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Abstract

In an increasingly technological and interconnected world, the amount of data is continuously

growing, and as a consequence, decision-making algorithms are also continually evolving to

adapt to it. One of the major sources of this vast amount of data is the Internet of Things, in

which billions of sensors exchange information over the network to perform various types of

activities such as industrial and medical monitoring. In recent years, technological development

has made it possible to define new high-performance hardware architectures for sensors, called

Microcontrollers, which enabled the creation of a new kind of decentralized computing named

Edge Computing. This new computing paradigm allowed sensors to run decision-making al-

gorithm at the edge in order to take immediate and local decisions instead of transferring the

data on central server processing. To support Edge Computing, the research community started

developing new advanced techniques to efficiently manage the limited resources on these de-

vices for applying the most advanced Machine Learning models, especially the Deep Neural

Networks.

Automated Machine Learning is a branch of the Machine Learning field aimed at disclosing the

power of Machine Learning to non-experts as well as efficiently supporting data scientists in

designing their own data analysis pipelines. The adoption of Automated Machine Learning has

made it possible to develop increasingly high-performance models almost automatically. How-

ever, with the advent of Edge Computing, a specialization of Machine Learning, defined as Tiny

Machine Learning (Tiny ML), has been arising, that is, the application of Machine Learning

algorithms on devices having limited hardware resources.

This thesis mainly addresses the applicability of Automated Machine Learning to generate accu-

rate models which must be also deployable on tiny devices, specifically Microcontroller Units.

More specifically, the proposed approach is aimed at maximizing the performances of Deep

Neural Networks while satisfying the constraints associated to the limited hardware resources,

including batteries, of Microcontrollers. Thanks to a close collaboration with STMicroelectron-

ics, a leading company for design, production and sale of microcontrollers, it was possible to

develop a novel Automated Machine Learning framework that deals with the black-box con-

straints related to the deployability of a Deep Neural Network on these tiny devices, widely

adopted in IoT applications.
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The application on two real-life use cases provided by STMicroelectronics (i.e., Human Activ-

ity Recognition and Image Recognition) proved that the novel proposed approach can efficiently

find out configurations for accurate and deployable Deep Neural Networks, increasing their ac-

curacy against baseline models while drastically reducing hardware required to run them on a

microcontroller (i.e., a reduction of more than 90%). The approach was also compared against

one of the state-of-the-art AutoML solutions in order to evaluate its capability to overcome the

issues which currently limit the wide application of AutoML in the tiny ML field.

Finally, this PhD thesis suggests interesting and challenging research directions to further in-

crease the applicability of the proposed approach by integrating recent and innovative research

results (e.g., weakly defined search spaces, Meta-Learning, Multi-objective and Multi-Information

Source optimization).
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Chapter 1

Introduction

In an increasingly digitized and connected society, which produces perhaps as much data every

two days as has been generated since the beginning of civilization, Machine Learning techniques

and algorithms are playing an increasingly central role. These innovative data-processing algo-

rithms are now being used in various application domains, facilitated by the increased amount

of data available.

Given a generic dataset, the model’s performance depends on selecting the best algorithm

(Model Selection) and the optimization of its hyperparameters (Hyperparameter Optimiza-
tion). However, identifying the optimal model is a complicated and costly search process, both

in terms of computational resources and time. The field that deals with this kind of optimization

process is called Automated Machine Learning (AutoML).

Today we have the technological ability to infuse some knowledge of the world into every ob-

ject simply by adding sensors to it, providing it with memory, and connecting it to human social

networks. The Internet of Things (IoT), understood as the set of technologies that allow phys-

ical objects and devices to generate data and share them with other objects, represents one of

the most relevant innovations of the last years. The margins for expansion are wide, and the

trend in global spending on this technology is clear evidence of this. Investments in projects

incorporating IoT technology have increased by more than 80% from 2015 to 2019 generating

a market value of more than $250 billion, and from a recent Fortune Business Insights1 study

it is estimated that the market will reach more than $1.463 billion in 2027. The steady growth

process has led to a rapid expansion in the number of smart devices connected to the Cloud. The

application opportunities of smart devices are rapidly multiplying and differentiating in different

sectors, especially in business, industry, and healthcare.

The typical architecture used is Cloud Computing, in which the vast amount of information col-

lected locally by different devices is then transferred to a central server for processing. However,

1https://www.fortunebusinessinsights.com/industry-reports/internet-of-things-iot-market
-100307, [Accessed on: 20/10/2020]

1

https://www.fortunebusinessinsights.com/industry-reports/internet-of-things-iot-market-100307
https://www.fortunebusinessinsights.com/industry-reports/internet-of-things-iot-market-100307
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the spread of IoT devices leads to an evolution of the internet from the virtual to the physical

world.

Smart devices generate a huge amount of data in the periphery of the network and often require

the information to be processed in ’near real-time’ or even in real time. Consequently, it is easy

to see how it is unrealistic to think that each of these devices, and applications in the field, can

always rely on a stable channel of connection and constant data communication with the cloud.

This progressive decentralization has led companies in the sector to devise new solutions for the

IoT network architecture to respond to the new needs and ways of managing data locally.

The main decentralized alternative to Cloud Computing is Edge Computing. Some experts even

predict that it will soon spell the end of Cloud computing. Others believe it will complement

cloud computing by merely managing users’ instantaneous data, while the central cloud will

still handle Big Data processing2. According to Gartner 3, a leading IT research and advisory

company, only 10% of the data generated is currently processed outside of centralized data cen-

ters, but by 2025 this percentage will reach 74%. A key role in IoT technology, especially in

Edge Computing, is played by microcontrollers (MCUs). Microcontrollers are, to all intents

and purposes, self-contained computers of extremely small dimensions, so much so that they

are called computers on a single chip.

Equipped with a Central Processing Unit (CPU), Random Access Memory (RAM), and Read-

Only Memory (ROM), they are designed to perform specific tasks. They can be integrated into

almost any device: from industrial equipment to stock items to wearables, household appliances,

and much more. There are now many different types with a wide range of functionalities de-

signed for different use cases.

Despite the pandemic situation, which started in March 2020, the MCU shipments are expected

to increase by more than 6% in 2021 to 24.9 billion units, followed by increases of 8% in 2022

and 10% in 2023, when worldwide MCU deliveries are projected to reach a new record-high

level of 29.6 billion 4.

If from a hardware point of view, Edge Computing systems are effectively supported by MCUs,

instead from a software point of view, they require decision algorithms that are able to analyze

data instantaneously and at the same time adapt to the hardware limitations of the microcon-

troller used. The field of constrained Automated Machine Learning deals with these aspects.

Although Machine Learning algorithms’ main goal is to have maximum accuracy, there are of-

ten other factors that need to be taken into account, for example, training and inference time,

model size, memory consumption, and admissibility. These factors become conditions to be

included during the optimization process when it is no longer sufficient to find the maximum

or minimum value of a performance metric of Machine Learning task. Still, it is necessary to

2https://www.zerounoweb.it/techtarget/searchdatacenter/edge-computing-cose-come-impleme
ntarlo/ , [Accessed on: 18/10/2020]

3https://www.gartner.com/smarterwithgartner/what-edge-computing-means-for-infrastructur
e-and-operations-leaders, [Accessed on: 20/10/2020]

4https://www.icinsights.com/data/articles/documents/1289.pdf, [Accessed on: 28/12/2020]

https://www.zerounoweb.it/techtarget/searchdatacenter/edge-computing-cose-come-implementarlo/
https://www.zerounoweb.it/techtarget/searchdatacenter/edge-computing-cose-come-implementarlo/
https://www.gartner.com/smarterwithgartner/what-edge-computing-means-for-infrastructure-and-operations-leaders
https://www.gartner.com/smarterwithgartner/what-edge-computing-means-for-infrastructure-and-operations-leaders
https://www.icinsights.com/data/articles/documents/1289.pdf
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transform the process into a problem subject to constraints, such as the hardware limitations of

a microcontroller.

1.1 Thesis organization

The main problem addressed in this thesis is finding out, automatically, an optimal ML model

to perform a classification or regression task on a given dataset under known or unknown con-

straints. In particular the context of this thesis pertains to the application of an AutoML approach

to solve Tiny Machine Learning (TinyML) tasks, where hardware constraints (e.g., memory

and energy consumption) are taken into account during the decision process to select the optimal

model.

This work has been carried out thanks to the collaboration with STMicroelectronics, a lead-

ing company for the production and sale of Micro-Controllers Units (MCUs), which has made

it possible to develop a system that, starting from a given sketched Deep Neural Network, a

dataset, and a target MCU, it is able to find out networks that satisfy the limited hardware con-

straints of the MCU while optimizing the performance metric.

The thesis is organized as follows. Chapter 2 will formally introduce the research field of the

thesis regarding the problem of Automated Machine Learning by listing current state-of-the-art

solutions both open source and web services.

Then Chapter 3 will give an overview of most of the Global Optimization paradigms for

searching the model with the highest generalization. Chapter 4 will introduce in detail the

Bayesian Optimization (BO) framework, one of the most used in Machine Learning commu-

nity, which was the object of much of the PhD research leading to the publications of sev-

eral works ([j3],[j5],[j6],[c4],[c5],[c6],[c7],[c8]). Chapter 5 will address the limitations of BO

framework in the development of AutoML, AutoDL and NAS applications and the current open

research challenges to overcome these limitations. Such challenges were addressed during the

PhD, and as a result several papers were submitted and published ([j2],[j4],[c2],[c3]). Finally,

Chapter 6 presents the AutoTinyML approach proposed as a major contribution of this thesis

([j1,c1]), while Chapters 7 and 8 the results of several experiments on the proposed approach are

reported, also on two real-use cases provided by STMicroelectronics. In the conclusion of the

thesis, in Chapter 9, several considerations will be made regarding the potential of the proposed

system, its limitations and possible future developments. In addition, in Figure 1.1, a graphical

representation of the PhD thesis outline is reported, pointing out which are the relevant works

submitted and published during the PhD years.
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1.2 Contributions on publications

Journal

[j1] Perego, R., Candelieri A., Archetti F., & Pau D. AutoTinyML for microcontrollers: dealing

with black-box deployability. Expert Systems With Applications (2021). (Under review)

This publication proposes a novel optimization approach more suitable for TinyML tasks for

dealing with black-box and coupled constraints. Different from state-of-the-art approaches that

propose multi-objectives optimization, which can be more complex to solve and require analyt-

ical representations of constraints, this proposed approach is more data efficient and more suit-

able for problems with constraints of different nature (e.g., crash constraints – out-of-memory

during the training model).

I designed and performed the experiments implementing the AutoTinyML framework, analyzed

and performed statistical tests, and contributed on writing several sections of the paper.

[j2] Candelieri A. Perego R., & Archetti F. Green Machine Learning via Augmented Gaus-

sian Processes and Multi-Information SourceOptimization, Soft Computing, Special Issue on

Optimization and Machine Learning (2020). (Ahead of printing)

This publication proposes a novel optimization approach based on Multi-Source/Fidelity ap-

proach. The novel aspect is that this approach is able to avoid variance starvation and premature

convergence to local optima during the optimization process exploiting the balance among the

several “sources” available during the optimization.

I collaborated to designed and performed the experiments, analyzed and interpreted data and

contributed to numeric and charts results.

[j3] Candelieri, A., Perego, R., Giordani, I., Ponti, A., & Archetti, F. Modelling human active

search in optimizing black-box functions. Soft Computing, 24, 17771–17785 (2020).

https://doi.org/10.1007/s00500-020-05398-2

Based on the question “how the humans optimize a black-box problem” this paper proposes an

analysis of the decision process of humans to perform an optimization of a black-box problem.

In particular, this paper shows how the Bayesian Optimization approach can be seen as the clos-

est optimization strategy to human thinking in respect to other strategies as Genetic Algorithm,

Particle Swarm Optimization, Direct, and others.

I designed the experiments, performed and interpreted statistical results, contributed to several

sections including the numeric and charts results.

https://doi.org/10.1007/s00500-020-05398-2
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[j4] Sergeyev, Y. D., Candelieri, A., Kvasov, D. E., & Perego, R. Safe global optimization

of expensive noisy black-box functions in the δ-Lipschitz framework. Soft Computing, 1-21,

17715–17735 (2020). https://doi.org/10.1007/s00500-020-05030-3

This publication proposes a novel black-box safe optimization strategy named ”δ-Lipschitz

framework”. In the current state of the art, the ”safe” optimization aspect of a noisy function

has been neglected. This paper tries to propose an optimization strategy in the presence of noisy

objective functions. The main goal of this work was to formalize and test a novel optimization

algorithm to ”safe” optimize a noisy black-box problem. The notion ”safe” means that the ob-

jective function f (x) during the optimization process should not violate a ”safety” threshold, for

instance, a certain a priori given value in a maximization problem.

I designed and performed the experiments on a suite of test functions, analyzed and interpreted

the results, contributed to discuss the numeric and charts results.

[j5] Galuzzi, B. G., Perego, R., Candelieri, A., & Archetti, F. Bayesian optimization for full

waveform inversion. In New Trends in Emerging Complex Real Life Problems (pp. 257-264)

(2018). Springer, Cham. https://doi.org/10.1007/978-3-030-00473-6 28

This publication proposes the application of Bayesian Optimization strategy, instead of meta-

heuristics widely adopted in literature, to optimize a Full Waveform Inversion problem, which

is a computational method to estimate the physical features of Earth subsurface. The application

of Bayesian Optimization proves to better support the FWI problem.

I collaborated with Galuzzi to design and perform the experiments related to applying the

Bayesian Optimization approach, analyzing and interpreting the results. I contributed partic-

ularly to the Bayesian Optimization section and the numeric results section.

[j6] Candelieri, A., Perego, R., & Archetti, F. Bayesian optimization of pump operations in

water distribution systems. Journal of Global Optimization, 71(1), 213-235 (2018).

https://doi.org/10.1007/s10898-018-0641-2

This publication proposes to adopt the Bayesian Optimization strategy to a simulation optimiza-

tion problem in Water Distribution Network. The paper proves that this model-based optimiza-

tion approach can be a valid replacement of the metaheuristic algorithms currently adopted in

literature for simulation optimization.

I collaborated with Candelieri to design and perform the experiments adopting a hydraulic sim-

ulator, analyzing and interpreting the results. I contributed to the results section of the paper

with numeric and charts of the results.

https://doi.org/10.1007/s00500-020-05030-3
https://doi.org/10.1007/978-3-030-00473-6_28
https://doi.org/10.1007/s10898-018-0641-2
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Conferences

[c1] Perego, R., Candelieri, A., Archetti, F., & Pau, D. (2020, September). Tuning Deep Neural

Network’s Hyperparameters Constrained to Deployability on Tiny Systems. In International

Conference on Artificial Neural Networks (pp. 92-103). Springer, Cham.

This work proposes a novel optimization approach more suitable for TinyML tasks for dealing

with black-box and coupled constraints. In particular, the work focuses on comparing manual

tuning of a Convolutional Deep Neural Network (CNN) in a real-life application in respect to

adopting an automatic tuning system that choices CNN based on black-box constraints (e.g., the

hardware capacity embedded system).

I designed and performed the experiments, analyzed and interpreted data and results and I was

the speaker at the conference.

[c2] Candelieri A., Perego R., Giordani I., & Archetti F., Composition of kernel and acquisition

functions for High Dimensional Bayesian Optimization. Learning and Intelligent Optimization

conference 14 (LION)(2020).

This work proposes a model-based optimization approach that leverages the additivity – aka sep-

arability – of the objective function into mapping both the kernel and the acquisition function of

the Bayesian Optimization in lower-dimensional subspaces. In respect to traditional Bayesian

Optimization, this approach makes more efficient both the learning/updating of the probabilistic

surrogate model and the optimization of the acquisition function.

I collaborated with Candelieri to design and perform the experiments, and analyze the results.

[c3] Candelieri, A., & Perego, R. (2019). Dimensionality Reduction methods to scale Bayesian

Optimization up. Numerical Computations: Theory and Algorithms (NUMTA), 167.

This work proposes to exploit the dimensionality reduction intrinsically offered by Deep au-

toencoders and then perform BO in the induced latent space. The proposed approach shows to

make the whole optimization process more efficient, reducing the effort to learn and update the

probabilistic surrogate model.

Under the supervision of Candelieri, I designed and performed the experiments on the imple-

mented Machine Learning pipeline, analyzing and interpreting the results, and I was the speaker

at the conference.

[c4] Candelieri, A., Perego, R., & Archetti F. Global Optimization of a Machine Learning based

Forecasting Pipeline. Data Science & Social Research (DSSR) (2019), Milan, Italy.



Chapter 1. Introduction 8

This work presents a Bayesian Optimization framework for the optimal design of a forecasting

pipeline based on time series clustering and Artificial Neural Networks. Random Forest has

been adopted as probabilistic surrogate model, due to the nature of decision variables (e.g., con-

ditional and discrete hyperparameters) in the pipeline design.

Under the supervision of Candelieri, I designed and performed the experiments adopting Re-

inforcement and Model-based optimization techniques for water demand forecasting, analyzed

and interpreted the results and I was the speaker at the conference.

[c5] Candelieri, A., Galuzzi, B.G., Giordani, I., Perego, R., & Archetti, F. Optimizing partially

defined black-box functions under unknown constraints via Sequential Model Based Optimiza-

tion: an application to Pump Scheduling Optimization in Water Distribution Networks. Learn-

ing and Intelligent Optimization conference 13 (LION)(2019), Chania, Crete, Greece.

This work proposes a Sequential Model-based Optimization framework for solving optimization

problems characterized by a black-box, multi-extremal, expensive, and partially defined objec-

tive function under unknown constraints. This is a typical setting for simulation-optimization

problems, where the objective function cannot be computed for some configurations of the deci-

sion/control variables due to the violation of some (unknown) constraint. The relevant difference

with traditional Bayesian Optimization is that the optimization process is performed on the esti-

mated feasibility region, instead of the entire search space, reducing the time and computational

resources to learning and updating the surrogate model.

I collaborated to adapt a novel constrained Model-based optimization approach for the optimiza-

tion of Water Distribution Network, and I designed and performed the experiments, analyzed and

interpreted the results.

[c6] Tsai, Y. A., Pedrielli, G., Mathesen, L., Zabinsky, Z. B., Huang, H., Candelieri, A., &

Perego, R. (2018, December). Stochastic optimization for feasibility determination: an ap-

plication to water pump operation in water distribution network. In 2018 Winter Simulation

Conference (WSC) (pp. 1945-1956). IEEE.

This work addresses the problem of analyzing the effect of the Variable Speed Pumps (VSP)

regulation on the pressure distribution of a Water Distribution Systems (WDN), which is highly

correlated to leakages and energy costs in WDN. This paper proposes a new stochastic partition-

ing algorithm based on Probabilistic Branch and Bound to optimize in a more feasibility-aware

manner during the optimization process.

I mainly collaborated with Tsai to implement the approach based on interactions with a hydraulic

simulator. I also supported to analyze and interpret the results and I gave my contribution on

section mainly related to the definition of the optimization problem.
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[c7] Galuzzi, B., Perego, R., Candelieri, A. & Archetti, F. Bayesian Optimization for Full Wave-

form Inversion. International Conference On Optimization and Decision Making (ODS) (2018),

Taormina, Italy.

This work proposes a comparison between the application of Bayesian Optimization strategy

and Simulated Annealing algorithm, widely adopted in literature, to optimize a Full Waveform

Inversion problem, a computational method to estimate Earth’s physical features subsurface.

The Bayesian Optimization application proves to better support the FWI problem producing a

more precise starting approximate FWI model as starting point for local search algorithms (e.g.,

Gradient Descent algorithm).

I supported to implement, design and perform the experiments. I also analyzed and interpreted

the results.

[c8] Candelieri, A., Perego, R., & Archetti, F. (2018, June). Intelligent pump scheduling opti-

mization in water distribution networks. In International Conference on Learning and Intelligent

Optimization (pp. 352-369). Springer, Cham.

This work proposes a sequential optimization method based on Approximate Dynamic Program-

ming in order to find a control policy defined as a mapping from states of the system to actions,

i.e. pump settings in a Water Distribution Network. The novelty of the proposed approach is that

it provides a policy, a strategy to decide how to act from time step to time step according to the

physical system’s observation instead of optimizing the problem at any time step with Bayesian

Optimization and metaheuristics approaches.

I collaborated with Candelieri to design and perform the experiments, analyze and interpret the

results, and I contributed to several sections among the discussion of numeric and charts of the

results.



Chapter 2

Automated Machine Learning

2.1 AutoML

Automated Machine Learning (AutoML) is the process of automating iterative activities for the

development of time-consuming Machine Learning models. It enables data scientists, analysts

and developers to create Machine Learning models with high scalability, efficiency and produc-

tivity, while ensuring model quality.

The traditional development of Machine Learning models requires a high use of resources, in-

depth domain knowledge and a considerable amount of time to produce and compare numerous

models. With AutoML, it is possible to speed up the time it takes to get machine learning mod-

els ready for production with great ease and efficiency.

In fact, each ML algorithm has capabilities for class/label discrimination (for a classification

task) and the ability to estimate values (for a regression task) that can vary significantly based

on the data used and how they are configured to solve the target problem.

This Section will introduce the aspect of how to decide which is the best ML algorithm to adopt

for a specific target problem, and how to configure the ML algorithm selected in order to provide

the optimal solution with the highest performance in terms of resolution of the problem.

2.1.1 Model Selection

The first aspect to consider for implementing AutoML system is the choice of the optimal ML

algorithm to solve a given target problem, which is known as Model Selection.

A learning algorithm A maps training data points (aka instances) x1, . . . ,xn to their correspond-

ing “targets” y1, . . . ,yn, where yi is continuous in the case of regression or a “label” (cate-

gorical value) in the case of classification. All the pairs (xi,yi) are organized into a dataset

D = {(xi,yi)}1:n.

10
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The Model Selection problem is formulated as follows:

A∗ ∈ argmin
A∈A

1
k

k

∑
i=1

L(A,D(i)
train,D

(i)
valid) (2.1)

Where L(A,D(i)
train,D

(i)
valid) is the loss achieved by A when trained on D(i)

train and evaluated on

D(i)
valid . The set A contains all the available ML algorithms, A = {A(1), . . . ,A(h)}.

Moreover, L can be anyone of the possible loss functions, depending on the specific learning

task addressed by A. For instance, in the case of a classification task, L might be the Binary

Cross-Entropy or the Categorical Cross-Entropy (aka Hinge Loss), for binary and multi-class

classification, respectively. When a regression task is considered, L might be, for instance, the

(Root) Mean Squared Error (RMSE), the Mean Absolute Error (MAE) or the Mean Percentage

Absolute Error (MAPE).

To evaluate in a more realistic way the performance of a selected algorithm A(h) is adopted

the k-fold cross validation which splits the training data into k equal-sized validation folds,

D(1)
valid , . . . ,D

(k)
valid and associated training sets D(1)

train, . . . ,D
(k)
train, where D = D(i)

train
⋃

D(i)
valid ,∀i =

1, . . . ,k.

With this statistical procedure can be checked the ability of algorithm A to predict new data that

have not been used during the training process, for each validation fold k, and to give an idea of

how the algorithm A(h) will generalize to an independent and unseen dataset.

While Model Selection is aimed at selecting the optimal algorithms among a set of alterna-

FIGURE 2.1: An example of Model Selection. A set of “base” algorithms are available in the
set A , where “base” refers to the adoption of default values for the algorithm’s hyperparameters

(Archetti and Candelieri, 2019)

tives, Hyperparameter Optimization (HPO), discussed in the following Subsection, is aimed at

optimizing the hyperparameters of a given learning algorithm A. Thus, in Model Selection hy-

perparameters are “fixed” a-priori and the optimal algorithm must be efficiently selected among
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a set of possible candidates, while in HPO the algorithm is “fixed” a-priori and the optimal val-

ues for its own hyperparameters are to be efficiently identified.

Before addressing HPO, it is important to clarify the difference between training and validating

a ML model, as well as the difference between parameters and hyperparameters of a ML algo-

rithm.

The algorithm A is characterized by:

• a vector θ of model parameters, whose value is learned directly from data, during the

training phase

• a vector of hyperparameters γ ∈ Γ that change the way the algorithm “learns” how to set

the values for θ. Hyperparameters can be set up manually or optimized on the validation

phase.

For example, the weights on the connections of an Artificial Neural Network (ANN) are param-

eters θ to be learned, while number of hidden layers, number of neurons in each hidden layer,

activation function and learning rate are hyperparameters γ which rule how the optimal parame-

ters are learned.

The final aim of training is to estimate the value θ̂ minimizing the training loss Ltrain computed

on a given training dataset or fold. The resulting trained ML model can be then validated on

a specific validation dataset or fold D(i)
valid , measuring the corresponding validation loss Lvalid ,

which is the argument of 2.1. During the validation phase, the estimate θ̂ does not change. The

hyperparameters γ are not estimated during the training phase, they must be set up before train-

ing. Therefore, θ̂ as well as Ltrain and Lvalid depend on the value of γ.

Many ML algorithms, such as ANN or Support Vector Machines (SVM), use an analytical form

for Ltrain, so that θ̂ can be estimated by gradient-based methods.

However, in particular for optimizing Deep Neural Network a combination of two levels op-

timization are proposed in (Franceschi et al., 2018). The authors propose to optimize the ML

problem exploiting a bilevel optimization that takes into account both the parameters and the

hyperparameters of a Deep Neural Network using a new formalization of a gradient as hyper

gradient.

Other ML algorithms do not have parameters (e.g., instance-based algorithms such as K-nearest

neighbours) but have hyperparameters like K or the similarity metric used. On the contrary,

Lvalid is black-box and its optimization, depending on the hyperparameters γ, requires derivative-

free Global Optimization (GO) approaches. When k-fold cross validation is concerned, the com-

mon way to compute the overall Lvalid is to average the values obtained on the k different folds,

as in a randomized experiment.

It is important to remark that the argument of 2.1 is the average of the loss on each fold of a

k-fold cross validation procedure. This allows to obtain just a single value for each γ, possibly
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noisy in the case that the algorithm A is affected by some randomness (e.g., initial weights of

an ANN). Another possibility is to consider the distribution of the losses on the k folds and then

use the information collected on the resulting randomized experiment for implementing early

stopping for those hyperparameters unlikely to yield a good result (Florea and Andonie, 2018).

The latter principle is used in recent AutoML libraries such as Hyperband proposed in (Li et al.,

2017b), halving sequentially the set of configurations to save “budget” for the most promising

ones.

2.1.2 Hyperparameter Optimization

The second aspect to consider to implement an AutoML system is the choice of the optimal

configuration of a selected ML algorithm A to solve the target problem, and it knows as Hyper-

Parameter Optimization (HPO).

Given n hyperparameters γ1, ...,γn with domains Γ1, ...,Γn, the hyperparameter space Γ is a

subset of the product of these domains Γ1× ...×Γn. Γ is a subset because certain settings of

one hyperparameter render other hyperparameters inactive. For example, the hyperparameters

determining the specifics of the third layer of an ANN are not relevant if the network depth is

less than three. Likewise, the hyperparameters of SVM with polynomial kernel are not relevant

if we use a different kernel instead.

More formally, we say that a hyperparameter γi is conditional on another hyperparameter γ j,

that is γi is active if and only if hyperparameter γ j takes values from a given set Vi( j) ⊂ Γ j;

in this case we call γ j a parent of γi. Conditional hyperparameters, generate a tree-structured

space or, in some cases, a Directed Acyclic Graph (DAG). Given such a structured space Γ, the

(hierarchical) hyperparameter optimization problem can be written as:

γ
∗ ∈ argmin

γ∈Γ

1
k

k

∑
i=1

L(Aγ,D
(i)
train,D

(i)
valid) (2.2)

The two following Figures 2.2 and 2.3 propose two examples of hyperparameter optimization

for an SVM and an ANN, respectively.

The Figure 2.2 shows the conditional tree generated by the available hyperparameters of SVM

algorithm, where the γ3 (the length scale σ) exists due the choice of the γ2 equals to RBF , which

represents the kernel adopted inside of algorithm. Instead, in the example of HPO for ANN

(Figure 2.3) there are ten hyperparameters whose four are conditioned to the others, two hyper-

aparameters related to the choice of the optimizer adopted during the training process and three

other hyperparameters for the definition of the shape and depth of the ANN.

Both Model Selection and HPO are Global Optimization problems characterized by a black-box,

expensive and multi-extremal objective function. However, they present relevant differences that

drive the choice of the optimization methods to solve them. More precisely, Model Selection is
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FIGURE 2.2: An example of HPO task for a Support Vector Machine (SVM) classifier with
linear or Radial Basis Function (RBF) kernel. JC and Jσ are the ranges for values of the regu-

larization hyperparameter C and the RBF kernel’s hyperparameter σ

FIGURE 2.3: An example of HPO task for an Artificial Neural Network (ANN) classifier
with at maximum 3 hidden layers. J1, J2 and J3 are the ranges for number of neurons in the
hidden layer 1, 2 and 3, respectively. In addition a choice of two types of optimizers (SGD and

RMSprop) are considered to train the ANN.

a problem characterized by a single discrete decision variable (i.e., the best algorithm among a

set of predefined alternatives). On the contrary, HPO involves as many decision variables as the

hyperparameters of the learning algorithm, and they can be continuous, discrete, mixed as well

as conditional. The following subsection will present the most general AutoML problem defini-

tion, involving, at the same time, both Model Selection and HPO, which is, from a mathematical

point of view, an extension of the HPO formulation.
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2.1.3 Combined Algorithm Selection and Hyperparameter optimization (CASH)

An AutoML system has to take into account selecting, at the same time, the optimal hyperpa-

rameters configuration on an optimal ML algorithm for solving the target problem and can be

so-called Combined Algorithm Selection and Hyperparameter optimization (CASH) (Thornton

et al., 2013).

More formally, given a set of algorithms A = A(1), ...,A(n) with associated hyperparameter

spaces, Γ(1), ...,Γ(n), the CASH problem can be formalized as follows:

A∗γ∗ ∈ argmin
A( j)∈A ,γ∈Γ( j)

1
k

k

∑
i=1

L(A( j)
γ ,D(i)

train,D
(i)
valid) (2.3)

It has to be remarked that this problem can be reformulated as a single combined hierarchical

HPO problem with hyperparameter space Γ= Γ(1)∪ ...∪Γ(n)∪{γr}, where γr is a new root-level

hyperparameter that selects between algorithms A(1), ...,A(n). The root-level hyperparameter of

each subspace Γ(i) are made conditional on γr, as can be seen in Figure 2.4.

FIGURE 2.4: An example of CASH considering an SVM and an ANN classifier. Description
of the hyperparameters of each algorithm follows from previous Figure 2.2 and Figure 2.3,
while γr is the further “root” CASH hyperparameter introduced to model the choice between

the Machine Learning algorithm

Another critical feature is that the value of the loss function, for each hyperparameter configura-

tion, is the outcome of the randomized process of k fold-cross validation. An often-overlooked

point is to measure the uncertainty of the prediction error estimators which is important because

the accuracy of model selection is limited by the variance of model estimates. Cross validation
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provides an unbiased estimate of the prediction error on the training set, but the estimation of

the variance is still crucial. An important contribution to this problem is given in (Bengio and

Grandvalet, 2004).

In a recent paper (Jiang and Wang, 2017) a uniform normalized variance is proposed which not

only measures model accuracy but relates it to the number of folds.

Finally, AutoML could be in principle tackled through any derivative-free Global Optimization

method. The most relevant approaches will be discussed in the following Chapter, discussing

pros and cons with respect to the characteristic of the specific setting (i.e., Model Selection,

HPO or CASH). Here it is important to anticipate that Sequential Model-based Bayesian Op-

timization (SMBO) – or simply Bayesian Optimization (BO) – is currently the most widely

adopted method in developing open-source and commercial tools for AutoML. SMBO is a ver-

satile stochastic optimization framework that can work with both categorical and continuous

hyperparameters, and that can exploit hierarchical structures stemming from conditional param-

eters (Kotthoff et al., 2017). The main reason of its success is its sample efficiency in select-

ing promising algorithms and/or hyperparameters configurations by effectively dealing with the

exploration-exploitation dilemma, which will be introduced in Section 4.2.

2.1.4 Recents advances in AutoML

Currently in the community of Machine Learning (ML) and Data Scientist exist several open

source frameworks and webservices that are able to efficiently apply AutoML techniques to a

single ML algorithm or an entire ML pipeline. This section lists several frameworks currently

available to be used even by people who are not experts in the domain of Machine Learning and

optimization.

Open source.

Auto-WEKA1 is one of the first AutoML system based on CASH paradigm. The first version of

Auto-WEKA was proposed in (Thornton et al., 2013) and it is implemented in Java. Indeed, this

system uses the WEKA Machine Learning library written in Java, which was the first to be cho-

sen as library, because it used several implementation of available classification algorithms in

literature (e.g. Multilayer Perceptron, BayesNet, J48 and others). This system adopts Bayesian

Optimization paradigm based on TPE (Bergstra et al., 2011) and SMAC (Hutter et al., 2011)

libraries. The first library is based on the Tree-structured Parzen Estimator which is a prob-

abilistic density estimator, while the second library uses Random Forest as a surrogate model

that shows better performance in terms of optimization in respect of Gaussian Processes, which

are common choice in the Bayesian Optimization paradigm. This library with the version 2.0 is

natively installed as an optional package in the WEKA library written in Java. The main goal

1https://github.com/automl/autoweka

https://github.com/automl/autoweka
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of this system is to provide to the final users a very autonomous optimizer using GUI or CLI

interface, which works without any suggestion of the final users. With this new version was

added the possibility to optimize also Regression algorithms besides the classification ones.

hyperopt-sklearn2 is an AutoML open source library which is written in Python proposed in

(Komer et al., 2014), it is the first attempt to apply AutoML approach in combination with

python library Sklearn (Pedregosa et al., 2011) that is widely used by Machine Learning com-

munity. The optimization paradigm of this library is hyperopt3 (Bergstra et al., 2013), which

enables to implement an optimization process that could exploit scalability in respect of the

Auto-WEKA (Thornton et al., 2013) implemented, in its first version, only in Java without the

possibility to scale the computation of the optimization process.

