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SUMMARY
The BCR-ABL1 fusion protein is the cause of chronic myeloid leukemia (CML) and of a significant fraction of
adult-onset B cell acute lymphoblastic leukemia (B-ALL) cases. Using mouse models and patient-derived
samples, we identified an essential role for g-catenin in the initiation and maintenance of BCR-ABL1+

B-ALL but not CML. The selectivity was explained by a partial g-catenin dependence of MYC expression
together with the susceptibility of B-ALL, but not CML, to reduced MYC levels. MYC and g-catenin enabled
B-ALL maintenance by augmenting BIRC5 and enforced BIRC5 expression overcame g-catenin loss. Since
g-catenin was dispensable for normal hematopoiesis, these lineage- and disease-specific features of canon-
ical Wnt signaling identified a potential therapeutic target for the treatment of BCR-ABL1+ B-ALL.
INTRODUCTION

The Philadelphia chromosome (Ph), which encodes the BCR-

ABL1 fusion protein, is the cause of chronic myeloid leukemia

(CML) and of 30% of adult-onset B cell acute lymphoblastic leu-

kemia (B-ALL) cases. Small-molecule tyrosine kinase inhibitors

of the constitutively active BCR-ABL1 can effectively control

chronic phase CML, but are not curative. Moreover, a significant

fraction of CML patients responds poorly to tyrosine kinase in-

hibitor treatment due to mutations in BCR-ABL1. Even worse,

Ph+ B-ALL patients only transiently respond to inhibitor treat-
Significance

Philadelphia chromosome-positive (Ph+) (BCR-ABL1+) B cell a
after combined treatment with tyrosine kinase inhibitors and
additional therapeutic targets. We have identified g-catenin a
BCR-ABL1, which maintained Ph+ B-ALL by sustaining the
BIRC5 (Survivin). Since targeting g-catenin overcame the resis
enin expression was not essential for steady-state hematopo
which may circumvent the likely side effects of a global inhibi
ment and have a poor prognosis (Hunger, 2011; O’Hare et al.,

2012). Thus additional therapeutic targets are needed to control

and eventually cure Ph+ leukemia.

Mouse models revealed that CML originates from long-term

hematopoietic stem cells (LT-HSC) and is propagated by LT-

HSC-like leukemia-initiating cells (LIC) (Huntly et al., 2004),

which are resistant to inhibitor treatment (Hu et al., 2006). Thus

BCR-ABL1 exploits the self-renewal capacity of LT-HSC for

the sustained overproduction of mature myeloid cells. In

contrast, the cancer-propagating cell for B-ALL resembles pro-

B cells (Signer et al., 2010), and multiple developmental stages
cute lymphoblastic leukemia (B-ALL) has a high relapse rate
chemotherapy, highlighting a need for the identification of
s a key component of a signaling cascade downstream of
expression of the critical downstream targets MYC and
tance of Ph+ B-ALL cells to ABL kinase inhibitors and g-cat-
iesis, our findings identified a potential therapeutic target,
tion of the canonical Wnt pathway.
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can serve as a cell of origin for B-ALL, including LT-HSC, com-

mon lymphoid progenitors, and lineage-restricted pro-B cells

(Kovacic et al., 2012; Signer et al., 2010). The BCR-ABL1

mediated self-renewal of lineage-committed B cells is poorly

understood.

Self-renewal and differentiation of hematopoietic stem and

progenitor cells is associated with canonical Wnt signals. Aber-

rantly increased expression of Wnt pathway components is

observed in various types of leukemia (Jamieson et al., 2004;

Lu et al., 2004) and abnormal Wnt/b-catenin signaling has a crit-

ical role in multiple myeloma (Yeung et al., 2010), acute myeloid

leukemia (AML) (Wang et al., 2010), and CML (Hu et al., 2009;

Schurch et al., 2012; Zhao et al., 2007). Indeed, b-catenin (en-

coded by Ctnnb1) plays an essential role for the generation

(Zhao et al., 2007) and the maintenance of CML LIC (Heidel

et al., 2012) and their resistance to tyrosine kinase inhibitors

(Hu et al., 2009). While b-catenin-deficiency largely prevented

the induction of CML by BCR-ABL1, recipient mice instead suc-

cumbed to B-ALL (Zhao et al., 2007). BCR-ABL1+ lymphocytic

leukemia may thus not depend on the Wnt pathway or depend

on the alternative Wnt signal transducer g-catenin (Junction

plakoglobin, encoded by JUP). Consistent with a possible role

in leukemia, g-catenin expression is frequently upregulated in

AML (Morgan et al., 2012; Muller-Tidow et al., 2004; Zheng

et al., 2004), and enforced expression of g-catenin in hematopoi-

etic progenitors induced a myeloproliferative syndrome (Zheng

et al., 2004). However, it has not been known whether g-catenin

is essential for leukemia initiation or maintenance and, if so,

whether there exist lineage-specific roles for g-catenin and/or

b-catenin.

RESULTS

g-Catenin Is Essential for Initiating Ph+ B-ALL
To investigatewhetherg-catenin playeda role forB-ALLdevelop-

ment, we used bone marrow (BM) from g-catenin-deficient

(Jup�/�) and wild-type (WT, Jup+/+) fetal liver chimeras (CD45.2)

(Figure S1A). Infection of total BM cells with a retrovirus encoding

BCR-ABL1 (p210) andGFP lead to thepreferential transduction of

B220+ cells (Figure S1B). Following transplantation into irradiated

C57BL/6 (B6)mice (CD45.1),most recipients receiving Jup+/+ BM

(90%) developed B-ALL (Figures 1A and 1B), which was charac-

terized by frequent hind leg paralysis, moderate splenomegaly,

pleural effusion, enlarged lymph nodes (Figure 1C), and expan-

sions of cells with a pre-B cell phenotype (B220+CD43dimCD19+

BP-1+IgM�) in the BM, secondary lymphoid organs, and blood

of recipients (Figure 1D and data not shown) (Roumiantsev
Figure 1. Impaired B-ALL Initiation in the Absence of g-Catenin

(A–D) Wild-type (WT) recipients (CD45.1) were transplanted with BCR-ABL1 (p2

recipient mice were analyzed for survival (compiled from four independent exper

presence of donor-derived (CD45.2+) GFP+ (BCR-ABL1+) B220+ CD11b� B cells

(E and F) GFP+ (BCR-ABL1+) cells were analyzed 2–3 weeks post transplantatio

(G) Disease-free recipients of Jup�/� BM were analyzed >8 weeks after trans

compared with recipients of Jup+/+ BM with B-ALL disease.

(H and I) BCR-ABL1+ (mCherry+) B220+ BP-1+ cells were analyzed 2–3 weeks po

(J) BM cells from Juplox/lox Vav-Cre (JupD/D) and Juplox/lox (Jup+/+) mice were cultu

Primary colonies, all consisting only of B-lineage cells, were harvested and replate

and tertiary plating) and are representative of two independent experiments.

Error bars in (E) and (G) to (J) represent SD. *p < 0.05, **p<0.01, ***p < 0.001. ns
et al., 2001). The remaining recipients (10%) showed mixed

B-ALL/myeloid expansions, with symptoms characteristic of

B-ALL rather than CML-like disease (see later). In contrast, a sig-

nificant fraction (41%) of recipients of BCR-ABL1 transduced

Jup�/� BM did not develop disease for >80 days (Figures 1A

and 1B). While a few of the remaining recipients developed

B-ALL (9%), some showed a mixed B-ALL/myeloid phenotype

(14%) and a larger fraction succumbed to CML-like disease

(36%) (Figure 1B). Thus, B-ALL initiation byBCR-ABL1 depended

on g-catenin.

Impaired initiation of Ph+ B-ALL was not related to evident

perturbations of normal hematopoiesis (Figure S1C) or B cell

development in Jup�/� chimeras (Figure S1D). Furthermore,

Jup+/+ and Jup�/� BM cells were transduced with comparable

efficiency (Figure S1E). Between 2 and 3 weeks after transplan-

tation of transduced BM, but prior to the development of overt

signs of leukemia (referred to as pre-leukemic stage), we noted

comparable populations of BCR-ABL1+ B cells in the BM and

spleen of recipient mice although Jup�/� B cells were reduced

in the blood (Figure 1E). BCR-ABL1+ cells had an identical

phenotype (B220+CD43dimBP-1+IgM�) and expressed compa-

rable amounts of BCR-ABL1 protein (Figure 1F). Despite the

efficient initial engraftment and expansion, disease-free recipi-

ents of Jup�/� BM (41%) contained few BCR-ABL1+ pre-B cells

8 weeks after transplantation (Figure 1G), indicating that g-cat-

enin sustained the expansion of BCR-ABL1+ B cells. Consistent

with this observation, BCR-ABL1+ Jup�/� pre-B cells were

more susceptible to undergo apoptosis and proliferation was

modestly reduced compared with WT (Figures 1H and 1I). We

further estimated cancer cell self-renewal in vitro using serial

replating assays. Following primary plating, both WT and

JupLox/Lox Vav-Cre (JupD/D) BCR-ABL1+ BM cells readily formed

B cell colonies. While WT B cells efficiently formed colonies in

subsequent platings, that of JupD/D cells was progressively

reduced (Figure 1J). In all cases colonies were composed of

B-lineage cells (data not shown). Thus the transient expansion

and impaired progression to B cell leukemia could be accounted

for by an impaired proliferative renewal in the absence of

g-catenin.

Transformation of B-Lineage-Committed Progenitors
Depends on g-Catenin Expression
CML arises from HSC expressing BCR-ABL1, but not from

more differentiated myeloid progenitors (Huntly et al., 2004).

In contrast, B-ALL can arise from B cell lineage-committed

progenitors (Kovacic et al., 2012; Signer et al., 2010). In agree-

ment with these findings, BCR-ABL1 transduced purified WT
10) (GFP) transduced BM cells from Jup+/+ or Jup�/� chimeras (CD45.2) and

iments) (A), leukemia type (B), appearance of spleen and lymph nodes (C), and

in the recipient BM (D).

n for their abundance (E) and the expression of BCR-ABL1 (F).

plantation for the presence of residual GFP+ (BCR-ABL1+) B220+ B cells as

st transplantation for markers of cell death (H) and cell-cycle progression (I).

red in IL-7 or transduced with BCR-ABL1 (p185) and plated in methylcellulose.

d. Data are mean number of colonies derived from 104 B-ALL cells (secondary

, not significant (p > 0.05). See also Figure S1.
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Figure 2. g-Catenin Maintains Established Ph+ B-ALL

(A and B)WT recipients (CD45.1) were transplanted with purified B220+ CD19+ IgM� pro-B and pre-B cells transduced with BCR-ABL1 (p210), and recipient mice

were analyzed for survival (compiled from two independent experiments) (A) and disease type (B).

(C and D) WT recipients (CD45.1) were transplanted with BCR-ABL1 (p185) (GFP) transduced BM cells from Juplox/lox Mx1-Cre or Juplox/lox mice (CD45.2), and

recipient mice were analyzed for the presence of BCR-ABL1+ B cells in the BM 7 days later (C) and for survival following the injection of poly(I:C) pIC to delete Jup

(D). Data are from n = 9–12 mice per group, compiled from two independent experiments.

(legend continued on next page)
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B220+CD19+IgM� pro-B and pre-B cells readily induced B-ALL

in recipient mice (8/8 recipients) (Figures 2A and 2B). These

B-ALL cells were fully transformed, as they gave rise to leukemia

in secondary recipients (data not shown). In contrast, Jup�/�

pro-B and pre-B cells completely failed to induce B-ALL (0/8

recipients) (Figures 2A and 2B). The death of two of the recipi-

ents (pink dots) was not associated with an expansion of BCR-

ABL1+ cells. Indeed, immature B cells expressed Jup mRNA

(Figure S2A). Thus initiation of BCR-ABL1+ B-ALL in B-lineage-

committed progenitor cells depended on g-catenin.

Continuous g-Catenin Expression Is Needed toMaintain
Established Ph+ B-ALL
We further addressed whether continuous g-catenin expression

was necessary to propagate B-ALL disease. To this endwe com-

bined a conditional Jup allele (Juplox/lox) with inducible Cre

expression. BM cells from Juplox/lox Mx1-Cre mice were trans-

duced with BCR-ABL1 (p185) before transplantation into recip-

ient mice. Transduced B220+ cells were readily detected in the

BM and blood of recipient mice 7 days later (Figure 2C and

data not shown) when Cre expression was induced (using

poly(I:C) [pIC] administration) to delete Jup. While recipients

injected with pIC remained symptom free for >60 days (Fig-

ure 2D) and showed no evidence of residual disease upon sacri-

fice (Figure S2B), untreated recipients essentially all succumbed

to B-ALL disease within 20–40 days post transplantation (Fig-

ure 2D). Recipients of Juplox/loxBM (lackingMx1-Cre) succumbed

to B-ALL independent of pIC administration. Thus, continuous

g-catenin expression was essential to maintain B-ALL disease.

g-Catenin and b-Catenin Play Selective Roles for B-ALL
and CML, Respectively
We next determined whether g-catenin also played a role for the

development of CML-like disease. Since CML originates from

HSC, we transduced purified Lin� Sca1+ c-Kit+ (LSK) cells

from Juplox/lox and Juplox/lox Vav-Cre (JupD/D) mice with BCR-

ABL1 (p210) (Figure S2C). All recipients of control and JupD/D

LSK cells developed CML-like disease (Figures 2E and S2D),

which was characterized by weight loss, splenomegaly, pulmo-

nary hemorrhage, and aberrant expansion of CD11b+ GR1+

granulocytes in the BM, spleen, and blood (Figures 2F and 2G;

and data not shown). CML initiation was also comparable using

BM progenitors from 5-fluorouracil-treated Jup+/+ and Jup�/�

fetal liver chimeras (data not shown). Thus, g-catenin was

dispensable for CML but essential for the induction and mainte-

nance of B-ALL.

Our findings together with published data (Hu et al., 2009;

Zhao et al., 2007) raised the question of whether g-catenin and

b-catenin played selective roles in B-ALL and CML, respectively.

