
UNIVERSITÁ DEGLI STUDI DI MILANO-BICOCCA

Variational inference and

semi-parametric methods for time-series

probabilistic forecasting

by

Mattia Bolzoni

A thesis submitted in partial fulfillment for the

degree of Doctor of Philosophy

Dipartimento di Statistica e Metodi Quantitativi

March 2021

University Web Site URL Here (include http://)
m.bolzoni2@campus.unimib.it, code at https:Github\
Department or School Web Site URL Here (include http://)

Declaration of Authorship

I, Mattia Bolzoni, declare that this thesis titled, ‘Variational inference and semi-parametric

methods for time-series probabilistic forecasting’ and the work presented in it are my

own. I confirm that:

� This work was done wholly or mainly while in candidature for a research degree

at this University.

� Where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been clearly

stated.

� Where I have consulted the published work of others, this is always clearly at-

tributed.

� Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work.

� I have acknowledged all main sources of help.

� Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself.

i

“Better to be approximately right than exactly wrong.”

Many people, approximately quoting Carveth Read

UNIVERSITÁ DEGLI STUDI DI MILANO-BICOCCA

Abstract

Dipartimento di Statistica e Metodi Quantitativi

Doctor of Philosophy

by Mattia Bolzoni

Probabilistic forecasting is a common task. The usual approach assumes a fixed structure

for the outcome distribution, often called model, that depends on unseen quantities

called parameters, then uses data to infer a reasonable distribution over these latent

values.

The inference step is not always straightforward, because selecting a single value can lead

to poor performances and overfitting, while handling a proper distribution with MCMC

can be challenging. Variational Inference (VI) is emerging as a viable approximated

optimisation based alternative, that models the target posterior with instrumental vari-

ables called variational parameters. However, VI usually imposes a parametric structure

on the proposed posterior.

The thesis’s first contribution is Hierarchical Variational Inference (HVI) a methodology

that uses Neural Networks to create semi-parametric posterior approximations with the

same minimum requirements as Metropolis-Hastings or Hamiltonian MCMC.

The second contribution is a Python package to conduct VI on time-series models for

mean-covariance estimate, using HVI and standard VI techniques combined with Neural

Networks. Results on econometric and financial data show a consistent improvement

using VI, compared to point estimate, obtaining lower variance forecasting.

University Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)
m.bolzoni2@campus.unimib.it, code at https:Github\

Acknowledgements

I want to thank many people, but conciseness requires to shorten the list.

I thank Matteo Pelagatti, for his never invasive guide and advice.

I thank the PhD colleagues, invaluable friends that taught and helped me a lot, in alpha-

betical order: Riccardo Brignone, Andrea Cappozzo, Francesco Denti, Luca Gonzato,

Nickos Petrakis.

I thank the people that bore my bad character during these years, friends, relatives and

companions.

iv

Contents

Declaration of Authorship i

Abstract iii

Acknowledgements iv

List of Figures viii

List of Tables ix

Abbreviations x

1 Inference and training, models and learners 4

1.1 Probabilistic forecasting . 4

1.2 Statistical learning . 5

1.3 Learners and models . 5

1.4 Inference and training . 8

1.4.1 Maximum likelihood . 9

1.4.2 Maximum penalised-likelihood . 9

1.4.3 Bayesian inference . 10

1.4.4 Variational inference . 11

Mean Field Variational Inference 12

Black-Box Variational Inference 12

Reparametrization trick . 13

1.4.5 MCMC vs VI . 14

1.4.6 Other methods . 15

2 Hierarchical Variational Inference 17

2.1 A semi-parametric family of functions . 17

2.1.1 Single layer example . 18

2.1.2 Multiple layers extension . 19

2.2 Variational inference using HVI . 19

2.2.1 The reparametrization analogy . 20

2.2.2 Representation power . 20

2.2.3 Adapting HVI to specific problems 21

v

Contents vi

2.2.4 Mixture variant . 21

2.2.5 Dimensionality reduction variant 21

2.3 Empirical experiment . 22

2.3.1 The experiment settings . 23

2.3.2 Results . 24

2.4 Discussion and future developments . 25

3 A Python package for multivariate time-series 29

3.1 Data wrapper . 29

3.2 Feature engineering . 30

3.3 Optimizer . 30

3.4 The abstract models . 31

3.4.1 Semi-parametric models . 31

3.4.1.1 Multilinear projector, MLP 32

3.4.1.2 Autoencoder . 33

3.4.1.3 Variational Autoencoder 33

3.4.1.4 LSTM . 33

3.4.2 HVI for covariance matrix . 34

3.5 Future developments . 35

4 Comparison of mean-covariance estimators 36

4.1 Data . 37

4.1.1 Financial returns dataset . 37

4.1.1.1 Features . 38

4.1.2 Macroeconomic index dataset . 38

4.1.2.1 Features . 39

4.2 Models . 41

4.2.1 Parametric models from literature 41

4.2.1.1 HVI extension . 41

4.2.2 Semi-parametric models . 42

4.2.2.1 MLP . 42

4.2.2.2 LSTM . 42

4.2.2.3 Autoencoder . 43

4.2.2.4 Variational autoencoder 43

4.2.2.5 Empirical prior with 0-state 43

4.3 Results . 44

4.4 Conclusions . 45

A Appendix 51

A.1 Notations . 51

A.2 Known distributions . 52

A.2.1 Gaussian distribution . 52

A.2.2 Wishart distribution . 53

A.2.3 Normal-Wishart distribution . 53

A.2.4 Inverse-Wishart distribution . 53

A.2.5 Normal Inverse-Wishart distribution 54

Contents vii

A.3 Common functions . 54

A.4 Set reparametrizations . 54

A.4.1 Set of positive definite matrix . 54

A.4.2 DCC parameters reparametrization 55

A.5 Neural Networks . 56

A.5.1 Multilinear projector (MLP) . 58

A.5.2 Autoencoder . 58

A.5.2.1 Variational Autoencoder 59

A.5.3 Recurrent networks . 59

A.5.3.1 Long-Short-Term-Memory networks (LSTM) 60

A.5.4 Bayesian networks . 60

A.5.5 Generative networks . 61

A.5.6 Backpropagation and SGD . 61

A.6 Empirical prior on mean-covariance states 61

Bibliography 63

List of Figures

2.1 Plot of the estimation error for the experiments with dimension N = 5
and different precision values (η = 1, 1/3, 1/5). Abscissa represents the
computational time, the ordinate the mean-square-error (in log scale).
Left column refers to estimate of the expected value, right to the standard
deviation of the parameters distribution. 26

2.2 Plot of the estimation error for the experiments with dimension N = 10
and different precision values (η = 1, 1/3, 1/5). Abscissa represents the
computational time, the ordinate the mean-square-error (in log scale).
Left column refers to estimate of the expected value, right to the standard
deviation of the parameters distribution. 27

2.3 Plot of the estimation error for the experiments with dimension N = 15
and different precision values (η = 1, 1/3, 1/5). Abscissa represents the
computational time, the ordinate the mean-square-error (in log scale).
Left column refers to estimate of the expected value, right to the standard
deviation of the parameters distribution. 28

4.1 Plot of the PTF data. Above figure shows the price (or index value),
rebased to 100. Below the log-returns for every instrument (or index). . . 38

4.2 Plot of the FRED data. Above figure shows the index value, rebased to
100. Below the log-variations for every series. 40

4.3 The different behaviour of the AE variants on the four combinations of the
dataset and central estimators during the optimising process. The three
different variants: AE, p-AE, VI-AE differs for the applied inference
scheme: maximum likelihood, MAP or VI. 46

4.4 The different behaviour of the MLP variants on the four combinations of
the dataset and central estimators during the optimising process. The
three different variants: MLP, p-MLP, VI-MLP differs for the applied
inference scheme: maximum likelihood, MAP or VI. 47

4.5 The different behaviour of the LSTM variants on the four combinations
of the dataset and central estimators during the optimising process. The
three different variants: LSTM, p-LSTM, VI-LSTM differs for the
applied inference scheme: maximum likelihood, MAP or VI. 48

4.6 The average log-likelihood on test observations for HVI-LW (PTF above,
FRED below). They both share a flat prior. 49

4.7 Different volatility estimate on the four combination of dataset and initial-
isation point. The 0.05, 0.5, 0.95 quantiles are plotted for the VI versions
of the models. 50

viii

List of Tables

4.1 List of titles of dataset PTF, with few statistics. 39

4.2 List of FRED macroeconomics indexes, with few statistics 40

ix

Abbreviations

VI Variational Iinference

ELBO Evidence Lower BOund

MC Monte Carlo methods

MCMC Markov Chain Monte Carlo

MAP Maximum-A-Posteriori

DCC Dynamical Conditional Correlation

LW Ledoit-Wolf covariance estimator

SGD Stochastic-Gradient Descent

NN Neural Networks

MLP Multi Linear Projector

LSTM Long-Short-Term Memory

AE AutoEncoder

VAE VariationalAutoEncoder

EM Expectation Maximization

x

Introduction

One of the main tasks of statistics is to forecast unknown quantities given the available

information. The standard approach is to assume a fixed probabilistic structure, called

model or learner, that depends on unobserved variables, called parameters. After col-

lecting data about the target phenomenon it is possible to infer a distribution for this

latent entities, and then use it to forecast future values. Many methodologies within the

statistical learning literature exploit such scheme.

How to choose the abstract structure and how to infer the unseen parameters depends

on the problem at hand. Statistics literature usually calls these two steps modelling and

inference, while machine learning literature refers to them as learner choice and training

phase.

The dimension of the parameters space, or model dimension, is a crucial element to take

into account. A vast number of parameters adds extra flexibility, allowing the model to

represent real-world complexity. Unfortunately, this flexibility makes them able to learn

also spurious correlations or random patterns. Not only, but proper inference could

become computational intensive for high-dimensional models.

In particular, one of the oldest approach (and probably, still the more common) is to se-

lect the single value for the parameters that better explains the observed data, providing

the best forecast on these examples. Unfortunately, this straightforward technique could

lead to estimates that adapt well to the current observations but not to future cases.

Bayesian inference is more reliable but can be challenging, because it not only requires

to formalise priors knowledge about the problem on the form of a probability measure

over the parameters but the inferred distribution, called posterior, is often intractable.

In these cases, the traditional way to handle the posterior is Markov Chain Monte Carlo

(MCMC), an asymptotically exact sampling technique.

Variational Inference (VI), an optimisation based approximation method, is emerging

as a viable alternative. VI is usually way faster than MCMC but does not guarantee

exactness. Not only, adapting it to the problem at hand could require a lot of effort

1

Abbreviations 2

[1]. Many methodologies lie in the middle of such tradeoff between exactness and com-

putational time. Anyway, the underlying principles are usually the same: maximise an

empirical score or build a procedure that converges to a satisfying solution, or combine

both.

This paper introduces a novel VI variant, called Hierarchical Variational Inference (HVI)

that allows for flexible inference with minimum effort (equivalent to apply standard

Metropolis-Hastings) using a specific class of Neural Networks (NN). NN are flexible

semi-parametric functions. Using backpropagation is possible to modify their parame-

ters, adapting the function to optimise a given functional score. Applying them to the

VI score (called Evidence Lower Bound, or ELBO) allows conducting the inference. This

is the first contribution of the paper.

The second contribution is a Python package that uses NN and VI for time-series prob-

abilistic forecasting.

NN functions are commonly used as forecasters, mapping the input regressors to the

outcome probability distribution, depending on a high number of parameters that can

lead to overfitting. Randomised approaches with Bayesian interpretations (as dropout

[2]), proper Bayesian estimation [3], or approximations with VI techniques [4] can in-

crease their performances and reduce the tendency to overfit data. These distributional

approaches to parameters value lead to state-of-the-art models in many contexts as

Natural Language Processing or Image recognition [2].

Neural networks have been applied to time series for long and have shown different

results. However, single-value forecast is the typical case. Rare examples of multivariate

probabilistic forecasting for NN exists. Even advanced methodologies, as [5], usually

focus on univariate point prediction. A reason is that multivariate time-series forecast

requires to consider interactions between the single variables and the different time-

indexes, leading naturally to conditional probability functions with many parameters.

The high dimension of the problem, combined with the naturally high dimension of

networks forecasters makes it challenging to conduct inference for NN, as will be shown

empirically in chapter 4.

Econometric techniques usually tackle this dimension issue with parsimonious models

and reliable inference procedures. Although less common, Bayesian estimate has shown

able to improve performances on multivariate time series [6],[7]. Still, it requires intensive

computational effort.

This paper shows that combining VI with a mean-covariance likelihood, NN can improve

the forecasting power of such time-series standard estimators in terms of bias-variance

Abbreviations 3

tradeoff. The above claim is tested on both financial data and macroeconomics series,

leading to consistent results.

The thesis is organised as follows: 1 introduce the theoretical framework behind the

paper; 2 define HVI and compares it with standard MCMC on artificial data; 3 presents

the Python package for probabilistic forecast on multivariate time-series; 4 concludes,

applying the implemented models on a forecasting experiment and discussing the results;

the appendix A collects mathematical constructions, notations and definitions used in

the previous chapters.

Chapter 1

Inference and training, models

and learners

This chapter introduces the methodologies applied in the remaining chapters, using the

notations described in the appendix A. This tour will include few models examples 1.3,

inference schemes and numerical techniques 1.4. The chapter is not a comprehensive dis-

cussion of such topics but wants to be a concise presentation of the underlying principle,

with literature reference.

1.1 Probabilistic forecasting

One of the most common problems in statistics and machine learning is the estimate of

the probability of future outcome of a target variables y.

A reasonable approach is to assign a probability, conditionally on available information

x, to every possible outcome p(y|x). Whenever y is continuous p(y|x) become a distri-

bution density. Such probabilistic forecasting has been intensely studied in literature

and applied in practice.

Comparing the quality of different forecasters is not always straightforward. Using

a score function S is the most common choice. Score functions [8] assign a numeric

value S(p(y|x), y) to the forecast, based on the observed outcome y and the predicted

probability (or density).

Consider, for example, a forecaster f that predicts the most probable outcome of y,

called ŷ = f(x), trying to get as close as possible. This kind of forecast is often called

single-value forecast. A common error function in this context is mean-square-error

4

Abbreviations 5

(for continuous y) or cross-entropy (for categorical y). Under this standard metrics,

single-value forecast can be seen as a simplified version of probabilistic forecasting [9].

1.2 Statistical learning

How to assign p(y|x)?

A standard approach in statistical learning assumes a fixed form for the conditional

probability, L, that depends on unobservable parameters θ ∈ Ω ⊂ R
d. The forecast

distribution is then p(y|x) = L(y, θ, x).

Statistical literature calls L likelihood, while machine learning literature calls it learner

function or model.

