PUBLISHED FOR SISSA BY @ SPRINGER

RECEIVED: April 27, 2016
ACCEPTED: June 20, 2016
PUBLISHED: June 28, 2016

Holographic effective field theories

Luca Martucci® and Alberto Zaffaroni®
@ Dipartimento di Fisica ed Astronomia “Galileo Galilei”, Universita di Padova,
and INFN — Sezione di Padova, Via Marzolo 8, I-35131 Padova, Italy

b Dipartimento di Fisica, Universita di Milano-Bicocca,
and INFN — Sezione di Milano-Bicocca, I-20126 Milano, Italy

E-mail: 1luca.martucci@pd.infn.it, Alberto.Zaffaroni@mib.infn.it

ABSTRACT: We derive the four-dimensional low-energy effective field theory governing the
moduli space of strongly coupled superconformal quiver gauge theories associated with D3-
branes at Calabi-Yau conical singularities in the holographic regime of validity. We use the
dual supergravity description provided by warped resolved conical geometries with mobile
D3-branes. Information on the baryonic directions of the moduli space is also obtained
by using wrapped Euclidean D3-branes. We illustrate our general results by discussing in
detail their application to the Klebanov-Witten model.

KEYwWORDS: AdS-CFT Correspondence, Effective field theories, Conformal Field Models
in String Theory

ARX1v EPRINT: 1603.04470

OPEN AcCCESS, (© The Authors.

Article funded by SCOAP®. doi:10.1007/JHEP06(2016)166


mailto:luca.martucci@pd.infn.it
mailto:Alberto.Zaffaroni@mib.infn.it
http://arxiv.org/abs/1603.04470
http://dx.doi.org/10.1007/JHEP06(2016)166

Contents

Introduction

Structure and properties of the string vacua
2.1 Supergravity backgrounds

2.2 Topology, couplings and axionic moduli

2.3 Kahler moduli and harmonic forms

The holographic effective field theory
3.1 Chiral moduli

3.2 Effective action and Kéhler potential
3.3 Structure of the moduli space

CFT moduli space

4.1 Quiver gauge theories

4.2 The global symmetries

4.3 Comparison with the AdS/CFT correspondence

Baryonic vevs from Euclidean D3-branes
5.1 DBI contribution
5.2 Complete E3-brane action and baryonic vev

The HEFT of the Klebanov-Witten theory
6.1 CFT of the KW model

6.2 The dual background

6.3 The HEFT

6.4 Baryonic condensates

Discussion

HEFT from Mp — oo limit

A.1 Warped EFT for finite Mp

A.2 Dual formulation with linear multiplets
A.3 Rigid limit

A.4 Inclusion of By and Cy axions

A useful formula

CS contribution to the E3-brane action

S ot W W

10
11
14

16
16
17
20

21
23
25

26
27
29
32
34

37

39
39
41
42
43

44

45




1 Introduction

Since its first explicit incarnation in string theory [1], holography has been realised in a
huge number of possible string /M-theory models, which are dual to various strongly coupled
theories, either conformal or not. The correspondence has been tested and extended in an
impressing number of possible ways. However there are still many potential applications
of holography to the study of the dynamics of strongly coupled systems.

Consider a strongly coupled theory with a non-trivial moduli space of vacua. If at
a generic vacuum the only massless states are given by the moduli, one expects the low-
energy physics to be codified by an appropriate effective field theory for them. In absence
of a sufficient number of (super)symmetries, a purely field-theoretical identification of such
effective field theory constitutes a general hard problem. For instance, in four-dimensional
N = 1 models, while supersymmetry significantly helps the evaluation of the F-terms of the
effective theory, there is no general clue on how to face the D-terms directly in field theory.
Holography provides a natural alternative strategy. If the theory admits a holographic dual,
one may use it to identify the effective field theory, which we will refer to as the holographic
effective field theory (HEFT). The aim of the present paper is to systematically explore
this opportunity for a certain broad class of string theory holographic models.

