
Journal of

Actuator Networks
Sensor and

Perspective

Agents and Robots for Reliable Engineered Autonomy:
A Perspective from the Organisers of AREA 2020

Rafael C. Cardoso 1,* , Angelo Ferrando 2,* , Daniela Briola 3,* , Claudio Menghi 4,* and Tobias Ahlbrecht 5,*

����������
�������

Citation: Cardoso, R.C.; Ferrando,

A.; Briola, D.; Menghi, C.; Ahlbrecht,

T. Agents and Robots for Reliable

Engineered Autonomy: A Perspective

from the Organisers of AREA 2020. J.

Sens. Actuator Netw. 2021, 10, 33.

https://doi.org/10.3390/

jsan10020033

Academic Editor: Thomas Newe

Received: 15 March 2021

Accepted: 13 May 2021

Published: 14 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Computer Science, The University of Manchester, Manchester M13 9PL, UK
2 Department of Computer Science, Bioengineering, Robotics and Systems Engineering (DIBRIS),

University of Genova, 16145 Genova, Italy
3 Department of Informatics, Systems and Communication (DISCO), University of Milano Bicocca,

20126 Milan, Italy
4 Interdisciplinary Centre for Security, Reliability and Trust, University of Luxembourg,

L-4365 Luxembourg, Luxembourg
5 Department of Informatics, Clausthal University of Technology, 38678 Clausthal-Zellerfeld, Germany
* Correspondence: rafael.cardoso@manchester.ac.uk (R.C.C.); angelo.ferrando@dibris.unige.it (A.F.);

daniela.briola@unimib.it (D.B.); claudio.menghi@uni.lu (C.M.); tobias.ahlbrecht@tu-clausthal.de (T.A.)

Abstract: Multi-agent systems, robotics and software engineering are large and active research areas
with many applications in academia and industry. The First Workshop on Agents and Robots for
reliable Engineered Autonomy (AREA), organised the first time in 2020, aims at encouraging cross-
disciplinary collaborations and exchange of ideas among researchers working in these research areas.
This paper presents a perspective of the organisers that aims at highlighting the latest research trends,
future directions, challenges, and open problems. It also includes feedback from the discussions held
during the AREA workshop. The goal of this perspective is to provide a high-level view of current
research trends for researchers that aim at working in the intersection of these research areas.

Keywords: multi-agent systems; robotics; software engineering; verification and validation; human–
agent interaction

1. Introduction

The robotics market is dramatically changing. Robots are more and more used to
replace humans in their activities. For example, robots can be used in emergency search
and rescue scenarios to reduce risks for humans rescuers. To operate in unpredictable
environments, robots often need to be autonomous. Autonomous robots can perform
their tasks with a high degree of autonomy without any human supervision. In addition,
robots need to operate in a reliable manner to avoid failures that can have catastrophic
consequences and lead to the loss of human life. The design of such robotic applications is
complex since it requires engineers to consider different requirements related to different
research domains.

The design of robotic applications requires multi-agent solutions. Robots are no longer
only used in industrial applications, where robots operate in highly controllable and
predictable environments. They are also used in an increasing number of domains, where
the environment is often unpredictable and agents can have unexpected behaviours. For
example, in an emergency search and rescue scenario the environment in which the robots
operate is unpredictable: the structure of the buildings where robots are deployed may
not be known in advance, and humans can have unpredictable reactions in emergencies.
Robots in these applications often benefit from (or require) some level (semi or full) of
autonomy. In addition, the missions the robots need to achieve are more and more complex
and require multiple robots, with different capabilities, to collaborate. Thus, multi-agent
solutions are required.

J. Sens. Actuator Netw. 2021, 10, 33. https://doi.org/10.3390/jsan10020033 https://www.mdpi.com/journal/jsan

https://www.mdpi.com/journal/jsan
https://www.mdpi.com
https://orcid.org/0000-0001-6666-6954
https://orcid.org/0000-0002-8711-4670
https://orcid.org/0000-0003-1994-8929
https://orcid.org/0000-0001-5303-8481
https://orcid.org/0000-0002-4652-901X
https://www.mdpi.com/article/10.3390/jsan10020033?type=check_update&version=1
https://doi.org/10.3390/jsan10020033
https://doi.org/10.3390/jsan10020033
https://doi.org/10.3390/jsan10020033
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/jsan10020033
https://www.mdpi.com/journal/jsan

J. Sens. Actuator Netw. 2021, 10, 33 2 of 24

Verification and Validation (V&V) aims at checking whether software behaves as ex-
pected. The distributed and autonomous nature of multi-agent systems poses a novel set of
challenges for V&V. For example, the autonomous behaviour responsible for decision-
making should (ideally) be extensively verified since these systems are expensive to
produce and are often deployed in safety-critical situations. However, the autonomous
behaviour of these systems is often unpredictable: it depends on the environmental con-
ditions in which the system operates, and often changes at runtime. Thus, autonomous
robotic systems are introducing a novel set of challenges that need to be addressed by
novel V&V techniques.

Software Engineering (SE) refers to a branch of computer since that aims at supporting
rigorous software development. Engineering multi-agent systems requires systematic and
rigorous techniques that allow developing systems that meet their requirements. Multi-
agent systems are instances of complex distributed systems. They require engineers to
define the software architecture, to design the agent behaviours (e.g., through models),
the protocols (if any) that agents should use to communicate, and how and when agents
need to collaborate. Selecting and defining all of these components is often a difficult and
complex activity, since it requires cross-disciplinary skills, and knowledge of multi-agent
solutions, and the verification and validation to be used to support software design.

Finally, since multi-agent systems usually need to interact with people, engineers
need to consider human–agent interactions as a key feature during the software design.
Human–robot interactions are complex to be designed. Humans can (negatively) affect the
behaviour of the robots, especially when humans and robots are collaborating for achieving
certain goals. Human behaviour can trigger unexpected software reactions. Software
components must be designed to adapt and modify their behaviours and to effectively
support unexpected human actions.

Therefore, the design of complex robotic applications requires combining solutions
coming from different research areas: multi-agent systems, verification and validation,
software engineering, and human–agent interaction. This paper presents a perspective
from the organisers of the first workshop on Agents and Robots for reliable Engineered
Autonomy (https://area2020.github.io/ accessed: 14 May 2021) (AREA 2020). The goal of
this workshop was to attract researchers from these areas, to support the exchange of ideas,
and the cross-fertilisation and collaboration among the different research communities.
This perspective presents some of the latest research trends and promising solutions in
each of these areas. It is based on the research experience of the authors, and some of the
discussions held during the AREA workshop. As such, it does not aim to be a complete and
detailed review of the work done in these research areas, but it aims to be an initial read
for researchers that aim at working in the intersection of these areas based on a speculative
view of the organisers of AREA 2020.

This perspective paper is organised as follows. Section 2 concerns multi-agent program-
ming. It discusses the use of programming languages designed for multi-agent systems
for developing decision-making in robots, listing some of the tools for agents and robots
individually and how these have been combined by the community. Section 3 concerns
verification and validation. It presents works performed in the verification and validation
with a special interest on multi-agent systems and robotic applications. Section 4 concerns
software engineering. It describes research work in SE with a special interest in multi-agent
systems. Section 5 concerns human–agent interactions. It describes research works that
concern the development of robotic applications that consider human–agent interactions
in the software design. Finally, Section 6 concludes our perspective. It summarises and
discusses the challenges identified for each of the research areas we considered, and links
the findings of the different sections.

https://area2020.github.io/

J. Sens. Actuator Netw. 2021, 10, 33 3 of 24

2. Multi-Agent Programming

In this section, we will present some techniques that support the use of agent program-
ming for the development of robotic applications. We will then present some challenges
that prevent the effective use of agent programming for developing robotic systems.

One of the most popular models for agent programming languages is the Belief–Desire–
Intention (BDI) model [1,2]. In the BDI model, there are three major concerns to model
the agent behaviours: beliefs—knowledge that the agent has about the world, itself, and
other agents; desires—goals that the agent wants to achieve; and intentions—recipes on how
to achieve goals. Some examples of BDI agent programming languages include Jason [3]
(used in many of the applications we cite in our perspective paper), JaCaMo [4,5] (Jason
combined with two other technologies to provide first-class support for programming
agents, environments, and organisations), and GWENDOLEN [6] (a more bare-bones agent
language made specifically to support formal verification of agent programs).

The Robot Operating System (ROS) [7] is the de facto standard for the development of
software for robotic applications. ROS supports the development of robotic applications
through ROS nodes. An ROS node is a process that performs some computation. An
ROS application is made by several nodes (representing components and subsystems of
the robot) that communicate with one another following the publisher/subscriber model.
The main advantage of ROS is its interoperability with different robot manufacturers and
models. Since robot manufacturers provide support for executing the ROS, developers do
not have to learn the firmware of each robot model.

An approach combining JaCaMo (in particular, the agent and environment layers)
with ROS is presented in [8]. Their approach uses environment artifacts to implement
ROS nodes and to provide actions for agents to publish and subscribe to nodes. Since
environment artifacts in JaCaMo are implemented in Java, the approach makes use of the
rosjava package (http://wiki.ros.org/rosjava accessed: 14 May 2021) (an implementation of
some of ROS core features in Java) to make the artifacts able to interact with ROS. However,
rosjava is not directly maintained by the ROS community. Therefore, it requires additional
time to be supported after each new ROS release.

A Jason based integration with ROS is introduced in [9]. Their approach modifies
Jason’s reasoning cycle to support agents with the ability to subscribe and publish in topics
from ROS nodes. Extra code for ROS (written in C++) is required for the integration as well.

In [10,11], Jason is linked with ROS through their SAVI ROS BDI architecture. This
architecture is implemented in Java (using the rosjava package, and as such has the same
disadvantage present in [8]) and mainly introduces a state synchronisation module that acts
as a mediator between ROS and Jason by managing perceptions, incoming and outgoing
messages, and actions being sent by the agent.

Differently from all of the above approaches, the authors in [12] propose an interface
for programming autonomous agents in ROS that works without any changes to ROS
or to any of the supported agent languages (Jason and GWENDOLEN). This is achieved
through the rosbridge library [13], which allows code written in other languages (ROS has
native support for C++ and Python only) to communicate with ROS topics through the
WebSocket protocol.

Perspective of the Authors

As noted in recent agent programming reviews and surveys [14–16], there are still
many open challenges that prevent agent programming languages to be used in the robotic
domain. Some of these challenges include:

• the limited set of features provided by existing agent-based languages;
• immature methodologies and tools;
• no significant advantages for developers to change to agent programming since most

applications can be implemented in more contemporary programming languages;

http://wiki.ros.org/rosjava

J. Sens. Actuator Netw. 2021, 10, 33 4 of 24

• the lack of quantitative and qualitative comparisons with other agent languages and
other programming paradigms that guide developer in the selection of the most
suitable language for their needs;

• the limited integration of agent-based technologies with other techniques, e.g., tech-
niques coming from Artificial Intelligence (AI).

Additionally, there are other challenges that are more specifically related to the use of
agent programming languages in robotic systems development.

One of these challenges is the limited support for high frequency data that coming
from sensors, which are commonly used to represent “beliefs.” When high-frequency data
representing beliefs come from sensors, then the agent has to spend a large amount of
time reasoning on these new perceptions. This reduces the performance of the robots in
computing the new actions to be executed. A common solution to this problem is to use
filters that limit the amount of data that is perceived, either by decreasing the frequency or
limiting data based on its content and what would be interesting to the agent. However,
these filters are often domain-specific and have to be tweaked based on the application.

Another challenge is the compatibility of agent languages with popular robotic frame-
works such as ROS. An increasing number of languages are being extended by the commu-
nity to work with ROS; however, these often modify either ROS or the agent language (or
sometimes both) which can discourage new developers from using them.

An earlier survey [17] on agent languages for programming autonomous robots has
identified four major challenges:

1. support for agent languages in robotic frameworks;
2. effectively managing sensor data into beliefs;
3. support for real-time reactivity;
4. synchronising robots while executing their plans.

As previously discussed, a significant amount of research has been conducted for
addressing challenges 1 and 2. However, more work is needed to support additional agent-
based languages, and more sophisticated and effective filtering techniques to manage
sensor data. Less research has been conducted to address challenges 3 and 4, since these
challenges do not always appear in robotic applications. For example, in a scenario
in which a robot has to inspect a nuclear facility, the robot should be able to handle
and adapt to failures. We believe that research on real-time reactivity of robots and the
effective synchronisation of robots for executing their plans, on the one hand, will benefit
from the additional support provided for existing agent-based languages and the more
sophisticated and effective management, on the other hand, may highlight limitations of
these frameworks and pave the way for further additional research.