After observing data, it is possible to infer a reasonable distribution for the parameters,

p(θ), and then use this a-posteriori random variable to forecast new observations with

p(·|x) =

∫

Ω
L(·, θ, x)dp(θ) (1.1)

.

This general approach is a common factor for many techniques in the statistical learning

field. It can be virtually separated in two phases: deciding L and inferring p(θ) after

observing data (sometimes called inference or training).

The two steps affect one another. In practice, the existence of a reliable inference

procedure restricts the choice of L.

Not only, probabilistic theory can suggest different p(θ) with useful properties, but

such distributions are often impossible to handle directly and could require numerical

approximation.

The following section 1.3 briefly introduce the models from literature that will be used

in the remaining chapters; follows 1.4 that describe the mentioned inference techniques

and numerical approximation methods.

1.3 Learners and models

The data structure affects the choice of L, that must adapt to the problem at hand.

Consider y ∈ R
d.

Abbreviations 6

It can be reasonable to assume that the different observations are independent, condi-

tionally on the set of regressors xi, xj (if yi, yj , i 6= j), and that L depends only on global

parameters θ: p(yi|xi) = L(yi, θ, xi).

In such case, it is possible to consider the model:

F1 : xi, θ → µ ∈ R
d

F2 : xi, θ → V ∈M+
d

L(yi, θ, xi) = Nµi,Vi
(yi)

(1.2)

for any pair of functions F1, F2 mapping xi, θ to a mean vector and a (postive definite)

covariance matrix. For example, combining a neural network and the reparametrization

A.4.1. This kind of model will be extensively used in the paper.

On the contrary, time-series observations are indexed by a time variable t → yt and

correlation between different times exists. This would suggest a conditional expression

as:

p(yt|xt, yt−1, xt−1, . . . , y0, x0) = L(yt, xt, yt−1, xt−1, . . . , y0, x0, θ)

unfortunately, such general assumption increase the complexity for every new observa-

tion and, thus, is rarely applied.

A standard solution is to assume the existence of state parameters zt, and the Markov

property (conditionally on both regressors and states). The likelihood function is then

of the kind:

p(y|x, θ) = L(yt, xt, zt, xt−1, zt−1, θ)

The reasons for the Markov hypothesis can be different. The simplest is that the sys-

tem generating the observations has an internal state that is not observable, and the

probability of evolving of this state is uniquely determined by the state itself and the

regressors x. States can evolve trough time with their own dynamic, factorising L in:

L(yt|xt, zt, zt−1, xt−1, θ) = L(yt, xt, zt)D(zt|xt, yt−1, xt−1, zt−1, θ) (1.3)

with D a known conditional probability for the states value (sometimes called transition

kernel).

The choice of D is crucial and can be stochastic or deterministic.

Examples of stochastic dynamic are stochastic volatility or time-varying parameters in

Vector Autoregressive [6]. Autoregressive models (as GARCH, DCC or recurrent neural

networks) are examples of deterministic transition.

Abbreviations 7

For example, consider a univariate 0-mean GARCH with no regressors:

θ = ω, α, β

L(yt, zt, xt, θ) = N0,zt

zt = ω + αzt−1 + βy2t−1

(1.4)

where the third condition is equivalent to a deterministic transition function D for the

state zt. DCC uses a multivariate covariance matrix as zt and a more evolved transition

mechanicsm, but retain the deterministic nature. Deatils about DCC definition can be

found in [10].

Differently, a naive stochastic volatility models could be:

θ = ω, α, β, h2

L(yt, zt, xt, θ) = N0,zt(yt)

log(zt) ∼ Nω+α log(zt−1)+β log(y2t−1
),h2

(1.5)

that strictly resemble the above GARCH, but imply a probabilistic transition of the

state zt, conditionally log-gaussian.

ARMA processes and TVP-VAR present the same duality, in the sense that both models

the conditional mean with, respectively, a deterministic transition kernel and a stochastic

one (e.g. [11] for the latter).

The latent nature of zt would require, in general, a probabilistic dynamic. A determinis-

tic observation-driven approach could lead to multiple steps incoherent forecast densities

(see [12]); however, it only requires few parameters and is thus very popular.

Although more realistic assumptions and more solid theoretical basis, inference for full

stochastic models is harder and could require particle filters [13], expectation maximiza-

tion [14] or a computationally intensive MCMC [6]. On the other hand, the fast inference

for deterministic transition models made them very popular.

In the machine learning field, recurrent neural networks are extensively used, particularly

in the form of long-short-term-memory (LSTM [15]) networks. Such networks are similar

to autoregressive methods, in the sense that there is an internal state zt and its value is

deterministic, conditionally on θ, xt, zt−1, yt−1, xt−1.

There are differences in the inference process and the theoretical structure behind, but

these two approaches share common principles.

Abbreviations 8

In particular, recurrent network inference truncates the number of regressive steps to

speed up the process, is estimated with stochastic gradient methods, and usually imple-

ments single-value forecast. Autoregressive models, instead, apply a more rigid class of

update dynamics but specify a complete distribution for the target yt.

The possibility to conduct effective inference affects the choice of L. The next section

describe principles and a few common methodologies for learning p(θ) fixed L.

1.4 Inference and training

Fixed data and the model, inference has the goal to find a posterior distribution over

the parameters that forecast well on future observations, using the expression 1.1.

How to select a similar distribution? First of all, it is necessary to decide which is the

’desired’ p(θ). Then, it is often required to approximate or derive such distribution p(θ),

because it is not explicitly available.

From now on, the first step (deciding the target) will be referred to as inference approach,

or inference framework, while the second (deriving or approximating the target) as

computation, or approximation.

The latter can be done with closed-form computation or using numerical methods, for

example solving an optimisation problem (as maximum likelihood or VI) or applying a

sequential algorithm with asymptotic guarantees (as MCMC or EM).

Unfortunately, find an optimum could end up in local optima and stopping an asymptot-

ically right procedure can give a result far from the proper solution. The term approx-

imation stresses the fact that numerical and computational constraints affect inference

every time that closed form is not available.

Inferential approaches can be divided into single-point and proper distributions.

The first methods select a single value for the parameters, equivalent to a Dirac Delta

p(θ|x) = δθ̂(θ). This choice is an approximation that cancels any uncertainty about θ,

despite its latent nature. The main reason for this choice is that a single value is easy

to handle.

On the contrary, obtaining a proper distribution is a more general approach. Still, it

is more complicate, in the same way as a distribution is a more general object than a

deterministic single value.

Here are presented two single-point inference procedures: maximum likelihood and pe-

nalised maximum likelihood, and two distribution approaches: Bayesian inference and

Abbreviations 9

VI. Follows a brief discussion of hybrid techniques and other methods, but all the

methodologies used in the rest of the paper will belong to these four cases.

1.4.1 Maximum likelihood

A reasonable choice for θ is the one that maximise the empirical value:

θ̃ = arg max
θ

L(Y, θ) (1.6)

This approach is prevalent both in statistical modelling and in machine learning, due to

its simplicity. Whenever L is a conditional probability, it is called maximum likelihood

estimator. Sometimes L is a general measure of the forecast, called score.

In particular, this estimator is not reliable whenever the dimension of the parameters is

high wrt the data, because it can lead to overfitting or to forecast that does not generalise

well. A simple explanation is that a global maximum taken in a parameters domain that

is too large can lead to unfair estimate if data does not carry enough information about

the parameters (or when a single θ that represent the real dependencies does not exist).

1.4.2 Maximum penalised-likelihood

When maximum-likelihood become unreliable, a regularisation term could be added to

the empirical score:

θ̃ = arg max
θ

L(Y, θ) + π(θ) (1.7)

This regularization function π is often called penalization (or shrinkage) term and forces

the estimated quantity to stay within a-priori reasonable region of the whole parameters

space. This can lead to better results.

The most famous application is probably the lasso (and the ridge) regression [16], where

the penalty shrinks the regression coefficients of a linear model towards 0 (or close to),

often leading to better generalisation power and good feature selection. It is extensively

applied also in econometric [6].

The shrinkage term gives information about possible θ̂ and the optimisation technique

can exploit the penalty characteristics to speed up the inference. For example, when the

penalty term is a prior distribution over Ω, sampling particles from it can suggest good

starting points for the optimisation.

Abbreviations 10

However, the penalty term sometimes does not solve the maximum-likelihood estimator’s

problems because selecting a single-value for θ still cancels the uncertainty about such

latent quantity. There are contexts when this uncertainty matters.

1.4.3 Bayesian inference

The Bayesian paradigm is the usual reference to infer a complete distribution. This

approach focus on the posterior p(θ), defined as:

p(θ) =
L(Y, θ)π(θ)

∫

Ω L(Y, θ)π(θ)dθ
(1.8)

The prior π(θ) is a prior distribution over Ω and represents a priori knowledge about

the parameters value. The denominator is called Bayes factor, B(Y), and it allows to

compare different models.

There is a known relation between penalized maximum-likelihood and Bayesian poste-

rior. Whenever the penalty term and the prior term coincides, the mode of the posterior

density is the penalized maximum estimator. For this reason, the latter value is often

called Maximum-a-posteriori (MAP).

Unfortunately, the posterior is often intractable, due to the unavailable closed-form com-

putation of B(Y). The estimation of this integral using standard Monte Carlo techniques,

as importance sampling, is often challenging, because of its variability.

MCMC and VI are respectively, the most common procedures to conduct intractable

inference.

MCMC is the standard technique to approximate the posterior. This approach creates

a chain of samples asymptotically distributed as the target distribution. It is possible

to estimate posterior’s moments or evaluate the predictive distribution, using these

particles. Details about many variants of this methodology are available in [17].

The main difference between standard Monte Carlo and MCMC is that the first build

independent samples with a fixed distribution, and then uses a weighted average of

this particles to compute posterior moments; the second creates a sequence of depen-

dent samples with the posterior as stationary distribution. Usually, the next sample is

randomly selected based on the previous one.

Unfortunately, the asymptotically exact MCMC does not guarantee a good approxima-

tion on finite, real, cases. In particular, it is well known that MCMC could suffers on

high-dimensional problems or with highly correlated components of θ [17].

Abbreviations 11

This issues could be less severe for model-specific MCMC as Gibbs samplers. However,

applying model-specific methods require time and mathematical skills and is error-prone,

compared to a general approach as Metropolis-Hastings or Hamiltonian MCMC.

1.4.4 Variational inference

An optimisation-based alternative is Variational Inference (VI).

This technique introduces a family of distributions Q over Ω as admissible approxima-

tions of the posterior p(θ), then selects as proposed solution q ∈ Q the one that minimises

the Kullback-Leibler divergence wrt the real posterior KL(q, p).

The KL divergence, defined as:

KL(p, q) = Eq

[

log(q)

log(p)

]

(1.9)

is not immediatly available (because p is not available), but substituting 1.8, it holds:

KL(p, q) = Eq [− log(L(Y, ·))− log(π(·)) + log(B(Y))] + Eq [log(q)]

KL(p, q)− log(B(Y)) = −Eq [log(L(Y, ·)) + log(π(·))] + Eq [log(q)]
(1.10)

Re-arranging the terms and defining the Evidence Lower Bound ELBO as minus the

second term of the last equation, it holds:

−KL(p, q) + log(B(Y)) = ELBO(q) (1.11)

this shows that minimising KL(q, p) is equivalent to maximising the ELBO, because

log(B(Y)) does not depend on q.

Not only, but the positiveness of KL ensure that the ELBO is a lower bound for the

Bayes factor. This property justifies the name ELBO and suggests its usage for model

comparison (unfortunately, there are complications [1]).

The proposed approximation of variational inference is then

q = arg maxq∈QELBO(q)

q = arg maxq∈Q Eq[log (L(Y, ·)π(·))]− Eq[q(·)]
(1.12)

This optimisation based approach is not completely different from maximum penalised

likelihood. In fact, under the Dirac Delta assumption of single-value inference, the term

in the first expectation is equivalent to the MAP target function. The second term

Abbreviations 12

is the entropy distribution of q. Without it, the optimisation will collapse on a point

distribution: the MAP estimate.

The general schema above can also exploit functional different from the ELBO. Targeting

the ELBO is called Variational Bayes.

Additional regularisation terms could be added to the ELBO to create a custom score.

For example, during representation learning this is done to force required characteristics

on the proposed variables. In chapter 4 the term VI will refer to optimising a global

score, sometimes not reducible to a proper model ELBO.

The set of non-singular distributions is far more complicated than single point values.

For this reason, the optimisation problem domain is restricted to a fixed subset Q of the

possible distributions. This restriction introduces a bias in the inference, but it can be

way faster than MCMC.

Several choices for Q are available, and different way to tackle the consequent optimisa-

tion problem are available. Here follows a brief overview of the most common.

Mean Field Variational Inference MFVI historically was the more common ver-

sion. This technique assume Q is the set of distributions with independent components:

q(θ1, . . . , θd) =
∏d

i=1 qi(θi) ∀q ∈ Q (1.13)

The optimisation is done component by component, with a technique called VI-Expectation

Maximization (VI-EM). This solution works brilliantly in many contexts but fails when

parameters are highly correlated; see [18] for specific examples.

Black-Box Variational Inference BBVI describe a general approach that is not

model specific, proposed in [19].

The idea is to use stochastic optimisation to maximise the ELBO. The technique is

general in the sense that it exploits information about Q, but only requires that the

likelihood and the prior are smooth functions. This absence of requirements about model

functions put this class of techniques on the same level of general MCMC schemes as

Metropolis-hastings or Hamiltonian MCMC.

In particular, it considers a parametric qλ ∈ Q. It requires to be able to sample particles

from qλ and uses a Monte Carlo estimate of the ELBO gradient wrt to λ to maximise

this quantity.

Abbreviations 13

The difficulty is to find Q with the above characteristics that is not too far from the

desired target distribution.

Reparametrization trick methods belongs to the broader family of BBVI. The trick

requires the existence of a sampling reparametrisation of Q, then the inference follows

from the application of SGD (A.5.6) with general L, π functions.

A sampling reparametrization of Q is a pair φ, F , with φ : λ, ǫ → θ a smooth function

and F a fixed, known, distribution, s.t.:

∀λ, ∀ǫ ∼ F =⇒ φ(λ, ǫ) ∼ qλ

. In practice, by generating random numbers (ǫ) with the fixed pdf F and applying the

smooth function φ, it is possible to generate samples from qλ, ∀λ. This enables a Monte

Carlo estimate of the gradient:

E

[

1

MC

MC
∑

i=1

∇λ log

(

L(θi, Y)π(θi)

q(θi)

)

]

=

E [∇ELBO(q, p)]

(1.14)

A common example is the sampling reparametrisation of the set of gaussian variables:

F = N0,1, λ = (µ, σ) ∈ R
⊕

R
+ and φ(ǫ, λ) = µ + σǫ. The reparametrization can be

easily extended to the multivariate case.

