃𝑚𝑖𝑠𝑠. 

 

The test is a Kolmogorov-Smirnov-like statistic. For randomly distributed genes of S, ES(S) 

will be relatively small, but if genes of S are concentrated at the top or bottom of the list L, 

or otherwise are non-randomly distributed, then ES(S) will be correspondingly high. 

The choice of the exponent value p determines the influence of the single genes on the score. 

When 𝑝 = 0 an unweighted statistic is obtained, when 𝑝 = 1 genes in S are only weighted 

by their absolute value of correlation with the phenotype. The suggestion is to use 𝑝 < 1 in 

order to penalize a lack of coherence in a set and 𝑝 > 1 if the correlation of a small subset 

of S with the phenotype is sufficient to call a set enriched. Subramanian et al. recommended 

to always use 𝑝 = 1 since other settings should be used only by deeply experienced 

researchers. 

 

The statistical significance of the ES(S) is calculated by using an empirical phenotype-based 

permutation test procedure. Specifically, the phenotype labels are permuted for a selected 

number of times (e.g., 1000 times) and the ES of the gene set is recomputed on the permuted 

data, generating a null distribution of the ES. The nominal p-value for S is then calculated 

using the positive or negative portion of the empirical null distribution on the basis of the 

sign of the observed ES(S).    
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When an entire dataset of gene sets is evaluated, the adjustment for multiple hypothesis 

testing should be performed with the following procedure: 

1) Determine ES(S) for each gene set in the database; 

2) For each S and 1000 fixed permutation (𝜋) of the phenotype labels, recalculate the 

correlation metric, reorder the genes in L and determine ES(S, 𝜋); 

3) Normalize the ES(S, 𝜋) and the observed ES(S), separately rescaling the positive 

and the negative scores by dividing by the mean of the positive ES(S, 𝜋) and by the 

mean of the negative ES(S, 𝜋), respectively, to yield the normalized enrichment 

scores NES(S, 𝜋) and NES(S); 

4) Estimate a global nominal p-value for each NES(S) by the percentage of all (S, 𝜋) 

with NES(S, 𝜋)≥NES(S); 

5) Compute the false discovery rate (FDR) to control the ratio of false positives to the 

total number of gene sets analyzed. 

 

3.6 Meta-analysis of Gene Set Enrichment Analysis data 

GSEA has become a standard practice and there are many websites and downloadable 

programs that will provide public datasets and through which it is possible to run the analysis 

(e.g., GSEA software proposed by the Broad Institute in cooperation with the Molecular 

Signatures Database (MSigDB) https://www.gsea-msigdb.org/gsea/index.jsp). 

In the last decades, we have witnessed an explosion of gene expression profiling studies 

with publicly available data. However, these studies present with a lot of noisy data, and 

with small sample sizes (relative to an overwhelming number of genes) that often implies 

results with inconsistent biological conclusions, even among independent studies targeting 

the same disease or biological problem. Focusing on a single dataset, as considered in 

Subramanian et al.36, we cannot make full utilization of the rich amount of public expression 

data available. Thus, the idea of meta-analysis was applied also in this context to synthesize 

multiple microarray studies increasing the robustness and reliability of results.38–40  

Multiple methodological approaches for meta-analysis of GSEA data have been proposed.  

In 2010, Shen and Tseng38 proposed two approaches of meta-analysis for pathway 

enrichment (MAPE) by combining statistical significance across studies at the gene level 

(MAPE_G) or at the pathway level (MAPE_P). In MAPE_G, first the association scores 

with phenotype are calculated in each study, then a meta-analysis on the association scores 

at gene level is performed, and finally the gene set enrichment analysis is applied and the 

corresponding Q-values for FDR correction are generated. The framework of MAPE_P is 

https://www.gsea-msigdb.org/gsea/index.jsp
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identical to MAPE_G in the first step. Then, the gene set enrichment analysis is applied in 

each individual study and a meta-analysis at the gene set level is performed to derive a 

combined ES with the corresponding Q-value. Both for MAPE_G and MAPE_P, the authors 

have foreseen to perform the permutation tests using gene permutation or phenotype 

permutation: the first takes the background information into consideration while destroys 

the gene correlation structure in the data, the second preserves the gene correlation structures 

while ignores the background information.38  

Later in 2013, Chen et al.39 proposed a Bayesian model to improve the detection of enriched 

gene sets, simultaneously modelling gene set information and original gene expression data 

from multiple studies. The computational characteristics of the method becomes excellent 

when the number of genes or gene sets gets large. However, detecting the convergence of 

Markov chains and selecting the starting points for parameters may require a great human 

effort. 

In 2018 Lu et al.40 focused on the development of a new method for meta-analysis of GSEA 

data, called the integrative GSEA (iGSEA). This method extended meta-analysis 

approaches developed for genome-wide association studies, based on fixed-effects and 

random-effects models, to integrate gene set analyses from multiple studies. They proposed 

a hybrid strategy based on adaptive testing for choosing either random-effects or fixed-

effects model to achieve efficiency and stability in performance. 

 

All the above methods can be implemented using packages in R software. We made some 

attempts to use them but, unfortunately, we found results difficult to interpret and/or 

unreliable. In addition, in case of problems with the R code, we found difficulties in 

modifying it. Thus, we decided to develop and implement an ‘in-house’ approach using the 

statistical software SAS over which we have full control. 

 

In case of a binary phenotype label, we followed the steps listed below: 

 

1) For each dataset 𝑘 (𝑘 = 1, … , 𝐾), calculate the correlation/ranking metric [𝑟𝑖𝑘 =

𝑟(𝑔𝑖𝑘)] of the individual gene 𝑔𝑖𝑘 of dataset 𝑘 with the phenotype of interest (𝑖 =

1, … , 𝑁 genes). Consider T-test statistic for a binary phenotype label. 

2) Apply a random-effects model to estimate the overall strength of the association 

between gene 𝑔𝑖 expression and the phenotype: 

�̂�𝑖 =
∑ 𝜔𝑖𝑘

′ 𝑟𝑖𝑘
𝐾
𝑘=1

∑ 𝜔𝑖𝑘
′𝐾

𝑘=1
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with 𝜔𝑖𝑘
′  calculated as described in the paragraph 3.1 

3) Order the 𝑁 genes according to the meta-analyzed correlation/ranking metric �̂�𝑖 to 

form the ranked list 𝐿 = {𝑔1, … , 𝑔𝑁}. 

4) Evaluate the fraction of genes in S (‘hit’) weighted by their correlation and the 

fraction of genes not in S (‘miss’) present up to a given position 𝑖 in L: 

 

𝑃ℎ𝑖𝑡(𝑆, 𝑖) = ∑
|�̂�𝑗|𝑝

𝑁𝑅𝑔𝑗∈𝑆

𝑗≤𝑖

, where 𝑁𝑅 = ∑ |�̂�𝑗|𝑝

𝑔𝑗∈𝑆

 

𝑃𝑚𝑖𝑠𝑠(𝑆, 𝑖) = ∑
1

(𝑁 − 𝑁𝐻)
𝑔𝑗∉𝑆

𝑗≤𝑖

 

 

The ES for the gene set S [ES(S)] will be the maximum deviation from zero of 𝑃ℎ𝑖𝑡 − 𝑃𝑚𝑖𝑠𝑠. 

When an entire dataset of gene sets is evaluated, adjustment for multiple hypothesis testing 

should be performed.  

We applied the following procedure: 

1) Determine ES(S) for each gene set in the database; 

2) For each S and 1000 fixed permutation (𝜋) of the gene labels, determine ES(S, 𝜋); 

3) Normalize the ES(S, 𝜋) and the observed ES(S), separately rescaling the positive 

and the negative scores by dividing by the mean of the positive ES(S, 𝜋) and by the 

mean of the negative ES(S, 𝜋), respectively, to yield the normalized enrichment 

scores NES(S, 𝜋) and NES(S); 

4) Estimate a global nominal p-value for each NES(S) by the percentage of all (S, 𝜋) 

with NES(S, 𝜋)≥NES(S); 

5) Compute the FDR to control the ratio of false positives to the total number of gene 

sets analyzed. 

 

In comparison to the original methodology proposed by Subramanian et al.36 (i) we modified 

the initial steps of GSEA ordering the N genes on the basis of the meta-analyzed T-test 

statistics instead of simple T-test statistics and (ii) we permuted gene labels instead of 

phenotype labels, both following Shen and Tseng’s38 MAPE_G method. 

Different studies may have different numbers of genes and genes cannot be matched across 

studies. In case of genes present in only one dataset, we proposed not to eliminate the genes, 
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but to use for those genes a simple (not meta-analyzed) correlation metric like simple T-test 

instead. 
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Chapter 4 

Sex-based heterogeneity in response to lung 

cancer immunotherapy  

 

This chapter is related to study II: 

Conforti F, Pala L, Bagnardi V, Viale G, De Pas T, Pagan E, Pennacchioli E, Cocorocchio 

E, Ferrucci PF, De Marinis F, Gelber RD, Goldhirsch A. Sex-Based Heterogeneity in 

Response to Lung Cancer Immunotherapy: A Systematic Review and Meta-Analysis.  