3. Verification and Validation

As discussed in our introduction, reliability is very important in the design of robotic
applications. However, multi-agent applications are posing a new set of challenges for the
verification and validation (V&V) activities. In this section, we are considering both static
verification techniques for MAS and dynamic verification techniques. Static formal verifi-
cation techniques, such as Model Checking and Theorem Proving, usually check whether
the system meets its requirements. Requirements are usually represented using formal
specifications, a.k.a. properties, the system is usually represented using models. Dynamic
formal verification techniques, such as Runtime Verification techniques, usually monitor the
system execution and check whether observed behaviours meet the system requirements.

In this section, we describe the latest developments in the context of formal verification
and validation of MAS (Section 3.1) and robotic systems (Section 3.2). Some of the works we
present in this section were also discussed by a recent survey on formal verification applied
to autonomous systems and robotic applications [18]. Then, we will argue (Section 3.3)
that, as also argued by [19], robotic applications and autonomous systems pose a new set
of challenges for formal verification and validation techniques.

J. Sens. Actuator Netw. 2021, 10, 33 5 of 24

3.1. Multi-Agent Systems

For MAS, V&V techniques usually check the behaviour of a set of agents collaborating
or competing amongst themselves to achieve certain goals.

3.1.1. Model Checking

Model-checking exhaustively verifies a system against a formal property. It returns
a Boolean verdict: true if the property is satisfied, and false and a counterexample, if it is
not. Model-checking techniques are usually compute-intensive since the implemented
procedures have a high temporal complexity because all the behaviours of the system need
to be analysed for proving that the property is satisfied.

In [20], a model checker for verifying MAS, called MCMAS, is proposed. MCMAS
supports temporal, epistemic and strategic properties. In its standard version, MCMAS
requires to know the number of agents at design time. In [21], a parametric extension
(MCMAS-P) to handle scenarios where the number of components cannot be determined
at design time is presented, while, in [22], a more expressive extension (MCMAS-SL) is
proposed to support strategy logic. MCMAS has been used in many different works for
verifying MAS. In particular, in [23], where an analysis is carried out on the verification
problem of synchronous perfect recall multi-agent systems with imperfect information.
While the general problem is known to be undecidable, [23] shows that, if the agents’
actions are public, then verification is decidable.

In [24], the authors propose a method for, and implement a working prototype of, an
ethical extension to a rational agent governing an unmanned aircraft. Differently from [20],
this work is focused on verifying BDI agents, defined using the agent language Ethan, an
extension of GWENDOLEN. The resulting ethical agent is verified in AJPF [25], a model
checker for agent programs. Differently from MCMAS, which verifies an abstract model
of the MAS (i.e., a Concurrent Game Structure—CGS), AJPF verifies the source code of
the MAS application. Furthermore, MCMAS assumes that properties are expressed using
Alternating-Time Temporal Logic (ATL), which allows for reasoning on agents’ strategies,
while AJPF assumes that properties are expressed in Linear Temporal Logic (LTL) (enriched
with epistemic logic operators).

In [26], the authors proposed the VERMILLION framework. VERMILLION targets
a broad class of avionics systems that is amenable to analysis using formal methods. It
extends the BDI model to incorporate learning, safety, determinism, and real-time response,
and represents the abstract formal model using the Z language [27]. Compared to MCMAS,
VERMILLION performs formal verification on an abstract model of the system, and not
to the source code of the MAS. This requires engineers to build the abstract model of the
MAS before running the verification framework.

Autonomous platoons are a typical example of MAS which are subject to extensive
research. Formal verification of autonomous platoons has been considered for example
in [28]. In this work, the authors proposed a reconfigurable multi-agent architecture to en-
sure the safety of the platoon, and specifically to guarantee a certain inter-vehicle distance
among the different vehicles of the platoon. The authors proposed a model for the platoon
that enables vehicles to join and leave the platoon, and verified whether this model ensures
the satisfaction of a set of safety properties. Safety properties are formally verified using the
Uppaal model checker [29]. Additionally, this work proposes to use the Webots simulator
(https://github.com/cyberbotics/webots accessed: 14 May 2021) to simulate certain be-
haviors of the model.

Similarly, in [30], the authors applied formal verification to the model of the system
and the actual implementation to ensure that autonomous decision-making agents in
vehicle platoons never violate some safety requirements. In addition, in this work, the
model checking procedure relies on the Uppaal model checker: the models of the agents
are translated into timed automata, which are verified in Uppaal.

In [31], the authors present a new technique for model checking the logic of knowledge
and commitments (CTLKC+). The proposed technique is fully-automatic and reduction-

https://github.com/cyberbotics/webots

J. Sens. Actuator Netw. 2021, 10, 33 6 of 24

based. It reduces the problem of model checking CTLKC+ specifications to the problem of
model checking an ARCTL [32] specifications. ARCTL is an existing logic that is supported
by an existing model checker that relies on the NuSMV symbolic model checker [33].

3.1.2. Runtime Verification

There are various runtime verification techniques available in literature for MAS.
In [34], the authors present a framework to verify agent interaction protocols at runtime.
The formalism used in this work allows using variables to represent complex MAS be-
haviours. In [35], the authors extended their approach by supporting the usage of multiple
monitors. Specifically, the global specification, which is used to represent the global proto-
col, is translated into partial decentralised specifications—one for each agent of the MAS.
In [36,37], other works on runtime verification of agent interactions are proposed for the
JADE platform. Specifically, in [36], the authors propose a framework called Multi-agent
Runtime Verification (MARV). In this framework, requirements of MAS interaction during
runtime are defined, such as availability and trustability. Differently from the other works,
the requirements are expressed using natural language. The translation to a more formal
representation is seen as a future work and not supported yet. Considering interactions in
JADE, in [37], we may find a different approach which is partially obtained at runtime. In
fact, the proposed method is performed in a semi-runtime way, where logs of messaging
events are kept, and an algorithm for converting these logs to Time Petri Net as runtime
program models is used.

When agents are dynamically adaptable, we may find application of runtime verifica-
tion as presented in [38], where a runtime verification framework for dynamic adaptive
MAS (DAMS-RV) based on an adaptive feedback loop is presented.

In [39], the authors propose a framework that combines model checking and runtime
verification for analysing MAS. In this framework, the agents are first verified statically
(using the AJPF [25] model checking), and, then, they are validated at runtime, through
runtime verification using an extension of the work proposed in [34].

3.2. Robotic Applications

This section analyses works related to the formal V&V of robotic systems.

3.2.1. Model Checking

In [40], the authors propose an approach to formally verify an autonomous decision-
making planner/scheduler system for an assisted living environment with the Care-O-bot
robotic assistant. This is done by converting the robot house planner/scheduler rules into
a multi-agent modelling language, i.e., Brahms model [41], and then, by translating this
model into the PROMELA [42] language, which is then verified using the SPIN model
checker [43]. Differently from the works we presented in the previous section, in this work,
the model to be verified concerns scheduling rules used by an actual robot, rather than the
reasoning process of an abstract agent.

In [44], the authors verified a formal model that describes mobile robot protocols
operating in a discrete space is proposed. This formal model is then verified using the
DiVinE model checker [45]. In [46], the authors propose an approach to verify real-time
properties of ROS systems related to the communication between ROS nodes. Specifically,
the authors analysed the source code of the Kobuki robot. Verification is performed by
using the Uppaal model checker.

In [47], the authors analysed a collision avoidance protocol for multi-robot systems
based on control barrier functions. The authors formally verified the properties of the
collision avoidance framework. They showed that their controller formally guarantees
collision free behaviour in heterogeneous multi-agent systems by applying slight changes
to the desired controller via safety barrier constraints.

Finally, formal methods are also used to check whether the tasks of a robotic applica-
tion can be scheduled with respect to a given hardware platform (e.g., [48,49]). For example,
some of these works considered components specified in GenoM [50] (a middleware for

J. Sens. Actuator Netw. 2021, 10, 33 7 of 24

robotic development similar to ROS) and automatically translate them into FIACRE [51], a
formal language for timed systems.

3.2.2. Human–Robot Interaction

Building reliable software systems involving human–robot interactions poses sig-
nificant challenges for formal verification. In [52], the authors propose a risk analysis
methodology for collaborative robotic applications, which relies on well-known standards,
and use formal verification techniques to automate the traditional risk analysis methods.
In [53], the authors propose an innovative methodology, called SAFER-HRC, is presented.
This methodology is centred around the logic language TRIO and the companion bounded
satisfiability checker Zot [54], to assess the safety risks in a Human–Robot Collaboration
(HRC) application.

3.2.3. Runtime Verification

Runtime Verification approaches for robotic applications are also discussed in the
scientific literature. RobotRV [55] is a data-centred real-time verification approach for
robotic systems. Within this approach, a domain-specific language named RoboticSpec is
designed to specify the complex application scenario of the robot system.

Another runtime verification framework, called ROSMonitoring [56,57], allows the
verification of ROS-based systems. In ROSMonitoring, runtime monitors are automatically
synthesised from high-level specifications and used to verify formal properties against
message passing amongst ROS nodes. The advantage of this framework is its being
formalism-agnostic and portable. Indeed, the formal part of the monitors is decoupled and
can be easily replaced.

3.2.4. Machine Learning

Machine learning is widely relevant for designing robotic applications. In [58], the
authors consider the problem of formally verifying the safety of an autonomous robot
equipped with a neural network controller that processes LiDAR images to produce control
actions. The contributions are: (i) the definition of a framework for formally proving
safety properties of autonomous robots equipped with LiDAR scanners; (ii) the notion
of imaging-adapted partitions along with a polynomial-time algorithm for processing
the workspace into such partitions; and (iii) a Satisfiability Modulo Convex (SMC)-based
algorithm combined with an SMC-based pre-processing for computing finite abstractions
of neural network controlled autonomous systems.

3.3. Perspective of the Authors

A lot of research was done on formal verification of MAS and Robotic applications.
However, many challenges still need to be addressed. In the following, we will discuss
two of these challenges.

• scalability. Many approaches suffer from scalability issues [59]. Researchers should
find more efficient ways to verify the system under analysis especially when the
number of agents and robots increases. Indeed, MAS and robotic applications are
intrinsically distributed, and we expect the number of robots and agents of future
robotic applications to increase over time. As previously mentioned, scalability issues
are less relevant for dynamic verification approaches, such as runtime verification
that only verify subsets of system executions. We believe that combining static and
dynamic verification may be a valuable direction to address this challenge;

• verification of ML components. ML components are mode and more used in safety-
critical scenarios (e.g., Robotic applications). However, the behaviours of machine
learning components are usually not understandable by humans. Indeed, the be-
haviour of ML components is not defined a priori by humans, but ML components
learn their behaviours from a set of training data. This poses the challenge of under-
standing if a ML component ensures the satisfaction of safety properties. While in

J. Sens. Actuator Netw. 2021, 10, 33 8 of 24

the past years many works have been proposed to enhance learning algorithms with
formal methods, a lot of work needs to be done to make these approaches applicable
in practice. For example, for MAS applications, some works have been proposed
for single Reinforcement Learning agents, but few of them considered Multi-Agent
Reinforcement Learning.

4. Software Engineering

This section provides a brief overview on some of the software engineering (SE) tech-
niques that aim to support the development of reliable multi-agent and robotic applications.
Researchers are extending, adapting, and creating new SE techniques to meet the needs of
robotic applications. However, there are still many challenges that prevent the effective
and efficient development of multi-agent systems and the community requires novel SE
solutions. We introduce the overall main problems by giving an overview of them, citing
some of the existing and known approaches and solutions, and discussing promising
research trends and open problems.

Specifically, in this section, we discuss rigorous and systematic techniques that allow
the specification of MAS requirements (Section 4.1), effective and efficient techniques that
support testing MAS (Section 4.2), and simulation tools that enable reproducing the MAS
and robotic behaviour with reasonable accuracy (Section 4.3). Finally, we will discuss our
perspectives (Section 4.4).

4.1. Requirement Specification

The specification of the requirements of a multi-agent application is critical during
software development. In MAS, requirements specification often concerns the definition
of the task, also known as mission [60], what the application should achieve, and how to
make the requirement executable by the MAS. Compared with conventional software, the
presence of multiple agents makes the requirement specification phase more complex and
error-prone since engineers need to precisely identify the different agents and identify the
tasks they need to execute [61]. To support engineers in the specification of the requirements
of the MAS application, several tools were proposed in the literature, such as natural
languages, logic-based languages, pattern-based languages, domain-specific languages,
and goal-modelling techniques.