We will focus on the four-dimensional N' = 1 superconformal field theories (CFTs)
which can be engineered by placing N D3-branes at the tip of a six-dimensional cone
C(Y) over a Sasaki-Einstein space Y. Such theories are microscopically described by
N =1 quiver gauge theories that RG-flow to a fixed point at which the theories become
superconformal. The prototypical example is provided by the Klebanov-Witten (KW)
model [2], which has been generalised in various ways. All these theories have a rich
moduli space of supersymmetric vacua at which some chiral operators get a non-vanishing
vacuum expectation value (vev), the conformal symmetry is spontaneously broken and the
dynamics is expected to be describable by an AN/ = 1 effective field theory. Thus, they
constitute an ideal laboratory to put the above strategy into practice and, indeed, we will
show how to compute their HEFT.

The holographic realisation of the spontaneously broken phases for our class of models
has been discussed in [3, 4] in the KW model and generalized in [5]. The ten-dimensional
metric is most naturally described as a deformation of AdSs x Y in Poincaré coordinates
and contains an internal non-compact warped Calabi-Yau space X. The warping is sourced
by N mobile D3-branes, while X is a resolution of C(Y). In particular, the resolution
parameters are naturally associated with the vev of certain baryonic operators and one can
choose them so that the supergravity description of the internal space X is justified.

The moduli of these string backgrounds clearly provide the holographic counterpart of
the moduli of the dual CFT. These moduli may be regarded as the moduli of a warped flux
compactification of the kind described in [6] in which the internal space has been eventually
decompactified, so to get an infinite four-dimensional Planck mass. This viewpoint will help
us to identify the Lagrangian of the HEFT by starting from the effective four-dimensional
N = 1 supergravity for flux compactifications found in [7], which consistently incorporates
the effect of fluxes, warping and mobile D3-branes.



We will also investigate the explicit connection between the chiral fields entering the
HEFT and the vevs of the CFT operators, since the latter should be completely determined
by the former. In this regard, the baryonic operators are particularly subtle. Still, we will
show that a calculation along the lines of [4], see also [5], leads to an explicit general formula
for the baryonic vevs in terms of the HEFT chiral fields.

Our general results will be explicitly applied to the KW model. We will identify its
HEFT, explaining in some detail the relation with the dual CFT. This will be sufficient to
illustrate some key aspects of the general procedure. On the other hand, other models pos-
sess important properties, as for instance the presence of anomalous baryonic symmetries,
which are not shared by the KW model. These would require a further in-depth analysis
through the investigation of the HEFT of more general explicit models, which we leave to
the future.

The paper is organised as follows. In section 2 we discuss the structure of the su-
pergravity vacua we are interested in, corresponding to D3-branes moving on a smooth
non-compact Calabi-Yau. In section 3 we describe the HEFT, introducing the appropriate
chiral moduli and presenting the associated Kélher potential. We also provide an alterna-
tive description of the moduli space in terms of complex-symplectic coordinates. In section
4 we compare the HEFT with the dual CFT expectations. In section 5 we discuss how
to extract baryonic vevs from Euclidean D3-branes, along the lines of [4]. In section 6 we
illustrate our general results by discussing in detail the Klebanov-Witten model. Section
7 contains some concluding remarks. Finally, a series of appendices containing technical
details end the paper.

2 Structure and properties of the string vacua

In this section we describe the general string backgrounds we focus on in the present paper
and discuss the geometrical properties that will be relevant in the following sections.

2.1 Supergravity backgrounds

In this paper we focus on non-compact type IIB backgrounds with Einstein-frame metric
072ds?y = sy s + e 2 dsk (2.1)

where dswa3 is the flat four-dimensional Minkowskian metric and we have factorised a
dependence on the string length ¢ = 27v/a’ in order to work in natural string units.

The internal space X is assumed to be a smooth Calabi-Yau that can be obtained by
a crepant resolution of a Calabi-Yau cone C(Y) over a Sasaki-Einstein 5-manifold Y. The
metric on the singular cone C(Y') can be written as

dr? + r?ds? . (2.2)

The metric on X, ds?X, behaves asymptotically as (2.2) for r — oo. Being a crepant
resolution of C'(Y'), X has the same complex structure of C(Y) while its Kéhler structure
is different. The axio-dilaton

7=Cp+ie™? (2.3)



takes a fixed constant value, which we can freely choose so that Im7 = gl—s > 1, in order to
guarantee the availability of string perturbative regime.