Variational Autoencoders (VAE [4]) use it to estimate a distribution over the latent

observation-specific parameters zt.

Abbreviations 14

The general procedure is resumed in 1.

Algorithm 1: Reparametrization trick for variational inference

Result: qλ, a distribution that approximates the model posterior

Hyperparameter: ν ∈ R, I ∈ N
+

Initialize λ = λ0;

while ˆELBOt does not converge do

Sample ǫi, . . . , ǫI ∼ p(ǫ) ;

Compute θi = φk(ǫi), qi = qλ(θi) ;

Compute Li = L(θi), πi = π(θi) ;

Compute ˆELBOt = 1
MC

∑M
i=1C [log(Li) + log(πi)− log(qi)] ;

Update λ← λ + ν∇λ
ˆELBOt (gradient is available through automatic

differentiation)

end

It is possible to use approximated sampling reparametrisation to deal with discrete

distribution (see [20]), although not used in this paper.

1.4.5 MCMC vs VI

This section presents a short discussion of the differences between MCMC or VI, de-

pending on the context.

The accuracy, the computational effort, the scalability and the flexibility of the method-

ology are crucial elements to decide which method to apply.

In particular, under the accuracy point of view, standard MCMC guarantees exact

asymptotic inference. VI is intrinsically approximate and, unfortunately, there is not a

general theory connecting KL to usual metrics on the parameters space. However, it

can be difficult to detect how far MCMC are from stationary and sometimes reaching

the ergodicity could require too much time.

On the other hand, VI is usually way faster than MCMC and could reduce the required

time by magnitudes [1]. MCMC are widely recognised as slow and computational in-

tensive [17]. This reason is behind the creation of versions of MCMC that sacrifice the

exactness to speed up the inference [21][22].

Scalability is another precious characteristic in the big data era. For these reasons,

scalable versions of both VI (as BBVI [19]) and MCMC [21][22], are frequently studied

and proposed.

Abbreviations 15

However, speed and accuracy are not the only relevant elements. In practice, most of

the inference algorithm requires tuning over the specific problem to obtain satisfying

results.

The amount of time required to tune the method to a specific model or data is another

essential characteristic. How difficult is this process in terms of mathematical expertise,

coding skills, and how error-prone it is, actively affects the usability of any inference

technique.

This reason is behind the success of model agnostic techniques as Hamiltonian MCMC

[23]. This procedure does not exploit well the model structure as a Gibbs sampler, but

it is immediately applicable.

The next chapter 2 proposes a general VI methodology with the same minimum require-

ments of Hamiltonian MCMC (and standard Metropolis-Hastings).

1.4.6 Other methods

A plethora of different techniques have been proposed over the decades. Although single

variants can better adapt to specific models, the general principles are usually the same:

calibrate the forecast on the available data, while maximising the sharpness [8]. This

lead to a variety of approaches with different balancing of these two characteristics.

In many cases it is not possible to identify a single value for θ that produce an effective

forecast (sacrificing too much the sharpness) and also derive a full distribution p(θ)

would be difficult (due to computationally intense calibration).

For example, on time-series models, the probabilistic dynamics of the state parameters

zt could create problems. Selecting the states that simply maximise the likelihood would

lead to overfitting and biased inference.

For this reason, Expectation-Maximisation (EM) algorithm [24] is a common choice. EM

treat differently global parameters θ and state parameters zt. θ estimate uses Maximum

likelihood (fixed an approximation for zt), while states estimate zt is approximated

conditionally on θ.

zt approximation often uses a set of weighted particles, leading to particle filtering [13].

In fact, particles could help to handle the problem, resulting in greater generalisation

power.

Ensemble methods move even one step behind, averaging a significant number of ran-

domised naive forecaster to obtain a suitable one [25]. This kind of methods has become

a standard reference in many forecasting competitions.

Abbreviations 16

However, how to balance the sharpness and calibration is still an open point [25] also

for ensemble methods. In this context these terms are often referred as heterogeneity of

the weak forecasters.

A detailed discussion of the general and specifics approaches is outside the scope of this

paper that only apply point-wise inference, MCMC and VI.

Chapter 2

Hierarchical Variational Inference

Inference for Bayesian probabilistic models requires to handle the model posterior, which

is often intractable. MCMC methods are the standard solution, allowing to sample

particles with the exact ergodic distribution. However, the time required for convergence

can be unreasonable.

Variational inference (VI) approximate the posterior with a simpler distribution, choos-

ing it within a family of distributions Q. The proposed solution is the one that minimises

a fixed divergence measure wrt the true posterior, as mentioned in 1.4.4. Unfortunately,

VI techniques usually force a parametric structure on Q.

This chapter introduces a novel methodology that relaxes this constraint using a semi-

parametric family of distributions. The technique uses a version of the reparametrisation

trick, as described in 1.4.4.

The chapter is organized as follows: section 2.1 introduces the required semi-parametric

family of distributions, section 2.1.1 resumes how to use this family to conduct variational

inference, 2.2.3 defines two possible variants to the methodology to adapt to specific

problems, then section 2.3 presents an experiment to evaluate HVI on artificial data and

discuss the results, while section 2.4 concludes presenting possible future developments.

2.1 A semi-parametric family of functions

This section defines a methodology to create a semi-parametric set of distribution Q

over R
d that allows using the reparametrisation trick to conduct inference with the

same minimum requirements as standard Metropolis-Hastings.

17

Abbreviations 18

A single value of the parameters λ, called variational parameters, uniquely identifies a

distribution qλ ∈ Q. It is possible to do sampling and probability density evaluation

∀qλ ∈ Q. Not only, but the gradient of the density wrt the variational parameters,

∇λqλ(·), is also available in closed form. This possibility allows the usage of Stochastic

Gradient Descent (SGD) to optimise specific functionals, as the ELBO, over this set of

distribution, to conduct VI.

2.1.1 Single layer example

Sampling particles with a known distribution and transforming them with a neural

network enables to obtain particles with a flexible distribution. This technique is widely

used in generative models, with excellent success [26]. However, the density of such

particles is unknown, making a direct estimate of the ELBO impossible.

HVI methodology imposes two requirements to the network to allow the density evalu-

ation, enabling to conduct VI.

For example, consider a single layer neural network φ that transform an input x ∈ Rd

into an output φ(x) ∈ Rd following the expression:

φ(x) = A1g(A0x + b0) + b1 (2.1)

where Ai is a matrix that linearly projects x into a vector in R
d, bi ∈ R

d is a shift vector,

and g is a non-linear activation function. If Ai is non singular and g is invertible, then

the function φ(·) is invertible too.

If we consider random samples xi ∈ R
d, i = 1, . . . , s with known closed form density

p0(xi), then it holds:

p(φ(xi)) = p0(xi)
|A1||A0||∇g(A0xi)|

log [p(φ(xi))] = log [p0(xi)]− log [|A1|]− log [|∇g(A0xi)|]− log [|A0|]
(2.2)

where ∇g is the gradient of the non-linear activation function, and |A| refers to the

determinant of A.

This shows that, if the projection matrix is not singular and the activation function is

invertible (with known gradient), then it is possible to compute the density of the output

in closed form.

Not only, selecting an arbitrary point y in the output space and inverting the previous

transformations (A1 → A−1
1 , g → g−1) it is possible to compute the density y = φ(x)

and subsequently p(y), if needed.

Abbreviations 19

2.1.2 Multiple layers extension

Consider now a k-layers network φk, obtained composing k layers with the same structure

above. Applying the k transformations to the same points xi ∈ R
d defined before and

defining xj,i = φj(. . . φ1(xi)), j = 1 . . . k the transformed values using the first j layers,

it holds:

φk(xi) = Akg(. . . g(A1g(A0xi))) (2.3)

the output φk(x) keeps the characteristic mentioned above, having:

p(φk(xi)) = p0(xi)

|A0|
∏k

j=1
|Aj ||∇g(Aj−1xj,i)|

log [p(φk(xi))] = log [p0(xi)]−
∑k

j=1 log [|Aj |]−
∑k

j=1 log [|∇g(Aj−1xj,i)|]− log[|A0|]

xj,i = Aig(xj,i−1), ∀i = 1, . . . , k

x0,i = xi
(2.4)

Adding extra layers increase the representation power of Q. Still, they could intro-

duce numerical instability in the density or the gradient evaluation wrt the variational

parameters, causing gradient vanishing or gradient exploding.

This issue is solved choosing self-normalizing (invertible) activation functions [27], as

selu. Numerical experiments show that expressions like 2.4 keep sufficient stability in

all the explored cases.

In particular, the density expression enters the ELBO expression only through log(p),

that is additive in the different layers, avoiding any interaction in the gradient expression.

2.2 Variational inference using HVI

Constructing a set qλ ∈ Q, as described before, enables the application of the reparametriza-

tion trick to solve the optimization problem:

λ̃ = max
qλ∈Q

F (qλ) (2.5)

where F is any bounded functional over Q.

Consider a Bayesian model with smooth prior and smooth likelihood, taking the ELBO

1.11 as score F is possible to run approximated Bayesian inference, as described in 1.4.4.

Abbreviations 20

The procedure requires to initialize λ randomly then sample a batch xi ∼ p0, apply

the transformations to obtain θi = φk(xi), evaluate the posterior numerator on this

particle and estimate the gradient of ELBO wrt λ, and update λ using SGD. Repeat

the sampling-updating procedure until convergence of the ELBO estimate.

Note that the gradient evaluation is automatic with automatic differentiation frameworks

as TensorFlow [28].

2.2.1 The reparametrization analogy

This methodology approximates the posterior by transforming in a (semi) parametric

way input particles with a fixed distribution p0. The semi-parametric transformation,

φλ, is a hierarchy of invertible and differentiable transformations.

This approach is equivalent to look for a reparametrisation of the model θ′ = φ−1
λ (θ)

with a posterior approximated by a fixed p0.

Adding an internal parametric state to p0 does not break the process if the density is

still available in closed form and differentiable wrt such new parameters.

It is possible to exploits such hierarchical structure in many ways. For example, selecting

a specific p0 or shaping the transformation in different ways.

2.2.2 Representation power

Which posterior can be effectively approximated by HVI is a crucial question.

Theoretical results are not developed here for any specific class of networks. However,

the empirical experiment in 2.3 tests it, at least on a particular context. Not only, but

there are also several approximation theorems concerning the representation power of

general neural networks.

The well-known approximation theorem [29] states that a neural network with at least

an internal layer and sufficiently high number of nodes can approximate any regular

function. The has been generalised to different activation functions [30]. This results,

however, can not be applied in this case. First of all, because HVI maps Rd → Rd and

not Rd → R.

Secondary, the fixed number of nodes required by HVI 2.4 does not allow to apply the

theorem [30] because it requires an indefinitely high number of nodes.

Abbreviations 21

Recently, [31] proved that with an internal dimension d+4 and sufficient depth, a net can

approximate any L1 function. Again, the theorem is not applicable, because d + 4 > d

and it applies to real-valued functions.

The recent result in [32], on the other hand, concerns interpolation of points with the

same number of nodes at every internal layer. Still, this result is not applicable, because

interpolation of a finite number of points is not enough. Not only, but the theorem would

also require to be able to write the target mapping between X and Ω as a differential

equation.

However, this does not answer any question about the possibility to learn a satisfying

approximation.

The possibility to choose any base distribution p0 enlarge the representable set of dis-

tribution.

To empirically test the representation power of the methodology, section 2.3.1 presents

a simple experiment to test HVI effectiveness.

2.2.3 Adapting HVI to specific problems

It is possible to adapt HVI changing the hierarchy of reparametrisations, φλ or the fixed

posterior approximation p0.

This section presents two examples. The first variant deals with multi-modal distribu-

tion. The other introduces a constraint on λ, significantly reducing the dimension of the

variational parameters, speeding up the inference process in high dimensions.

2.2.4 Mixture variant

Choosing a mixture distribution for p0 is possible to sample θ with a natural mixture

structure.

The invertibility of the transformation φk will keep different modes separated, although

allowed to change their relative density and distance.

2.2.5 Dimensionality reduction variant

It is possible to reduce the dimensionality of the semi-parametric family by fixing one

or many parameters in A. This reduction in the dimension of Q tackles the expressive

Abbreviations 22

power but also ease the optimisation problem and reduce the variability while estimating

the gradient of ELBO.

Taking for example Ai = Id + Li, with Li low rank and Id the identity matrix, or

assuming Ai diagonal.

During the empirical experiment that follows HVI-low-dim, with q < d, will refer to

the following choice:

Li =

l1,1 · · · l1,q 0 · · · 0
... lr,c

...
...

lq,1 · · · lq,q 0

0 · · · 0 0
...

. . .

0 0

i < k

Lk =

l1,1 · · · l1,q 0 · · · 0
. . .

...
...

lq,q 0
... · · · lq+1,q lq+1,q+1

... 0
. . .

...
...

...
. . . 0

ld,1 · · · ld,q 0 · · · 0 ld,d

i = k

(2.6)

equivalent to consider a standard HVI for the first q dimensions and an identity trans-

formation for the remaining d − k, for every layer except the last one. The remaining

Ak transformation creates every coordinate as a linear combination of the first k com-

ponents, plus a diagonal transformation that keeps the density non-singular.

The number of variational parameters drops from kd2 to (k − 1)k2 + (k + 1)d = k3 −

k2 + kd + d, making the problem linear in d. In the experiment 2.3.2 k = 5 appear to

adapt well, similarly to full HVI.

2.3 Empirical experiment

This section describes the empirical experiment that tests the efficacy of the proposed

methodology wrt MCMC on artificial data. The goal is to compare the ability of HVI to

estimate the posterior moments to standard MCMC as Metropolis-Hastings (RWMH)

and Hamiltonian (HMCMC).

Abbreviations 23

The test problem will be the classical multivariate Gaussian observations (T observations

of N variables) with unknown mean and unknown covariance matrix, with conjugate

prior (normal-Wishart k, µ, ν,W).

The motivations behind this choice are different. First of all, the problem solution is

available in closed form. Secondary, the strong correlation between parameters is known

to be challenging for both MCMC [17], and VI [18]. Third, the necessity to invert the

precision matrix (numerically capricious operation) is often present in real contexts.

The evaluation metrics for every inference method will be the mean squared error ob-

tained estimating the mean and the standard deviation of the posterior distribution.

The comparison will also account for the computational time and the dimension of the

parameter space.

The choice of competitors is due to their similarity. They do not exploit any information

about the problem, as HVI. Either HVI, RWMH and HMCMC apply to any general

posterior numerator smooth function and only requires a function that maps R
d to the

parameters domain.

The details and results of the experiment are available in the next section 2.3.1, and the

results in the following 2.3.2.

2.3.1 The experiment settings

This section describes the details of the inference problem with gaussian conditional

likelihood.