J Natl Cancer Inst. 2019;111(8):772-781. doi:10.1093/jnci/djz094 

 

4.1 Materials 

Data sources and searches 

Two systematic reviews on all phase II and III RCTs testing the combination of anti-PD-

1/PD-L1 inhibitors alone or with chemotherapy in patients with advanced lung cancer were 

conducted. 

We searched articles in PubMed, MEDLINE, Embase from the inception of each database 

to October 22, 2018. We also reviewed abstracts and presentations from all major 

conference proceedings, including the American Society of Clinical Oncology, the 

International Association for the Study of Lung Cancer, and the European Society for 

Medical Oncology, from January 1, 2010, to October 22, 2018. We also reviewed the 

references of articles included in the final selection. 

The search terms were ‘PD-1’, ‘programmed death receptor 1’, ‘PD-L1’, ‘programmed 

death ligand 1’, ‘nivolumab’, ‘pembrolizumab’, ‘avelumab’, ‘durvalumab’, ‘atezolizumab.’ 

A first systematic review (and meta-analysis) was conducted on all RCTs testing the 

combination of anti-PD-1/PD-L1 inhibitors plus chemotherapy. The following inclusion 

criteria were used: 1) RCTs testing the combination of an anti-PD-1/PD-L1 with 

chemotherapy against chemotherapy, and 2) data available on HR for PFS and/or OS, 

according to patients’ sex subgroup. 

A second systematic review (and meta-analysis) considered all RCTs testing anti-PD-1/PD-

L1 given either alone or combined with chemotherapy, as first-line systemic treatment for 

patients with advanced NSCLC. The following inclusion criteria were used: 1) RCT testing 

an anti-PD-1 or anti-PD-L1 given either alone or combined with chemotherapy, against 
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chemotherapy alone, as first-line systemic treatment for patients with advanced NSCLC; 

and 2) data available on HR for OS, according to patients’ sex subgroup. 

 

Study selection and data extraction 

The list of retrieved articles was reviewed to choose potentially relevant articles, and 

disagreements were discussed and resolved with the consensus of all investigators. 

From each study, the following data were extracted: name of study, first author and year of 

publication, study design and blinding, study phase, number of patients, age distribution, 

sex distribution, patients’ smoking status distribution, patients’ performance status 

distribution, patients’ histotype, type of ICI used, HRs for PFS and/or OS in the overall 

population, and HRs according to patients’ sex. We included only the most recent and 

complete report of controlled trials when duplicate publications were identified. 

 

Risk of bias assessment 

The methodological quality of studies was assessed by using the six-point Jadad ranking 

system, which evaluates quality of randomization, double-blinding, and the flow of patients 

(withdrawals and dropouts).41 A clinical trial could receive a Jadad score ranging between 

zero (poor methodological quality) and five (optimal methodological quality). 

 

4.2 Methods 

We assessed both the interaction between the efficacy of anti-PD-1/PD-L1 combined with 

chemotherapy and patients’ sex (first meta-analysis) and the interaction between the efficacy 

of anti-PD-1/PD-L1 given alone or combined with chemotherapy and patients’ sex (second 

meta-analysis). 

As far as the first meta-analysis is concerned, the primary endpoint was the difference in 

efficacy of the combination of an anti-PD-1 or anti-PD-L1 with chemotherapy between men 

and women, measured in terms of the ratio of the HR for progression or death in the 

intervention arm compared with those in the control arm reported in men, to the same HR 

reported in women. 

The HRs for progression or death in the intervention arm compared with those in the control 

arm, along with their 95% CI, were derived from each included study, separately for male 

and female patients. HRs and CIs were translated into log-hazard ratios and the 

corresponding variances. The pooled HR of progression or death was calculated in men and 

women, using a random-effects model. Each study log(HR) was weighted by the inverse of 
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its within-study variance plus the between-study variance component 𝜏2. The moment 

estimator of the between-study variance proposed by DerSimonian and Laird30 was used. 

The Q test was performed to assess between-study heterogeneity, and the I2 statistics were 

also calculated.42 To avoid the risk of ecological bias, the null hypothesis that the difference 

of treatment effect between women and men is zero was tested using the following approach: 

first, a trial specific ratio of HRs was calculated from the ratio of the reported HRs in men 

and in women; second, these trial-specific ratios of HRs were combined across trials using 

a random-effects model.31 A pooled HR ratio estimate lower than 1 indicates a greater 

treatment effect in men, and higher than 1 a greater effect in women. 

In the second meta-analysis, analysis was performed using the same approach described 

above for the first meta-analysis. Moreover, a z-test was used to test the heterogeneity of 

the pooled ratios of HRs, measuring the difference in efficacy between men and women, for 

the two evaluated immunotherapeutic strategies (i.e., anti-PD-1/PD-L1 given alone or 

combined with chemotherapy). 

All analyses were performed with R software (version 3.4.0). 

 

4.3 Results 

First systematic review and meta-analysis 

We found eight eligible RCTs43–50 reporting results of the combination of an anti-PD-1 or 

anti-PD-L1 plus chemotherapy vs chemotherapy in patients with advanced lung cancer. 

Table 4.1 reports details of trials included. 

Risk of bias assessment through Jadad score for each trial was analyzed. Randomized 

treatment allocation sequences were generated in all trials; four trials were double-blinded. 

The Jadad mean score was 4 (range 3-5); no trial received a low-quality score (i.e., Jadad 

score of 0-1-2). All the included studies had a low risk of reporting bias, attrition bias, and 

other biases.  
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Table 4.1 Main features and results of studies included in the first meta-analysis 

 

Trial  Men Women Histotype 
Experimental 

arm 

Control 

arm 

PFS-HR (95% CI) OS-HR (95% CI) 

ITT 

population 
Men Women 

ITT 

population 
Men Women 

KEYNOTE-40743 455 104 

Only 

squamous 

NSCLC 

Pembrolizumab 

+ CT 

CBDCA + 

Txl/nTxl 

0.56 

(0.45 to 0.70) 

0.58 

(0.46 to 0.73) 

0.49 

(0.30 to 0.81) 

0.64 

(0.49 to 0.85) 

0.69 

(0.51 to 0.94) 

0.42 

(0.22 to 0.81) 

KEYNOTE-18944 363 253 

Only non-

squamous 

NSCLC 

Pembrolizumab 

+ CT 

CDDP / 

CBDCA + 

PEM 

0.52 

(0.43 to 0.64) 

0.66 

(0.50 to 0.87) 

0.40 

(0.29 to 0.54) 

0.49 

(0.38 to 0.64) 

0.70 

(0.50 to 0.99) 

0.29 

(0.19 to 0.44) 

IMpower13045 400 279 

Only non-

squamous 

NSCLC 

Atezolizumab 

+ CT 

CBDCA + 

nTxl 

0.64 

(0.54 to 0.77) 

0.67 

(0.54 to 0.85) 

0.59 

(0.45 to 0.78) 

0.79 

(0.64 to 0.98) 

0.87 

(0.66 to 1.15) 

0.66 

(0.46 to 0.93) 

IMpower13146 557 126 

Only 

squamous 

NSCLC 

Atezolizumab 

+ CT 

CBDCA + 

nTxl 

0.71 

(0.60 to 0.85) 

0.71 

(0.59 to 0.85) 

0.66 

(0.45 to 0.97) 
NA NA NA 

IMpower13247 384 194 

Only non-

squamous 

NSCLC 

Atezolizumab 

+ CT 

CDDP  / 

CBDCA + 

PEM 

0.60 

(0.49 to 0.72) 

0.64 

(0.51 to 0.79) 

0.51 

(0.36 to 0.71) 
NA NA NA 

IMpower13348 261 142 SCLC 
Atezolizumab 

+ CT 

CBDCA + 

VP16 

0.77 

(0.62 to 0.96) 

0.87 

(0.67 to 1.13) 

0.59 

(0.41 to 0.85) 

0.70 

(0.54 to 0.91) 

0.74 

(0.54 to 1.02) 

0.65 

(0.42 to 1.00) 

PACIFIC49 500 213 

Squamous 

(326) and 

non-

squamous 

(387) 

NSCLC 

Durvalumab 

+ CT + RT 
CT + RT 

0.55 

(0.45 to 0.68) 

0.56 

(0.44 to 0.71) 

0.54 

(0.37 to 0.79) 

0.68 

(0.47 to 0.99) 

0.78 

(0.59 to 1.03) 

0.46 

(0.30 to 0.73) 

IMpower15050 425 267 

Only non-

squamous 

NSCLC 

Atezolizumab 

+ CT + Bev 

CBDCA + 

Txl + Bev 

0.62 

(0.52 to 0.74) 

0.55 

(0.44 to 0.67) 

0.73 

(0.54 to 0.96) 

0.78 

(0.64 to 0.96) 
NA NA 

Bev=Bevacizumab; CBDCA=Carboplatin; CDDP=Cisplatin; CT=Chemotherapy; ITT=Intention to treat; NA=Not available; nTxl=Nab-paclitaxel; Pem=Pemetrexed; 

RT=Radiotherapy; Txl=Paclitaxel; V16=Etoposide 

 

All eight trials had available data on PFS according to patients’ sex subgroups and were 

included in the analysis for such endpoint. 