In the following, we summarise some of the solutions proposed in these areas and
evaluate how these solutions were used within the papers presented in the AREA 2020
workshop (https://area2020.github.io/ accessed: 14 May 2021), since they provide good
examples of research covering different aspects of MASs. Specifically, Table 1 summarises
the requirement specification technique used for each of the papers presented in the AREA
2020 workshop. Each row contains a requirement specification technique, i.e., natural
languages, logic-based languages, pattern-based languages, domain-specific languages,
and goal-modelling. Each column contains the reference to one of the papers presented in
the AREA 2020 workshop. The cell at the intersection between a row of one requirement
specification technique, and a column, of one paper presented in the AREA 2020 work-
shop, indicates the requirement specification technique used in that paper. For example,
the marker at the intersection between the row labelled as “logic-based languages” and
the column labelled with the reference [62] indicates that a logic-based language is the
requirement specification technique used in [62].

https://area2020.github.io/

J. Sens. Actuator Netw. 2021, 10, 33 9 of 24

Table 1. Requirements specification technique used by the papers published in AREA 2020 ([63] is not reported in the table
since it does not consider MAS requirements).

[62] [64] [65] [66] [67] [68] [69] [70] [10]

Natural Language !
Logic-based ! !

Pattern-based
Domain-specific ! ! ! ! !
Goal-modelling
Demonstrations !

4.1.1. Natural Languages

In many contexts, requirements are initially expressed in natural language. This is
a common case in many industrial applications (e.g., [71,72]). Natural languages offer
significant benefits, they are easy to understand, and they support effective communication
among different stakeholders. Several works considered the role of natural languages in
the requirement specifications of multi-agent and robotic systems. For example, in [73], the
authors proposed an approach to teach agents to communicate with humans in natural
language. In [74], the authors analyse how to utilise and extend the Software Requirements
Specifications model (IEEE Std 830-2009) to support the specification of requirements of
multi-agent systems. In [75], the authors apply techniques of natural language processing
for identifying the requirements and goals of multi-agent systems.

One paper presented at the AREA workshop assumed that the requirements of the
MAS are specified using natural language. Specifically, in [68], the authors propose dif-
ferent types of interactions between an MAS and the final users who might benefit from
communication-intensive, voice-based interactions.

4.1.2. Logic-Based Languages

Many researchers specify the requirements of the MAS in a logic-based language
(e.g., [18,19,76–78]). Logic-based languages, such as LTL or CTL, assume that requirements
are expressed using a set of atomic propositions that express relevant statements on the
multi-agent system, combined with logical operators. One of the main advantages of using
logic-based language is the availability of automated tools that support verification (e.g.,
model checking) and synthesis.

Two papers presented at the AREA workshop assumed that the requirements of the
MAS are specified using logic-based languages. In [62], the authors use the TRIO [79]
logical-language to specify the requirements of the MAS. TRIO is a first-order logical
language. It provides temporal operators to constrain the values of some propositions at
different time instants. In [64], the authors use the logical-based language provided by
Uppaal [80] to specify the requirements of the MAS. Uppaal allows specifying missions
through an extension of the CTL logic, which is a subset of TCTL. Specifically, it allows the
specification of properties constraining a proposition to hold globally (resp. eventually)
for every execution or querying whether there exists an execution such that a proposition
holds globally (resp. eventually).

4.1.3. Pattern-Based Languages

Pattern-based languages are a common solution to solve recurrent problems of
many domains, including robotics [60,81], cyber-physical systems [82], self-adaptive
systems [83,84], machine learning [85], IoT [86], and multi-agent systems [84,87–89]. Exist-
ing design patterns in the field of multi-agent systems were classified in a recent survey [88].

By analysing the papers presented at the AREA workshop, we noticed that none of
the published papers used pattern-based languages to specify the requirements of the
multi-agent system.

J. Sens. Actuator Netw. 2021, 10, 33 10 of 24

4.1.4. Domain-Specific Languages

Several Domain-Specific Languages (DSL) for MAS were proposed in the literature
(e.g., [90–92]). For MAS, DSLs usually provide constructs that enable engineers to model
agents, the task they need to execute, and their interactions. Some of the recent DSLs for
multi-agent systems are reported in the following.

In [93], the authors present a DSL for multi-robot application, based on the robotic
mission specification patters [60]. In [94], the authors apply the DESIRE specification
framework [95] on a case study on multi-agent systems. In [91], the authors propose a DSL
for MAS. They also use the language and their graphical tool support for developing an
MAS using a model-driven development approach.

Four papers presented at the AREA workshop proposed a DSL for the specification
of a robot’s core behaviours. In [65], the authors propose the use of Capability Analysis
Tables (CATs). CATs provide a tabular representation that connects the inputs, outputs,
and the behaviours of an MAS. Differently from other tools, e.g., logic-based languages,
CATs are more understandable by non-expert users. We also considered the language
used for specifying requirements by [66] as a domain-specific language. In this work,
the authors assume that the requirement concerns reaching some specific states of the
competence-aware systems used to model the MAS.

In [67], the authors use Jadescript [96] to specify the MAS and its requirements.
Jadescript is a novel agent-oriented programming language compiled to Java. In [70], the
authors consider the Planning Domain Definition Language (PDDL) [97] to specify the task
to be performed by the MAS. PDDL is a DSL that is proposed to standardise automated
planning languages. It enables the definition of the domain and the problem. The domain
definition allows users to define predicates and operators (a.k.a. actions). The problem
definition defines the objects of the problem instance, its initial state, and the goal. In [10],
the authors use the Jason language to express the requirements of the MAS application.
Jason is an agent-oriented programming language based on the BDI software model.

4.1.5. Goal-Modelling Techniques

Several goal-modelling techniques (e.g., Tropos [98], Gaia [99], Mobmas [100], INGE-
NIAS [61]) support the development of multi-agent applications. These techniques enable
users to identify the goals and the agents of the application. They also usually support the
decomposition of goals into subgoals, and subgoals into tasks, and the assignment of tasks
to agents.

By analysing the papers presented at the AREA workshop, we noticed that none of
the published papers used goal-modelling techniques to specify the requirements of the
multi-agent system.

4.1.6. Demonstrations

Many approaches use demonstrations to train the agents of a multi-agent application
to perform their tasks [101–104]. Demonstration approaches usually require a human to
demonstrate to the agent the task to be performed. Then, the agent learns and repeats
the task.

One paper presented at the AREA workshop used demonstrations to specify the sys-
tem goals. Specifically, in [69], the authors proposed a semi-supervised learning approach
from demonstrations through program synthesis. Within this approach, a human operator
specifies the goals by demonstrating to the agents how to perform the task. The MAS auto-
matically infers high-level goals from the demonstration, synthesises a computer program
based on the demonstrations, and learns behavioural models for predictive control.

The analysis of the papers presented at the AREA workshop (see Table 1) shows
that, despite the many approaches proposed in the literature, it seems that there is still no
consensus on the strategy to be used to specify MAS requirements. Most of the papers
(5) used domain-specific languages for specifying the MAS requirements, followed by
logic-based languages (2), natural languages (1), and demonstrations (1). Many research
papers often do not explicitly discuss the reason that motivates the usage of a given

J. Sens. Actuator Netw. 2021, 10, 33 11 of 24

specific language for the requirement specification. For example, many papers assume that
requirements are expressed using logic-based languages (a formalism that easily supports
the development of research prototypes). We believe that this is often dictated by the fact
that these languages have formal semantics and are supported by verification and synthesis
tools that can be reused for verifying and synthesising plans of the MAS. Others use DSLs.
We believe that this choice is dictated by the need of providing solutions closer to the needs
of the final users.

4.2. MAS Testing

Testing robotic and multi-agent systems is a complex activity. It starts from the
unit testing level, where the units can be the single agent functionalities, to the system
integration level. At the system integration level, many aspects, such as the concurrent
execution of the agents, the environment integration, the control over the coordination
protocol and communication management and modalities, are considered. Testing all
these aspects is inherently complex, and becomes even harder when tools do not provide
appropriate support.

Agent development frameworks, such as JADE [105] or Jason, support developing
and testing of MAS and robotic applications. However, each of these frameworks comes
with some limitations. These limitations are particularly relevant for the design and devel-
opment of MAS that need to be executed in a physical distributed environment, deployed
over many machines and used by humans. A concrete testing and maintenance support
that covers all of these requirements is still missing. In addition, the performances of V&V
techniques are not sufficient to support the requirement of distributed environments, and
cannot be easily integrated in the running environment.

In this section, we summarise a set of works that considered the problem of testing
MAS and robotic applications. These works have been selected based on the authors’
knowledge and experience. Specifically, in this section, we considered works that are:
(1) exploring current support for testing MASs, (2) analysing applications of standard
testing techniques from the software engineering community, and (3) reporting how V&V
approaches have been exploited in the field.

4.2.1. Support for Testing MASs

A starting point for testing an MAS is provided by the development framework itself,
allowing and supporting the agent internal state inspection and the messages exchange
supervision. Both JADE and Jason offer such kind of tools (the Mind Inspector in Jason,
the Introspector agent, and the Sniffer in JADE), which are usually necessary to perform a
manual first check of the behaviours of agents and of the overall MAS, or that can be the
used to perform more automated tests and verification.

Some studies related to JADE are, for example, [106,107]. In [106], the authors pro-
posed a solution, based on mock agents, that is presented to perform testing of a single role
of an agent under successful and exceptional scenarios; in [107], the authors proposed a
framework developed on JADE [105] for building and running MAS test scenarios. This
framework relies on the use of aspect-oriented techniques to monitor the autonomous
agents during tests and control the test input of asynchronous test cases.

In [108], the authors proposed an approach for enabling DevOps activities (that is,
collaborative programming features to achieve fast and continuous deployment of complex
systems) in a new framework based on JaCaMo-web IDE [109] (which is a tool related
to JaCaMo (http://jacamo.sourceforge.net/ accessed: 14 May 2021), and consequently to
Jason). This extension to the IDE enables for interactive facilities, such as the automatic
access to the updates made to the components (agents), and the possibility to execute
tests on temporary running instances (allowing the framework to check the compatibility
of new changes using the real scenario, since tests are performed while the programmer
types, without affecting running instances). In addition, this extension provides facilities
for preventing conflicts when developers attempt to edit a resource simultaneously, and

http://jacamo.sourceforge.net/

J. Sens. Actuator Netw. 2021, 10, 33 12 of 24

for managing versions. Thus, this is a concrete step toward offering real testing facilities to
AOP.

There are some other works related to MAS testing that do not consider JADE or Jason.
The SUnit framework [110] provides a model based approach based on an extension of
Junit. The eCAT testing framework [111,112] supports continuous testing and automated
test case generation. In [113], the authors proposed a tracing method supported by a tool
implementation to capture and analyse dynamic runtime data collected by logging the
behaviours of a set of agents. These solutions are ad-hoc solutions with limited practical
adoption, compared to JADE or Jason. They usually rely on specific formal languages that
make their use difficult, in particular in industrial applications.

4.2.2. Applications of Standard Testing Techniques from Software Engineering

Standard model-driven testing techniques coming from the SE domain (e.g., [114])
are usually difficult to be used in multi-agent applications. One of the main limitations of
these techniques is that they require a model of the multi-agent application. While there are
standard approaches for modelling object-oriented or service-oriented systems, standard
models for MAS are less mature. Therefore, MAS design is still often performed by relying
on ad-hoc solutions, which need to be standardised. Therefore, we believe that there is
room for exploiting SE techniques in the Agent-Oriented Software Engineering (AOSE)
area [115].

Some examples where standard SE testing approaches or techniques have been
adopted for MASs platforms are reported in the following.

The BEAST methodology [116] is an example of agile testing methodology for multi-
agent systems based on Behaviour Driven Development (BDD). It automatically generates
test cases skeletons from BDD scenarios specifications. The BEAST framework enables
testing MASs based on JADE or JADEX [117] platforms.

In [118], mutation testing is used to test Jason specifications. The authors propose
a set of mutation operators for Jason, and present a mutation testing framework for
individual Jason agents based on these mutation operators. In [119], the authors proposed
a property-based testing (a particular form of model based testing) framework for MASs
specified in Jason. Specifically, the authors proposed to replace a subset of the agents by
a QuickCheck [120] state machine. This state machine interacts with the other agents by
sending messages and modifying the environment, and judging whether the remaining
real agents are correctly implemented by examining the messages sent to any replaced
agent, and the belief perceptions that they receive.

4.2.3. Exploitation and Integration of V&V Approaches

There are many studies to check that the interaction between agents conforms to a
formal specification (which is as a part of the testing activity). This is a very complex
task since it involves the need to formally model and verify the protocol (as described in
Section 3), and a concrete way to oversee the runtime execution, mixing together both a
theoretical and an applied aspect.