The non-trivial warp-factor is due to the presence of N mobile D3-branes. In some

internal coordinate system z™ (m = 1,...,6) on X they are located at points z7*, I =
1,..., N, and act as sources of the warp-factor, which must solve the equation
Ae = x> 67 (2.4)
I

The general solution of this equation is defined only up to a constant. In this paper we
are interested in background having an holographically dual SCFT, which can be regarded
as the near-horizon limit of solutions describing N D3-branes sitting at the tip of the
cone (2.2). The integration constant is then fixed by requiring that for large r e~*4 behaves
asymptotically as

_ R*
64A:r—4+... (2.5)
with?
N
Rt= — . 2.6
4vol(Y') (26)

The self-dual 5-form F5 has internal components £2 *x de*4 and satisfies the appropriate

quantisation condition

(/&:—ﬁN. (2.7)
Y

The general solution of (2.4) with such boundary conditions can be written as

N
e M@ =3 Glaray), (2.8)

I=1

where G(z; ') is the Green’s function associated with the Kéhler metric ds%. Notice that
G(x;2") = G(2';x) (2.9)

and for very large r and finite v/, G(z;z’) approaches the Green’s function for the conical
metric (2.2) with 2’ = 0:
1 1

G (w; 0) = 4vol(Y) 7t

(2.10)

See [8] for a discussion on existence and properties of the Green’s function on this class of
non-compact Calabi-Yau spaces.

"We are using the Einstein-frame metric and dimensionless coordinates. o' corrections are better de-
é;lgsN
Ivol(Y)

scribed in the string frame, which has dimensionful curvature radius RY = ¢2g.R* =



2.2 Topology, couplings and axionic moduli

The couplings and the closed string axionic moduli of the above class of backgrounds can be
partly identified by purely topological arguments. The topological properties of X, which
should be regarded as a space with boundary X =Y, are discussed in details in [5]. Here
we review some relevant information.

Every five-dimensional Sasaki-Einstein space Y has the following vanishing Betti
numbers

by(Y) = by(Y) =0, (2.11)

which follows from the fact that Y has positive Ricci curvature and Myers’ theorem. On
the other hand, it was proven in [9] that X has vanishing Betti numbers

b1(X) =b5(X) =bs(X)=0. (2.12)
In addition, we also assume that X has vanishing
b3(X)=0. (2.13)

Such condition, together with (2.12), imply that no four-dimensional particles or domain-
walls can be obtained by wrapping D1-, D3- or D5-branes on one-, three or five-cycles.

Flat shifts of the gauge potentials B, Co and Cy give rise to (non-dynamical) param-
eters and (dynamical) closed string moduli characterising the vacua. Let us start with
By, Cy. Arbitrary flat shifts of these fields are parametrised by H?(X;R), but integral
large gauge transformations make them periodic, so that they actually take values in a
ba(X)-dimensional torus.? Since b1(Y) = b3(X) = 0, H'(Y;R) = H3(X,Y;R) = 0, and
we can write the short exact sequence

0 — H*X,Y;R) — H*(X;R) — H*(Y;R) — 0, (2.14)

which shows that H?(X;R) splits into the sum of a ‘boundary’ component H?(Y;R) ~
H3(Y;R) and a ‘bulk’ component H?(X,Y;R) ~ Hy(X;R). Hence there are

ba(X) = by(Y) + ba(X) (2.15)

possible deformations of the complex combination Co — 7Bs. The deformations counted
by b3(Y) are non-dynamical and combine with the axio-dilaton 7 to give in total b3(Y) + 1
free complex parameters distinguishing these backgrounds. They can be measured by

2Large gauge transformations of Bo are given by the elements of H?(X;Z), so that the corresponding
b2(X)-dimensional torus is H*(X;R)/H?(X;Z). On the other hand, we avoid writing down the precise
periodicities of the R-R fields Cj since they are better specified in the K-theory framework [10] and so,
generically, they cannot be just identified with the corresponding integral cohomology groups.