In this context Y0 ∈ R
N , · · · , YT ∈ R

N are observed. The model likelihood is condi-

tionally Gaussian Y ∼ N (m, η−1), where m and η are the latent parameters (the mean

and the precision matrix, respectively). The dimension parameters N will take three

different values N = 5, 10, 15. The precision matrix of the true data generator will vary

η = Id, 1/3Id, 1/5Id corresponding to increasing noise in the data.

The prior π for m, η is the conjugate prior for this likelihood, a Normal-Wishart distri-

bution, with parameters k, µ, ν,W . This experiments uses the specific values k = N,µ =

0N , ν = N,W = IN/N , so that the prior density expression is:

π(m, η) =WW,ν(η−1)Nµ,η−1(m) (2.7)

Abbreviations 24

The experiment steps and the details about the chosen problem parameters and estima-

tion hyperparameters:

Algorithm 2: Multivariate Gaussian inference experiment

Result: A set of particles, for every MCMC and HVI method

1. Fix the problem dimension N , the parameters number will be

d = N(N + 1)/2 + N (the first addend for the terms of the Cholesky

decomposition of the precision matrix, while the second accounts for the vector

means).

2. Fix the number of observations (T = 50 used here).

3. Generate a vector for the prior mean m0 ∼ N (0, Id) and fix the true mean (wlog

0d is applied).

4. Generate a matrix for the prior precision η0 ∼ W(d, Id/d) and fix the true

precision matrix η = cId with c that controls the level of noise in the data (in this

paper c = 1, 1/3, 1/5 is used).

5. Fix the prior uncertainty parameters k = T, ν = d.

6. Generate data y ∼ N (m, η−1).

7. Run the different MCMC methods to be evaluated, with initial point m0, η0 (the

prior mode). Collects the samples from 100 parallel chains and 1400, 2800, 5000

particles for dimensions N = 5, 10, 15 respectively.

8. Run the different HVI methods to be evaluated, with initial distribution centred

on m0, η0 (the prior mode), with a reasonably small deviation around it. Collect

the samples at every SGD step. The number of learning steps is fixed to

9000, ∀N .

Concerning HVI, the non-linear layer will be selu and initial distribution p0 uniform

over the hypercube. The specific SGD variant will be Adam optimiser, being probably

the most common choice. The number of layers will be fixed to 5, for any different N ,

to avoid un unfair adaptiveness compared to the competitors MCMC.

2.3.2 Results

The results are plotted in 2.1,2.2,2.3, for problems with N = 5, 10, 15 respectively. In

every figure, the ordinate is the mean squared error of the estimate of the true posterior

moments. The abscissa is the time required to obtain the sample. At every fixed

Abbreviations 25

checkpoint in time, all the particles generated by every method are used to estimate

the moments, except the first 10% that goes in the burn-in set, as commonly done in

MCMC inference [33]. The same applies to HVI.

For every problem, two figures are plotted. The left one refers to the parameters mean,

and the other to the standard deviation. Different rows of each figure refer to different

level of η (inverse of noise in the data).

From above to below the same problem with different noise in the generating process is

compared (precision η = 1, 1/3, 1/5).

VI better estimates the expected value of the parameters, on every dimension. The

standard deviation estimate of HVI is slightly better for N = 5, similar for N = 10 and

slightly worst for N = 15. VI difficulty in estimating the deviations is a well-known

characteristic, caused by the ELBO expression [1]. Another peculiarity is the limited

representative power of HVI that let the estimated error converge to a value greater

than 0, while theoretically the MCMC converge exactly to 0.

Concerning different levels of η, results are similar across methodologies, although the

overall precision in the estimate decreases, as expected.

2.4 Discussion and future developments

The proposed HVI methodology requires the same, minimum, effort of a standard

Metropolis-Hastings to be applied, in terms of calculus. This fact makes it a viable

and flexible alternative that can better approximate the posterior on short runtime, as

shown in 2.3.1. In particular, HVI exhibits the known behaviour of VI methods: it un-

derestimates parameters dispersion but better measures the posterior mean, compared

to MCMC.

There are open issues still to be investigated, about the new methodology. For example,

no theoretical results about the representation power of HVI have been developed yet.

Not only, under which conditions HVI works better than MCMC would require other

empirical investigations. If sharp precision is needed or enormous computational time

is available, probably the right answer is MCMC. However, during prototyping and ex-

ploration, HVI could be a better choice. Secondly, MCMC and HVI could be combined.

For example, using the latter for prototyping or evaluating a good initialisation point

for MCMC, or developing specific hybrid strategies (similarly to [34]).

Chapter 4 applies HVI on real data.

Abbreviations 26

0 1 2 3 4 5 6
time (minutes)

3×10−3

4×10−3

6×10−3

di
st
an

ce

avg

method
mcmc - uniform
hvi-q=5
hvi
mcmc - hamiltonian

0 1 2 3 4 5 6
time (minutes)

10−3

6×10−4

2×10−3

di
st
an

ce

std
method

mcmc - uniform
hvi-q=5
hvi
mcmc - hamiltonian

0 1 2 3 4 5 6
time (minutes)

2×10−2

3×10−2

4×10−2

di
st
an

ce

avg

method
mcmc - uniform
hvi-q=5
hvi
mcmc - hamiltonian

0 1 2 3 4 5 6
time (minutes)

2×10−3

3×10−3

4×10−3

6×10−3

di
st
an

ce
std

method
mcmc - uniform
hvi-q=5
hvi
mcmc - hamiltonian

0 1 2 3 4 5 6
time (minutes)

10−1

6×10−2

di
st
an

ce

avg

method
mcmc - uniform
hvi-q=5
hvi
mcmc - hamiltonian

0 1 2 3 4 5 6
time (minutes)

10−2

6×10−3

di
st
an

ce

std
method

mcmc - uniform
hvi-q=5
hvi
mcmc - hamiltonian

Figure 2.1: Plot of the estimation error for the experiments with dimension N = 5
and different precision values (η = 1, 1/3, 1/5). Abscissa represents the computational
time, the ordinate the mean-square-error (in log scale). Left column refers to estimate
of the expected value, right to the standard deviation of the parameters distribution.

Abbreviations 27

0.0 2.5 5.0 7.5 10.0 12.5 15.0
time (minutes)

10−2

di
st
an

ce

avg
method

mcmc - uniform
hvi-q=5
hvi
mcmc - hamiltonian

0.0 2.5 5.0 7.5 10.0 12.5 15.0
time (minutes)

10−2

10−1

di
st
an

ce

std
method

mcmc - uniform
hvi-q=5
hvi
mcmc - hamiltonian

0.0 2.5 5.0 7.5 10.0 12.5 15.0
time (minutes)

10−1

6×10−2

2×10−1

di
st
an

ce

avg
method

mcmc - uniform
hvi-q=5
hvi
mcmc - hamiltonian

0.0 2.5 5.0 7.5 10.0 12.5 15.0
time (minutes)

10−2

10−1

di
st
an

ce
std

method
mcmc - uniform
hvi-q=5
hvi
mcmc - hamiltonian

0.0 2.5 5.0 7.5 10.0 12.5 15.0
time (minutes)

1.2 10−1

1.4 10−1

1.6 10−1

1.8 10−1

2 10−1

2.2 10−1

di
st
an
ce

avg
method

mcmc - uniform
hvi-q=5
hvi
mcmc - hamiltonian

0.0 2.5 5.0 7.5 10.0 12.5 15.0
time (minutes)

10−2

10−1

di
st
an

ce

std
method

mcmc - uniform
hvi-q=5
hvi
mcmc - hamiltonian

Figure 2.2: Plot of the estimation error for the experiments with dimension N = 10
and different precision values (η = 1, 1/3, 1/5). Abscissa represents the computational
time, the ordinate the mean-square-error (in log scale). Left column refers to estimate
of the expected value, right to the standard deviation of the parameters distribution.

Abbreviations 28

0 10 20 30 40
time (minutes)

10−2

4×10−3

6×10−3

2×10−2
di
st
an

ce

avg
method

mcmc - uniform
hvi-q=5
hvi
mcmc - hamiltonian

0 10 20 30 40
time (minutes)

10−2

4×10−3

6×10−3

di
st
an

ce

std
method

mcmc - uniform
hvi-q=5
hvi
mcmc - hamiltonian

0 10 20 30 40
time (minutes)

2×10−2

3×10−2

4×10−2

6×10−2

di
st
an

ce

avg
method

mcmc - uniform
hvi-q=5
hvi
mcmc - hamiltonian

0 10 20 30 40
time (minutes)

10−2

6×10−3

2×10−2

di
st
an

ce
std

method
mcmc - uniform
hvi-q=5
hvi
mcmc - hamiltonian

0 10 20 30 40
time (minutes)

10−1

3×10−2

4×10−2

6×10−2

di
st
an

ce

avg
method

mcmc - uniform
hvi-q=5
hvi
mcmc - hamiltonian

0 10 20 30 40
time (minutes)

10−2

2×10−2

3×10−2

di
st
an

ce

std
method

mcmc - uniform
hvi-q=5
hvi
mcmc - hamiltonian

Figure 2.3: Plot of the estimation error for the experiments with dimension N = 15
and different precision values (η = 1, 1/3, 1/5). Abscissa represents the computational
time, the ordinate the mean-square-error (in log scale). Left column refers to estimate
of the expected value, right to the standard deviation of the parameters distribution.

Chapter 3

A Python package for

multivariate time-series

This chapter describes the Python repository available at:

https://github.com/BolzMattia/ThesisCode.git.

The package implements different kinds of multivariate time-series density forecaster

with semi-parametric VI.

This chapter presents the repository building a complete example of forecasting exercise:

section 3.1 imports data and split train and test; 3.2 shows how to compute features,

including standard mean-covariance estimators as DCC and Ledoit-Wolf; section 3.4.1

show examples of inference and forecasting for various semi-parametric models; 3.4.2

shows how to apply HVI to mean-covariance estimate; short conclusion and comments

in 3.5.

The models list vary from standard DCC [10], standard static Ledoit-Wolf [35], a

Bayesian estimate of covariance matrix using HVI and Ledoit-Wolf estimator, stan-

dard and Bayesian Multilinear Projector A.5.1, autoencoders (both standard A.5.2 and

variationals A.5.2.1), and Long-Short-Term-Memory LSTM A.5.3.1.

3.1 Data wrapper

To store data and features the package uses class features.wrapperDataFrame a wrapper

of the standard pandas.DataFrame.

This wrapper allows storing different features even with complex structure. For example,

to read a .csv with this class and to split it between train and test set:

29

ref[https://github.com/BolzMattia/ThesisCode.git

Abbreviations 30

dsf = wrapperPandasCsv(r’fileName.csv’)

dsf.split_train_test(sequential=True , test_size =0.3)

In this example, the first 70% of the observations go into the train set. A complete

description of the parameters is available in the code comments, in the repository.

To access, for example, the time vector or the train observation or the test values, use

the correspondent attributes:

dsf.indexes_train , dsf.indexes_test # Arrays with the time values

dsf.x_train ,dsf.x_test # Dictionaries with the observations stored with name ’y’

3.2 Feature engineering

Every feature is stored with a name in the up-mentioned dictionaries and can have a

complex internal structure.

For example, to estimate a DCC [10] model, and use the estimated mean and variance

as features, it is enough to write the following instructions

import timeseries_transformation as T

import mean_covariance_models as M

Adds the dcc states as features with the name ’dcc ’

dsf.withColumn(’dcc’, *T.dcc(*dsf[’y’]))

Adds another feature with the linearisation of ’dcc ’

states_line = [M.mu_vcv_linearize (** states) for states in dsf[’dcc’]]

dsf.withColumn(’dcc_line ’, *states_line)

The withColumn method that assign the results of the function T.dcc to the feature

named dcc. The * is standard Python code that tells the interpreter to pass the pair of

features named y (train and test values) as two different input.

The linearisation function M.mu vcv linearize apply the inverse of the reparametrisation

A.4.1 to the DCC states estimate.

A complete list of feature transformations is available in the documentation.

3.3 Optimizer

Most models in this package rely on SGD to make the inference using the Adam opti-

mizer. It is straightforward to extend the wrapper to use optimizers available in Ten-

sorFlow [28].

Abbreviations 31

All the current available models will use the following:

import optimizers as O

learning_rate = 1e-4

beta_1 = 0.9

optimizer = O.optimizer_adam(learning_rate =learning_rate , beta_1=beta_1)

3.4 The abstract models

This section describes the general models and their subtypes, with coding examples.

Different inference techniques are available for several learners. All learners use mean-

covariance state variables with the correspondant Gaussian likelihood.

The first kind of models assumes a Markowitz property for the conditional distribu-

tion of the states zt given regressors xt and zt−1. Amortized VI inference, with the

reparametrisation trick, will take care of the training phase as described in 3.4.1.

Another approach uses HVI to estimate a static distribution on mean-covariance states,

centred on a given initial estimate (as Ledoit-Wolf estimator, for example) 3.4.2.

3.4.1 Semi-parametric models

The model assumes Markowitz property conditional to the set of features and the previ-

ous state. The mean-covariance states zt and the target variable distribution p(yt) will

depend on a specific model function M and its global parameters θ:

zt = M(θ, xt, zt−1)

p(yt) = Nzt(yt)
(3.1)

Whenever the inference procedure return a non-singular p(θ) the forecasting distribution

is

p(yt) =
∫

ΩNzt(θ,zt−1)(yt)dθ (3.2)

the integral is approximated using standard MC sampling.

The single models differ in the choice of the mapping M . In the package, different choices

are available. All of them shares the following structure: compose a Neural Networks

mapping the input into R
d with the parametrisation in A.4.1.

M can contribute to the score function with an additional regularisation term. Consider,

for example, an autoencoder loss, or any penalty over its internal parameters.

Abbreviations 32

The scheme above is equivalent to amortized inference [36].

All the M choices will depend on an initialisation point, zt,0. The class constructor takes

such value as input. Specifically

z0,t = r−1(µ0,t, V0,t)

where r−1 is the inverse of the reparametrisation A.4.1, and µt, Vt general mean-covariance

admissible states. The following example will use DCC or Ledoit-Wolf to estimate

µ0,t, V0,t.

The model class also accounts for a regularization penalty on zt. The default penalty

has the form of an empirical prior distribution on zt (see A.6 for the definition).

3.4.1.1 Multilinear projector, MLP

MLP is the simplest type of neural network, as described in A.5.1.