Auto-sklearn4 is a library that could be considered as the first approach to a complete AutoML

system written in Python language. However, it is different from Auto-WEKA 2.0 and hyperopt-

sklearn because Auto-sklearn implements the Bayesian Optimization paradigm and also Meta-

Learning techniques. This library, firstly proposed in (Feurer et al., 2015), tries to follow the

same path of Auto-WEKA associating its implementation with a famous Machine Learning li-

brary written in Python named Sklearn (Pedregosa et al., 2011). The adoption of sklearn library

is already experimented by hyperopt-sklearn in a smaller and less complete library. This system

for the BO paradigm exploits SMAC35, currently supported version on Github of the originally

SMAC algorithm reimplemented totally in Python language to promote the scalability of the

computation. Auto-sklearn showed its incredible performance by winning six out of ten phases

of the first ChaLearn AutoML challenge. A comprehensive analysis on over 100 diverse datasets

showed that it substantially outperforms the previous state of the art in AutoML. Recently a new

version of Auto-sklearn, is proposed in (Feurer et al., 2020) named Auto-sklearn 2.0.

Auto-Keras67 is an open source Python library for AutoML. It is developed by DATA Lab at

Texas A&M University and community contributors. Auto-Keras provides functions to au-

tomatically search for architecture and hyperparameters of Deep Neural Networks with Keras8

Deep Learning framework. This library adopts internally Keras-Tuner9 a Python library that im-

plements several optimization algorithms (Bayesian Optimization, Hyperband, RandomSearch)

2https://github.com/hyperopt/hyperopt-sklearn
3https://github.com/hyperopt/hyperopt
4https://github.com/automl/auto-sklearn
5https://github.com/automl/SMAC3
6https://github.com/jhfjhfj1/autokeras
7https://autokeras.com/
8https://keras.io/
9https://github.com/keras-team/keras-tuner

https://github.com/hyperopt/hyperopt-sklearn
https://github.com/hyperopt/hyperopt
https://github.com/automl/auto-sklearn
https://github.com/automl/SMAC3
https://github.com/jhfjhfj1/autokeras
https://autokeras.com/
https://keras.io/
https://github.com/keras-team/keras-tuner
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for optimizing specifically DNN architectures for classification and regression tasks.

TPOT10 is a Tree-based Pipeline Optimization Tool (TPOT), proposed in (Olson and Moore,

2019), and it is a Python open source implementation of AutoML system that exploits Ge-

netic Programming for optimizing Machine Learning pipelines of classification tasks. TPOT

is a wrapper for the Python machine learning package, such as Scikit-learn, and adopts Python

package named DEAP (Fortin et al., 2012) to implements Genetic Programming algorithm. The

operators of selection, crossover and mutation are provided by NSGA-II (Deb et al., 2002) dur-

ing the optimization process of a pipeline. To show the efficacy of this system the authors

evaluated it on 150 supervised classification benchmarks11, with different kinds and number of

attributes for each dataset. In respect of the others AutoML systems reported in this section

TPOT is the only one that adopts a different optimization paradigm based on Metaheuristic ap-

proach. However it has the main drawback of evaluating a huge number of Machine Learning

pipelines configurations to converge to an hypothetical optimal pipeline configuration.

H2O12 is an open source written in Java language, in-memory, distributed, fast, and scalable

Machine Learning and predictive analytics platform that allows to build Machine Learning mod-

els on Big Data and provides easy deployability of those models in an enterprise environment.

H2O’s REST API allows access to all the capabilities of H2O from an external program or

script via JSON over HTTP. The Rest API is used by H2O’s web interface (Flow UI), R bind-

ing (H2O-R), and Python binding (H2O-Python). H2O’s AutoML can be used for automating

the Machine Learning workflow, which includes automatic training and tuning of many models

within a user-specified time-limit. H2O uses Stacked Ensembles which is a feature based on

using only the best model of each family algorithm available previously trained.

Dragonfly13 is a scalable Bayesian Optimization Python open source library proposed in (Kan-

dasamy et al., 2020). However, in respect of the other open source libraries, it is a general-

purpose optimizer that can be also used for AutoML task (e.g. classification task exploiting

DNN). Indeed this library is composed by several approaches proposed in literature to manage

problems with a large number of dimensions (as in DNN models) and parallelization systems

in order to reduce the time required from the library for completing the optimization process on

a classification task. Internally, it adopts a recent AutoML system for DNN proposed in (Kan-

dasamy et al., 2018) so-called NASBOT.

10http://epistasislab.github.io/tpot/
11https://github.com/EpistasisLab/penn-ml-benchmarks
12https://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html#experimental-features
13https://github.com/dragonfly/dragonfly

http://epistasislab.github.io/tpot/
https://github.com/EpistasisLab/penn-ml-benchmarks
https://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html#experimental-features
https://github.com/dragonfly/dragonfly
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Webservice.

Google AutoML14 is a service of Google Cloud Platform (GCP) for automating the whole pro-

cess carried out by a data scientist. In more detail, AutoML suite of GCP can be separated in

three macro categories which are defined by the format of the dataset that we want to adopt to

solve a specific task. In particular there are three types of Google services for AutoML, which

are AutoML Vision15/Video16 Intelligence based on images datasets, AutoML Natural Lan-

guage17/Translation18 based on text datasets and the most general purpose one which is based

on structure dataset (e.g. relational tables) named AutoML Tables19.

The last Google Service is the most relevant because is applicable to several use cases. The

main goal of this system is to propose the best Machine Learning model to solve classification

or regression tasks on a given structured dataset with the aim of using only the resources avail-

able on GCP, which are “virtually” unlimited in terms Central Processing Units (CPU), Random

Access Memory (RAM) and dedicated hardware such as Graphical Processing Unit (GPU).

This system is currently taking into account a very limited set of ML algorithms, which are:

• Linear

• Feedfoward Deep Neural Network

• AdaNet

• Ensembles of various model architectures

As a featuring engineering task Google AutoML Tables adopts several kinds of preprocessing

techniques depending on the types of features contained in the given dataset. For example, the

normalization of data is adopted for numeric continuous features, while several kinds of new

representations are adopted for categorical features, such as One-Hot encoding or a more com-

plex embedding representations.

Amazon SageMaker Autopilot20 is an AutoML service offered by Amazon for its Machine

Learning platform Amazon SageMaker. The final user can use this service through SageMaker

Python SDK or other scripting languages (e.g., R, GO and others), which gives to the user the

API access to service of hyperparameters tuner on Amazon Cloud Platform (aka AWS).

Amazon SageMaker Autopilot supports only the optimization of Machine Learning pipelines

based on structured datasets that are hosted mainly on cloud storage system in AWS platform.

The ML tasks supported by this service are Binary and Multiclass classification and regres-

sion tasks. However the documentation of Amazon SageMaker Autopilot does not report the
14https://cloud.google.com/automl?hl=en
15https://cloud.google.com/vision/overview/docs?hl=it#automl-vision
16https://cloud.google.com/video-intelligence/automl/docs?hl=it
17https://cloud.google.com/natural-language/automl/docs?hl=it
18https://cloud.google.com/translate/automl/docs?hl=it
19https://cloud.google.com/automl-tables/docs?hl=it
20https://aws.amazon.com/it/sagemaker/autopilot/

https://cloud.google.com/automl?hl=en
https://cloud.google.com/vision/overview/docs?hl=it#automl-vision
https://cloud.google.com/video-intelligence/automl/docs?hl=it
https://cloud.google.com/natural-language/automl/docs?hl=it
https://cloud.google.com/translate/automl/docs?hl=it
https://cloud.google.com/automl-tables/docs?hl=it
https://aws.amazon.com/it/sagemaker/autopilot/
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models and the preprocessing techniques, which are adopted to optimize the Machine Learning

pipelines.

In addition, a relevant newest feature related to Amazon Sagemaker is the Amazon SageMaker

Neo21 which enables a reduction of hardware requirements to compute the inference of Deep

Neural Networks models with different Deep Learning frameworks (such as TensorFlow, Py-

torch and others).

Azure Automated Machine Learning22 is the AutoML service provided by Microsoft on its

machine learning cloud platform so-called Azure Machine Learning. The final user can inter-

act with Microsoft cloud platform and its AutoML service through Python SDK or Command

Line Interface (CLI) or Graphical Unit Interface (GUI) with a common browser. With this web-

service it is possible to automatically optimize and perform classification, regression and time

series forecasting tasks. Currently, the only supported dataset for Azure Automated Machine

Learning has to be in tabular form. As the others AutoML cloud solutions mentioned before,

Microsoft enables to automatize also the preprocessing of the attributes of the input dataset with

widely used techniques as normalization, One-Hot encoding and others to fix problems such as

missing values that could be present into the dataset.

This system is currently taking into account a wider set of ML algorithms in respect of Google,

which are the following: Averaged Perceptron Classifier, Bernoulli Naı̈ve Bayes, Decision Tree,

Extra Trees, Gradient Boosting, K-Nearest Neighbours Classifier, Light GBM Classifier, Lin-

ear Support Vector Machine, Logistic Regression, Multinomial Naı̈ve Bayes, Random Forest,

SGD Classifier, Support Vector Machine, TensorFlow Deep Neural Network Classifier, XG-

Boost Classifier.

Another relevant feature of this service is that it is possible to apply this AutoML system to

Azure Machine Learning Pipeline. The latter functionality of the Azure Cloud platform allows

the final user to create a ML pipeline to solve a specific task (classification, regression, and time

series forecasting), optimizing all components within the pipeline with multiple ML models in

the same optimization process.

Sigopt23 is sold as a “Black Box Optimization as a Service”. The main core of this web service

optimizer was initially delevoped for a project named MOE by Cornell University. The final

user has to interact through REST API in several languages like Java, R and Python with the

most updated version of each language. The main idea behind this optimization service is that

the user is totally blind to the computational architecture infrastructure which is adopted for

optimization. To use this service the user has to subscribe an Academia or Enterprise account.

21https://aws.amazon.com/it/sagemaker/neo/
22https://azure.microsoft.com/it-it/services/machine-learning/automatedml/
23https://sigopt.com/

https://aws.amazon.com/it/sagemaker/neo/
https://azure.microsoft.com/it-it/services/machine-learning/automatedml/
https://sigopt.com/
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Recently this system demonstrated the ability to increase performances in particular of NLP

model based on DNN as showed in SigOpt Blog24

2.2 AutoML for Deep Neural Networks

When AutoML is used to optimize a Deep Neural Network (DNN) some specificities about

Deep Learning must be appropriately considered, in particular with regard to the types and

composition of layers constituting the network’s architecture. Indeed, in literature it is possi-

ble to distinguish two main tracks related to Automated Deep Learning (AutoDL): the problem

is addressed either as HPO or – from a more advanced perspective – by considering both net-

work’s hyperparameters and architecture in the optimization process. This Section provides an

overview about the state of the art of both the two perspectives.

2.2.1 Automated Deep Learning as HPO Problem

Firstly, it should be noted that DNN could have ten times more hyperparameters than other ML

algorithms, which are characterized by a small number of hyperparameters. Despite the high

number of DNN’s hyperparameters that increases the complexity of the problem that needs to

be optimize, the AutoML framework is still applicable for searching the optimal configuration

of DNN, specifically by considering it as an HPO problem.

According with this vision, an initial approach was proposed in (Snoek et al., 2012) to optimize

a fully connected feed-forward network on the CIFAR-10 dataset, comparing Bayesian Opti-

mization (BO) against other evolutionary global optimization methods.

As the main result, BO was able to identify more accurate models than other optimization strate-

gies, and in less time. Moreover, BO was also able to surpass a human expert at selecting hy-

perparameters on the competitive CIFAR-10 dataset, beating the state of the art by over 3%.

Another application of AutoML for optimizing a DNN was proposed in (Mendoza et al., 2016).

They proposed Auto-Net 1.0, a system to optimize a fully connected feed-forward Deep Neu-

ral Network, for both classification and regression tasks. The system is implemented within

Auto-sklearn (Feurer et al., 2015) by adding to this library a new classification and regression

algorithm. The authors motivate the choice of exploiting the structure of Auto-sklearn, because

it allows them to leverage on existing parts of Machine Learning pipeline, such as data prepro-

cessing and feature preprocessing.

The authors of Auto-Net 1.0, following what is suggested in (Bergstra et al., 2013, 2011;

Domhan et al., 2015), distinguish between: (i) layer-independent network hyperparameters (e.g.,

batch size, number of hidden layers, optimizer and learning rate) which affect both architecture

24https://sigopt.com/blog/efficient-bert-overview/ [Accessed on: 30/08/2020]

https://sigopt.com/blog/efficient-bert-overview/


Chapter 2. Automated Machine Learning 22

and learning, and (ii) per-layer hyperparameters (e.g., activation function, number of units),

which are set for each layer. For all types of supervised learning task (binary, multiclassification

and regression) they optimize the same configuration space composed by 63 hyperparameters,

which are reported with the table in Figure 2.5. Authors kept the number of hyperparameters

by limiting the number of layers in one to six. With respect to the optimizer to use for learning

network’s weight, authors have considered several famous optimizers in literature (e.g. vanilla

stochastic gradient descent (SGD), stochastic gradient descent with momentum (Momentum),

Adam (Kingma and Ba, 2014), Adadelta (Zeiler, 2012), Nesterov momentum (Nesterov, 1983)

and Adagrad (Duchi et al., 2011)).

FIGURE 2.5: Hyperparameter configuration space of Auto-Net 1.0 proposed in (Mendoza
et al., 2016)

With this initial and limited work (Mendoza et al., 2016), due to the use of only feed-forward

Network, however, it is clear that the adoption of AutoML system to DNN, only as HPO task,

could lead to generating optimal and performing models.

Successively, in (Mendoza et al., 2019; Zimmer et al., 2020), a new version of Auto-Net, namely

Auto-Net 2.0 (aka Auto-pytorch) has been proposed. The main upgrades are related to the a

wider set of possible architectures for classification as well as regression tasks and the possi-

bility to implement HPO through BO – as in the previous version – or through BOHB (Falkner

et al., 2018), a combination of BO and Hyperband (Li et al., 2017b) to substantially improve the

optimization process efficiency.

Having several types of DNN architectures in Auto-Net 2.0, it has been defined a wider and

hierarchical search space in respect of the search space defined for Auto-Net 1.0 reported above

in Figure 2.5.

There are four types of DNN. First, Multi-Layer Perceptrons where each layer of the network is
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parameterized in respect of for example activation function and number of units. Second, Resid-

ual Neural Networks is a DNN composed by several blocks with same or different fixed DNN

architecture inside of each block and a famous residual network is ResNets. The authors of

Auto-Net 2.0 starting from the concept of ResNet network compose the network by M groups,

each of which composed by N residuals blocks in sequence.

Third and fourth, Shaped Multi-Layer Perceptrons and Shaped Residual Networks which allow

the authors to define a-priori several different shapes for both kinds of DNN as a funnel, long

funnel, diamond, hexagon, brick, or triangle of quite common use in DL community.

Moreover, as other parameters under optimization, Auto-Net 2.0 in respect of the previous ver-

sion, currently offers five different schedulers for modifying the optimizer’s learning rate during

the optimization process, which are: Exponential, Step, Cyclic (Smith, 2017), Cosine Anneal-

ing with Warm Restarts (Loshchilov and Hutter, 2016), and On Plateau (in case the performance

metric not improving for several iterations).

Furthermore, Auto-Net 2.0 supports several preprocessing techniques (e.g., Nyström (Christo-

pher et al., 2001), Kernel principal component analysis (Schölkopf et al., 1997), random kitchen

sinks (Rahimi and Recht, 2009) and truncated singular value decomposition (Halko et al., 2009))

which are retrieved by exploiting Auto-sklearn library. For all types of supervised learning tasks

(binary, multiclassification and regression), with Auto-Net 2.0, the authors increased almost of

two times the number of the hyperparameters that compose the configuration search space ar-

riving to a total 112 hyperparameters, which are reported in Figure 2.6.

As already mentioned above, the strength of Auto-Net 2.0 compared to the previous version is

also the optimizer used during the optimization process. In fact, the authors adopting BOHB can

drastically reduce the time to run the entire optimization process, because by leveraging Hyper-

band the optimizer invests most of the runtime in promising neural network configurations and

stops training neural network configurations with poor performance in advance. Furthermore,

after focusing only on the most promising regions of the research space in terms of DNN’s

performance metrics, it adopts TPE (Bergstra et al., 2011) to further refine and improve the

most promising network configurations. In addition, the authors of Auto-Net 2.0, point out that

BOHB is easily parallelizable, achieving almost linear speedup with an increasing number of

workers (Falkner et al., 2018).

None of the systems previously mentioned applies HPO task on DNN taking into account during

the optimization one or more computability constraints. Indeed, it happens that some hyperpa-

rameters configurations could require more computational resources than it was accounted for

initial hypothesis. For this reason, the work that will be presented in Chapter 6 could be con-

sidered a novel approach to Automated Deep Learning through constrained optimization in an

HPO problem.
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FIGURE 2.6: Hyperparameter configuration space of Auto-Net 2.0 proposed in (Mendoza
et al., 2019)
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2.2.2 Neural Architecture Search

Despite the successfully approaches reported in the previous Subsection, addressing AutoDL

as an HPO problem has many limitations. Indeed, HPO on a shallow neural network, such as

an MLP, can modify its architecture if number of layers and number of units for each layer

are among the hyperparameters to be optimized. However, when a DNN is considered, its

architecture is more complicated, with different types of layers (e.g., convolutional, dropout,

dense, etc.) and/or sub-networks which can be connected among them. Consequently, modelling

complicated deep architectures through hyperparameters becomes impractical as showed from

Figure 2.7.

FIGURE 2.7: On the top of the figure a traditional Multi-Layer Perceptron is represented,
instead in the bottom is represented a more complex Deep Neural Network based on fixed cells

and blocks with different types of layers

The need for efficiently searching for an optimal deep architecture led to develop appropriate

Neural Architecture Search (NAS) approaches (Elsken et al., 2019), such as Evolutional Algo-

rithms (EAs), Reinforcement Learning (RL), gradient-based methods (DARTs), Random Search

(RS), and Bayesian Optimization (BO).

The first approach is based on Evolutionary Algorithms (EAs) (Angeline et al., 1994; Floreano

et al., 2008; Stanley and Miikkulainen, 2002; Stanley et al., 2009), aimed at “evolving” neural
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architectures by following the paradigm of the natural evolution, that is generating new individ-

uals (i.e., architectures) by combining the fittest ones (i.e., the most accurate) while giving some

chance for casual mutation (i.e., random changes the generated architectures).

More precisely, in NAS the mutation operations can include to remove or add connections be-

tween layers or remove/add entire layers or altering some hyperparameters related to a single

layer (such as activation function and number of units) or the learning process (such as batch

size, number of training epochs, and learning rate).

In literature have been proposed several works that exploit EAs to solve NAS problem, the dif-

ferences between these several works (Elsken et al., 2018; Liu et al., 2018; Miikkulainen et al.,

2019; Real et al., 2017, 2019; Suganuma et al., 2017; Xie and Yuille, 2017) are essential in how

they sample the most promising parents (selection operation), update population, and generate

offsprings (mutation operation).

Indeed for selection operation, several works (Liu et al., 2018; Real et al., 2017, 2019) adopt

tournament selection (Goldberg and Deb, 1991), a famous selection approach in EAs commu-

nity, while a new selection approach in (Elsken et al., 2018) selects the parents from a multi-

objective Pareto front using an inverse density. Instead, in respect to offsprings generation, a

common practice in AEs community is to randomly initialize child networks, which allows es-

caping from local optima. However, recent work by (Elsken et al., 2018) proposed to transfer

the knowledge of the weights of the parent network to its children by using network morphisms

(Chen et al., 2016; Wei et al., 2017).

Another branch of optimization technique to solve NAS is RL, which can be implemented in

several different ways. For instance in (Baker et al., 2017; Zhong et al., 2018; Zoph and Le,

2017; Zoph et al., 2018) the process of generation of a neural architecture is provided by the

agent’s action, where the action space is identical to the search space of the NAS problem. The

reward of the RL agents typically is represented by the cumulative reward that in this task rep-

resents the performances of the DNN generated during the RL sequential process. In particular,

the sequential aspect in the optimization process in (Zoph and Le, 2017) is given by the adoption

of a Recurrent Neural Network (RNN) to define the policy that the RL agent has to adopt in or-

der for proposing new DNN architectures. Instead, in (Baker et al., 2017) Q-Learning algorithm

is used to train a RL policy, whose choices are sequentially the layer’s type and its hyperparam-

eters.

Another approach to solve the NAS problem with the RL approach is in (Cai et al., 2018),

where the authors adopt a Long-Short Term Memory Neural Network (LSTM) to implement an

RL policy, where the actions are represented as mutations of the initial network. Despite the RL

approach to solve NAS, seems to be very effective in terms of optimal networks generated, it

exists another branch of methods name the Differentiable ARchiTecture Search (DARTs) (Liu

et al., 2019a). The main idea of this approach is to relax the search space to be continuous in-

stead to have a discrete set of candidate architectures. Due to this relaxation of the search space

it is possible to apply gradient-based optimization approach to discover new performance neural
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architectures, leveraging on the fact that gradient-based optimization is data efficiency, which is

essentially opposed to inefficient black-box search as EAs and Random Search.

To be a fair review of all optimization strategies for NAS problem, in (Li and Talwalkar, 2020)

the authors analyzed the efficacy of using Random Search (RS) to find out an optimal or at least

competitive DNN architecture. The authors proved that RS strategy with early-stopping is a

competitive NAS baseline on both benchmarks tested, achieving a state-of-the-art NAS result

on PTB and a highly competitive result on CIFAR-10. Finally, they explore the existing repro-

ducibility issues of published NAS results.

Other previous works (Liu et al., 2018; Real et al., 2019) conduct comparison studies between

RS with RL and EAs, showing that the latter strategies perform better in terms of final test accu-

racy on famous datasets as CIFAR-10 and ImageNet; however, with just small margin of error

with RS.

Since 2011 (Bergstra et al., 2011), the application of Bayesian Optimization approach shows

several successes with Convolutional Neural Network (in vision recognition) and automatically

tuned neural network on competition datasets against human experts (Mendoza et al., 2016,

2019).

In respect to the others initial application of BO strategy to DNN, previously introduced in

Section 2.2.1, the following approaches are not limited to optimize the hyperparameters, but

also consider to optimize the architecture of the DNN taking into account a distance between

architectures, seen as graphs, and not anymore in terms of distance between hyperparameter

configurations. Indeed, DNN can be seen as a graph as reported in Figure 2.8.

FIGURE 2.8: Three different architectures of Convolutional Neural Network represented as
graphs for the same classification task (Kandasamy et al., 2018)
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An initial work that tries to manage the architecture search space of NAS problem is in (Kan-

dasamy et al., 2018). The authors proposed an optimizer named Neural Architecture Search

via Bayesian optimization and Optimal Transport (NASBOT), which is able to dive in a search

space composed of a set of graphs that represents the possible architectures to solve classifica-

tion and regression tasks. In order to navigate during the optimization process, they developed a

distance metric, named OTMANN, which can be computed efficiently via an optimal transport

program, for measuring the distance between graphs (DNN), which enables the balancing of

exploration and exploitation trade-off during the optimization process.

NASBOT finds better architectures for MLPs and CNNs more efficiently than other baselines on

several datasets as: blog feedback (Buza, 2014), indoor location (Torres-Sospedra et al., 2014),

slice localisation (Graf et al., 2011), naval propulsion (Coraddu et al., 2016), protein tertiary

structure (Rana, 2013), news popularity (Fernandes et al., 2015), CIFAR-10 (Krizhevsky and

Hinton, 2009). Despite promising results on the benchmark datasets in respect to other com-

petitive optimizers (e.g., TreeBO (Jenatton et al., 2017), EAs, RS), a relevant drawback is that

NASBOT requires a fine-tuning of the hyperparameters that guides the construction of the dis-

tance metric OTMANN, which is used during the optimization process to compare the distance

between networks.

A more recent approach that proposes to dive in the search space of DNN architectures ex-

ploiting a graph representation of a network is proposed in (Jin et al., 2019). The authors of

this work proposed the optimization framework named Auto-keras, because it is totally imple-

mented above on the famous DL library named Keras . The optimizer of this work is based on

graph-level network morphism, modifying the neural architectures based on layer-level network.

In figure 2.9 is reported an application of neural network morphism, that using two operations

makes it possible to reduce the differences between two different DNN architectures.

FIGURE 2.9: An example of network morphism between two neural networks fa and fb with
the operations applied to morph one network ( fa) to the other ( fb) (Jin et al., 2019)

Auto-keras library can be applied to both classification and regression tasks with multiple op-

timization levels. Indeed, it can be applied not only as HPO task on the hyperparameters of

a fixed architecture (e.g., number of units, activation function, and learning rate), but also as a

complete NAS optimizer optimizing jointly the architecture components (e.g., type of layer) and

the hyperparameters for each layer (e.g., number of units for each layer, activation function and
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other hyperparameters specific for the type of layer).

Exhaustive and wide experiments on real-world benchmark datasets have been done to demon-

strate the superior performance of the Auto-keras framework over the state-of-the-art meth-

ods. This approach is compared with the state-of-the-art NAS methods (Elsken et al., 2017;

Kandasamy et al., 2018) on benchmark datasets of MNIST, CIFAR-10, and FASHIONMNIST,

achieving the lowest error rates on all of the datasets.

Another key important aspect for this optimizer is the ability to execute in parallel on GPU or

CPU, with an adaptive search strategy for different GPU memory limits. Another recent work

that tries to explore and optimize into the search space of NAS problem is (White et al., 2020).

The authors proposed an AutoML system named BANANAS: Bayesian Optimization with Neu-

ral Architectures for NAS. In order to adopt BO as optimizer they adopt a novel architecture rep-

resentation, so-called path encoding, and a neural network-based predictive uncertainty model,

so-called meta neural network defined on this path encoding representation of DNNs (reported

in Figure 2.10).

FIGURE 2.10: An illustration of the Meta Neural Network into BANANAS algorithm (White
et al., 2020)

Differently from previous work such as NASBOT (Kandasamy et al., 2018), the authors declared

that the model is powerful enough to provide high accuracy predictions of neural architecture

accuracies, and for this reason there is no need to construct a distance function between archi-

tectures. In addition, they highlight the fact that the meta neural network adopted by BANANAS

scales far better in respect to traditional model used in BO framework which can require sig-

nificant computation (e.g., matrix inversion to construct Gaussian Processes model). From the

exhaustive and wide experiments conducted by the authors in (White et al., 2020) BANANAS

on the NASBench dataset outperforms the state-of-art NAS optimizer as NASBOT (Kandasamy

et al., 2018), DARTS (Liu et al., 2019a), EAs (Real et al., 2019).
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Searching for the model with the
highest generalization

Summarizing from previous Chapter, it is clear that AutoML, AutoDL and NAS, are all tools

aimed at disclosing the value of ML and DL also to non-experts, making more efficient the com-

plex process to search for an optimal ML/DL model given a dataset. Thus, we can summarize

that they are aimed to maximize the generalization of the learned model.

Although optimization has always had a crucial role in learning, the black-box and expensive

nature of generalization metrics, typically obtained through cross validation, have brought into

vogue the adoption of derivative-free Global Optimization strategies. Learning weights (i.e., pa-

rameters) of an artificial neural network, for instance, is anyway a global optimization problem

– with potentially multiple local optima – but the training loss is known in analytical form and,

therefore, gradient-based algorithms are applied to update weights depending on the gradient of

the training loss. Instead, searching for the optimal number of layers and neurons, type of acti-

vation function, value of learning rate, etc (i.e., hyperparameters) requires to globally optimize

the validation loss, which is black-box.

This Chapter is aimed at reviewing the most relevant background about derivative-free global

optimization strategies – both model-free and model-based – taking also into consideration the

specificities related to the different types of search spaces occurring in AutoML, AutoDL and

NAS tasks.

30
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3.1 Generalization: a black-box, expensive and multi-extremal func-
tion to be optimized

When a data scientist, as well as a ML/DL non-expert, wants to identify an optimal ML/DL

model to be fitted on a given dataset, he is interested in searching for the most generalizing

model, meaning that it must provide accurate prediction also on data not used for training the

model.

Cross-validation techniques, such as hold-out, k-fold cross and leave-one-out, are all well-

known procedures to estimate the generalization capabilities of a ML/DL algorithm – and a

specific configuration of its own hyperparameters – when trained on the given dataset. For sure,

the data scientist (or the non-expert) would like to try different algorithms and/or hyperparam-

eters settings and, if he does not know AutoML, he will search by a “trial-&-error” procedure,

according to his experience. Moreover, cross-validation might require a huge amount of re-

sources, especially time for training and validating all the models, while our data-scientist (or

non-expert) would like to obtain an accurate model as soon as possible. Always supposing that

he does not know AutoML, the best idea he can have is to fix a given number of algorithms and

hyperparameters settings to test (“budget”) and then exploit the embarrassing parallelism of a

simple Grid Search. Assuming he has as many computational resources as the configurations of

the grid, he can run all of them in parallel, solving the issue about time. However, it has been

largely proved that Grid Search is not sample efficient, meaning that other global optimization

strategies – analysed in this Chapter – can identify a better solution, by using the same number

of configurations into the grid. This means that, at the end, the model selected by our data-

scientist (or non-expert) could be far worse than the one obtained by a clever data scientist using

AutoML, properly.

Just to summarize, in AutoML we are interested to optimize a generalization metric, based on

a cross-validation procedure, with respect to alternative algorithms and their own hyperparame-

ters (as well as preprocessing and postprocessing methods).

This means that our metric is:

• Black box

• Expensive to evaluate

• Multi-extremal

that is exactly the derivative-free global optimization problem:

x∗ = argmin
x∈X

f (x) (3.1)
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In the cases seen in previous Chapter 2, x = γ for the Hyperparameter Optimization (Section

2.1.2), while, in the most general case of CASH (Section 2.1.3), x is a vector whose first com-

ponent is the decision variable associated to the ML algorithm to choose in the set A and the

remaining components are the associated hyperparameters γ.

In addition, in AutoML community not so long ago, the landscape of loss function was con-

sidered as multi-extremal function as the example reported in Figure 3.1. However, it has been

discovered in recent studies (Pimenta et al., 2020; Pushak and Hoos, 2018) that the landscape

of the loss function of an AutoML problem turns out to be predominantly uni-modal and often

convex as it was otherwise previously assumed by the scientific community.

FIGURE 3.1: A example of multi-extremal two-dimensional function

3.2 Types of search spaces

In the Global Optimization (GO) community many test functions have been proposed to eval-

uate novel optimization algorithms proposed by the scientific community. These functions are

diversified in terms of smoothness, number of local and global optima, and domain in which

they are optimized. This Section is specifically devoted to domain, that consists of a number

of variables (i.e., dimensions) potentially of different nature. The most common test functions

are defined on a domain usually characterized by continuous and integer variables. From a GO

point of view, domain represents the search space where the optimal solution has to be searched
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for, formally:

X = Γ1×Γ2× ...×Γn (3.2)

where each Γi, i = 1, ..,n, can be bounded in integer or continuous interval of values.

In the most general case, Γi can also be a set of discrete values, sortable (i.e., ordinal) or not

(i.e., categorical). When X is composed by the product of discrete variables only, the problem

becomes a combinatorial problem. More complex problems are characterized by a search space

spanned by continuous, integer and categorical variables.

A typical example is AutoML, aimed at selecting both the Machine Learning algorithm (i.e.,

represented by a categorical variable) and the optimal configuration of its own hyperparameters

(i.e., represented by continuous and discrete variables). Furthermore, the search space for Au-

toML is even more complicated because some hyperparameters are (active) depending on the

value of other hyperparameters. This conditioning among hyperparameters - that are dimensions

of the search space - leads to a hierarchical search space.

More specifically, in AutoML, selecting the ML algorithm among a set of possible alternatives

activates all the variables of the hierarchical search space associated to the hyperparameters of

the selected algorithm and deactivates all the other variables related to hyperparameters of the

other ML algorithms.

Although this new formalization of the search space better supports AutoML tasks, have flaws

due to the difficult application for specific problems related to NAS, where a high number of con-

ditional variables is present. In fact, in literature, it has been demonstrated with several works

(Jin et al., 2019; Kandasamy et al., 2018) that a graph can better represent the search space asso-

ciated to a NAS task. Thus, NAS required to introduce a new formalization of the search space

for the GO problem, defined by all the graphs associated to the possible neural architectures to

consider. This leads to the need for defining suitable measures to evaluate similarity between

two graphs/architectures. An example of similarity distance between graphs/architectures is

OTMANN distance proposed in (Kandasamy et al., 2018), where the distance can be computed

efficiently via an optimal transport program. Moreover, another distance to compare different

graphs/architectures is based on network morphism. Indeed in (Jin et al., 2019), inspired by

Deep Graph Kernels (Yanardag and Vishwanathan, 2015), the authors proposed an edit-distance

based on how many operations (e.g. inserting a layer, skipping a layer) are needed to morph one

graph/architecture to another one.