3Recall that, for any n-dimensional manifold M with boundary OM, Hy,(M,dM;Z) describe equivalence
classes of chains in M which can have a non-trivial boundary on &M while H” (M, 0M;Z) can be represented
by compactly supported closed k-forms, modulo exact forms dAy_1, with Ax_1 compactly supported. The
(relative) homology groups are related to the (relative) cohomology groups by Poncaré duality and the
universal coefficients theorem, see e.g. [11]: Hy(M;Z) ~ H" *(M,0M;Z), Hy(M,0M;7Z) ~ H" *(M;7)
and, modding out the torsion component, Hy (X, Z)tree ~ H* (X, Z)tree.



integrating Co — 7By on two-cycles contained in Y and, as we will discuss later, they
correspond to the marginal holomorphic gauge couplings in the dual gauge theory. On
the other hand, the deformations of Cy and By counted by bs(X) can be considered as
compactly supported and they give in total 2b4(X) dynamical real moduli.

Let us now turn to the moduli associated with C4. A first set of such moduli is
parametrised by H*(X;R) (up to periodic identifications due to the large gauge transfor-
mations). Since b3(X) = b4(Y) = 0 we can write the short exact sequence

0 — H3(Y;R) — HYX,Y;R) — HYX;R) — 0, (2.16)

which tells us that such by(X) flat deformations of Cy can be in fact uplifted to compactly
supported ones. On the other hand, a key general result of [5] is that, with the specific
warping boundary condition (2.5), there are additional b3(Y") Cy-moduli. They correspond
to exact shifts ACy = dA3 which are compactly supported while Ag is not. Hence Asly #
0 and dAsly = 0, so that As|y parametrise the group H?(Y;R) appearing in (2.16).
From (2.16), we can then conclude that there is a total of

dim H*(X,Y;R) = dim Hy(X;R) = by(X) = b3(Y) + by(X), (2.17)

real Cy moduli.

In the toric case, the crepant resolutions of the toric singular cone C(Y) can be de-
scribed in terms of the toric diagram* which is a convex polygon in the plane with d integral
vertices. The smooth crepant resolutions X of C(Y") are in one-to-one correspondence with
the complete triangulations of the toric diagram, where again all triangles should have in-
tegral vertices. If we call I the number of points with integer coordinates enclosed in the
toric diagram, b3(Y') is given by d — 3, while by(X) is given by I.

2.3 Kahler moduli and harmonic forms

Because of the assumption (2.13), the internal Kéhler space X has no complex structure
moduli. On the other hand, according to the existence theorems of [12, 13], in any class
of H?(X;R) there exists a Ricci flat Kéhler form J which has the appropriate asymptotic
conical behaviour. This means that we can expand the Kéhler cohomological class [J]
as follows

7] = v (2.18)

where [w,], @ = 1,...,b2(X), is a basis of H?(X;Z). On the one hand, this implies that

g[ﬂ = [wg]. An infinitesimal variation 0.J of the Ké&hler form gives a harmonic (1,1)

form [14]. Hence, there must exist a set of harmonic (1,1) forms w, which are representa-
tives of the integral cohomology classes [w,] € H?(X;Z) and are such that®

oJ
= w,. 2.1
5pe — ¥ (2.19)

4A singular Calabi-Yau toric cone C(Y) is described by a convex rational cone in R3 generated by d

integral vectors w* € Z® which lie on a plane in R®. The toric diagram is the convex polygon with integral
vertices that is obtained by projecting the fan on the plane.
5More precisely, one should fix a complex coordinate system, write J = Jizdz' A dZ’, and then identify

8']., . =
We = moa dz' AdZ.