While CML did not develop in the absence of b-catenin (Hu et al.,

2009; Zhao et al., 2007), the majority of recipients of Ctnnb1�/�
(E–G) WT recipients (CD45.1) were transplanted with BCR-ABL1 (p210) transd

Juplox/loxmice, and recipient mice were analyzed for survival (E), the appearance o

(BCR-ABL1+) CD11b+ Gr-1+ granulocytes (G).

(H and I) WT recipients (CD45.1) were transplanted with BCR-ABL1 (p210) transd

recipient mice were analyzed for survival (compiled from three independent exper

type (I).

See also Figures S2 and S3.
HSC eventually succumbed to B-ALL (Zhao et al., 2007), sug-

gesting that b-catenin was not required for B-ALL initiation. How-

ever, since recipients of WT HSC developed CML, it was

possible that b-catenin suppressed B-ALL initiation. Transduc-

tion of WT (Ctnnb1lox/lox or Vav-Cre transgenic) or Ctnnb1lox/lox

Vav-cre (Ctnnb1D/D) BM with BCR-ABL1 (p210) resulted in com-

parable B-ALL induction (8/9, 89% for WT and 8/11, 73% for

Ctnnb1D/D) (Figures S2E and S2F). PCR analyses confirmed

Ctnnb1 deletion in these B-ALL samples (Figure S2G). Thus

b-catenin had no major role in Ph+ B-ALL initiation, suggesting

that g-catenin and b-catenin played selective roles in B-ALL

and CML, respectively.

We further addressed whether g-catenin signaling played a

role for B-ALL initiation. g-Catenin can associate with Tcf/Lef

transcription factors and transduce canonical Wnt signals (Jean-

net et al., 2010). Lef1 was the most highly expressed Tcf/Lef

family member in normal (data not shown) and Ph+ B cells in

pre-leukemic mice (Figure S3A). To address a role of Lef1, we

used fetal liver cells from Lef1+/+ and Lef1�/� embryos (Fig-

ure S3B), which had a comparable compartment of B220+ B cells

(Figure S3C), except that Lef1�/� B220+ cells lacked BP-1 (data

not shown) as noted before (Reya et al., 2000). Three weeks post

transplantation of BCR-ABL1 (p210) transduced fetal liver cells,

recipients of Lef1+/+ and Lef1�/� BM contained comparable

populations of BCR-ABL1+ B cells in the blood (Figure S3D), indi-

cating equivalent engraftment and initial expansion of Ph+ cells.

However, while Lef1+/+ fetal liver yielded B-ALL in the majority of

recipients (9/13; 69%), fewer recipients of Lef1�/� fetal liver

developed B-ALL (3/9; 33%) (Figures 2H and 2I). In contrast to

Lef1, Tcf1 (encoded by the Tcf7 gene) did not alter B-ALL induc-

tion (Figures S3E and S3F). Thus, Lef1 played a significant

role for the induction of Ph+ B-ALL, consistent with the idea

that g-catenin acted at least in part via Lef1, and thus in the

context of the canonical Wnt signaling pathway.

g-Catenin Expression Maintains Human Ph+ B-ALL
We next addressed whether g-catenin was essential for human

Ph+ B-ALL. Similar to murine Ph+ B-ALL (Figure 3A), g-catenin

protein was readily detected in six human Ph+ cell lines (Sup-

B15, K562, BV-173, TOM-1, SD-1, and NALM-1) (Figure 3B)

and inpatient-derivedB-ALLsamples (Figure 3C) as notedbefore

(Gang et al., 2014). Knockdown of g-catenin increased the

apoptosis and suppressed the expansion of all six Ph+ cell lines

(Figures 3D, 3E, 3F, S4A, and S4B). Thus, several Ph+ cell lines,

which are resistant to the tyrosine kinase inhibitor imatinib (Sup-

B15, SD-1, and NALM-1) (see later), depended on g-catenin.

g-Catenin knockdown also impaired the expansion of Sup-

B15 cells transplanted into immunodeficient NOD Prkdcscid

Il2rg�/� (NSG) mice (Figure 3G). Furthermore, patient-derived

Ph+ B-ALL cells were transduced with Sh JUP or Sh scr

constructs co-expressing fluorescent proteins, which had been
uced with Lin� Sca-1+ c-kit+ (LSK) cells from Juplox/lox Vav-Cre (JupD/D) and

f the spleen and the lung (F), and the presence of donor-derived (CD45.2+) GFP+

uced with fetal liver cells from E14 Lef1+/+ and Lef1�/� embryos (CD45.2), and

iments using n = 5–6 independent donor embryos of each type) (H) and disease

Cancer Cell 35, 649–663, April 15, 2019 653
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Figure 3. g-Catenin Maintains Human Ph+ B-ALL

(A–C) Expression of g-catenin in murine BCR-ABL1+ (p185) B cells from replating assays or primary B-ALL (A), human Ph+ cell lines (B), or patient-derived Ph+

B-ALL samples (huCD19+) (C).

(D–G) Sup-B15 cells stably expressing short hairpins (Sh) to g-catenin (Sh JUP1 or Sh JUP2) or a scrambled control hairpin (Sh scr) were analyzed for the

expression of g-catenin andMYC (D), apoptosis (E), cellular expansion in vitro (mean number of live cells over time as comparedwith input) (F), or the expansion in

NSG mice (G). The scatterplot shows the number of human cells (human b2m+) in the BM of NSG mice. All data are representative of two or more independent

experiments.

(H–J) Ph+ B-ALL cells from patient #1 transduced with control Sh scr (GFP) and Sh JUP2 (co-expressing the cyan fluorescent protein Cerulean) constructs were

analyzed for the transduction efficiency in vitro (input) (H) or transplanted into NSG mice and analyzed for the presence of human (hu) CD19+ cells expressing Sh

scr (GFP+) or Sh JUP2 (Cerulean+) in the blood of recipient mice 6 weeks later (I) whereby the frequencies of transduced huCD19+ cells in recipient mice were

compared with input (J). Representative of two experiments each with n = 3–4 mice per group.

Data in (F) and (J) are means ± SD; the horizontal bar in (G) depicts the mean. **p < 0.01. See also Figure S4.
validated in K562 cells (Figure S4C). Transduced cells were

mixed in equal proportions and maintained in vitro for 2–6 days

to verify the input (Figures 3H and S4D) or were transplanted

into NSG mice. Cells expressing the control Sh scr construct

(GFP+) represented a stable fraction of patient-derived B-ALL
654 Cancer Cell 35, 649–663, April 15, 2019
cells in vivo, and that fraction corresponded to the input. In

contrast, relative to input, Sh JUP2-expressing cells (Cerulean+)

had almost completely disappeared from peripheral blood, the

spleen, and the BM of NSG mice (Figures 3I and 3J). Corre-

sponding data were obtained using B-ALL cells from a second
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Figure 4. A Normal Myc Gene Dosage Is Essential to Maintain Established Ph+ B-ALL

(A) Expression of the indicated Wnt target and/or pathway genes in Jup+/+ and Jup�/� pre-leukemic Ph+ B cells.

(B–D) Expression of Myc in pre-leukemic Ph+ B cells compared with the corresponding and the subsequent normal stages of B cell developmental (B), in

pre-leukemic Ctnnb1lox/lox and Ctnnb1D/D Ph+ B cells (C), and in normal BP-1+ pre-B cells from MycD/+ as compared with Myc+/+ mice (D).

(E–H) WT recipients (CD45.1) transplanted with BCR-ABL1 (p210) transducedMyc+/+ orMycD/+ BMwere analyzed for survival (compiled from three independent

experiments using n = 4–6 donors of each type) (E), disease type (F), the presence of CD45.2+ BCR-ABL1+ (mCherry+) Ph+ B cells in the blood of pre-leukemic

mice (G), and Myc expression in pre-leukemic B cells (H).

(legend continued on next page)
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patient (Figures S4D and S4E). Loss of patient-derived Ph+

B-ALL cells was confirmed using a Sh JUP1 (GFP) construct

versus a Sh scr [Cerulean] control (data not shown). The latter

also ensured that cell loss was independent of the color combi-

nation. Collectively these data demonstrated that the mainte-

nance of patient-derived Ph+ B-ALL in xenografts depended

on g-catenin expression.

In addition to Ph+ B-ALL, g-catenin was expressed in a small

set of B-ALL cell lines with distinct translocation products (Fig-

ure S4F), and the expansion of these cells also depended on

g-catenin (Figure S4G), although some of these B-ALL subtypes

may also depend on b-catenin (Gang et al., 2014). Indeed JUP

was upregulated in clinical B-ALL samples irrespective of the

t(9; 22) translocation. Moreover, JUP was also overexpressed

in certain AML subtypes, in agreement with previous studies

(Morgan et al., 2012; Muller-Tidow et al., 2004; Zheng et al.,

2004), but not in CML, T-ALL, or CLL (Figure S4H). In contrast,

CTNNB1 expression did not vary among hematological malig-

nancies (Figure S4I), indicating that g-catenin may play a role

in additional hematological malignancies.

A Critical Role of the Myc Gene Dosage in the
Maintenance of Ph+ B-ALL
To identify g-catenin target genes, we conducted a gene expres-

sion analysis of flow sorted BCR-ABL1+ B220+ BP-1+ cells from

the BM of pre-leukemic mice. This analysis identified 91 genes

that were differentially expressed (adjusted p value <0.1),

whereby 40 genes were upregulated and 51 were downregu-

lated (shown in part in Table S1). Pathway analysis using

GeneGO revealed an increase of ‘‘transcription regulation of

granulocyte development’’ in the absence of g-catenin (Mpo,

Elane, and Prtn3, p = 0.0004). Furthermore, the top three genes

expressed in granulocyte monocyte progenitors as compared

with normal pre-B cells (Elane, Prtn3, and Ctsg) (www.immgen.

org/index_content.html) were upregulated in Ph+ B cells lacking

g-catenin (Table S1), suggesting that g-catenin suppresses a

myeloid gene expression program in BCR-ABL1+ B cells. How-

ever, the analysis of myeloid cell-surfacemarkers or Mpo protein

did so far not provide evidence for enhanced myeloid differenti-

ation of Jup�/� Ph+ B cells (data not shown).

We next focused on the expression of Wnt pathway compo-

nents and targets (http://www.stanford.edu/group/nusselab/

cgi-bin/wnt/). Based on our gene array and qPCR, we identified

several Wnt responsive/pathway genes whose expression was

significantly decreased (Myc, Tcf7L1 [Tcf3], Grb10), increased

(Axin2, CD44, Lgr5) or unaltered (Tcf7 [Tcf1], Lef1) in Jup�/�

Ph+ B cells (Figure 4A and Table S1). Thus, g-catenin exerted

diverse effects on the expression of a subset of known Wnt

responsive/pathway genes.

We focused on thewell-knownWnt targetMyc, whose expres-

sion was reduced in BCR-ABL1+ Jup�/� B cells based on array

and qPCR analysis (2-fold, p <0.03) (Figure 4B). Compared
(I) WT recipients (CD45.1) transplanted with BCR-ABL1 (p185) (GFP) transduc

beginning 7 days later and analyzed for survival. Data are from one experiment w

(J) LSK cells from Myc+/+ and MycD/+ mice were analyzed for MYC expression us

(K) Survival of WT recipients (CD45.1) transplanted with BCR-ABL1 (p210) transd

(L) MYC expression in ex vivo isolated BCR-ABL1+ (p210) Myc+/+ and MycD/+ LS

All bar graphs and the scatterplot (G) show means ± SD. *p < 0.05, **p < 0.01, p
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with normal pre-B cells, BCR-ABL1 did upregulate Myc expres-

sion or rather, BCR-ABL1 prevented the downregulation ofMyc,

which was observed when immature B cells differentiated past

the B220+BP-1+CD43+/� immunoglobulin M (IgM)� stage (Fig-

ure 4B), i.e. the passage of the pre-B cell receptor checkpoint.

Thus, BCR-ABL1 sustained Myc expression and this was

reduced approximately 50% in the absence of g-catenin. In

the absence of b-catenin, Myc expression was not altered

(Figure 4C).

We hypothesized that the 2-fold reduction in Myc expression

was critical for B-ALL initiation or maintenance. To mimic this

situation, we exploited Myc heterozygous mice (Myclox/+ 3

Vav-Cre termed MycD/+) (Figure S5A). Deletion of a single Myc

allele indeed reducedMycmRNA in pre-B cells by approximately

50% (Figure 4D) but had no significant effect on B cell develop-

ment (Figure S5B). Transduction ofMyc+/+ control BMwith BCR-

ABL1 (p210) mediated B-ALL disease in 100% of recipient mice

(13/13; 100%). In contrast, a single recipient ofMycD/+ BMdevel-

oped B-ALL disease (1/13, 8%) and most recipients remained

disease free for >60 days post transplantation (Figures 4E and

4F). Thus, a reduced Myc gene dosage prevents B-ALL

induction.

WhileMyc+/+ andMycD/+ BM cells were transduced with com-

parable efficiencies (data not shown), there were fewer pre-

leukemic MycD/+ B cells (Figure 4G) and these expressed >50%

less Myc mRNA compared with corresponding Myc+/+ cells

(Figure 4H). While BCR-ABL1+ MycD/+ B cells eventually van-

ished, non-transduced (mCherry�) MycD/+ LSK cells (CD45.2+)

remained present and these contributed long-term to all hemato-

poietic lineages includingBcells (FigureS5Canddatanot shown).

Unlike B-ALL initiation, normal B cell development was thus not

Myc dosage sensitive. We further addressed whether the contin-

uous presence of both Myc alleles was needed to maintain Ph+

B-ALL. To this end, we transduced Myclox/+ Mx1-Cre BM with

BCR-ABL1 (p185) before transplantation into recipient mice.

Seven days post transplantation, deletion of one Myc allele was

induced by pIC treatment. The majority of pIC-treated animals

survived >60 days while untreated recipients succumbed to

B-ALL disease between days 40 and 45 post transplantation (Fig-

ure 4I). Recipients of Myclox/+ BM (lacking Mx1-Cre) succumbed

toB-ALL independent of pIC treatment (Figure4I). Thus, themain-

tenance of Ph+ B-ALL depends on the continuous presence of

bothMyc alleles.