Another relevant aspect to take into account when defining the search space is the size of the

range/set of values for each variable/dimension. The larger the size of the range/set of each

variable the larger the search space and, consequently, it becomes more difficult to retrieve the

global optimum within a limited number of trials.

This situation can be controlled by the careful definition of these intervals for AutoML tasks.

However, since AutoML tasks should be used by people who do not necessarily have ML skills,

it is necessary to define a search space that adapts according to the evaluations assumed during
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the optimization process.

For this reason, weakly search spaces are defined that allow for expansion and contraction de-

pending on the needs of the task on which they are applied.

In particular in (Nguyen et al., 2017) they proposed an optimization framework based on weakly

search space, which increases its size depending on the needs of the optimizer.

Another optimization system that supports the weakly search space is Aisaratuners1. Aisatuners

adopts Latin Hypercube Sampling to generate initial samples through which AiSara Hyperpa-

rameter Tuning API optimizer uses state-of-the-art pattern recognition algorithms to reduce the

search space boundaries during optimization process. By reducing the search space, the system

speeds up the whole optimization process while improving the optimum value achieved.

Another good strategy to obtain a more descriptive and useful search space is inferring an ini-

tial good solution by transferring knowledge from other, already solved, black-box functions.

In (Perrone et al., 2019) the authors proposed an approach to automatically design the search

space of a black-box problem in order to speed up the optimizer. Despite the considerable boost

of the optimizer, achieved by reducing the size of the search space, this approach cannot guar-

antee to define a good search space without any knowledge of the associated black-box problem.

3.3 Searching through model-free global optimization strategies

This section is devoted to the so-called model-free global optimization strategies. Basically,

they assume that all the information is contained into the function evaluations. On the contrary,

the model-based strategies (analysed in Section 3.4) try to approximate the objective function

depending on the evaluations, with the idea that this approximation – even if biased by some

assumptions about function “smoothness” – can provide more information to make the opti-

mization process more efficient.

Following Subsections will analyse the most well-known model-free global optimization strate-

gies, that are:

• Pure and Adaptive Random Search

• Evolutionary Approaches (which are proved to be a special case of Random Search)

• Deterministic (Lipschitz) Global Optimization (which uses a bit of additional “structural”

information about the objective function, regarding its maximum slope. This additional

information can be given a-priori or estimated along the optimization process).
1https://pypi.org/project/aisaratuners/

https://pypi.org/project/aisaratuners/
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3.3.1 (Pure/Adaptive) Random Search

Random Search (RS) methods have been considered since the earliest studies in GO. A masterful

analysis of the statistical issues associated to RS is contained in (Zhigljavsky, 1985). RS is both

a Global Optimization method itself and the basis of many other methods, including Bayesian

Optimization, due to its exploration properties. Its use has been advocated for Hyperparameter

Optimization (Bergstra and Bengio, 2012), and Reinforcement Learning (Mania et al., 2018).

According to the general RS framework, a sequence of random points x1,x2, . . . ,x j is generated

according to a probability density function (pdf ) which might, in general, depend on previous

points x j and the associated values f (x1), f (x2), ..., f (x j). Different computational strategies

belong to this general framework. In the basic RS, the points x1,x2, . . . ,x j are sampled from a

uniform distribution over the search space and the sequence of points is stopped after a prefixed

number of function evaluations or when some statistical test is satisfied. Some RS techniques

have been proposed with the aim to cover the search space and they are usually adopted to

generate an initial set of function evaluations, aka initial design, for others Global Optimization

strategies, such as Bayesian Optimization, as well as other meta-heuristics.

Latin Hypercube Sampling (Huntington and Lyrintzis, 1998) is a points filling space technique

that allows to cover, as much as possible, the whole search space. Due to its not-completely

random nature, this method is also known as Near-Random Search.

Another specialization of RS is when sampling from uniform distribution is performed within a

specific portion of the search space, at each iteration j.

This portion is defined as a level set A j:

A j = {x ∈ X : f (x)≤ f (x+j )} (3.3)

where f (x+j ) is the ”best seen” among the sequence samples x1,x2, . . . ,x j and x+j is usually also

known as incumbent (solution). The resulting algorithm, called Pure Adaptive search (Patel

et al., 1989; Zabinsky and Smith, 1992; Zhigljavsky, 1985) has a good theoretical convergence

but uniform sampling over a generic A j is significantly more complicated than over an box-

bounded space.

Another approach using level sets is the Probabilistic Branch & Bound (PBnB), which signifi-

cantly increases performances compared to pure RS (which it is based on) (Huang and Zabin-

sky, 2013; Zabinsky and Huang, 2020; Zabinsky et al., 2011). PBnB is a partitioning-based

RS approach for simulation-optimization problems and designed for optimizing both noisy and

noise-free functions over mixed continuous-integer domains. The main goal of the algorithm is

to approximate a user-defined target level set: PBnB iteratively maintains, prunes and branches

sub-regions to approximate the unknown target level set with a probabilistic guarantee of ac-

curacy. At the end of the optimization process PBnB identifies sub-regions of the search space

with a relatively high concentration of high quality solutions, and returns an estimation of the
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global optima. Figure 3.2 shows the results of three test functions applying PBnB, and it can

be seen that the approach converges to evaluate points of the functions in the most promising

(green) regions.

FIGURE 3.2: Approximating the level set bounded by the 0.1 quantile on the tenth iteration
of PBnB for two-dimensional (a) Rosenbrock’s function, (b) centered sinusoidal function, and
(c) shifted sinusoidal function by the maintained green (light gray) subregions (Zabinsky and

Huang, 2020)

Methods based on RS can be further improved through a local search mechanism, according to

the following procedure:

(i) Draw q points from a uniform distribution in X , {x j ∈X} j=1,...,q and observe { f (x j)} j=1,...,q

(ii) Select the ”most promising points” and start from them a local optimization routine ob-

taining at least value f (x+j )

(iii) Test whether f (x+j ) is the global minimum of f in X .

The above cycle is repeated until the stop criteria is met.

In this very simple implementation of the algorithm, the point(s) yielding the best sampled value
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is used in (ii) as starting point(s), and the test (iii) is satisfied if no improvement over f (x+j ) (the

current best seen) is observed in one (or more) further executions of phase (i).

This simple test (iii) relies upon the fact that, as the sample size increases, the probability of not

improving over f (x+j ) decreases unless f (x+j ) is the global minimum. In this method no more

than one local optimization is performed in the region of attraction of a minimum: this good

feature, unfortunately, is obtained at the cost of wasting most of the information contained in all

the other samples.

More effective algorithms require a balanced compromise between the conflicting goals of mak-

ing good use of the available information (exploitation) and reducing the risk of converging to

a local minimum (exploration). An effective way to reach a better trade-off (exploitation versus

exploration) is based on cluster analysis, which allows to predict whether a starting point, for the

local search, is likely to lead to a new local optimum or to one that has already been discovered.

In this way the local searches are started at promising candidate points (Zabinsky and Huang,

2020).

Moreover, the effectiveness of the general three-steps procedure can be increased by using mul-

tistart. A recent theoretically important result about multistart RS is Multistart with Early Ter-

mination of Descents (METOD) (Žilinskas et al., 2019) where it’s argued that multistart is the

best solution for high-dimensional GO problems. The key result states that, for a quadratic

function, given two arbitrary points, the trajectory of the gradient method force the two points

closer to each others. The authors generalize this result by restricting the computation of deriva-

tives only in a very few directions, different at each iteration. This step might be likened to the

Stochastic Gradient Descent (SGD) step. In order to endow METOD with intelligent stopping

rules the authors resort to the method suggested by (Zieliński, 1981). METOD is definitely a

major advance in the topic of multistart methods but still has limitations: (i) the search domain

must have a simple structure, (ii) the computation of the objective function and its derivatives

must not be expensive, and (iii) the function must have not too many local optimizers. These

limitations make this approach not fully suitable to AutoML and NAS. In particular, (Zieliński,

1981) suggested a stopping rule based on a statistical estimate of the structure of multi-extremal

problems.

Given the important role of RS in all stochastic algorithms both theoretically, in the convergence

proofs, and in actual computations, in combination with sequential algorithms, it is important

to analyze the effectiveness of uniform sampling. This is particularly important in view of the

“pathologies” i.e. unexpected results connected with high dimensions. The following argu-

ments are drawn from the work in (Pepelyshev et al., 2018), whose results have been proven for

a general distribution:

Pj = α jPU +(1−α j)Q j (3.4)

where 0≤ α j ≤ 1, PU is the uniform distribution and Q j is a specific probability measure on X
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which usually depends on evaluations of the f (x) at the previous points. Sampling from the dis-

tribution (3.4) corresponds to taking a uniformly distributed random point in X with probability

α j and sampling from Q j with probability 1−α j.

Let ε,δ > 0 to be fixed and define W (δ) = {x ∈ X : f (x)− f ∗ ≤ δ} and B(x∗,ε) = {z ∈ X :

|z− x∗| ≤ ε}. Assume that B as B = B(x∗,ε) if we are interested in the convergence to x∗ and

B =W (δ) if the convergence is to f ∗. As x j are independent we have Pr{x1 /∈ B,x2 /∈ B, . . . ,xn /∈
B}= (1−P(B))n and then the probability that at least one is in B = 1− (1−P(B))n tends to 1

if n→ ∞.

To derive a finite sample bound let:

nγ = min
{

n : 1− (1−P(B))n ≥ 1− γ
}

(3.5)

we obtain

nγ = dlnγ/ ln(1−P(B))e� (− lnγ)/P(B) (3.6)

since P(B) is small and ln(1−P(B)) � −P(B) for small P(B). The numerator is not too large,

but the denominator is very small and nγ is astronomically large. Let X = [0,1]d assume the

uniform distribution PU and the set B = B(x∗,ε) then Vol(B) ≤ Vdεd , where Vd , the volume of

the unit ball, is Vd = π
d
2 /Γ(d

2 +1).

FIGURE 3.3: The number nγ of points which are required for Pure RS (PRS) to reach the set
B = B(x∗,ε) with probability at least 1− γ = 0.95 for ε = 0.1 (solid) and ε = 0.2 (dashed) as

the dimension d varies in [5,50] (Pepelyshev et al., 2018)

If B =W (δ) and we know the Lipschitz constant of f the relation translated into a probabilistic

error bound on the error f (x)− f ∗.

3.3.2 Evolutionary & Nature-inspired Meta-heuristics

Meta-heuristics represents a broad class of nature-inspired optimization methods. In particular,

in terms of evolutionary biology, natural selection is an example of how a specie survives and

evolves in respect to others due to the ability of adapting to the environment where it lives. This

process of a biological nature inspired the so-called Evolutionary Computation (EC) algorithms.
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One of the most famous EC algorithm are the Genetic Algorithms (GAs), originally proposed in

(Holland, 1975), which try to pursue two objectives: the abstraction of the adaptive processes in

natural systems, and the design of artificial systems which would take advantage of the adaptive

processes abstracted from natural systems. Traditionally GAs are introduced in (Holland, 1975)

to solve combinatorial optimization problems.

The main idea behind GAs is to represent a population of candidate solutions (also called indi-

viduals) as strings of bits (usually called chromosomes), and evolve them by means of stochastic

variation operators, which are usually called genetic operators. The new solutions are succes-

sively evaluated against a fitness function (aka objective function), which generally represents

the objective function to be optimized, and solutions with a higher fitness have a higher chance

of being selected for the next iteration. The process is repeated until a certain number of gener-

ations (aka iterations) is reached, or another termination criterion is met.

This approach is defined as more robust than single-state optimization methods (e.g., Gradi-

ent Descent, Hill Climbing) due to not working directly on the parameters of the candidate

solutions, (e.g., fixed-length bit-string representation). In addition, this approach during the op-

timization process evaluates in parallel a population of candidate solutions, and also does not

require necessary additional information of the search space (e.g., derivates) although it can

help the convergence to the global optimum. A final advantage, no less important than the oth-

ers previously mentioned, is that GAs adopt probabilistic operators to change the populations of

candidate solutions during the optimization process, this characteristic leads to different results

that are obtained using deterministic operators (e.g., step) used by Gradient Descent or Hill-

Climbing.

In fact, in the generational version of GAs, the population is simply replaced by the new off-

spring for the next generation. This means that the selection and crossover operators are applied

enough times to create a number of offspring candidate solutions (aka individuals) equal to the

current population size, in order to keep the population stable. Of course, by just replacing the

old population with the new one, the individuals with the best fitness in the old population will

not survive to the next generation. Hence, if the best offspring of individuals has a fitness value

which is lower than that of the best individual in the old population, the GAs will actually pro-

duce a worse candidate solution.

In order to solve this problem, generational GAs are usually coupled with an elitist strategy: if

the best individual in the new population is not better than the best individual in the old popu-

lation, then use the latter to overwrite one of the individuals in the new population. In this way,

the best individual is always preserved, and its fitness is a monotone non-decreasing function of

the number of GAs iterations.

Indeed, based on the fact that GAs require the encoding of decision variables of the problem

under optimization at genotype level (with chromosomes), a wide portion of meta-heuristic

community started to use Evolutionary Algorithms (EAs) that allow using directly the decision

variables of the problem at phenotype level, which avoid the effort of encoding the decision
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variables in a very similar set up of population-based approach. With the adoption of EAs, it

is possible to keep the benefits of the GAs, in terms of exploration of the search space of the

problem, without losing decision variables information.

In addition, another important approach in meta-heuristics algorithms is Covariance Matrix

Adaptation – Evolution Strategies (CMA-ES) (Hansen et al., 2003). One of the most impor-

tant advantages of CMA-ES is to be particularly useful if the fitness function (aka objective

function) is ill-conditioned, so when associated to a small change in a candidate solution there

is a large change in the value of the fitness function.

Another branch in the meta-heuristics is nature-inspired algorithms based on animals and in-

sects’ behaviours to solve a specific task. In the community of meta-heuristics, the behaviours

of several species of animals have been taken into account to propose novel, more efficient and

effective optimization algorithms.

Firefly Algorithm (FA) proposed originally in (Yang, 2008, 2009), simulating the flashing pat-

terns and behaviour of the fireflies, seems to be the most efficient and effective in respect for

hundreds of others. Indeed, it showed its ability to deal with efficacy on the intensification-

diversification trade-off (aka exploitation-exploration trade-off) a common issue in global op-

timization problems. The term diversification means to generate different solutions in order to

explore the search space on the global point of view, while intensification means to focus on

more promising local region by exploiting the current local information provided by the good

solutions found in this region.

This algorithm is based on three fundamental rules of fireflies’ life: (i) They are unisex so that

one firefly will be attracted to other fireflies regardless of their sex, (ii) The attractiveness is

proportional to the brightness, and they both decrease as their distance increases. Thus for any

two flashing fireflies, the less bright one will move towards the brighter one (in case there is not

a brighter one between a couple of fireflies, they move randomly) (iii) the landscape of objective

function determines the brightness of a firefly.

In a very synthetic way, the definition of the movement of a firefly to another more attractive

(brighter) one is determined by the following formula:

xt+1
i = xt

i +β0e−γr2
i j(xt

j− xt
i)+αtε

t
i (3.7)

Where the first term represents the old position of firefly (xt
i), the second term is due to the

definition of attraction at a specific r distance (typically Euclidean distance) between fireflies,

represents the intensification component into the algorithm using a γ decay factor to reduce the

impact of attraction. The last term allows to perform the diversification component into the

algorithm for escaping from local optimums. Indeed αt is a randomization parameter and εt
i

is a numeric random vector sampled by a Gaussian distribution or by uniform distribution at a

specific time t.
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Moreover, in nature, animals-inspired algorithms also exist in another particular branch of meta-

heuristics, so-called Swarm Intelligence. This particular optimization paradigm is guided by the

collective intelligence of a group of simple individuals with limited capacities. Indeed, sev-

eral times in nature, intelligent behaviour emerges from the collective effort of multiple similar

agents to converge to the optimal solution of a complex problem. There are several algorithms

based on this swarm intelligence paradigm, such as Particle Swarm Optimization, Ant Colony

Optimization, and Artificial Bee Colony.

In particular, Particle Swarm Optimization (PSO) is one of the most famous Swarm Intelligence

algorithm, firstly proposed in (Kennedy and Eberhart, 1995). The algorithm is inspired by the

collective movement of animals (e.g. flocks of birds, schools of fish). This approach is based on

two main elements: a population (the swarm) of N individuals (the particles). The swarm intel-

ligence algorithms are based on information exchange about promising solutions (individuals –

particles) during the optimization process.

PSO has multiple settings in terms of hyperparameters, such as social factor which modulates

the attraction towards the global best (local exploitation), Cognitive factor which modulates the

attraction towards the personal best (global exploration), and Inertia weight which balances the

aforementioned settings: low inertia helps the local search; high inertia helps global search.

There are several works (Abraham and Liu, 2009; Nobile et al., 2015, 2018; Shi and Eberhart,

2001; Tian and Li, 2009) that try to automatize, through fuzzy logic, the choices of PSO’s hyper-

parameters during the optimization process, and additionally in (Senthilnath et al., 2011) they

demonstrated that PSO can be considered as a special case of FA, when its hyperparameter re-

lated to discount factor of the attraction between fireflies equals γ = 0.

Another famous Swarm Intelligence algorithm is the Ant Colony Optimization (ACO) (Dorigo

et al., 2000), where the optimization process is guided by the collective intelligence of an ant

colony that try to find out food in the world (into the search space of the objective function).

This algorithm was initially created to solve combinatorial problems (e.g., Traveling Salesman

Problem). ACO algorithm is mainly based on the stigmergy, which is a mechanism of indirect

coordination between agents (e.g., ants) mediated by the environment. More in detail, stigmergy

is a form of self-organization that produces complex, seemingly intelligent structures without

any planning, control, or even direct communication between the agents. Indeed, a quiet intu-

itive example of stigmergy in nature is the ants’ pheromone trails, where the ants, during the

search of food, leave pheromone in their paths in order to suggest to other ants the chosen path.

More ants chose the path with the stronger pheromone trail to reach the food as it entails a

higher probability of find it. However, the pheromone gradually decreases its intensity (evapo-

rates) over time. So essentially, through the time only survives the path with a stronger signal of

pheromone.

It should be noted that as for other metaheuristics, the ACO algorithm has to set several hyper-

parameters to increase the possibility of converging to the global optimum of the problem under

optimization.
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Furthermore, another important Swarm Intelligence algorithm is Artificial Bee Colony (ABC),

firstly proposed in (Karaboga and Basturk, 2007). This algorithm emulates the foraging be-

haviour of honey bees, where “food” and “nectar” are metaphors for candidate solutions and

fitness values (objective function values). This algorithm is founded on three fundamental roles:

employed bees are assigned to source food and gather information about the region, onlooker

bees are distributed to the food sources, proportionally to nectar amount, and finally the scouts

bees that perform random search in the search space, looking for new food sources. After sev-

eral iterations the algorithm, based on the previous roles, through the bee colony identifies the

optimal food sources (aka optimal solutions).

Instead, an example of metaheuristic based on searching optimal state of a physical system is

Simulated Annealing (SA) firstly presented in (Van Laarhoven and Aarts, 1987). In chemical

bonds, the optimal state (optimal solution) is the one that minimizes the potential energy of the

electrons shared between two atoms, so to create a stable bond. SA is a single-state optimiza-

tion method which tries to avoid local optima by adopting the following principle: occasionally,

accept to replace the current candidate solution with a worse one in terms of objective function

value. The ”occasionally” part is quantitatively expressed by an acceptance probability, which

in SA progressively decreases over time. Intuitively, worse solutions are more likely to be ac-

cepted in the earliest steps of the optimization process, and less likely in the last ones. In this

way, SA prefers exploration in the first part of the optimization, while after a certain number

of evaluations of the objective function the algorithm exploits the neighbourhood of the current

solution. The name ”annealing”, in fact, derives from the process of metal annealing, where

a piece of metal is initially brought to a high temperature, thereby loosening the bonds of its

atoms, and then cooled down. If the cooling down happens too abruptly, however, the atoms do

not settle on a stable lattice, resulting in a fragile piece of metal. For this reason, the metal is

cooled down slowly.

In particular, the acceptance probability of modifying x in a worse solution x′ is defined as:

P(x,x′,T ) = e−
| f (x)− f (x′)|

T (3.8)

where f is the objective function, and T is the temperature parameter that is gradually decreased

during the execution of the SA algorithm. There are several ways for defining a temperature

decrease scheduling, one of the most common one being the linear scheduling: formally, given

a cooling parameter α ∈ (0,1), the temperature is modified as T ← α ·T .

In conclusion metaheuristics have some drawbacks, including usually a high number of hyperpa-

rameters that need to be tuned for obtaining optimal performances and the absence of rigorous

proofs of the global convergence of these approaches. Indeed, there is another branch of the

global optimization community that makes the proofs of global convergence a key factor of

the optimization strategies, which are the so-called deterministic approaches and that will be

introduced in the next section.
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3.3.3 Deterministic (Lipschitz) Global Optimization

Different from the previous Sections (3.3.1, 3.3.2) there is another branch of the Global Opti-

mization community that tries to converge to the optimal solution of problem 3.1 based on a

deterministic paradigm which has strong and solid proof of convergence rate based on mathe-

matics fields, called Deterministic Global Optimization.

This branch of GO is strongly defined based on the assumption that some information on the

structure of objective functions is known. In particular, to adopt this kind of optimization ap-

proach is required that the objective function f respects the Lipschitz condition as follows:

| f (x′)− f (x′′)| ≤ L||x′− x′′||, x′,x′′ ∈ X (3.9)

where || · || denotes a distance metric on X (e.g., Euclidean distance) and L is the (unknown)

Lipschitz constant such that 0 < L < ∞. The information of L Lipschitz constant can represent

the mathematical expression to define the bounded rate of variation of the objective function f ,

and in Figure 3.4 (a) can be seen the geometric representation of this constant on f .

The assumption to know a priori the information related to L constant for real-life applications

is justified at least in technical systems, where the rate of change is typically limited by the

physical laws of the underlying problem (Strongin, 1978, 1992).

More in detail in the Figure 3.4 (b) can be seen, in one dimension, that L constant allows to es-

tablish a lower bound ϕi(x) (aka minorant) of the objective function f into the interval
[
xi−1,xi

]
as follows:

ϕi(x) = max{zi−1−L(x− xi−1),zi +L(x− xi)} (3.10)

where zi−1 and zi are the evaluations of the points xi−1 and xi on f . The minimum value of ϕi(x)

can be considered as a reasonable suggestion for the next evaluation point in the sequential op-

timization process. In a sense, ϕi(x) gives a worst estimate of the uncertainty of the objective

function.

(a) (b)

FIGURE 3.4: A graphic interpretation of Lipschitz condition (a) and a geometric representation
of Lipschitz condition (b) on a one dimensional f (Sergeyev and Kvasov, 2017)
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These approaches can be extended to the multi-dimensional case, bearing in mind that finding

the minimum of ϕi(x) is a multi-extremal problem and in the worst case the number of evalua-

tions is anyway exponential.

The restriction of the class of the objective function to the differentiable functions with the first

derivative satisfying a Lipschitz condition allows to develop efficient geometric LGO methods:

θi(x) is the new lower bound, built on smooth piecewise quadratic auxiliary functions ψi(x),

which speeds the search process up.

FIGURE 3.5: Smooth piecewise quadratic auxiliary function θi(x) (dashed line) for the objec-
tive function f (x) (thick line) with the Lipschitz first derivative over [xi−1,xi] (Sergeyev and

Kvasov, 2017)

An important improvement in LGO was proposed in (Jones et al., 1993) under the name of DI-

RECT (Dividing RECTangles). This algorithm can estimate the Lipschitz constant used at each

iteration of the optimization process. However, the main issue related to this approach is how to

obtain the value of L. Many approaches have been proposed, and a complete overview of them

is given in (Sergeyev and Kvasov, 2017). The most interesting LGO, based on the DIRECT

algorithm, enables an adaptive estimation of L, yielding either a global estimate of the Lipschitz

constant or a local estimate valid for some regions. With multiple values of L (global and local),

it can be possible to speed up the entire optimization process better dealing with exploration-

exploitation trade-off in different regions of the problem’s search space.

Recently several works propose to merge the Lipschitz optimization with other global optimiza-

tion strategies such as model-based optimization. Such as in (Ahmed et al., 2020; Jalali et al.,

2013) exploits the L Lipschitz constant or at least an estimation to speed up the entire sequential

optimization process avoiding regions of the search space where is not promising to get closer

to the global optimum.
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3.4 Searching by learning & optimizing: model-based global opti-
mization strategies

To solve a black-box problem, there are not only model-free optimization strategies; another op-

timization branch that aims to solve black-box problems is model-based optimization strategies.

The main difference between the previous optimization strategies and the strategies introduced

in this section is that model-based strategies can replace the black-box objective function with

an approximate and less expensive one during the optimization process. In this way, the number

of evaluations of the objective function is drastically reduced compared to model-free optimiza-

tion strategies.

These model-based strategies are essentially divided into two different branches that adopt dif-

ferent surrogate models: deterministic models and probabilistic models.

In this section, deterministic models will be introduced first, and then the pros and cons of adopt-

ing this particular type of surrogate will be analyzed. Then, taking into account the limitations

in using deterministic models, the most advanced probabilistic models will be introduced, which

allow to define better optimization strategies, considering the probability of the uncertainty of

the approximation of the surrogate models during the optimization process.

3.4.1 Deterministic Surrogates

The deterministic surrogates models are known in Derivate-Free Optimization as a response sur-

face models introduced by George E. P. Box and K. B. Wilson in 1951. The main goal of these

models is to find out the relationships between the explanatory variables, aka the dimensions

of the problem under optimization, and the one or more response variables which can be repre-

sented by the value or values of the objective functions.

Linear Regression.

Linear Regression is one of the most simple and famous deterministic model. It is based on the

fact that the objective function can be modelled as a linear combination of the input variables

as:

f (x) = w0 +
d

∑
j=1

x jw j (3.11)

where x is a vector of size d; d is the number of input variables; w is the vector of length d +1.

To obtain optimal w vector the following formula has to minimized:

min
w
||Xw− y||22 (3.12)

which can be seen as an unconstrained minimization problem of the sum of squared error be-

tween the actual data y and the predicted value Xw, where X is a matrix of size n by d + 1
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which represents the sample points in the input space and the w is the weight vector to allow the

approximation of the black-box objective function.

Although linear regression is not the best choice to optimize functions that are supposed to be

highly non-linear, it remains a widely adopted method due to its simplicity and its non-linear

extensions such as piecewise linear regression and local linear regression. Other non-linear

models are analyzed in the following subsections.

Support Vector Regression.

Support Vector Regression (SVR) surrogates (Smola and Schölkopf, 2004) are more sophisti-

cated than linear regression, indeed they are represented as the weighted sum of basis functions

added to a constant term.

A traditional formalization of SVR surrogate as given by:

f (x) = µ+
n

∑
i=1

wi
ψ(X ,X i) (3.13)

considering as a simple basis function ψ(·) = X , the surrogate can be formalized as:

f (x) = µ+wT X (3.14)

to obtain the unknown parameters µ and w in the model, the following equation has to be mini-

mized:

min
1
2
|w|2 +C

1
n

n

∑
i=1

(
ξ
+(i)+ξ

−(i)) (3.15)

such that:

wxi +µ− yi ≤ ε+ξ
−(i) (3.16)

yi−wxi−µ≤ ε+ξ
+(i) (3.17)

ξ
+(i),ξ−(i) ≥ 0 (3.18)

fixing the constraints at 3.16 and 3.17 allows the sample points to lie within ±ε deviation from

the value at sampled points without affecting the surrogate model. This band of allowed devia-

tion is referred to as ε insensitive tube. Slack variables ξ+(i) and ξ−(i) ensure feasibility of the

problem by allowing outliers that do not fall within ε insensitive tube. Trade-off between model

complexity and fit is achieved by penalizing outliers by a predefined constant C ≥ 0. Combined

contribution of the model complexity and the penalty for outliers (3.15) is minimized.

The version as mentioned earlier of the SVR model, is defined under the assumption to have a

linear basis function. However, it is possible to consider different basis functions that might re-

quire determining additional hyperparameters associated with that specific basis function (Smola

and Schölkopf, 2004).
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Radial Basis Functions Regression.

Radial Basis Functions Regression (RBF) is another type of deterministic model, based on the

sums of several radial basis functions, this model is typically used to point-wise approximation

of a black-box function and can be formalized as follows:

f (x) =
n

∑
i=1

λiφ(||x− xi||2)+ p(x) (3.19)

where λ1, ...,λn ∈ R are the weights to be determined; || · || is the Euclidean norm; φ(·) is the

basis function. In literature several basis functions exist such as:

• Linear: φ(r) = r

• Cubic: φ(r) = r3

• Gaussian: φ(r) = e−(γr)2

• Multi-quadratic: φ(r) =
√

r2 + γ2

• Thin plate spline: φ(r) = r2 ln(r)

where r = ||x− x′||.
None of the different types of basic function has proven to be better than the others, indeed the

choice of the basic function may depend significantly on the type of black-box function that has

to be approximated.

Kriging Regression

Kriging Regression is based on a model that shapes the response surface model as a sum of two

components, and an additional error term.

The general form of the kriging regression model is:

f (x) = g(x)+Z(x)+ ε(x) (3.20)

where the first component g(x) is the polynomial function which represents the global trend of

the surface to regret, the second component Z(x) is a gaussian random process (with mean zero

and stationary non-negative covariance) which represents the local deviations of the estimated

surface from g(x). While the last component ε(x) is the random error with zero mean and co-

variance which is the error assumed in the quadratic polynomial approximation.

The strength of this regressor is the use of a gaussian random process. Through this process the

kriging regressor is able to be more precise in the objective function approximation, exploiting

the correlation between the x points used to construct the approximated surface and all the points

present in the domain of the function to approximate.
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A detailed description of gaussian random process will be introduced in the next section.

Decision Tree Regression.

Decision Tree (DT) (Mitchell, 1997) is a Machine Learning algorithm which is applicable on

both classification and regression task. Based on the Divide-et-Conquer paradigm, the original

task problem can be decomposed in subsets of sequential problems/decisions that have to be

taken in order to perform the task, which can be classification or regression. Of course in

regression tasks this ML algorithm is able to produce an approximation of an objective function

exactly as the others deterministic surrogate models.

For regression task are used different node split criteria such as the Chi-Square and Variance

Reduction measures to ensure the reduction of the error in regression estimations.

In case of Chi-Square the main goal is to have the mean of the dependent features (p), which

must be different from their child node. Instead in case of Variance Reduction criteria the main

goal is to reduce the variance of the features in respect to the target value (independent variable)

to predict. The Variance Reduction of a node N is defined as the total reduction of the variance

of the target variable x due to the split at this node, and can be formalized as follows:

IV (N) =
1
|S|2 ∑

i∈S
∑
j∈S

1
2
(xi−x j)

2−
( 1
|St |2 ∑

i∈St

∑
j∈St

1
2
(xi−x j)

2+
1
|S f |2 ∑

i∈S f

∑
j∈S f

1
2
(xi−x j)

2
)

(3.21)

Where S, St and S f are the set of presplit sample indices, set of sample indices for which the

split test is true, and the set of sample indices for which the split is false, respectively. Each

element on the above formula represent variance estimation. A remarkable advantage is related

to handle both categorical and numerical data without a pre-processing task. Indeed, DNN, in

order to be trained on a dataset with categorical data, requires to change the representation of

these particular variables into binary encoding.

In addition, a strength of the DT algorithm is that it has inbuilt feature selection to ignore the

irrelevant features in respect to the relevant ones.

However, there are also some limitations and issues of this algorithm. Firstly, the tree algorithm

can be a very non-robust algorithm, because a small change in the training dataset (aka points

of objective function already evaluated) can drastically modify the final predictions based on

different splits of features into nodes of the tree.

Also finding an optimal decision tree is a NP-Hard problem, for this reason is typically adopted

a greedy approach to find the optimal choice for each level of tree, which cannot guarantee to

find the optimal tree structure at the end of its construction.

For data including categorical variables with different numbers of levels, information gain in

decision trees is biased in favor of attributes with more levels.

However, this ML algorithm in both version of Classification and Regression algorithm suffers

of overfitting issue. One possible solution is the pruning of branches.
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FIGURE 3.6: Several deterministic regressors to approximate an objective function

3.4.2 Embracing the prediction uncertainty: probabilistic surrogate models

A significant limitation of the previous regression methods is that they try to approximate an

objective function by the data currently available without considering the uncertainty of the ap-

proximation of the function. Indeed, another branch of surrogate models exists, which is called

probabilistic surrogate models. Such branch, instead of considering only the response surface

to approximate the objective function, it takes into account the uncertainty of the approximated

response surfaces.

The key idea is that the distance between the available already evaluated points f (x) and other

points not yet evaluated impacts the approximation process of the objective function. In fact, to

approximate much better could be a good idea to converge to evaluate points x that essentially

are quite far from the points that are already evaluated. In this way, it is possible to achieve a

better approximation reducing the error in the approximation itself.