The quantisation condition [we] € H?(X;Z) then reads [, w, € Z for any two-cycle C. In
particular, by introducing a basis of two-cycles C'%, we must have

N, z/ w e (2.20)
In turn, we can write (2.18) in terms of differential forms as follows
J = Jo+ 1%, (2.21)

where Jj is an exact (1,1) form. Viceversa, if one knows a general parametrisation of the
Kéhler form J, one can vary it to generate a basis of be(X) harmonic forms and then
select the appropriate Ké&hler moduli v* by imposing (2.19) for a set of harmonic forms
w, satisfying the quantisation condition (2.20). Notice that the forms w,, being harmonic,
depend on the Kéahler moduli v* (while their homology classes do not) as well as Jp.
Consistency between (2.19) and (2.21) requires that

0Jo 0wy

Ove Y Ba

(2.22)

Now, because of (2.14) (or, rather, its integral counterpart), we should be able to split
wg in two sets Wy and &y, with o =1,...,b4(X) and 0 = 1,...,b3(Y’), providing a basis of
harmonic representative of H?(X,Y;Z) and of the non-compactly supported elements of
H?(X;7Z), respectively.® Indeed, it is known [15] that H2(X,Y’; Z) admits a representation
in terms of Lo-normalisable harmonic forms, that is, the by(X) harmonic forms @, satisfy
the normalisation condition

/ Wa A *Wg < 00. (2.23)
X
Actually, one can identify the asymptotic behaviour [5]
Ial? ~ (224)
@ r8+u ’

in the limit r — 0o, where ||Wa|? = @aae and p > 0. Clearly (2.24) is compatible
with (2.23).

On the other hand, the b3(Y) harmonic forms &, are not La-normalisable. However,
by using the fact that &, asymptotically define a non-trivial element of H?(Y’;Z), one can

argue that [5]

. 1
ol ~ 5 - (2.25)

This implies that the forms @, are normalisable with respect to the warped inner product

/ e 0, A *@, < 00 (2.26)
X

SNotice that W, span a cononically defined subspace H*(X,Y;Z) C H?(X;Z), while the non-compactly
supported basis @, canonically span only the quotient space H?(X;R)/H?(X,Y;R) and so they can be
identified at most up to possible mixed redefinitions &, — @o + NGWa, With ng € Z. Such redefinition
would imply the mixed redefinition v¢ — 0% — ng9° of the Kéhler moduli.



We then say that @, are L} -normalisable. Notice that (2.26) is possible only because of the
specific asymptotic behaviour (2.5) of warping. With an additional constant contribution

to e—44

, as it would happen in local models of flux compactifications (without taking the
near-horizon limit), (2.26) would not hold anymore.

An important observation is that all harmonic 2-forms w, = (@4, &,) are primitive.
Indeed, we can decompose w, in primitive and non-primitive part, w, = w! + a,.J, so that
lwall? = [|wE]|? + 3(c)?. Consistency with (2.24) and (2.25) requires that (ay)? decreases
at least as r—%. On the other hand o, = %J _w, is a regular harmonic function, since the
contraction with the Kéahler form J commutes with the Laplacian. Hence «, necessarily
vanishes and w, is primitive.

Notice that, of course, the forms @, are L}-normalisable too, which is consistent with
the fact that the forms &, are defined up to linear combinations of @, (see footnote 6). In

particular, this implies that the matrix
Gap = / e Mwy A xwp = —/ e AT A wy A wp (2.27)
X X

is well defined and non-degenerate and can be regarded as a positive definite metric on the
ba(X)-dimensional space spanned by the complete set of harmonic forms wj,.

In [9] it is shown that H?(X;Z) is isomorphic to the Picard group of holomorphic
line bundles. This implies that the harmonic forms w, can be chosen to be Poincaré
dual to a basis of divisors D, = (ﬁa, [?U), which explicitly realise the Poincaré duality
H?(X;7Z) ~ Hy(X,Y;Z). In particular, the forms @&, are dual to a basis of compact
divisors ﬁa, while @, are dual to non-compact divisors DU whose boundary 8150 cY
define non-trivial non-torsional classes in H3(Y';Z). Furthermore, the matrix (2.20) can be
represented as intersection matrix N%, = C'% - Dy,

Since the (1,1) form Jy appearing in (2.21) is exact, we can write it as’

Jo = 190k , (2.28)

where kg is a globally defined real function. Notice that ky depends not only on the
coordinates but also on the Kéhler moduli v* and then we will sometime more explicitly
write ko(z, Z;v). As we will see, this function plays a crucial role in the description of the
low-energy effective theory describing these vacua.