WhileMyc is required forCML initiation,we addressedwhether

CML initiation wasMyc gene dosage dependent. Comparedwith

Myc+/+, MycD/+ LSK cells indeed expressed around 50% less

Myc mRNA or protein (Figure 4J). Following transduction with

BCR-ABL1 and transplantation, Myc+/+ and MycD/+ LSK cells

yielded CML with equivalent efficiency (Figure 4K) in agreement

with Reavie et al. (2013). PCR analyses ensured that MycD/+

CML were indeed devoid of one Myc allele (Figure S5D), and

flow cytometry showed that BCR-ABL1+ MycD/+ LSK cells
ed Myclox/+ and Myclox/+ Mx1-Cre BM cells (CD45.2) were injected with pIC

ith n = 5–7 mice per group.

ing qRT-PCR and flow cytometry. Numbers indicate the MFI of MYC staining.

uced Myc+/+ and MycD/+ LSK cells.

K cells.

< 0.001. ns, not significant (p > 0.05). See also Figure S5 and Table S1.

http://www.immgen.org/index_content.html
http://www.immgen.org/index_content.html
http://www.stanford.edu/group/nusselab/cgi-bin/wnt/
http://www.stanford.edu/group/nusselab/cgi-bin/wnt/
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Figure 5. MYC Is an Essential g-Catenin Target in Ph+ B-ALL

(A) Survival of WT recipients (CD45.1) transplanted with MYC (RFP) and/or BCR-ABL1 (p185) (GFP) transduced Juplox/lox Mx1-Cre BM cells (CD45.2) and treated

with pIC (beginning on day 7). Data are from two independent experiments with n = 9–10 per group, except n = 4 mice for the MYC-only group.

(B) PCR analyses to confirm Jup deletion in sorted B-ALL cells of the indicated type.

(C) BCR-ABL1 (GFP) andMYC (RFP) expression by CD45.2+ B220+ cells from the indicated type of diseased recipients or from symptom-free recipients that were

sacrificed >50 days after transplantation (i.e., recipients of BCR-ABL1/pIC or MYC BM).

(D) Schematic representation of Tcf/Lef-binding element sites (TBE) in the promoter (P1 and P2) and in 50 and 30 enhancer (Enh) elements of the humanMYC locus.

(E–G) ChIP for g-catenin (E), LEF1 (F), and b-catenin (G) using Sup-B15 chromatin followed by qPCR for indicated TBE in theMYC or in the control AXIN2 locus.

Bars depict mean fold enrichment relative to a control (ctrl) region in the same locus and relative to IgG isotype control ChIP. Data are compiled from three

independent determinations.

(legend continued on next page)
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expressed around 50% less MYC protein than WT (Figure 4L).

Unlike B-ALL, CML initiation was thus not Myc gene dosage

sensitive. The selective role of g-catenin in B-ALL can thus be

explained by the 50% reduction of MYC expression in the

absence of g-catenin.

MYC Is an Essential and Direct g-Catenin Target in Ph+

B-ALL
To address whether MYC was an essential g-catenin target, we

determined whether ectopic MYCmaintained murine Ph+ B-ALL

when Jup was deleted. BM cells from Juplox/lox Mx1-Cre mice

were transduced with MYC (RFP+) and/or BCR-ABL1 (p185)

(GFP+) before transplantation into recipient mice. Seven days

later, when the recipient’s BM harbored a population of GFP+

B220+ B cells (data not shown), Jup was deleted via pIC treat-

ment. Recipients of BCR-ABL1 BM succumbed to B-ALL when

left untreated, but survived for >50 days when treated with pIC

(Figure 5A) as also shown in Figure 2D. Conversely, recipients

of BCR-ABL1 and MYC BM all succumbed to B-ALL despite

pIC treatment (Figure 5A). PCR analyses confirmed that the

Jup locus had been deleted (Figure 5B) and flow cytometry

showed that BCR-ABL1 and MYC were co-expressed (Fig-

ure 5C). Of note, recipients of BM only transduced with MYC

remained healthy (Figure 5A) and B cells expressing ectopic

MYC were only observed when co-expressing BCR-ABL1 (Fig-

ure 5C). Thus, MYC expression was sufficient to maintain murine

Ph+ B-ALL in the absence of g-catenin.

We next used chromatin immunoprecipitation (ChIP) to deter-

mine whether g-catenin occupied Tcf/Lef consensus-binding

elements in the MYC locus of human Ph+ cell lines (Figure 5D).

Significant g-catenin occupancy was detected at 50 as well as

30 MYC enhancer elements but not at the MYC promoter or the

control AXIN2 locus (Figures 5E, S6A, and S6B). Furthermore,

LEF1was also bound to the 50 and the 30 MYC enhancer elements

aswell as to theMYCpromoter and theAXIN2 locus (Figure 5F). In

contrast, b-catenin occupied the AXIN2 locus and was not asso-

ciated with the MYC locus (Figure 5G). Indeed, knockdown of

b-catenin did not alter MYC expression in Ph+ cell lines (Fig-

ure S6C). Thus,MYC was a direct g-catenin target in Ph+ cells.

Knockdown of g-catenin in human Ph+ cells reduced MYC

expression (Figures 3D, S4A, and 5H), increased the expression

of the MYC target p21 (CDKN1A) (Figure S6D), and decreased

cellular survival and expansion (Figures 3E, 3F, S4A, 5I, and

5J). The latter effects were reproduced byMYC knockdown (Fig-

ure S6E). Ectopic MYC improved the survival and restored

cellular expansion when g-catenin knockdown was moderate

using Sh JUP1, but not when g-catenin knockdown was more

complete using Sh JUP2 (Figures 5I and 5J). The expression of

g-catenin constructs, which were resistant to Sh JUP1 or Sh

JUP2, rescued cellular expansion (Figure 7D and data not

shown), demonstrating that g-catenin was the essential target

of both Sh constructs. Thus, additional g-catenin targets

seemed to contribute to the survival of human Ph+ cells.
(H–J) Human Ph+ cells (Sup-B15) stably expressing GFP (control) or MYC were tra

expression (normalized mean fluorescence intensity [MFI] of n = 3 independent e

dead cells compared with the corresponding Sh scr control [n = 8, from four indep

point, representative of >5 experiments) (J).

Error bars in (E) to (J) represent SD. ***p < 0.01. ns, not significant (p > 0.05). See
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BIRC5 Is an Additional g-Catenin Target in Ph+ B-ALL
Screening Ph+ cells for g-catenin-dependent pro-survival factors

uncovered reduced BIRC5 (Survivin) expression upon g-catenin

knockdown (Figure 6A), in agreementwithNiuet al. (2013).g-Cat-

enin reportedly associates with and promotes the activity of the

BIRC5 promoter (Kim et al., 2011), and BIRC5 knockdown

reduced the viability of a Ph+ B-ALL cell line (Tyner et al., 2012).

The relevance of BIRC5 as g-catenin target was addressed by

ectopic BIRC5 expression. Ectopic BIRC5 restored the expan-

sion of Ph+ cells using either Sh JUP1 or Sh JUP2 for g-catenin

knockdown (Figure 6B). These data thus identified BIRC5 as an

additional functionally relevant g-catenin target in human Ph+

cells. BIRC5 is also regulated by MYC in Ph+ cells (Fang et al.,

2009) and its promoter was bound by MYC (Figure S6F). Indeed,

ectopic MYC was sufficient to restore BIRC5 expression upon

g-catenin knockdown using Sh JUP1 (Figure 6C). Thus, BIRC5

was also an MYC target and consequently both an indirect as

well as a direct g-catenin target.

We extended the above analyses to murine Ph+ B-ALL.

Compared with WT B-ALL, BIRC5 expression was reduced

when g-catenin was deleted. Conversely, BIRC5 was increased

when WT B-ALL expressed MYC (Figure 6D), indicating that

BIRC5 was also regulated by g-catenin and MYC in murine

Ph+ B-ALL. To address the relevance of BIRC5, we ectopically

expressed human BIRC5 in primary murine B-ALL followed by

Jup deletion in vivo, as shown above (Figures 2D and 5A). Recip-

ients of BCR-ABL1 or BCR-ABL1 and BIRC5 BM all succumbed

to B-ALL disease (Figure 6E). When mice were treated with pIC

to delete Jup a single recipient of BCR-ABL1 BM developed

B-ALL (1/10), in agreement with Figures 2D and 5A. In contrast,

most recipients of BCR-ABL1 and BIRC5 BM succumbed to

B-ALL despite pIC treatment (Figure 6E). We confirmed that

these latter B-ALL had a deleted Jup locus (Figure 6F) and ex-

pressed the transduced BIRC5 (Figure 6G). Of note, recipients

of BM only transduced with BIRC5 remained disease free

(>60 days) (Figure 6E). Thus, ectopic BIRC5 was sufficient to

maintain Ph+ B-ALL in vivo following g-catenin ablation, indi-

cating that also BIRC5 was a functionally relevant g-catenin

target in Ph+ B-ALL.

Tyrosine Residues in g-Catenin Are Essential for Ph+

Cell Expansion and g-Catenin Recruitment to the
MYC Locus
Finally we addressed how BCR-ABL1 regulated g-catenin to

maintain B-ALL. Compared with the normal stage of B cell devel-

opment, BCR-ABL1 expression did not affect Jup mRNA

expression (Figure 7A), indicating that g-catenin was not regu-

lated by transcriptional mechanisms. In CML, BCR-ABL1 stabi-

lizes b-catenin through tyrosine phosphorylation (Coluccia et al.,

2007). In contrast, g-catenin protein amounts did not differ

between murine B cell colonies induced by interleukin-7 (IL-7)

or BCR-ABL1 (Figure S7A) or when transfecting g-catenin with

or without BCR-ABL1 into 293T cells (Figure S7B), indicating
nsduced with Sh scr, Sh JUP1, and Sh JUP2 constructs and analyzed for MYC

xperiments) (H), the abundance of apoptotic cells (change in the percentage of

endent experiments]) (I), and cellular expansion (n = 3 determinations per time

also Figure S6.
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Figure 6. BIRC5 Is an Essential g-Catenin Target in B-ALL

(A and B) Ph+ cells (K562) expressing GFP (control), MYC or BIRC5 were stably transduced with control Sh scr, Sh JUP1, or Sh JUP2 constructs and analyzed for

BIRC5 expression (normalized MFI of staining, >6 determinations) (A) and cellular expansion (n = 3 determinations per time point, representative of n = 3

independent experiments) (B).

(C) BIRC5 expression (normalized MFI) in MYC-expressing human Ph+ cells following g-catenin knockdown form n = 6–11 determinations.

(D) BIRC5 expression (normalized MFI) in primary murine B-ALL samples. n = 4 determinations derived from three independent samples.

(E) Survival of WT recipients (CD45.1) that were transplanted with BIRC5 and/or BCR-ABL1 (p185) (Cherry) transduced Juplox/lox Mx1-Cre BM cells (CD45.2) and

treated with pIC or PBS (beginning on day 7). Data are from n = 9–10 mice per group compiled from two independent experiments.

(F) PCR analyses to confirm Jup deletion in sorted CD45.2+ B220+ B-ALL cells of the indicated type.

(G) qRT-PCR analysis to confirm BIRC5 expression in BIRC5 transduced B-ALL cells.

Error bars in (A) to (D) and (G) represent SD. *p < 0.05, **p < 0.01, ***p < 0.001. ns, not significant (p > 0.05).
that BCR-ABL1 did not stabilize g-catenin protein. Notwith-

standing, g-catenin was tyrosine phosphorylated upon co-trans-

fection with kinase-active, but not with kinase-dead BCR-ABL1

in 293T cells (Figure S7B), and endogenous (data not shown)

and stably transfected g-catenin was tyrosine phosphorylated

in Sup-B15 cells (Figure 7B). We addressed the regulation of

g-catenin tyrosine phosphorylation using small-molecule inhibi-

tors (Rix et al., 2007). The ABL and SRC family kinase inhibitor

dasatinib reduced g-catenin tyrosine phosphorylation and

induced apoptosis of Sup-B15 cells, while imatinib (which in-

hibits ABL and a few receptor tyrosine kinases) or the ABL inhib-

itor nilotinib had no effect (Figures 7B and 7C). The combination

of nilotinib with the SRC inhibitor SU6656, but not SU6656 alone,

suppressed g-catenin tyrosine phosphorylation (Figure 7B) and
induced apoptosis (Figure 7C). The latter was similarly observed

in SD-1 and NALM-1 cells (data not shown). Survival of Ph+ cells

and g-catenin phosphorylation thus depended on the combined

action of BCR-ABL1 and SRC family kinases.

We next addressed whether tyrosines (Y) in g-catenin that can

be phosphorylated by SRC family kinases (Miravet et al., 2003)

played a role in Ph+ B-ALL maintenance. To this end Y133,

Y550, and Y644 of g-catenin were mutated to phenylalanine (F).

The triple Y133F, Y550F, Y644F mutant g-catenin (g-cat Mut)

and WT g-catenin (g-cat WT) constructs were further rendered

resistant to Sh JUP1 by introducing silent point mutations before

stable expression in Sup-B15 cells. Following knockdown of

endogenous g-catenin, the WT g-catenin construct rescued

cellular expansion while the triple mutant essentially failed to
Cancer Cell 35, 649–663, April 15, 2019 659
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Figure 7. Tyrosine Residues in g-Catenin Are

Essential for Ph+ Cell Expansion, MYC

Expression, and g-Catenin Recruitment to

the MYC Locus

(A) Expression of Jup and Lef1 during B cell devel-

opmental and in pre-leukemic Ph+ B cell samples.

(B) Sup-B15 cells expressing HA-SBP-tagged

g-catenin were treated with imatinib, nilotinib (ABL

inhibitor), dasatinib, or SU6656. g-Catenin pull-

down was analyzed for tyrosine phosphorylation.

(C) Sup-B15 cells were treated with the indicated

inhibitors and apoptosis was analyzed after 24 h

using flow cytometry for annexin versus 7-AAD.

(D–F) Sup-B15 cells were transduced with mCherry

(control), MYC-tagged WT g-catenin (g-cat WT), or

a g-catenin construct in which tyrosine (Y) 133, 550,

and 644 were changed to phenylalanine (F) (g-cat

Mut). In addition, silent mutations were introduced

to render the constructs resistant to Sh JUP1.

Following knockdown of endogenous g-catenin, we

determined cellular expansion (D), expression of the

g-catenin constructs (E), and expression ofMYC (F).