The most famous probabilistic surrogate models adopted in the Global Optimization community

are Gaussian Process and Random Forest, which are introduced in detail in the next chapter.

The first one is essentially a particular Kriging regression, which takes into account the esti-

mation of uncertainty. Instead, the Random Forest model is based on the concept of Ensemble

models in Machine Learning, which means to combine many Decision Tree regressors to obtain

a better approximation of the objective function combining in an average of the Decision Trees

predictions.
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3.4.3 Overall considerations on strategies and dialects

With this Chapter, we have tried to effectively analyze the pros and cons of adopting different

optimization strategies with the ultimate goal of identifying an ideal optimization strategy to

support the optimization of the generalization task, typical in Machine Learning, and which is

typically black-box and expensive to evaluate in both terms of time and computational resources.

It is quite clear that there are different global optimization strategies applicable to ML algorithms

that have their advantages and disadvantages. For example, Grid Search, Random Search, and,

albeit partially, Evolutionary Algorithms have the advantage of being easy to parallelize and

implement. However, their biggest drawback is that they require a huge number of evaluations

to converge to the optimal global solution or a very close solution.

This issue leads to these optimization strategies not being suitable to support Automated Ma-

chine Learning, where the evaluation of the objective function, i.e., the training and validation

of the model, can be very expensive both in terms of computational resource requirements and

time required for the evaluation of the objective function.

However, strategies such as Deterministic Optimization, with Lipschitz, and strategies based

on Deterministic and Probabilistic Surrogate Models pose other critical issues as the introduc-

tion of learning the target function. In fact, the latter strategies are difficult to implement and

have little parallelization capacity. However, the main advantage of these strategies is that they

exploit knowledge as much as possible through evaluations of the objective function already

evaluated, and by optimizing sequentially, they modify the choice of future evaluations based

on the knowledge collected up to that moment.

Despite the model-based strategies seems to be the optimal solution for solving AutoML prob-

lems, recently several works adopt Gradient-Based optimization strategy as in (Franceschi et al.,

2018; Lorraine et al., 2020).

The following Figure 3.7 shows a spatial representation of how the strategies presented in this

chapter are arranged with respect to their knowledge of the objective function. Clearly, when

we speak of knowledge of the objective function, we know the analytical formalization of the

problem with which the optimization strategies’ points are evaluated. In the case of the problem

of generalization in ML, the problem itself tends to be black-box, as mentioned above.
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FIGURE 3.7: A spatial representation of the different categories among available knowledge
of the objective function



Chapter 4

Bayesian Optimization: a principled
Sequential Learning & Optimization
framework for AutoML

Bayesian Optimization (BO) is a model-based global optimization strategy based on two com-

ponents: a surrogate model approximating the objective function and an acquisition function

(aka utility function or infill criterion). The main idea of BO is to (sequentially) update the sur-

rogate model depending on the observations collected so far (aka current knowledge) and then

select, through the acquisition function, a ”promising” solution to evaluate (aka query). Thus,

every new observation (aka function evaluation), contributes in both learning something more

about the objective function and searching for its optimum. This leads to the final aim of the

acquisition function: balancing between exploitation - selecting a solution which could improve

with respect to the incumbent depending on the current approximation of the objective function

- and exploration - selecting a solution which could improve the quality of the approximation.

Figure 4.1 summarizes the BO workflow, showing each step of the sequential process starting

from the generation of an initial sample of solutions up to the termination, depending on some

specified criterion, and the final best solution (i.e., final incumbent) observed along the sequen-

tial optimization process. Due to its sequential nature, BO is also known as Sequential Model-

Based Optimization (SMBO). As it will be detailed in this Chapter, BO is a sample-efficient

global optimization strategy, contrary to most of the techniques described in the previous Chap-

ter 3. This means that, given the same number of queries, BO can usually identify a better

solution.

As already remarked in this thesis, AutoML is characterized by a black-box and expensive-to-

evaluate objective function, usually the generalization of a given ML algorithm, under a specific

configuration of its hyperparameters, on a given dataset. The AutoML objective function is

black-box because it can only be observed pointwise, and it is ”expensive” in terms of time

52
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and/or computational resources. Due to its sample-efficiency, BO is currently the most widely

adopted method for solving AutoML problems.

FIGURE 4.1: A representation of the Sequential Model-Based Optimization process workflow

In many cases X , the domain of points sampled during optimization, is assumed to be a hyper-

rectangle (box-bounded). In the following examples in this Chapter, for display and graphic

simplicity, the sequential optimisation process is illustrated taking into account only a contin-

uous variable (i.e., a ML algorithm’s hyperparameter). Anyway, this optimisation strategy can

deal with problems defined on search space spanned by continuous, integer, categorical and

conditional variables.

The rest of this Chapter is organized into two sections focusing on the two BO’s components: the

possible strategies to model the generalization of a ML algorithm (Section 4.1) and the possible

acquisition functions to balance between exploration and exploitation (Section 4.2).

4.1 Approximating the generalization metrics depending on cur-
rent knowledge

Approximating f (x) leads to the need to deal with two different kinds of uncertainty:

1. Aleatoric (noise) - it arises due to the stochastic variability inherent in the data generation

process. This means that we do not observe directly f (xi), instead we observe yi = f (xi)+

ε, where ε is the observation noise assumed to be ε∼ N(0,λ2) as reported in Figure 4.2

2. Epistemic - it is due to our lack of knowledge about the structure of the objective func-

tion. This means that we, given a set of available observations, have a potentially infinite

number of approximations of f (x), as reported in the example in Figure 4.3

With respect to the aleatoric uncertainty, most of the results in the BO literature explicitly take

measurement noise into account (Frazier, 2018). Dealing with the structural uncertainty can be
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FIGURE 4.2: An example objective function with aleatoric noise: for the same point xi is
possible to observe different observations yi

FIGURE 4.3: Different functions compatible with the current set of observations (noise-free
setting)

more complicated. Indeed, it is usually divided in two different types, depending on the source:

parametric uncertainty comes from estimation of the parameters of the model approximating

f (x) and structural uncertainty comes from the modelling assumptions (typically the type of

modelling strategy). Contrary to aleatoric, epistemic uncertainty - especially structural uncer-

tainty - can be reduced increasing data. In Figure 4.4 is reported the overview, in a tree structure,

of the types of uncertainty proposed in (Liu et al., 2019b).
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FIGURE 4.4: Different types of uncertainty in ML models (Liu et al., 2019b)

4.1.1 Gaussian Process regression

Gaussian Process regression (GPR, or simply GP) is the most widely adopted probabilistic sur-

rogate model in BO. Moreover, GP modelling is widely used in ML for both classification and

regression. Basically, a GP is a collection of random variables, any finite number of which have

a joint Gaussian distribution (Rasmussen and Williams, 2006). In more general terms, a GP is a

finite collection of realizations (i.e., m observations) modelled as having a multivariate normal

(MVN) distribution (Gramacy, 2020). This means that the realizations are completely described

by an m-dimensional mean vector µ and a m×m covariance matrix Σ. When the goal is to model

a function f (x) - like in BO - we are interested in having a mean function µ(x) and a covariance

function Σ(x,x′): ultimately, we obtain the vector µ and the matrix Σ after evaluating the two

functions at m specific locations x1, ...,xm. The mean and covariance function can be written as:

µ(x) = E
[

f (x)
]

Σ(x,x′) = E
[(

f (x)−µ(x)
)(

f (x′)−µ(x′)
)] (4.1)

with x and x′ two locations in X . The GP is denoted as:

f (x)∼ GP
(
µ(x);Σ(x,x′)

)
or, equivalently, f (x)∼N (µ(x);Σ(x,x′)) (4.2)

In 4.1 and 4.2 the covariance matrix considers two locations in X , in the more general case re-

lated to a bunch of m locations it is an m×m matrix. Usually, for notational simplicity µ(x) = 0,

even if this need not to be done (Rasmussen and Williams, 2006). The covariance function

allows to impose structural assumptions about f (x) because its specification implies a distribu-

tion over functions. The common approach is to use a kernel function, k(x,x′), as covariance

function, that is Σ(x,x′) = k(x,x′). This allows to write the covariance - which is a function

of outputs (as defined in 4.1) - as a function of inputs. Many kernels are available, every one
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assuming different structural properties about f (x). Kernel functions will be described in detail

later on.

More interesting, when n function evaluations (aka observations or realizations) of f (x) are

available, then the GP’s mean and covariance functions can be conditioned on them. Let X1:n =

{x1, ...,xn} and y = {y1, ...,yn} denote, respectively, a set of n locations in the search space

(i.e., xi ∈ X , i = 1, ..,n) and the associated function values, in case noisy (i.e., yi = f (xi)+ ε, i =

1, ...,n and ε = N (0,λ2)). Finally, let define Dn = (Xn,Yn), then the GP’s mean and covariance

functions can be conditioned as follows:

µn(x) = E
[

f (x)|D1:n,x
]
= k(x,X1:n)

[
K(X1:n,X1:n)+λ

2I
]−1y

σ
2
n(x) = k(x,x)− k(x,X1:n)

[
K(X1:n,X1:n)+λ

2I
]−1k(X1:n,x)

(4.3)

where the matrix K(X1:n,X1:n) has entries Ki j = k(xi,x j), with i, j = 1, . . . ,n, and k(x,X1:n) is a

n-dimensional vector with components ki = k(x,xi).

Equations 4.1 and 4.3 are respectively known as GP’s prior (Tong, 1990) and GP’s posterior.

Moreover, equation 4.3 is for obtaining ”pointwise” predictions through the GP’s posterior. In-

deed, we have a variance function, σ2(x), instead of a covariance function. These equations

are also known as kriging equations, especially in the geospatial context (Gramacy, 2020).

They can be used to obtain a prediction about f (x) - that is µ(x) - and its uncertainty - that

is σ(x) =
√

σ2(x) - at one location x at a time. However, if we repeat this operation many times,

for single locations, we would ignore that they have to be sampled from a MVN distribution.

Instead, if we are interested in considering a bunch of m locations jointly, Xm = {x1, ...,xm}, then

we have to replace σ2(x) with the following covariance matrix:

Σ(Xm) = K(Xm,Xm)−K(Xm,X1:n)[K(X1:n,X1:n−λ
2I)]−1K(X1:n,Xm) (4.4)

Having a full covariance structure offers a more complete picture of f (x), according to the

GP’s posterior, but has a significant computational load because Σ(Xm) could be enormous even

for seemingly moderate m. Sampling from posterior can be, ideally, considered as generating

functions from the prior and rejecting the ones that disagree with the observations. Naturally,

this strategy would not be computationally very efficient (Wilson et al., 2020).

From equation 4.3 it is easy to notice that the GP’s mean is a linear combination of n functions,

each one centred on an evaluated location. This allows to write µ(x) as:

µ(x) =
n

∑
i=1

αik(x,x′) (4.5)

where the vector α = [K(X1:n,X1:n)+λ2I]−1y and αi is the i-th component of the vector α, given

by the product between the i-th row of the matrix [K(X1:n,X1:n)+λ2I]−1 and the vector y. This

means that, to make a prediction at a given x, we only need to consider the (n+1)-dimensional
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distribution defined by the n available function evaluations and the location x.

This formulation of the GP modelling is known as function-space view and it is easy to under-

stand that the most computationally expensive operation is the matrix inversion in 4.3 and 4.4,

with computational complexity OOO(n3). Another possible formulation is the so-called weight-

space view, which approximates f (x) through an explicit set of basis functions. According to

the kernel trick (Scholkopf and Smola, 2018), the kernel function k(· , ·) can be considered as

the inner product in a Reproducing Kernel Hilbert Space (RKHS) H equipped with a feature

map function ϕ :→ H such that k(x,x′) = 〈ϕ(x),ϕ(x′)〉H . If H is separable, then the kernel

function can be approximated through an explicit feature map function φ :→ Rq, such that:

k(x,x′) = 〈ϕ(x),ϕ(x′)〉H ≈ φ(x)>φ(x′) (4.6)

For stationary kernel functions, Bochner’s theorem provides a suitable q-dimensional feature

map based on a set of random Fourier features (Rahimi and Recht, 2007). More precisely,

φi(x) =
√

2
q cos(θθθix+ τi), with θθθi sampled assuming the (scaled) kernel’s spectral density as

probability distribution and τi ∼ U(0,2π). Then f (x) is approximated as follows:

f (x) =
q

∑
i=1

wiφi(x) (4.7)

where weights wi are sampled from a posterior distribution conditioned to the set of n available

observations, that is wi ∼N (µw,σ
2
w) with:

µw =
(
Φ
>

Φ+λ
2I
)−1

Φ
>y

σw =
(
Φ
>

Φ+λ
2I
)−1

λ
2

(4.8)

and where Φ is an n× q matrix whose i-th row is given by φ(xi) = [φ1(xi), ...,φq(xi)] with xi ∈
X1:n. Typically, q� n, so the computational complexity for fitting the GP – according to (4.7) –

is reduced to OOO(q3) due to the inversion of the matrix
(
Φ>Φ+λ2I

)
in (4.8). Thus, the weight

space view leads naturally to a GP approximation whose quality is controlled through q: the

greater the value of q the better the approximation (but the higher the computational cost).

Recently, the combination of the two “views” has been proposed to perform efficient function

sampling from a GP (Hahn et al., 2019).

Kernels
Kernel is a general name for any function mapping a pair of inputs x and x′ into a scalar value,

formally k(x,x′) : X×X → R, with X ⊂ Rd . In order to ensure that a kernel is well-suited to be

a covariance function it must satisfy the following conditions:

• symmetry: k(x,x′) = k(x′,x)
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• the Gram matrix K, with entries Ki j = k(xi,x j), must be positive semidefinite (PSD).

A stationary kernel is a function of x−x′, meaning that it is invariant to translations in the input

space. Furthermore, if it specifically depends only on ||x−x′||, then it is called isotropic and it is

invariant to all rigid motions. Finally, a dot product kernel depends only on x ·x′ and is invariant

to a rotation of the coordinates about the origin, but not translations.

Several kernels have been proposed to be used as covariance functions in GP modelling, and

some of the most widely adopted are presented in this chapter. Everyone of the presented ker-

nel functions has at least one hyperparameter to set up depending on data. Therefore, while the

choice of the kernel imposes some basic structural properties about f (x), setting the values of the

kernel’s hyperparameter(s) allows for better fitting the observations D1:n. According to the dif-

ferent sources of uncertainty, previously summarized in Figure 4.4, this means that kernel type

and its hyperparameters are both associated to epistemic uncertainty: structural and paramet-

ric, respectively. Common approaches for tuning the kernel’s hyperparameters are Maximum

Log-likelihood Estimation (MLE) or Maximum A Posteriori estimation (MAP). Recently, an

alternative approach has been proposed in (Berkenkamp et al., 2019), where the values of hy-

perparameters are iteratively decreased instead of using MLE and MAP. The basic idea is that

this scheduling can avoid “oversimplification” of f (x) induced by MLE and MAP.

Common kernel functions

Squared Exponential (SE) kernel:

kSE(x,x′) = exp
{
−||x− x′||2

2`2

}
(4.9)

with ` known as characteristic length-scale: the role of this hyperparameter is to rescale any

location x by 1
` before computing the kernel value. A large value of the length-scale will map

x to a narrower range of values, while a small length-scale does the opposite. Consequently, a

large length-scale implies long-range correlations, whereas a short length-scale makes function

values strongly correlated only if their respective inputs are very close to each other. This kernel

is infinitely differentiable, meaning that the associated GP is very “smooth”. The value of this

kernel approaches to one for ||x− x′|| → 0, while it decreases as ||x− x′|| increases.

Matérn kernel(s):

kMat(x,x′) =
21−ν

Γ(ν)

(
||x− x′||

√
2ν

`

)2

Kν

(
||x− x′||

√
2ν

`

)
(4.10)

with two hyperparameters ν and `, and where Kν is a modified Bessel function. Analogously to

the SE kernel, ` is the characteristic length-scale. For ν→ ∞ the Matérn kernel coincides with
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the SE kernel. The Matérn kernel becomes especially simple when ν is an half-integer, that is

ν = p+ 1
2 , with p a non-negative integer. In this particular case, this kernel is a product of two

terms, one exponential and one polynomial of order p. Formally,

k
ν=p+ 1

2
(x,x′) = exp

{
||x− x′||

√
2ν

`

}
Γ(p+1)
Γ(2p+1)

p

∑
i=0

(p+1)!
i!(p−1)!

(
||x− x′||

√
8ν

`

)p−1

(4.11)

The most common versions of this kernel, widely adopted in ML, are characterized by ν = 3/2

and ν = 5/2.

kν=3/2(x,x
′) =

(
1+
||x− x′||

√
3

`

)
exp
{
−||x− x|′|

√
3

`

}
kν=5/2(x,x

′) =

(
1+
||x− x′||

√
5

`
+
||x− x′||2

3`2

)
exp
{
−||x− x′||

√
5

`

} (4.12)

Matèrn kernel has recently received considerable attention, because it allows to control, through

ν, the smoothness of the resulting GP.

Rational Quadratic kernel:

kRQ(x,x′) =
(

1+
(x− x′)2

2α`2

)−α

(4.13)

where α and ` are two hyperparameters (again, ` is the characteristic length-scale). This kernel

can be considered as an infinite sum (scale mixture) of SE kernels, with different characteristic

length-scales. Indeed, one of the most important properties of kernel functions is that a sum of

kernels is a kernel.

Exponential kernel:

kexp(x,x′) = exp
{
−||x− x′||

2`2

}
(4.14)

where ` is the characteristic length-scale. The important property of this kernel is that the result-

ing GP is not infinitely differentiable. An equivalent formulation is known as Laplacian kernel,

that is kexp(x,x′) = exp
{
−||x−x′||

`

}
, it is just less sensitive for changes in the length-scale.

The following Figure 4.5 summarizes how the value of the above kernels decreases with x mov-

ing away from x′ = 0 (on the left side) and which are possible resulting samples, with the as-

sociated smoothness (on the right side). The maximum value of all the kernels described above

is unity, as it can be seen also in the left hand side of the figure. However, it is possible to

introduce a further hyperparameter, namely the signal variance σ2
f , as a multiplier of the above

kernel formulas.
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FIGURE 4.5: Value of different kernels with x moving away from x′= 0 (left) and samples from
GP prior, one for each kernel considered (right). The value of the characteristic length-scale `

is 1 for all the five kernels; α of the RQ kernel is set to 2.5

The aforementioned kernels are just the most widely adopted in GP regression. More details

and a more comprehensive set of kernel functions are reported in (Rasmussen and Williams,

2006), including non-stationary kernels and dot product kernels. Kernel for BO is a very ac-

tively researched area, relevant papers are (Duvenaud et al., 2013; Shilton et al., 2018). (Schulz

et al., 2016) note that a kernel mismatch about the smoothness of the objective function leads to

a substantial drop in accuracy of objective function approximation and sample efficiency, which

increases with the dimensions and cannot be mitigated by GP’s hyperparameter tuning (neither

by the choice of acquisition function, that will be disussed in the next subsection).

A space-temporal kernel has been proposed in (Nyikosa et al., 2018) to allow the GP to capture

all the instances of the function over time and track a temporally evolving minimum. Some

issues on kernel have been considered in recent publications, such as: kernel composition, safe

optimization in relation to cognition (Schulz et al., 2018) as well as kernel learning, adaptation

and sparsity; dealing with functions that are smooth in a subset of their search space and vary

rapidly elsewhere is analysed in (Peifer et al., 2020) from the viewpoint of computational com-

plexity in the framework of RKHS (Reproducing Kernel Hilbert Spaces).

A relatively new part of GP regression, specifically useful for BO, is the integration of deriva-

tive information of f (x) in the modelling and optimization process. Differentiation is a linear

operator so that the derivative of a GP is also a GP: if the kernel is sufficiently smooth, one can

derive the joint distribution over a function and its derivatives and then perform their Bayesian

updating given the observations of function, derivatives and hessians (Wu et al., 2017a). The

idea of using derivative information for optimization problems has been taken up in (Hennig,

2013; Hennig and Kiefel, 2013) and in (Wills and Schön, 2017) which has developed it along

two different directions. The first, originally suggested in the papers by Henning, brings to the
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reinterpretation in probabilistic terms of standard quasi-Newton like methods considered as par-

ticular instances of GP or Bayesian regression. The second is to use the joint GP as a global

model of the objective function and its derivatives. A first remark is that adding a derivative

observation reduces the prediction uncertainty (i.e., the GP predictive standard deviation, σ(x)).

Now that kernels have been introduced, we can come back to sampling from GP prior and

posterior, and present a graphical example. Given the same kernel, that is a SE kernel, Figure

4.6 shows five different samples (aka GP’s sample paths) from GP’s prior (with zero-mean prior)

while Figure 4.7 shows five samples drawn from the GP’s posterior conditioned to six function

observations (the noise-free setting has been considered, just for simplicity).

FIGURE 4.6: Five different samples drawn from the prior of a GP with a SE kernel as covari-
ance function

FIGURE 4.7: Five different samples drawn from the posterior of a GP with SE kernel, condi-
tioned on six observations (the noisy-free setting is considered, just for simplicity).

Numerical Instability
Numerical instability issues arise due to the inversion of the matrix [K(X1:n,X1:n) + λ2I], re-

quired to update µ(x) and σ2(x). The condition number of this matrix, that is the ratio between

the highest and lowest eigenvalue, gives a bound on the accuracy of the matrix inversion. Large

condition numbers are indicators for numerical instability. Extreme eigenvalues appear when
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function values are strongly correlated, especially in the noise-free setting (i.e., λ = 0). Strong

positive correlation between function values will result in near-identical corresponding rows and

columns in the kernel matrix K(X1:n,X1:n), making it close to singular.

Some heuristics have been proposed to control the condition number of the matrix [K(X1:n,X1:n)+

λ2I]. The most common consists of adding an explicit penalty on the signal-to-noise ratio, when

fitting the GP, or adding a jitter term. The first method derives from the observation that the

condition number grows linearly with the number n of data points and quadratically with the

signal-to-noise ratio σ f
λ

(where σ2
f is the signal variance previously introduced, that is multiplier

defining the max value of the kernel function). More precisely, emax
emin

= n
σ2

f
λ2 +1, where emax and

emin are the largest and smallest eigen value, respectively. It is easy to understand that a high

signal-to-noise ratio makes quickly the matrix [K(X1:n,X1:n)+λ2I] ill-conditioned. Therefore,

although most of the research works consider the noise-free setting, this should be avoided in

practical applications for numerical stability reasons. When fitting the GP by maximizing the

log-marginal likelihood, a penalty term is added to the log-marginal likelihood that discourages

extreme signal-to-noise ratios.

The second heuristic method, consisting of adding a jitter term, is also based on the previous

consideration: it basically adds some artificial “noise” to the function evaluations.

Summarizing, the condition number can be controlled by modifying the amount of noise in the

observations, which leads to a degradation of the model’s accuracy. However, the condition

number is only a problem when there is so little noise in the data that we are predicting at an

accuracy close to the numerical precision of our hardware, a level of accuracy usually not nec-

essary for many practical problems.

An interesting solution, called K-optimality and aiming at choosing the next point xn+1 to reduce

the condition number, has been recently suggested in (Yan et al., 2018).

Finally, it is important to remark that using derivatives induces a faster onset of the numerical

instability issues.

Complex search spaces
GP modelling is well-suited for optimizing over search spaces spanned by continuous variables.

As already mentioned in this thesis, this is rarely the case of AutoML and NAS. Moreover, other

applications domains - such as simulation-optimization of complex systems - usually involve

also discrete (integer as well as categorical) decision variables.

To still use the advantages offered by GP modelling, some modifications have been recently

proposed. In (Garrido-Merchán and Hernández-Lobato, 2020) a taxonomy of the possible ap-

proaches is reported. The so-called naive method consists in considering integer variables as

real/numeric and then rounding their values to the closest integer. Every categorical variable is

instead replaced with a set of extra binary variables, one for each modality of the original one,

where only one variable takes value 1 and all the others take value 0 (aka one-hot encoding).
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The ”active” variable is the one with the highest value of the objective function associated. The

so-called basic approach uses the same workarounds of ”naive” method, but they are applied in-

ternally to the acquisition function instead of to the solution provided by solving it. Finally, the

so-called transformation approach leads to the definition of an alternative covariance function,

that is k̃(x,x′) = k(T (x)),T (x′)), where T (.) is a transformation applying the same workarounds

of the ”basic” approach but applied internally to the covariance function - and consequently in-

ternally to the surrogate model - allowing for a better modeling of the objective function.

FIGURE 4.8: An example of all three possible solution for dealing Integer variables with GP
into BO framework. The last row of the figure reports the proposed approach in (Garrido-

Merchán and Hernández-Lobato, 2020) previously indicated as transformation approach

Another really interesting and recent approach has been proposed in (Ru et al., 2020). More in

detail, the so-called CoCaBO algorithm proposes a novel GP kernel to capture complex inter-

actions between continuous and categorical variables, enabling information sharing across the

different types without the need to adopt any transformation. The algorithm works according to

the following steps:

• Multi Armed Bandit (MAB) (Slivkins et al., 2019) is used to define the values of the

categorical/integer variables

• optimising the acquisition function over the continuous variables (while keeping fixed the

categorical/integer variables set at the previous step)

To capture correlations between categorical and numeric variables, the proposed kernel com-

poses two different kernels: one working on categorical/integer variables and one for continuous

variables. Let denote with kh(h,h′) the kernel working on the categorical variables only, then

it is defined as kh(h,h′) = 1
dh

∑
dh
1 I(h[i]−h′[i]), where dh is the number of categorical variables, h
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and h′ are two vectors of categorical variables, the subscript [i] represents the i-th component of

these vectors, and I(h[i]− h′[i]) is a n indicator function, such that (h[i]− h′[i]) = 1 if (h[i] = h′[i]),

0 otherwise. With respect to the continuous variables, let denote with kz(z,z′) the associated

kernel, which can be any one of the kernels previously introduced.

Finally, the CoCaBO’s kernel is given by combining these two kernels, by considering the fact

that a sum of kernels as well as a multiplication of kernels are still a kernel. Indeed, both the

two possible combinations are considered and weighted depending on an additional kernel’s

hyperparameter, α ∈ [0,1], formally:

k(x,x′) = (1−α)
[
kh(h,h′)+ kz(z,z′)

]
+α
[
kh(h,h′)kz(z,z′)

]
(4.15)

where x = (h,z) and x′ = (h′,z′).

4.1.2 Random Forest regression

A significant drawback of the probabilistic model GP is that it requires the assumption that the

variables considered during optimization are only continuous, which is not practicable in HPO

and Model Selection, and more in general for AutoML problems.

However, there are some naive ”workaround” to solve this issue. In the case of integer-valued

variables, such as the number of layers of a DNN, the basic idea is rounding to the closest

integer, while, in the case of categorical variables, as many as possible extra variables categories

are added and chosen according to the largest one as showed in (Snoek et al., 2012).

These operations can be applied in two different ways. In the so-called “naı̈ve” approach the

rounding to the closest integer is applied before updating the GP, so xn+1 is a mixed-integer

vector, while in the “basic” approach it is applied just before evaluating the objective function,

so xn+1 ∈ Rd . The naı̈ve approach might lead to a relevant mismatch between the (continuous)

optimizer of the objective function and the point evaluated. The basic approach overcomes this

limitation because GP ignores the approximation, but it is expected to provide a suboptimal

solution. As previously mentioned, a more advanced approach is proposed in (Garrido-Merchán

and Hernández-Lobato, 2020), where a kernel is defined for essentially embedding the same

transformation of the basic approach.

A radical solution to the GP issues for managing integer or categorical variables consists in

adopting alternative probabilistic surrogate models, like Tree-based surrogate models.

Random Forest (RF) (Ho, 1995) is an ensemble learning method, based on Decision Trees,

for both classification and regression problems. An ensemble learning method is a system that

provides a classification or a regression estimation based on the predictions of multiple models

which can be based on one or several kind of ML algorithms.

The ensemble learning method is divided in three main different types:
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• Bagging which aims to create a collection of ML models with the same importance among

them to prediction for classification or regression task;

• Boosting which aims to create a collection of ML models where each classifier/regressor

influences the final vote with a certain weight, which is calculated on the accuracy error

that each model will make during the learning phase;

• Stacking which aims to create a collection of ensemble models to provide better predic-

tions.

According to the original implementation (Ho, 1995), RF aims to generate a multitude of De-

cision Trees at training time and provides as output the mode of the classes (classification) the

mean or median prediction (regression) of the individual trees.

Figure 4.9 shows a schematic representation of how the final output of an RF is generated.

Decision Trees are ideal candidates for ensemble methods since they usually have low bias and

FIGURE 4.9: A schematic representation of the regression/classification performed by a RF,
where a voting mechanism is adopted for regression (e.g., mean or median) or classification

(e.g., simple or weighted majority) tasks

high variance, making them very likely to benefit from the averaging process. RF mostly differs

from other typical ensemble methods (e.g. voting systems) in the way they introduce random

perturbations into the training phase. The basic idea is to combines bagging, to sample exam-

ples from the original dataset, and random selection of features, in order to train every tree of the

forest. Injecting randomness simultaneously with both strategies yields one the most effective

off-the-shelf methods in Machine Learning, working surprisingly well for almost any kind of

problems, allowing for generating a collection of decision trees with controlled variance.
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Although designed and presented as a Machine Learning algorithm, RF is also an effective and

efficient alternative to GP for implementing BO. To better understand how RF, for regression,

can replace GP, one has to consider that: (i) the dataset, in the case of Machine Learning, is

replaced by the design D1:n of the BO process, (ii) the features correspond to the dimensions of

the global optimization problem.

Moreover, since RF consists of an ensemble of different regressors, it is possible to compute

– as for GP – both µ(x) and σ(x), simply as mean and variance among the individual outputs

provided by the regressor. Due to the different nature of RF and GP, the associated probabilis-

tic surrogate models will also result significantly different. The following Figure 4.10 offers

an example. While GP is well-suited to model smooth functions in search space spanned by

continuous variables, RF can deal with discrete and conditional variables by its nature. Indeed,

discontinuity in the RF-based surrogate is given by the underlying decision tree models.

FIGURE 4.10: A graphical comparison between probabilistic surrogate models offered by a
GP (blue) and a RF (green), both fitted on the same set of observations

The definition of µ(x) of an RF model can be defined as follow:

µ(x) =
1
S

S

∑
i=1

Ti(x) (4.16)

where S is the size of the forest (i.e. the number of Decision Trees in the forest) and Ti(x) is the

output provided by the i-th Decision Tree for the input x.

Another important property of RF is that the variance can be controlled, as explained in the

following, where the variance of the RF-based estimator, for the regression case, can be easily

computed as follows:
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Var
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S

(4.17)

where σ2 is the maximum variance computed over all the Ti(x) and ρσ2 =maxi, jCov
(
Ti(x),Tj(x)

)
.

The variance of the RF estimator is proportional to σ2 and ρ (i.e., if the number m of selected

features decreases also σ2 and ρ decrease) and with the size S the forest increasing.

Finally, a basic description of the RF learning algorithm is provided. Thanks to the bagging

and random feature selection, the optimization of acquisition function and the updating of the

RF model result more computationally efficient than GP, in particular when the number of de-

cision variables is larger than 10-20. In fact, RF does not require to invert any kernel matrix

and training of every decision tree can be performed in parallel. These features give the RF a

computational time request equal to OOO(n log(n)) which is not dramatically increased when the n

samples increases as with GP model that requires OOO(n3).

Algorithm 1 Random Forest Algorithm
input : S - Size of the forest;

N - the number of samples in the dataset (i.e. evaluations of the objective functions);
M - the number of features (i.e. decision variables) representing every sample;
m - the number of features (i.e. decision variables) to be randomly selected from the M

available for each leaf node of the tree to be split;
nmin - the minimum node size in the tree;

output: Random Forest regressor

for i = 1 to S do
sample, with replacement, a subset of N instances from the dataset
for every terminal node (leave) of the i-th Decision Tree having size lower than nmin do

select m features (i.e. decision variables) at random from the M available
pick the best feature (i.e. decision variable) and split among the possible m
split the node in two children nodes (new leaves of the decision tree)

end
end
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4.1.3 Other Surrogates

Despite the extensive use of the two probabilistic surrogate models just described in the previous

sections (GP and RF), new surrogate models have been proposed to try to overcome the limita-

tions imposed by the model canons adopted within Bayesian Optimization. This section tries to

give an overview of the most famous more advanced surrogate models to support the Bayesian

Optimization paradigm.

Tree Parzen Estimator.

Whereas the GP based approach models p(y|x) directly, a Tree Parzen Estimator (TPE) models

both p(x|y) and p(y) (Bergstra et al., 2011). More in detail, p(x|y) is replaced, under a specific

condition, by several density distributions on the whole history of evaluated points {(x1, . . . ,xn)}
of the problem to optimize. In particular, this specific condition depends on the choice of a

parameter τ allowing to choose ŷ to be some specific quantile of the observed y values, so that

p(y < ŷ) = τ. The key aspect with this approach is that there is no need to approximate p(y).