Analogously, we can introduce the potentials x4 (z, Z; v) such that

Wa = 100k, . (2.29)

Since w, define non-trivial classes in H?(X;7Z), kq(z, Z;v) are only locally defined. In fact,
we can regard e~ 2™ as a metric on the line bundle O(D,). More explicitly, if xq(2, Z;v)
has transition functions

Ka(2,2;0)  —  kKa(2,2;0) + Xa(2) + Xa(Z), (2.30)

"Indeed, we can globally write Jo = 96%' + 9%! with 96®' = 0. On the other hand, by Lemma 5.5
of [12] we can write §%' = Jf for some globally defined function f so that Jo = d0f 4+ d0f = 2i00Im f.
We can then set 2Im f = ko and obtain (2.28).



then a section of the corresponding line bundle O(D,) must transform as
Calz) —  @™ale,(2). (2.31)

Notice that ko(z,Zz;v), as well as each potential kq(z,Z;v), is defined up to a v-
dependent function which does not depend on the coordinates. We partially fix such

ambiguity by requiring that
= _ 2.32
e Y e (2:32)
ko

which is indeed compatible with (2.22). Hence, the asymptotic behaviour of 5% is dictated

Kb

by the asymptotic behaviour of the globally defined functions gv‘” which we fix as follows.

By adapting to the present context an an argument given in [7], we first observe that the

primitivity of w, requires, by consisﬁency, that % = 0. Now, from %ﬁz’ = (wq)i7 and
J* J i = 6}, one can deduce that 9I° = —(wq)"” and then % = —Wawp + Ja%% . On
the other hand J_I%Zg = J1(100) gﬁg = —%A‘;’;g, where A = —2iJ.00 is the Laplacian

associated with the Calabi-Yau metric on X, so that we see that the above consistency
condition can be written in the form

OKq
ovb

This can be immediately integrated by using the Green’s function introduced in section 2.1,

A = —2wq 1wy - (2.33)

providing a particular solution of (2.33)

8 .
Ora(@;v) =2 G(x;2')(J Awa Awp)(2'). (2.34)
8?]17 X,z
Since G(x; ') ~ 7%4 and J A wq Awp = —wgwpdvoly diverges slower than r’dr’ A dvoly for
r — 00, the integral on the r.h.s. of (2.34) is indeed well defined.
Since w, has specific boundary conditions (2.24) and (2.25), we see that (2.34) implies

that gﬁ‘g obey the boundary conditions

Ora
ovb

These boundary conditions as well as (2.32) almost completely fix the possible ambiguity

~ O %) with k> 2. (2.35)

in ko(z,z;v) and kq(z, Z;v), so that each of these functions is now uniquely defined up to
a possible additive constant.

3 The holographic effective field theory

We now turn to the supersymmetric holographic effective field theory (HEFT) describing
the low-energy dynamics of the supergravity vacua. Our strategy is to derive it by consid-
ering an appropriate rigid limit of the warped supergravities derived in [7]. We now explain
the logic of this approach, relegating to appendix A a more detailed description of the rigid
limit, which may be applied to more general non-compact warped F-theory backgrounds.
We start by observing that the class of holographic backgrounds reviewed in the previ-
ous section can be considered as particular subcases of the general class of warped F-theory



vacua described in [6]. If the internal space were compact, the four-dimensional low-energy
dynamics of the moduli would be described by an appropriate A = 1 supergravity. In par-
ticular, the four-dimensional Planck mass Mp would be proportional to the square root of
the volume of the internal space, see appendix A for more details. Hence, one may consider
our holographic backgrounds as particular rigid limits of this class of compactifications, in
which Mp — oo and the internal space decompactifies. In such rigid limit some moduli
and their superpartners survive as dynamical fields, i.e. their kinetic terms in the four-
dimensional effective theory remain finite. On the other hand, other moduli, as well as the
graviton and their superpartners, acquire an infinite four-dimensional kinetic term, hence
“freezing out” from the low-energy four-dimensional dynamics. Such decoupled moduli
then become non-dynamical parameters in the resulting rigid effective field theory.