(G) Expression of HA-SBP-tagged g-cat WT and

g-cat Mut in Sup-B15 cells.

(H) ChIP for HA followed by qPCR for the TBE in the

50 and 30 enhancers of the MYC locus or for TBE2

present in the AXIN2 locus. Data are mean fold

enrichment relative to input of triplicate de-

terminations, representative of two independent

experiments.

Error bars in (A), (D), and (H) represent SD.

See also Figure S7.
do so (Figure 7D). The WT and the mutant constructs were ex-

pressed at similar levels (Figure 7E), which further indicated

that these tyrosine residues did not contribute to g-catenin pro-

tein stabilization. Rather, deficient rescue by the mutant g-cate-

nin was associated with reduced MYC expression (Figure 7F).

This was accounted for by the absence of the mutant g-catenin

from the MYC 50 and 30 enhancers (Figures 7G and 7H). Thus,

the Y133, Y550, and Y644 residues are critical for the recruitment

of g-catenin to the MYC locus and for high MYC expression,

which was critical for the maintenance of Ph+ B-ALL.

DISCUSSION

Here we report an essential and selective role of g-catenin for

the progression of BCR-ABL1-induced B-ALL but not CML.
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Conversely, b-catenin played no essential

role in B-ALL progression but has previ-

ously been shown to be essential for

CML (Hu et al., 2009; Zhao et al., 2007).

These data identified unanticipated, non-

redundant roles of g-catenin and b-catenin

for the emergence of lymphoid and

myeloid leukemia, respectively. The key

role of g-catenin in B-ALL progression

was explained by a reduced expression

of Myc and Birc5 together with a critical

dependence of B-ALL on a normal Myc

gene dosage.
It has been unclear whether g-catenin plays significant roles in

tumorigenesis and, if so, whether g-catenin functions in the

context of the canonicalWnt pathway. In solid tumors, g-catenin

loss correlates with tumor progression, development of metas-

tasis, and poor clinical outcome (Aktary and Pasdar, 2012). Loss

of g-catenin is thought to enhance b-catenin signaling due to

reduced competition for Lef/Tcf binding. Thus g-catenin is

thought to act as a tumor suppressor in solid cancers. On the

other hand, g-catenin is highly expressed in circulating tumor

cell clusters and holds these clusters together (Aceto et al.,

2014). Here it is possible that metastatic spread depends on

the adhesive role of g-catenin. Based on mouse models, human

cell lines, and patient-derived samples, our data provided

evidence that g-catenin acted as a non-oncogene addiction

gene in Ph+ B-ALL. In addition g-catenin may also play a role



in Ph-negative B-ALL. Indeed JUP is upregulated in clinical

B-ALL samples independent of t(9;22) translocation as well as

in AML. However, mutations in g-catenin are rare (42 out of

7,426 samples, www.sanger.ac.uk/genetics/CGP/) and these

are not associated with tumors of hematopoietic origin, indi-

cating that g-catenin is not an oncogene in hematological

malignancies.

A key role for the signaling function of g-catenin was sup-

ported by the finding that g-catenin expression in Ph+ B-ALL

sustained the expression of BIRC5 and MYC, which were previ-

ously identified as prominent Wnt/b-catenin/Tcf4 targets in colo-

rectal cancer (He et al., 1998; Kim et al., 2003). In B-ALL, key

MYC enhancer elements were directly associated with Lef1

and g-catenin, but not b-catenin, and g-catenin significantly

contributed to MYC expression. Direct binding of g-catenin to

the MYC promoter has previously been described in AML cell

lines (Muller-Tidow et al., 2004) and in primary keratinocytes

(Williamson et al., 2006). In the latter instance, however, g-cate-

nin binding was associated with Myc repression and cell-cycle

arrest (Williamson et al., 2006). Interestingly, the Tcf/Lef site

present in the 50 MYC enhancer, which is 300 kb away from

the promoter, affects colon cancer progression, and an SNP

within this element influences the binding of Tcf4 and b-catenin

(Tuupanen et al., 2009). It will thus be interesting to determine

whether this SNP influences g-catenin/Lef1 binding and the

predisposition to B-ALL.

Our data suggested that B-ALL initiation and maintenance

critically depended on theMyc gene dosage, while CML initiation

was more resistant to reduced MYC expression, as shown here-

in and by others (Reavie et al., 2013). Since the deletion of g-cat-

enin reducedMyc expression by approximately 50%, these data

explained the selective requirement of g-catenin for B-ALL.

Indeed, Myc expression was not significantly reduced in the

absence of b-catenin, which further underlined the distinct

behavior of Ph+ B-ALL and CML and thus the lineage-selective

roles of the two Wnt pathway intermediates.

B-ALL can be suppressed by the ABL and SRC family kinase

inhibitor dasatinib but not with single ABL kinase inhibitors (Hu

et al., 2006; Rix et al., 2007). Indeed, initiation of B-ALL de-

pends on the activity of SRC family kinases (Hu et al., 2004)

and these contribute to the resistance of B-ALL to single

ABL kinase inhibition (Hu et al., 2006; Rix et al., 2007). Along

the same line, the function of g-catenin was controlled by

the simultaneous action of ABL, and SRC family kinases and

tyrosine residues in g-catenin, which can be phosphorylated

by SRC kinases (Miravet et al., 2003), were essential for

B-ALL expansion. Indeed, B-ALL cell lines that are resistant

to single ABL kinase inhibition were susceptible to g-catenin

ablation.

Targeting the canonical Wnt pathway has significant potential

to improve the treatment of several types of leukemia. However,

Wnt signaling is also critical for the renewal of the intestinal lining,

the skin, and the hematopoietic system. Thus, blocking the Wnt/

b-catenin pathway will likely have serious side effects. The role

of g-catenin as a key factor for B-ALL progression now raises

the possibility to target a disease-specific component of the

pathway. This may considerably reduce potential side effects

and increase the therapeutic window for the treatment of B-ALL

using selective inhibitors.
STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d CONTACT FOR REAGENT AND RESOURCE SHARING

d EXPERIMENTAL MODEL AND SUBJECT DETAILS

d METHOD DETAILS
B Mouse Strains

B Fetal Liver Chimeras

B Constructs, Viral Vectors, Virus Production and Stable

Transfectants

B Murine Ph+ Leukemia

B Flow Cytometry

B PCR

B Affymetrix Microarray

B Colony Formation

B Cell Culture and Inhibitor Treatment

B shRNA Assays

B Primary Human Ph+ B-ALL Samples

B Pull Down and Western Blots

B Chromatin Immunoprecipitation (ChIP)

B Data Analyses

d DATA AND SOFTWARE AVAILABILITY

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.

ccell.2019.03.005.

ACKNOWLEDGMENTS

We are grateful to C. Soneson (SIB) for bioinformatics support, the Flow

Cytometry and the Genomic Technologies facilities of the University of

Lausanne for expert technical assistance, A. Wolfer (CHUV), X. Jiang (Terry

Fox Laboratory, Vancouver), and A. Ochsenbein (University of Bern) for

providing constructs or cells, and E. Mueller (Vetsuisse), G. Radice

(Thomas Jefferson, Philadelphia), R. Grosschedl (MPI, Freiburg), H. Clevers

(Hubrecht Institute, Utrecht), A. Trumpp (DKFZ, Heidelberg), and W. Birch-

meier (MDC, Berlin) for providing mouse strains. This research was sup-

ported in part by a prize from the Leenaards Foundation 2006 (to J.H.,

Y.C., and W.H.) and a Sinergia grant from the Swiss National Science

Foundation (SNSF) (to J.H. and W.H.) (CRSII3_136245). W.H. was sup-

ported by grants from the Fondation Emma Muschamp (26078333), the

SNSF (310030_159598 and 310030B_179570), and the Swiss Cancer

League (SCL) (KFS-3601-02-2015). J.-P.B. was supported in part by grants

from the SNSF (310030-133108), the SCL (KLS-4237-08-2017), the founda-

tion ‘Kind und Krebs’, the ‘Krebsliga Zurich’, the Sassella Foundation, the

Fondation Panacée, and the clinical research focus program ‘Human Hem-

ato-Lymphatic Diseases’ of the University of Zurich. M.T. acknowledges

support from the SCL (KFS-4095-02-2017-R) and the SNSF (310030_

166627/1).

AUTHOR CONTRIBUTIONS

N.L.-G., I.P., B.J.-R., M.C., I.S., Y.H., A.I., S.C., G.S.A., M.D., and M.J. con-

ducted experiments. B.B., M.T., and J.-P.B. supervised experiments. G.C.,

O.H., and Y.C. and provided samples or reagents. J.H. and W.H. designed

the experiments, supervised experiments, and wrote the paper.

DECLARATION OF INTERESTS

The authors declare no competing interests.
Cancer Cell 35, 649–663, April 15, 2019 661

http://www.sanger.ac.uk/genetics/CGP/
https://doi.org/10.1016/j.ccell.2019.03.005
https://doi.org/10.1016/j.ccell.2019.03.005


Received: October 30, 2015

Revised: January 29, 2019

Accepted: March 14, 2019

Published: April 15, 2019

REFERENCES

Aceto, N., Bardia, A., Miyamoto, D.T., Donaldson, M.C., Wittner, B.S.,

Spencer, J.A., Yu, M., Pely, A., Engstrom, A., Zhu, H., et al. (2014).

Circulating tumor cell clusters are oligoclonal precursors of breast cancer

metastasis. Cell 158, 1110–1122.

Aktary, Z., and Pasdar, M. (2012). Plakoglobin: role in tumorigenesis and

metastasis. Int. J. Cell Biol. 2012, 189521.

Coluccia, A.M., Vacca, A., Dunach, M., Mologni, L., Redaelli, S., Bustos, V.H.,

Benati, D., Pinna, L.A., and Gambacorti-Passerini, C. (2007). Bcr-Abl stabilizes

beta-catenin in chronicmyeloid leukemia through its tyrosine phosphorylation.

EMBO J. 26, 1456–1466.

Fang, Z.H., Dong, C.L., Chen, Z., Zhou, B., Liu, N., Lan, H.F., Liang, L., Liao,

W.B., Zhang, L., and Han, Z.C. (2009). Transcriptional regulation of survivin

by c-Myc in BCR/ABL-transformed cells: implications in anti-leukaemic strat-

egy. J. Cell Mol. Med. 13, 2039–2052.

Feldhahn, N., Henke, N., Melchior, K., Duy, C., Soh, B.N., Klein, F., von

Levetzow, G., Giebel, B., Li, A., Hofmann, W.K., et al. (2007). Activation-

induced cytidine deaminase acts as a mutator in BCR-ABL1-transformed

acute lymphoblastic leukemia cells. J. Exp. Med. 204, 1157–1166.

Gang, E.J., Hsieh, Y.T., Pham, J., Zhao, Y., Nguyen, C., Huantes, S., Park, E.,

Naing, K., Klemm, L., Swaminathan, S., et al. (2014). Small-molecule inhibition

of CBP/catenin interactions eliminates drug-resistant clones in acute lympho-

blastic leukemia. Oncogene 33, 2169–2178.

He, T.-C., Sparks, A.B., Rago, C., Hermeking, H., Zawel, L., da Costa, L.T.,

Morin, P.J., Vogelstein, B., and Kinzler, K.W. (1998). Identification of c-MYC

as a target of the APC pathway. Science 281, 1509–1512.

Heidel, F.H., Bullinger, L., Feng, Z., Wang, Z., Neff, T.A., Stein, L., Kalaitzidis,

D., Lane, S.W., and Armstrong, S.A. (2012). Genetic and pharmacologic inhi-

bition of beta-catenin targets imatinib-resistant leukemia stem cells in CML.

Cell Stem Cell 10, 412–424.

Hemann, M.T., Bric, A., Teruya-Feldstein, J., Herbst, A., Nilsson, J.A., Cordon-

Cardo, C., Cleveland, J.L., Tansey, W.P., and Lowe, S.W. (2005). Evasion of

the p53 tumour surveillance network by tumour-derived MYC mutants.

Nature 436, 807–811.

Hu, Y., Chen, Y., Douglas, L., and Li, S. (2009). beta-Catenin is essential for

survival of leukemic stem cells insensitive to kinase inhibition in mice with

BCR-ABL-induced chronic myeloid leukemia. Leukemia 23, 109–116.

Hu, Y., Liu, Y., Pelletier, S., Buchdunger, E., Warmuth, M., Fabbro, D., Hallek,

M., Van Etten, R.A., and Li, S. (2004). Requirement of Src kinases Lyn, Hck and

Fgr for BCR-ABL1-induced B-lymphoblastic leukemia but not chronic myeloid

leukemia. Nat. Genet. 36, 453–461.

Hu, Y., Swerdlow, S., Duffy, T.M., Weinmann, R., Lee, F.Y., and Li, S. (2006).

Targeting multiple kinase pathways in leukemic progenitors and stem cells is

essential for improved treatment of Ph+ leukemia in mice. Proc. Natl. Acad.

Sci. U S A 103, 16870–16875.

Huelsken, J., Vogel, R., Erdmann, B., Cotsarelis, G., and Birchmeier, W. (2001).

b-catenin controls hair follicle morphogenesis and stem cell differentiation in

the skin. Cell 105, 533–545.

Hunger, S.P. (2011). Tyrosine kinase inhibitor use in pediatric Philadelphia

chromosome-positive acute lymphoblastic anemia. Hematology Am. Soc.

Hematol. Educ. Program 2011, 361–365.

Huntly, B.J., Shigematsu, H., Deguchi, K., Lee, B.H., Mizuno, S., Duclos, N.,

Rowan, R., Amaral, S., Curley, D., Williams, I.R., et al. (2004). MOZ-TIF2, but

not BCR-ABL, confers properties of leukemic stem cells to committed murine

hematopoietic progenitors. Cancer Cell 6, 587–596.

Jamieson, C.H., Ailles, L.E., Dylla, S.J., Muijtjens, M., Jones, C., Zehnder, J.L.,

Gotlib, J., Li, K., Manz, M.G., Keating, A., et al. (2004). Granulocyte-macro-

phage progenitors as candidate leukemic stem cells in blast-crisis CML.

N. Engl. J. Med. 351, 657–667.
662 Cancer Cell 35, 649–663, April 15, 2019
Jeannet, G., Boudousquie, C., Gardiol, N., Kang, J., Huelsken, J., and Held,W.