A concrete example of the integration of a V&V technique directly into a development
platform is proposed in [121,122], where an extension of the JADE Sniffer is used to create
a monitor able to verify at runtime the MAS execution with respect to a global protocol
specified using the Attribute Global Types formalism [123–125]. Since this is a JADE
agent, it can be directly used in any JADE MAS, provided that the global protocol (if any) is
translated into the requested language. Similarly, in [121], an extension of Jason is proposed
to achieve the same monitoring.

In [39], we can find a work presenting the combination of formal verification and
validation in the context of MAS verification, integrated into the MCAPL [126] framework.
The verification part is obtained through the verification of the BDI agent, implemented in
Gwendolen [6], against a formal model of the environment, while the corresponding valida-
tion is achieved through runtime verification, where monitors are used to verify at runtime
that the real environment does not violate the assumptions made by the model checker.

J. Sens. Actuator Netw. 2021, 10, 33 13 of 24

4.3. Simulation Tools

Physically distributed systems are often needed in industrial and academic solutions,
such as unmanned vehicles, logistic, ambient intelligent systems.

4.3.1. Simulation Tools for MASs

JADE is largely adopted in industry, due to its simplicity in modelling agents’ tasks,
its support for agent communication, and its extensive community support. JADE suffers
from scalability issues [127,128]. In addition, it provides limited support for dynamically
discovering new platforms that join the MAS at run-time. This limitation forces the usage
of p2p communication, which is quite common in real world applications ([129]). However,
differently from Jason, JADE was integrated within existing simulation platforms.

Before deploying the MAS, developers need to test their solutions. To be representative
of a real situation, the physical environment must contain agents representing physical
entities, such as vehicles, computers, and production systems. Testing these systems is
usually done by first relying on simulations. We can simulate the behaviour of an MAS
by relying on some stub entities, instead of using the actual MAS components. Stubs
implement a logic which is similar but usually simpler than the one that will be executed
by the actual agents. For example, stubs may abstract and simplify the interaction protocols
used by the different agents to communicate.

Some simulators for MASs exist, and we will present them in this section, but they
deal with the simulation in different ways.

In [130], the authors propose DMASF, a Python distributed simulator for large scale
MASs (made of billions of agents). In this simulator, agents are implemented as specific
entities using the simulator language. This means that a large number of agents can be
simulated (we speak of numbers that are usually not manageable with JADE nor Jason,
even using a simulation setup with many machines). However, the agents have to be
re-implemented using the language of the simulator. This prevents user from testing actual
code executed by agents of the MAS. Netlogo (http://ccl.northwestern.edu/netlogo/index.
shtml accessed: 14 May 2021) is another simulator that can handle MAS applications with
a high number of agents. However, similarly to DMASF, the logic of the MAS agents has
to be re-implemented using the input language of the simulator. We do not provide a
deeper analysis of these types of simulators since, in the rest of this paper, we will focus on
simulators that can support JADE specifications.

The JREP platform [131] integrates JADE and Repast Simphony [132]. It solves some
limitations of a similar approach presented in [133] that supports an older version of Repast
and was limited by the focus on supply chain performance analysis and by an inefficient
polling strategy affecting performances. The JREP platform offers an MAS development
platform exploiting the JADE support for modelling the internal agent behaviour and the
Repast support for simulating an environment where entities can interact in a simulation.
JREP is a new development platform, where JADE agents need to be modified to implement
new interfaces to be able to interact with the Repast environment. In this way, a bidirectional
interface between the JADE agents and the Repast running environment is achieved, but the
resulting JADE MAS is no longer able to run independently outside of the JREP platform.

In [134,135], the authors proposed the SAJaS API. This API has to be used with Repast
Simphony to create, or improve, MAS based simulations enhanced with JADE-based
features. Then, the “MAS Simulation to Development (MASSim2Dev)” code conversion
tool transforms an MAS, developed using the SAJaS API, to a “standalone” standard JADE
MAS. This tool is useful in scenarios where JADE developers need to perform tests in
a simulator before distributing their JADE MAS. The architectural design of the JADE
framework is based on Repast. However, since it is “JADE-like” environment, it is simpler
to generate the JADE standard implementation. Unfortunately, MASSim2Dev can not
manage the JADE blocking functions, and does not allow Ticker and Waker behaviours
due to problems with time management.

http://ccl.northwestern.edu/netlogo/index.shtml
http://ccl.northwestern.edu/netlogo/index.shtml

J. Sens. Actuator Netw. 2021, 10, 33 14 of 24

4.3.2. Simulation Tools for Robots

Robotics systems also need to be extensively tested before deployment. Testing these
systems is even more complex since robots interact with their physical environments
through sensors and actuators. Therefore, to test these systems, simulators must provide
reliable and accurate simulators between the robots and their environment. The variety of
the environments in which the robots operate (e.g., very deep sea, disaster areas, no gravity
scenarios and so on), makes the creation of accurate simulators even more complex.

In the following, we report a few examples of simulators present in the literature.
USARSim (Urban Search and Rescue Simulation) [136] is a general-purpose multi-

robot simulator environment used as the simulation engine for the Virtual Robots Com-
petition within the Robocup initiative, and has been often adopted in research activities.
It presents an interface with Player [137] (a popular middleware used to control many
different robots), and, thanks to this interface, the code developed within USARSim can be
transparently moved to real platforms without any change (and vice versa). This simulator
provides is relatively accurate: there is a close correspondence between results obtained
within the simulation and the one obtained by the corresponding physical system.

MORSE (Modular Open Robots Simulation Engine) [138] is an open-source application
that can be used in different contexts for the testing and verification of robotics systems. It
is completely modular and can interact with any middleware used in robotics. In addition,
it does not impose a format to which programmers must adapt. MORSE is designed to
handle the simulation of several robots simultaneously, as a distributed application where
the robotics software being evaluated can run on the same or a different computer as the
simulation one. The evaluated components are executed on the target hardware and interact
with the simulator with the very same protocols as the ones of the actual robots, sensors,
and actuators, to make the shift from simulations to actual experiments transparent.

Gazebo [139] is a 3D dynamic multi-robot environment simulator. It is developed
starting from the well known Player/Stage project [137], with the goal of enabling simu-
lating dynamic outdoor environments and providing realistic sensor feedback, while still
modelling robots as dynamic structures composed of rigid bodies connected via joints.
The hardware simulated in Gazebo is designed to accurately reflect the behaviour of its
physical counterpart: consequently, a client program shows an interface that is identical
to the one that will be executed on the final robot. This makes Gazebo to be seamlessly
inserted into the development process of a robotic system. Nowadays, it is largely adopted
by the robotic community, and has a large and active supporting community.

4.4. Perspective of the Authors

Many SE approaches for MAS and robotic applications were proposed in the literature.
However, many challenges still need to be addressed. In the following, we will discuss
three of these challenges.

• lack of clear guidance for the selection of the specification language to be used for the re-
quirement specification. The analysis of the paper presented in Section 4.1 showed the
absence of a consensus on the strategy to be used to specify MAS requirements. Given
the limited number of papers analysed (10), we cannot make any general claim on
our observations, which should be confirmed by more extensive and in-depth studies.
However, we believe that all the formalisms proposed in the literature for requirement
specifications offer pro and cons, and that the research community should spend some
effort in understanding when and how to use them and providing guidelines that
can be used in research and practical works. We believe that our observations can
pave the way for discussions and further studies on the requirement specification of
multi-agent systems.

• lack of mature testing tools for MAS and robotic applications. The works summarised in
Section 4.2 are some examples of SE techniques that support testing MAS and robotic
applications. However, these techniques are supported by research prototypes that
are still not mature enough to be used in industrial settings. Therefore, we believe

J. Sens. Actuator Netw. 2021, 10, 33 15 of 24

that more effort is needed to implement and develop mature tools that can be used in
industrial applications.

• lack of use of industrial simulators. As discussed in Section 4.3, there are many simulators
for JADE MASs. However, these simulators are still not ready for industrial usages.
In addition, while there are many platforms for simulating robotics systems, the
continuous innovation of available solutions from the robotic community (e.g., new
sensors and actuators) is asking for more accurate simulators. It is also necessary to
precisely document the usage scenarios and assumptions of each simulator, to enable
developers to quickly find the best simulation platform for their needs. For this reason,
we believe that research should work with integrating research solutions with real
industrial products.

5. Human–Agent Interaction

Building reliable applications is of primary importance when agents and robots need
to interact with humans. Robots or humans could be directly (negatively) affected by an
agent’s behaviour, e.g., when humans and agents are working together to achieve a goal.

To ensure reliable interactions, humans and agents need to anticipate each other’s
actions and reactions to some degree. They need to communicate and understand each
other, as well as develop a shared understanding of their environment. In addition, humans
need to trust the autonomous system.

We discuss three main approaches for realising reliable applications based on human–
agent interaction, namely (i) building it right from the ground up, (ii) analysing existing
interactions, and (iii) adjusting the users’ expectations when necessary. In addition, the
verification of human–robot interaction was discussed in Section 3.

5.1. Interaction Design

Agent interaction is usually based on interaction protocols. If humans are part of the
system, the means of interaction between a user and an autonomous component have to be
designed before the deployment of the application. Some approaches have been proposed
to design human–robot interaction protocols.

Interaction Design Patterns (IDPs) [140] have been proposed to capture workable
solutions for human–agent interaction. As design patterns are rather descriptive in nature,
they allow for more flexibility in how they are actually implemented. In [141], five design
patterns for eliciting self-disclosure are presented, as self-disclosure is an important part of
getting acquainted, which leads to more trust and helps with long-term interactions. In
their paper, children were the target audience. IDPs are also used in the framework of [142]
to specify how to communicate explanations in order to improve the performance of mixed
human–agent teams.

In [143], 18 guidelines for interactions between humans and AI are proposed from
the perspective of the human–computer interaction field and evaluated through a user
study. The guidelines include making clear what the system can do, how well it can do
it, considering social norms, supporting efficient interaction, giving explanations, and
adapting to the current user.

In [144], planning agents are used to coordinate in disaster response scenarios so that
humans can choose to be guided by an agent. The authors also propose some guidelines
for interaction design: agents should always be able to respond to the needs of the users,
interactions should be rather simple with limited options, and interaction should enable
transfer of control between the autonomous agent and its user. In [145], the authors pro-
posed adjustable autonomy, which enables a (human) controller to switch unmanned aerial
vehicles operation between manual control and autonomy, enabling them to supervise
multiple entities at once and only assume control when necessary.

5.2. Modelling Mixed Human–Agent Systems

If a system can be modelled, it can be simulated (or even verified), it is easier to reason
about it and reach a deeper understanding of the system behaviour. Modelling human–

J. Sens. Actuator Netw. 2021, 10, 33 16 of 24

agent interaction is a challenging endeavour. On the one hand, we have the autonomous
nature of the agent, while, on the other hand, human behaviour tends to be unpredictable.

In [146], the authors proposed an approach to synthesise control protocols. An un-
manned aerial vehicle and the operator are modelled as Markov Decision Processes (MDP),
interacting via synchronised actions. MDPs allow modelling uncertainties regarding the
behaviour of the human operator. The model is then augmented to a stochastic two-player
game to account for non-determinism.

Another modelling approach for autonomous systems (e.g., autonomous driving) is
proposed in [147]. They combine discrete event simulation with system dynamics models
to simulate the effects of different system designs.

In [148], an entire robot swarm interacting with humans is considered. Challenges
include which control type to use in which situation (assigning and controlling a leader,
using the environment, controlling only parameters, or assigning behaviours), and also
visualisation techniques to help the user understand a swarm’s behaviour.

The modelling approaches for interaction design presented in this section are all
created for a specific use case. More work is required to find general-purpose models that
can be used in different domains.

5.3. Trust and Transparency

As systems get more and more autonomous, anticipating their behaviour becomes
more challenging. Transparency can help users understand what their system is doing.
In [149], the authors use a tiered transparency model based on situation awareness to
show that more agent transparency leads to better trust calibration of the human operator
without necessarily increasing their workload. This is further developed in [150], where
the authors argue that bidirectional transparency is important. Thus, agents have to be
designed to understand the plans, reasoning and future projections of their users.

In [151], the author argues that trust (in an autonomous system) at least requires a
framework for recourse, the system’s ability to give explanations, and verification and
validation of the system.

In [150], the authors discuss further challenges regarding trust, namely how to quantify
trust, how to model its evolution, how to create a logic that allows for specifications
including trust, and also how to verify whether a system satisfies such a specification.

5.4. Behaviour Explanations

There are still many cases where full autonomy is not yet achievable. In these cases,
humans have to take on a supervisory role. In these cases, humans may want to implicitly
perform some kind of (mostly informal) verification of the agents’ autonomous behaviour.
One way of achieving this is giving autonomous systems the ability to explain their actions,
their decisions and reasoning. While the previous paragraph handled how to enable users
to get expectations which are more justified, some expectations might still be unreasonable.
Behaviour explanations are one way of realigning these expectations, or even finding flaws
in the autonomous logic of the system.