Two trials, KEYNOTE 407 and 189, tested the combination of chemotherapy with the anti-

PD-1 Pembrolizumab in patients with advanced non-squamous and squamous NSCLC, 

respectively. Two trials, IMpower 130 and 132, tested the combination of chemotherapy 

plus the anti-PD-L1 Atezolizumab in advanced non-squamous NSCLC, and one trial, 

IMpower 131, tested the combination of chemotherapy plus Atezolizumab in squamous 

NSCLC. One trial, IMpower 150, tested the combination of Atezolizumab plus 

chemotherapy plus Bevacizumab vs chemotherapy plus Bevacizumab in advanced non-

squamous NSCLC. One trial, IMpower 133, tested the combination of chemotherapy plus 

Atezolizumab in advanced SCLC. Finally, in the PACIFIC trial patients with locally 

advanced NSCLC were randomly assigned to chemoradiotherapy plus the anti-PD-L1 

Durvalumab vs chemoradiotherapy alone (Table 4.1). 

The analysis for PFS included 4923 patients, of whom 3345 (67.9%) were men and 1578 

(32.1%) were women; 2952 (60.0%) patients had non-squamous NSCLC, 1568 (31.9%) 

squamous NSCLC, and 403 (8.2%) SCLC (Table 4.1); 4437 (90.1%) patients were former 

or current smokers, and only 486 (9.9%) were never smokers. All these trials enrolled only 

EGFR and ALK wild-type tumors, except for the PACIFIC trial, in which 43 EGFR mutated 

NSCLC were enrolled. 
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Figure 4.1 HRs of progression or death according to patients’ sex 

 

PFS results, reported in Figure 4.1, showed that men treated with anti-PD-1 or anti-PD-L1 

plus chemotherapy had a reduced risk of progression or death compared with men treated 

in control arm (pooled PFS-HR 0.64, 95% CI 0.58 to 0.71; Figure 4.1A). In women, the 

benefit obtained with anti-PD-1 or anti-PD-L1 plus chemotherapy compared with the 

control arm was larger (pooled PFS-HR 0.56, 95% CI 0.49 to 0.65; Figure 4.1A). No 

heterogeneity among single-study estimates was observed in either male patients (Q=10.9, 

p-value=0.14, I2=36.0%) or in female patients (Q=9.9, p-value=0.19, I2=29.6%). 

The pooled ratio of PFS hazard ratios reported in women versus those reported in men in 

each trial was 1.15 (95% CI 0.96 to 1.38; Figure 4.1B) indicating a larger benefit in women 

compared with men.  

 

Five of the eight RCTs (i.e., KEYNOTE-407, KEYNOTE-189, IMpower130, IMpower133, 

and PACIFIC trial) had available data on OS according with patients’ sex subgroups and 

were included in the analysis for such endpoint (Table 4.1).  

The analysis for OS included 2970 patients, of whom 1979 (66.6%) were men and 991 

(33.4%) were women; 1682 (56.6%) patients had non-squamous NSCLC, 885 (29.8%) 

squamous NSCLC, and 403 (13.6%) SCLC (Table 4.1); 2715 (91.4%) patients were former 

or current smokers, and 255 (8.6%) were never smokers. 

Men treated with anti-PD-1 or anti-PD-L1 plus chemotherapy had a reduced risk of death 

compared with men treated in the control arm (pooled OS-HR 0.76, 95% CI 0.66 to 0.87; 

Figure 4.2A). In women, the OS benefit obtained with anti-PD-1 or anti-PD-L1 plus 

chemotherapy compared with the control arm was larger (pooled OS-HR 0.48, 95% CI 0.35 
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to 0.67; Figure 4.2A). Heterogeneity among single-study estimates was observed in female 

patients (Q=10.89, p-value=0.03, I2=63.3%), but not in male patients (Q=1.55, p-

value=0.81, I2=0.0%). The pooled ratio of OS-HRs reported in women versus those reported 

in men in each trial was 1.56 (95% CI 1.21 to 2.01; Figure 4.2B), indicating a larger benefit 

in women compared with men. 

 

 

Figure 4.2 HRs of death according to patients’ sex 

 

We conducted two sensitivity analyses using as endpoint the OS. In the first scenario, we 

assessed sex-based heterogeneity of efficacy of the combination of chemotherapy plus anti-

PD-1/PD-L1 excluding the PACIFIC trial because patients included in this trial also 

received radiotherapy. In the second sensitivity analysis to assess sex-based heterogeneity 

of efficacy in trials enrolling only patients with NSCLC we excluded the IMpower133 trial 

that enrolled patients with SCLC. The pooled ratio of OS-HRs reported in women versus 

those reported in men was respectively 1.53 (95% CI 1.10 to 2.13) for the first sensitivity 

analysis and 1.68 (95% CI 1.28 to 2.19) for the second, confirming a larger benefit in women 

compared with men (data not shown). 
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Second systematic review and meta-analysis 

We found six eligible RCTs43–45,51–53 reporting results on OS according with patients’ sex 

for anti-PD-1/PD-L1 given either alone (KEYNOTE-024, KEYNOTE-042 and CheckMate 

026 trials) or combined with chemotherapy (KEYNOTE-407, KEYNOTE-189 and 

IMpower130 trials) as first-line systemic treatment for patients with advanced NSCLC 

(Table 4.2). 

 

Table 4.2 Main features and results of studies included in the second meta-analysis 

 

Trial Men Women 
NSCLC 

histotype 

Experimental 

arm 
Control arm 

OS-HR (95% CI) 

ITT 

population 
Men Women 

KEYNOTE-40743 455 104 Only squamous 
Pembrolizumab 

+ CT 

CBDCA + 

Txl/nTxl 

0.64  

(0.49 to 0.85) 

0.69 

 (0.51 to 0.94) 

0.42  

(0.22 to 0.81) 

KEYNOTE-18944 363 253 
Only 

non-squamous 

Pembrolizumab 

+ CT 

CDDP/CBDCA 

+ PEM 

0.49  

(0.38 to 0.64) 

0.70  

(0.50 to 0.99) 

0.29  

(0.19 to 0.44) 

IMpower13045  400 279 
Only 

non-squamous 

Atezolizumab 

+ CT 
CBDCA + nTxl 

0.79  

(0.64 to 0.98) 

0.87  

(0.66 to 1.15) 

0.66 

 (0.46 to 0.93) 

KEYNOTE-02451 187 118 

Squamous 

(56) and 

non-squamous 

(249) 

Pembrolizumab 

CBDCA + 

TXL/GEM/PEM 

 or  

CDDP + 

GEM/PEM 

0.60  

(0.41 to 0.89) 

0.54  

(0.36 to 0.80) 

0.96  

(0.56 to 1.64) 

KEYNOTE-04252 902 372 

Squamous 

(492) and 

non-squamous 

(782) 

Pembrolizumab 

CBDCA +TXL 

or 

 CBDCA+PEM 

0.81  

(0.71 to 0.93) 

0.80  

(0.68 to 0.94) 

0.89  

(0.68 to 1.17) 

CheckMate 02653 332 209 

Squamous 

(130) and 

non-squamous 

(411) 

Nivolumab 

CBDCA + 

TXL/GEM/PEM 

 or  

CDDP + 

GEM/PEM 

1.07  

(0.86 to 1.33) 

0.97  

(0.74 to 1.26) 

1.15  

(0.79 to 1.66) 

CBDCA=Carboplatin; CDDP=Cisplatin; CT=Chemotherapy; GEM=Gemcitabine; ITT=Intention to treat; nTxl=Nab-paclitaxel; PEM=Pemetrexed; Txl=Paclitaxel 

 

These six trials had similar designs and enrolled comparable patient populations, in the same 

setting of disease. All trials enrolled only EGFR and ALK wild-type tumors and had a 

standard first-line, platinum-based chemotherapy as a control arm. 

Analysis included 3974 patients, of whom 2639 (66.4%) were men and 1335 (33.6%) were 

women; 2737 (68.9%) patients had non-squamous tumors, and 1237 (31.1%) squamous 

tumors; 2120 patients were treated with anti-PD-1 alone (1579 with Pembrolizumab and 

541 with Nivolumab), and 1854 with anti-PD-1/PD-L1 plus chemotherapy (1175 with 

Pembrolizumab plus chemotherapy and 679 with Atezolizumab plus chemotherapy) (Table 

4.2); 3423 (86.1%) patients were former or current smokers, and 544 (13.7%) were never 

smokers, and for 7 patients, data were unknown. 

Male patients treated with anti-PD-1 alone had a reduced risk of death as compared with 

men treated with standard chemotherapy (pooled OS-HR 0.78, 95% CI 0.60 to 1.01; Figure 

4.3A). In women, anti-PD-1 alone was not better than standard chemotherapy (pooled OS-

HR 0.97, 95% CI 0.79 to 1.19). By contrast, anti-PD-1/PD-L1 administered in combination 
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with chemotherapy was associated with a very large OS advantage compared with 

chemotherapy alone in women, but a smaller benefit was seen in men (female-pooled OS-

HR 0.44, 95% CI 0.25 to 0.76; male-pooled OS-HR 0.76, 95% CI 0.64 to 0.91). 