The code required to create an instance of this predictor, run the learning process with

the fit mehtod and predict the density on new data:

from learners import CholeskyMLP

feature_name = ’x’

target_name = ’y’

initialization_states_linearized = ’dcc_line ’

hidden_layer_dim = 32

layers_number = 5

m = CholeskyMLP(dsf ,

#The feature names for the regressors , target and center

’x’, ’y’, initialization_states_linearized ,

#Set to True for a gaussian posterior approximation

#instead of a Dirac Delta , for the parameters

gaussian_posterior =False ,

#The network hidden layers structure

hidden_layers_dim =[hidden_layer_dim for i in range(layers_number)],

#The hyperparameters of the optimization process

init_scale =1e0 , learning_rate =1e-4, beta_1 =0.1)

m.fit(dsf , epochs=single_round_epochs , batch_size=batch_size , verbose =0)

states , theta , llkl , p0 , log_p = m.density_forecast_multi_particles (

dsf , on_test=True)

Setting the parameters gaussian posterior to true will apply the standard gaussian

reparametrisation trick to infer a diagonal gaussian posterior on the parameters.

Abbreviations 33

3.4.1.2 Autoencoder

Autoencoders can be seen as regularised versions of the above MLP, as described in

A.5.2.

The code to train and forecast such a neural network is:

from learners import CholeskyAutoEncoder

feature_name = ’x’

target_name = ’y’

initialization_states_linearized = ’dcc_line ’

hidden_layer_dim = 32

encoder_layers_number = 5

encoder_layers = [hidden_layer_dim for i in range(encoder_layers_number)]

decoder_layers_number = 5

decoder_layers = [hidden_layer_dim for i in range(decoder_layers_number)]

forecaster_layers_number = 5

forecaster_layers = [hidden_layer_dim for i in range(forecaster_layers_number)]

m = CholeskyAutoEncoder (dsf ,

#The feature names for the regressors , target and center

’x’, ’y’, initialization_states_linearized ,

The net structure

encoder_layers_dim =encoder_layers ,

encode_dim=encode_dim ,

decoder_layers_dim =decoder_layers ,

#Set to True to use a Variational AutoEncoder

variational_reparametrization =True ,

#The hyperparameters of the optimization process

init_scale =5e-1, learning_rate =2e-5)

m.fit(dsf , epochs=single_round_epochs , batch_size=batch_size , verbose =0)

states , theta , llkl , p0 , log_p = m.density_forecast_multi_particles (

dsf ,on_test=True)

3.4.1.3 Variational Autoencoder

Setting the parameter variational reparametrization equal to true will create a varia-

tional autoencoder A.5.2.1, [4].

3.4.1.4 LSTM

LSTM is a recurrent neural network described in A.5.3.1.

It can be used as a forecaster with:

Abbreviations 34

from learners import CholeskyLSTM

feature_name = ’x’

target_name = ’y’

initialization_states_linearized = ’dcc_line ’

recurrent_dim = 5

hidden_layer_dim = 32

layers_number = 5

m = CholeskyLSTM(dsf ,

#The feature names for the regressors , target and center

’x’, ’y’, initialization_states_linearized ,

#The network hidden layers structure

recurrent_dim =recurrent_dim ,

hidden_layers_dim =[hidden_layer_dim for i in range(layers_number)],

#The hyperparameters of the optimization process

init_scale =1e0 , learning_rate =1e-4, beta_1 =0.1)

m.fit(dsf , epochs=single_round_epochs , batch_size=batch_size , verbose =0)

states , theta , llkl , p0 , log_p = m.density_forecast_multi_particles (

dsf ,on_test=True)

3.4.2 HVI for covariance matrix

This section presents the code to conduct a static Bayesian estimate of the mean and

covariance matrix of a population using HVI, centred around the Ledoit-Wolf estimator

defined in [35].

Sampling vector particles with the right dimension and applying the reparametrization

A.4.1 it is possible to obtain mean-covariance samples. It is possible to centre the

sampler around such estimator, speeding up HVI, by using a standard estimator for this

latent quantities.

Example code:

from learners import HVIstaticMuVcv

#Compute the center estimator

baseline_estimator = ’lw’

dsf.withColumn(baseline_estimator , *T.staticLedoitWolf (*dsf[’y’]))

#Linearize it inverting the reparametrization

states_line = [M.mu_vcv_linearize (** states) for states in dsf[baseline_estimator]]

mu_vcv_linearized_name = ’lw_line ’

dsf.withColumn(baseline_model_line , *states_line)

target_name = ’y’

layers_number = 5

m = HVIstaticMuVcv(

dsf , ’y’, mu_vcv_linearized_name ,

init_scale =6e-2, learning_rate =2e-5)

m.fit(dsf , epochs=single_round_epochs , batch_size=batch_size , verbose =0)

states , theta , llkl , p0 , log_p = m.density_forecast_multi_particles (

dsf ,on_test=True)

Abbreviations 35

3.5 Future developments

The package repository is available at

https://github.com/BolzMattia/ThesisCode.git.

Future development will implement VI for different kind of networks.

The author will warmly welcome any help, coming in the form of bug signalling, or im-

provements suggestion. Such contributions can be made directly pushing modifications

on new branches of the GitHub repository.

ref[https://github.com/BolzMattia/ThesisCode.git

Chapter 4

Comparison of mean-covariance

estimators

This chapter compares different probabilistic forecasters for time-series on two real

datasets, a financial one and a macroeconomic one. The forecasters set comprehend

three versions for every model, a VI version, a maximum penalized-likelihood and a

standard maximum likelihood. These models depend on an initialization point that is

chosen within two well known standard forecasters from literature. Such initialization

points are also natural baselines to evaluate the performances. Results will show that

maximum likelihood and penalized maximum likelihood cannot improve the initializa-

tion performances, with few exceptions. In contrast, VI increases, in most cases, the

forecaster quality in terms of the bias-variance tradeoff.

A comparison between models arises naturally. However, the goal of this chapter is to

describe the common patterns across models, more than identify the best model in this

specific context.

The models implementation code is available in the package named in the previous

chapter.

Overview of the dataset is available in 4.1. The comparison relies on in-sample (is)

and out-of-sample (oos) observations split. The comparison metrics include both the

average and quantiles of the oos log-likelihood to evaluate the bias-variance tradeoff

between different forecasters.

All the approaches rely on a mean-covariance likelihood function.

36

Abbreviations 37

The chapter starts presenting data in 4.1; follows a complete description of the selected

models 4.2; the experiment results are shown in 4.3; discussion of the outcome can be

found in 4.4.

4.1 Data

The comparison uses two datasets, to better assess common patterns. In fact, results

will show commonalities between the different methods performances on the two sets of

data, as described in 4.3.

4.1.1 Financial returns dataset

The first dataset, called PTF, contains closing prices of a collection of financial in-

struments prices (stock indexes, bond indexes and currencies) weekly measured (every 5

days, excluding bank holidays). Observations goes from 25thJun 1999 to 24thMay 2019.

The dataset counts 15 series and 1041 closing prices for each of them. The first two-third

observations go into the training set, and the remaining in the test set.

The motivation for the weekly measures is that portfolio managers often uses this time-

horizon for risk assessment and weights rebalancing. Although many papers works on

daily observations this is considered unpractical in the asset manager industry, both

from theoretical and practical point of view [37][38].

The choice of the financial indexes aim to reproduce a real portfolio with EUR as nu-

meraire. The list has been suggested by professionals of the industry and contains

currencies spot changes (USD and GBP), governative bond (both short-term and long-

term), high-yield corporate bond (both European and US), main equity indexes around

the world (Eurostoxx 50, S&P 500, NASDAQ 100, FTSE 100, MSCI China, MSCI

emerging market) and commodities indexes (Physical gold, Oil index and the general

Dow Jones commodities index).

The probabilistic forecast focus on the log-returns of the prices. This means that, said

pt−1,i and pt,i two adjacent closing prices of the ith instrument, the target variable is

yt,i = log(pt,i/pt−1,i). Quantiles and moments of the log-returns are available in table

4.1. Table 4.1 lists the instruments and a few statistics of the log-variations. 4.1 Plots

their values.

Abbreviations 38

0

250

500

750

1000

1250

1500

1750
Ra
w

va
lu
es

 (b
as

e
10
0)

IDX0GBPEURCR
IDX0USDEURCR
ER01
ER02
HE00

H0A0
EU0009658152
FTPTT100
GDUEEGF
MSCI0GDLETCF

SPTR
NASDAQ100
IDX00GOLDBUL
IDX000WTIOIL
IDX00DJUBSCM

6/25/1999 4/25/2003 2/23/2007 12/24/2010 10/24/2014 8/24/2018
Time

50.3

50.2

50.1

0.0

0.1

0.2

0.3

0.4

L.
)-
va

ria
tio

ns

Figure 4.1: Plot of the PTF data. Above figure shows the price (or index value),
rebased to 100. Below the log-returns for every instrument (or index).

4.1.1.1 Features

The set of features at every time-index, named xt, will be the raw collection of every ob-

servation of the previous 6 weeks. Not only, cross-products between pair of variables are

added to the features set. The total number of features is 1440. The only preprocessing

is the usual mean centering and standard deviation scaling.

4.1.2 Macroeconomic index dataset

The second dataset, called FRED, contains monthly measures of various econometric

indexes in the US. Data are available at St.Louis FED and cover from 1959 to 2015.

The chioce of the dataset is motivated by its extensive usage in literature [39][40][41].

The problem will focus on a subset of 10 series of the whole available FRED data, with

675 values each. Again, the first two-third observations go into the training set, and the

remaining in the test set. The probabilistic forecasting will deal with their log-variations

instead of the raw values.

The reason behind the choice of the series is to represent the main macroeconomics mea-

sures as internal product, consumer prices index, real personal income, unemployment

rate and monetary mass (M2) together with financial measures as risk-free return and

S&P 500 dividend yield. The list selects the most representative series for every section

of the original FRED dataset.

https://fred.stlouisfed.org/

Abbreviations 39

Series name mean std min 25% 50% 75% max
(Series description)

IDX0GBPEURCR -0.0 0.0115 -0.0493 -0.007 -0.0003 0.0074 0.077
(GBP/EUR spot)

IDX0USDEURCR 0.0001 0.0136 -0.049 -0.0088 -0.0001 0.0083 0.062
(USD/EUR spot)

ER01 0.0006 0.0017 -0.0142 -0.0002 0.0005 0.0015 0.0066
(EU Corp, 1-3y)

ER02 0.0008 0.0034 -0.0307 -0.0009 0.0009 0.0027 0.0119
(EU Corp, 3+y)

HE00 0.0011 0.0128 -0.1318 -0.0023 0.0016 0.0053 0.0973
(EU bond HY)

H0A0 0.0013 0.0097 -0.1086 -0.0019 0.002 0.005 0.055
(US bond HY)

EU0009658152 0.0008 0.0298 -0.2219 -0.0158 0.0032 0.0179 0.1456
(Eurostoxx 50)

FTPTT100 0.0011 0.0236 -0.2101 -0.0115 0.0027 0.0141 0.1345
(FTSE 100)

GDUEEGF 0.0018 0.0298 -0.2016 -0.0141 0.0034 0.0184 0.2038
(MSCI emrg mkt)

MSCI0GDLETCF 0.0018 0.0387 -0.1996 -0.0192 0.0036 0.0239 0.1943
(MSCI China)

SPTR 0.0014 0.0241 -0.1814 -0.0103 0.0024 0.0141 0.1209
(S&P 500)

NASDAQ100 0.0018 0.0355 -0.253 -0.0143 0.0037 0.0196 0.2109
(Nasdaq 100)

IDX00GOLDBUL 0.0018 0.0243 -0.0841 -0.0114 0.0027 0.016 0.1316
(Physical Gold)

IDX000WTIOIL 0.0025 0.0518 -0.2682 -0.0258 0.004 0.0324 0.4325
(DJ Oil idx)

IDX00DJUBSCM 0.0002 0.022 -0.1357 -0.0118 0.0006 0.0135 0.0648
(DJ Commod idx)

Table 4.1: List of titles of dataset PTF, with few statistics.

Figure 4.2 shows their values, and table 4.2 their names and a few statistics of the

log-variations.

4.1.2.1 Features

The set of features at every time-index, named xt, will be the raw collection of every

observation of the previous semester. Not only, cross-products between pair of variables

are added to the features set. The total number of features is 660. The only preprocessing

is the usual mean centering and standard deviation scaling.

Abbreviations 40

0

100

200

300

400

500

600

700

800

Ra
w
va
lu
es
 (b

as
e
10

0)

RPI
INDPRO
UNRATE
UEMPLT5

UEMPMEAN
DPCERA3M086SBEA
M2REAL

AAA
CPIAUCSL
S&P div yield

2/1/1959 6/1/1967 10/1/1975 2/1/1984 6/1/1992 10/1/2000 2/1/2009
sasdate

00.2

00.1

0.0

0.1

0.2

Lo
g-
va
ria

tio
ns

Figure 4.2: Plot of the FRED data. Above figure shows the index value, rebased to
100. Below the log-variations for every series.

Series name mean std min 25% 50% 75% max
(Series description)

RPI 0.0027 0.0054 -0.0531 0.0007 0.0029 0.0049 0.0357
(Real Personal Income)

INDPRO 0.0023 0.0082 -0.043 -0.0015 0.0028 0.0067 0.06
(Internal Product)

UNRATE -0.0001 0.03 -0.0902 -0.0194 0.0 0.018 0.1178
(Unemployment Rate)

UEMPLT5 0.0007 0.0539 -0.1828 -0.0316 0.0019 0.033 0.2737
(Unemply 5- weeks)

UEMPMEAN 0.0009 0.0345 -0.1229 -0.0212 0.0 0.0226 0.1326
(Avg unemply weeks)

DPCERA3M086SBEA 0.0027 0.0053 -0.0264 -0.0002 0.0027 0.0058 0.0237
(Real consumption)

M2REAL 0.0024 0.0048 -0.0152 -0.0008 0.0024 0.0052 0.0306
(M2 Monetary stock)

AAA -0.0002 0.0271 -0.1922 -0.0137 0.0 0.0138 0.11
(Moody’s AAA yld)

CPIAUCSL 0.0031 0.0032 -0.0179 0.0013 0.0027 0.0046 0.0179
(Consumer Price Idx)

S&P div yield -0.0007 0.0364 -0.134 -0.023 -0.0028 0.0166 0.2227
(S&P common div yld)

Table 4.2: List of FRED macroeconomics indexes, with few statistics

Abbreviations 41

4.2 Models

The experiment compares models of different nature, using various inference techniques.

This chapter lists and name such forecast techniques.

4.2.1 describe the first two, DCC and LW. These are standard parametric models from

literature. Another model is a Bayesian version of LW, estimated using HVI 4.2.1.1.

The last kind of models uses semi-parametric learners (neural networks) to map xt into

mean-covariance estimate µt, Vt. The parametric estimate of µt, Vt (obtained by DCC

or LW) will be the initialisation point for such learners. The inference will apply both

Variational and single-point techniques, as described in 4.2.2. This will produce single-

point estimate and whole distribution over µt, Vt, depending on the specific approach.