In [152], the author draws on the large body of work on explanations in the social sci-
ences to infer properties of good explanations that humans will accept. They are contrastive
(explaining why something happened instead of something else), selected (giving only
relevant and important information) and social (considering the needs and background of
the recipient).

In [153], a mechanism for answering “Why?”-questions about an agent’s behaviour is
implemented for the GWENDOLEN language. The questions are answered by identifying
causal factors in the trace of the program, i.e., choice points, where another decision
wouldn’t have led to the result that needs to be explained.

A general perspective on explanations in AI is taken in [154] with a focus on systems
incorporating machine learning. They give a formal definition of explainability, distin-
guishing it from interpretability and transparency of learning algorithms. Among others,
they give possible reasons for making a system explainable (since each system does not

J. Sens. Actuator Netw. 2021, 10, 33 17 of 24

need to be, e.g., if users have no way of reacting to an explanation), possible groups of
target recipients, ways to create interpretations and the relations between these questions.

In [155], the authors take another stance on explanation. They consider explanation as
a model reconciliation problem. Explaining means making the mental models of the agent
and the user converge, leading to a shared understanding of their world, so that the plan
of the agent appears optimal.

5.5. Perspective of the Authors

Many researchers had considered human–agent interaction problems and designed
solutions for these problems. However, many challenges still need to be addressed. In the
following, we will discuss three of these challenges:

• Making human–agent interaction more reliable. There is an increasing need for making
human–agent interaction more reliable. This problem can and has to be tackled from
many different research angles. Interaction design, employing foremost guidelines and
design patterns have laid the foundation for reliable interaction. However, reliability
is mostly targeted implicitly, which leaves a need for the incorporation of an explicit
notion of reliable interaction.

• Providing modelling formalisms that effectively enable modelling human–agent systems.
Modelling human–agent systems requires new ways of specifying formerly informal
concepts, such as trust, transparency, and maybe even more exotic concepts (for a
machine) such as honesty and loyalty. Of course, the ability to model such systems is
closely linked to being able to verify them.

• Making systems more understandable. Finally, making systems more understandable,
e.g., by explaining them, requires many different parts coming together. In the
concrete case of improving reliability, challenges include making sure users correctly
understand what they are told, systems explaining their actions truthfully and users
being able to verify that, or agents being able to understand why users perceive them
as unreliable and act upon that.

6. Conclusions

In this perspective paper, we have discussed the applicability of agent-based program-
ming in robotics, presented an overview of the landscape in the verification and validation
of MAS and robot systems, analysed the use of software engineering in MAS, and described
the latest research in human–agent interaction. Combining knowledge coming from these
research areas may lead to innovative approaches that solve complex problems related to
the development of autonomous robotic systems, and there is growing interest in solutions
that are at the intersection of these research areas. The AREA workshop was a successful
event attended by researchers working in these areas. It was an exciting event that enabled
sharing ideas, open problems, and solutions and fostering cross-disciplinary collaborations
among researchers. In this work, we used the papers and discussions from this workshop
to analyse some of the aspects covered in this perspective.

Our perspective provided a high-level view of current research trends. We also identi-
fied a set of challenges for each of the areas we considered. For multi-agent programming,
the challenges we identified include among others, the limited set of features provided by
existing agent-based languages, immature methodologies and tools, and the limited inte-
gration of agent-based technologies with other techniques. For verification and validations,
the challenges include the scalability of the proposed techniques and the verification of ML
components. For software engineering, the challenges include the lack of clear guidance
for the selection of the specification language to be used for expressing requirements,
the lack of mature testing tools for MAS and robotic applications and the lack of use of
industrial simulators within research works. Finally, for human–agent interactions, the
challenges include the still inadequate reliability of human–agent interaction systems, the
still immature modelling support for these systems, and the lack of techniques able to

J. Sens. Actuator Netw. 2021, 10, 33 18 of 24

make these systems more understandable. We believe that this perspective can be useful
for researchers that aim at working at the intersection of these research areas.

We hope that the different research communities improve their collaboration efforts,
so that the best proposals from different areas can be combined to create new and existing
solutions and tools to be exploited both in academia and in industry.

Author Contributions: All authors (R.C.C., A.F., D.B., C.M. and T.A.) contributed equally to this
work. All authors have read and agreed to the published version of the manuscript.

Funding: Rafael C. Cardoso and Angelo Ferrando’s work in this research was supported by UK
Research and Innovation, and EPSRC Hubs for “Robotics and AI in Hazardous Environments”:
EP/R026092 (FAIR-SPACE), EP/R026173 (ORCA), and EP/R026084 (RAIN). Claudio Menghi is
supported by the European Research Council under the European Union’s Horizon 2020 research
and innovation programme (grant No 694277).

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:

AI Artificial Intelligence
AOSE Agent-Oriented Software Engineering
BDD Behaviour Driven Development
BDI Belief-Desire-Intention
CAT Capability Analysis Table
DSL Domain-Specific Language
IDP Interaction Design Pattern
MAS Multi-Agent System
MDP Markov Decision Process
PDDL Planning Domain Definition Language
ROS Robot Operating System
SE Software Engineering

References
1. Bratman, M.E. Intentions, Plans, and Practical Reason; Harvard University Press: Cambridge, MA, USA, 1987.
2. Rao, A.S.; Georgeff, M. BDI Agents: From Theory to Practice. In Proceedings of the 1st International Conference Multi-Agent

Systems (ICMAS), San Francisco, CA, USA, 12–14 June 1995; pp. 312–319.
3. Bordini, R.H.; Hübner, J.F.; Wooldridge, M. Programming Multi-Agent Systems in AgentSpeak Using Jason (Wiley Series in Agent

Technology); John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2007.
4. Boissier, O.; Bordini, R.H.; Hübner, J.F.; Ricci, A.; Santi, A. Multi-agent Oriented Programming with JaCaMo. Sci. Comput.

Program. 2013, 78, 747–761, doi:10.1016/j.scico.2011.10.004.
5. Boissier, O.; Bordini, R.; Hubner, J.; Ricci, A. Multi-Agent Oriented Programming: Programming Multi-Agent Systems Using JaCaMo;

Intelligent Robotics and Autonomous Agents Series; MIT Press: Cambridge, MA, USA, 2020.
6. Dennis, L.A.; Farwer, B. Gwendolen: A BDI Language for Verifiable Agents. In Workshop on Logic and the Simulation of Interaction

and Reasoning; AISB: London, UK, 2008.
7. Quigley, M.; Conley, K.; Gerkey, B.; Faust, J.; Foote, T.; Leibs, J.; Wheeler, R.; Ng, A. ROS: An open-source Robot Operating

System. In Proceedings of the Workshop on Open Source Software at the International Conference on Robotics and Automation,
Kobe, Japan, 12–17 May 2009.

8. Wesz, R. Integrating Robot Control into the Agentspeak(L) Programming Language. Master’s Thesis, Pontificia Universidade
Catolica do Rio Grande do Sul, Porto Alegre, Brazil, 2015.

9. Morais, M.G.; Meneguzzi, F.R.; Bordini, R.H.; Amory, A.M. Distributed fault diagnosis for multiple mobile robots using an agent
programming language. In Proceedings of the 2015 International Conference on Advanced Robotics (ICAR), Istanbul, Turkey,
27–31 July 2015; pp. 395–400, doi:10.1109/ICAR.2015.7251486.

10. Onyedinma, C.; Gavigan, P.; Esfandiari, B. Toward Campus Mail Delivery Using BDI. In Agents and Robots for Reliable Engineered
Autonomy; Electronic Proceedings in Theoretical Computer Science; Open Publishing Association: The Hague, The Netherlands,
2020; Volume 319, pp. 127–143, doi:10.4204/EPTCS.319.10.

https://doi.org/10.1016/j.scico.2011.10.004
https://doi.org/10.1109/ICAR.2015.7251486
https://doi.org/10.4204/EPTCS.319.10

J. Sens. Actuator Netw. 2021, 10, 33 19 of 24

11. Onyedinma, C.; Gavigan, P.; Esfandiari, B. Toward Campus Mail Delivery Using BDI. J. Sens. Actuator Netw. 2020, 9, 56,
doi:10.3390/jsan9040056.

12. Cardoso, R.C.; Ferrando, A.; Dennis, L.A.; Fisher, M. An Interface for Programming Verifiable Autonomous Agents in ROS. In
Multi-Agent Systems and Agreement Technologies; Springer: Berlin/Heidelberg, Germany, 2020; pp. 191–205.

13. Crick, C.; Jay, G.; Osentoski, S.; Pitzer, B.; Jenkins, O.C. Rosbridge: ROS for Non-ROS Users. In Robotics Research: International
Symposium ISRR; Springer: Berlin/Heidelberg, Germany, 2017; pp. 493–504.

14. Logan, B. An agent programming manifesto. Int. J. Agent-Oriented Softw. Eng. 2018, 6, 187–210.
15. Bordini, R.H.; Seghrouchni, A.E.F.; Hindriks, K.V.; Logan, B.; Ricci, A. Agent programming in the cognitive era. Auton. Agents

Multi Agent Syst. 2020, 34, 37, doi:10.1007/s10458-020-09453-y.
16. Cardoso, R.C.; Ferrando, A. A Review of Agent-Based Programming for Multi-Agent Systems. Computers 2021, 10, 16,

doi:10.3390/computers10020016.
17. Ziafati, P.; Dastani, M.; Meyer, J.J.; van der Torre, L. Agent Programming Languages Requirements for Programming Autonomous

Robots. In Programming Multi-Agent Systems; Springer: Berlin/Heidelberg, Germany, 2013; pp. 35–53.
18. Luckcuck, M.; Farrell, M.; Dennis, L.A.; Dixon, C.; Fisher, M. Formal specification and verification of autonomous robotic systems:

A survey. ACM Comput. Surv. CSUR 2019, 52, 1–41.
19. Farrell, M.; Luckcuck, M.; Fisher, M. Robotics and integrated formal methods: Necessity meets opportunity. In International

Conference on Integrated Formal Methods; Springer: Berlin/Heidelberg, Germany, 2018; pp. 161–171.
20. Lomuscio, A.; Qu, H.; Raimondi, F. MCMAS: An open-source model checker for the verification of multi-agent systems. Int. J.

Softw. Tools Technol. Transf. 2017, 19, 9–30.
21. Kouvaros, P.; Lomuscio, A. Parameterised verification for multi-agent systems. Artif. Intell. 2016, 234, 152–189.
22. Čermák, P.; Lomuscio, A.; Murano, A. Verifying and synthesising multi-agent systems against one-goal strategy logic specifica-

tions. In Proceedings of the AAAI Conference on Artificial Intelligence, Austin, TX, USA, 25–30 January 2015; Volume 29.
23. Belardinelli, F.; Lomuscio, A.; Murano, A.; Rubin, S. Verification of Multi-agent Systems with Imperfect Information and Public

Actions. In Proceedings of the AAMAS, São Paulo, Brazil, 5–8 May 2017; Volume 17, pp. 1268–1276.
24. Dennis, L.; Fisher, M.; Slavkovik, M.; Webster, M. Formal verification of ethical choices in autonomous systems. Robot. Auton.

Syst. 2016, 77, 1–14.
25. Dennis, L.A.; Fisher, M.; Webster, M.P.; Bordini, R.H. Model checking agent programming languages. Autom. Softw. Eng. 2012,

19, 5–63.
26. Kashi, R.N.; D’Souza, M. Vermillion: A Verifiable Multiagent Framework for Dependable and Adaptable Avionics; Technical Report;

IIIT-Bangalore: Bengaluru, India, 2018.
27. Meyer, B.; Baudoin, C. Méthodes de Programmation, 1st ed.; Eyrolles: Paris, France, 1978.
28. Karoui, O.; Khalgui, M.; Koubâa, A.; Guerfala, E.; Li, Z.; Tovar, E. Dual mode for vehicular platoon safety: Simulation and formal

verification. Inf. Sci. 2017, 402, 216–232.
29. Bengtsson, J.; Larsen, K.G.; Larsson, F.; Pettersson, P.; Yi, W. UPPAAL—A Tool Suite for Automatic Verification of Real-Time

Systems. In Workshop on Verification and Control of Hybrid Systems; Springer: Berlin/Heidelberg, Germany, 1995; Volume 1066,
pp. 232–243, doi:10.1007/BFb0020949.

30. Kamali, M.; Dennis, L.A.; McAree, O.; Fisher, M.; Veres, S.M. Formal verification of autonomous vehicle platooning. Sci. Comput.
Program. 2017, 148, 88–106.