Defining ŷ is possible to divide the whole history of evaluated points {(x1, . . . ,xn)} into two

different probability density distributions as follows:

p(x|y) =

l(x), if y < ŷ

g(x), if y≥ ŷ
(4.18)

where l(x) is the density formed by using the evaluated points {(x1, . . . ,xn)} such that corre-

sponding objective function {(y, . . . ,yn)} was less than ŷ and g(x) is the density formed by

using the remaining evaluations. TPE is a powerful probabilistic surrogate model because it

can use several Kernel Density Estimators (KDE) to create density distributions for p(x|y). One

of the most used estimators is based on Gaussian KDE; another possibility is based on the t-

Student distribution. Finally, as proved in (Bergstra et al., 2011), the maximization of the ratio

on these two density distributions l(x)
g(x) , named “TPE score”, corresponds to maximize EI. The

following Figure 4.11 shows, on the left, the two density distributions, l(x) and g(x), based on

Gaussian KDE, and, on the right, the proposed point (pointed with the red vertical line) that is

considered the most promising point to evaluate on the objective function. Another important

property of TPE is its capability to scale linearly with respect to the number of points evaluated

so far, as well as the dimensionality of the problem. TPE uses a tree of Parzen estimators in the

case of conditional variables and demonstrated good performance on such hierarchical struc-

ture of search space. The density distribution l(x) and g(x) are hierarchical processes when the

optimization problem is characterized by both discrete-valued and continuous-valued variables.
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FIGURE 4.11: Density functions l(x) and g(x) (left) and resulting TPE score suggesting the
next point to evaluate (right)

Neural Networks: feedforward, Deep and Bayesian Network.

The role of Neural Networks in BO is two-folds: as already discussed they are Machine Learn-

ing algorithms typically optimized in the AutoML setting; on the other hand, they can offer a

well-suited alternative to GP. Indeed, as already previously reported in this Chapter, GP model

is sample efficient, but its computational complexity is OOO(n3) for n points evaluated and it does

not scale well in high dimensions. In (Snoek et al., 2015) the authors propose an approach

that aims to replace the GP surrogate with a model that scales better in terms of computational

complexity and in high-dimensional problems, but retains the flexibility and well-calibrated un-

certainty that are the main advantages of using GP. More specifically, Deep Learning models

are investigated. The authors proposed adding a Bayesian linear regressor to the last hidden

layer of a Deep Neural Network (DNN), marginalizing only the output weights of the net while

using a point estimate for the remaining parameters. This results in adaptive basis regression,

a well-established statistical technique which scales linearly in the number of observations, and

cubically in the basis function dimensionality. Consequentially there is an explicit trade-off be-

tween evaluation time and model capacity. The resulting algorithm DNGO (Deep Networks for

Global Optimization available online 1) has been extensively tested for optimizing the hyperpa-

rameters of Deep Convolutional Neural Networks. Empirical results show that DNGO provides

the same modelling properties of a GP, but with a significantly lower computational cost which

is linear in the number of function evaluations. The following figure shows ANN and DNN

for creating alternative surrogate models within BO framework and allows for a comparison of

predictive mean (solid blue line) and uncertainty (shaded blue region). The first line figures

show the surrogate models generated by DNN with three hidden layers, the first one using only

Tanh as activation function and the second one using only Sigmoid as the activation function.

1https://github.com/Anmol6/DNGO-BO

https://github.com/Anmol6/DNGO-BO
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The second line figures show the surrogate models generated by ANN with one hidden layer

with the same activation functions. Moreover, in (Springenberg et al., 2016) Bayesian Neural

FIGURE 4.12: Probabilistic surrogate models based on Deep and Artificial Neural Networks,
with different activation functions (i.e., sigmoid and tanh) for the neurons (Archetti and Can-

delieri, 2019)

Network has been suggested as one of the principled alternatives to GP. The algorithm is called

BOHAMIANN (Bayesian Optimization with HAMIltonian Artificial Neural Network) and has

been tested with a three layers neural network with 50 tanh units. The method has been presented

also for multi-task optimization (i.e., finding the set of optimizers for k black-box functions, each

with the same domain X). In order to deal with non-stationarity, a possible approach is to use

Deep Gaussian Processes. In (Hebbal et al., 2019) functional composition of stationary GPs is

proposed, providing a multiple layer structure.
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4.2 Learning and optimizing:
dealing with the exploitation-exploration dilemma

The main goal of the acquisition function is to drive the sequential search process towards more

promising locations, depending on the predictions, and the associated uncertainty, provided by

the (probabilistic) surrogate model conditioned on the current knowledge about f (x).

At each iteration, the next location to evaluate, nn+1, is chosen by balancing between two dif-

ferent - often antagonistic - goals: exploiting current knowledge with the aim to find a better

solution than the current optimal one (aka incumbent) (i.e., optimizing) and exploring the search

space to improve the quality of the approximation of f (x) (i.e., learning).

Choosing the next location xn+1 requires to solve an (internal) optimization problem, whose

computational cost is anyway negligible with respect to evaluating (i.e., query) f (x) at a given

location. The basically inexpensive optimization of the acquisition function is implied by the

adoption of the probabilistic surrogate model. However, depending on the modelling strategy,

the method used for optimizing the acquisition function can be different (e.g., a gradient-based

method for GP and an evolutionary algorithm for RF). The really important aspect is that the

overall BO framework still holds whichever is the modelling strategy adopted and the specific

acquisition function used.

This section summarizes the most common acquisition functions proposed to effectively deal

with the exploitation-exploration dilemma and the most recent advances in the literature.

4.2.1 Acquisition function: choosing the next ML model to train and validate

More than a decade ago, searching for an optimal ML model for a given dataset was an ex-

pensive and time consuming trial and error approach. This totally inefficient methodology was

only possible for a few people who had the knowledge of the performance impact of choosing

a particular model and its hyperparameters configuration. Obviously this inefficient trial-and-

error approach was not ideal because, as already remarked in this thesis, finding an accurate ML

model for a given task can be expensive in terms of both computational resources and time.

It is interesting to remark that recently many studies have compared the strategies adopted by

humans optimizing black-box functions against other global optimization algorithms, such as

Genetic Algorithm, Particle Swarm Optimization, DIRECT and BO, among others. In (Can-

delieri et al., 2020c; Wilson et al., 2018) it was empirically demonstrated that BO behaves like

humans’ strategies, with the optimal solutions identified by BO significantly closer than other

optimization strategies to the optimal solution identified by humans. Moreover, humans and BO

also resulted more sample-efficient, identifying solutions with better values in a limited number

of trials with respect to Genetic Algorithms, Particle Swarm Optimization and other determinis-

tic algorithms such as DIRECT.
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Considering BO as the best strategy to emulate the human’s decision making process in a black-

box setting has been leading the scientific community to propose more sophisticated exploration-

exploitation trade-off mechanisms and, consequently, novel acquisition functions.

For a better presentation, acquisition functions have been organized in two different “families”

depending on what they search for: the “optimum” (Section 4.2.2) and the “optimizer” (Sec-

tion 4.2.3), respectively. From a ML point of view, the acquisition functions belonging to the

first family search for the optimal value of the generalization performance metric, while those

belonging to the second family search for the ML algorithm and/or hyperparameters configu-

ration having the best value of the generalization performance metric. Although they solve the

same problem - and the difference seems to be just a matter of formalism - the two different

formulations lead to completely different approaches, with their pros and cons.

4.2.2 Improvement-based acquisition functions: searching for the optimum

Probability of Improvement
Probability of Improvement (PI) was the first acquisition function proposed in the literature

(Kushner, 1963):

PI(x) = P
(

f (x)≤ f (x+)
)
= Φ

(
f (x+)−µ(x)

σ(x)

)
(4.19)

where f (x+) is the best value of the objective function observed so far (aka “best seen”), x+ is

the current optimal solution (aka incumbent), µ(x) and σ(x) are mean and standard deviation of

the probabilistic surrogate model, such as a GP, and Φ(·) is the normal cumulative distribution

function. Finally, the next point to evaluate is chosen according to: xn+1 = argmaxx∈X PI(x).

One of the drawbacks of PI is that it is biased towards exploitation. To mitigate this effect one

can introduce the parameter ξ which modulates the balance between exploration and exploita-

tion. The resulting equation is:

PI(x) = P
(

f (x)≤ f (x+)+ξ
)
= Φ

(
f (x+)−µ(x)−ξ

σ(x)

)
(4.20)

More precisely, ξ = 0 is towards exploitation while ξ > 0 is more towards exploration. The

following figure shows how the selected location, xn+1, changes depending on ξ. Ideally ξ

should be adjusted dynamically to decrease monotonically with the function evaluations.

A weakness of PI is that it assigns a value to a new point independently on the potential magni-

tude of the improvement. This is the reason why the next acquisition function was proposed.



Chapter 4. Bayesian Optimization: a principled Sequential Learning & Optimization
framework for AutoML 73

FIGURE 4.13: GP trained depending on 7 observations (top), PI with respect to different values
of ξ and max values corresponding to the next point to evaluate (bottom)

Expected Improvement
Expected Improvement (EI) was initially proposed in (Močkus, 1975) and then made popular in

(Jones et al., 1998) which measures the expectation of the improvement on f (x) with respect to

the predictive distribution of the probabilistic surrogate model.

EI(x) =


(

f (x+)−µ(x)
)
Φ(Z)+σ(x)φ(Z), if σ(x)> 0

0, if σ(x) = 0
(4.21)

where Φ(Z) and φ(Z) are the probability distribution and the cumulative distribution of the

standardized normal, respectively, where:

Z =


f (x+)−µ(x)

σ(x) , if σ(x)> 0

0, if σ(x) = 0
(4.22)

EI consists of two terms: the first is increased by decreasing the predictive mean; the second by

increasing the predictive uncertainty. Finally, the next location to evaluate is chosen according

to: xn+1 = argmaxx∈X EI(x).
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Although EI can automatically manage exploration and exploitation, it can nevertheless be for-

malized to allow active management of the exploration-exploitation trade-off by introducing the

parameter ξ. When exploring, points associated to high uncertainty of the probabilistic surro-

gate model are more likely to be chosen, while when exploiting, points associated to low value

of the mean of the probabilistic surrogate model are selected.

EI(x) =


(

f (x+)−µ(x)−ξ)Φ(Z)+σ(x)φ(Z), if σ(x)> 0

0, if σ(x) = 0
(4.23)

and

Z =


f (x+)−µ(x)−ξ

σ(x) , if σ(x)> 0

0, if σ(x) = 0
(4.24)

The following figure shows how the selected location xn+1 changes depending on the values

of ξ. Ideally ξ should be adjusted dynamically to decrease monotonically with the function

evaluations.

FIGURE 4.14: GP trained depending on 7 observations (top), EI with respect to different values
of ξ and max values corresponding to the next point to evaluate (bottom)

Compared to PI, it is possible to notice that EI is anyway less biased towards exploitation than PI.
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Upper/Lower Confidence Bound
Confidence Bound – where Upper and Lower are used, respectively for maximization and min-

imization problems – is an acquisition function that manage exploration-exploitation by being

optimistic in the face of uncertainty (Auer, 2002).

In the case of minimization, LCB is given by:

LCB(x) = µ(x)−ξσ(x) (4.25)

where ξ ≥ 0 is the parameter to manage the trade-off between exploration and exploitation

(ξ = 0 is for pure exploitation; on the contrary, higher values of ξ emphasizes exploration by in-

flating the model uncertainty as can be seen from following Figure). For this acquisition function

FIGURE 4.15: GP trained depending on 7 observations (top), LCB with respect to different
values of ξ and min values corresponding to the next point to evaluate (bottom). Contrary to

the other acquisition functions, LCB is minimized instead of maximized

there are strong theoretical results, originated in the context of multi-armed bandit, on achieving

no-regret. More precisely, in (Srinivas et al., 2012) a scheduling of ξ - that is ξ =
√

βn in the

quoted paper - is proposed to guarantee no-regret of the optimization process, with ξ increas-

ing with the number of observations to encourage exploration and escape from local optima.

Compared to PI and EI is clear the leaning of LCB towards exploration and how this effect is
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augmented by an increase of ξ.

Finally, the next point to evaluate is chosen according to xn+1 = argminx∈X LCB(x), in the case

of a minimization problem, or xn+1 = argmaxx∈X UCB(x) in the case of a maximization problem.

Knowledge Gradient
Knowledge Gradient (KG) is an acquisition function based on revising the typical assumption

made in the BO process that the best evaluated point is returned as final solution. KG revises

this assumption by allowing to return any point as a solution, even if it has not been previously

evaluated. Another important difference with other acquisition functions, which are usually

“risk-seeker”, is that KG assumes risk-neutrality (Berger, 2013), meaning that any random x

is evaluated depending on the expected value f (x). The solution to choose after n function

evaluations, stored in D1:n, would be the one with the smallest µn(x) value.

Let denote this solution with xn; the value f (xn) is random under the posterior, and has the

following expected value conditioned to D1:n:

µn : µn(xn) = min
x′

µn(x′) (4.26)

If further function evaluations were available, we could sample x one more time and obtain the

additional observation (xn+1,yn+1) and, consequently, the updated posterior mean µn+1(·). The

expected value of the solution after this further function evaluation would be µn+1 =minx′ µn+1(x′).

Thus, the improvement in conditional expected solution value is given by: µn− µn+1. As this

quantity is unknown, before evaluating f (xn+1), we can only compute its expected value, con-

ditioned to the previous observations at x1, ...,xn. This quantity is named Knowledge Gradient

and can be computed at any x:

KGn(x) = E
[
µn−µn+1|xn+1 = x

]
(4.27)

The simplest way to compute KG is through simulation: a possible value yn+1 is simulated at

a certain xn+1, then the optimum of the new posterior mean µn+1 is computed, by considering

the sampled value yn+1 as the actual value obtained through function evaluation at xn+1. The

simulation can be performed either by Thompson Sampling or directly by using µn(xn+1) and

σn(xn+1). Finally, this value is subtracted to µn to obtain the corresponding improvement in

solution quality. The entire procedure is repeated many times and the differences µn−µn+1 are

averaged on the simulated values yn+1. This allows to compute the expected value required for

the computation of the estimate of KGn(x), that converges to the actual value as the number of

samples increases.

Therefore, contrary to other acquisition functions, KG computes the posterior not only at the

sampled points but on the entire domain, estimating how a new function evaluation will change
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the posterior. KG assigns a positive value on measurements that cause the minimum of the pos-

terior mean to improve. According to (Frazier et al., 2009) this provides a small performance

benefit in the case of BO with noise-free evaluations, but a substantial improvement in problems

with noisy, derivative, multi-fidelity observations and other “exotic” problem features. In these

cases, the value of sampling comes not through an improvement in the best solution at the sam-

pled point, but through an improvement in the minimum of the posterior mean across possible

solutions. For instance, a derivative observation can provide information that the function is de-

creasing, along a specific direction, in the neighbourhood of the sampled point. Consequently,

the minimum of the posterior mean could be significantly smaller than the previous minimum,

even if the function value at the sampled point is worse than the best previously sampled point.

In this cases KG can reportedly outperform EI (Poloczek et al., 2017; Wu and Frazier, 2016; Wu

et al., 2017b). In particular, the following Figure 4.16 shows that both KG and EI, computed on

a GP model with derivatives, make different sampling decisions during the optimization process

(Wu and Frazier, 2017).

FIGURE 4.16: Comparison between KG and EI on a maximization problem. The EI acquisition
function prefers to sample around region around 0.5 and the KG policy prefers to sample around
the region around 1.5. Thus, KG gives a chance to exploration while EI is biased towards

exploitation [Source Accessed on: 19/09/2020]

https://sigopt.com/blog/expected-improvement-vs-knowledge-gradient/
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Portfolio allocation
Another aspect to consider when choosing an acquisition function for BO framework is that

some times the same acquisition function is not necessarily the best choice for the whole opti-

mization process. An interesting mixed strategy has been proposed where the acquisition func-

tion is chosen, adaptively at each iteration, from a “portfolio” (Brochu et al., 2010).

The selection mechanism is formalized as an on online multi-armed bandit problem: different

strategies are investigated with the result that a hierarchical hedging approach, is the winning

one. The basic algorithm, so-called “GP-Hedge”, summarized in Algorithm 2.

Empirical evidence shows a significant improvement over EI and LCB, which is anyway offset

by the much higher computational cost. These acquisition functions can be extended to leverage

the knowledge of f (x) into a more efficient search for x (Nguyen and Osborne, 2020).

Algorithm 2 GP-Hedge
input : D1:n = {(x1,y1), ...,(xn,yn)} - is the initial set of evaluated point;

N - is the overall number of available function evaluations (aka budget);
M - is the number of acquisition functions in the portfolio
gn = 0 - is the initial ”gains” with gn ∈ RM;

for i = 1 to N do
Compute the next point to evaluate, according to each acquisition function:
xi,k = argmaxx αk(x|D1:n), k = 1, ...,M

Select one point xi among the alternative xi,k, with probability:
pi,k =

egi[k]

∑
M
l=1 egi[l] (i.e., soft-max policy)

where gi[k] is the gain of the k-th acquisition function at iteration i

Evaluate objective function, eventually with noise, yi = f (xi)+ ε

Update the function evaluations dataset D1:i = D1:n
⋃
{(xi,yi)}

Update GP and update gains gi[k] = gi−1[k]+µi(xi,k)

end
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Other very recent acquisition functions
Recently, some papers have been proposing to generalize the acquisition mechanism by consid-

ering the exploration-exploitation dilemma as a bi-objective optimization problem: maximizing

the predictive mean (exploitation) while maximizing uncertainty (exploration). For instance, in

(Žilinskas and Calvin, 2019) global optimization has been considered with respect to the the-

ory of rational decision making under uncertainty. The important result is that PI and EI are

special cases of this bi-optimization framework, because they lay on the Pareto frontier of all

the predictive mean and standard deviation pairs computed for – theoretically – every possible

decision. The mean-variance framework has been also considered, more recently, in (Iwazaki

et al., 2020), for multi-task, multi-objective and constrained optimization.

Moreover, taking a decision by randomly sampling from the Pareto frontier, as proposed in

(De Ath et al., 2019) and (De Ath et al., 2020), empirically proved to outperform other acqui-

sition functions. In addition in (Berk et al., 2020), the authors have recently obtained better

performance by randomly sampling ξ, of UCB/LCB, from a given distribution instead of using

the scheduling proposed by Srinivas. They proved that this allows to identify more suitable

trade-offs between exploration and exploitation and to outperform “traditional” GP-CB on a

range of synthetic and real-world problems.

The main motivation is that the Pareto frontier offers a set of Pareto-efficient decisions which

can be significantly larger than those offered by other “traditional” acquisition functions.

Another interesting approach has been recently proposed in (Volpp et al., 2019) where the ac-

quisition function is not defined a-priori, but learned through a neural network trained on several

solved tasks, where inputs of the neural network is the posterior prediction of a GP.

4.2.3 Information-based acquisition functions: searching for the optimizer

Thompson Sampling.

Thompson Sampling (TS) is more a sequential optimization process per-sé rather than an acqui-

sition function. It is included in this family because it is at the basis of most of the following

entropy-based acquisition functions.

TS is based on the following steps: (i) updating a posterior depending on a set of observations,

(ii) drawing a sample from the posterior as an approximation to the function to be optimized,

(iii) minimizing this sample function to identify the next candidate point, (iv) evaluating the ob-

jective function at that point and (v) iterate. Clearly, TS is in itself a sequential decision making

process, like BO, where the acquisition function is replaced by a sample from the current prob-

abilistic surrogate model (e.g., GP, RF and others).

In the following Figure 4.17 is depicted the difference in the selected next location xn+1, de-

pending on TS and LCB. The sample function from the GP is quite different from LCB and, at

least in this case, TS is less explorative than LCB. Indeed, TS is in principle exploitative due to
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the sample minimization step.

The following Figure 4.18 shows another case where TS is, instead, more explorative than

FIGURE 4.17: The next point to evaluate according to TS: the sample from GP posterior
implies a more exploitative choice than LCB

LCB.

FIGURE 4.18: The next point to evaluate according to TS: the sample from GP posterior
implies a more explorative choice than LCB
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In (Russo et al., 2018) a theoretical analysis is provided, highlighting an analogy between TS

and GP-CB. Moreover, another work (Basu and Ghosh, 2017) provides a convergence result of

TS acquisition function when a random selection is taken with probability epsilon in order to

avoid the risk of getting stuck in local optima during the optimization process.

Entropy-based acquisition functions
The improvement-based acquisition functions, presented in previous Section 4.2.2, are based

on probabilistic measures of improvement in the f domain. Exploitation and exploration are

represented, respectively, by the predictive mean and the “uncertainty bonus” represented by the

standard deviation. On the contrary, information-based acquisition functions aim at selecting the

next query to learn more about the optimizer (i.e., location of the optimum). This informational

approach was originally proposed in (Villemonteix et al., 2009), and further developed into

Entropy Search (ES) (Hennig and Schuler, 2012), and Predictive Entropy Search (Hernández-

Lobato et al., 2014) (PES). In both ES and PES, the basic idea is to maximize the information

about the global optimizer, according to information-theoretic perspective. The negative differ-

ential entropy is used to characterize the uncertainty and the query maximizing the reduction of

uncertainty about the optimizer location is selected. More in detail, ES and PES are defined as

follows:

ES(x) = H
(

p(x∗|D1:n)

)
−E
[

H
(

p(x∗|D1:n∪{x,y})
)]

(4.28)

PES(x) = H
(

p(y|D1:n,x)
)
−E
[

H
(

p(y|D1:n,x,x∗)
)]

(4.29)

where H[p(α)] =−
∫

p(α) log p(α)dα is the differential entropy.

While ES uses the expectation over p(x∗|D1:n), PES uses the equivalent, symmetric formulation,

where the expectation is over p(y|D1:n,x). Both p(x∗|D1:n) and its entropy are analytically in-

tractable and must be approximated through expensive simulation. To add further complexity to

the computation of this distribution, even if the global optimizer is unique, it is not stable, mean-

ing that a small perturbation can result in an approximation far away from the global optimizer.

The solution proposed in (Hernández-Lobato et al., 2014) is inspired by TS, and uses several

samples from posterior, at every iteration, to optimize the acquisition function probabilistically.

The following Figure 4.19 depicts how PES improves over ES, when compared to the ground

truth.

The software for PES and MES can be downloaded at their respectively repositories23.

2https://bitbucket.org/jmh233/codepesnips2014
3https://github.com/zi-w/Max-value-Entropy-Search
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FIGURE 4.19: Ground truth (left), approximation by the ES (middle) and PES (right).
(Hernández-Lobato et al., 2014)

In (Wang and Jegelka, 2017) a more computationally efficient and robust acquisition function,

namely Max-value Entropy Search (MES) is proposed. MES is based on sampling from the con-

ditional distribution of the global optimum, y∗ (instead of the global optimizer, x∗), given the cur-

rent set of observations. This would make MES conceptually closer to the improvement−based

family, however it is introduced in this section for its strong link with ES and PES. Formally,

MES is defined as follows:

MES(x) = H
(

P(y|D1:n,x)
)
−E
[

H
(

p(y|D1:n,x,y∗)
)]

(4.30)

It is important to remark that, while ES and PES rely on the expensive d-dimensional distri-

bution p(x∗|D1:n), MES relies the one-dimensional p(y∗|D1:n), which is computationally much

cheaper. Moreover, two sampling strategies are considered to make the entropy estimation ef-

ficient: sampling from a Gumbel distribution and Monte Carlo approach based on random fea-

tures, respectively. Finally, an extension of MES to the high dimensional settings via additive

Gaussian processes is also proposed.



Chapter 5

Addressing limitations of Bayesian
Optimization in the development of
AutoML and NAS applications

Despite the wide variety of GO methods, BO has become the defacto standard of AutoML tools,

thanks to its effectiveness and sample efficiency. Indeed, it can identify an optimal solution

within a limited number of trials (i.e., function evaluations). Despite the immediate advantages

offered by BO to implement AutoML and NAS tools, there are still open issues limiting their

adoption in the implementation of real-life ML and DL based applications.

As a first example, the generalization performance metric - that is the objective function for

AutoML and NAS tasks - could be not-computable for some specific ML/DL algorithm and/or

configuration of its own hyperparameters. This means that the objective function cannot be eval-

uated within some sub-regions of the search space and, even more complicated, this portions are

not known a-priori: computatbility is black-box, as well as the objective function itself. In Au-

toML and NAS, not-computatibility of the objective function can occur quite commonly: for

instance, training and validating a certain DNN may exceed some prefixed limit in the available

computational time, or computational crashes may occur (e.g., out-of-memory or overflow er-

rors). In both cases, the premature termination of the training-and-validation procedure leads to

a missing computation of the objective function for that given DNN.

Another example is related to constraints limiting the deployability of the trained and validated

ML/DL model. In this case the objective function is usually computable, but some other con-

straints must be satisfied, associated to the system where the (optimal) trained ML/DL model

is going to be run. Typical deployability constraints are related to a threshold on the prediction

time (i.e., time required by the model to perform its inference process and generate the output

for a given input) or limits on the hardware resources available on the system, such as RAM,

ROM, and battery.

83
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Constrained BO is analysed in this Chapter from a theoretical perspective, and it is linked to

the main contribution of this PhD thesis (presented in Chapter 6): a constrained-BO approach

for AutoML of models to be deployed on tiny devices - specifically Micro-Controller Units

(MCUs). Moreover, this Chapter also analyzes other relevant challenges recently arisen in the

literature and still open or partially covered by recent works. More in detail, Multi-Fidelity

and Multi-Information Source Optimization (MISO) are considered, with a focus on AutoML

on large-scale datasets. Then, safe optimization and optimization in high-dimensional search

spaces are also considered.

5.1 Not-computability of the objective function

A typical issue arising in training and validating a ML/DL model is the possible not-computability

of its generalization performance metric. While it is only disappointing for a data scientist to

manually search for the optimal configuration of his/her model, instead it could be detrimental

in an AutoML and NAS task.

This issue is also known as trainability, in the ML community, that is the ability of ML algo-

rithm or a ML pipeline to be trainable on a given dataset with specific hyperparameters config-

urations. In a recent paper (Nguyen et al., 2020), the topic of trainability of ML pipelines has

been addressed. A pipeline composition and optimization requires a tremendous amount of time

that prevents from exploring complex pipelines to find better predictive models. The authors of

(Nguyen et al., 2020) have conducted experiments adopting many current state of the art Au-

toML systems (e.g. AutoWeka, TPOT and Auto-sklearn), showing that many of the generated

pipelines are invalid, and it is unnecessary to execute them to find out whether they are good

pipelines or not. To solve this issue, they propose a novel approach called AVATAR to evaluate

the validity (trainability) of ML pipelines using a surrogate model. They show that AVATAR

combined with the current AutoML systems allows to accelerate the automatic composition and

optimization of ML pipelines by quickly excluding invalid pipelines and increasing the perfor-

mance of the predictive models.

In more general terms, a not-computable objective function is also known, in the GO commu-

nity, as a partially defined objective function (Sergeyev et al., 2007).

Furthermore, not-computable aka partially defined objective functions are also quite common in

simulation-optimization problems. An example is Pump Scheduling Optimization (PSO) in Wa-

ter Distribution Networks (WDNs), aimed to identify a schedule for the pumps, by minimizing

the energy-related costs while satisfying the water demand. An hydraulic software model of the

WDN is needed to simulate the effects of any given schedule - both in terms of energy-related

costs and hydraulic feasibility - while the optimization mechanism must efficiently search for an

optimal schedule among all the possible ones.

Recently, different strategies have been proposed for PSO (Candelieri et al., 2018; Tsai et al.,
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2018). In (Candelieri et al., 2018) a naive BO approach was initially proposed, where a penalty

value was assigned to the objective function in the case that it resulted not-computable (i.e., the

schedule is not hydraulically feasible because water demand is not satisfied or pressure in the

WDN is not within a working range). This was just a workaround and its main drawback is that

the surrogate model can be significantly influenced by the choice of the penalty value, leading

to a completely misleading approximation of the objective function. In (Tsai et al., 2018) an

Adaptive Random Search (ARS) approach has been proposed to optimize the objective function

while approximating the sub-region of the search space associated to computable (aka hydrauli-

cally feasible) schedules. However, the major drawback of this approach is the huge number of

function evaluations it requires.

A more advanced and recent work is proposed in (Candelieri et al., 2019), where an SVM

classifier is used to estimate the sub-region of the search space where the objective function is

computable/defined. The approach is organized in two consecutive BO stages, characterized by

two different objective functions: in the first stage, the next query is selected with the aim to im-

prove the estimation of the feasible region; in the second stage, a ”traditional” BO is performed,

but only within the estimated computable sub-region. Therefore, the overall number of function

evaluations to perform is divided over the two stages (suggested organization is 10% for ini-

tialization, 60% for stage 1 - namely, feasibility determination - and 30% for stage 2 - namely,

Constrained BO). In any case, any query along the entire approach contributes to improve the

estimation of the computable sub-region, while only the computable ones can contribute in ap-

proximating the objective function.

5.2 Black-box constraints

The not-computability of the objective function, described in the previous Section, can be con-

sidered as a specific case of a more general topic, known as Constrained Global Optimization

(CGO) in the GO community. In CGO, an additional set of constraints is used, further restrict-

ing the typical box-bounded search space. The main difference, with the previous setting, is that

the objective function can be in any case computed, even for an infeasible location. Otherwise,

there is a one-to-one correspondence between computability and feasibility.

Although there are CGO works considering white-box constraints, they are not relevant for this

thesis. AutoML and NAS are deeply characterized by their intrinsic black-box nature, in terms

of both objective function and constraints. With respect to black-box constraints, another impor-

tant difference is between constraints coupled and decoupled with the objective function. As the

term suggests, a decoupled constraint can be evaluated independently on the objective function

(and, if it is the case, on other constraints, also). This could lead to more efficient approaches

well-suited for problems having an expensive objective function but cheap constraints (Ariafar

et al., 2019; Gelbart et al., 2014; Hernández-Lobato et al., 2016).
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Unfortunately, in ML/DL the most common types of constraints are coupled with the objective

function, such as a threshold on the training and/or inference time, deployability, that is a guar-

antee that the resources required by the trained model are less than the hardware of the system

on which the model is to be run.

With respect to constraints on the training/inference time, an example is the ChaLearn AutoML

challenge (Liu et al., 2020) for which a new generation of AutoSklearn (Feurer et al., 2020),

namely AutoSklearn 2.0, has been developed. The AutoSklearn 2.0 can generate an optimal

ML model or ML pipeline on a given dataset in a fixed time and resources, adopting advanced

meta-learning and efficient robust resource management.

It is important to remark that, in the AutoML community, a promising optimization strategy for

resource-efficient AutoML/NAS tasks consists in adopting multi-objective optimization (Dong

et al., 2018; Elsken et al., 2018; Zhou et al., 2018), where, instead of considering, at least two

objective functions are optimized, jointly. Multi-objective optimization proved to be well-suited

for all the applications where we are interested in searching for an optimal trade-off between

two or more - often antagonistic - objectives. However, there is a large number of applications

where we are interested in optimizing one objective while guaranteeing that the others are in a

given range (without any need to optimize them). In these cases, it might make sense to deal

with a constrained single-objective problem instead of a multi-objective one. In appendix B a

toy example on solving the same problem as a constrained and multi-objective is provided. Ob-

viously, the natural generalization is a constrained multi-objective setting, where some measures

have to be optimized jointly while other must satisfy some constraints.

With respect to constrained single-objective optimization - under black box constraints - the de-

ployability of ML models on tiny devices has been recently addressed in (Perego et al., 2020),

significantly extending the Constrained-BO approach initially proposed in (Candelieri, 2019).

The final goal is to efficiently search for an optimal DNN model which is also deployable and

runnable on tiny/embedded devices. The approach, named AutoTinyML, is the major contribu-

tion of this PhD thesis, and it will be detailed in the next Chapter 6.

5.3 Multi-Source/Fidelity Optimization

This Section summarizes recent studies on BO approaches optimizing an expensive black-box

objective function, f (x), by querying multiple information sources which provide less expensive

approximations of f (x). The final goal is to optimize the original function while keeping low the

overall cumulated query cost. This setting is known as Multi-Information Source Optimization

(MISO). More formally, the reference problem for MISO is:

x∗ = argmin
x∈X⊆Rd

f (x) (5.1)
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with f (x) black-box, multi-extremal and expensive, and X the search space.

What makes MISO a different problem from GO is the availability of sources approximating

f (x), with a different cost for querying each of them. All the sources are also black-box and

potentially multi-extremal. Let { f1(x), ..., fs(x), ..., fS(x)} denote the S different sources avail-

able, where s = 1 identifies the most expensive source: in the case that also f (x) can be queried

obtaining that f1(x) = f (x). In the following it was made this assumption without any loss of

generality.

Let cs denote the cost for querying the source fs(x), with cs > 0 ∀s = 1, ...,S. One can always

sort sources so that cs > cs+1. Since fidelity changes over the search space, this cost-based rank-

ing does not imply a fidelity-based ranking or hierarchy of the sources.

Querying the source s at a certain location x ∈ X leads to the observation ys = fs(x), or ys =

fs(x)+ εs in the case of a noisy setting, with εs ∼N (0,λ2
s ).

When the different sources come with an explicit information about their level of approxima-

tion, usually named fidelity, MISO specializes into multi-fidelity optimization, first introduced

in (Kennedy and O’Hagan, 2000). Knowledge about fidelities can be exploited to sort hier-

archically the sources in order to implement efficient and effective multi-fidelity optimization

methods (Chaudhuri et al., 2019; Kandasamy et al., 2019; Marques et al., 2018; Peherstorfer

et al., 2017; Sen et al., 2018). However, as already reported in (March and Willcox, 2012),

a number of drawbacks can arise with respect to sources hierarchically organized: once one

has queried a fidelity source at a location x, no further knowledge on can be obtained querying

any other source of lower fidelity, at any location. Moreover, hierarchical organization requires

the assumption that information sources are unbiased, admitting only aleatoric error that must

be independent across sources. The mentioned drawbacks were addressed first in (Lam et al.,

2015) who proposed an approach to generate a single model integrating the different informa-

tion sources with fidelities changing over the search space. Thus, sources are not necessarily

unbiased and independent and allow for epistemic error. More recently, (Poloczek et al., 2017)

introduced a general notion of model discrepancy to quantify the difference between each source

and the function to optimize, depending on the location.