(2010). Essential role of theWnt pathway effector Tcf-1 for the establishment of

functional CD8 T cell memory. Proc. Natl. Acad. Sci. U S A 107, 9777–9782.

Jho, E.-H., Zhang, T., Domon, C., Joo, C.-K., Freund, J.-N., and Costantini, F.

(2002). Wnt/b-Catenin/Tcf signaling induces the transcription of axin2, a nega-

tive regulator of the signaling pathway. Mol. Cell. Biol. 22, 1172–1183.

Kawauchi, D., Robinson, G., Uziel, T., Gibson, P., Rehg, J., Gao, C.,

Finkelstein, D., Qu, C., Pounds, S., Ellison, D.W., et al. (2012). A mouse model

of the most aggressive subgroup of human medulloblastoma. Cancer Cell 21,

168–180.

Kim, P.J., Plescia, J., Clevers, H., Fearon, E.R., and Altieri, D.C. (2003). Survivin

and molecular pathogenesis of colorectal cancer. Lancet 362, 205–209.

Kim, Y.M., Ma, H., Oehler, V.G., Gang, E.J., Nguyen, C., Masiello, D., Liu, H.,

Zhao, Y., Radich, J., and Kahn, M. (2011). The gamma catenin/CBP complex

maintains survivin transcription in beta-catenin deficient/depleted cancer

cells. Curr. Cancer Drug Targets 11, 213–225.

Kolly, C., Zakher, A., Strauss, C., Suter, M.M., and Muller, E.J. (2007).

Keratinocyte transcriptional regulation of the human c-Myc promoter occurs

via a novel Lef/Tcf binding element distinct from neoplastic cells. FEBS Lett.

581, 1969–1976.

Kovacic, B., Hoelbl, A., Litos, G., Alacakaptan, M., Schuster, C., Fischhuber,

K.M., Kerenyi, M.A., Stengl, G., Moriggl, R., Sexl, V., and Beug, H. (2012).

Diverging fates of cells of origin in acute and chronic leukaemia. EMBO Mol.

Med. 4, 283–297.

Li, J., Swope, D., Raess, N., Cheng, L., Muller, E.J., and Radice, G.L. (2011).

Cardiac tissue-restricted deletion of plakoglobin results in progressive cardio-

myopathy and activation of {beta}-catenin signaling. Mol. Cell. Biol. 31,

1134–1144.

Lu, D., Zhao, Y., Tawatao, R., Cottam, H.B., Sen, M., Leoni, L.M., Kipps, T.J.,

Corr, M., and Carson, D.A. (2004). Activation of the Wnt signaling pathway in

chronic lymphocytic leukemia. Proc. Natl. Acad. Sci. U S A 101, 3118–3123.

Miravet, S., Piedra, J., Castano, J., Raurell, I., Franci, C., Dunach, M., and

Garcia de Herreros, A. (2003). Tyrosine phosphorylation of plakoglobin causes

contrary effects on its association with desmosomes and adherens junction

components and modulates beta-catenin-mediated transcription. Mol. Cell.

Biol. 23, 7391–7402.

Morgan, R.G., Pearn, L., Liddiard, K., Pumford, S.L., Burnett, A.K., Tonks, A.,

and Darley, R.L. (2012). gamma-Catenin is overexpressed in acute myeloid

leukemia and promotes the stabilization and nuclear localization of beta-cate-

nin. Leukemia 27, 336–343.

Muller-Tidow, C., Steffen, B., Cauvet, T., Tickenbrock, L., Ji, P., Diederichs, S.,

Sargin, B., Kohler, G., Stelljes, M., Puccetti, E., et al. (2004). Translocation

products in acute myeloid leukemia activate the Wnt signaling pathway in

hematopoietic cells. Mol. Cell. Biol. 24, 2890–2904.

Mullighan, C.G., Miller, C.B., Radtke, I., Phillips, L.A., Dalton, J., Ma, J., White,

D., Hughes, T.P., Le Beau, M.M., et al. (2008). BCR-ABL1 lymphoblastic

leukaemia is characterized by the deletion of Ikaros. Nature 453, 110–114.

Niu, C.C., Zhao, C., Yang, Z.D., Zhang, X.L., Wu, W.R., Pan, J., Zhao, C., Li,

Z.Q., Ding, W., Yang, Z., and Si, W.K. (2013). Downregulation of gamma-cat-

enin inhibits CML cell growth and potentiates the response of CML cells to

imatinib through beta-catenin inhibition. Int. J. Mol. Med. 31, 453–458.

O’Hare, T., Zabriskie, M.S., Eiring, A.M., and Deininger, M.W. (2012). Pushing

the limits of targeted therapy in chronic myeloid leukaemia. Nat. Rev. Cancer

12, 513–526.

Pomerantz, M.M., Ahmadiyeh, N., Jia, L., Herman, P., Verzi, M.P.,

Doddapaneni, H., Beckwith, C.A., Chan, J.A., Hills, A., Davis, M., et al.

(2009). The 8q24 cancer risk variant rs6983267 shows long-range interaction

with MYC in colorectal cancer. Nat. Genet. 41, 882–884.

Quentmeier, H., Eberth, S., Romani, J., Zaborski, M., and Drexler, H.G. (2011).

BCR-ABL1-independent PI3Kinase activation causing imatinib-resistance.

J. Hematol. Oncol. 4, 6.

Reavie, L., Buckley, S.M., Loizou, E., Takeishi, S., Aranda-Orgilles, B., Ndiaye-

Lobry, D., Abdel-Wahab, O., Ibrahim, S., Nakayama, K.I., and Aifantis, I.

http://refhub.elsevier.com/S1535-6108(19)30150-3/sref1
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref1
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref1
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref1
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref2
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref2
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref3
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref3
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref3
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref3
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref4
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref4
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref4
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref4
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref5
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref5
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref5
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref5
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref6
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref6
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref6
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref6
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref7
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref7
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref7
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref8
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref8
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref8
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref8
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref51
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref51
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref51
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref51
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref9
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref9
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref9
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref10
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref10
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref10
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref10
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref11
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref11
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref11
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref11
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref12
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref12
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref12
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref13
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref13
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref13
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref14
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref14
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref14
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref14
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref15
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref15
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref15
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref15
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref16
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref16
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref16
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref17
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref17
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref17
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref52
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref52
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref52
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref52
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref18
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref18
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref19
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref19
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref19
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref19
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref20
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref20
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref20
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref20
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref21
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref21
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref21
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref21
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref22
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref22
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref22
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref22
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref23
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref23
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref23
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref24
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref24
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref24
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref24
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref24
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref25
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref25
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref25
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref25
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref26
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref26
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref26
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref26
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref27
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref27
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref27
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref28
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref28
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref28
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref28
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref29
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref29
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref29
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref30
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref30
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref30
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref30
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref31
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref31
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref31
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref32
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref32


(2013). Regulation of c-Myc ubiquitination controls chronic myelogenous

leukemia initiation and progression. Cancer Cell 23, 362–375.

Reya, T., O’Riordan, M., Okamura, R., Devaney, E., Willert, K., Nusse, R., and

Grosschedl, R. (2000). Wnt signaling regulates B lymphocyte proliferation

through a LEF-1 dependent mechanism. Immunity 13, 15–24.

Rix, U., Hantschel, O., Durnberger, G., Remsing Rix, L.L., Planyavsky, M.,

Fernbach, N.V., Kaupe, I., Bennett, K.L., Valent, P., Colinge, J., et al. (2007).

Chemical proteomic profiles of the BCR-ABL inhibitors imatinib, nilotinib,

and dasatinib reveal novel kinase and nonkinase targets. Blood 110,

4055–4063.

Roumiantsev, S., de Aos, I.E., Varticovski, L., Ilaria, R.L., and Van Etten, R.A.

(2001). The src homology 2 domain of Bcr/Abl is required for efficient induction

of chronic myeloid leukemia-like disease in mice but not for lymphoid leuke-

mogenesis or activation of phosphatidylinositol 3-kinase. Blood 97, 4–13.

Ruiz, P., Brinkmann, V., Ledermann, B., Behrend, M., Grund, C., Thalhammer,

C., Vogel, F., Birchmeier, C., G€unthert, U., Franke, W.W., and Birchmeier, W.

(1996). Targeted mutation of plakoglobin in mice reveals essential functions

of desmosomes in the embryonic heart. J. Cell. Biol. 135, 215–225.

Schmitz, M., Breithaupt, P., Scheidegger, N., Cario, G., Bonapace, L.,

Meissner, B., Mirkowska, P., Tchinda, J., Niggli, F.K., Stanulla, M., et al.

(2011). Xenografts of highly resistant leukemia recapitulate the clonal compo-

sition of the leukemogenic compartment. Blood 118, 1854–1864.

Schurch, C., Riether, C., Matter, M.S., Tzankov, A., and Ochsenbein, A.F.

(2012). CD27 signaling on chronic myelogenous leukemia stem cells activates

Wnt target genes and promotes disease progression. J. Clin. Invest. 122,

624–638.

Signer, R.A., Montecino-Rodriguez, E., Witte, O.N., and Dorshkind, K. (2010).

Immature B-cell progenitors survive oncogenic stress and efficiently initiate

Ph+ B-acute lymphoblastic leukemia. Blood 116, 2522–2530.

Trumpp, A., Refaeli, Y., Oskarsson, T., Gasser, S., Murphy, M., Martin, G.R.,

and Bishop, J.M. (2001). c-Myc regulates mammalian body size by controlling

cell number but not cell size. Nature 414, 768–773.

Tuupanen, S., Turunen, M., Lehtonen, R., Hallikas, O., Vanharanta, S., Kivioja,

T., Bjorklund, M., Wei, G., Yan, J., Niittymaki, I., et al. (2009). The common
colorectal cancer predisposition SNP rs6983267 at chromosome 8q24 con-

fers potential to enhanced Wnt signaling. Nat. Genet. 41, 885–890.

Tyner, J.W., Jemal, A.M., Thayer, M., Druker, B.J., and Chang, B.H. (2012).

Targeting survivin and p53 in pediatric acute lymphoblastic leukemia.

Leukemia 26, 623–632.

van Genderen, C., Okamura, R.M., Farinas, I., Quo, R.-G., Parslow, T.G.,

Bruhn, L., and Grosschedl, R. (1994). Development of several organs that

require inductive epithelia-mesenchymal interactions is impaired in LEF-1

deficient mice. Genes Dev. 8, 2691–2703.

Verbeek, S., Izon, D., Hofhuis, F., Robanus-Maandag, E., te Riele, H., van de

Wetering, M., Oosterwegel, M., Wilson, A., MacDonald, H.R., and Clevers,

H. (1995). An HMG-box-containing T-cell factor required for thymocyte differ-

entiation. Nature 374, 70–74.

Wang, Y., Krivtsov, A.V., Sinha, A.U., North, T.E., Goessling, W., Feng, Z., Zon,

L.I., and Armstrong, S.A. (2010). The Wnt/beta-catenin pathway is required for

the development of leukemia stem cells in AML. Science 327, 1650–1653.

Williamson, L., Raess, N.A., Caldelari, R., Zakher, A., de Bruin, A., Posthaus,

H., Bolli, R., Hunziker, T., Suter, M.M., and Muller, E.J. (2006). Pemphigus vul-

garis identifies plakoglobin as key suppressor of c-Myc in the skin. EMBO J.

25, 3298–3309.

Yeung, J., Esposito, M.T., Gandillet, A., Zeisig, B.B., Griessinger, E., Bonnet,

D., and So, C.W. (2010). beta-Catenin mediates the establishment and drug

resistance of MLL leukemic stem cells. Cancer Cell 18, 606–618.

Yochum, G.S., Cleland, R., andGoodman, R.H. (2008). A genome-wide screen

for beta-catenin binding sites identifies a downstream enhancer element that

controls c-Myc gene expression. Mol. Cell. Biol. 28, 7368–7379.

Zhao, C., Blum, J., Chen, A., Kwon, H.Y., Jung, S.H., Cook, J.M., Lagoo, A.,

and Reya, T. (2007). Loss of beta-catenin impairs the renewal of normal and

CML stem cells in vivo. Cancer Cell 12, 528–541.

Zheng, X., Beissert, T., Kukoc-Zivojnov, N., Puccetti, E., Altschmied, J., Strolz,

C., Boehrer, S., Gul, H., Schneider, O., Ottmann, O.G., et al. (2004). Gamma-

catenin contributes to leukemogenesis induced by AML-associated transloca-

tion products by increasing the self-renewal of very primitive progenitor cells.