31. Al-Saqqar, F.; Bentahar, J.; Sultan, K.; Wan, W.; Asl, E.K. Model checking temporal knowledge and commitments in multi-agent
systems using reduction. Simul. Model. Pract. Theory 2015, 51, 45–68.

32. Pecheur, C.; Raimondi, F. Symbolic Model Checking of Logics with Actions. In Model Checking and Artificial Intelligence; Springer:
Berlin/Heidelberg, Germany, 2006; Volume 4428, pp. 113–128, doi:10.1007/978-3-540-74128-2_8.

33. Cimatti, A.; Clarke, E.M.; Giunchiglia, F.; Roveri, M. NUSMV: A New Symbolic Model Checker. Int. J. Softw. Tools Technol. Transf.
2000, 2, 410–425.

34. Ancona, D.; Ferrando, A.; Mascardi, V. Parametric Runtime Verification of Multiagent Systems. In Proceedings of the AAMAS,
São Paulo, Brazil, 8–12 May 2017; Volume 17, pp. 1457–1459.

35. Ferrando, A.; Ancona, D.; Mascardi, V. Decentralizing MAS Monitoring with DecAMon. In Proceedings of the Conference on
Autonomous Agents and MultiAgent Systems, São Paulo, Brazil, 8–12 May 2017; ACM: New York, NY, USA, 2017; pp. 239–248.

36. Bakar, N.A.; Selamat, A. Runtime verification of multi-agent systems interaction quality. In Asian Conference on Intelligent
Information and Database Systems; Springer: Berlin/Heidelberg, Germany, 2013; pp. 435–444.

37. Roungroongsom, C.; Pradubsuwun, D. Formal Verification of Multi-agent System Based on JADE: A Semi-runtime Approach. In
Recent Advances in Information and Communication Technology 2015; Springer: Berlin/Heidelberg, Germany, 2015; pp. 297–306.

38. Lim, Y.J.; Hong, G.; Shin, D.; Jee, E.; Bae, D.H. A runtime verification framework for dynamically adaptive multi-agent systems.
In Proceedings of the International Conference on Big Data and Smart Computing (BigComp), Hong Kong, China, 18–20 January
2016; pp. 509–512.

39. Ferrando, A.; Dennis, L.A.; Ancona, D.; Fisher, M.; Mascardi, V. Verifying and Validating Autonomous Systems: Towards an
Integrated Approach. In Runtime Verification RV; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany,
2018; Volume 11237, pp. 263–281.

https://doi.org/10.3390/jsan9040056
https://doi.org/10.1007/s10458-020-09453-y
https://doi.org/10.3390/computers10020016
https://doi.org/10.1007/BFb0020949
https://doi.org/10.1007/978-3-540-74128-2_8

J. Sens. Actuator Netw. 2021, 10, 33 20 of 24

40. Webster, M.; Dixon, C.; Fisher, M.; Salem, M.; Saunders, J.; Koay, K.L.; Dautenhahn, K.; Saez-Pons, J. Toward reliable autonomous
robotic assistants through formal verification: A case study. IEEE Trans. Hum.-Mach. Syst. 2015, 46, 186–196.

41. Sierhuis, M.; Clancey, W.J. Modeling and Simulating Work Practice: A Method for Work Systems Design. IEEE Intell. Syst. 2002,
17, 32–41, doi:10.1109/MIS.2002.1039830.

42. Holzmann, G. Spin Model Checker, the: Primer and Reference Manual, 1st ed.; Addison-Wesley Professional: Boston, MA, USA, 2003.
43. Holzmann, G.J. The Model Checker SPIN. IEEE Trans. Softw. Eng. 1997, 23, 279–295, doi:10.1109/32.588521.
44. Bérard, B.; Lafourcade, P.; Millet, L.; Potop-Butucaru, M.; Thierry-Mieg, Y.; Tixeuil, S. Formal verification of mobile robot

protocols. Distrib. Comput. 2016, 29, 459–487.
45. Barnat, J.; Brim, L.; Cerná, I.; Moravec, P.; Rockai, P.; Simecek, P. DiVinE—A Tool for Distributed Verification. In Computer Aided

Verification, CAV; Springer: Berlin/Heidelberg, Germany, 2006; Volume 4144, pp. 278–281.
46. Halder, R.; Proença, J.; Macedo, N.; Santos, A. Formal verification of ROS-based robotic applications using timed-automata.

In Proceedings of the IEEE/ACM FME Workshop on Formal Methods in Software Engineering (FormaliSE), Buenos Aires,
Argentina, 27–27 May 2017; pp. 44–50.

47. Wang, L.; Ames, A.; Egerstedt, M. Safety barrier certificates for heterogeneous multi-robot systems. In Proceedings of the 2016
American Control Conference (ACC), Boston, MA, USA, 6–8 July 2016; pp. 5213–5218.

48. Foughali, M.; Berthomieu, B.; Dal Zilio, S.; Ingrand, F.; Mallet, A. Model checking real-time properties on the functional layer of
autonomous robots. In International Conference on Formal Engineering Methods; Springer: Cham, Switzerland, 2016; pp. 383–399.

49. Foughali, M.; Berthomieu, B.; Dal Zilio, S.; Hladik, P.E.; Ingrand, F.; Mallet, A. Formal verification of complex robotic systems on
resource-constrained platforms. In Proceedings of the IEEE/ACM International FME Workshop on Formal Methods in Software
Engineering (FormaliSE), Gothenburg, Sweden, 27 May–3 June 2018; pp. 2–9.

50. Fleury, S.; Herrb, M.; Chatila, R. GenoM: A tool for the specification and the implementation of operating modules in a distributed
robot architecture. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robot and Systems, Innovative
Robotics for Real-World Applications, Grenoble, France, 11 September 1997; pp. 842–849, doi:10.1109/IROS.1997.655108.

51. Berthomieu, B.; Bodeveix, J.; Filali, M.; Garavel, H.; Lang, F.; Peres, F.; Saad, R.; Stöcker, J.; Vernadat, F. The Syntax and Semantics of
FIACRE; Technical Report, Deliverable number F.3.2.11 of project TOPCASED; LAAS-CNRS: Toulouse, France, 2009.

52. Vicentini, F.; Askarpour, M.; Rossi, M.G.; Mandrioli, D. Safety assessment of collaborative robotics through automated formal
verification. IEEE Trans. Robot. 2019, 36, 42–61.

53. Askarpour, M.; Mandrioli, D.; Rossi, M.; Vicentini, F. SAFER-HRC: Safety analysis through formal verification in human–robot
collaboration. In International Conference on Computer Safety, Reliability, and Security; Springer: Berlin/Heidelberg, Germany, 2016;
pp. 283–295.

54. Pradella, M. A User’s Guide to Zot. arXiv 2009, arXiv:0912.5014.
55. Wang, R.; Wei, Y.; Song, H.; Jiang, Y.; Guan, Y.; Song, X.; Li, X. From offline towards real-time verification for robot systems. IEEE

Trans. Ind. Inform. 2018, 14, 1712–1721.
56. Ferrando, A.; Cardoso, R.C.; Fisher, M.; Ancona, D.; Franceschini, L.; Mascardi, V. ROSMonitoring: A Runtime Verification

Framework for ROS. In Towards Autonomous Robotic Systems; Springer: Berlin/Heidelberg, Germany, 2020; pp. 387–399.
57. Ferrando, A.; Kootbally, Z.; Piliptchak, P.; Cardoso, R.C.; Schlenoff, C.; Fisher, M. Runtime Verification of the ARIAC Competition:

Can a Robot be Agile and Safe at the Same Time? In Proceedings of the Italian Workshop on Artificial Intelligence and Robotics,
Online, 25–27 November 2020; Volume 2806, pp. 7–11.

58. Sun, X.; Khedr, H.; Shoukry, Y. Formal verification of neural network controlled autonomous systems. In ACM International
Conference on Hybrid Systems: Computation and Control; Association for Computing Machinery: Montreal, QC, Canada, 2019; pp.
147–156.

59. Askarpour, M.; Menghi, C.; Belli, G.; Bersani, M.M.; Pelliccione, P. Mind the gap: Robotic Mission Planning Meets Software
Engineering. In FormaliSE@ICSE 2020: International Conference on Formal Methods in Software Engineering; ACM: New York, NY,
USA, 2020; pp. 55–65.

60. Menghi, C.; Tsigkanos, C.; Pelliccione, P.; Ghezzi, C.; Berger, T. Specification Patterns for Robotic Missions. IEEE Trans. Softw.
Eng. 2019, 1, doi:10.1109/TSE.2019.2945329.

61. Pavón, J.; Gómez-Sanz, J.J.; Fuentes, R. The INGENIAS methodology and tools. In Agent-Oriented Methodologies; IGI Global:
Hershey, PA, USA, 2005; pp. 236–276.

62. Askarpour, M.; Rossi, M.; Tiryakiler, O. Co-Simulation of Human-Robot Collaboration: from Temporal Logic to 3D Simulation.
In Agents and Robots for Reliable Engineered Autonomy; Electronic Proceedings in Theoretical Computer Science; Open Publishing
Association: The Hague, The Netherlands, 2020; Volume 319, pp. 1–8, doi:10.4204/EPTCS.319.1.

63. Halvari, T.; Nurminen, J.K.; Mikkonen, T. Testing the Robustness of AutoML Systems. In Agents and Robots for Reliable Engineered
Autonomy; Electronic Proceedings in Theoretical Computer Science; Open Publishing Association: The Hague, The Netherlands,
2020; Volume 319, pp. 103–116, doi:10.4204/EPTCS.319.8.

64. Lestingi, L.; Askarpour, M.; Bersani, M.; Rossi, M. Statistical Model Checking of Human-Robot Interaction Scenarios. In Agents
and Robots for Reliable Engineered Autonomy; Electronic Proceedings in Theoretical Computer Science; Open Publishing Association:
The Hague, The Netherlands, 2020; Volume 319; pp. 9–17, doi:10.4204/EPTCS.319.2.

https://doi.org/10.1109/MIS.2002.1039830
https://doi.org/10.1109/32.588521
https://doi.org/10.1109/IROS.1997.655108
https://doi.org/10.1109/TSE.2019.2945329
https://doi.org/10.4204/EPTCS.319.1
https://doi.org/10.4204/EPTCS.319.8
https://doi.org/10.4204/EPTCS.319.2

J. Sens. Actuator Netw. 2021, 10, 33 21 of 24

65. Edwards, V.; McGuire, L.; Redfield, S. Establishing Reliable Robot Behavior using Capability Analysis Tables. In Agents and
Robots for Reliable Engineered Autonomy; Electronic Proceedings in Theoretical Computer Science; Open Publishing Association:
The Hague, The Netherlands, 2020; Volume 319, pp. 19–35, doi:10.4204/EPTCS.319.3.

66. Basich, C.; Svegliato, J.; Wray, K.H.; Witwicki, S.J.; Zilberstein, S. Improving Competence for Reliable Autonomy. In Agents and
Robots for Reliable Engineered Autonomy; Electronic Proceedings in Theoretical Computer Science; Open Publishing Association:
The Hague, The Netherlands, 2020; Volume 319, pp. 37–53, doi:10.4204/EPTCS.319.4.

67. Iotti, E.; Petrosino, G.; Monica, S.; Bergenti, F. Exploratory Experiments on Programming Autonomous Robots in Jadescript. In
Agents and Robots for Reliable Engineered Autonomy; Electronic Proceedings in Theoretical Computer Science; Open Publishing
Association: The Hague, The Netherlands, 2020; Volume 319, pp. 55–67, doi:10.4204/EPTCS.319.5.

68. Ancona, D.; Bassano, C.; Chessa, M.; Mascardi, V.; Solari, F. Engineering Reliable Interactions in the Reality-Artificiality
Continuum. In Agents and Robots for Reliable Engineered Autonomy; Electronic Proceedings in Theoretical Computer Science; Open
Publishing Association: The Hague, The Netherlands, 2020; Volume 319, pp. 69–80, doi:10.4204/EPTCS.319.6.

69. Smith, S.C.; Ramamoorthy, S. Semi-supervised Learning From Demonstration Through Program Synthesis: An Inspection Robot
Case Study. In Agents and Robots for Reliable Engineered Autonomy; Electronic Proceedings in Theoretical Computer Science; Open
Publishing Association: The Hague, The Netherlands, 2020; Volume 319, pp. 81–101, doi:10.4204/EPTCS.319.7.

70. Stringer, P.; Cardoso, R.C.; Huang, X.; Dennis, L.A. Adaptable and Verifiable BDI Reasoning. In Agents and Robots for Reliable
Engineered Autonomy; Electronic Proceedings in Theoretical Computer Science; Open Publishing Association: The Hague, The
Netherlands, 2020; Volume 319, pp. 117–125, doi:10.4204/EPTCS.319.9.