The pooled ratio of OS-HRs reported in women versus those reported in men in each trial 

was 0.83 (95% CI 0.65 to 1.06) for anti-PD-1 alone, indicating a greater effect of anti-PD-1 

alone in men (Figure 4.3B), and 1.70 (95% CI 1.16 to 2.49) for anti-PD-1/PD-L1 plus 

chemotherapy, indicating a greater effect for such a therapeutic strategy in women. Thus, 

the difference in efficacy for men versus women was statistically significantly different for 

the two immunotherapeutic strategies (i.e., anti-PD-1/PD-L1 alone or combined with 

chemotherapy; p-value=0.002). 

 

 

Figure 4.3 HRs of death according to patients’ sex and type of immunotherapeutic strategy 

 

4.4 Discussion 

In a previous work, Conforti et al.23 showed that male patients with several solid tumors, 

treated with anti-CTLA-4 or anti-PD-1 drugs given in monotherapy or as a combination 

therapy, obtain larger benefit than women. In the discussion of that previous work it was 

anticipated that, given the complexity of the sex-dimorphism of the immune system function 

and responses, it would be possible that women derive larger benefit than men from different 

immunotherapeutic strategies.23 

Here, we showed that women with advanced lung cancer experience a larger benefit from 

the addition of chemotherapy to an anti-PD-1 or anti-PD-L1 than men.  

It could be hypothesized that such heterogeneity of response is due to the ability of 

chemotherapy to increase the mutational burden and neoantigenic load of female lung 
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cancer tumors and this could be also a potential biological rationale to explain the lower 

efficacy of anti-PD-1 alone in women.25,54,55  

Furthermore, different efficacy of chemotherapy in modulating the anticancer immune 

responses of men and women could be speculated, given the sex-related differences in the 

amount and composition of intratumoral immune infiltrates reported.20,21,56 

We also provided data suggesting that the interaction between patients’ sex and the efficacy 

of different immunotherapeutic strategies could be important when choosing therapeutic 

options for female and male patients with NSCLC. We meta-analyzed six RCTs testing two 

different immunotherapeutic approaches (i.e., anti-PD-1/PD-L1 alone or in combination 

with chemotherapy) in comparable populations, and we found an interaction between 

patients’ sex and the efficacy of both these therapeutic strategies, with opposite 

direction/interaction in men and women. 

Historically, results from immunotherapy trials for advanced breast cancer have been 

disappointing.57,58 However, these prior studies have primarily tested immunotherapy alone. 

Recently, the results of the IMpassion130 study showed that the combination of 

Atezolizumab plus chemotherapy improved results compared with chemotherapy alone for 

women with advanced triple-negative breast cancer, especially if their tumors expressed PD-

L1.59 This provides additional support for the need to use combination of immunotherapy 

plus chemotherapy to improve outcomes for female patients.58 

The results reported here highlight a relevant methodological issue. Given the complexity 

of the sex-based dimorphism of the immune system, involving multiple elements of innate 

and adaptive immune responses, the proper way to assess the interaction between patients’ 

sex and the efficacy of different anticancer immunotherapies is to assess such interaction 

separately for each type of immunotherapeutic strategy.16,17 Indeed, the direction of the 

interaction could be the opposite for different types of treatment, as we showed for anti-PD-

1/PD-L1 given alone or combined with chemotherapy. Analyzing together different 

immunotherapeutic approaches, with interaction between their efficacy and patients’ sex, 

but with the opposite direction of such interaction, would lead to diluting results and to 

misleading conclusions, as it happened in the meta-analysis of Wallis et al.24 

A limitation of our meta-analysis is that it relies on published results rather than on 

individual patients’ data. This precludes the possibility of exploring relevant issues, such as 

the menopausal status of female patients on the efficacy of immunotherapeutic treatments, 

which deserves to be investigated given the key role exerted by sex hormones in the 

regulation of the immune system and for the potential therapeutic implications.16,17 
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Our findings are hypothesis generating because they are based on meta-analyses of 

aggregated published results derived from RCTs and, as such, require further validation in 

future prospective trials before being considered sufficient to support any change in clinical 

practice.  
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Chapter 5 

Sex-based dimorphism of anticancer immune 

response 

 

This chapter is related to study III: 

Conforti F, Pala L, Pagan E, Bagnardi V, De Pas T, Tortora G, Bria E, Minucci S, Joffe H, 

Gelber RD, Viale G, Giaccone G, Goldhirsch A. Molecular characterization of sex-based 

dimorphism of anticancer immune response and mechanisms of immune evasion, in 

patients with early non-small cell lung cancer.  

Work in progress. 

 

5.1 Materials 

LCE-project  

The Lung Cancer Explorer (LCE) project provides the largest publicly available collection 

of expression and clinical data from 56 studies for over 6700 patients with lung cancer 

(http://lce.biohpc.swmed.edu/). Data were reprocessed to be suitable for computational 

meta-analysis.60  

Description of the procedures adopted for reprocessing and normalizing expression data, 

quality control assessment and standardization of the datasets has been previously 

reported.60 

We focused on the largest datasets on adenocarcinoma and squamous cell carcinoma 

available in the LCE-project. We included in the analysis five datasets with data on more 

than 250 tumor samples, and at least 25 samples from female patients, with adenocarcinoma 

(The Cancer Genome Atlas (TCGA) LUAD61, Rousseaux et al.62, Sato et al.63, Schabath et 

al.64, Shedden et al.65) and two datasets with more than 100 tumor samples, and at least 10 

samples from female patients, with squamous NSCLC (TCGA LUSC66, Noro et al.67). 

For each dataset, patients’ epidemiological and clinical data were available, including tumor 

histology, patient demographics, stage at diagnosis and smoking status. 

 

TRACERx cohort 

TRACERx (ClinicalTrial.gov identifier NCT01888601) is a prospective study of patients 

with primary NSCLC which aims to define the evolutionary trajectories of lung cancer in 

http://lce.biohpc.swmed.edu/
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both space and time through multiregion and longitudinal tumour sampling and genetic 

analysis from diagnosis to relapse. More details on the patient cohort enrolled in the 

TRACERx lung study have been previously reported.68–70 

We analyzed Whole Exome Sequencing (WES) data of 327 tumor regions from 100 patients 

with NSCLC and RNAseq data of a subset of 164 tumor regions from 64 tumors. 

 

MSKCC, POPLAR and OAK databases 

Samstein et al.13 examined a cohort of 1661 patients with a variety of cancer types treated 

with at least one dose of ICI therapy at Memorial Sloan Kettering Cancer Center (MSKCC). 

All tumors were profiled by next generation sequencing. Individual patient data on TMB 

and patients’ outcome are publicly available at 

https://www.cbioportal.org/study/summary?id=tmb_mskcc_2018. We considered only data 

of the 350 patients with NSCLC. 

The POPLAR phase II study (ClinicalTrial.gov identifier NCT01903993) and the OAK 

phase III study (ClinicalTrial.gov identifier NCT02008227) enrolled 287 and 850 patients, 

respectively, and evaluated the efficacy and safety of second/third-line Atezolizumab 

compared with Docetaxel in patients with advanced or metastatic NSCLC after failure of 

platinum-based chemotherapy. Individual patient data on blood-based TMB and patients’ 

outcome were publicly available as supplementary materials of Gandara et al. 

(https://www.nature.com/articles/s41591-018-0134-3#Sec19).71 

 

5.2 Methods 

Assessment of sex-based differences in the tumor immune infiltrate and in the expression 

levels of immune checkpoint molecules in the tumor microenvironment 

Gene-expression data were analyzed through the previously validated xCell algorithm, to 

estimate the abundance of different cell types in the microenvironment of each tumor sample 

included in the datasets of the LCE-project as well as of the TRACERx lung study. The 

entire pipeline of xCell has been previously described.36,72 

Briefly, xCell is a computational algorithm that integrates single sample gene set enrichment 

analysis (ssGSEA) with deconvolution approach, and permitting estimation of the cell-type 

composition of the TME, evaluating the expression levels of a compendium of 489 gene 

signatures that identify 64 different cell types, including multiple adaptive and innate 

immunity cells, hematopoietic progenitors, epithelial cells, and extracellular matrix cells.72 

https://www.cbioportal.org/study/summary?id=tmb_mskcc_2018
https://www.nature.com/articles/s41591-018-0134-3#Sec19
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For each single dataset, mean values of ES for the 64 different cell-types were calculated in 

tumors of men and women and then compared using a multivariable linear regression model 

adjusted for patient age, stage at diagnosis, tumor-histotype, smoking status, and EGFR and 

ALK mutational status. 

We then performed a meta-analysis of the adjusted sex-related differences obtained in each 

single dataset using a random-effects model. The FDR was used to correct for multiple 

comparisons. Pooled estimate higher than 0 indicated a greater ES in females, and lower 

than 0 a greater ES in males. 

Moreover, a curated list of 78 genes with a key role in anticancer immune response was 

derived from Thorson et al.20, and the expression levels of each gene were compared to 

assess differences between tumors of male and female patients following the methodology 

described above. 