Blood 103, 3535–3543.
Cancer Cell 35, 649–663, April 15, 2019 663

http://refhub.elsevier.com/S1535-6108(19)30150-3/sref32
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref32
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref33
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref33
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref33
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref34
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref34
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref34
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref34
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref34
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref35
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref35
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref35
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref35
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref36
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref36
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref36
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref36
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref36
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref37
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref37
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref37
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref37
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref38
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref38
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref38
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref38
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref39
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref39
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref39
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref40
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref40
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref40
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref41
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref41
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref41
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref41
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref42
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref42
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref42
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref43
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref43
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref43
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref43
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref44
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref44
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref44
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref44
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref45
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref45
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref45
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref46
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref46
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref46
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref46
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref47
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref47
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref47
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref48
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref48
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref48
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref49
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref49
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref49
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref50
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref50
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref50
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref50
http://refhub.elsevier.com/S1535-6108(19)30150-3/sref50


STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-Mouse CD3e eBioscience Cat#56-0032-82;

RRID: AB_467055

Anti-Mouse CD3e eBioscience Clone 145-2C11;

RRID: AB_11149861

Anti-Mouse CD4 eBioscience Clone GK1.5;

RRID: AB_493999

Anti-Mouse CD8a eBioscience Clone 53-6.7;

RRID: AB_2534400

Anti-mouse CD11b Biolegend Clone M1/70;

RRID: AB_312790

Anti-mouse CD16/32 in house Clone 2.4G2

Anti-Mouse CD19 eBioscience Clone eBio1D3;

Cat#56-0193-82

Anti-mouse CD34 eBioscience Clone Ram34;

RRID: AB_657739

Anti-mouse CD43 PE BD Biosciences Cat#553271;

RRID: AB_394748

Anti-mouse CD45 in house Clone M1/89

Anti-mouse CD45 eFluor450 eBioscience Clone 30-F11;

RRID: AB_10597009

Anti-mouse CD45R (B220) eBioscience Clone RA3-6B2

Anti-Mouse CD45.1 eBioscience Clone A20;

RRID: AB_1272189

Anti-Mouse CD45.2 eBioscience Clone 104.2;

RRID: AB_953590

Anti-mouse CD117 PeCy7 (c-kit) eBioscience Clone 2B8

RRID: AB_469645

Anti-Mouse CD127 eBioscience Clone A7R34

RRID: AB_469435

Anti-mouse CD249 (BP-1) BD Biosciences Cat#564533;

RRID: AB_2738838

Anti-mouse IgM BD Biosciences Cat#553436;

RRID: AB_394856

Anti-mouse IgM BD Biosciences Cat#553409; RRID:

AB_394845

Anti-mouse GR1 eBiosciences Cat#56-5931-82;

RRID: AB_494007

Anti-mouse Sca1 APC in house Clone D7

Anti-mouse Ter119 BD Biosciences or in house Cat#560509;

RRID: AB_164230

Rabbit anti-mouse/human MYC Abcam Cat#ab32072;

RRID: AB_731658

Rabbit anti-mouse BIRC5 (Survivin) Cell Signaling Cat#2808;

RRID: AB_2063948

Rabbit anti-human BIRC5 (Survivn) Abcam Cat#Ab76424;

RRID: AB_1524459

Rabbit anti-human p21 (CDKN1A) Cell Signaling Cat#2947;

RRID: AB_823586
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Anti-human CD19 PE BioLegend Clone HIB19;

RRID: AB_314237

Anti-human CD45 Alexa Flour 647 BioLegend Clone HI30;

RRID: AB_493034

Anti-human b2 microglobulin PE (Clone T€u99) BD Biosciences Cat#551337;

RRID: AB_394152

Fab2 donkey anti-rabbit IgG PE eBioscience Cat#12-4739-81;

RRID: AB_1210761

Anti-mouse/human g–catenin (Western Blot) BD Biosciences Clone 15;

RRID: AB_397649

Anti-mouse/human b-catenin (Western Blot) BD Biosciences Clone 14;

RRID: AB_397554

Anti-human ABL (Western Blot) Abcam Cat# ab16905;

RRID: AB_443541

Anti-mouse/human beta-actin (Western Blot) Sigma Cat#A1978;

RRID: AB_476692

Anti-influenza hemagglutinin (HA) (Western Blot) Roche Clone 3F10;

RRID: AB_10094468

anti-human MYC (Western Blot) Sigma Clone 9E10;

RRID: AB_439694

anti-phospho Tyrosine (pTyr) (Western Blot) Millipore Clone 4G10;

RRID: AB_309678

goat anti-rabbit IgG HRP (Western Blot) Southern Biotech Cat#4030-05;

RRID: AB_2687483

goat anti-rat IgG HRP (Western Blot) Southern Biotech Cat# 3030-05;

RRID: AB_2716837

goat anti-mouse IgG1 HRP (Western Blot) Southern Biotech Cat#1071-05;

RRID: AB_2794426

goat anti-mouse IgG2a HRP (Western Blot) Southern Biotech Cat#1081-05;

RRID: AB_2736843

mouse anti-human g-catenin (ChIP) BD Biosciences Cat#610253;

RRID: AB_397648

rabbit anti-human b-catenin (polyclonal) (ChIP) Santa Cruz Biotechnology Cat#sc-7199;

RRID: AB_634603

anti-human LEF1 (polyclonal) (ChIP) Santa Cruz

Biotechnology

Cat#sc-8591;

RRID: AB_21356

rabbit IgG (ChIP) Millipore Cat#12-370;

RRID: AB_145841

Chemicals, Peptides, and Recombinant Proteins

AnnexinV- PE eBioscience Cat#88-8102-72

Aqua dead Invitrogen Cat#L34966

Biotin Sigma Cat#B4501

DAPI Molecular Probes Cat#D1306

ECL GE Healthcare Cat#RPN2106

Femto ECL Thermo Scientific Cat#34095

Hoechst Molecular Probes Cat#H3570

human IL-7 Peprotech Cat#200-07

Inhibitor: Imatinib Symansis Cat#SY-Imatinibmesylate

Inhibitor: Dasatinib Symansis Cat#SY-Dasatinib

Inhibitor: Nilotinib Symansis Cat#SY-Nilotinib

Inhibitor: SU6656 EMDMillipore Cat#572635

Magnetic beads Lifetechnologies Cat #10001D

murine IL-7 Peprotech Cat#217-17

(Continued on next page)
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murine Stem cell factor (SCF) Peprotech Cat#250-03

murine TPO (Thrombopoietin) Peprotech Cat# 315-14

Polybrene (Hexadimthrine bromide) Sigma Aldrich Cat#H9268

Puromycin Sigma Aldrich Cat#P8833

Polyinosinic-polycytodylic acid (polyI:C) Invivogen Cat#vac-pic

Protein A+G magnetic beads Millipore Cat#16-663

Strep-Tactin Sepharose beads IBA Lifesciences Cat#2-1201-010

Sytox blue Thermo Scientific Cat#S34857

7-AAD Biolegend Cat#420403

Critical Commercial Assays

BrdU flow kit BD Cat#51-2354AK

FoxP3/Transcription factor staining buffer Invitrogen Cat#00-5523-00

LightCycler FastStart DNA Master SYBR Green I Roche Cat#12239264001

MethoCult StemCell Technologies Cat#M3234

Mouse hematopoietic progenitor cell isolation kit StemCell Technologies Cat#19856

Superscript III first strand kit Invitrogen Cat#18080-501

Deposited Data

Gene array data of Jup+/+ versus Jup-/- BCR-ABL1+ preleukemic B cells This study GEO: GSE54793

Experimental Models: Cell Lines

Human: NALM-1 DSMZ, Germany ACC-131

Human: SD-1 A. Ochsenbein (UniBE)

Human: Sup-B15 DSMZ, Germany ACC-389

Human: BV-173 DSMZ, Germany ACC-20

Human: TOM-1 DSMZ, Germany ACC 578

Human: K562 DSMZ, Germany ACC-10

Human: REH DSMZ, Germany ACC-22

Human: Sem DSMZ, Germany ACC-546

Human: 697 DSMZ, Germany ACC-42

Experimental Models: Organisms/Strains

Mouse: Jup+/- (Ruiz et al., 1996)

Mouse: Juplox (Li et al., 2011), G. Radice,

Philadelphia and E. Mueller, Bern)

Mouse: Ctnnb1lox (Huelsken et al., 2001),

W. Birchmeier, Berlin

Mouse: Myclox (Trumpp et al., 2001), A. Trumpp,

Heidelberg

Mouse: B6.129-Tm(Lef1)Rug (van Genderen et al., 1994)

(R. Grosschedl, Freiburg

Mouse: B6.129-Tm(Tcf7)Cle (Tcf7-/-) (CD45.2) (Verbeek et al., 1995), H. Clevers,

Utrecht

RRID: MGI:4360712

Mouse: B6.Cg-Commd10<Tg(Vav1-icre)A2Kio>/J JAX Strain 008610

Mouse: B6.Cg-Tg(Mx1-cre)1Cgn/J JAX Strain 003556

Mouse: B6.SJL-Ptprc<a> (B6 CD45.1) JAX Strain 002014

RRID: MGI:6200621

Mouse: NOD.Cg-Prkdc<scid> Il2rg<tm1Wjl>/SzJ (NSG) JAX Strain 005557

Oligonucleotides

m. Vav-Cre DNA PCR Forward primer:

AGATGCCAGGACATCAGGAACCTG

this paper

m. Vav-Cre DNA PCR Reverse primer:

ATCAGCCACACCAGACAC AGAGATC

this paper

(Continued on next page)
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m. Ctnnb1lox DNA PCR Forward primer:ACTGCCTTTGTTCTCTT

CCCTTCTG

this paper

m. Ctnnb1lox DNA PCR Reverse primer:

GAATCCAAGTAAGACTGCTGCTGC

this paper

m. Ctnnb1D DNA PCR Forward primer:ACTGCCTTTGTTCTCTTC

CCTTCTG

this paper

m. Ctnnb1D DNA PCR Reverse primer:

CTTGTTGCTAGAGCAGACAGACAG

this paper

m. Jup DNA PCR Forward primer:CTTCTATCGCCTTCTTGACG this paper

m. Jup DNA PCR Reverse primer:CGGCCATCGTCCATCTCATC this paper

m. Jup DNA PCR Reverse primer:CCTCCTTCTTGGACAGCTGG this paper

m. Lef1 DNA PCR Forward primer:CCGTTTCAGTGGCACGCCCTCTCC this paper

m. Lef1 DNA PCR Forward primer:ATGGCGATGCCTGCTTGCCGAATA this paper

m. Lef1 DNA PCR Reverse primer:TGTCTCTCTTTCCGTGCTAGTTC this paper

m. Tcf7 DNA PCR Forward primer:ATGGCGATGCCTGCTTGCCGA

ATATGC

this paper

m. Tcf7 DNA PCR Reverse primer:

TGAGTGCACACTCAAGG

this paper

m. Tcf7 DNA PCR Reverse primer:

GTAGTTATCCCGCGCGGA CC

this paper

m. Myclox DNA PCR Forward primer:GCATTTTAATTCCAGCGCATCAG this paper

m. Myclox DNA PCR Reverse primer:

ACAACGTCTTGGAACGTCAGAGG

this paper

m. MycD DNA PCR Forward primer:TTTCTGACTCGCTGTAGTAATTCC this paper

m. MycD DNA PCR Reverse primer:AGGCAGTTAAAATTATGGCTGAAG this paper

m. MycD DNA PCR Reverse primer:

CACCGCCTACATCCTGTCCATTC

this paper

m. Juplox DNA PCR Forward primer:AAGAAATACCCACGGCTCCT this paper

m. Juplox DNA PCR Reverse primer:

GCTCCAGGGAGAAACAGA CA

this paper

m. JupD DNA PCR Forward primer:AAG AAA TAC CCA CGGCTCCT this paper

m. JupD DNA PCR Reverse primer:

TTCGACGGAGTAGCATAGGG

this paper

m. Mx-Cre DNA PCR Forward primer:AAAGCAGGCAGCCATCTGAAC this paper

m. Mx-Cre DNA PCR Reverse primer:

TCTTGCGAACCTCATCACTCG

this paper

m. Tcf7 qPCR Forward primer:AGCTTTCTCCACTCTACGAACA this paper

m. Tcf7 qPCR Reverse primer: AATCCAGAGAGATCGGGGGTC this paper

m. Lef1 qPCR Forward primer:CTGGTCAGCGCGAGACAATTA this paper

m. Lef1 qPCR Reverse primer: CTTTGCACGTTGGGAAGGA this paper

m. Tcf7L1 qPCR Forward primer:ACGAGCTGATCCCCTTCCA this paper

m. Tcf7L1 qPCR Reverse primer: CAGGGACGACTTGACCTCAT this paper

m. Tcf7L2 qPCR Forward primer:CGAAAAGTTCCTCCGGGTTTG this paper

m. Tcf7L2 qPCR Reverse primer: CGTAGCCGGGCTGATTCAT this paper

m. Jup qPCR Forward primer:GACTACCACCTATACACAAGGGG this paper

m. Jup qPCR Reverse primer: AGCAGTAGAGAACTGTCCTCG this paper

m. Lgr5 qPCR Forward primer:CCAATGGAATAAAGACGACGGCAACA this paper

m. Lgr5 qPCR Reverse primer: GGGCCTTCAGGTCTTCCTCAAAGTCA this paper

m. Axin2 qPCR Forward primer:TGACTCTCCTTCCAGATCCCA this paper

m. Axin2 qPCR Reverse primer: TGCCCACACTAGGCTGACA this paper

m. Myc qPCR Forward primer: GGACAGTGTTCTCTGCC this paper

(Continued on next page)
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m. Myc qPCR Reverse primer: CGTCGCAGATGAAATAGG this paper

h. BIRC5 qPCR Forward primer:GCCTGGCAGCCCTTTCTC this paper

h. BIRC5 qPCR Reverse primer: GCCAGCTGCTCGATGGC this paper

m. TBP qPCR Forward primer:CCTTCACCAATG ACTCCTATGAC this paper

m. TBP qPCR Reverse primer: CAAGTTTACAGCCAAGATTCAC this paper

m. HPRT qPCR Forward primer:GTTGGATACAGGCCAGACTTTGTTG this paper

m. HPRT qPCR Reverse primer: GATTCAACTTGCGCTCATCTTAGGC this paper

h. MYC TBE1 CHIP-qPCR Forward primer: TCACAAGGGTCTCTG

CTGACTC

this paper

h. MYC TBE1 CHIP-qPCR Reverse primer: GGGTTTGGGAGAAAT

CAAAGGT

this paper

h. MYC TBE2 CHIP-qPCR Forward primer: GCGCCCATTAATA

CCCTTCTTT

this paper

h. MYC TBE2 CHIP-qPCR Reverse primer: TCCACACCGAGA

ACGCACT

this paper

h. MYC TBE3&4 CHIP-qPCR Forward primer: GGGAGATCCG

GAGCGAATA

this paper

h. MYC TBE3&4 CHIP-qPCR Reverse primer: TCGGGTGTTGT

AAGTTCCAGTG

this paper

h. MYC TBE5 CHIP-qPCR Forward primer: GGCGCTCTTAAA

CAGCTCAGTC

this paper

h. MYC TBE5 CHIP-qPCR Reverse primer: CAGACTAACACC

TTCCCGATTCC

this paper

h. MYC 5’ enhancer CHIP-qPCR Forward primer: GAGGGACGA

ATAAACTCTCCTCCT

this paper

h. MYC 5’ enhancer CHIP-qPCR Reverse primer: TCAGTGCC

TTTCATCTGCTGAG

this paper

h. MYC 5’ upstream control CHIP-qPCR Forward primer: CCTT

CACCTCATCTCTTGACAGG

this paper

h. MYC 5’ upstream control CHIP-qPCR Reverse primer: AAAG

CAACTGGACGTGGTGAA

this paper

h. AXIN2 TBE2 CHIP-qPCR Forward primer: GCTTTGATAAGG

TCCTGGCAAC

this paper

h. AXIN2 TBE2 CHIP-qPCR Reverse primer: CCGAAATCCATC

GCTCTGA

this paper

h. AXIN2 TBE3 CHIP-qPCR Forward primer: CGCCTTTGAAGT

GCACAGTTA

this paper

h. AXIN2 TBE3 CHIP-qPCR Reverse primer: AGGTCCTGTTTC

CAGCAGTCAC

this paper

h. AXIN2 5’ upstream control CHIP-qPCR Forward primer:

AGGCTAGAGAGAGGGCTTTCCA

this paper

h. AXIN2 5’ upstream control CHIP-qPCR Reverse primer:

AACAGGTGCTCGGGTCACTTTA

this paper

Recombinant DNA

Plasmid: MSCV-BCR-ABL1 (p210)-IRES-GFP X. Jiang, Terry Fox Laboratory

Plasmid: MSCV-BCR-ABL1 (p210)-IRES-mCherry this paper

Plasmid: MSCV-BCR-ABL1 (p185)-IRES-GFP O. Hantschl, EPFL

Plasmid: MSCV-IRES-GFP J. Huelsken, EPFL

Plasmid: MSCV-MYC-IRES-GFP (Hemann et al., 2005), S. Lowe RRID: Addgene_18770

Plasmid: MSCV-pBabeMCS-IRES-RFP M. Roussel and C. Sherr RRID: Addgene_33337

Plasmid: MSCV-MYC-IRES-RFP (Kawauchi et al., 2012), M. Roussel RRID: Addgene_35395

Plasmid: pLKO Sh JUP (human) (Sh JUP1) Open Biosystems TRCN0000083709

(Continued on next page)
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Plasmid: pLKO Sh JUP (human) (Sh JUP2) Open Biosystems TRCN0000083710

Plasmid: pLKO Sh b-catenin (human) Open Biosystems TRCN0000003843

Plasmid: pLKO Sh b-catenin (human) Open Biosystems TRCN0000003845

Plasmid: pLKO Sh MYC (human) Open Biosystems TRCN0000174055

Plasmid: pLKO Sh MYC (human) Open Biosystems TRCN0000010390

Plasmid: pLKO Sh scrambled (Sh scr) Sigma SHC002

Plasmid: pCL Eco (Retrovirus production) Imgenex Cat# 10045P

Plasmid: pCL Ampho (Retrovirus production) B. Reina, Strasbourg

Plasmid: pCMVR8.74 (Lentivirus production) D. Trono, EPFL RRID: Addgene_22036

Plasmid: pMD2.G (Lentivirus production) D. Trono, EPFL RRID: Addgene_12259

Plasmid: Lenti pgk-BIRC5-T2A-GFP this paper

Plasmid: MSCV BIRC5 IRES-RFP this paper

Plasmid: Lenti MYC-g-catenin (human) this paper

Plasmid: Lenti MYC-g-catenin resistant to Sh JUP1

(TRCN0000083709)

this paper

Plasmid: Lenti MYC-g-catenin resistant to Sh JUP2

(TRCN0000083710)

this paper

Plasmid: Lenti MYC-g-catenin mut (Y133/550/644F) this paper

Plasmid: Lenti MYC-g-catenin mut (Y133/550/644F) resistant to

Sh JUP1 (TRCN0000083709)

this paper

Plasmid: Lenti mPgk SBP-HA-g-catenin hPgk GFP this paper

Plasmid: Lenti mPgk SBP-HA-g-catenin mut hPgk GFP this paper

Plasmid: Lenti hU6 Sh JUP1 hPgk RFP this study

Plasmid: Lenti hU6 Sh JUP1 hPgk Cerulean this study

Plasmid: Lenti hU6 Sh JUP2 hPgk RFP this study

Plasmid: Lenti hU6 Sh JUP2 hPgk Cerulean this study

Plasmid: Lenti hU6 Sh scr hPgk RFP this study

Plasmid: Lenti hU6 Sh scr hPgk Cerulean this study

Software and Algorithms

GraphPad Prism http://graphpad-prism.software.

informer.com/5.0/,

RRID: SCR_002798

FlowJo Tree Star RRID: SCR_008520

Fiji https://github.com/fiji/fiji RRID: SCR_002285

Adobe Photoshop Adobe http://www.adobe.com/

legal/terms.html

LightCycler data analysis software, Version 3.5 Roche

GeneGO MetaCore analysis software http://www.genego.com/

metacore.php

RRID: SCR_008125

ImageJ RRID: SCR_003070
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Werner

Held (Werner.Held@unil.ch).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animal experiments were conducted in accordance with protocols approved by the veterinary authorities of the Canton de Vaud and

the Kanton Zurich, Switzerland. Mouse strains were maintained in the SPF animal facilities of the University of Lausanne or the

University of Zurich. Donor and irradiated recipients of bone marrow cells were sex matched. Recipients were >6 weeks of age.
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Animal experiments were conducted in accordance with protocols approved by the veterinary authorities of the Canton de Vaud and

the Canton of Zurich, Switzerland.

The studies involving human subjects were approved by the ethics commission of the Kanton Zurich (approval number 2014-0383)

and informed consent was obtained from all subjects in accordance with the Declaration of Helsinki. Primary human ALL cells were

from cryopreserved bone marrow aspirates from patients enrolled in the ALL-BFM 2000 study.

METHOD DETAILS

Mouse Strains
Jup+/- (Ruiz et al., 1996), Juplox/lox (Li et al., 2011), Ctnnb1lox/lox (Huelsken et al., 2001), Myclox (Trumpp et al., 2001), Lef1+/- (van

Genderen et al., 1994), Tcf7-/- (Verbeek et al., 1995) have been described. Vav-Cre, Mx1-Cre transgenic, CD45.1 congenic

C57BL/6 (B6) and NOD Prkdcscid Il2rg-/- (NSG) mice were obtained from the Jackson Lab (Bar Harbor, ME)

Fetal Liver Chimeras
Fetal liver cells from intercrosses of Jup+/- or Lef1+/- mice (CD45.2) were obtained at day 13.5 and of day 14-16 of gestation, respec-

tively. Following genotyping by PCR appropriate fetal liver cells were injected into irradiated (900rad) B6 recipients (CD45.1). Recip-

ients were allowed to engraft for 6 to 8 weeks before further use. Hematopoietic cells in recipient mice were largely donor-derived

(>95% CD45.2+) use.

Constructs, Viral Vectors, Virus Production and Stable Transfectants
Constructs: MSCV-BCR-ABL1 (p210)-IRES-GFP (X. Jiang, Terry Fox Laboratory), MSCV-BCR-ABL1 (p210)-IRES-mCherry, MSCV-

BCR-ABL1 (p185)-IRES-GFP (O. Hantschl, EPFL), MSCV-IRES-GFP, MSCV-MYC-IRES-GFP (a gift from Scott Lowe (Addgene

plasmid # 18770), pMSCV-pBabeMCS-IRES-RFP (gift from Martine Roussel & Charles Sherr (Addgene plasmid # 33337)), MSCV-

MYC-IRES-RFP (a gift from Martine Roussel (Addgene plasmid # 35395), Lentivirus-pgk-BIRC5-T2A-GFP (codon optimized

BIRC5 synthesized by Cyagen, this paper), MSCV-BIRC5 IRES-RFP vector (this paper). Lenti based knockdown constructs (listed

in the Key Resources Table) were purchased form Open Biosystems or Sigma.

Point mutations that change tyrosines (Y) at position 133, 550 and 644 to phenylalanine (F) and/or three point mutations that render

g-catenin resistant to Sh JUP1 (available upon request) were introduced into a MYC-tagged g-catenin cDNA. Point mutations that

render g-catenin resistant to Sh JUP 2 (available upon request) were introduced into a MYC-tagged g-catenin cDNA. A streptavidin-

Binding Peptide (SBP) and three copies of the HA tag were added to the N-terminus of g-catenin. All constructs were introduced into

lentivirus vector with a bidirectional a muPgk promoter driving GFP and g-catenin.

Virus production: For the production of retroviruses, 293T cells were transiently transfected with mouse stem cell virus (MSCV)

vectors plus pCL Eco or pCL Ampho packaging plasmids. For the production of lentiviruses, 293T cells were transiently transfected

with second or third generation packaging plasmids. After concentration of culture supernatants using filter columns (Millipore), virus

supernatants were either used directly or stored frozen. Infected cells were flow sorted based on GFP or RFP fluorescence to obtain

stably transduced Ph+ cell variants.

Murine Ph+ Leukemia
Ph+ B-ALL was induced according to (Roumiantsev et al., 2001). Total BM cells (CD45.2+) were cultured in RPMI (Invitrogen), 10%

FCS, 10mMHEPES, 10 ng/ml IL-7 (R&D Systems), 10%WEHI-3B supernatant (containing IL-3), 5 mg/ml polybrene and concentrated

supernatant containing MSCV BCR-ABL1 (p210) or (p185) IRES GFP or mCherry. After 1 hr the cells were washed and 106 cells were

injected i.v. into irradiated C57BL/6 (B6) (CD45.1) recipients. To analyze B-ALL initiation from B lineage committed cells, B220+

CD19+ IgM- cells were flow sorted after the 1 hr infection and 5x105 B cells (CD45.2) were injected into irradiated WT recipient

mice (CD45.1) together with WT rescue BM cells (2.5x105) (CD45.1).

Deletion of Jupwas induced by 3 injections of polyinosinic-polycytodylic acid (poly(I:C) (pIC)) (250mg/dose) (Invivogen) on day 7, 9,

and 11 post transplantation of transduced BM.

CML-like disease using enriched HSC was induced according to (Reavie et al., 2013). Lineage marker negative (Lin-) cells were

purified from BM using the mouse hematopoietic progenitor cell isolation kit (Stemcell Technology). Lin- Sca-1+ c-Kit+ (LSK) cells

were flow sorted, pre-stimulated overnight in Opti-MEM 10%FCS, 10mMHEPES, mSCF (100 ng/ml) and TPO (20 ng/ml) (Peprotech)

and infected with MSCV BCR-ABL1 (p210) IRES GFP for 4 hr. The infection was repeated the next day and one day later 4x104 cells

(CD45.2) were injected into irradiated WT recipient mice (CD45.1) together with WT rescue BM (2.5x105) (CD45.1).

Flow Cytometry
BM and spleen cell suspensions were treated with ACK buffer to remove erythrocytes and incubated with 2.4G2 (anti-CD16/32)

hybridoma supernatant to block Fc receptors. mAbs used for multi-color flow cytometry are listed in the Key Resources Table.

Abs were conjugated to appropriate fluorochromes (FITC, PE, PE-Texas red, PE-Cy5, PE-Cy5.5, PerCP-Cy5.5, PE-Cy7,

APC, Alexa647, Alexa700, APC-Cy7, APC-Alexa780, Pacific blue, efluor450 or Pacific orange) in house or were purchased from
e7 Cancer Cell 35, 649–663.e1–e10, April 15, 2019



eBiosciences, Becton Dickinson (BD) or Biolegend. 7AAD (eBiosciences), DAPI (Molecular Probes), Sytox blue (Molecular Probes) or

Aqua dead (Invitrogen) were used to gate out dead cells. Cocktail of PE-Cy7- or AF700-conjugated anti-CD3e (17A2), CD4 (GK1.5),

CD8a (53.6.7), CD11b (MI/70), CD19 (eBio1D3), B220 (RA3-6B2), GR-1 (RB6-8C5), Ter119 (Ter11)) mAbs were used to gate out

lineage-positive cells.

For cell proliferation assays, mice were injected with 100ml BrdU (BrdU flow kit, BD), and sacrificed 1 hr later. The staining was

performed according to manufacturer’s instructions. For the analysis of cell death, BM cells and splenocytes were incubated for

2 hr at 37�C in RPMI plus 10% FCS in the absence of growth factors, before cell surface and AnnexinV-Cy-5 (BD) staining. Sytox

blue (Molecular Probes) was added to identify dead cells.

For MYC and BIRC5 (Survivin) detection, human Ph+ cells were fixed with 80% and 100% methanol, respectively, and resus-

pended in PBS 0.1% Tween. Goat serum was used to prevent non-specific binding before incubation with rabbit anti-MYC

(Ab32072, Abcam) or rabbit anti-human BIRC5 (Ab76424, Abcam). For p21 staining cells were fixed using the Foxp3/Transcription

Factor Staining Buffer kit (eBioscience) and incubated with rabbit anti-human p21 (2947S, Cell signaling). For BIRC5 detection in

murine Ph+ tumor samples, frozen splenocytes were thawed and Live dead dye- CD45.2+ CD45.1- B220+ cells were flow sorted.

Sorted cells were fixed with 100% methanol or using the Foxp3/Transcription Factor Staining Buffer kit (ebioscience) and then

stained using rabbit anti-mouse BIRC5 (Survivin) (2808T, Cell signaling). For MYC detection in murine LSK cells, BM cells were

enriched in hematopoietic progenitors using the mouse hematopoietic progenitor cell isolation kit (StemCell technology, 19856)

following provider’s protocol. LSK cells were flow sorted, fixed with 80% methanol, resuspended in PBS 0.1%Tween, blocked

using goat serum and stained using rabbit anti-MYC (Ab32072, Abcam). Bound primary rabbit antibodies were detected using

PE-conjugated anti-rabbit antibody (12-4739, eBioscience) and DAPI was added to exclude sub G0/G1 cells.

Samples were run on FACScanto or LSRII flow cytometers (BD), and data were analyzed using the FlowJo software package. For

cell sorting the indicated cell types were stained as described above and sorted using a FACSAria (BD) cell sorter. The purity was

generally >99% upon reanalysis.