4.2.1 Parametric models from literature

DCC [10] and the Ledoit-Wolf (LW) covariance estimator [35] will be the baseline for

performances models.

Ledoit-Wolf static covariance estimator is an improved version of the sample covariance,

tailored for high dimensions. Its static nature does not consider heteroskedasticity,

making it a high bias-low variance estimator.

DCC is an autoregressive mean-covariance estimator. It computes deterministically, at

every time-index, Vt with a convex combination of a transformation of the observations

cross-products and the estimate at the previous time-index. DCC has theoretical issues

and could lead to instable estimation [12]. However, it is considered an excellent default

predictor for multivariate time-series. Such methodology is a low bias-high variance side

of the tradeoff.

The central states of a semi-parametric technique will be called µ0,t, V0,t. z0,t refers to

the linearized version of µ0,t, V0,t obtained applying the inverse of the reparametrization

in A.4.1. z0,t is also used to construct an empirical prior for penalised and Variational

inference, following A.6.

4.2.1.1 HVI extension

Using the reparametrisation A.4.1 and the LW point estimate, it is possible to use the

HVI methodology to estimate a complete distribution over µt, Vt.

Abbreviations 42

Specifically, the location value of the estimate will be the point estimate of LW. The

scale value is taken small enough to avoid numerical instability; anyway, it does not

affect the final results significantly.

This forecaster name will be HVI-LW.

4.2.2 Semi-parametric models

It is possible to use a neural network to map regressors xt to et ∈ R
d and then apply

the reparametrization A.4.1 to obtain an estimate of the latent states µt, Vt.

Specifically, called r the parametrisation function A.4.1, the estimate will be:

µt, VT = r(et + z0,t)

z0,t = r−1(µ0,t, V0,t)
(4.1)

with µ0,t, V0,t being an initialisation point-estimate of mean-covariance states. Different

networks will connect xt → et. Also the initial point will vary, using both LW and DCC.

The inference scheme will vary too, between maximum likelihood, MAP, or VI. The last

two require a penalty term. 4.2.2.5 describe the empirical penalty (or prior) applied for

both. The initialisation point µ0,t, V0,t is used to compute such empirical term.

Next sections present the full list of semi-parametric procedures.

4.2.2.1 MLP

MLP is a standard multilinear projector, as defined in A.5.1. Specifically, MLP alter-

nates 2 affine transformations to selu activation function.

Depending on the reparametrisation centre, the methodology will be called LW-MLP

or DCC-MLP.

4.2.2.2 LSTM

LSTM uses a Long-short-term-memory A.5.3.1 single layer, followed by a two layers

MLP. The activation function is selu.

Depending on the reparametrisation centre, the methodology will be called LW-LSTM

or DCC-LSTM.

Abbreviations 43

4.2.2.3 Autoencoder

The third kind of network is an autoencoder with a quadratic reconstruction loss regu-

larisation. See A.5.2 for the details.

In particular, two MLP-layers with selu activation function, transform xt to the encoded

variable x′t and then other two MLP-layers recode x′t in x̃t. Other two MLP-layers then

maps x′t to zt. mse(xt, x̃t) is added to the ELBO estimate, acting as regularization.

This correction does not allow to interpret this technique as a proper model, but it still

generates a coherent forecaster.

Depending on the reparametrisation centre, the methodology will be called LW-AE or

DCC-AE.

4.2.2.4 Variational autoencoder

This network is a variational variant of the previous one 4.2.2.3, as described in A.5.2.1.

Specifically, the first two layers connects xt to a pair of vectors µt, σt that represents the

mean and standard deviations of the encoded variables x′t ∈ R
d′ . Then, a single sample

of the encoded information x′t is generated as

x′t = µt + ǫtσt, ǫt ∼ N0d
′
,1d

′ (4.2)

The entropy of x′t is added as a regularisation term to the ELBO. Again, the correction

does not allow to interpret this technique as a proper model, but it still generates a

coherent forecaster. Notice that is still possible to use backpropagation to estimate

the gradient of the score through the network parameters, being able to compute the

derivative of the entropy wrt them, as in A.5.2.1.

Depending on the reparametrisation centre, the methodology will be called LW-AE-VI

or DCC-AE-VI.

4.2.2.5 Empirical prior with 0-state

Empirical priors have shown effective on econometric and financial data [6]. For this

reason, this paper uses an empirical regularization term on zt, similar to the ones in [6],

[11].

Abbreviations 44

The assumption is that zt follows a random-walk. An empirical estimate of the mean

and covariance of the Gaussian transition kernel of such random-walk is estimated from

the initialisation point z0,t. See A.6 for the details.

4.3 Results

All the forecasting techniques (except for DCC and LW) rely on SGD training. When

to stop the training process of SGD is still an open problem [42]. For this reason, all the

figures shows the out-of-sample forecasting metrics (the ordinate) along the inference

process (abscissa), to account for different stopping choices, as 4.3.

The twelve plots in 4.3, 4.5, 4.5 show the results obtained combining the two datasets

(PTF,FRED) with the two centre estimators (DCC,LW) and the three kind of neural

networks (MLP,AE,LSTM).

Every plot compare the same kind of network, centred on the same initial point on the

same data, but estimated with maximum likelihood, penalised maximum-likelihood (p-)

and Variational inference (VI-). The quadruplet data-center-model-inference approach

will name the specific results, e.g. PTF-DCC-AE-p. * refers to all the choices for that

slot of the quadruplet.

Similarly, HVI estimate of a standard forecaster is pointed by a triplet as PTF-LW-

HVI and FRED-LW-HVI.

The maximum likelihood estimator perform less than the corresponding centre, in almost

every case. This due to the high dimensionality of the problem, both as number of

regressors and mean-covariance, that combines with the high semi-parametric dimension

leading to overfit.

The penalised version often lead to a forecaster similar to the central estimate. This

because both DCC and LW are a minimum for the penalty, being centred on their

estimate, and a local maximum, being obtained via maximum likelihood. This two

elements attract the penalised estimate around the centre. See for example PTF-LW-

AE-p or FRED-DCC-MLP-p or PTF-LW-LSTM-p.

In other situations, the penalty was not enough to avoid overfitting, leading to bad

results similar to maximum-likelihood. See for example FRED-LW-MLP-p or PTF-

DCC-AE-p or FRED-LW-LSTM-p.

Abbreviations 45

The variance of any element of *-*-*-VI is less than the variance of the original log-

likelihood of the baseline model, except for PTF-LW-AE-VI and FRED-LW-LSTM-

VI, where the variance is greater than the initialisation point.

The average log-likelihood of *-*-*-VI is almost equal to the baseline model in every

case, except PTF-LW-LSTM-VI, PTF-LW-MLP-VI, and PTF-LW-AE-VI. The

first case shows a slightly lower average than the centre, the second and the third a

slightly bigger one, compared to the baselines PTF-LW,PTF-LW,FRED-LW.

This resume to say that VI shows worst performances than the centre estimation,

in terms of bias-variance tradeoff, in one case (PTF-LW-AE-VI with greater log-

likelihood variance), better perfomances in ten cases and uncomparable performances in

one case (PTF-LW-AE-VI with higher average but also higher variance).

The performance increase is mainly due to variance reduction. This could be expected,

because spreading probability mass across different parameter value can increase the

sharpness of the forecast [8].

Figure 4.7 shows the volatility estimate of the first series of the data for PTF-DCC,PTF-

LW,FRED-DCC,FRED-LW. For every pair, the considered semi-parametric is the

one with the lowest log-likelihood variance.

VI tends to overestimate the volatility wrt the single-point estimators, in most cases.

This is explicable considering the convexity of the Gaussian log-likelihood wrt the di-

agonal elements of the covariance. In fact, spreading probability mass around regions

with higher volatility reduce the log-likelihood less than spreading around low volatility

regions. It is possible for the model to ’better trade’ log-likelihood for entropy, thus

optimising ELBO, in high volatility regions.

HVI-LW shows better perfomances wrt standard point inference LW. Again, the in-

crease comes from a lower variability of the log-likelihood, with almost the same average

log-likelihood value.

Again, VI inference predicts higher volatility (both median and mean) than the original

method in almost every case.

4.4 Conclusions

Across different data and different semi-parametric models, there are common patterns.

Abbreviations 46

PTF-DCC-AE-*

0 5 10 15 20 25 30
epoch

−30

−25

−20

−15

−10

−5

0

5

10

te
st
 st

at
ist

ics
 o
f l
og

-lk
l statistics

avg
std
q05
q50
q95
method
dcc
DCC + VI-ae
DCC + p-ae
DCC + ae

PTF-LW-AE-*

0 5 10 15 20 25 30
epoch

−30

−25

−20

−15

−10

−5

0

5

10

te
st
 st

at
ist

ics
 o
f l
og

-lk
l statistics

avg
std
q05
q50
q95
method
lw
LW + VI-ae
LW + p-ae
LW + ae

FRED-DCC-AE-*

0 5 10 15 20 25 30
epoch

−30

−25

−20

−15

−10

−5

0

5

10

te
st
 st

at
ist

ics
 o
f l
og

-lk
l statistics

avg
std
q05
q50
q95
method
dcc
DCC + VI-ae
DCC + p-ae
DCC + ae

FRED-LW-AE-*

0 5 10 15 20 25 30
epoch

−30

−25

−20

−15

−10

−5

0

5

10

te
st
 st

at
ist

ics
 o
f l
og

-lk
l statistics

avg
std
q05
q50
q95
method
lw
LW + VI-ae
LW + p-ae
LW + ae

Figure 4.3: The different behaviour of the AE variants on the four combinations of
the dataset and central estimators during the optimising process. The three differ-
ent variants: AE, p-AE, VI-AE differs for the applied inference scheme: maximum

likelihood, MAP or VI.

Abbreviations 47

PTF-DCC-MLP-*

0 5 10 15 20 25 30
epoch

−30

−25

−20

−15

−10

−5

0

5

10

te
st
 st

at
ist

ics
 o
f l
og

-lk
l statistics

avg
std
q05
q50
q95
method
dcc
DCC + VI-mlp
DCC + p-mlp
DCC + mlp

PTF-LW-MLP-*

0 5 10 15 20 25 30
epoch

−30

−25

−20

−15

−10

−5

0

5

10

te
st
 st

at
ist

ics
 o
f l
og

-lk
l statistics

avg
std
q05
q50
q95
method
lw
LW + VI-mlp
LW + p-mlp
LW + mlp

FRED-DCC-MLP-*

0 5 10 15 20 25 30
epoch

−30

−25

−20

−15

−10

−5

0

5

10

te
st
 st

at
ist

ics
 o
f l
og

-lk
l statistics

avg
std
q05
q50
q95
method
dcc
DCC + VI-mlp
DCC + p-mlp
DCC + mlp

FRED-LW-MLP-*

0 5 10 15 20 25 30
epoch

−30

−25

−20

−15

−10

−5

0

5

10

te
st
 st

at
ist

ics
 o
f l
og

-lk
l statistics

avg
std
q05
q50
q95
method
lw
LW + VI-mlp
LW + p-mlp
LW + mlp

Figure 4.4: The different behaviour of the MLP variants on the four combinations of
the dataset and central estimators during the optimising process. The three different
variants: MLP, p-MLP, VI-MLP differs for the applied inference scheme: maximum

likelihood, MAP or VI.

Abbreviations 48

PTF-DCC-LSTM-*

0 5 10 15 20 25 30
epoch

−30

−25

−20

−15

−10

−5

0

5

10

te
st
 st

at
ist

ics
 o
f l
og

-lk
l statistics

avg
std
q05
q50
q95
method
dcc
DCC + VI-lstm
DCC + p-lstm
DCC + lstm

PTF-LW-LSTM-*

0 5 10 15 20 25 30
epoch

−30

−25

−20

−15

−10

−5

0

5

10

te
st
 st

at
ist

ics
 o
f l
og

-lk
l statistics

avg
std
q05
q50
q95
method
lw
LW + VI-lstm
LW + p-lstm
LW + lstm

FRED-DCC-LSTM-*

0 5 10 15 20 25 30
epoch

−30

−25

−20

−15

−10

−5

0

5

10

te
st
 st

at
ist

ics
 o
f l
og

-lk
l statistics

avg
std
q05
q50
q95
method
dcc
DCC + VI-lstm
DCC + p-lstm
DCC + lstm

FRED-LW-LSTM-*

0 5 10 15 20 25 30
epoch

−30

−25

−20

−15

−10

−5

0

5

10

te
st
 st

at
ist

ics
 o
f l
og

-lk
l statistics

avg
std
q05
q50
q95
method
lw
LW + VI-lstm
LW + p-lstm
LW + lstm

Figure 4.5: The different behaviour of the LSTM variants on the four combinations
of the dataset and central estimators during the optimising process. The three differ-
ent variants: LSTM, p-LSTM, VI-LSTM differs for the applied inference scheme:

maximum likelihood, MAP or VI.

Abbreviations 49

PTF-HVI

0 5 10 15 20 25 30
epoch

−30

−25

−20

−15

−10

−5

0

5

10

te
st
 st

at
ist

ics
 o
f l
og
-lk
l statistics

avg
std
q05
q50
q95
method
dcc
lw
HVI(LW)

FRED-HVI

0 20 40 60 80 100
epoch

−30

−25

−20

−15

−10

−5

0

5

10

te
st

 st
at

ist
ics

 o
f

og
-lk

l

FRED

statistics
avg
std
q05
q50
q95
method
dcc
lw
HVI(LW)
HVI(DCC)

Figure 4.6: The average log-likelihood on test observations for HVI-LW (PTF
above, FRED below). They both share a flat prior.

First of all, VI emerge as the best inference method, able to infer a reasonable posterior

distribution for the parameters, although approximated. On the other hand, single-value

estimate, even with penalised maximum-likelihood, often lead to overfitting.

Concerning VI estimate of semi-parametric models, there isn’t a single model structure

that is better than the others, but the results depend on the context.

In particular, VI tends to overestimate the volatility of the series in the sense of the trace

of the covariance matrix wrt the single-value estimators, thus reducing the variability of

log-likelihood of future observations significantly.

HVI inference can increase a single-point covariance estimator as Ledoit-Wolf. It is

possible to see both the semi-parametric models and the semi-parametric inference ap-

proach of HVI as symbiont for point-estimators of mean-covariance states. Attaching a

semi-parametric model to a single-value estimate of this latent quantity can result in a

tangible forecast improvement. However, a full distribution inference is required with

these flexible semi-parametric models and simple point estimates is not recommended.