   

Assessment of sex-based differences in mechanisms of immune-evasion 

Gene-expression data from the LCE-project datasets were analyzed through the validated 

Tumor Immune Dysfunction and Exclusion (TIDE) tool, that permits quantification of the 

activation status of two major mechanisms of immune-evasion exploited by tumors: the 

induction of T-cell dysfunction (T-cell dysfunction mechanism) and the inhibition of T-cell 

infiltration into TME (T-cell exclusion mechanism).73 

For each tumor sample we calculated two scores, the ‘T-cell dysfunction score’ and the ‘T-

cell exclusion score’: both scores range from -4 to +4, with higher score levels being 

associated with greater activation status of the corresponding mechanism of immune-

evasion. 

For each single dataset, mean values of the ‘T-cell dysfunction score’ and ‘T-cell exclusion 

score’ were calculated in tumors of men and women and then compared using a 

multivariable linear regression model adjusted for patient age, stage at diagnosis, tumor-

histotype, smoking status, and EGFR and ALK mutational status. 

We then performed a meta-analysis of the adjusted sex-related differences obtained in each 

single dataset using a random-effects model. The Q test was performed to assess between-

study heterogeneity, and the I2 statistic, which expresses the percentage of the total observed 

variability due to heterogeneity, was also calculated. 

A pooled-estimate score higher than 0 indicated a greater activation status in females of the 

corresponding mechanism of immune-evasion, and lower than 0 a greater activation in 

males. 
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Assessment of sex-based differences in TCR repertoire diversity, tumor neoantigens load 

and alterations in neoantigens presentation machinery 

Multiregion Bulk RNAseq and WES data from TRACERx lung study were employed to 

assess for each tumor and/or patient the following elements: 

• TCR abundance and Shannon diversity score;74,75 

• amount of ubiquitous expanded TCRs;69,70 

• number of predicted tumor neoantigens and their clonal and subclonal 

distribution;68,76,77 

• occurrence of loss of heterozygosity (LOH) events at the human leukocyte antigen 

(HLA) class I locus69, as well as genetic disruptive events (i.e., non-silent mutations 

or copy-number loss defined relative to ploidy) in other antigen presentation 

pathway genes, including: CIITA, IRF1, PSME1, PSME2, PSME3, ERAP1, 

ERAP2, HSPA (also known as PSMA7), HSPC (also known as HSPBP1), TAP1, 

TAP2, TAPBP, CALR, CNX (alias CANX), PDIA3 and B2M. 

More details on analyses performed are reported in the Appendix. 

 

Assessment of sex-based differences in biological processes, cellular component and 

molecular functions 

Gene-expression data from the LCE-project datasets were analyzed through the GSEA 

method proposed by Subramanian et al.36 using the C5 collection of the MSigDB. The C5 

collection includes hundreds of gene sets curated and validated by the GO project, and 

captures all the relevant biological process, cellular component, and molecular function of 

human cells and tissues. 

GSEA was originally proposed to evaluate microarray data at the level of gene set to 

determine whether the gene set(s) analyzed is(are) correlated with the phenotypic class of 

interest.36 We modified the original methodology calculating first sex-related differences for 

each individual gene in each dataset and then applying a random-effects model to estimate 

the overall strength of the association between each gene and sex. The GSEA method using 

the C5 collection of the MSigDB was then applied on the meta-analytic T-test statistics. 

When we encountered a gene present in only one dataset, in the GSEA method we used the 

simple T-test statistic for that gene. Gene labels were permuted to estimate the FDR-

corrected statistical significance of the NES. ES (and NES) higher than 0 indicated a greater 

enrichment of the gene set in females, and lower than 0 a greater enrichment in males. The 

dataset from Noro et al.67 on squamous NSCLC was not included in the present analysis. 
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Both meta-analysis and GSEA were implemented and performed in SAS software v. 9.4 

(SAS Institute, Cary, NC). 

 

Assessment of sex-based differences in the association between tumor mutational burden 

and patients’ outcome 

We analyzed data from MSKCC dataset on patients treated with anti-PD-1 or anti-PD-L1, 

to assess the association between tissue-TMB (tTMB) and OS according with patients’ sex. 

Data of patients treated with the anti-PD-L1 Atezolizumab in the OAK and POPLAR RCTs 

were evaluated to assess the association between blood-TMB (bTMB) and PFS according 

with patients’ sex. We did not explore sex-based differences in the association between 

bTMB and OS, since in the original analysis performed on the whole population a significant 

predictive value of bTMB was reported for PFS but not for OS.78 

For all the analyses reported, the tissue and blood TMB were analyzed as continuous 

variables. Wilcoxon rank-sum test was used to compare the distribution of tissue and blood 

TMB between female and male patients. Cox proportional hazard regression model was 

used to evaluate the association between tTMB and bTMB and patient OS and PFS, 

respectively. Male and female subgroups were analyzed separately. 

Departure from linearity in the relationship between tissue or blood TMB and the hazard of 

death was investigated with RCS models with four knots located at the 20th, 40th, 60th and 

80th percentiles of the TMB distribution of female and male patients, respectively. The LRT 

was used to determine whether the RCS model significantly increased the likelihood 

function compared with a simpler model that assumed a linear relationship. 

Multivariable analyses were performed excluding patients with tumors harboring EGFR 

gene mutation or ALK gene translocation and considering only those patients with available 

data on the following adjustment factors: age, smoking history, tumor histotype and type of 

specimen analyzed, number of metastatic sites at enrollment, sum of longest diameter of 

target lesions at baseline, and PD-L1 expression levels.  

 

All statistical analyses were performed with SAS software v. 9.4 (SAS Institute, Cary, NC) 

and R software (version 3.4.1). 

 

5.3 Results 

Totally, 2575 tumor samples from the seven LCE-project databases selected were analyzed: 

1528 tumors (59.3%) were from men and 1047 (40.7%) from women (Table 5.1). 
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Seven hundred thirty-two tumors (28.4%) were from patients younger than 60 years, 934 

(36.3%) from patients aged between 61 and 70 years and 853 (33.1%) from patients older 

than 70 years; 1880 patients (73.0%) were current or former smokers, 206 (8.0%) non-

smokers, and for 489 patients (19.0%) the smoking history was unknown. The majority of 

patients (i.e., 95.9%) had stage I-III tumors. Five datasets reported data of 1967 (76.4%) 

adenocarcinoma and 2 datasets of 608 (23.6%) squamous-NSCLCs (Table 5.1). 

Tumor samples from 100 patients from the TRACERx lung study were also studied.68–70 

The cohort consisted of 68 men and 32 women, with a median age of 68 years. Eighty-eight 

patients were current or former smokers and only 12 patients were non-smokers. Sixty-one 

tumors were adenocarcinomas, 32 squamous-cell carcinomas, and 7 were classified as other 

histology. The cohort was predominantly early-stage: 62 stage I patients, 24 stage II, 13 

stage IIIa and 1 stage IIIb. Totally, 327 tumor regions (323 primary tumor regions and 4 

lymph-node metastases) were analyzed. 
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Table 5.1 Baseline demographic and clinical characteristics of patients in each LCE-project dataset included 

 

 

TCGA 

LUAD61  

N=515 

TCGA 

LUSC66 

N=501 

ROUSSEAUX62 

N=293 

SATO63 

N=275 

SCHABATH64 

N=442 

SHEDDEN65 

N=442 

NORO67 

N=107 

All datasets 

N=2575 

Gender, N (%)         

Male 238 (46.2) 371 (74.1) 250 (85.3) 148 (53.8) 202 (45.7) 223 (50.5) 96 (89.7) 1528 (59.3) 

Female 277 (53.8) 130 (25.9) 43 (14.7) 127 (46.2) 240 (54.3) 219 (49.5) 11 (10.3) 1047 (40.7) 

Age (years), N (%)         

≤60 157 (30.5) 108 (21.6) 130 (44.4) 91 (33.1) 70 (15.8) 147 (33.3) 29 (27.1) 732 (28.4) 

61-70 174 (33.8) 195 (38.9) 96 (32.8) 91 (33.1) 152 (34.4) 164 (37.1) 62 (57.9) 934 (36.3) 

>70 165 (32.0) 189 (37.7) 66 (22.5) 87 (31.6) 199 (45.0) 131 (29.6) 16 (15.0) 853 (33.1) 

Unknown 19 (3.7) 9 (1.8) 1 (0.3) 6 (2.2) 21 (4.8) 0 0 56 (2.2) 

Smoking status, N (%)         

Smoker 0 0 0 244 (88.7) 335 (75.8) 0 0 579 (22.5) 

Current Smoker 119 (23.1) 133 (26.5) 0 0 0 32 (7.2) 54 (50.5) 338 (13.1) 

Former Smoker 307 (59.6) 338 (67.5) 0 0 0 268 (60.6) 50 (46.7) 963 (37.4) 

Non-Smoker 75 (14.6) 18 (3.6) 0 28 (10.2) 33 (7.5) 49 (11.1) 3 (2.8) 206 (8.0) 

Unknown 14 (2.7) 12 (2.4) 293 (100.0) 3 (1.1) 74 (16.7) 93 (21.0) 0 489 (19.0) 

Pack-years, N (%)         

≤20 162 (31.5) 64 (12.8) 0 28 (10.2) 33 (7.5) 0 5 (4.7) 292 (11.3) 