71. Lami, G.; Gnesi, S.; Fabbrini, F.; Fusani, M.; Trentanni, G. An Automatic Tool for the Analysis of Natural Language Requirements;
Technical Report; CNR Information Science and Technology Institute: Pisa, Italy, 2004.

72. Ambriola, V.; Gervasi, V. Processing natural language requirements. In Proceedings of the International Conference Automated
Software Engineering, Incline Village, NV, USA, 1–5 November 1997; pp. 36–45.

73. Lazaridou, A.; Potapenko, A.; Tieleman, O. Multi-agent communication meets natural language: Synergies between functional
and structural language learning. arXiv 2020, arXiv:2005.07064.

74. Slhoub, K.; Carvalho, M.; Bond, W. Recommended practices for the specification of multi-agent systems requirements. In
Proceedings of the IEEE Annual Ubiquitous Computing, Electronics and Mobile Communication Conference (UEMCON), New
York, NY, USA, 19–21 October 2017; pp. 179–185.

75. Moreno, J.C.G.; López, L.V. Using Techniques Based on Natural Language in the Development Process of Multiagent Systems.
In International Symposium on Distributed Computing and Artificial Intelligence 2008 (DCAI 2008); Springer: Berlin/Heidelberg,
Germany, 2009; pp. 269–273.

76. Elkholy, W.; El-Menshawy, M.; Bentahar, J.; Elqortobi, M.; Laarej, A.; Dssouli, R. Model checking intelligent avionics systems for
test cases generation using multi-agent systems. Expert Syst. Appl. 2020, 156, 113458, doi:10.1016/j.eswa.2020.113458.

77. Menghi, C.; Garcia, S.; Pelliccione, P.; Tumova, J. Multi-robot LTL Planning Under Uncertainty. In Formal Methods; Springer:
Berlin/Heidelberg, Germany, 2018; pp. 399–417.

78. Lacerda, B.; Lima, P.U. Designing petri net supervisors for multi-agent systems from LTL specifications. In International Conference
on Autonomous Agents and Multiagent Systems-Volume 3; International Foundation for Autonomous Agents and Multiagent
Systems: Taipei, Taiwan, 2011; pp. 1253–1254.

79. Ghezzi, C.; Mandrioli, D.; Morzenti, A. TRIO: A logic language for executable specifications of real-time systems. J. Syst. Softw.
1990, 12, 107–123.

80. Behrmann, G.; David, A.; Larsen, K.G. A tutorial on uppaal. In Formal Methods for the Design of Real-Time Systems; Springer:
Berlin/Heidelberg, Germany; Bertinoro, Italy, 2004; pp. 200–236.

81. Menghi, C.; Tsigkanos, C.; Berger, T.; Pelliccione, P. PsALM: Specification of Dependable Robotic Missions. In Proceedings of the
2019 IEEE/ACM 41st International Conference on Software Engineering: Companion Proceedings (ICSE-Companion), Montreal,
QC, Canada, 25–31 May 2019; pp. 99–102, doi:10.1109/ICSE-Companion.2019.00048.

82. Boufaied, C.; Menghi, C.; Bianculli, D.; Briand, L.; Parache, Y.I. Trace-Checking Signal-based Temporal Properties: A Model-
Driven Approach. In Proceedings of the IEEE/ACM International Conference on Automated Software Engineering (ASE),
Melbourne, Australia, 21–25 September 2020; pp. 1004–1015.

83. Arcaini, P.; Mirandola, R.; Riccobene, E.; Scandurra, P. MSL: A pattern language for engineering self-adaptive systems. J. Syst.
Softw. 2020, 164, 110558.

84. Musil, A.; Musil, J.; Weyns, D.; Bures, T.; Muccini, H.; Sharaf, M. Patterns for self-adaptation in cyber-physical systems. In
Multi-Disciplinary Engineering for Cyber-Physical Production Systems; Springer: Berlin/Heidelberg, Germany, 2017; pp. 331–368.

85. Washizaki, H.; Uchida, H.; Khomh, F.; Guéhéneuc, Y.G. Studying software engineering patterns for designing machine learning
systems. In Proceedings of the International Workshop on Empirical Software Engineering in Practice (IWESEP), Tokyo, Japan,
13–14 December 2019; pp. 49–495.

86. Washizaki, H.; Ogata, S.; Hazeyama, A.; Okubo, T.; Fernandez, E.B.; Yoshioka, N. Landscape of architecture and design patterns
for iot systems. Internet Things J. 2020, 7, 10091–10101.

87. Garcia, A.; Silva, V.; Chavez, C.; Lucena, C. Engineering multi-agent systems with aspects and patterns. J. Braz. Comput. Soc.
2002, 8, 57–72.

https://doi.org/10.4204/EPTCS.319.3
https://doi.org/10.4204/EPTCS.319.4
https://doi.org/10.4204/EPTCS.319.5
https://doi.org/10.4204/EPTCS.319.6
https://doi.org/10.4204/EPTCS.319.7
https://doi.org/10.4204/EPTCS.319.9
https://doi.org/https://doi.org/10.1016/j.eswa.2020.113458
https://doi.org/10.1109/ICSE-Companion.2019.00048

J. Sens. Actuator Netw. 2021, 10, 33 22 of 24

88. Juziuk, J.; Weyns, D.; Holvoet, T. Design patterns for multi-agent systems: A systematic literature review. In Agent-Oriented
Software Engineering; Springer: Berlin/Heidelberg, Germany, 2014; pp. 79–99.

89. Dastani, M.; Testerink, B. Design patterns for multi-agent programming. Int. J. Agent-Oriented Softw. Eng. 2016, 5, 167–202.
90. Challenger, M.; Kardas, G.; Tekinerdogan, B. A systematic approach to evaluating domain-specific modeling language environ-

ments for multi-agent systems. Softw. Qual. J. 2016, 24, 755–795.
91. Challenger, M.; Demirkol, S.; Getir, S.; Mernik, M.; Kardas, G.; Kosar, T. On the use of a domain-specific modeling language in the

development of multiagent systems. Eng. Appl. Artif. Intell. 2014, 28, 111–141.
92. Bauer, B.; Müller, J.P.; Odell, J. Agent UML: A formalism for specifying multiagent software systems. Int. J. Softw. Eng. Knowl.

Eng. 2001, 11, 207–230.
93. García, S.; Pelliccione, P.; Menghi, C.; Berger, T.; Bures, T. High-level mission specification for multiple robots. In Proceedings

of the ACM SIGPLAN International Conference on Software Language Engineering, Athens, Greece, 20–22 October 2019;
pp. 127–140.

94. Brazier, F.M.T.; Dunin-Keplicz, B.; Jennings, N.R.; Treur, J. Formal Specification of Multi-Agent Systems: A Real-World Case.
In Proceedings of the First International Conference on Multiagent Systems, San Francisco, CA, USA, 12–14 June 1995; The MIT
Press: Cambridge, MA, USA, 1995; pp. 25–32.

95. Van Langevelde, I.; Philipsen, A.; Treur, J. Formal Specification of Compositional Architectures. In ECAI’92: European Conference
on Artificial Intelligence; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1992; pp. 272–276.

96. Bergenti, F.; Monica, S.; Petrosino, G. A scripting language for practical agent-oriented programming. In ACM SIGPLAN
International Workshop on Programming Based on Actors, Agents, and Decentralized Control; Association for Computing Machinery:
New York, NY, USA, 2018; pp. 62–71.

97. Aeronautiques, C.; Howe, A.; Knoblock, C.; McDermott, I.D.; Ram, A.; Veloso, M.; Weld, D.; SRI, D.W.; Barrett, A.; Christianson, D.;
et al. PDDL|The Planning Domain Definition Language; Technical Report; Yale Center for Computational Vision and Control: New
Haven, CT, USA, 1998.

98. Giunchiglia, F.; Mylopoulos, J.; Perini, A. The tropos software development methodology: Processes, models and diagrams. In
International Workshop on Agent-Oriented Software Engineering; Springer: Berlin/Heidelberg, Germany, 2002; pp. 162–173.

99. Wooldridge, M.; Jennings, N.R.; Kinny, D. The Gaia methodology for agent-oriented analysis and design. Auton. Agents
Multi-Agent Syst. 2000, 3, 285–312.

100. Tran, N.; Beydoun, G.; Low, G. Design of a peer-to-peer information sharing MAS using MOBMAS (ontology-centric agent
oriented methodology). In Advances in Information Systems Development; Springer: Berlin/Heidelberg, Germany, 2007; pp. 63–76.

101. Nicolescu, M.N.; Mataric, M.J. Natural methods for robot task learning: Instructive demonstrations, generalization and practice.
In Proceedings of the International Joint Conference on Autonomous Agents and Multiagent Systems, Melbourne, Australia,
14–18 July 2003; pp. 241–248.

102. Verstaevel, N.; Boes, J.; Nigon, J.; d’Amico, D.; Gleizes, M.P. Lifelong machine learning with adaptive multi-agent systems.
In Proceedings of the International Conference on Agents and Artificial Intelligence (ICAART 2017), Porto, Portugal, 24–26
February 2017; Volume 2, pp. pp–275.

103. Wang, X.; Klabjan, D. Competitive multi-agent inverse reinforcement learning with sub-optimal demonstrations. In Proceedings
of the 35th International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; pp. 5143–5151.

104. Le, H.M.; Yue, Y.; Carr, P.; Lucey, P. Coordinated multi-agent imitation learning. In Proceedings of the 34th International
Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; pp. 1995–2003.

105. Bellifemine, F.L.; Caire, G.; Greenwood, D. Developing Multi-Agent Systems with JADE; Wiley: Hoboken, NJ, USA, 2007.
106. Coelho, R.; Kulesza, U.; von Staa, A.; Lucena, C. Unit Testing in Multi-Agent Systems Using Mock Agents and Aspects. In

SELMAS’06: International Workshop on Software Engineering for Large-Scale Multi-Agent Systems; ACM: New York, NY, USA, 2006;
pp. 83–90, doi:10.1145/1138063.1138079.

107. Coelho, R.; Cirilo, E.; Kulesza, U.; von Staa, A.; Rashid, A.; Lucena, C. JAT: A Test Automation Framework for Multi-Agent
Systems. In Proceedings of the IEEE International Conference on Software Maintenance, Paris, France, 2–5 October 2007;
pp. 425–434.

108. Amaral, C.J.; Kampik, T.; Cranefield, S. A Framework for Collaborative and Interactive Agent-Oriented Developer Operations.
In AAMAS’20: Proceedings of the International Conference on Autonomous Agents and MultiAgent Systems; International Foundation
for Autonomous Agents and Multiagent Systems: Richland, SC, USA, 2020; pp. 2092–2094.

109. Amaral, C.J.; Hübner, J.F. Jacamo-Web is on the Fly: An Interactive Multi-Agent System IDE. In Engineering Multi-Agent Systems;
Springer: Berlin/Heidelberg, Germany, 2020; pp. 246–255.

110. Tiryaki, A.M.; Öztuna, S.; Dikenelli, O.; Erdur, R.C. SUNIT: A Unit Testing Framework for Test Driven Development of
Multi-Agent Systems. In Agent-Oriented Software Engineering VII; Springer: Berlin/Heidelberg, Germany, 2007; pp. 156–173.

111. Nguyen, C.D.; Perini, A.; Tonella, P. Automated Continuous Testing of MultiAgent Systems. In Proceedings of the European
Workshop on Multi-Agent Systems (EUMAS), Hammamet, Tunisia, 13–14 December, 2007.

112. Nguyen, C.D.; Perini, A.; Tonella, P.; Miles, S.; Harman, M.; Luck, M. Evolutionary Testing of Autonomous Software Agents.
In AAMAS’09: Proceedings of the International Conference on Autonomous Agents and Multiagent Systems—Volume 1; International
Foundation for Autonomous Agents and Multiagent Systems: Richland, SC, USA, 2009; pp. 521–528.

https://doi.org/10.1145/1138063.1138079

J. Sens. Actuator Netw. 2021, 10, 33 23 of 24

113. Lam, D.N.; Barber, K.S. Debugging Agent Behavior in an Implemented Agent System. In Programming Multi-Agent Systems;
Springer: Berlin/Heidelberg, Germany, 2005; pp. 104–125.

114. Zhang, Z.; Thangarajah, J.; Padgham, L. Model Based Testing for Agent Systems. In AAMAS’09: Proceedings of the International
Conference on Autonomous Agents and Multiagent Systems—Volume 2; International Foundation for Autonomous Agents and
Multiagent Systems: Richland, SC, USA, 2009; pp. 1333–1334.

115. Padmanaban, R.; Thirumaran, M.; Suganya, K.; Priya, R.V. AOSE Methodologies and Comparison of Object Oriented and Agent
Oriented Software Testing. In ICIA-16: Proceedings of the International Conference on Informatics and Analytics; ACM: New York, NY,
USA, 2016; doi:10.1145/2980258.2982111.