Now, a description of the N' = 1 effective supergravity of the warped F-theory vacua
of [6], which consistently incorporates the non-trivial warping and hence the backreaction
of fluxes and D3-branes, has been recently provided in [7]. Crucially, the relevant quantities
appearing in the action can be described in purely geometrical terms. Hence, as discussed
in appendix A, one can implement the rigid Mp — oo limit at a purely geometrical level,
as a decompactification limit, obtaining geometrical formulas for the resulting rigid four-
dimensionl effective theory, which in our context represents the HEFT. As we will review
below, the relevant kinetic terms can be expressed in terms of the integrals (2.27) and their
unwarped counterpart. A background modulus must be then considered a dynamical field
of the HEFT if the integral defining the corresponding kinetic term is finite. Otherwise it
is dynamically frozen and parametrises a marginal deformation of the model.

In this section we will summarise the main results of rigid limit described in appendix A,
showing how the resulting HEFT can be written in a manifestly supersymmetric way. In
particular we will describe in detail the appropriate chiral parametrisation of the dynamical
moduli and we will identify the Kéahler potential which defines the HEFT.

3.1 Chiral moduli

Let us first organise the spectrum of the moduli in chiral fields. There are 3NN chiral
fields z}, I=1,...,N, describing the position of the N D3-branes on X in some complex
coordinate system z'. In addition, there are the closed string moduli described in the
previous section. All the moduli can be organised in the chiral fields summarised in the
following table

The chiral fields S, are obtained by expanding By and Cs in the basis of by(X) =

bs(X) + b2(Y') harmonic two-forms w, = (Wa, Do ):
Cy — 7By = 12 (%0 + N\ Qy) . (3.1)

Here A\° denote the non-dynamical complex parameters which, together with the axio-
dilaton 7, parametrise the non-dynamical 1 + b3(Y’) marginal deformations of the back-
ground.

The chiral fields Rep, and Imp, provide an alternative parametrisation of the Kahler
moduli v* and the C4 moduli, respectively. At the moment, we just need the explicit

~10 -



chiral fields moduli indices
2t D3’s position | i =1,2,3, I =1,...,N
g By, Cs a=1,...,byX)
a=1,...,b2(X)
pa=(pasio) | T Cu a=1,...,bi(X)
o=1,...,b3(Y)

Table 1. Chiral fields parametrising open and closed string moduli.

parametrisation of the Rep,:

1

ImTIaaU ImBYIm A7, (3.2)

1 1
Rep, = 5 ZKQ(ZI,EI;U) - mlwg Im 4%Im 3° —
1

where we have introduced the intersection numbers Z,,3 = Da-ﬁa-f)ﬂ, Zoap = DDy Do,
which admit the integral representation

IaaBE/wa/\d)a/\d}g, IawE/wa/\dza/\d)g. (3.3)
X X

By using the asymptotic behaviours (2.24) and (2.25), one can indeed check that the above
integrals are finite. Notice that, as already remarked above, the potentials k,(z1, Z1;v) are
defined only up to an additive constant, and so is Re p,. The same is true for Im p,, which
can be roughly identified with the expansion coefficients of a flat variation of C4 in a basis
of by(X) four-forms. These forms are dual, in some appropriate sense, to the harmonic
two-forms w,. Their precise definition is complicated by the presence of the non-trivial
self-dual field-strength F5, but fortunately we will not need it in the following. A more
explicit description of Im p, can be found in appendix C.

To explicitly see that Rep, provide an alternative parametrisation of the Kéhler mod-
uli, we now show that the relations (3.2) can be in principle inverted into relations express-
ing v® as functions of Repg, Im 8%, z¢. Indeed, by using (2.34) and (2.8), together with the
symmetry of the Green’s function, we obtain

ORepa _ 1§~ Oraler, 215v) / .
! _2213 o —213 | Glana)(J Awa hw)(@)

(3.4)
= / e’4AJ/\wa ANwp = —Gup,
X

where the matrix G, has been defined in (2.27). Since it is finite and non-degenerate, (3.4)
shows that one can invert the relations (3.2).