21-50 177 (34.4) 209 (41.7) 0 0 0 0 73 (68.2) 459 (17.8) 

>50 86 (16.7) 169 (33.7) 0 0 0 0 29 (27.1) 284 (11.0) 

Unknown 90 (17.5) 59 (11.8) 293 (100.0) 247 (89.8) 409 (92.5) 442 (100.0) 0 1540 (59.8) 

Race, N (%)         

White 388 (75.3) 349 (69.7) 0 244 (88.7) 399 (90.3) 294 (66.5) 0 1674 (65.0) 

Black 52 (10.1) 30 (6.0) 0 16 (5.8) 13 (2.9) 12 (2.7) 0 123 (4.8) 

Asian 8 (1.6) 9 (1.8) 0 7 (2.5) 3 (0.7) 6 (1.4) 0 33 (1.3) 

Other 1 (0.2) 0 0 8 (2.9) 2 (0.5) 1 (0.2) 0 12 (0.5) 

Unknown 66 (12.8) 113 (22.6) 293 (100.0) 0 25 (5.7) 129 (29.2) 107 (100.0) 733 (28.5) 

Stage, N (%)         

I/II 402 (78.1) 409 (81.6) 226 (77.1) 182 (66.2) 334 (75.6) 371 (83.9) 107 (100.0) 2031 (78.9) 

III 84 (16.3) 84 (16.8) 53 (18.1) 86 (31.3) 63 (14.3) 68 (15.4) 0 438 (17.0) 

IV 27 (5.2) 7 (1.4) 5 (1.7) 6 (2.2) 17 (3.8) 0 0 62 (2.4) 

Unknown 2 (0.4) 1 (0.2) 9 (3.1) 1 (0.4) 28 (6.3) 3 (0.7) 0 44 (1.7) 

EGFR mutation, N (%)         

No 195 (37.9) 275 (54.9) 0 0 395 (89.4) 0 0 865 (33.6) 

Yes 80 (15.5) 21 (4.2) 0 0 47 (10.6) 0 0 148 (5.7) 

Unknown 240 (46.6) 205 (40.9) 293 (100.0) 275 (100.0) 0 442 (100.0) 107 (100.0) 1562 (60.7) 

KRAS mutation, N (%)         

No 39 (7.6) 14 (2.8) 0 0 288 (65.2) 0 0 341 (13.2) 

Yes 23 (4.5) 1 (0.2) 0 0 154 (34.8) 0 0 178 (6.9) 

Unknown 453 (88.0) 486 (97.0) 293 (100.0) 275 (100.0) 0 442 (100.0) 107 (100.0) 2056 (79.8) 

ALK mutation, N (%)         

No 211 (41.0) 275 (54.9) 0 0 0 0 0 486 (18.9) 

Yes 34 (6.6) 9 (1.8) 0 0 0 0 0 43 (1.7) 

Unknown 270 (52.4) 217 (43.3) 293 (100.0) 275 (100.0) 442 (100.0) 442 (100.0) 107 (100.0) 2046 (79.5) 

Subtype, N (%)         

Adenocarcinoma 515 (100.0) 0 293 (100.0) 275 (100.0) 442 (100.0) 442 (100.0) 0 1967 (76.4) 

Squamous-cell 0 501 (100.0) 0 0 0 0 107 (100.0) 608 (23.6) 
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Sex-based differences in the tumor immune infiltrate, in the expression levels of immune 

checkpoint molecules in the tumor microenvironment, TCR repertoire diversity, tumor 

neoantigens load and alterations in neoantigens presentation machinery 

We first assessed differences in the cell-type composition of the immune infiltrate between 

tumors of male and female patients.  

Figure 5.1 shows sex-based differences in the abundance of immune cells found in each of 

the seven LCE-project datasets as well as the pooled meta-analytic results and the 

TRACERx results. 

In the pooled analysis, the innate and adaptive immune cells found enriched in the TME of 

women (red dots) as compared with men, at FDR cut-off <0.05 were (Figure 5.1):  

• Dendritic cells (including plasmocytoid dendritic cells, conventional dendritic cells, 

and activated dendritic cells); 

• CD4+ T-cells (including CD4+ naïve T-cells and CD4+ central memory T-cells); 

• B-cells (including Memory B-cells and Class-switched memory B-cells); 

• Mast-cells. 

Innate and adaptive immune cells found enriched in the TME of female patients (red dots), 

at FDR cut-off <0.25 were (Figure 5.1): 

• Eosinophils; 

• Regulatory T-cells; 

• Natural killer T-cells; 

• Macrophages M1-type; 

• CD8+ T-cells. 

The TME of female patients was also enriched at FDR <0.05 in cancer-associated fibroblast 

(CAF), HSC and GMP, that are respectively mesenchymal and myeloid-derived cells known 

to exert immunosuppressive activity in the TME and to play a role in cancer immune evasion 

(Figure 5.1).9,79 

The only immune cell type found enriched in the TME of men (blue dots) at FDR <0.05, 

was type 2 T-helper cell. 

Analysis of tumors from the TRACERx lung study cohort, confirmed the enrichment of 

aDC, HSC and CAF at FDR <0.05 in the TME of women in univariable analysis (Figure 

5.1). Furthermore, a trend for enrichment in the TME of women was also observed for CD4+ 

naïve T-cells (p-value=0.24; Figure 5.1). 
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Figure 5.1 Summary plot of sex-based differences in the composition of the immune infiltrate 

 

Abbreviations:  

aDC: Activated dendritic cells; CD4+ Tcm: CD4+ central memory T-cells; CD4+ Tem: CD4+ effector memory 

T-cells; CD8+ Tcm: CD8+ central memory T-cells; CD8+ Tem: CD8+ effector memory T-cells; cDC: 

Conventional dendritic cells; CLP: Common lymphoid progenitors; CMP: Common myeloid progenitors; DC: 

Dendritic cells; GMP: Granulocyte-macrophage progenitors; HSC: Hematopoietic stem cells; iDC: Immature 

dendritic cells; ly Endothelial cells: Lymphatic endothelial cells; MEP: Megakaryocyte-erythroid progenitors; 

MPP: Multipotent progenitors; MSC: Mesenchymal stem cells; mv Endothelial cells: Microvascular 

endothelial cells; NKT: Natural killer T-cells; pDC: Plasmacytoid dendritic cells; Tgd cells: Gamma delta T-

cells; Th1 cells: Type 1 T-helper cells; Th2 cells: Type 2 T-helper cells; Tregs: Regulatory T-cells.  
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In line with these data, showing a more abundant immune infiltrate in tumors of women as 

compared with men, we found that TME of women was characterized by higher expression 

levels of a number of chemokines, receptors and integrins involved in leukocytes 

extravasation and tumor infiltration. In the pooled analysis of the seven LCE-project 

datasets, molecules found highly expressed in the TME of women at FDR <0.05 were: 

CCL5, CX3CL1, CXCL9, BTN3A2, ICAM1 and LFA1 (Figure 5.2). 

 

To further confirm a greater immune infiltration of TME of women as compared with men, 

we characterized the TCR repertoire of tumor infiltrating lymphocytes (TILs) of tumor 

samples from the TRACERx lung study cohort. 

As expected, we found a greater TCR repertoire diversity in TILs of women (median TCR 

entropy score 0.84 in females versus 0.67 in males, p-value=0.03; Figure 5.3A), that 

confirmed a higher TME infiltration by T-cells in women.  

Previous works demonstrated that the amount of expanded TCRs present in all tumor 

regions assessed in multiregional tumor analysis (the so called expanded ubiquitous TCRs), 

is a proxy for immune response against tumor antigens.61,69,70 

Coherently with all other findings reported above, we found a numerically higher amount 

of expanded ubiquitous TCRs in tumors of women as compared with men (the median 

number of ubiquitous expanded TCRs was 33 in females and 25 in males, p-value=0.24; 

Figure 5.3B). 
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Figure 5.2 Summary plot of sex-based differences in expression levels of immune-related genes 
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Figure 5.3 Sex-based differences in TCR repertoire diversity, tumor antigenicity, and 

alterations in antigen presentation machinery 

 

Sex-based differences in mechanisms of immune-evasion 

To assess sex-based differences in mechanisms exploited by tumors to evade immune 

response, we analyzed the seven datasets of LCE-project through the TIDE tool. 

In all the 7 datasets, the mean value of the ‘T-cell dysfunction’ score was higher in tumors 

of women as compared with men. The pooled adjusted difference estimate was 0.09 (95% 

CI 0.05 to 0.13, p-value<0.001), confirming greater T-cell dysfunction status in tumors of 

women (Figure 5.4). 

On the contrary, the mean value of the ‘T-cell exclusion’ score was always higher in tumors 

of men. The pooled adjusted difference estimate was -0.08 (95% CI -0.12 to -0.03; p-

value=0.001), confirming greater activation status of such mechanism of immune-evasion 

in tumors of men (Figure 5.5). 
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Figure 5.4 Meta-analysis of differences in the ‘T-cell dysfunction score’ assessed in tumors of 

female and male patients 

 

 

Figure 5.5 Meta-analysis of differences in the ‘T-cell exclusion score’ assessed in tumors of female 

and male patients 

 

Coherently with these findings, the pooled analysis of the seven LCE-project datasets 

presented in Figure 5.2 have revealed a higher expression levels of a number of inhibitory 

immune-checkpoints in TME of females (including TIM3, TIGIT, BTLA, IDO1, 

ADORA2A, ENTPD1, BTN3A1, TNFRSF14, and VISTA at FDR <0.05 and LAG3 at 

FDR=0.09), which are known to play a key role in T-cells exhaustion and dysfunction 

mechanisms. 