116. Carrera, Á.; Iglesias, C.; Garijo, M. Beast methodology: An agile testing methodology for multi-agent systems based on behaviour
driven development. Inf. Syst. Front. 2014, 16, 169–182, doi:10.1007/s10796-013-9438-5.

117. Braubach, L.; Pokahr, A.; Lamersdorf, W. Jadex: A BDI-Agent System Combining Middleware and Reasoning. In Software
Agent-Based Applications, Platforms and Development Kits; Birkhäuser Basel: Basel, Switzerland, 2005; pp. 143–168.

118. Huang, Z.; Alexander, R.; Clark, J. Mutation Testing for Jason Agents. In Engineering Multi-Agent Systems; Springer:
Berlin/Heidelberg, Germany, 2014; pp. 309–327.

119. Benac Earle, C.; Fredlund, L.Å. A Property-Based Testing Framework for Multi-Agent Systems. In AAMAS’19: Proceedings of the
International Conference on Autonomous Agents and MultiAgent Systems; International Foundation for Autonomous Agents and
Multiagent Systems: Richland, SC, USA, 2019; pp. 1823–1825.

120. Claessen, K.; Hughes, J. QuickCheck: A Lightweight Tool for Random Testing of Haskell Programs. SIGPLAN Not. 2000,
35, 268–279, doi:10.1145/357766.351266.

121. Briola, D.; Mascardi, V.; Ancona, D. Distributed Runtime Verification of JADE and Jason Multiagent Systems with Prolog. In
Proceedings of the Conference on Computational Logic, Torino, Italy, 16–18 June 2014; Volume 1195, pp. 319–323.

122. Ancona, D.; Briola, D.; Ferrando, A.; Mascardi, V. MAS-DRiVe: A Practical Approach to Decentralized Runtime Verification of
Agent Interaction Protocols. In Proceedings of the Workshop “From Objects to Agents” Co-Located with 18th European Agent
Systems Summer School (EASSS 2016), Catania, Italy, 29–30 June 2016; Volume 1664, pp. 35–43.

123. Mascardi, V.; Ancona, D. Attribute Global Types for Dynamic Checking of Protocols in Logic-based Multiagent Systems. Theory
Pract. Log. Program. 2013, 13, 4–5.

124. Mascardi, V.; Briola, D.; Ancona, D. On the Expressiveness of Attribute Global Types: The Formalization of a Real Multiagent
System Protocol. In AI*IA 2013: Advances in Artificial Intelligence—XIIIth International Conference of the Italian Association for Artificial
Intelligence; Springer:Berlin/Heidelberg, Germany, 2013; Volume 8249, pp. 300–311.

125. Ancona, D.; Briola, D.; Ferrando, A.; Mascardi, V. Runtime verification of fail-uncontrolled and ambient intelligence systems: A
uniform approach. Intell. Artif. 2015, 9, 131–148, doi:10.3233/IA-150084.

126. Dennis, L.A. The MCAPL Framework including the Agent Infrastructure Layer and Agent Java Pathfinder. J. Open Source Softw.
2018, 3.doi:10.21105/joss.00617.

127. Mengistu, D.; Tröger, P.; Lundberg, L.; Davidsson, P. Scalability in Distributed Multi-Agent Based Simulations: The JADE Case.
In Proceedings of the Second International Conference on Future Generation Communication and Networking Symposia, Hinan,
China, 13–15 December 2008; Volume 5, pp. 93–99, doi:10.1109/FGCNS.2008.158.

128. Lo Piccolo, F.; Bianchi, G.; Salsano, S. Measurement Study of the Mobile Agent JADE Platform. In Proceedings of the International
Symposium on on World of Wireless, Mobile and Multimedia Networks, Buffalo-Niagara Falls, NY, USA, 26–29 June 2006; pp.
638–646.

129. Briola, D.; Micucci, D.; Mariani, L. A platform for P2P agent-based collaborative applications. Softw. Pract. Exp. 2019, 49, 549–558,
doi:10.1002/spe.2657.

130. Aprameya Rao, I.V.; Jain, M.; Karlapalem, K. Towards Simulating Billions of Agents in Thousands of Seconds. In AAMAS’07:
Proceedings of the 6th International Joint Conference on Autonomous Agents and Multiagent Systems; ACM: New York, NY, USA, 2007.

131. Gormer, J.; Homoceanu, G.; Mumme, C.; Huhn, M.; Muller, J.P. JREP: Extending Repast Simphony for JADE Agent Behavior
Components. In Proceedings of the IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent
Technology, Lyon, France, 22–27 August 2011; Volume 2, pp. 149–154, doi:10.1109/WI-IAT.2011.120.

132. North, M.; Howe, T.; Collier, N.; Vos, J. Repast Simphony runtime system. In Proceedings of the Agent 2005 Conference on
Generative Social Processes, Models, and Mechanisms, Chicago, IL, USA, 13–15 October 2005.

133. Yoo, M.J.; Glardon, R. Combining JADE and Repast for the Complex Simulation of Enterprise Value-Adding Networks. In
Agent-Oriented Software Engineering IX; Springer: Berlin/Heidelberg, Germany, 2009; pp. 243–256.

134. Cardoso, H.L. SAJaS: Enabling JADE-Based Simulations. In Transactions on Computational Collective Intelligence XX; Springer:
Berlin/Heidelberg, Germany, 2015; pp. 158–178, doi:10.1007/978-3-319-27543-7_8.

135. Lopes, J.; Cardoso, H. From simulation to development in MAS a JADE-based approach. In Proceedings of the ICAART—
International Conference on Agents and Artificial Intelligence, Lisbon, Portugal, 10–12 January 2015; Volume 1, pp. 75–86.

136. Carpin, S.; Lewis, M.; Wang, J.; Balakirsky, S.; Scrapper, C. USARSim: A robot simulator for research and education. In
Proceedings of the IEEE International Conference on Robotics and Automation, Rome, Italy, 10–14 April 2007; pp. 1400–1405.

137. Brian P. Gerkey, R.T.V.; Howard, A. The Player/Stage Project: Tools for Multi-Robot and Distributed Sensor Systems. In
Proceedings of the International Conference on Advanced Robotics, Coimbra, Portuga, 30 June–3 July 2003; pp. 317–323.

https://doi.org/10.1145/2980258.2982111
https://doi.org/10.1007/s10796-013-9438-5
https://doi.org/10.1145/357766.351266
https://doi.org/10.3233/IA-150084
https://doi.org/10.21105/joss.00617
https://doi.org/10.1109/FGCNS.2008.158
https://doi.org/https://doi.org/10.1002/spe.2657
https://doi.org/10.1109/WI-IAT.2011.120
https://doi.org/10.1007/978-3-319-27543-7_8

J. Sens. Actuator Netw. 2021, 10, 33 24 of 24

138. Echeverria, G.; Lassabe, N.; Degroote, A.; Lemaignan, S. Modular open robots simulation engine: MORSE. In Proceedings of the
IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 46–51.

139. Koenig, N.; Howard, A. Design and Use Paradigms for Gazebo, An Open-Source Multi-Robot Simulator. In Proceedings of
the IEEE/RSJ International Conference on Intelligent Robots and Systems, Sendai, Japan, 28 September–2 October 2004; pp.
2149–2154.

140. Kahn, P.H.; Freier, N.G.; Kanda, T.; Ishiguro, H.; Ruckert, J.H.; Severson, R.L.; Kane, S.K. Design patterns for sociality in
human–robot interaction. In Proceedings of the ACM/IEEE International Conference on Human Robot Interaction, Amsterdam ,
The Netherlands, 12–15 March 2008; pp. 97–104.

141. Ligthart, M.; Fernhout, T.; Neerincx, M.A.; van Bindsbergen, K.L.; Grootenhuis, M.A.; Hindriks, K.V. A child and a robot getting
acquainted-interaction design for eliciting self-disclosure. In Proceedings of the International Conference on Autonomous Agents
and Multiagent Systems, Montreal, QC, Canada, 13–17 May 2019; pp. 61–70.

142. Neerincx, M.A.; van der Waa, J.; Kaptein, F.; van Diggelen, J. Using perceptual and cognitive explanations for en-
hanced human–agent team performance. In International Conference on Engineering Psychology and Cognitive Ergonomics;
Springer:Berlin/Heidelberg, Germany, 2018; pp. 204–214.

143. Amershi, S.; Weld, D.; Vorvoreanu, M.; Fourney, A.; Nushi, B.; Collisson, P.; Suh, J.; Iqbal, S.; Bennett, P.N.; Inkpen, K.; et al.
Guidelines for human-AI interaction. In Proceedings of the Chi Conference on Human Factors in Computing Systems, Glasgow,
UK, 4–9 May 2019; pp. 1–13.

144. Ramchurn, S.D.; Wu, F.; Jiang, W.; Fischer, J.E.; Reece, S.; Roberts, S.; Rodden, T.; Greenhalgh, C.; Jennings, N.R. Human–agent
collaboration for disaster response. Auton. Agents Multi-Agent Syst. 2016, 30, 82–111.

145. Orsag, M.; Haus, T.; Tolić, D.; Ivanovic, A.; Car, M.; Palunko, I.; Bogdan, S. Human-in-the-loop control of multi-agent aerial
systems. In Proceedings of the 2016 European Control Conference (ECC), Aalborg, Denmark, 29 June–1 July 2016; pp. 2139–2145.

146. Feng, L.; Wiltsche, C.; Humphrey, L.; Topcu, U. Synthesis of human-in-the-loop control protocols for autonomous systems. IEEE
Trans. Autom. Sci. Eng. 2016, 13, 450–462.

147. Cummings, M.; Clare, A. Holistic modelling for human-autonomous system interaction. Theor. Issues Ergon. Sci. 2015, 16, 214–231.
148. Kolling, A.; Walker, P.; Chakraborty, N.; Sycara, K.; Lewis, M. Human interaction with robot swarms: A survey. IEEE Trans.

Hum.-Mach. Syst. 2015, 46, 9–26.
149. Selkowitz, A.; Lakhmani, S.; Chen, J.Y.; Boyce, M. The effects of agent transparency on human interaction with an autonomous

robotic agent. In Human Factors and Ergonomics Society Annual Meeting; SAGE Publications Sage CA: Los Angeles, CA, USA, 2015;
Volume 59, pp. 806–810.

150. Schaefer, K.E.; Straub, E.R.; Chen, J.Y.; Putney, J.; Evans, A.W., III. Communicating intent to develop shared situation awareness
and engender trust in human–agent teams. Cogn. Syst. Res. 2017, 46, 26–39.

151. Winikoff, M. Towards trusting autonomous systems. In International Workshop on Engineering Multi-Agent Systems; Springer:
Berlin/Heidelberg, Germany, 2017; pp. 3–20.

152. Miller, T. Explanation in artificial intelligence: Insights from the social sciences. Artif. Intell. 2019, 267, 1–38.
153. Koeman, V.J.; Dennis, L.A.; Webster, M.; Fisher, M.; Hindriks, K. The “Why did you do that?” Button: Answering Why-questions

for end users of Robotic Systems. In International Workshop on Engineering Multi-Agent Systems; Springer: Berlin/Heidelberg,
Germany, 2019; pp. 152–172.

154. Rosenfeld, A.; Richardson, A. Explainability in human–agent systems. Auton. Agents Multi-Agent Syst. 2019, 33, 673–705.
155. Chakraborti, T.; Sreedharan, S.; Zhang, Y.; Kambhampati, S. Plan explanations as model reconciliation: Moving beyond

explanation as soliloquy. In Proceedings of the International Joint Conference on Artificial Intelligence, Melbourne, Australia,
19–25 August 2017; pp. 156–163.

	Introduction
	Multi-Agent Programming
	Verification and Validation
	Multi-Agent Systems
	Model Checking
	Runtime Verification

	Robotic Applications
	Model Checking
	Human–Robot Interaction
	Runtime Verification
	Machine Learning

	Perspective of the Authors

	Software Engineering
	Requirement Specification
	Natural Languages
	Logic-Based Languages
	Pattern-Based Languages
	Domain-Specific Languages
	Goal-Modelling Techniques
	Demonstrations

	MAS Testing
	Support for Testing MASs
	Applications of Standard Testing Techniques from Software Engineering
	Exploitation and Integration of V&V Approaches

	Simulation Tools
	Simulation Tools for MASs
	Simulation Tools for Robots

	Perspective of the Authors

	Human–Agent Interaction
	Interaction Design
	Modelling Mixed Human–Agent Systems
	Trust and Transparency
	Behaviour Explanations
	Perspective of the Authors

	Conclusions
	References