Abbreviations 50

7/2/1999 9/6/2002 8/11/2006 7/16/2010 9/13/2013 8/18/2017
Time

0.6

0.8

1.0

1.2

1.4

DCC + VI-lstm q: 0.05
DCC + VI-lstm q: 0.5
DCC + VI-lstm q: 0.95
DCC + p-lstm
DCC + lstm

7/2/1999 9/6/2002 8/11/2006 7/16/2010 9/13/2013 8/18/2017
Time

0.85

0.90

0.95

1.00

1.05

LW + VI-lstm q: 0.05
LW + VI-lstm q: 0.5
LW + VI-lstm q: 0.95
LW + p-lstm
LW + lstm

6/1/1959 8/1/1971 6/1/1984 8/1/1996 9/1/2006
sasdate

0.5

1.0

1.5

2.0

2.5

3.0

3.5
DCC + VI-mlp q: 0.05
DCC + VI-mlp q: 0.5
DCC + VI-mlp q: 0.95
DCC + p-mlp
DCC + mlp

6/1/1959 8/1/1971 6/1/1984 8/1/1996 9/1/2006
sasdate

0.6

0.8

1.0

1.2

1.4
LW + VI-lstm q: 0.05
LW + VI-lstm q: 0.5
LW + VI-lstm q: 0.95
LW + p-lstm
LW + lstm

Figure 4.7: Different volatility estimate on the four combination of dataset and ini-
tialisation point. The 0.05, 0.5, 0.95 quantiles are plotted for the VI versions of the

models.

Appendix A

Appendix

This chapter presents the notations, the definitions and a few brief descriptions of dif-

ferent topics named in the previous chapters.

A.1 Notations

R
N refers to the N dimensional set of real numbers, equipped with the ordinary opera-

tions of vector space, the euclidean norm, and the induced topology.

Subscript letters refers to set indexes. For example, consider the vector

y =

y1

y2

y3

then yi, i = 1, 2, 3 refers to the single components.

yti refers to the transpose of a vector

yt =
(

y1 y2 y3

)

.

The euclidean norm of a vector is written ‖y‖ =
∑

i y
2
i .

The symbol 0d define the vector 0 ∈ R
d. Analogously, 1d = (1, . . . , 1) ∈ R

d.

0d, 1d can also refer to the null matrix and identity matrix, respectively. It should be

clear whenever the symbol relates to a vector or a matrix. The exact definition will be

explicit whenever confusion could occur.

51

Abbreviations 52

M(N) refer to the set of square matrixes of order N . The subset of positive-matrix

is M+(N) ⊂ M(N). The symbol C+(N) represents the set of lower triangular matrix

with positive diagonal elements. C+(N) is the image of the Cholesky decomposition of

M+(N).

|V | refers to the determinant of a square matrix V .

Taken a random objects x and a probability distribution D, x ∼ D claims that x is

distributed as D. pD(a) refers to the probability value pD(a) = P (x = a), x ∼ D.

Whenever D is a continuous distribution, the same expression represents the probability

density.

The symbol E [x] is the expected value of x. A subscript like ED [F (·)] makes explicit

the distribution D of the silent random variable ·.

The probability of any random object x conditional to an algebra of events Σ is written

p(x|Σ). p(x|y) is the short notation for p(x|Σ(y)), that is the conditional probability

wrt the event algebra Σ(y) generated by the random object y.

The symbol #(X) points to the cardinality of any finite set X.

A.2 Known distributions

The paper cites several probability distributions, follows a list of their definition.

A.2.1 Gaussian distribution

Probability distribution over R
N , with parameters µ ∈ R

N , V ∈M+(N). A vector X is

Gaussian distributed, written

X ∼ Nµ,V

if its density is

p(X) =
1

2
[π|V |]−N/2 exp

{

−
1

2
(X − µ)tV −1(X − µ)

}

It holds

E(X) = µ, Cov(X) = V

Abbreviations 53

A.2.2 Wishart distribution

Wishart is a probability distribution over the set of positive-definite matrix of order N ,

M+(N), with parameters ν ∈ R,W ∈ M+(N). A matrix V is Wishart distributed,

written

V ∼ Wν,W

if its density is

p(V) = c−1|W |(ν−N−1)/2 exp

{

−
1

2
Trace(W−1V)

}

, ν > N − 1

with

c = 2(νN)/2|W |ν/2ΓN (ν/2)

It holds

E(V) = νW

A.2.3 Normal-Wishart distribution

Normal-Wishart is a probability distribution over pairs m,V of vectors m ∈ R
N and

positive-definite matrix of order V ∈ M+(N). The distribution depend on parameters

k ∈ R, µ ∈ R
N , ν ∈ R,W ∈M+(N).

A pair m,V has such distribution, written

m,V ∼ NWk,µ,ν,W

if V ∼Wν,W and m|V ∼ Nµ,V .

A.2.4 Inverse-Wishart distribution

Inverse-Wishart is a probability distribution over the set of positive-definite matrix of

order N ,M+(N), with parameters ν ∈ R,W ∈M+(N). A matrix V is Inverse-Wishart

distributed, written

V ∼ IWν,W

if V −1 ∼Wν,W−1

Abbreviations 54

A.2.5 Normal Inverse-Wishart distribution

Probability distribution over pairs m,V of vectors m ∈ R
N and positive definite matrix

of order V ∈M+(N), with parameters k ∈ R, µ ∈ R
N , ν ∈ R,W ∈M+(N).

A pair m,V has such distribution, written

m,V ∼ NIWk,µ,ν,W

if V ∼ IWν,W and m|V ∼ Nµ,V .

A.3 Common functions

s define the softplus function s(x) = log(exp(x) + 1). s is invertible and differentiable,

with derivative
∂s(x)

∂x
=

exp(x)

1 + exp(x)

also known as sigmoid function.

selu represents the common self-normalizing activation function for neural networks. It

is defined by:

selu(x) =

αx ∀x > 0

βα [exp(x)− 1] ∀x ≤ 0

α = 1.67326

β = 1.05070

(A.1)

A.4 Set reparametrizations

This section defines the different reparametrizations used in this paper. A reparametriza-

tion of a set C is a bijective and differentiable function that maps R
d to C.

A.4.1 Set of positive definite matrix

This reparametrization is obtained combining two functions, the first (m1) maps R
d in

C+(N), and the second assigns m2 : C ∈ C+(N)→ CTC ∈M+(N).

m1 takes a vector with real components and places each of them in the positions of a

lower triangular matrix c1. After that, it applies the s transformation to the elements

on the diagonal. m1 is then a bijective and differentiable reparametrization.

Abbreviations 55

m2 takes a lower triangular matrix as input and multiply it for its transpose, to obtain

the output. It is naturally differentiable and is bijective on the restricted domain C+(N).

The composition m2 ·m1 is a reparametrization of M+(N).

The dimension d required of the input must be N(N + 1)/2 to account for the elements

of the lower diagonal matrix.

This paper extensively uses a combined reparametrization of µ ∈ R
n, V ∈ M+(n). In

all these cases, it is enough to consider the cartesian product of the identity function

(for µ) and the above-mentioned reparametrization (for V).

A.4.2 DCC parameters reparametrization

DCC parameters are:

1. The GARCH parameters of the univariate models for diagonal elements ωi, αi, βi, ∀i ∈

1, . . . , N .

2. a, b parameters, controlling the updating mechanism of the correlations.

The reparametrization must map every point of x ∈ R
3N+2 to a single set of parameters

value.

This reparametrization function depends on hyperparameters ω0,i, α0,i, β0,i, a0, b0 that

determine its center (the image of 03N+2 in the parameters space) and the scale hyper-

parameters ωs,i, αs,i, βs,i, as, bs (the scale of the gradient of the reparametrization).

Every component xk is first associated to a single parameter, for example xωi
points to

the component that refers to the ω parameter of the ith series. With this notation, the

reparametrization can be written as:

1. ωi = s
(

xωi
s−1(1/ωs,i)

)

ωs,iω0,i

2. αi = s
(

xαi
s−1(1/αs,i)

)

αs,iα0,i

3. βi = s
(

xβi
s−1(1/βs,i)

)

βs,iβ0,i

4. a = tanh
(

xaas + tanh−1(a02− 1)
)

/2 + 1/2

5. b = tanh
(

xbbs + tanh−1(b02− 1)
)

/2 + 1/2

Abbreviations 56

where s is the softplus function.

In particular, the reparametrization covers the domains αi, βi, ωi, a, b ∈ (0, 1). Usually,

ωi is not constrained within the unitary interval. Anyway, it rarely takes values greater

than 1. In such cases, it is straightforward to change the function to extend the domain

linearly.

A.5 Neural Networks

The term Neural networks usually describe a comprehensive family of both learning

methods inspired by structures of neurons.

A lot of research has been done on these methods, leading to a vast set of variants and

theoretical results. A beautiful description with their peculiarity, pitfalls, and common

variants is available in [2].

This paper is not focused on an in-depth discussion of the topic but uses them extensively

as flexible parametric functions.

This section provides a brief recall of the underlying principles and introduces the names

and notations for the kind of networks mentioned in the other chapters.

All neural networks share the characteristics of representing a parametric function:

Nθ : x ∈ R
d
0

θ
−→ N(x) ∈ R

dl (A.2)

as a sequence of l layers that alternate affine transformations (Ai, i = 0, . . . , l, called

projections) to non-linear ones (si, i = 0, . . . , l, called activation functions). The result

is:
Nθ(x) = sl(Al(. . . (s1(A1(x)))))

Ai : x ∈ R
di−1 → x′ ∈ R

di
(A.3)

θ ∈ Ω corresponds to the collection of the internal parameters of all the projections and

activation steps. It identify the function itself, although different θ could potentially

represent the same function.

The non-linear activation steps are used to increase the representation power with com-

position; without them, composing directly two affine transformations will only result

in another affine transformation.

Historically, every intermediate computation xi = si(Ai(. . . s1(A1(x)))) is called hidden

layer, and every component of a layer is called neuron. This naming comes from the

biological inspiration of networks of neurons. From a mathematical point of view, every

Abbreviations 57

layer is a point in a real vector space. The transformation used to compute it can be seen

as a parametric transformation from its input space to its output. The term ’number of

neurons’ sometimes refers to the dimension of an internal layer.

How to select a θ with given characteristics? If the goal can be written as an optimisation

problem:

θ̂ = arg max
θ

F (Nθ(x)) (A.4)

gradient descent can be applied through back-propagation to rapidly estimate∇θF (Nθ(x)),

starting from a random initial θ0. See A.5.6 for extra details.

Usually, F depends on data and incorporates the context information of the problem at

hand.

Due to the high dimension of θ, randomising the evaluation of F gives more stable opti-

misation. For example, the most common randomisation procedure uses batches of data,

assuming F depends on them, to speed up the process and enable parallel computation.

This variant is called stochastic gradient descent (SGD) and is the dominant paradigm

to learn θ.

Which kind of functions is possible to obtain alternating projection and activation?

Surprisingly enough, A1 ◦ s0A0 is sufficient to approximate every function up to a fixed

precision, if dl = 1 and d1 is large enough. The proof for a specific activation function

dates back to decades ago [29] and have been then generalised to other activation mech-

anisms. In practice, the theorem state that with 2 hidden layer and enough neurons,

the network can reproduce any function arbitrarily well.

Such a result lead to great popularity in networks, particularly during the last part of

the previous century. The popularity faded, until the empirical discovery that deeper

networks can better learn elaborated patterns. This peculiarity led to the birth of the

term deep learning [2].

A recent result [43] showed that, also theoretically, even with a limited dimension for the

internal layers (di ≥ d−1 + 4, ∀i ∈ [0, l]) a network is still able to reproduce any function

if l is big enough and dl = 1. This second result state that with at least an internal

dimension equal to d0 + 4 for every layer, it is possible to reproduce any function up to

a fixed error (with enough layers).

In the literature, many different networks structures have been proposed.

The following sections describe the specific networks used in this paper.

Some of them also introduce regularisation terms, that are functional term S added to

the score F , aiming to improve the learning process.

Abbreviations 58

A.5.1 Multilinear projector (MLP)

MLP is the simplest network and is the building block of many other variants.

It is just a sequence of affine layers and non-linear activation, ending with an affine one.

The ending choice is only to obtain a global function with codomain that covers a.e. the

entire R
d (at least for some values of θ).

The choice of the activation function is still debated [44]. This paper uses the self-

normalising selu function [27]. The reasons behind this choice are its stability and its

popularity, not only its self-normalising property.

MLP adds no additional term to the score function F .

In this paper, the symbol MLPl,d will refer to:

MLPl,d(x) = (Al(. . . (s1(A1(x)))))

Ai : x ∈ R
di−1 → x′ ∈ R

di

dl = d

(A.5)

Sometimes in literature the term MLP is used for networks with only 2 layers, that here

correspond to MLP2,·.

A.5.2 Autoencoder

An Autoencoder is ”a neural network that is trained to attempt to copy its input to its

output” [2]. The task of reconstructing the input can appear naive. Still, when applied

to a network with an internal layer of dimension lower then the input itself, this task

becomes analogous to compress the information in the input to a smaller space. This

characteristic made autoencoders successful in learning data representations.

The idea behind it is to use an MLP (called encoder E) to transform the input in a

vector of smaller dimension. Then, another MLP (called decoder D) tries to reconstruct

the original input. Connecting another MLP to the encoder output (called ’encoded’

variable) allows making predictions.

In this paper, the symbol AEl,e,l′,d will refer to the set of functions:

E(x) = MLPl,e(x)

D(E(x)) = MLPl,d−1
(E(x))

S(x) = ‖x−D(E(x))‖

(A.6)

Abbreviations 59

Here the term S acts is linearly added to F and act as a regularizer. Such term pushes

the encoder to preserve the information in the input. Otherwise, the decoder will not

be able to reconstruct it.

Often, another MLP is inserted as a forecaster, taking E(x) as input and projecting to

the required output space.

A.5.2.1 Variational Autoencoder

Variational autoencoders are a variant of autoencoders that injects uncertainty in E(x).

This random noise forces a more stable encoding of the information in x, because fragile

representations are heavily affected by randomisation.

They have been first introduced in [4] and extensively discussed in [45].

The most common way to introduce uncertainity is to use the reparametrization trick,

as described in 1.4.4. Specifically, a variational autoencoder V AEl,d,l′ is defined by:

Em(x) = MLPl,e(x)

Eσ(x) = MLPl,e(x)

ǫ ∼ N0e,1eE(x) = Em(x) + Eσ(x)ǫ

D(E(x)) = MLPl,d0(E(x))

S(x) = ‖x−D(E(x))‖

(A.7)

In practice, random gaussian samples are used to obtain a stochastic E(x) as a differen-

tiable transformation of Em(x), Eσ(x). This smoothness does not break backpropagation

allowing the usual optimisation with SGD.

A.5.3 Recurrent networks

Recurrent networks are network working with sequential data, as time-series or sen-

tences. Their peculiarity is to take as input also their own output computed at the

previous element of the sequence. In this way, these networks can reproduce an internal

state that varies through time in a similar way to autoregressive models.

The input of this kind of networks is an ordered batch x0, . . . , xT instead of a single x.