 

In summary, the lower abundance of a number of immune cell types in the TME, the 

significantly higher T-cell exclusion score, the smaller TCR repertoire diversity and the 

lower amount of ubiquitous expanded TCRs observed in tumors of men are all elements 

suggesting a less efficient tumor recognition and infiltration by immune-system.  
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Since several mechanisms have been shown to impair infiltration of the TME by immune 

system, the TRACERx cohort tumors were analyzed to estimate sex-based differences in 

the predicted tumor neoantigens load and/or in the neoantigens clonal distribution, and no 

sex-based difference in the total number of predicted tumor neoantigens, nor in the number 

of clonal or subclonal neoantigens were found (Figure 5.3C). 

 

TRACERx lung study cohort and the LCE-project datasets were also used to explore the 

hypothesis that tumors from men had impaired antigen presentation mechanisms as 

compared with women. 

As hypothesized, we found lower expression levels of both HLA Class I and Class II 

molecules in the TME of men as compared with women (FDR <0.05; Figure 5.2), and also 

a trend for higher frequency of LOH events at the HLA class I locus in tumors of men (Odds 

ratio [OR] for HLA-LOH in men versus women: 2.19, p-value=0.09; Figure 5.3D) as well 

as a numerically higher frequency for all other disruptive events (i.e., non-synonymous 

mutations or copy number loss) in genes involved in tumor antigen presentation mechanisms 

(OR for disruptive events in men versus women: 1.81, p-value=0.21; Figure 5.3D). 

 

Assessment of sex-based differences in biological processes, cellular component and 

molecular functions 

To assess sex-based differences in biological processes, cellular component and molecular 

functions we analyzed six datasets of the LCE-project through GSEA using the C5 

collection of the MSigDB. 

We analyzed 5917 gene sets and among the top 1% gene sets significantly enriched in the 

TME of women there were 39 (65%) gene sets directly related to anticancer immune 

response (Figure 5.6). 

In particular, we found the following gene sets significantly enriched in the TME of women: 

• interferon gamma mediated signaling pathway, response to interferon gamma, 

response to type I interferon, that are pathways and functions with a known key role 

in spontaneous anticancer immune response as well as in patients’ response to 

treatment with ICIs; 

• MHC protein complex, antigen binding, lymphocyte activation, that are very early 

processes necessary for tumor recognition by immune system; 

• leukocyte migration, leukocyte cell-cell adhesion, that are involved in the TME 

infiltration by immune system. 
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None of the top 1% gene sets found significantly enriched in tumors arising in men as 

compared with women were directly related to anticancer immune responses (Figure 5.6). 

 

 

Figure 5.6 Top 1% enriched gene sets in male compared to female (left) and top 1% enriched gene 

sets in female compared to male (right). Red bars highlight gene sets related to anticancer immune 

response. 

 

Sex-based differences in the association between tumor mutational burden and patients’ 

outcome 

Since we found that tumor of men had impaired neoantigens presentation mechanisms as 

compared with women, we analyzed data of the cohort of 329 patients from MSKCC 

dataset, with advanced NSCLC and treated with anti-PD-1 or anti-PD-L1 as monotherapy, 

to test the hypothesis of sex-based differences in the association between tTMB and patients 

outcome. 

We analyzed data from 167 women and 162 men. During a median follow-up of 9 months 

(IQR 3-18 months), 99 and 111 deaths occurred in women and men, respectively. The 

median tTMB value was 7.9 mutations/Megabase (Mb) in female (min-max range 0-55, 

IQR 3.9-12.3) and 6.9 mutations/Mb in males (min-max range 0-100, IQR 4.4-12.8; 

Wilcoxon p-value=0.98). 
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A higher tTMB was associated with improved OS in both women (OS-HR for increase of 

10 unit of tTMB/Mb: 0.72, 95% CI 0.54 to 0.95; p-value=0.02) and men (OS-HR for 

increase of 10 unit of tTMB/Mb: 0.76, 95% CI 0.62 to 0.94; p-value=0.01).    

However, there was a sex-based difference in the linearity of the association between tTMB 

and patients OS. A linear trend towards decreasing HR of death for progressively increasing 

tTMB values was observed in women, along the entire range of tTMB values (test for 

linearity p-value=0.26; Figure 5.7A), whereas the association between tTMB and OS was 

not linear in men (test for linearity p-value=0.006, Figure 5.7B).  

Results from spline regression analyses suggested an OS advantage starting from tTMB 

values >10 mutations/Mb in women (Figure 5.7A), while in males it appeared only for 

higher tTMB values (i.e., tTMB >20 mutations/Mb, Figure 5.7B). 

Individual patient data on age, smoking history, tumor histotype and type of specimen 

analyzed were available for 262 patients. 224 out of 262 patients - respectively 112 women 

and 112 men - had an EGFR and ALK wild type tumor and were further analyzed through 

multivariable analyses.  

Adjusting for age, smoking history, tumor histotype and type of specimen analyzed, we 

confirmed that tTMB retained a significant linear association with better OS in women 

(adjusted OS-HR for increase of 10 unit of tTMB/Mb: 0.58, 95% CI 0.37 to 0.90; p-

value=0.02) but not in men, where the association became much less strong and not 

significant (adjusted OS-HR for increase of 10 unit of tTMB/Mb: 0.81, 95% CI 0.60 to 1.08; 

p-value=0.15).    
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A B 

  
C D 

  
Figure 5.7 OS and PFS by TMB and gender in MSKCC (panel A and B) and 

Poplar/Oak (panel C and D) database 

 

To confirm significant sex-based difference in the linearity of the association between TMB 

and patients outcome, we further analyzed data from 391 patients (128 women and 263 

men), with advanced EGFR and ALK wild-type NSCLC treated with the anti-PD-L1 

Atezolizumab in the OAK and POPLAR RCTs.  

During a median follow-up of 11 months (IQR 5-20 months), 110 and 236 PFS events 

occurred in women and men, respectively. The median bTMB value was 6.0 mutations in 

female (min-max range 0-49, IQR 3.0-14.5) and 9.0 mutations in males (min-max range 0-

67, IQR 5.0-17.0; Wilcoxon p-value=0.002). 

Adjusting for age, tumor histology, number of metastatic sites at enrollment, sum of longest 

diameter of target lesions at baseline, smoking history and PD-L1 expression levels, we 

confirmed a significant sex-based difference in the linearity of the association between 

bTMB and PFS. A linear trend towards decreasing HR of PFS for progressively increasing 

bTMB values was observed in women, along the entire range of bTMB values (test for 
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linearity p-value=0.34; Figure 5.7C), whereas the association between bTMB and PFS was 

not linear in men (test for linearity p-value<0.001, Figure 5.7D).  

Results from spline regression analyses suggested a PFS advantage starting from TMB 

values ≥20 mutations in women (Figure 5.7C), while in males appeared only for higher 

TMB values (i.e., TMB >37 mutations, Figure 5.7D). 

 

5.4 Discussion 

Taken together, data reported here show meaningful sex-based differences in the cell-type 

composition of the immune infiltrate of patients with NSCLC as well as in mechanisms 

exploited by tumors to evade immune response. Importantly, such differences are not related 

to other variables potentially associated with sex such as age, stage of disease, tumor 

histotype and smoking status. 

Differences observed suggest that, on average, women mount stronger and more structured 

immune-response against NSCLC, as highlighted by the higher intratumor abundance of 

activated dendritic cells, memory CD4+ T-cells and B-cells including Class-switched 

memory cells.9,79   

Our data also suggest that to evade such more efficient initial immune recognition and 

response, NSCLC arising in women develop more complex and redundant mechanisms of 

resistance, as revealed by the higher expression of multiple immune-checkpoint molecules 

with inhibitory functions, as well as by the higher abundance of immune-suppressive cells 

in the TME, such as CAFs and MDSCs, and also activated Tregs in squamous-NSCLC.9,79 

These findings could explain the observed greater dysfunction status of T-cells infiltrating 

the TME of NSCLC of females revealed by TIDE.  

Notably, it has been shown that the TIDE dysfunction signature specifically reflects the 

profile of dysfunctional T-cells strongly resistant to ICIs reprogramming.73 

 

On the contrary, the TME of NSCLC arising in males was ‘colder’ as compared with 

females. 

This was revealed by the lower abundance of a number of innate and adaptive immune cell 

types and confirmed by the significantly higher T-cells exclusion score as well as by the 

smaller TCR repertoire diversity. 

We found that such poorer immune infiltration of tumors of men could depend on a less 

efficient tumor neoantigens presentation to the immune-system, due to lower expression 
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levels of HLA class I and II molecules, higher frequency of HLA type I LOH and/or 

alterations in other component of the antigen presentation machinery. 