MISO and multi-fidelity optimization have gained growing interest in AutoML: the seminal pa-

per adopting MISO in ML is (Swersky et al., 2013), which proposes a method to use small

datasets to quickly optimize the hyperparameters of a ML algorithm on a large dataset. Re-

sults proved that it is possible to transfer the knowledge gained from previous optimizations to

new tasks in order to speed up k fold-cross validation. Successively, in (Klein et al., 2017),it

is proposed an approach for hyperparameters optimization on large datasets that selects hyper-

parameters values and a dataset size, iteratively, in order to identify optimal hyperparameters

values for the entire large dataset.
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From the GO perspective, (Lam et al., 2015) was the first paper addressing location-dependent

fidelities of the sources, removing the assumption about hierarchical relations across them. The

approach uses a separate GP for each information source and then fuses their predictions – and

associated uncertainties – through the method proposed by Winkler (Winkler, 1981), which

came to represent the standard practice for the fusion of normally distributed data. The detailed

process of estimating the correlation between the errors of two models, at the basis of the fusing

procedure, is given in (Thomison and Allaire, 2017). The approach proposed in (Poloczek et al.,

2017) uses a GP to capture the model discrepancy of each information source with respect to

f (x), while a single statistical model is used to perform BO jointly on the search space and

the information sources. A kernel able to deal with both location and source is used to exploit

correlations across different information sources. This allows to reduce the uncertainty on all

information sources whenenver a new function evaluation is performed, even if it comes from a

less accurate source.

Analogously to mentioned approaches, also (Ghoreishi and Allaire, 2019) use a GP for each

information source and fuse them into a single statistical model. More precisely all the GPs are

fused: the main contribution is the adoption of a two-step look ahead acquisition function for

the selection of the next source-location pair to query. The main drawback in fusing GPs is that

the computation of correlations requires to use a further set of N f points, randomly selected,

which determines both the computational complexity and the smoothness of the resulting fused

GP. For instance, in (Ghoreishi and Allaire, 2019) N f locations are used, even if the authors do

not provide any information on how they have chosen this value.

More recently, in (Candelieri et al., 2020b) a MISO approach using GP sparsification instead of

fusion has been proposed. The main contributions of the paper are:

• a new mechanism for generating a single model on the information sources, based on GP

sparsification instead of fusion. A low complexity criterion (i.e., with compexity O(1))

is introduced to decide whether a function evaluation performed on a cheap source can

be selected to “augment” the set of function evaluations on f1(x). The GP fitted on the

augmented dataset is called Augmented GP (AGP): this entails a lower computational

complexity than fusing GP.

• a new acquisition function to select the next source-location pair, by mixing together:

the GP Confidence Bound, the cost of the source and the (location dependent) model

discrepancy between the source specific GP and the Augmented GP.

• avoiding variance starvation, premature convergence to local optima as well as ill-conditioning

in the GP training, by replacing, if needed, the acquisition function with a variance maxi-

mization step on the most expensive source.
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• Computational experiments to confirm the actual performance of the MISO-AGP method

on benchmark functions and the hyperparameter optimization of a SVM classifier on a

large dataset (i.e., MAGIC GAMMA TELESCOPE dataset, available at the UCI Reposi-

tory).

In Figure 5.1 is reported a one-dimensional MISO minimization problem, from which it is pos-

sible to observe the approximations of the objective function f (x) using a GP model for each

available information source (on the left) and the proposed AGP (on the right). It is evident that

the approximation provided by the AGP model reduces the uncertainty significantly near the

global minimum of f1(x).

FIGURE 5.1: An example of AGP on a one-dimensional MISO minimization problem with
two information sources (Candelieri et al., 2020b)

The following Figure 5.2 (from (Candelieri et al., 2020b)) shows the improvement offered by

the proposed MISO-AGP approach, using two sources (i.e., the large dataset and a small por-

tion of it, specifically 5% of the original one), when compared to BO performed on f (x) only.

Improvement is obtained in terms of both query cost (x-axis) and misclassification error on 10

fold-cross validation (y-axis). A wider set of results, including test functions and more than two

sources, has been reported in the paper ahead of printing on Soft Computing1.

1Candelieri A. Perego R., & Archetti F. Green Machine Learning via Augmented Gaussian Processes and Multi-
Information Source Optimization, Soft Computing, Special Issue on Optimization and Machine Learning (2020)
(ahead of printing)
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FIGURE 5.2: HPO of C-SVC on the MAGIC dataset. Comparison between traditional BO
based HPO and MISO-AGP on two information sources. Results refer to 10 independent runs

(Candelieri et al., 2020b)

5.4 Other challenging topics

Safe Optimization.
A topic closely related to Constrained Global Optimization is Safe Optimization, which can

be included as part of the Bayesian optimization paradigm by defining itself as Safe Bayesian

Optimization. In this kind of optimization approach a constraint is defined on the value of the

objective function (i.e. not violating a given threshold) instead of on variables extending into

the search space.

The important difference with respect to CGO is that Safe Optimziation does not allow – at least

with a given probability – any function evaluations outside the feasible region. Moreover, in

Safe Optimization the objective function is not necessarily partially defined: indeed, a function

evaluation is ”unsafe” if the corresponding value of the objective function violates the safety

threshold.

An initial approach is presented in (Sui et al., 2015), with the SafeOpt algorithm. This novel

algorithm tries to optimize taking into account the – supposedly known – Lipschitz constant

of the objective function. An extension of the previous algorithm is presented in (Berkenkamp

et al., 2016), where the SafeOpt algorithm is applied on high dimensional problems and without

knowing a priori the information on Lipschitz constant.
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The Safe Optimization can be formulated as maximization problem:

x∗ = argmax
x∈X

f (x)

s.t. f (x)≥ h
(5.2)

where X is the domain of the f objective function, f (x) ≥ h is the safe constraint and h is a

safety threshold.

The goal is to optimize the objective function by considering only ”safe” points during the

optimization process, i.e. points that satisfy the constraint f (x) ≥ h. This is a more general

formalization of the original SafeOpt (Sui et al., 2015), which used only a simple threshold on

the value of the objective function, leading to a single constraint g(x) = f (x)≥ h.

A new algorithm, namely StageOpt, has been proposed in (Sui et al., 2018), as an extension

of the original algorithm proposed in (Berkenkamp et al., 2016; Sui et al., 2015) to be more

efficient and applicable to a broader class of problems.

The goal is to optimize an unknown utility function (aka objective function) f : X → R from

noisy evaluations at the sample points x1,x2, . . . . . . ,xn ∈ X . Any point in the sequence, when

sampled, must be “safe”, which means that for each one of m unknown safety functions gi(x) :

X →R the sampled points lie above some safety threshold hi ∈R. The final extended optimiza-

tion problem can be defined as in equation 5.2 subject to the safety constraints gi(x) ≥ hi for

i = 1, . . . ,m, where the m is the total number of safe constraints considered.

As in constrained optimization, GPs are used to model both the objective function and the con-

straints. An important assumption in StageOpt is that each safety function gi is Li-Lipschitz

continuous, with respect to some metric on X . This assumption is usually satisfied by the most

commonly-used kernels ((Srinivas et al., 2012), (Sui et al., 2015)). In order to work, both algo-

rithms (SafeOpt and StageOpt) require at least one initial “seed” set of safe points that must be

given, denoted as S0 ⊂ X .

It should be underlined, however, that expanding the initial S0 does not guarantee to identify the

global optimum x∗ specifically when the region that contains this optimum is disconnected from

the initial region S0.

For this reason the formalization of SafeOpt and StageOpt algorithm is based on the one-step

reachability operator that can provide an expansion rule of the initial set S0, and can be formal-

ized as:

Rε(S) = S ∪
⋂

i

{x ∈ D | ∃x′ ∈ S, gi(x′)− ε−Lid(x′,x)≥ hi} (5.3)

where d is a distance measure (e.g. Euclidean distance) in Rd and ε is the absolute error in

considering x as safe point.

This operator allows to identify the set of all the points estimated as safe depending on the

previous evaluations of f on S. Then, given the maximum budget of function evaluations, N,

the subset of X reachable after N iterations can be defined from the initial safe seed set S0 as the
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following: RN
ε (S0) = Rε(Rε...(Rε(S))...), N times.

Thus, the optimization goal becomes:

x∗ = argmax
x∈RT

ε (S0)

f (x) (5.4)

In particular, StageOpt algorithm separates into two stages the Safe Optimization process: an

exploration phase in which the safe region is iteratively expanded, followed by an optimization

phase where the well-known Bayesian Optimization paradigm is adopted only into identified

safe region. The approach of splitting into two different phases the optimization process is a

common practice in constrained BO as reported in (Candelieri, 2019).

For both algorithms (SafeOpt and StageOpt) is adopted the well-known Upper Confidence

Bound acquisition function for mapping into the GP the uncertainty at the generic iteration

n, reported as follows:

Qi
n(x) =

[
µi

n(x)±βnσ
i
n(x)

]
(5.5)

where βn defines the level of confidence. In particular, in the formula 5.4 the superscripts index

corresponds to the m safety functions (for StageOpt), while the subscripts index is related to

the iterations of the optimization process as usual. Then, to guarantee both safety and progress

in safe region expansion, StageOpt uses the following confidence intervals Ci
n+1(x) = Ci

n(x)∩
Qi

n(x), with Ci
0(x) = [hi,∞] so that Ci

n+1 are sequentially contained in Ci
n for all n = 0, . . . ,N.

Upper and lower bounds of Ci
n can be computed and denoted as ui

n and `i
n respectively.

The first stage of StageOpt is safe region expansion, given by an increasing sequence of the safe

subsets Sn ⊆ X by the following formula based on the confidence intervals of the GP posterior:

Sn+1 =
⋂

i

⋃
xi∈Sn

{
x′ ∈ X | `i

n+1(x)−Lid(x,x′)≥ hi
}

(5.6)

At each iteration, StageOpt computes a set of expanders points Gn (which contains the most

promising points that are likely to expand the current safe region) and picks the expander with

the highest predictive uncertainty. The definition of the expander set Gn is defined as follows:

Gn =
{

x ∈ Sn : en(x)> 0
}

en(x) =
∣∣∣⋂

i

{
x′ ∈ XrSn | ui

n(x)−Lid(x,x′)≥ hi
}∣∣∣ (5.7)

Finally, at each iteration StageOpt chooses the most promosing point selects xn+1 defined by

xn+1 = argmaxx∈Gn
(ui

n− `i
n). The second stage of StageOpt applies the common Bayesian Op-

timization approach within the identified safe region at the end of the first stage. In Figure 5.3

is illustrated a graphical comparison of the behavior of SafeOpt (Berkenkamp et al., 2016; Sui

et al., 2015) and StageOpt starting from the same safe seed point.
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FIGURE 5.3: Evolution of GPs in SafeOpt and StageOpt for a fixed safe seed; dashed lines
correspond to the mean and shaded areas to ±2 standard deviations. The first and third rows
depict the utility function, and the second and fourth rows depict a single safety function. The
utility and safety functions were randomly sampled from a zero-mean GP with a Matern kernel
and are represented with solid blue lines. The safety threshold is shown as the green line, and
safe regions are shown in red. The red markers correspond to safe expansions and blue markers
to maximizations and optimizations. We see that StageOpt identifies actions with higher utility

than SafeOpt (Sui et al., 2018)

It should be highlighted that at current state of the art, nobody has considered a Safe Optimiza-

tion problem with at the same time both constraints ci(x) and safety constraints gi(x). The main

reason is that non-computable function evaluations are not allowed into Safe Optimization meth-

ods in contrast to constrained optimization methods, where this kind of evaluation is allowed.

Another relatively recent work related to SafeOpt and StageOpt algorithms is proposed in (De Blasi

and Gepperth, 2020) with the Self-Adaping Safe Bayesian Optimization (SASBO) approach. In

this paper, the authors try to automatically tune the hyperparameters related to the GP surrogate

model exploited during the optimization process. The hyperparameters currently considered

into the tuning process are the variances and the length scale of the GP kernel currently fixed to

be the Squared Exponential (Rasmussen and Williams, 2006). With this approach, the authors

proved that while the exploration iterations are very conservative at the beginning of the opti-

mization process, the updates of GP hyperparameters minimize the required iterations to find
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the safe optimum.

Despite the various works created by (Sui et al., 2015) there are still limitations on the effective

safe optimization guarantee. For example in (Sui et al., 2015) the authors prove to evaluate only

points of the objective function that with high probability satisfy the safety constraint ( f (x)≥ h),

however they have not been able to provide guarantees of a complete safe optimization process

in presence of noisy function evaluations ( f (x)+δ, where δ is noise component).

A recent work (Sergeyev et al., 2020) tries to fill this lack of guarantees enforcing the usage

of only deterministic constrained approach with a novel approach so-called δ-Lipschitz frame-

work.

They propose an optimization strategy based on two separate phases as already suggested in

(Sui et al., 2018). The first phase, exploiting the L Lipschitz constant information, tries to find

out the maximum safe region in the domain X where the function evaluations satisfy the safety

constraints ( f (x)≥ h). In the second phase, the proposed strategy, exploiting the identified safe

region that could be composed by several sub-regions, optimizes using the Lipschitz optimiza-

tion strategy that adopts the algorithm of Piyavskij proposed in (Piyavskii, 1972).

In particular, using a Lipschitz optimization approach, the information of the L Lipschitz con-

stant must be known a priori. However, assuming that the Lipschitz constant is known, deter-

ministic optimization approaches do not guarantee - exactly as the Safe Optimization paradigm -

that only safe function evaluations are evaluated during the optimization process. For this reason

certain assumptions have to be made in order to use the δ-Lipschitz framework.

First, to state the problem formally, it has to be supposed that a function f (x) satisfies over a

search domain X = [a,b] the Lipschitz condition:

| f (x1)− f (x2)| ≤ L|x1− x2|, 0 < L < ∞, x1,x2 ∈ X (5.8)

with an a priori known L Lipschitz constant. Then, given a safety threshold h > 0, it is required,

in the presence of noise ξ(x), to find an approximation of the point x∗ and an estimate of the

corresponding value f (x∗) such that

x∗ = argmax
x∈Ω⊆X

g(x)

g(x) = f (x)+ξ(x) (5.9)

where Ω is the safe region that can consist of several disjoint sub-regions Ω j, 1 ≤ j ≤ m, and

the noise ξ(x) is bounded by a maximum known value δ of noise. Based on this assumptions



Chapter 5. Addressing limitations of Bayesian Optimization in the development of AutoML and
NAS applications 95

the new domain of the noisy objective function g(x) can be formalized as:

|ξ(x)| ≤ δ, δ > 0

Ω = {x : x ∈ X ,g(x)≥ h}, Ω =
m⋃

j=1

Ω j, Ωi∩Ω j = /0, i 6= j
(5.10)

Thus, at each point x the value g(x) can belong to the set

G(x) = {y : y = f (x)+ξ(x), ξ(x) ∈ [−δ,δ]} (5.11)

Based on new formalizations of the objective function g(x) and its domain Ω, with the Lipschitz

constant L can be construct the Lipschitz minorant function (Sergeyev and Kvasov, 2017), which

is a deterministic approach to create a lower bound function of the g(x).

However, since noise (ξ(x)) is applied to the objective function f (x), the new formalization

of the noisy objective function g(x) (5.9) cannot satisfy the Lipschitz condition in 5.8, for this

reason it is defined that g(x) has to satisfy δ-Lipschitz condition as follows:

|s(x1)− s(x2)| ≤ L|x1− x2|+δ, 0 < L < ∞, 0 < δ < ∞, x1,x2 ∈ X (5.12)

Based on the previous new condition it is possible to formalized the mechanism for safe ex-

pansion. Supposing that g(x) has been evaluated at several safe points xi ∈ Ω, 1 ≤ i ≤ k, it can

be formulated as a new δ-Lipschitz minorant function that satisfies Lipschitz condition (5.8) as

follows:

ϕ(x,xi) = g(xi)−L|xi− x|−2δ, x ∈ X (5.13)

where δ is defined in 5.10. The introduction of this new minorant function ϕ(x,xi) allows the

δ-Lipschitz framework to safely expand the initial safe region taking into account noise, only

considering points xi that satisfy ϕ(x,xi)≤ f (x)−δ, where i = {1, ...,n} sampled points.

Figure 5.4 shows the first phase of the algorithm δ-Lipschitz framework. In particular, the be-

ginning and the end of expansion phase is showed on a one dimensional test function, where

the green and red rectangles represent the safe and unsafe regions respectively identified by the

algorithm. The figure on top shows how from the initial safe point x1 it is possible to expand the

safe region (green rectangle) by evaluating the points x4 and x5 which represent the boundaries

of the safe region identified by the evaluation of g(x1) decreased by 2δ. Iteratively evaluating

these two new points g(x4) and g(x5) generates a wider safe region (green rectangle), identifying

the two new safe points x6 and x7 at the bounderies of this safe interval. This expansion process

is repeated until the three stop criteria are reached. These criteria are: ν the maximum number

of repetitions of the same point xi on the boundaries of the safe region (because for the same

point xi can be obtained a different value of g(xi) due to noise ξ(x)), ε the minimum expansion

value (|x1− x2|| ≤ ε), and σ tolerance with respect to the maximum range of values that can be
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assumed by the evaluations of the same point xi.

FIGURE 5.4: An example of safe expansion mechanism based on the first phase of δ-Lipschitz
framework (Sergeyev et al., 2020)

After the identification of the maximum safe region Ω̂, where Ω̂ ⊆ X , the second phase of δ-

Lipschitz framework can be applied optimizing the following objective function:

x∗ = argmax
x∈Ω̂⊆Ω⊆X

g(x), g(x) = f (x)+ξ(x) (5.14)

In this second phase currently only Lipschitz optimization approach (Piyavskii, 1972) is adopted,

however, considering as the search space only the safe region Ω̂ any other more efficient opti-

mization approach can be applied, such as Bayesian Optimization.

Although this system makes it possible to identify a search space that meets certain safety con-

straint, despite the fact that the objective function is subject to noise, this approach is not as

sample efficient as other optimization strategies, such as Bayesian Optimization.

A future improvement in term of sample efficiency could be to adopt BO to optimize the noisy

objective function in the second phase of the δ-Lipschitz framework. In addition, using the same
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points already evaluated for the first phase of the algorithm can reduce the overall number of the

function evaluations.

High Dimensionality.
Even if BO is the defacto standard, at least in the ML community, for the optimization of L loss

functions like those arising in NAS or AutoML the computational complexity of the traditional

BO approach, with respect to the dimensionality of the search space, is still a limiting factor.

There are two basic ideas: one is that the objective function can be dealt with more efficiently

by exploiting an underlying additive structure (Kandasamy et al., 2015), the second refers to

embedding the original problem in a lower dimensional space in which the optimization is per-

formed and then relay the results in the original space (Candelieri and Perego, 2019; Candelieri

et al., 2020a; Griffiths and Hernández-Lobato, 2017; Li et al., 2017a; Qian et al., 2016; Wang

et al., 2013).

The main contribution of high dimensional BO on objective functions with additive dimensions

is proposed in (Kandasamy et al., 2015). This work assumes that the objective function f (x)

can be decomposed into individual functions, where each one is referred to a subset of deci-

sion variables, and shows that the additive form is also applied to µ(x) and to K(x,x′). The

key contribution of the paper is a decomposed acquisition function Additive Gaussian Process

Upper Confidence Bound (Add-GP-UCB), which makes it possible for BO with additive GP to

achieve a demonstrably lower regret than standard UCB.

The formula of Add-GP-UCB acquisition function is as follows:

ϕ̃t(x) = µt−1(x)+β
1/2
t

M

∑
j=1

σ
( j)
t−1(x

( j)) (5.15)

Where ϕ̃t can be formalized as a sum of functions on orthogonal domains:

ϕ̃t(x) = ∑
j

ϕ̃
( j)
t (x( j)) (5.16)

Where

ϕ̃
( j)
t (x( j)) = µ( j)

t−1(x
( j))+β

(1/2)
t σ

( j)
t−1(x

( j)) (5.17)

By this formulation the additive acquisition function ϕ̃t can be maximise by maximising each

ϕ̃
( j)
t on specific domain of each decision variable domain X ( j).

The basic intuition is that as each individual function is drawn from a GP, it is possible to

perform GP regression on each individual function to get individual estimates and estimate the

final objective. Besides, the uncertainty of each individual approximation can be propagated to

the original objective function and it drives a bound on the cumulative regret.

The method is based on the assumption, well grounded in statistics, that using an additive model

has several advantages iff is not additive. Experimental results, for hyperparameter optimization
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and face detection, confirm that in large-scale problems there is indeed an “hidden” additivity

which can be computationally exploited.

In addition, in (Gardner et al., 2017) the authors propose a method based on MCMC sampling

to discover the additive model underlying while exploring it in BO.

In a more recent work (Mutny and Krause, 2018) a generalized additive model is assumed. To

make the optimization efficient and feasible a Fourier feature approximation is used. The error

in this approximation decreases exponentially with the number of features and allows a precise

approximation of posterior µ(x) and σ(x). Indeed, this study provides a bound on cumulative

regret for both TS and LCB/UCB. As an acquisition function is used Thompson Sampling,

whose formulation allows to use first order optimizers.

A different decomposition is given in (Wilson et al., 2020). The authors remark that traditional

approaches to sampling using µ and σ is statistically well behaved, but scale poorly owing to

a need to invert increasingly large matrices. On the other hand, approximation strategies using

Fourier features as in (Mutny and Krause, 2018) avoid costly matrix operations, but are prone

to errors in predictive posteriors. Two representations are given of GP: the usual function space

view and the weigh-space view, where f (x) is given by a set of basic functions. In the function

view the authors use a kind of sparsification through a set of inducing variables enabling a lower

complexity in the inversion of the kernel matrix.

In the weight space approximation, f can be looked through an explicit set of basic functions.

The kernel k can be viewed as the inner product in a Reproducing Kernel Hilbert Space (RKHS)

and defined as:

k(x,x′) = 〈ϕ(x),ϕ(x′)〉H ≈ φ(x)T
φ(x) (5.18)

Where ϕ : X → R` is a finite-dimensional feature map (Rasmussen and Williams, 2006).

A suitable feature can be constructed by a set of Random Fourier Features (RFF) as for instance

ϕi(x) =
√

2/`cos(θT
i + τi) and defining Bayesian linear model as f (·) = ∑

`
(i=1) ωiφi(x) , where

ωi ∼ N(0,1), we obtain an `-dimensional GP approximation, where f is now a random function

but its randomness is controlled by the distribution of weights ω.

Approximating the posterior f |y as the weighted sum of basis functions, as in the formula above,

yields advantages for sampling. Unlike the standard method we can now sample weight values

rather than function values and each weight draw defines an actual function evaluable at arbi-

trary locations x ∈ X .

Another strategy to deal with high dimensional problems with BO is the representation of the

dimensions of the problem under optimization remapped in another space exploiting the embed-

dings dimensions. There are several works (Li et al., 2017a; Qian et al., 2016; Wang et al., 2013)

which suggest that not all the dimensions/variables of the problem to be optimised are equally

relevant in terms of convergence towards the optimum. In fact in (Li et al., 2017a) they base the

approach proposed as Dropout BO where only a handful of variables/dimensions are considered

at each step of the sequential optimization process. This selection, as well as having the aim of
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carrying out exploration to all effects, allows at the same time to make exploitation as it fixes the

variables/dimensions of the problem with the best values seen so far. Instead of a brute dropout,

random embedding (Qian et al., 2016; Wang et al., 2013) was suggested.

In (Candelieri and Perego, 2019) the authors propose to exploit the dimensionality reduction

intrinsically offered by Deep Autoencoders and then perform BO in the induced latent space.

A first attempt to combine autoencoders and BO was presented in (Griffiths and Hernández-

Lobato, 2017) to encode continuous representations of discrete variables and, eventually, reduce

dimensionality. Instead in (Candelieri and Perego, 2019) has been analyzed the interplay be-

tween BO and the two mappings computed by the autoencoder - from the original to the latent

space (encoding) and viceversa (deconding). In order to avoid being stuck in local optima, it was

concluded that adaptive sampling in the original space is required when exploration is nullified

by (inaccurate) decoding.

TABLE 5.1: Table reports preliminary results obtained by the proposed approach (BOODLE)
in (Candelieri and Perego, 2019)

20 Dimensions 30 Dimensions
Rosenbrock Function (Dixon and Szegö, 1978)

Optimizer Iterations Optimal Value Time (Sec.) Iterations Optimal Value Time (Sec.)

BOODLE
294

(±144)

92.25
(±49.63)

5672.50
(±1503.58)

410

(±71)

238.93
(±112.54)

4178.67
(±815.79)

BO
490

(±10)

6109.08

(±4801.85)

22367.55

(±495.76)

475

(±23)

13629.45

(±11201.16)

48180.39

(±5779.05)

Schwefel 1.2 Function (Al-Roomi, 2015)

Optimizer Iterations Optimal Value Time (Sec.) Iterations Optimal Value Time (Sec.)

BOODLE
260

(±132)

3.14

(±0.57)

4671.74
(±718.21)

244

(±127)

5.96

(±1.64)

3428.87
(±732.43)

BO
162

(±87)

2.24
(±0.36)

14379.29

(±4262.99)

292

(±111)

3.14
(±1.84)

36114.97

(±8481.30)

Preliminary results of the proposed approach in (Candelieri and Perego, 2019) for high dimen-

sional Bayesian Optimization are reported in Table 5.1 into two famous optimization benchmark

functions (Al-Roomi, 2015; Dixon and Szegö, 1978). Despite the promising results obtained on

Rosenbrock test function with 20 and 30 dimensions respectively, for the Schwefel 1.2 the re-

sults were negative in terms of the optimal value reached at the end of the optimization process.

The main reason for the poor performance of the proposed approach on this test function is due

to the fact that Schwefel 1.2 consists of interactive dimensions, meaning that one dimension of

the function depends on a combination of all the others.

Although observing Table 5.1 there is a clear gap between the time required to optimize using

the proposed system (BOODLE) and the traditional BO.



Chapter 6

AutoTinyML

This Chapter is entirely dedicated to the introduction of a particular branch of Machine Learning

defined as Tiny Machine Learning. For this particular Machine Learning several strategies are

studied to obtain an hardware-energy efficient Machine Learning models that are executable on

computers with limited hardware capabilities.

In this Chapter the main contribution of the research carried out during the PhD will be in-

troduced, which also comprised a collaboration with STMicroelectronics1 for the development

of a constrained optimization system applicable to Deep Neural Networks for deployability on

microcontrollers.

6.1 Tiny Machine Learning

To support pervasive computing, the most crucial requirement is the possibility to deploy Ma-

chine Learning (ML) models on small devices surrounding us. Typical examples are applica-

tions for object recognition, speech/audio recognition and motion activity recognition, with ML

models to be deployed onto smart-home devices such as light switches, door handles, windows

as well as personal/mobile devices such as smartphones, smartwatches and others.

Microcontroller sales have increased significantly in recent years, mainly driven by the Internet-

of-Things wave. According to a report by IC Insight2, there are around 250 billion microcon-

trollers in the world today, with 28.1 billion of devices sold in 2018 and an annual shipment

volume which is estimated to grow to 29.6 billion by 2023: a massive untapped market.

One of the most relevant advantages of microcontrollers is that they can be programmed with-

out requiring custom electronics for each task. This has given the chance to exploit the power

of Machine Learning (ML) and Deep Learning (DL) for creating specific applications (e.g.,

1https://www.st.com/content/st com/en.html
2https://www.icinsights.com/data/articles/documents/1289.pdf [Accessed on: 21/09/2020]
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speech/audio recognition, image recognition, etc.) to run on microcontrollers. While the model

training is usually performed on typically large computational platforms, also using specialized

hardware (e.g., GPUs and TPUs), especially for DL, instead the inference is taken to microcon-

trollers.

Automated Machine Learning (AutoML) and the Neural Architecture Search (NAS) (Hutter

et al., 2019) have been consolidating as the standard methods for model selection and hyper-

parameters optimization (HPO) of a ML algorithm and definition of novel DNN architectures,

respectively, both with the aim to train accurate models.

However, AutoML and NAS can make a large use of computational resources for training -

and validating - these models. Indeed, in (Strubell et al., 2019) the authors start to investigate

how ML models, especially DNNs combined with NAS and/or HPO, can be hungry for energy

power as well as for the data used for training. Moreover, the models obtained through AutoML

and NAS are usually very accurate but require computational and/or memory resources which

do not fit with tiny devices with limited hardware resources, typically embedded systems and

microcontrollers.

According to the literature, several NAS approaches are available, such as Evolutionary Algo-

rithms (AE) (Angeline et al., 1994; Bianco et al., 2020; Miikkulainen et al., 2019; Suganuma

et al., 2017; Xie and Yuille, 2017), Random Search (Liu et al., 2018), Reinforcement Learn-

ing (Baker et al., 2017; Zhong et al., 2018; Zoph and Le, 2017) and Sequential Model-based

Optimization (SMBO) - aka Bayesian Optimization (BO) (Bergstra et al., 2013; Domhan et al.,

2015; Jin et al., 2019; Mendoza et al., 2016, 2019), but they do not consider any constraint about

the deployment onto a device with limited hardware capacity. Indeed, a promising direction is

to develop NAS methods for multi-objective problems (Dong et al., 2018; Elsken et al., 2018;

Zhou et al., 2018), in which measures of resource efficiency are used as objectives along with

the predictive performance on unseen data.

With respect to the industrial sector, many top Artificial Intelligence (AI) companies have been

recently proposing AutoML and NAS systems to produce high-performance ML/DL models

exploiting the cloud-based capacities, which are virtually unlimited for their nature. Some ex-

amples, already reported in Chapter 1, are Google AutoML Tables3, Amazon SageMaker4 and

Microsoft AutoML 5.

Both the aforementioned research papers and the industrial solutions do not consider any hard-

ware constraint arising in case that the optimized trained model should be deployed on tiny

devices. Typically the main hardware constraints can include the storage capacity of the de-

vices (as Read-Only-Memory ROM), the memory used for the computation (as Random Access

Memory RAM), the latency of the inference based on the model and the energy consumption

required by the device that could depend from a limited energy supply.

3https://cloud.google.com/automl-tables?hl=uk
4https://aws.amazon.com/sagemaker/
5https://www.microsoft.com/en-us/research/project/automl/

https://cloud.google.com/automl-tables?hl=uk
https://aws.amazon.com/sagemaker/
https://www.microsoft.com/en-us/research/project/automl/
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Thus, while many companies are currently leveraging on Cloud, data centers and specialized

hardware to train accurate ML models, the need to deploy and run these models on tiny devices

is emerging as the most relevant trend. Tiny Machine Learning (TinyML) is a sub-field of ML,

aiming at bringing the power of AI to devices with limited computational resources.

Most of the widely adopted ML algorithms are not designed to provide learned models that are

deployable on tiny devices such as Micro Controller Units (MCUs). For this reason, the TinyML

community has been growing in the last years (Fedorov et al., 2019). An example of IT com-

pany supporting and investing on TinyML is STMicroeletronics, which developed an extension

package of its software STM32CubeMX to allow data scientists to design accurate Deep Neural

Networks while checking for the resources required to execute the trained model and validate

its deployability on a specific STM32 MCU (Fedorov et al., 2019; Varenne et al., 2019).

Therefore, resource efficiency is an even more critical issue when the trained models have to

run on tiny devices. The main idea is to consider the hardware resources of the small devices as

constraints of the AutoTinyML problem, naturally leading to a new approach in the constrained

optimization setting which could be more suitable than a multi-objective method.

6.2 Auto Tiny Deep Learning

6.2.1 Proposed Approach

The approach proposed in this research aims to extend AutoML to include deployability con-

straints into the optimization of a ML algorithm. Figure 6.1 compares: (top) a situation where

AutoML is used to obtain an accurate model whose deployability is validated only at the end of

the process, against (bottom) the proposed AutoTinyML schema, which requires to validate the

deployability of every model generated over the optimization process.

FIGURE 6.1: Above the dashed line: AutoML/NAS applied to train an optimized model and
a final check for its deployability on tiny device. Below the dashed line: the inclusion of

deployability constraints into a Constrained AutoML/NAS framework (i.e. AutoTinyML)
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Into AutoTinyML task the problem to optimize can be formalized starting from equation 2.2 as

follows:

γ
∗ = argmin

γ∈Γ

1
k

k

∑
i=1

L(Nγ,D
(i)
train,D

(i)
val)

s.t.

c j(γ)≤ 0 ∀ j = 1, ..,nc

(6.1)

Where:

• Nγ is the DNN architecture whose hyperparameters – represented by γ – are to be opti-

mized;

• Γ = {Γ1, ...,Γn} is the overall search space for the hyperparameters, where Γi is the do-

main for the single hyperparameter γi;

• Dtrain and Dval are respectively the training and validation dataset;

• L is the loss function measuring the performance of Nγ, which is trained on Dtrain and

validated on Dval;

• k is the number of folds used in a k-fold cross validation procedure, aimed at providing a

more robust estimation of the generalization loss, that is the loss on new unseen data;

• γ∗ represents the optimal hyperparameters configuration providing the minimum value of

L function;

• c j is the j-th constraint that Nγ must satisfy to be deployable on the selected tiny device;

• nc is the number of constraints.