The general output is:

R(x−1) = R0

R(xt) = MLPl,d (xt
⊕

R(xt−1)) t = 0, . . . , T
(A.8)

Abbreviations 60

The initial value R0 is usually treated as a common parameters: initialised at random

and learned through backpropagation.

This general scheme could suffer from gradient vanishing or exploding if T is too large.

Unfortunately, a small T could not be able to capture distant time dependencies. Dif-

ferent modifications attempt to solve this issue, like the one in the next section.

A.5.3.1 Long-Short-Term-Memory networks (LSTM)

LSTM networks are recurrent networks with a particular internal structure, called ”for-

getting gate” that solve the issue of vanishing gradient that could affect recurrent net-

works learning. [15] proposed them for the first time.

The idea is to use an internal gate G that solve the gradient issue:

I(x−1) = R0

I(xt) = G [MLPl,d(xt
⊕

R(xt−1)] t = 0, . . . , T

LSTMd,G(xt) = MLPl,d(xt
⊕

I(xt−1) t = 0, . . . , T

(A.9)

Different versions of G exists. In this paper, LSTMd,G refers to the version implemented

in [28].

A.5.4 Bayesian networks

Most neural networks applications select a single value for the parameters θ. Infer-

ring a whole distribution, instead, can increment the generalisation power and reduce

overfitting, as shown in [3].

Deriving an entire distribution on a high dimensional set as the network parameters can

be difficult. Asymptotically exact methods like MCMC are rarely used. Simple methods

as dropout [46] are popular. The reparametrisation trick is obtaining much attention

since its introduction [1].

In this paper, the term Bayesian network or Variational network will refer to any network

with non-singular parameters distribution.

Abbreviations 61

A.5.5 Generative networks

Networks are semi-parametric functions. Applying them to synthetic numbers allows

generating pseudo-random numbers with a different distribution. Using SGD, it is pos-

sible to adapt the distribution of these samples to maximise a given score.

In particular, they represent the state-of-the-art in producing artificial images and

videos. See [2] for an introduction to this topic.

A.5.6 Backpropagation and SGD

This section describes how to select a reasonable value for θ that maximises S(N).

The value of θ is initialised randomly as θ0 and modified during several iterations until

a stopping criterion is reached.

At every iteration i, the procedure randomly selects a batch of data Xb ⊂ X and compute

the score on it. Then it compute, using automatic differentiation and backpropagation,

the derivative of this score wrt the parameters:

gi =
∂

∂θi

∑

x∈Xb

S(N(x), x)

θi is modified proportionally to gi:

θi ← θi + νgi (A.10)

The proportionality coefficient ν can be fixed at priori, chosen through trial and error,

or selected adaptively at every step.

The literature contains many different versions of SGD. In this paper, all the results use

the specific implementation of the Adam optimiser implemented in [28].

A.6 Empirical prior on mean-covariance states

This section defines an empirical prior over mean-covariance states.

The prior is empirical in the sense that it starts from data and returns a distribution

over the set of states vector µt, Vt.

Consider multivariate time-series Y = {yt ∈ R
n, ∀t = 0, . . . , T}.

Abbreviations 62

Selecting a point estimator of µt, Vt, as DCC, it is possible to map Y → µ0,t, V0,t.

The above states can then be mapped to vectors zt using A.4.1.

The prior assumes a random-walk process on zt, similar to what is done in [6] or [11].

This imply to choose a distribution for the starting point p(z0) and a transition kernel

p(zt|zt−1).

p(z0) is again a multivariate Gaussian distribution, with mean and covariance matrix

equal to the sample mean of zt and the population covariance matrix of zt. Other

estimators for this Gaussian distribution could be applied. For example, the Python

package introduced in 3 uses the Ledoit-Wolf estimator for the covariance estimate.

In a similar way, the Gaussian transition kernel p(zt|zt−1) is obtained applying any

estimator of the population covariance matrix to the finite differences dzt = zt − zt−1.

Again, Ledoit-Wolf correction is used in 3 and strongly advised, due to the dimension

of zt equal to n + n(n + 1)/2.

The consistency of the population means and population covariance estimator implies

the consistency of the random walk estimate.

Whenever such estimates would bring to singular covariance matrixes, a correction term

proportional to the identity matrix is added, in the implementation of 3.

Bibliography

[1] David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational inference: A

review for statisticians. Journal of the American Statistical Association, 112(518):

859–877, 2017.

[2] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521

(7553):436–444, 2015.

[3] Radford M Neal. Bayesian learning for neural networks, volume 118. Springer

Science & Business Media, 2012.

[4] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv

preprint arXiv:1312.6114, 2013.

[5] Yao Qin, Dongjin Song, Haifeng Chen, Wei Cheng, Guofei Jiang, and Garrison

Cottrell. A dual-stage attention-based recurrent neural network for time series

prediction. arXiv preprint arXiv:1704.02971, 2017.

[6] Gary Koop and Dimitris Korobilis. Bayesian multivariate time series methods for

empirical macroeconomics. Now Publishers Inc, 2010.

[7] Joshua Chan, Gary Koop, Dale J Poirier, and Justin L Tobias. Bayesian Econo-

metric Methods, volume 7. Cambridge University Press, 2019.

[8] Tilmann Gneiting and Adrian E Raftery. Strictly proper scoring rules, prediction,

and estimation. Journal of the American Statistical Association, 102(477):359–378,

2007.

[9] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The elements of statisti-

cal learning: data mining, inference, and prediction. Springer Science & Business

Media, 2009.

[10] Robert Engle. Dynamic conditional correlation: A simple class of multivariate gen-

eralized autoregressive conditional heteroskedasticity models. Journal of Business

& Economic Statistics, 20(3):339–350, 2002.

63

Bibliography 64

[11] Fabio Canova and Matteo Ciccarelli. Estimating multicountry var models. Inter-

national economic review, 50(3):929–959, 2009.

[12] Massimiliano Caporin and Michael McAleer. Ten things you should know about the

dynamic conditional correlation representation. Econometrics, 1(1):115–126, 2013.

[13] Arnaud Doucet and Adam M Johansen. A tutorial on particle filtering and smooth-

ing: Fifteen years later. Handbook of nonlinear filtering, 12(656-704):3, 2009.

[14] CF Jeff Wu. On the convergence properties of the em algorithm. The Annals of

statistics, pages 95–103, 1983.

[15] Felix A Gers, Jürgen Schmidhuber, and Fred Cummins. Learning to forget: Con-

tinual prediction with lstm. 1999.

[16] Trevor Hastie, Robert Tibshirani, and Martin Wainwright. Statistical learning with

sparsity: the lasso and generalizations. CRC press, 2015.

[17] Steve Brooks, Andrew Gelman, Galin Jones, and Xiao-Li Meng. Handbook of

markov chain monte carlo. CRC press, 2011.

[18] R. E. Turner and M. Sahani. Two problems with variational expectation max-

imisation for time-series models. In D. Barber, T. Cemgil, and S. Chiappa, edi-

tors, Bayesian Time series models, chapter 5, pages 109–130. Cambridge University

Press, 2011.

[19] Rajesh Ranganath, Sean Gerrish, and David Blei. Black box variational inference.

In Artificial Intelligence and Statistics, pages 814–822. PMLR, 2014.

[20] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with

gumbel-softmax. arXiv preprint arXiv:1611.01144, 2016.

[21] Gareth O Roberts, Jeffrey S Rosenthal, et al. General state space markov chains

and mcmc algorithms. Probability surveys, 1:20–71, 2004.

[22] Christian P Robert, Vı́ctor Elvira, Nick Tawn, and Changye Wu. Accelerating

mcmc algorithms. Wiley Interdisciplinary Reviews: Computational Statistics, 10

(5):e1435, 2018.

[23] Radford M Neal et al. Mcmc using hamiltonian dynamics. Handbook of markov

chain monte carlo, 2(11):2, 2011.

[24] Todd K Moon. The expectation-maximization algorithm. IEEE Signal processing

magazine, 13(6):47–60, 1996.

[25] Zhi-Hua Zhou. Ensemble methods: foundations and algorithms. CRC press, 2012.

Bibliography 65

[26] Zhaoqing Pan, Weijie Yu, Xiaokai Yi, Asifullah Khan, Feng Yuan, and Yuhui Zheng.

Recent progress on generative adversarial networks (gans): A survey. IEEE Access,

7:36322–36333, 2019.

[27] Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter. Self-

normalizing neural networks. In Advances in neural information processing systems,

pages 971–980, 2017.

[28] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig

Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-

mawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing

Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dande-

lion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schus-

ter, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker,

Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete War-

den, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Ten-

sorFlow: Large-scale machine learning on heterogeneous systems, 2015. URL

https://www.tensorflow.org/. Software available from tensorflow.org.

[29] George Cybenko. Approximation by superpositions of a sigmoidal function. Math-

ematics of control, signals and systems, 2(4):303–314, 1989.

[30] Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural

networks, 4(2):251–257, 1991.

[31] Zhou Lu, Hongming Pu, Feicheng Wang, Zhiqiang Hu, and Liwei Wang. The

expressive power of neural networks: A view from the width. In Advances in neural

information processing systems, pages 6231–6239, 2017.

[32] Christa Cuchiero, Martin Larsson, and Josef Teichmann. Deep neural networks,

generic universal interpolation, and controlled odes. SIAM Journal on Mathematics

of Data Science, 2(3):901–919, 2020.

[33] Martyn Plummer, Nicky Best, Kate Cowles, and Karen Vines. Coda: convergence

diagnosis and output analysis for mcmc. R news, 6(1):7–11, 2006.

[34] Francisco JR Ruiz and Michalis K Titsias. A contrastive divergence for combining

variational inference and mcmc. arXiv preprint arXiv:1905.04062, 2019.

[35] Olivier Ledoit, Michael Wolf, et al. Nonlinear shrinkage estimation of large-

dimensional covariance matrices. The Annals of Statistics, 40(2):1024–1060, 2012.

[36] Cheng Zhang, Judith Bütepage, Hedvig Kjellström, and Stephan Mandt. Advances

in variational inference. IEEE transactions on pattern analysis and machine intel-

ligence, 41(8):2008–2026, 2018.

https://www.tensorflow.org/

Bibliography 66

[37] Yan Zilbering, Colleen M Jaconetti, and Francis M Kinniry Jr. Best practices for

portfolio rebalancing. Valley Forge, Pa.: The Vanguard Group. Vanguard Research

PO Box, 2600:19482–2600, 2015.

[38] Daniel Kuhn and David G Luenberger. Analysis of the rebalancing frequency in

log-optimal portfolio selection. Quantitative Finance, 10(2):221–234, 2010.

[39] Michael W McCracken and Serena Ng. Fred-md: A monthly database for macroe-

conomic research. Journal of Business & Economic Statistics, 34(4):574–589, 2016.

[40] Gary Koop. Bayesian methods for empirical macroeconomics with big data. Review

of Economic Analysis, 9(1):33–56, 2017.

[41] Gary Koop, Dale J Poirier, and Justin L Tobias. Bayesian econometric methods.

Cambridge University Press, 2007.

[42] Sebastian Becker, Patrick Cheridito, and Arnulf Jentzen. Deep optimal stopping.

Journal of Machine Learning Research, 20:74, 2019.

[43] Yingzhen Li, Richard E Turner, and Qiang Liu. Approximate inference with amor-

tised mcmc. arXiv preprint arXiv:1702.08343, 2017.

[44] Chigozie Nwankpa, Winifred Ijomah, Anthony Gachagan, and Stephen Marshall.

Activation functions: Comparison of trends in practice and research for deep learn-

ing. arXiv preprint arXiv:1811.03378, 2018.

[45] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A

review and new perspectives. IEEE transactions on pattern analysis and machine

intelligence, 35(8):1798–1828, 2013.

[46] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting.

The journal of machine learning research, 15(1):1929–1958, 2014.

	Declaration of Authorship
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Abbreviations
	1 Inference and training, models and learners
	1.1 Probabilistic forecasting
	1.2 Statistical learning
	1.3 Learners and models
	1.4 Inference and training
	1.4.1 Maximum likelihood
	1.4.2 Maximum penalised-likelihood
	1.4.3 Bayesian inference
	1.4.4 Variational inference
	Mean Field Variational Inference
	Black-Box Variational Inference
	Reparametrization trick

	1.4.5 MCMC vs VI
	1.4.6 Other methods

	2 Hierarchical Variational Inference
	2.1 A semi-parametric family of functions
	2.1.1 Single layer example
	2.1.2 Multiple layers extension

	2.2 Variational inference using HVI
	2.2.1 The reparametrization analogy
	2.2.2 Representation power
	2.2.3 Adapting HVI to specific problems
	2.2.4 Mixture variant
	2.2.5 Dimensionality reduction variant

	2.3 Empirical experiment
	2.3.1 The experiment settings
	2.3.2 Results

	2.4 Discussion and future developments

	3 A Python package for multivariate time-series
	3.1 Data wrapper
	3.2 Feature engineering
	3.3 Optimizer
	3.4 The abstract models
	3.4.1 Semi-parametric models
	3.4.1.1 Multilinear projector, MLP
	3.4.1.2 Autoencoder
	3.4.1.3 Variational Autoencoder
	3.4.1.4 LSTM

	3.4.2 HVI for covariance matrix

	3.5 Future developments

	4 Comparison of mean-covariance estimators
	4.1 Data
	4.1.1 Financial returns dataset
	4.1.1.1 Features

	4.1.2 Macroeconomic index dataset
	4.1.2.1 Features

	4.2 Models
	4.2.1 Parametric models from literature
	4.2.1.1 HVI extension

	4.2.2 Semi-parametric models
	4.2.2.1 MLP
	4.2.2.2 LSTM
	4.2.2.3 Autoencoder
	4.2.2.4 Variational autoencoder
	4.2.2.5 Empirical prior with 0-state

	4.3 Results
	4.4 Conclusions

	A Appendix
	A.1 Notations
	A.2 Known distributions
	A.2.1 Gaussian distribution
	A.2.2 Wishart distribution
	A.2.3 Normal-Wishart distribution
	A.2.4 Inverse-Wishart distribution
	A.2.5 Normal Inverse-Wishart distribution

	A.3 Common functions
	A.4 Set reparametrizations
	A.4.1 Set of positive definite matrix
	A.4.2 DCC parameters reparametrization

	A.5 Neural Networks
	A.5.1 Multilinear projector (MLP)
	A.5.2 Autoencoder
	A.5.2.1 Variational Autoencoder

	A.5.3 Recurrent networks
	A.5.3.1 Long-Short-Term-Memory networks (LSTM)

	A.5.4 Bayesian networks
	A.5.5 Generative networks
	A.5.6 Backpropagation and SGD

	A.6 Empirical prior on mean-covariance states

	Bibliography