PCR
Analysis of genomic DNA analysis was performed using Hot Start Kapa Mouse genotyping Kit (Kapa Biosystem) using the primers

listed in the Key Resources Table.

For RTqPCR, total cellular RNAwas purified using TRizol reagent (Invitrogen) and reverse-transcribed using random hexamers and

Superscript III first strand kit (Invitrogen). Real-time PCR was performed using the LightCycler FastStart DNA Master SYBR Green I

(Roche) according to the instruction manual. Primers are listed in the Key Resources Table. Transcript levels were normalized to that

of TATA-binding protein (TBP) or Hypoxanthine-guanine phosphoribosyltransferase (HPRT). Amplification plots were analyzed using

the comparative CT method with LightCycler data analysis software, Version 3.5 (Roche).

Affymetrix Microarray
Total RNAwas isolated from four sets flowsorted Jup-sufficient and Jup-deficient pre-leukemicBcells (CD45.2+CD45.1-GFP+ (BCR-

ABL1+) B220+ BP-1+) (3 weeks post transplantation) using Trizol (Gibco) and RNeasy (Qiagen) purification following manufacturer’s

instructions. cDNA was synthesized, amplified and samples were hybridized to Affymetrix GeneChip Mouse Gene 1.0 ST array.

RNA quality was checked with a Bioanalyzer (Agilent) and cDNA was synthetized. Results were analyzed using a linear model,

paired analysis. The data were preprocessed with RMA (Robust Multichip Average) normalization. Moderated t-test was used for

comparison of the 2 groupswith a p value adjustment according to Benjamini-Hochbergmethod. Technical replicates were averaged

for fold-change study. Probe sets with adjusted p value (=FDR, False Discovery Rate) <0.05 were exported to Microsoft Excel and

analyzed further using GeneGOMetaCore analysis software. The accession number for the array data reported in this paper is GEO:

GSE54793.

Colony Formation
Total BM cells were infected with BCR-ABL1 (p185) before plating in methylcellulose medium (MethoCult M3234, StemCell Technol-

ogies) in the absence of growth factor addition (2.5x104/dish). After 8 days colonies were counted, cells were harvested and replated

(104 /dish) to assess secondary colony formation and eventually tertiary colony formation.

Cell Culture and Inhibitor Treatment
For characteristics of the cell lines used please see below. K562, BV-173, TOM-1, NALM-1 (DSMZ, Germany) and SD-1 (A. Ochsen-

bein, University of Bern) were cultured in RPMI supplemented with 10% FCS, 1%PS and 10mMHEPES. Sup-B15 (DSMZ, Germany)

cells were grown in IMDM (Invitrogen) supplemented with 15% FCS, 1% PS and 10mM HEPES.

To inhibit tyrosine phosphorylation: Sup-B15 cells expressing HA-SBP-tagged g-catenin were treated for 6 hr with Imatinib (inhibits

ABL kinases and a few receptor tyrosine kinases, 10mM), Nilotinib (selectively more potent for ABL, 1mM), Dasatinib (Inhibits ABL and

SRC family kinases, 100nM) or SU6656 (potent SRC inhibitor with no activity against ABL, 1mM). g-catenin was pulled down using

Strep-Tactin and analyzed for tyrosine phosphorylation. To measure cell death: Ph+ cell lines were treated with Imatinib (1mM),
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Nilotinib (100nM), Dasatinib (100nM) and SU6656 (1mM). Apoptosis was analyzed after 12 hr or 24 hr using flow cytometry for Annexin

versus 7-AAD.
BCR-ABL1-Positive and Negative Human Cell Lines

Cell Line Stagea Translocation mut/WT IKZF1a,b CDKN2A/Bc PAX5d IC50 Imatinib (nM)a IC50 Dasatinib (nM)a

NALM-1 B BC BCR-ABL1; p210;

WTa
D/WT

IK6-
D >10000 >1000

SD-1 B Lymp BCR-ABL1; p190;

WTa
IK6- >10000 n.d.

Sup-B15 pre-B BCR-ABL1; p190;

WTa
D3–6/WT

IK6+
D WT 2000 100

BV-173 B BC BCR-ABL1; p210; n.d.a IK6+ D WT 100 100

TOM-1 pre-B BCR-ABL1; p190; n.d.a D3–7/WT IK6- 80 n.d.

K562 M BC BCR-ABL1; p210; n.d.a D WT 200 n.d.

REH pre-B ETV6-RUNX1 WT

Sem pre-B MLL-AF4

697 pre-B TCF3(E2A)/PBX1 WT

B BC, B cell blast crisis; B Lymph, B lymphoblastoid; M BC, Myeloid blast crisis; mut, mutated; WT, wild-type; n.d., not determined; D, deletion, IK6:

expression of the dominant-negative Ikaros (IKZF1) splice variant 6.
a(Quentmeier et al., 2011).
b(Mullighan et al., 2008).
c(Feldhahn et al., 2007).
dhttp://cancer.sanger.ac.uk/cell_lines/gene/overview?ln=PAX5.
shRNA Assays
Cells were infectedwith lentivirus based vectors (pLKO) containing specific hairpins to human g-catenin (TRCN0000083709 (Sh JUP1)

and 83710 (Sh JUP2)), human b-catenin (TRCN0000003843 and 3845) (Open Biosystems) and human MYC (TRCN0000174055 and

10390) or a scrambled sequence (Sh scr) as a negative control (SHC002, Sigma). Forty-eight hr post infection, the cells were selected

in puromycin. Three days later, puromycin resistant cells were re-plated and live cells were counted every two days and analyzed by

Western blot and cell cycle/apoptosis analysis was done using Hoechst staining.

Sup-B15 cells were transduced with sh RNA constructs (Sh JUP2 or Sh scr) and puromycin-resistant cells were transplanted (i.v.)

into sub-lethally (375 cGy) irradiated NOD Prkdcscid Il2rg-/- (NSG) mice (2*106/mouse). Two weeks later mice were sacrificed and the

presence of human cells was assessed by flow cytometry for human b2 microglobulin (b2m) relative to mouse CD45.

Primary Human Ph+ B-ALL Samples
All primary ALL samples were derived from leftover diagnostic samples from patients that were enrolled in multicenter trials on treat-

ment of pediatric ALL conducted by individual member groups of the AIEOP-BFM study group (Austria, Germany, Italy and

Switzerland). All treatment trials were approved by the respective national institutional review boards, and informed consent for

the use of spare specimens for research was obtained from study individuals, parents or legal guardians. Approval for experiments

with human samples in the mouse xenograft model to study disease mechanisms was obtained from the ethics commission of the

Canton Zurich (approval number 2014-0383). Animal experiments were approved by the veterinary office of the Canton of Zurich,

Switzerland.

To obtain xenografts, primary ALL cells were recovered from cryopreserved samples and transplanted intrafemorally to NSGmice

as previously described (Schmitz et al., 2011). Leukemia progression was monitored by flow cytometry with rat anti-mouse CD45

(eFluor450, clone 30-F11, REF 48-451-82, eBioscience), mouse anti-human CD45 (Alexa Flour 647, clone HI30, REF 304018,

BioLegend), and mouse anti-human CD19 (PE, clone HIB19, REF 302208, BioLegend). ALL cells recovered from spleens of NSG

mice were used for experiments.

Thawed patient derived Ph+ B-ALL cells were cultured overnight in Opti-MEM supplemented with 10% FCS, 10mM HEPES, 1%

penicillin-streptomycin, 10 ng/ml of IL-7 and 10% of WEHI-3B supernatant (5x106 cells/ml).

For g-catenin knockdown, we subcloned the above used hairpins to human g-catenin Sh JUP1 (TRCN0000083710) and Sh JUP2

(TRCN0000083711) and the scrambled sequence (Sh scr, SHC002) together with the hU6 promoter from the pLKO into Lentivirus

backbones containing hPGK-GFP or -Cerulean followed by a WPRE element.

After overnight pre-stimulation, the patient derived Ph+ B-ALL cells were infected with fresh concentrated supernatant containing

Sh JUP or Sh scr Lentivirus in the presence of polybrene (5 mg/ml) for 4 hr and the infection was repeated the next day. After the

second infection, the two populations of transduced cells were mixed 1:1 and injected into NSG recipient (106 cells/mouse). A small

fraction of cells was kept in culture for 2-6 days to determine the rate of transduction by flow cytometry.
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Characteristics of B-ALL Patient Samples

Mouse no. Sample ID BFM ID Risk Karyotype Treatment Response Relapse

Patient#1 m3292 B73 MR BCR-ABL, hyperdiploid Prednisone Good Response CNS relapse

Patient#2 m3293 ZH04 SR BCR-ABL Prednisone Good Response
Pull Down and Western Blots
Cells were lysed RIPA buffer (50 mM Tris-Cl pH 7.4, 150 mM NaCl, 1%NP-40) containing Phospho Stop and Protease Inhibitor

Cocktail (Roche) for 30 min at 4�C. The cleared protein extract was incubated with Strep-Tactin Sepharose beads (IBA) for

15 min at 4�C. Beads were washed 3x in lysis buffer and proteins were eluted for 15 min at 4�C using lysis buffer containing

50mM Biotin (Sigma). Supernatants were analyzed by Westerns blots.

For Western blots, cells were lysed in Laemmli buffer (BioRad) and lysates were boiled for 10 min before running on 10% acryl-

amide gels (BioRad). After transfer to nitrocellulose (Bio-Rad), membranes were saturated using TBS with 5% milk or 0.5% gelatin

for 1 hr and incubated with primary antibodies overnight followed by appropriate secondary antibodies coupled to HRP (Horseradish

peroxidase) (see Key Resources Table) for 45 min and developed using standard ECL (GE Healthcare) or Femto ECL (Thermo

Scientific). Signals were visualized using X-Ray films (Fuji) and quantified using ImageJ software (NIH).

Chromatin Immunoprecipitation (ChIP)
Sup-B15 and K562 cells were crosslinked using a two-step method. In brief, nuclei were extracted, lysed in 10mM Tris pH8, 0.3%

SDS, 1mM EDTA, 0.5mM EGTA and sonicated to 500bp average length using a Covaris S2 sonicator. The sonicated cell lysate was

clarified by centrifugation, diluted 8x in IP buffer (10mM Tris pH8, 160mMNaCl, 1mM EDTA, 1%NP-40, 0.1% sodium deoxycholate)

and incubated with anti-g-catenin (BD 610253), anti-b-catenin (Santa Cruz sc-7199) or control rabbit IgG (Millipore 12-370) anti-

bodies pre-coupled to magnetic beads (Lifetechnologies 10001D, 10003D) over night. Complexes were washed in low (150mM

NaCl, 20mM Tris pH8, 1% sodium deoxycholate, 1% NP-40, 1mM EDTA) and high (500mM NaCl, 20mM Tris pH8, 1% sodium de-

oxycholate, 1% NP-40, 1mM EDTA) salt buffers, eluted in 25mM Tris, 10mM EDTA, 1% SDS for 30 minutes and de-crosslinked at

65�C for 7 hr. Following proteinase K and RNAse treatment, DNA was purified using the Qiagen MinElute PCR purification kit. The

relative amount of immunoprecipitated DNA fragments was quantified by qPCR on input and IP samples and enrichment calculated

by normalizing with IgG control values and dividing by enrichment at control loci located upstream of either MYC or AXIN2. Five

conserved Tcf/Lef-binding elements at the MYC locus (He et al., 1998; Kolly et al., 2007; Yochum et al., 2008) were amplified as

well as a Tcf/Lef binding element of an upstream enhancer that interacts with theMYC promoter (Pomerantz et al., 2009; Tuupanen

et al., 2009). At the AXIN2 promoter two Tcf/Lef binding elements were amplified (Jho et al., 2002).

ChIP for HA tag: Sup-B15 cells were cross-linked in 1% formaldehyde (Thermo scientific, Ref: 28908), at 37�C for 10 min. The re-

action was quenched with 125mM glycine, followed by 2 washes in ice-cold PBS (supplemented with protease/phosphatase inhib-

itors (1x PIC)). Fresh or frozen cell pellets were re-suspended in ChIP-lysis buffer (0.3% SDS, 50 mM Tris (pH 8.1), 10 mM EDTA

(pH 8.1), 1x PIC) and chromatin was sonicated to an average length of 200-500bp using a sonicator (Branson Sonifer 250). The son-

icated cell lysate was clarified by centrifugation, diluted 9x in ChIP dilution buffer (0.01% SDS, 1.1% Triton X-100, 1.2 mM EDTA,

16.7 mM Tris-HCl (pH 8.1), 167 mMNaCl, 1xPIC) and 20x106 cell equivalents of chromatin was pre-cleared with BSA-coated Protein

A+Gmagnetic beads (Millipore 16-663) for 4 hr at 40�C, and then incubated overnight with anti-HA antibody (ab9110) coupled Protein

A+G magnetic beads or beads alone.

Immune complexes were in washed once each in low (0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM Tris-HCl, pH 8.1, 150 mM

NaCl, 1x PIC) and high (0.1%SDS, 1%Triton X-100, 2mMEDTA, 20mMTris-HCl, pH 8.1, 500mMNaCl, 1X PIC), and LiCl salt buffers

(0.25MLiCl, 1% IGEPALCA630, 1%deoxycholic acid (sodium salt), 1mMEDTA, 10mMTris, pH 8.1, 1X PIC), and twice in Tris-EDTA

(10 mM Tris-HCl, pH 8.0, 1 mMEDTA), prior to two elutions in 1%SDS, 0.1M NaHCO3 for 30 min at 65�C, and de-crosslinked at 65�C
overnight. Following proteinase K treatment at 55�C for 2 hr, DNA was purified by phenol-chloroform extraction and ethanol precip-

itation. The relative amount of immunoprecipitated DNA fragments was quantified by qPCR on input and IP samples using primers

listed in the Key Resources Table and enrichment was calculated by normalizing to beads alone control values.

Data Analyses
Comparisons between two groups were performed using Student’s t tests (two tailed) and between multiple groups by ANOVA

(Bonferroni post-hoc). A Mantel-Cox test with 95% confidence interval was used to compare survival curves. Significant differences

between data sets are indicated by * p < 0.05, ** p < 0.01, *** p < 0.001. ns not significantly different (p>0.05).

DATA AND SOFTWARE AVAILABILITY

The accession number for the array data reported in this paper is GEO: GSE54793.
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