Thus, in AutoTinyML the next hyperparameters configuration to evaluate is selected by consid-

ering both accuracy and deployability, according to 6.1.

In a nutshell, the AutoTinyML approach is based on SVM-CBO algorithm, which consists of

two different phases. In the first phase, the goal is to estimate which is the portion of the search

space associated to deployable hyperparameers configurations. This phase is named feasibility

determination because the portion of the search space to estimate corresponds to the feasible

region of the problem (6.1). In this study deployability coincides with feasibility.

In the second phase, a sequential model-based optimization approach is adopted to optimize the

loss function, but only in the restricted estimated feasible region. As in SVM-CBO, an SVM

classifier (Saunders et al., 1998) is used in the first phase to approximate the feasible region,

but contrary to the implementation proposed in (Candelieri, 2019), here the RF model is used –

instead of a GP – to approximate the objective function in the second phase. To differentiate,

the new version of SVM-CBO proposed in this work was named SVM-CBORF .

However, before reporting the summarised Algorithm 3 some notation must be introduced.

Let H1:m denotes the set of hyperparameters configurations evaluated so far, that is H1:m =
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{(
γ(i), L̂(i)

)}
i=1,...,m, with γ(i) ∈ Γ and L̂(i) the associated validation losses (e.g., L̂(i) is com-

puted on a hold-out validation set or via k-fold cross validation). Furthermore, let ∆1:m denotes

the set storing the actual deployability of the models in H1:m, that is ∆1:m =
{(

γ(i),δ(i)
)}

i=1,...,m,

with δ(i) ∈ {+1,−1} a label for deployable/undeployable, respectively.

As previously mentioned, SVM-CBO deals with partially defined objective functions and in its

original implementation it stores in the first set only the hyperparameters configurations result-

ing computable (i.e., training and validation are completed without any crash). Thus the result

should be H1:p and ∆1:m, with p≤ m.

In this work, deployability and computability (aka trainability) are two completely different is-

sues. Indeed, given a hyperparameter configuration, the validation loss of the associated model

could be computable, but the resulting trained model could be undeployable on the tiny device.

On the other hand, the uncomputability of the loss function occurs in case that the model cannot

be trained using that hyperparameters configuration: in this case, there is no model to deploy.

Thus, without any loss of generality, the two sets have been considered, H and ∆, having the

same number of elements, m, and assign L̂(i) = /0 in case that the validation loss cannot be com-

puted for the i-th hyperparameter configuration. So it is always possible to keep track of both

computability and deployability of every model.

The last important point is related to acquisition functions, which are different in the two phases

of SVM-CBORF . In phase 1, the next hyperparameters configuration to evaluate is given by the

minimization of the following equation:

γ
∗ = argmin

γ∈Γ

∣∣∣∣ ν

∑
j=1

α jδ
( j)k(γ( j),γ)

∣∣∣∣+ m

∑
l=1

e−
||γ(l)−γ||2

2`2 (6.2)

where the first addendum is the distance from the separation hypersurface defined by the SVM

classifier in the search space (i.e., separation hyperplane in the induced Feature Space), while

the second addendum is a measure of coverage of the search space according to the spatial dis-

tribution of the m hyperparameters configurations evaluated so far. Moreover, ν and α j are,

respectively, the number of support vectors and the Lagrangian coefficients in the SVM classi-

fier, k(·, ·) is the kernel function used by the SVM classifier – a Radial Basis Function kernel has

been adopted to catch and model non-linearities. Then, ` is a parameter to model the coverage

effect of each evaluated hyperparameters configuration: the larger ` the wider is the coverage

associated to a hyperparameters configuration.

Accordingly to (6.2), in phase 1 a configuration of hyperparameters is selected that is closer to

the SVM separation hypersurface and far from the previously evaluated configurations.

The output of the phase 1 is an estimate of the feasible region associated to hyperparameters

configurations which should generate deployable models.
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Let Ω̃ ∈ Γ denote the estimate of the feasible region, such that:

Ω̃ =

{
γ ∈ Γ :

ν

∑
j=1

α jδ
( j)k(γ( j),γ)< 0

}
(6.3)

In phase 2, the next hyperparameters configuration to evaluate is proposed considering as fol-

lows:

γ
∗ = argmin

γ∈Ω̃

µ(γ)−
√

βσ(γ) (6.4)

The above formula represents the well-known Lower Confidence Bound (LCB) (Srinivas et al.,

2010). Where µ(γ) and σ(γ) are, respectively, the mean prediction and the associated uncer-

tainty provided by the RF probabilistic surrogate model, and β is a parameter to manage the

exploration-exploitation trade-off, for which suitable scheduling with convergence proof is pro-

vided in (Srinivas et al., 2012). The reason for its adoption in the SVM-CBORF approach is

driven by the fact that this acquisition function outperforms the most performing and widely

used acquisition function such Expected Improvement (EI) (Srinivas et al., 2012).

Besides, it is important to remark that while (6.2) is minimized on the overall search space Γ,

(6.4) is minimized only on the estimate Ω̃ of the feasible region.
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Algorithm 3 SVM-CBORF

input : m0 - number of initial configurations;
M1 - configurations to evaluate in phase 1;
M2 - configurations to evaluate in phase 2.

output: (γ+, L̂+) ∈ H1:M : L̂+ = min
i=1,...,M

{L̂(i)} with M = m0 +M1 +M2.

initialization:
generate γ(1), ...,γ(m0)

compute L̂(1), ..., L̂(m0)

evaluate δ(1), ...,δ(m0)

—— Phase 1 ————————————————–
while m < M1 do

train an SVM classifier on ∆1:m
select γ(m+1) according to (6.2)
train N

γ(m+1) and compute L̂(m+1)

translate and deploy N
γ(m+1) to obtain δ(m+1)

update H1:m+1← H1:m∪ (γ(m+1), L̂(m+1)
update ∆1:m+1← ∆1:m∪ (γ(m+1),δ(m+1)
m← m+1

end

—— Phase 2 ————————————————–
while m < M2 do

train a RF regressor on H1:m
select γ(m+1) according to (6.4)
train N

γ(m+1) and compute L̂(m+1)

translate and deploy N
γ(m+1) to obtain δ(m+1)

update H1:m+1← H1:m∪ (γ(m+1), L̂(m+1)
update ∆1:m+1← ∆1:m∪ (γ(m+1),δ(m+1)
if δ(m+1) =−1 then

re-train the SVM classifier on ∆1:m+1
end
m← m+1

end
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6.2.2 Integration with STM32CubeMX

STMicroelectronics developed a software named STM32CubeMX6 which is a graphical tool that

allows a very easy configuration of STM32 microcontrollers and microprocessors, as well as the

generation of the corresponding initialization C code for the Arm R© Cortex R©-M core (adopted

in this study) or a partial Linux R© Device Tree for Arm R© Cortex R©-A core, through a step-by-

step process.

Moreover, this software allows the final user to add different extension packages to enable sev-

eral functionalities that might be available for specific MCUs with particular hardware. In ad-

dition with this software it is possible to interact with a virtualized MCU to speed up the whole

development process of new applications without having a real MCU. Indeed, inside this soft-

ware there are almost all MCUs produced by STMicroelectronics, which can be applied from

health-care to industry monitoring applications.

Also, to support TinyML community, within STM32CubeMX is developed an extension pack-

age named STM32Cube.AI7, that provides useful porting of DNN architectures on MCUs.

This package is able to automatically convert pre-trained DNN into optimized C-language code,

in terms of computation and memory usage, to run efficiently on any STM32 MCUs. One of the

most important features of this extension package is that it provides the optimization of a pre-

trained DNN using several DNN libraries currently available in DL community, such as Keras8,

Tensorflow9, TensorflowLite10 and ONNX11.

With this extension it is also possible, through a Graphic Unit Interface (GUI) or Command Line

Interface (CLI), to analyze and validate the DNN architectures and observe the proper amount of

computational resources and memory required for storing and running the original (reference)

and the C-optimized networks on MCUs.

The original (reference) model can be compressed with three compression factors (×1,×4,×8)

to reduce the size of weight/bias parameters of the model.

With the validation of the network the STM32Cube.AI provides several information in terms of

performance of the DNN models. For each validation are provided the following performance

measures: Accuracy, Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE).

Also, in case of classification task, to compare the original (reference) DNN model with the C-

optimized one, the tool uses a so-called X-CROSS Accuracy, which is able to measure how far

are the predictions of C-optimized model in respect to the original (reference) one. To compute

this particular Accuracy measure between models, the tool creates a Confusion Matrix, used in

classification task, but instead of using the ground truth values and the predicted values, it uses

6https://www.st.com/en/development-tools/stm32cubemx.html
7https://www.st.com/en/embedded-software/x-cube-ai.html
8https://keras.io/
9https://www.tensorflow.org/versions/r2.0/api docs/python/tf

10https://www.tensorflow.org/lite
11https://onnx.ai/supported-tools.html

https://www.st.com/en/development-tools/stm32cubemx.html
https://www.st.com/en/embedded-software/x-cube-ai.html
https://keras.io/
https://www.tensorflow.org/versions/r2.0/api_docs/python/tf
https://www.tensorflow.org/lite
https://onnx.ai/supported-tools.html
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as the ground truth the predictions of the original (reference) model against the predictions of

the C-optimized model. With this measure it is possible to quantify the loss of accuracy reached

using the C-optimized model in respect to the original (reference) model.

Based on the collaboration with STMicroelectronics, a good C-optimized DNN model must

have a X-CROSS Accuracy greater or equal to 95%, which is a good trade-off between the loss

in accuracy and the compression factor provided by STM32Cube.AI.

FIGURE 6.2: An example of STM32CubeMX GUI window with one of the DNN baseline
computed to check hardware constraints

Figure 6.2 shows an example of the GUI window of STM32CubeMX adopting the STMicro-

electronics X-CUBE-AI extension tool (STM32Cube.AI). The blue point with number 1, in the

Figure, identifies the Deep Learning framework adopted by the Deep Neural Network that has to

be optimized in C-language, while the point with 2 indicates whether the model to be loaded is

a complete neural network file (architecture and network weights) or just the network topology

(architecture).

The number 3 identifies the compression factor that must be applied to the network (in specific

to the weights of the network) during the translation of the loaded model into its C-optimized
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version that can be deployed on the MCU. The number 4 indicates the validation input and out-

put (aka ground truth of the test set) with which the C-optimized network is tested. With the

number 5 are reported the complexity of the model through the Multiply ACCumulated opera-

tions (MACC), and the hardware resources used by the C-optimized version model on a virtual

MCU. Always in Figure 6.2 is reported the example of a baseline model of one of the real use

cases that will be introduced into next Chapter.

In order to implement the AutoTinyML framework, it was necessary to automate this network

translation, compression and validation process using the CLI version of the STMicroelectronics

X-CUBE-AI tool (STM32Cube.AI).

FIGURE 6.3: An example of STM32Cube.AI CLI window with one of the DNN baseline com-
puted to check the performance metrics (e.g., Accuracy and RMSE) and hardware constraints

(e.g., RAM and ROM) (Part 1 of 2)

In Figure 6.3 is reported the result of the validation of the same neural network seen before. In

fact, the numbers reported (from 1 to 5) represent the same information previously reported by

the GUI window. Moreover, in the Figure 6.4 is reported the rest of the command started in Fig-

ure 6.3, from where it is possible to observe the performances of the original (reference) model

and of the C-optimized model. In particular the points with number 6 and 7 report the accuracy,
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RMSE, MAE and the Confusion Matrix for C-optimized model and original (reference) model

respectively. Instead the number 8 represents the performance metrics calculated on X-CROSS

accuracy, previously introduced, to quantify the discrepancy between the original (reference)

model and the C-optimized one, while with number 9 a summary of the all metrics available is

reported. When the command from the CLI is completed, a report file is generated that contains

exactly what is shown in the output of the CLI window from the last two Figures 6.3 and 6.4.

FIGURE 6.4: An example of STM32Cube.AI CLI window with one of the DNN baseline com-
puted to check the performance metrics (e.g., Accuracy and RMSE) and hardware constraints

(e.g., RAM and ROM) (Part 2 of 2)

In particular the entire AutoTinyML framework workflow is described in Figure 6.5. The green

rectangle contains the three main modules that implement the search process of the optimal

DNN configuration on the given real-use cases that will be presented in the next Chapter. The

Keras module has as the main goal to train DNN of a given hyperparameter configuration ex-

ploiting the DL Keras library, the STM32Cube.AI module is used to translate the trained model,
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from the previous module, to check the performance metric and deployability constraints for an

MCU, while the SVM-CBORF module12 is the optimizer adopted to find out the optimal DNN

configuration. Due to the limited computational capacity, it was considered to evaluate the per-

formance and deployability constraints with the validation technique hold-one-out, i.e. testing

the network using data that are not present within the dataset used for training. Moreover, at the

end of the optimization process, the deployable DNNs found are then rebuilt and trained with

the dataset composed by training and validation set, and tested with the test dataset never before

used during the process of finding the optimal configuration.

FIGURE 6.5: Figure reports the AutoTinyML workflow in detail. The green rectangle identifies
the optimizer proposed in this thesis, which is composed by the constrained optimizer (SVM-
CBORF ), the Deep Learning framework adopted (Keras), and the translator system for obtained

C-optimized Deep Neural Networks provided by STMicroelectronics

In addition, in Figure 6.6 two reports show the compilation and deploy of the C-project, repre-

senting the deployable and optimized DNN, and the validation of the network directly on the

STM32 device using a test dataset of one of the real use cases provided.
12https://github.com/ricky151192/SVMCBO

https://github.com/ricky151192/SVMCBO
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FIGURE 6.6: Figure shows two reports, one is the compilation and deploy process on top
figure, while the other is the validation process on a given device



Chapter 7

Experiments

In order to test the optimization approach previously introduced in this chapter an exhaustive

validation is reported here, starting with common test problems adopted by the Constrained

Global Optimization community, and passing then to the validation of the proposed approach of

AutoTinyML on two real-life use cases.

All the experiments have been performed on a machine equipped with: Intel i9 (4.0Ghz) proces-

sor with 8 cores, 64Gb of RAM and NVIDIA GeForce RTX 2080 SUPER 8Gb. Moreover, for

the AutoTinyML experimentation has been adopted Keras 2.2.4 with Tensorflow 2.1.0 as Deep

Learning framework, which are the current supported versions by the software STM32CubeMX

with STM32Cube.AI extension provided by STMicroelectronics.

7.1 Test problems

The first step to validate the approach proposed in this thesis was to optimize test functions

widely adopted by the community in order to test constrained optimization approaches.

7.1.1 Simple 2D test functions

The functions considered were: Rosenbrock constrained to a line and a cubic (Simionescu and

Beale, 2002), Mishra’s Bird constrained (Mishra, 2006), a test function proposed in (Gramacy

et al., 2016) (from now on defined as Gramacy), Michelowicz (Al-Roomi, 2015) and Alpine N.2

(Jamil and Yang, 2013) with the proposed not linear constraints.

In addition, the approach has been tested on the Branin (Picheny et al., 2013) (rescaled) function

bound in two disconnected ellipses, in order to show SVM-CBO’s ability to optimise two or

113



Chapter 7. Experiments 114

more eligible disconnected regions. The appendix A reports the complete set of the test functions

and their constraints adopted to validate the constrained optimization approach.

7.1.2 Test function generator: Emmental-type GKLS

Emmental-type GKLS (Sergeyev et al., 2017) is a software for generating multi-dimensional

functions that can be continuously differentiated multi-extremal functions with non-linear con-

straints. The overall minimizer of these constrained test functions is always at the limit of the

feasible region. The dimensionality and complexity of the test functions can be easily controlled

by setting a few generator parameters. The experimental setting defined for the experiments with

Emmental-type GKLS was inspired by the one used in (Sergeyev et al., 2018): test functions of

growing dimensionality, from 2D to 5D, have been considered, for 2 different classes of com-

plexity each. In this exhaustive validation are considered a total of 80 different test functions,

which are generated based on the 10 initial different functions with several dimensionality and

class complexity. The parameters to control the generation process of the test functions are set-

ted as suggested in (Sergeyev et al., 2018), setting the number of local minima at 30, the number

of constraints at 20, 2 and 10, respectively for the possible three types considered by Emmental-

type GKLS, with 5 active constraints at the global optimum. To show the complexity of the

generated constrained test function in Figure 7.1 is reported an example proposed in (Sergeyev

et al., 2017), where it is possible to notice the very complex unfeasible and feasible region drawn

by the generator. More recently, another flexible extension of GKLS (Sergeyev et al., 2017) for

constrained problems has been proposed in (Gergel et al., 2019), namely GCGen (Global Con-

strained optimization problem Generator). Although it can be considered more flexible than

Emmental-type GKLS, it has been discovered only after the experimental campaign performed

by using Emmental-type GKLS. Moreover, in the last period of the PhD studies the effort was

focused on addressing the real-life application, therefore, unfortunately, GCGen could not be

considered.
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FIGURE 7.1: The feasible regions and the level curves of the constrained Emmental-type test
functions with increasing complexity with the following numbers of constraints (a) p1 = 3,
p2 = 2, p3 = 0, Nactive = 1; (b) p1 = 20, p2 = 2, p3 = 0, Nactive = 1; (c) p1 = 20, p2 = 2,
p3 = 10, Nactive = 1; (d) p1 = 20, p2 = 2, p3 = 10, Nactive = 5. The global minimizer of the
constrained problem is indicated by red bold +, and the global minimizer of the corresponding

box-constrained D-type GKLS problem is indicated by blue thin + (Sergeyev et al., 2017)

7.2 AutoTinyML

In this section are introduced the AutoTiny ML Tasks considered to validate the performances

of the optimization approach proposed as a major contribution of this PhD thesis. The main

goal of the proposed approach is not to create the optimal CNN model from scratch but to start

from a baseline/draft network and apply the proposed constrained optimization framework in

order to find the best DNN in terms of accuracy considering the hardware limitations of MCUs

as constraints. In this way, the proposed optimization framework can adapt the CNN baseline

model, currently applied to a given task, by finding a variant model that increases its accuracy

while taking into account the stringent hardware constraints of the target MCU.

Initially, the tiny hardware devices adopted in the experiments will be presented, and then the

classification benchmark tasks will be illustrated, analyzing their DNN baseline models and
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defining the search space for the optimization for each task. Finally, the current deployability

of each baseline model will be investigated to show that in most combinations between the

compression level, provided by STM32Cube.AI, and the selected MCU it is not actually possible

to run a DNN on these tiny devices.

7.2.1 Tiny Devices

The proposed SVM-CBORF for AutoTinyML has been validated on two benchmark classifica-

tion tasks and two different tiny devices provided by STMicroelectronics.

The name and characteristics of the two MCUs used in the experiments are:

• STM32L476RGT61 (from now on as Big Board) with ARM Cortex M4 80MHz, 1

Mbytes of ROM and 128 KBytes of RAM

• STM32F303K8T62 (from now on as Tiny Board) with ARM Cortex M4 72MHz, 64

KBytes of ROM and 16 KBytes of RAM.

FIGURE 7.2: The STMicroelectronics MCUs adopted in this study. On the left the Big Board
and on the right the Tiny board

1https://www.st.com/en/microcontrollers-microprocessors/stm32l476rg.html
2https://www.st.com/en/microcontrollers-microprocessors/stm32f303k8.html

https://www.st.com/en/microcontrollers-microprocessors/stm32l476rg.html
https://www.st.com/en/microcontrollers-microprocessors/stm32f303k8.html


Chapter 7. Experiments 117

7.2.2 Benchmark Classification Tasks

Human Activity Recognition
The benchmark classification task considered is the classification of human activities from sen-

sors data. The data is generated by a 3D accelerometer used to sample accelerations on the x-, y-,

and z-axis, at a given frequency. All the recordings are stored in a time series dataset, described

in (Casale et al., 2012), freely accessible on the UCI Repository and named User Identification

From Walking Activity Data Set3. A baseline Convolutional Neural Network (CNN) for Human

Activity Recognition (HAR) is available on GitHub4: in Table 7.1 the architecture of the CNN

chosen from this repository is reported.

TABLE 7.1: Table reports the baseline CNN model architecture for Human Activity Recogni-
tion task

Layer Type Layer Parameter Value

1 Input Layer Units (90,3)

2 Convolutional 2D

Filters 128

Kernel Size 2

Activation ReLU

3 Max Pooling Window 2

4 Dropout Rate 0.2

5 Dense
Units 128

Activation ReLU

6 Dense
Units 128

Activation ReLU

7 Output Layer
Units 6

Activation Softmax

This baseline CNN is obtained by using the Adam as learning algorithm, using default values

for its hyperparameters (learning rate α = 0.001, β1 = 0.9 and β2 = 0.999) and number of batch

and epochs for training both set to 10.

The file (format ’.h5’) size of this baseline CNN is 8.49 MBytes. However, when the C-

optimized network is created through STM32Cube.AI (CLI), its size decreases to just 2.82

MBytes. Despite this reduction in size, the C-optimized CNN still does not satisfy the hard-

ware requirements in terms of ROM and RAM.

The overall dataset (i.e., 19512 instances) has been divided into a training set (i.e., 15610 in-

stances) and a validation set (i.e., 3902). The accuracy on a further test set (i.e., 4596 instances)

has been computed and considered as the baseline performance value (i.e., 92.09%) to compare

3http://archive.ics.uci.edu/ml/datasets/User+Identification+From+Walking+Activity
4https://github.com/Shahnawax/HAR-CNN-Keras

http://archive.ics.uci.edu/ml/datasets/User+Identification+From+Walking+Activity
https://github.com/Shahnawax/HAR-CNN-Keras
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with performances obtained through SVM-CBORF .

Image Recognition
The second classification benchmark task considered is the classification of level of chloride

sterile liquid in bottles through image recognition. The dataset is made by a collaboration be-

tween STMicroelectronics and Sesovera.ai5 which published the dataset at (Pau et al., 2020).

The main goal of this dataset is to create a benchmark for classification task for image recogni-

tion runnable on MCU with limited hardware resources. The dataset is composed with images

pixel resolution of 3456× 3456 reduced to 32×32 to facilitate image saving and processing the

classification inference by neural network on a limited MCU.

The dataset contains an overall of 4217 images, equally splitted in 4 different classes based on

the level of liquid contained into the bottle in the image: empty bottles, 50%, 80% and 100%

levels (e.g. Figure 7.3).

FIGURE 7.3: Example of images data capture for each Image Recognition task (Pau et al.,
2020)

The baseline CNN model was provided by STMicroelectronics and it is reported in Table 7.2.

This baseline CNN is obtained by using the Adam learning algorithm, using default values for its

hyperparameters (learning rate α = 0.01, β1 = 0.9 and β2 = 0.999) and trained with 200 epochs

with an early stopping strategy of 20 epochs and the batch size equals to 32. The file (format

’.h5’) size of this baseline CNN is 14.30 MBytes. However, when the C-optimized network is

created through STM32Cube.AI (CLI), its size decreases to just 4.87 MBytes. Despite this sig-

nificant reduction in size, the C-optimized CNN still does not satisfy the hardware requirements

in terms of ROM and RAM.

The overall dataset (i.e., 4217 instances) has been splitted into training set (i.e., 3036 instances)

and a validation set (i.e., 760 instances). Instead the accuracy on a further test set (i.e., 421

instances) has been computed and considered as the baseline performance value (i.e., 95.72%)

5http://www.sesovera.ai/

http://www.sesovera.ai/
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to compare with performances obtained through SVM-CBORF .

TABLE 7.2: Table reports the baseline CNN model architecture for Image Recognition task

Layer Type Layer Parameter Value

1 Input Layer Units (32,3)

2 Convolutional 2D

Filters 32

Kernel Size 3

Activation ReLU

3 Convolutional 2D

Filters 32

Kernel Size 3

Activation ReLU

4 Max Pooling Window 2

5 Dropout Rate 0.25

6 Convolutional 2D

Filters 64

Kernel Size 3

Activation ReLU

7 Convolutional 2D

Filters 64

Kernel Size 3

Activation ReLU

8 Max Pooling Window 2

9 Dropout Rate 0.25

10 Dense
Units 512

Activation ReLU

11 Dropout Rate 0.25

12 Output Layer
Units 4

Activation Softmax

Experiments Setup
Human Activity Recognition: Search Space, Compression & Deployability

First, we introduce the CNN’s hyperparameters to optimize. Depending on the baseline CNN

architecture reported in Table 7.1, we make some relevant considerations to define the search

space.

The CNN’s size is a relevant factor for solving the problem of constrained HPO, in 6.1, and it is

strictly connected with the size of the CNN’s layers. We decided to limit to 256 the maximum

number of units for each layer, which should be enough to obtain accurate but not too large mod-

els. However, considering the differences in the hardware resources between the two selected

MCUs, we set different values for the minimum number of units in each layer: 16 for the Big

Board and 8 for the Tiny Board. The main reason is that we prefer to obtain smaller models for
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the Tiny Board while for the Big Board we can reduce the range of this hyperparameters, thanks

to its larger hardware resources.

We decided to maintain the number of layers of the baseline CNN architecture, thus the number

of layers is not a hyperparameter to be optimized. We have also decided a further simplification

for the search space: layers of the same type have the same activation function and number of

units. This allowed to further reduce the search space while leading to accurate CNN models,

anyway. A possible extension of the approach would be to discard this assumption in the case

that the optimization could not improve along trials. Consequently the search space could be

widened, ’dynamically’, to increase the set of possible neural architectures. Moreover, the last

dense layer is not a hyperparameter to optimize, because it is defined according to the classifi-

cation task. Indeed, the number of units of this layer is the number of classes, with the Softmax

activation function providing a probability distribution of the classes for each input to the CNN.

Finally, the 8 hyperparameters to optimize are summarized in Table 7.3 with their associated

domains.

TABLE 7.3: Table reports the search space of HPO problem for Human Activity Recognition
task

Hyperparameter
Values

Big Board Tiny Board

Convolutional 2D

Filters [16, 32, 64, 128, 256] [8, 16, 32, 64, 128, 256]

Activation [ReLU, Sigmoid, Selu, Tanh]

Kernel Size [1, 2]

MaxPooling Windows Pooling [1, 2]

Dropout [0.1, 0.2, 0.3]

Dense
Units [16, 32, 64, 128, 256] [8, 16, 32, 64, 128, 256]

Activation [ReLU, Sigmoid, Selu, Tanh]

Optimizer [Adam, SGD, RMSProp, Adadelta, Adamax]

Different experiments have been performed according to the different compression factors pro-

vided by STM32Cube.AI when converting the CNN model into the C-optimized one to deploy

on the MCUs. Specifically, the three compression factors available are: ×1, ×4, and ×8.

Considering the deployability constraints related to hardware resources of the Big Board (i.e., 1

MBytes of ROM and 128 KBytes of RAM) a compression factor×4 makes the C-optimized ver-

sion of the baseline CNN deployable on this MCU. Thus, we have decided to limit experiments

for the Big Board to just compression factors ×1 and ×4. On the contrary, the deployablity

constraints related to the hardware resources of the Tiny Board (i.e., 64 KBytes of ROM and 16

KBytes of RAM) do not allow, for any compression factor, to generate a C-optimized version of

the baseline CNN model deployable on this MCU.

In this case we limited the experiments for Tiny Board to just compression factors ×4 and ×8.
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TABLE 7.4: The deployability of the baseline model reported in table 7.1 on different adopted
compression factor

Compression Factor ×1 ×4 ×8

Accuracy 92.09% 92.07% 91.32%

RAM (KBytes) 24.58 24.58 24.58

ROM (KBytes) 2955.80 794.14 375.45

X-CROSS Accuracy 100.00% 99.98% 98.04%

Deployable
Big Board NO YES YES

Tiny Board NO NO NO

Table 7.4 summarizes the hardware resources required by the C-optimized versions of the base-

line CNN model depending on the different compression factors.

Image Recognition: Search Space, Compression & Deployability

As seen for the previous task (HAR), also for the Image Recognition task, considerations must

be made for the best possible definition of the search space of the problem to be optimized.

First of all, it must be underlined that unlike the HAR task, for this new task the baseline CNN

model (provided by the STMicroelectronics company) is not deployable for any compression

factor adopted. In fact, from Table 7.5 it can be seen that for both MCUs tested, the baseline

model does not allow the hardware constraints to be satisfied, especially due to the large usage

of RAM.

TABLE 7.5: The deployability of the baseline model reported in table 7.2 on different adopted
compression factor

Compression Factor ×1 ×4 ×8

Accuracy 95.72% 95.72% 96.20%

RAM (KBytes) 140.80 140.80 140.80

ROM (KBytes) 4991.12 1453.20 862.42

X-CROSS Accuracy 100.00% 100.00% 99.05%

Deployable
Big Board NO NO NO

Tiny Board NO NO NO

In fact the compression factor (e.g. ×4 and ×8) only affects the use of the ROM hardware re-

source constraint, since the compression impacts on the numerical representation of the values

representing the weights of the dense layers present in the trained CNN. Being a more complex

task in terms of use of hardware resources like RAM and ROM it was decided to diversify the

values of the units according to the type of the layer (e.g. Convolutional and Dense). In fact, for
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the convolutional layers a number of units was set up to a maximum of 64 per layer and with a

smaller minimum of 6 units compared to the previous HAR task. In addition, the possible kernel

size parameter of convolutional layer and pooling windows are increased to a maximum of 3,

while the maximum value of the dropout layer is also increased to 0.4 in respect to the previous

HAR task. As far as the dense layer is concerned, a minimum of 6 and a maximum of 512 units

per layer have been set, since the compression factor has a great impact on the size allocable on

the ROM in terms of KBytes for this type of layer.

TABLE 7.6: Table reports the search space of HPO problem for Image Recognition task

Hyperparameter Values

Convolutional 2D

Filters [6, 8, 10, 12, 16, 32, 64]

Activation [ReLU, Sigmoid, Selu, Tanh]

Kernel Size [1, 2, 3]

MaxPooling Windows Pooling [1, 2, 3]

Dropout [0.1, 0.2, 0.3, 0.4]

Dense
Units [6, 8, 10, 12, 16, 32, 64, 128, 256, 512]

Activation [ReLU, Sigmoid, Selu, Tanh]

Optimizer [Adam, SGD, RMSprop, Adagrad, Adadelta]

Due to the very limited hardware resources for the Tiny Board (16 KBytes RAM - 64 Bytes

ROM) and RAM’s large use by the baseline CNN model architecture, it was necessary to in-

sert an additional hyperparameter within the search space of the HPO problem. In the modified

search space in the Table 7.7, this new hyperparameter allows to eliminate at most one convolu-

tional layer, since this particular layer significantly increases the use of the RAM resource to be

able to run the CNN model on the Tiny Board.

TABLE 7.7: Table reports the modified search space of HPO problem for Image Recognition
task including an hyperparameter which modifies the architecture of CNN

Hyperparameter Values

Convolutional 2D

Filters [6, 8, 10, 12, 16, 32, 64]

Activation [ReLU, Sigmoid, Selu, Tanh]

Kernel Size [1, 2, 3]

MaxPooling Windows Pooling [1, 2, 3]

Dropout [0.1, 0.2, 0.3, 0.4]

Dense
Units [6, 8, 10, 12, 16, 32, 64, 128, 256, 512]

Activation [ReLU, Sigmoid, Selu, Tanh]

Optimizer [Adam, SGD, RMSprop, Adagrad, Adadelta]

Removal Layer [1, 2, 3, 4]
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SVM-CBORF settings.
We have performed 15 experiments for each pair <MCU - compression factor>: 5 different sets

of initial hyperparameters configurations times 3 different initializations of network’s weights

for each set.

We have fixed a maximum of 100 hyperparameters configurations to evaluate, for each experi-

ment, organized as follows:

• 10 initial hyperparameters configurations generated via Latin Hypercube Sampling to ini-

tialize SVM-CBORF ;

• 60 hyperparameters configurations for the phase 1 of SVM-CBORF ;

• 30 hyperparameters configurations for the phase 2 of SVM-CBORF .

The maximum number of function evaluations has been defined according to STMicroelectron-

ics’ requirements in the case of a real-life application. Depending on the time approximately

required to run a single optimization process - over the computational setting adopted - the most

suitable number resulted in 100 different configurations to be tested for each optimization run.

Due to the complexity of the Image Recognition task, the fixed budget for initial hyperparame-

ters configurations procedure has been set to 20 initial configurations, because it was difficult to

find out deployable configurations in the random initialization of the optimization process.

The loss function used to train the CNN models is the Categorical-Cross Entropy, which is cor-

related to classification error, and consequently to accuracy. The objective function optimized by

SVM-CBORF is the classification error computed on the validation set (i.e., hold-out validation),

while the deployability constraints are:

• RAM ≤ 128 KBytes for Big Board and ≤ 16 KBytes for Tiny Board

• ROM ≤ 1024 KBytes for Big Board and ≤ 60 KBytes for Tiny Board

• X-CROSS Accuracy ≥ 95% for both MCUs



Chapter 8

Results

This Chapter will present the results obtained by the proposed approach on a suite of artificial

test problems, provided by the Constrained Global Optimization community, and two real-life

applications related to the classification task through Deep Neural Network models. Initially

the results will be presented on the suite of test functions and statistical tests will be carried out

to prove the actual significance of the results obtained by the proposed optimization approach.