Notably, we did not find differences in the tumor neoantigens load between men and 

women. This further shows that the different prevalence of smoking habits between men 

and women cannot be the main reason explaining the sex-based dimorphism of anticancer 

immune response observed, since smoking mainly affects the anticancer immune response 

by increasing the TMB.9,79 

 

Results obtained through GSEA using the C5 collection of the MsigDB further confirmed 

and reinforced our hypothesis of significant sex-based differences in anticancer immune 

response, being strictly in line with results found with the other analyses performed. Our 

results clearly showed that, among the molecular pathways and biological processes most 

significantly enriched in the TME of women as compared with men, there were many 

directly related to the anticancer immune response, while none of the gene sets found 

significantly enriched in tumors arising in men as compared with women were directly 

related to anticancer immune response. All our findings are in line and in part explain the 

significant enrichment of a number of innate and adaptive immune cells found in TME of 

women as well as the significant different association between the TMB and the outcome of 

patients treated with ICIs.   

  

We previously demonstrated significant sex-based heterogeneity of response to different 

type of immunotherapy strategies in patients with advanced NSCLC.23,80 

The sex-based dimorphism in key elements of anticancer immune response and in 

mechanisms of tumor immune-evasion showed here could explain our previous 

observations. 

For example, the higher abundance of MDSCs, CAFs and Tregs found in TME of females, 

could explain both, the smaller survival benefit experienced by women when treated with 

anti-PD-1 as monotherapy - since it has been recurrently reported that these immune 

suppressive cells play a major role in ICIs resistance9,79 - and also the impressively larger 

survival benefit observed in women in RCTs treated with the combination of anti-PD-1/PD-

L1 with chemotherapy - considering the ability of chemotherapy to target these suppressive 

cell types.81,82 

We provided a clear example of the potential clinical implications of our findings, showing 

significant differences in the association between TMB and survival benefit observed in 

men and women treated with anti-PD-1 or anti-PD-L1 antibodies.  
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The value of TMB as biomarker to select patients who benefit the most from anticancer 

immunotherapy is debated, since discordant results on its predictive value for OS benefit 

have been reported in trials testing ICIs.  

Our analysis suggested that considering different TMB-thresholds in men and women may 

improve its predictive value for both, and future research should test such hypothesis. 

 

This work has several strengths. The first is the quality of data analyzed, since we evaluated 

several independent large cohorts of hundreds of patients with NSCLC, including the 

TRACERx lung study cohort, that is one of the best and most deeply characterized at the 

molecular level among all reported. 

Furthermore, all the statistical and computational approaches used are straightforward and 

widely validated.  

Finally, this work is supported by a strong rationale, represented by the known meaningful 

differences of both innate and adaptive immune system between men and women, 

explaining different prevalence and mortality from autoimmune and infectious diseases and 

from several types of cancers. The results reported here are in line with and were anticipated 

in our previous works on this issue. 

Yet, this paper has limitations and further studies are needed to better explore such complex 

issue. 

The main limitation is that we only analyzed cohorts of patients with early-stage disease 

since we did not have data on advanced tumors. However, we expect that the sex-based 

dimorphism of anticancer immune response and immune evasion mechanisms could be even 

deeper in advanced tumors, as a consequence of continuous immune-editing process and 

tumor evolution during tumor progression. 

We also did not study other tumor histotypes, while our previous data showed large sex-

based differences of ICIs effectiveness also in solid tumors other than NSCLC, including 

melanoma. 

 

In conclusion, data reported here and in our previous works provided a proof of the 

importance of the features of the host immune system in shaping the immune response 

against cancer. This could have several straightforward implications in the context of both 

translational and clinical research. These include the need to explore differential therapeutic 

approaches in men and women with cancers to improve results for both. 
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Chapter 6 

Conclusions 

 

The overall aim of this doctoral thesis was to extend previous (limited) knowledge about 

sex-based differences in cancer immunotherapy efficacy and to further explore mechanisms 

at molecular level that regulate anticancer immune response in men and women. 

First we showed that women with advanced lung cancer derive larger benefit than men from 

the combination of chemotherapy to an anti-PD-1/PD-L1 immune checkpoint inhibitor. We 

showed also that there is an interaction between patients’ sex and the efficacy of the 

immunotherapeutic strategy chosen: men derive larger benefit than women with an anti-PD-

1 treatment alone, while women have better survival with anti-PD-1/PD-L1 plus 

chemotherapy. 

Then we showed that on average women mount stronger and more structured immune-

response against NSCLC compared to men, proved also by the results of the GSEA which 

highlighted that most of the molecular pathways and biological processes significantly 

enriched in the TME of women are directly related to the anticancer immune response. 

Our data support the need to test different therapeutic strategies in male and female 

populations to further improve the use of immunotherapy. For example, accrual and design 

of trials of immunotherapy might best be performed separately for men and women, with 

proper sample size planning for both.  

Clearly our works have some limitations. Part of our works were based on published results 

rather than on individual patients’ data and this precluded the possibility of exploring 

relevant issues, such as the menopausal status of female patients on the efficacy of 

immunotherapeutic treatments. The analysis of molecular mechanisms that drive anticancer 

immune response in men and women regarded only patients with early-stage lung cancer 

instead of including also advanced tumors and/or other type of tumors. The methodology 

that we proposed and implemented to apply GSEA to meta-analysis was not yet validated 

in its operating characteristics. 

On the contrary, our works have several strengths. We meta-analyzed results of large RTCs, 

we used several independent large cohorts publicly available of hundreds of patients with 

NSCLC, including also the TRACERx lung study cohort. Our rationale was strong and was 

represented by the known meaningful differences of both innate and adaptive immune 

system between men and women. 
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Undoubtedly, all our findings require further validation in future prospective trials before 

being considered sufficient to support any change in clinical practice.  

Our future efforts will be directed to: 

• the validation of our proposed method for GSEA meta-analysis through 

simulations; 

• the analysis of sex-based differences in molecular mechanisms of anticancer 

immune response in advanced-stage tumors as well as in histotypes other than 

NSCLC.  
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Appendix 

 

Assessment of T-cell receptor abundance and Shannon diversity score 

A previously developed quantitative experimental and computational TCR sequencing 

pipeline was used for the high-throughput sequencing of α and β TCR chains. TCR 

sequencing was performed on whole RNA extracted from multi-region tumor specimens.83 

A distinct feature of this TCR sequencing protocol is the use of a unique molecular identifier 

that enables correction for PCR and sequencing errors, thereby providing a quantitative and 

reproducible method of library preparation.74,75  

For each tumor region, the Shannon diversity was estimated using the command 

‘entropy.empirical’ from the ‘entropy’ R package. This was calculated on the basis of the 

number and prevalence of different TCR subclones found in that region, such that a tumor 

region that contained only one subclone was assigned a value of 0. 

 

Assessment of ubiquitous expanded TCRs in tumor  

We counted the number of TCRs detected with frequencies above a range of frequency 

thresholds in the tumor samples. To focus on the most expanded TCRs, we examined those 

present above a threshold frequency of 2/1000 (corresponding to the top 1% of the empirical 

TCR frequency distribution) in at least one region of the tumor.69,70 

We calculated the relative abundance of the TCR in the tumor (averaged over all tumor 

regions) from the same patient. Expanded intratumoral TCRs were subsequently classified 

as ubiquitous or regional, as previously described.69,70 

In particular, expanded TCRs were classified as regional if they were absent from at least 

one region of the tumor and as ubiquitous if otherwise. Ubiquitous TCRs can be absent from 

the data for specific regions, but this should be attributed to sampling rather than true spatial 

heterogeneity.69,70 

For this analysis, we analyzed tumors with TCR data for at least three different regions. 

 

Assessment of predicted neoantigen load 

Novel 9-11mer peptides that could arise from identified non-silent mutations present in the 

sample were determined.68 The predicted half-maximal inhibitory concentration binding 

affinities and rank percentage scores - representing the rank of the predicted affinity 

compared to a set of 400,000 random natural peptides - were calculated for all peptides that 

bound to each of the patient’s HLA alleles using netMHCpan-2.8 and netMHC-4.0.76,77 
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Using established thresholds, predicted binders were considered to be those peptides that 

had a predicted binding affinity <500nM or a rank percentage score <2% by either tool.74,75 

When RNA-seq data were available, a neoantigen was considered to be expressed if at least 

five RNA-seq reads mapped to the mutation position, and at least three contained the 

mutated base.74,75 

 

Assessment of HLA LOH and/or alteration in other antigen-presentation-pathway genes 

Tumor samples that contain an HLA LOH event were identified using a previously validated 

method.69 

Antigen-presentation-pathway genes were compiled from a previous report, and affected the 

HLA enhanceosome, peptide generation, chaperones or the MHC complex itself.84 

For each tumor sample, we assessed disruptive events (i.e., non-silent mutations or copy-

number loss defined relative to ploidy) of the following genes: CIITA, IRF1, PSME1, 

PSME2, PSME3, ERAP1, ERAP2, HSPA (also known as PSMA7), HSPC (also known as 

HSPBP1), TAP1, TAP2, TAPBP, CALR, CNX (alias CANX), PDIA3 and B2M. 

 