Then, the performance of the application of the proposed approach will be evaluated to two

benchmark tasks for classification, and considerations will be made on the performance obtained

from the optimal models found out by the optimization processes.

8.1 Test Problems

In order to evaluate the performances of the optimizer SVM-CBORF adopted in the proposed

AutoTinyML approach in the previous Chapter, the performances of SVM-CBO in both variants

(GP, RF) are compared against the most famous optimizer in Sequential Model-based Optimiza-

tion which is SMAC (Hutter et al., 2011). In order to compare the performance of the optimizers,

the Mann-Whitney test was adopted from which the p-values for each pair of optimizers were

obtained and analyzed.

In particular, for the tests adopted between SMAC with each variant of SVM-CBO, the unpaired

Mann-Whitney test was considered since the initial points evaluated are chosen differently be-

tween the optimizers. Instead for the test between the two variants of SVM-CBO, the paired

Mann-Whitney test was used as the optimizers’ initial points are based on the same sampling

technique.

The Table 8.1 reports the mean and deviation of best seen values of 30 independent runs on the

2D test functions for each adopted optimizer. It is possible to observe in terms of best seen value

that in more than half of the functions SVM-CBO and its variant SVM-CBORF outperform the

124
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TABLE 8.1: Results of the six test functions on the best seen for all optimizers. The significance
level is calculated on p-value, where ”***” for p-value<0.001, ”**” for p-value<0.01, ”*” p-

value<0.05, and ”-” whether p-value≥0.05

Mean (± Std) Significance Level

Test Function
SMAC SVM-CBO SVM-CBORF

SMAC

vs

SVM-CBO

SMAC

vs

SVM-CBORF

SVM-CBO

vs

SVM-CBORF

Branin
-1.018

(±0.046)

-1.047

(±0.001)

-1.021

(±0.026)
*** - ***

Rosenbrock
1.529

(±0.855)

1.177

(±0.232)

1.99

(±0.534)
*** *** ***

Michalewicz
-1.463

(±0.323)

-1.286

(±0.32)

-1.38

(±0.290)
* - -

Mishra Bird
-81.248

(±16.93)

-106.761

(±0.004)

-103.943

(±4.585)
*** *** ***

Gramacy
0.734

(±0.077)

0.693

(±0.010)

0.693

(±0.010)
* * -

Alpine N.2
-6.949

(±0.971)

-7.557

(±0.588)

-7.335

(±0.827)
*** * **

best seen reached by SMAC.

In terms of statistical significance based on p-value, it is possible to observe how effectively the

SVM-CBO and SVM-CBORF approaches differ from SMAC. However, it should be noted that

the level of significance is slightly lower between SMAC and the SVM-CBORF variant as both

approximate the objective function with the surrogate Random Forest model, which can lead to

a worse approximation of smooth functions. This fact is precisely shown for functions such as

Michalewicz, for which one can see that, on average, the approaches based on the RF surrogate

model achieve better values than the original SVM-CBO approach.

To further emphasise this aspect, the Mishra Bird function, in which the global optimum lies on

the boundary of the admissible region, was discretized. Discretizing the domain of this function

in a grid of 625 points (25×25) reported in Figure 8.1, it was possible to observe that with 30

independent runs on average the variant SVM-CBORF , by better approximating the objective

function which is no longer smooth, reaches better values than its traditional version (SVM-

CBO). The fact of having a mixed search space is common in AutoML tasks, especially for

finding the optimal values of categorical and integer hyperparameters.

Moreover, from Table 8.1, for almost every experiment in which SVM-CBO reaches values bet-

ter than SMAC, it is possible to see the same behavior for the optimal values reached by the

variant SVM-CBORF .

After evaluating the performances on two dimensional test problems, Emmental-GKLS function
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FIGURE 8.1: Comparison between the smooth (left) and discretized (right) Mishra Bird func-
tion based on grid of 25 ×25 points

generator is considered to generate functions starting from two dimensions up to five dimensions

with different levels of difficulty previously reported in (Sergeyev et al., 2018). As before, the

Mann-Whitney statistical test was carried out on 30 independent runs for ten different test func-

tions generated through the Emmental-GKLS generator (Sergeyev et al., 2017). The results of

all experiments and the p-values are reported in Appendix A due to the number and size of the

tables results.

Initially, applying the three optimizers on ten different GKLS test functions with two dimen-

sions, the performance of SVM-CBORF and SMAC gives similar results, while the results of the

original SVM-CBO are not as good as the other optimizers.

However, by increasing the number of dimensions over two, it was possible to observe that

SVM-CBO outperforms the other optimizers with a high level of significance in terms of p-

values of the statistical tests. The main reason for this obvious gap between the optimizers is

still related to using the RF surrogate model, instead of GP, for the approximation of smooth

functions.

Despite the relevant differences with the original SVM-CBO, the other optimizers seem on the

average to obtain similar results in terms of global optimum found. The only difference that was

possible to observe between SVM-CBORF and SMAC is that when the test function is based on

the hard class complexity (Sergeyev et al., 2018), the SVM-CBORF obtains slight better results

in respect to SMAC. Moreover, always taking into account only SVM-CBORF and SMAC, the

percentage of problems where SVM-CBORF outperforms SMAC is more than 50%.
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8.2 AutoTinyML

In this Section the results of the experiments are summarized by comparing the optimal CNN

models, obtained through the AutoTinyML framework, and the baseline CNN models of the real

use cases provided by STMicroelectronics. The variant SVM-CBORF was chosen because pre-

liminary experiments showed that the original SVM-CBO algorithm did not lead to good results

in terms of accuracy. The main reason is that the Tiny Machine Learning tasks are defined on a

mixed search space where tree-based surrogates (e.g. RF) perform better in approximating the

non-smooth objective function.

For this real-life application, BOHB (Falkner et al., 2018) has been chosen as benchmark ap-

proach - instead of SMAC - since it was already succesufully and recently adopted for HPO of

DNN models, such as in (Mendoza et al., 2019; Zimmer et al., 2020). Since 15 different ex-

periments were performed with SVM-CBORF and BOHB for each pair < MCU - compression

factor >, the results in terms of mean and standard deviation of the following metrics are the

following:

• Accuracy – computed on the test set by using the C-optimized CNN models;

• RAM – whose value must satisfy the associated deployability constraint related to the

MCU’s hardware;

• ROM – whose value must satisfy the associated deployability constraint related to the

MCU’s hardware;

• X-CROSS Accuracy – whose value must satisfy the associated deployability constraint

reported in Section 7.2.2 to quantify how much different are the predictions of compressed

model to respect to the original one;

• MACC – that is the Multiply ACCumulated operations. This measure is not considered

neither as objective or constraint in SVM-CBORF . It is reported just as a further index

about the logical complexity of the C-optimized CNN models.

Human Activity Recognition
All the results are summarized in Table 8.2 and Table 8.3 for the Big Board and the Tiny Board,

respectively.

With respect to the Big Board, SVM-CBORF was able to always identify CNN models which

are deployable on the MCU, for both the compression factors considered, and with a significant

reduction in terms of requested resources compared to the baseline model. Furthermore, the

CNN models identified by SVM-CBORF offer, on average, a slightly better accuracy. Another

relevant consideration is that the higher compression factor (×4) allows to further reduce ROM,

but shows higher values for RAM and MACC compared to the lower compression factor (×1).
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The constraint related to X-CROSS accuracy is largely satisfied for both the compression factors

considered.

Moreover, as it can be seen in Table 8.2, the comparison between the proposed optimization

system (SVM-CBORF ) and BOHB (Falkner et al., 2018) applied on HAR task. Using the

same budget of evaluations (100 evaluated CNN configurations) during the optimization pro-

cess, SVM-CBORF is able to provide on average better CNN configurations models with which

it was possible to reach higher values of accuracy metrics for each compression factor respec-

tively. Moreover, using the same evaluation budget as SVM-CBORF , BOHB turns out to have

lower average accuracy values than the non-deployable baseline CNN models for each compres-

sion factor adopted. Although BOHB finds CNN configurations with reduced average accuracy

values, it manages to propose configurations that use less hardware resources than SVM-CBORF

and the CNN baseline model.

TABLE 8.2: Optimization results using Big Board

Compression ×1 Compression ×4

Baseline SVM-CBORF BOHB Baseline SVM-CBORF BOHB

Accuracy 92.09%
92.44%

(± 0.64)

91.48%

(± 1.20)
92.07%

92.93%

(± 0.55)

91.95%

(± 0.77)

RAM 24.57
9.75

(± 5.11)

6.79

(± 3.41)
24.57

15.16

(± 7.92)

9.28

(± 5.82)

ROM 2,955.80
688.30

(± 144.42)

607.45

(± 282.46)
794.13

546.31

(± 283.34)

336.27

(± 255.41)

X-CROSS 99.98%
100.00%

(± 0.00)

100.00%

(± 0.00)
99.98%

99.70%

(± 0.53)

99.90%

(± 0.03)

MACC 874,970
269,327

(± 83,895)

228,884

(± 73,044)
874,970

784,767

(± 318,078)

409,050

(± 257,357)

Summarizing, with respect to the Big Board SVM-CBORF was able to obtain a smaller deploy-

able model than the baseline one, without any reduction in classification accuracy.

Since this could mean that a further reduction of the model could be possible, we run SVM-

CBORF also on the Tiny Board, which is characterized by even more limited hardware resources.

Also for Tiny Board reported in Table 8.3, SVM-CBORF was able to always identify CNN mod-

els which are deployable on the MCU, for both the compression factors considered, and with

a significant reduction in terms of requested resources compared to the baseline model. How-

ever, in this case, and with respect to the lower compression factor (×4), we have experienced a

reduction in accuracy compared to the baseline model. With respect to the higher compression

factor (×8), considerations are similar to those reported for the Big Board. Moreover, we have

obtained a significant reduction in both RAM and ROM, similar for both the two compression
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factors considered. Also MACC showed a drastic reduction which is more significant with re-

spect to the lower compression factor (×4). Again, the constraint about X-CROSS accuracy is

largely satisfied.

In addition, Table 8.3 shows a direct comparison between the results obtained from the proposed

system (SVM-CBORF ) and BOHB (Falkner et al., 2018).

TABLE 8.3: Optimization results using Tiny Board

Compression ×4 Compression ×8

Baseline SVM-CBORF BOHB Baseline SVM-CBORF BOHB

Accuracy 92.07%
88.27%

(± 2.47)

87.26%

(± 1.63)
91.32%

91.41%

(± 0.85)

89.65%

(± 1.11)

RAM 24.57
5.17

(± 3.04)

5.94

(± 3.14)
24.57

5.42

(± 3.22)

6.74

(± 3.33)

ROM 794.13
44.93

(± 12.34)

38.28

(± 12.02)
375.45

49.51

(± 11.04)

42.97

(± 16.42)

X-CROSS 99.98%
99.86%

(± 0.03)

99.83%

(± 0.11)
98.04%

98.42%

(± 0.59)

98.23%

(± 0.77)

MACC 874,970
87,110

(± 34,747)

75,509

(± 27,950)
874,970

159,714

(± 61,613)

134,306

(± 57,017)

Moreover, to prove the difference in accuracy between the models proposed by SVM-CBORF

and BOHB, the unpaired Mann-Whitney test was performed as previously done for the test

functions. Table 8.4 shows that the level of significance increases when the highest compression

factor is applied for the Big Board and the Tiny Board, respectively. To be fair, it should be noted

that BOHB manages to produce deployable CNNs even in the more complex case of the Tiny

Board. However, looking at Table 8.3 the only accuracy metric of the proposed networks, with

the same evaluation (budget) of the objective function, SVM-CBORF produces higher results

than both the baseline model and the average of the models proposed by BOHB. In particular,

it is evident how SVM-CBORF both compression levels (×4 and ×8) use less RAM memory

than the solution found by BOHB, while using more ROM memory which is presumably a less

stringent hardware constraint than RAM. From this point of view SVM-CBORF seems to be

working better if the hardware constraints are more stringent due to its ability at finding out the

optimal configuration of the CNN at the boundary of the deployable region.

Some considerations must be made regarding the results of the use-case just presented. The

comparison of the two approaches (SVM-CBORF and BOHB) was made with the main goal of

finding out the model with the best result in terms of performance metrics in a fixed budget of

100 evaluations satisfying the requirements of the given MCU target.
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TABLE 8.4: Results of unpaired Mann-Whitney test on the accuracy values obtained with the
experiments. The significance level is calculated on p-value, where ”***” for p-value<0.001,

”**” for p-value<0.01, ”*” p-value<0.05, and ”-” whether p-value≥0.05

Experiment SVM-CBORF BOHB p-value Significance Level

Big Board

Compression ×1

92.441%

(±0.637)

91.478%

(±1.204)
0.02018 *

Big Board

Compression ×4

92.929%

(±0.546)

91.948%

(±0.767)
0.00097 ***

Tiny Board

Compression ×4

88.267%

(±2.469)

87.260%

(±1.627)
0.23695 -

Tiny Board

Compression ×8

91.413%

(±0.853)

89.645%

(±1.115)
0.00016 ***

However, BOHB has requested more evaluations despite the fixed evaluations budget.The reason

for the higher number of evaluations is due to the BOHB implementation itself. In fact, the

system, based on the Hyperband algorithm (Li et al., 2017b), has the η hyperparameter which, in

order to explore better the search space among the possible configurations, increases the number

of evaluations of the prefixed budget, arriving in the use case at evaluating up to a maximum

of 300 possible configurations with different training strategies (e.g., number of epochs during

the training process). BOHB, adopting a diversified training strategy, allows the exclusion of

less promising configurations by focusing only on those that lead to optimizing the performance

metric as much as possible.

For completeness are also reported the results related to the progress over the SVM-CBORF

and BOHB iterations. Figure 8.2 refers to the Big Board, with compression factor ×1 and ×4,

respectively. These charts show how the best observed value of the classification error on the

validation set changes over the iterations (i.e., hyperparameters configurations suggested by the

previously mentioned approaches). The same kind of information is reported in Figure 8.3 for

the Tiny Board, with compression factor ×4 and ×8, respectively. As shown in Figures 8.2 and

8.3 the proposed approach outperforms BOHB.

Besides, in all the four figures, it is possible to note that, even if the phase 1 of SVM-CBORF is

not aimed at optimizing, but just to estimate the feasible region, there is an improvement in terms

of error reduction. Similar behavior has been already observed in (Candelieri, 2019), in which a

large set of test functions of different dimensionality was considered. This usually occurs when

the optimum is close to the boundary of the actual feasible region and, consequently, sampling

for obtaining a better estimate of this region can lead to observing better values of the objective

function. It is quite easy to imagine that this situation can easily occur in real-life problems,

where constraints limit further improvement otherwise achievable.
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FIGURE 8.2: Big Board with compression factors ×1 and ×4: error on the validation set over
the SVM-CBORF and BOHB optimization processes

FIGURE 8.3: Big Board with compression factors ×4 and ×8: error on the validation set over
the SVM-CBORF and BOHB optimization processes

Image Recognition
This second HPO task was strongly driven by STMicroelectronics and the request to develop a

real-life system for image recognition. According to the results obtained in the previous task, the

choice of STMicroelectronics was to invest time and computational effort only on performing

AutoTinyML through SVM-CBORF . Thus, just for this application, only results provided by

the approach proposed in this thesis are reported, without any comparison against other tools.

The experiments were mainly driven by the need to identify, as soon as possible, a DNN model

more accurate than the baseline model on a new dataset recently collected and shared by STMi-

croelectronics (Pau et al., 2020).

For the second HPO task (Image Recognition), further studies were required to apply the current

proposed system to the baseline CNN. In fact, as previously reported in Section 7.2.2, this task

is more complex to optimize than the previous one (Human Activity Recognition). Looking at
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Table 7.5 it is possible to note that for each MCU considered (Big Board/Tiny Board) and com-

pression factor, it is not possible to execute a CNN model that respects the hardware constraints

of the target MCUs.

Despite the difficulty of the task, by applying SVM-CBORF to this task on the Big Board MCU

with maximum compression factor (×8), it was possible to generate optimal and deployable

CNN models which are better on the average (on 15 different indipendent runs) than current

CNN baseline. The optimal models increase up to 2% the accuracy while reducing significantly

more than 80% the ROM usage, MACC operations, and reducing more than 50% on RAM us-

age, which is the main issue related to being deployable for the current CNN baseline on this

task.

TABLE 8.5: Results Image Recognition task with compression ×8 on Big Board

Compression ×8
Baseline SVM-CBORF Avg. Difference

Accuracy 96.20%
98.20%
(± 0.57)

+2.00%

RAM 140.80
65.29

(± 10.62)
-53.63%

ROM 862.42
119.60

(± 72.50)
-86.13%

X-CROSS 99.05%
99.57%
(± 0.63)

+0.52%

MACC 20,863,612
3,240,113

(± 1,263,412)
-84.47%

Instead, some considerations must be made regarding the experiments carried out with the Tiny

Board as the target MCU. As previously reported in Table 7.5, with this target MCU was not

possible to retrieve any deployable CNN models only adopting the traditional HPO task modi-

fying the values of hyperparameters of the baseline CNN.

For this reason, an additional hyperparameter, named removal layer, related to the structure of

the CNN is considered to simplify the original baseline model as reported in the search space in

Table 7.7. With the introduction of the new structural hyperparameter into search space, it was

possible to observe from Table 8.6 that, although the proposed system was able to find deploy-

able CNN configurations, the average accuracy reached is reduced by more than 9% compared

to the baseline model. Despite the reduction in accuracy measure, the hardware constraints are

largely satisfied, reducing the average RAM and ROM usage of 95% and more than 97% the

MACC operations required for the MCU to make the inference through the CNN model.

The poor performance in terms of accuracy could be motivated by the fact that adding this new

structural hyperparameter of CNN can significantly increase the size of whole search space,

making the HPO task more challenging to find optimal models with almost the same iterations
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budget of the optimization process. However, to increase the performance in terms of accuracy

taking the best hyperparameters configurations of the several runs, new networks were trained,

increasing the number of training epochs and early stopping in order to generate networks that,

with the same hardware resources used, had on average values of accuracy superior to the trained

networks exactly like the starting baseline model.

In addition, the last two columns of Table 8.6 show that besides a refinement of the hyperpa-

rameters that defines the architecture of the neural network, it can be relevant to consider also a

manipulation a posteriori or a priori of the optimization process of the variables that define the

learning process of the neural network.

TABLE 8.6: Results Image Recognition task with compression ×8 on Tiny Board with hyper-
parameters for changing the CNN architecture and modified training strategy

Baseline Training Strategy Advanced Training Strategy
Baseline SVM CBORF Avg. Difference SVM CBORF Avg. Difference

Accuracy 96.20%
86.72%

(± 11.68)
-9.48%

92.00%
(± 6.19)

-4.20%

RAM 140.80
8.92

(± 1.24)
-93.66%

8.92
(± 1.24)

-93.66%

ROM 862.42
20.46

(± 15.92)
-97.63%

20.46
(± 15.92)

-97.63%

X-CROSS 99.05%
98.07%
(± 1.35)

-0.98%
98.07%
(± 1.35)

-0.98%

MACC 20,863,612
538,691

(± 163,633)
-97.42%

538,691
(± 163,633)

-97.42%

The two real-life experiments were defined in two different moments, exactly in the order they

are presented in the thesis. Contrary to the first experiment (HAR task), results on the second

one (Image Recognition task) were less successful and this led to consider the improved training

strategy. Although it could lead to better results also for the first experiment, STMicroelectronics

was not interested in further investigating that case, but this improved training strategy has been

suggested as a more effective and efficient procedure for designing new real-life applications.
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Conclusion and Future Works

In recent years, Machine Learning techniques are used for several applications for real-life prob-

lems, typically adopting very powerful machines for computing. However, in the last period,

the scientific development has allowed to create more powerful small devices (e.g., microcon-

trollers) and software increasingly portable and accessible to all, to better support the advent of

Edge Computing. Through the development of this decentralized computing paradigm, it will be

possible - now in the not so distant future - to analyze and make decisions in real-time (or near

real-time) thanks to sophisticated machine learning models on sensors connected to each other

through a network. Major companies such as Google with the implementation of Tensorflow

Lite, NVIDIA with the development of the Jetson Nano series of boards, and STMicroelectron-

ics with the STM32Cube.AI framework are trying to exploit the use of high-performance Deep

Neural Networks directly on edge devices. Despite their limited hardware capacity, these de-

vices are very relevant in several contexts where immediate decisions need to be made, such as

autonomous driving, monitoring for medical and industrial purposes.

Although there are developments in terms of hardware, instead from a software point of view,

despite increasingly portable libraries (e.g. Tensorflow Lite), it is required the adoption of more

sophisticated techniques to define Machine Learning models that respect hardware limitations,

training and inference time constraints for specific applications.

In Edge Computing, the Automated Machine Learning field can help to propose new advanced

frameworks for dealing with this decentralized computing paradigm. On this track, the main

contribution of this thesis regards the proposal of novel constrained Automated Machine Learn-

ing framework, named AutoTinyML, for dealing the Hyperparameters Optimization on Deep

Neural Network with known and unknown constraints. It starts from recent advances in the

field of Bayesian Optimization under unknown constraints and introduces innovations to over-

come the specific issues limiting the wide application of Automated Machine Learning for tiny

devices. Based on collaboration with STMicroelectronics, it was possible to develop the Au-

toTinyML framework adopting its translating system (STM32Cube.AI) for deploying Deep

134
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Neural Networks on STM32 microcontrollers. In Chapters 7 and 8 the proposed constrained

optimization framework is adopted for two real-life use cases on two different MCU provided

by the company. The promising results obtained, and presented in this thesis, encourage the

adoption of the proposed AutoTinyML, while they also allowed to identify further research and

innovation activities. Indeed, the proposed AutoTinyML framework can be considered a suit-

able solution to unlock the untapped market of TinyML and Automated TinyML. However, it

still has a limitation concerning broader applicability, and several future directions will be con-

sidered to improve the framework.

A first step to improve the framework could be to analyze whether the constraints are closely re-

lated to evaluating the objective function. In fact, the software developed by STMicroelectronics

allows, with a larger approximation error, to obtain the values of the constraints (such as RAM

and ROM) using pre-trained networks initialized with random weights. With this functional-

ity can be evaluated several configurations with a cheaper cost in terms of time and computa-

tional resources, because the training process of the deep neural network is skipped on a given

hyperparameters configuration. This functionality, increasing the number of hyperparameters

configurations evaluated without training the network, would improve the performance of the

classifier used within the SVM-CBORF optimization process, discriminating better between the

deployable and undeployable configurations.

Increasing the number of evaluated hyperparameters configurations can help us better under-

stand which are the more relevant constraints to improve the performance of the deep neural

network. This aspect might enable the discrimination between three different classes of hyper-

parameter configurations: deployable configuration which satisfies the constraints, undeploy-

able configuration that does not satisfy the constraints, and the invalid configuration that does

not allow the correct building of a trainable deep neural network. Moreover, additional im-

provements can be added to the AutoTinyML framework applying some changing inside of its

optimizer SVM-CBORF . To better combine the current surrogate model (i.e. Random Forest)

with the classifier for deployability discrimination, the acquisition function of the first phase

SVM-CBORF will have to be redefined, adopting RF instead of SVM as a classifier. Through

this modification it will be possible to better manage problems with mixed variables without any

preprocessing techniques currently necessary for categorical and integer variables. Besides with

the adoption of the RF also as a classification algorithm, it will be possible to manage condi-

tional variables, which, if inactive, would be represented as missing values during the learning

process of the classification algorithm. In fact, one of the strengths of the RF is its robustness

and effectiveness in terms of classification performance in the presence of missing values.

In addition, it may happen that for a given initial baseline network, dataset and target MCU for

a specific TinyML task, it is not possible to find models that are really deployable on the given

MCU. The impossibility of obtaining a deployable model may be because: (i) the search space

has been incorrectly defined, (ii) the deployability region, defined by the MCU constraints, is

much smaller than the defined search space, or even non-existent.
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Moreover, to improve the AutoML framework, the adoption of the weak search spaces and

constraints will be investigated. Weakly defined search spaces would allow a better and more

flexible search for the optimal model by extending or excluding certain regions of the search

space. In this way it will be possible, for example, to extend the domain of some decision vari-

ables in the case where the proposed solutions are on the border of the set of values that can be

assumed by these variables, allowing the improvement of the trade-off between exploration and

exploitation during the optimization process.

Instead, adopting weakly defined constraints during the optimization process would allow the

AutoTinyML framework to propose to the final-user at least one deployable model on a specific

MCU. This would enable STMicroelectronics to suggest what type of MCU is best to adopt

for the given dataset and baseline neural network provided by the customer to solve a specific

TinyML task.

To further improve the AutoTinyML framework, Meta-Learning techniques could be adopted

to better define the search space and constraints of the problem before starting the optimization

process based on previous experiments conducted by other STMicroelectronics customers with

the same system. The Meta-Learning techniques could be based on using previous optimal mod-

els found according to the hardware constraints required by a similar type of MCU or according

to the features of the dataset of the given Tiny ML task which are similar to others previously

adopted.



Appendix A

Benchmark Test Functions

A.1 Definition of the test functions

Branin test function (Picheny et al., 2013):

f (x1,x2) =

[(
x2−5.1x2

1
4π2 + 5x1

π
−6
)2

+
(
10− 10

8π

)
cos(x1)−44.81

]
51.95

(A.1)

with
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(A.2)

where x1,x2 ∈ [0;1], x∗ = (0.543,0.151) and f (x∗) =−1.0474
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Rosenbrock test function constrained to a cubic and a line (Simionescu and Beale, 2002):

f (x1,x2) = (1− x1)
2 +100(x1 + x2

2)
2

s.t.

(x1−1)3− x2 +1≤ 0

AND

x1 + x2−2 < 0

(A.3)

where x1 ∈ [−1.5;1.5], x2 ∈ [−0.5;2.5], x∗ = (1.0,1.0) and f (x∗) = 0.0

Michalewicz test function (Al-Roomi, 2015):

f (x) =−
2

∑
i=1

sin(xi)sin2m
( ix2

i

π

)
s.t.

x3
1 + x3

2 > 15

s.t.

x3
1 + x2 < 30

(A.4)

where x1,x2 ∈ [0;π], x∗ = (2.20,1.57) and f (x∗) =−1.8013

Mishra’s Bird test function (Mishra, 2006):

f (x1,x2) = sin(x2)e(1−cos(x1))
2
+ cos(x1)e(1−sin(x2))

2
+(x1− x2)

2

s.t.

(x1 +5)2 +(x2 +5)2 < 25

(A.5)

where x1 ∈ [−10;0], x2 ∈ [−6.5;0.0], x∗=(−3.1302468,−1.5821422) and f (x∗)=−106.7645367

Gramacy test function (Gramacy et al., 2016):

f (x1,x2) = x1 + x2

s.t.

1
2

sin
(
2π(x2

1−2x2)
)
+ x1 +2x2−

3
2
≥ 0

AND

−x2
1− x2

2 +
3
2
≥ 0

(A.6)

where x1,x2 ∈ [0.0;1.0], x∗ = (0.1954,0.4044) and f (x∗) = 0.5998
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Alpine N.2 test function (Jamil and Yang, 2013):

f (x) =−
2

∏
i=1

sin(xi) ·
√

xi

s.t.

(x1−5)2 +(x2−5)2− 1
4
< 17

(A.7)

where x1,x2 ∈ [0.0;10.0], x∗ = (7.917,7.917) and f (x∗) =−2.8082

A.2 Results of statistical test
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TABLE A.1: Results of the six 2D test function on the best seen for all optimizers. The signif-
icance level is calculated on p-value, where ”***” for p-value<0.001, ”**” for p-value<0.01,

”*” p-value<0.05, and ”-” whether p-value≥0.05
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TABLE A.2: Results of the 2D Emmental GKLS test function on the best seen for all optimiz-
ers. The significance level is calculated on p-value, where ”***” for p-value<0.001, ”**” for

p-value<0.01, ”*” p-value<0.05, and ”-” whether p-value≥0.05
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TABLE A.3: Results of the 3D Emmental GKLS test function on the best seen for all optimiz-
ers. The significance level is calculated on p-value, where ”***” for p-value<0.001, ”**” for

p-value<0.01, ”*” p-value<0.05, and ”-” whether p-value≥0.05
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TABLE A.4: Results of the 4D Emmental GKLS test function on the best seen for all optimiz-
ers. The significance level is calculated on p-value, where ”***” for p-value<0.001, ”**” for

p-value<0.01, ”*” p-value<0.05, and ”-” whether p-value≥0.05
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TABLE A.5: Results of the 5D Emmental GKLS test function on the best seen for all optimiz-
ers. The significance level is calculated on p-value, where ”***” for p-value<0.001, ”**” for

p-value<0.01, ”*” p-value<0.05, and ”-” whether p-value≥0.05
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Appendix B

Multi-objective vs Constrained
Single-objective optimization

This Appendix reports simple examples of why, in particular situations, it is better to adopt a

constrained single-objective optimization instead of a multi-objective optimization strategy. In

many practical cases, the optimum may lie on the boundary of the feasible region. In these situa-

tions, adopting a multi-objective optimization strategy can not be the best choice because finding

out a trade-off among the considered objectives can improve some of them and negatively im-

pact others. Instead, it could be a better option to optimize a single objective function which

results to be the most relevant objective among the several considered, setting the other objec-

tives as constraints. The two following toy examples are presented to compare multi-objective

and constrained single-objective optimization. The multi-objective optimization approach con-

sidered is NSGA-II (Deb et al., 2002) while for the constrained single-objective optimization

is considered SVM-CBO (Candelieri, 2019). Figure B.1 shows the two objectives (from now

named metric) that are depended by one decision variable x.

FIGURE B.1: Two metrics (metric #1 and metric #2) as functions of the decision variable x

145
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The metric #1 is characterized by an exponential decay while the metric #2 is characterized by

a logistic switch beyond a specific threshold. Suppose we want to minimize the metric #1 and

maximize the metric #2, where improving the metric #1 has a negative impact on the metric

#2. Considering that the formulations of the two metrics are totally black-box, we set up the

optimization experiments considering to evaluate only 20 points of the decision variable x. In

particular, for the evolutional algorithm NSGA-II, we set a population size of 4 individuals

(points) with 5 generations for an overall of 20 evaluated points.

In the following Figure B.2, on top, it is possible to observe the ”true” Paretian frontier (in light

blue) and the one approximated by the NSGA-II solutions1 (in blue). However, considering the

case where there is a desired minimum value for metric #2- specifically we do not want it to fall

below the value 0.8 - it is possible to see that NSGA-II does not identify the global constrained

optimum with the found solutions on the Paretian frontier.

FIGURE B.2: The Paretian frontier of NSGA-II (left) and the best solutions proposed by
NSGA-II (right) on the first toy example after 20 function evaluations

Instead, Figure B.3 reports the same previously considered experiment with the adoption of a

constrained optimization approach (SVM-CBO). This optimizer minimizes only the metric #1

considering the minimum desirable value of metric #2 as a constraint.

Figure B.3 shows that after the first phase of the constrained optimization process, the proposed

solutions lie on the boundary of the feasible region, providing better solutions in respect to

the multi-objective optimization approach. At the end of the second phase, the constrained

optimization process converges to propose almost the same solution approximating better the

metric #1.

In terms of numerical results reported in Table B.1, even if maximizing the metric #2, NGSA-II

has a significant loss in terms of metric #1.

1Only the last best proposed solution are showed into the plot
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FIGURE B.3: The solutions provided by SVM-CBO approach after 20 functions evaluations

Optimal value (only feasible solutions)
Optimizer Metric #1 Metric #2

Multi-objective 0.3820 0.9953

Constrained Single-objective 0.2563 0.8000

TABLE B.1: Comparison of the best feasible solutions found on the first toy example by the
two different optimizers

However, the difference between these two optimizers is more remarked if we consider a less

smooth function for the metric #1 on Figure B.4. Indeed, from Figure B.4 can be observed

that NSGA-II proposes its best solutions quite far from the optimal solution that minimizes the

metric #1.

FIGURE B.4: The Paretian frontier of NSGA-II (left) and the best solutions proposed by
NSGA-II (right) on the second toy example after 20 function evaluations
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Instead, from Figure B.5 can be seen that the constrained optimizer, exploiting better the feasibil-

ity of the proposed solutions, can explore in a better way the search space of the problem quickly

converging to the constrained global optimal solution of metric #1 that lies on the boundary of

the feasible region.

FIGURE B.5: The solutions provided by SVM-CBO approach after 20 function evaluations

As reported for the previous example, in Table B.2 can be seen the significant numeric difference

between the optimal values reached by the two different optimizers. In fact, it can be observed

that the adoption of constrained optimization strategy leads to a slightly lower value of metric

#2 (considered as constraint) and a significant difference in metric #1 compared to the multi-

objective optimization approach.

Optimal value on feasible solutions
Optimizer Metric #1 Metric #2

Multi-objective 0.4013 0.9953

Constrained Single-objective 0.2555 0.9553

TABLE B.2: Comparison of the best feasible solutions found on the second toy example by the
two different optimizers
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Yanqi Zhou, Siavash Ebrahimi, Sercan Ö Arık, Haonan Yu, Hairong Liu, and Greg Diamos.

Resource-efficient neural architect. arXiv preprint arXiv:1806.07912, 2018.
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