3.2 Effective action and Kéahler potential

We are now ready to discuss the low-energy effective theory. Let us assume that all the
D3-branes in the bulk are not mutually coincident and furthermore that the Kahler metric
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on X is smooth enough to justify the validity of the two-derivative ten-dimensional IIB
supergravity.®

The effective action can be obtained from the rigid/decompactification limit of the
supergravity action derived in [7] — see appendix A. One can then write the HEFT La-
grangian as

L= Lym + Lehiral (3.5)
where
1 N
A A A A :
Ly = i AEI (Im7F* A xF% + RerF* A F?) + (fermions) (3.6)

describes the (trivial) dynamics of N fully decoupled U(1) SYM theories, while

Lechiral = — Wg“pra AV pp — 21 Z 9721, Z])dz} A *dZ{
- I (3.7)
— ——MpdB% A %dBP + (fermions)
Imr
describes the (non-trivial) dynamics of the moduli and of their supersymmetric partners.
In (3.7), gi(z,2) is the Kahler metric on X and G% is the inverse of the matrix G
introduced in (2.27). We have also introduced the covariant derivatives Vp, and the

matrix Mg defined as follows

Vpa = dpe — ALdzi — %(zmﬁlmﬁﬂ + TonoIm A7) d B, (3.82)
mT
Maﬁ = / Wa N *@)5 = —/ J N\ Wq /\ng = —v“Iaaﬁ, (3.8b)
X X
where _
Al = Oka(z1, 215 0) ' (3.9)
0z}

The kinetic matrices G% and M, are finite exactly because of the conditions (2.23)
and (2.26). Furthermore, note that the kinetic metric for the D3-brane chiral fields 2% is
the natural covariant extension of the Calabi-Yau metric on X. This matches the result
obtained by expanding the DBI action of a probe D3-brane and provides a non-trivial
consistency check of the validity of our HEFT.

It remains to show that the effective action (3.7) is consistent with supersymmetry.
This is obvious for Ly, while it is less trivial to demonstrate that we can write Lcpipal in
the superspace form

Leniral = / AdYOK(D, ) = —K 4 5(®, )dd* A +dDP + (fermions) , (3.10)

8In fact, the warping becomes very curved close to the isolated D3-branes, which would suggest a
breaking of the leading ten-dimensional supergravity approximation. However, such local geometry is well
approximated by a highly curved maximally supersymmetric AdSs x S® background, which is known to be
an exact solution of string theory [16]. This suggests that the two-derivative supergravity approximation
may be used, for our purposes, beyond its most naive regime of validity, and we will be working with this
implicit assumption. See section 7 for more comments on this point.
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with K5 = a(fj% for some Kihler potential K (®,®), where ®* collectively denote the
chiral scalar fields (pq,3%,2}) as well as their complete superfield extension. As we will
presently show, such Kéhler potential exists and admits the following simple expression in
terms of the globally defined function ko(z, z; v) introduced in section 2.3:

K = 2772 ko(z1,Zr;v) . (3.11)
1

Notice that this Kahler potential is only implicitly defined. Indeed, it depends on the chiral
fields also through the dependence on the Kéhler moduli v®, which should be expressed as
functions of the chiral fields p,, 3% and 2% by inverting (3.2).

In order to show that (3.11), together with (3.2), reproduces (3.7), we can use (3.4),
which allows us to compute

b ab ov® i ov* 1
=— = TpopIm A7 + TjooIm A7 - = -G Al (3.12
ORep, T 9B« 2Im7g (ZoasIm 87 + TpaoTmA”) 0z} 2g A (3:12)
Furthermore, from (2.32) and (3.4), it immediately follows that
0K Okp(z1, 213 v)
81}‘1 = —27T’Ub Z T =A4r gabvb . (313)
I

From (3.11), (3.12) and (3.13) and taking into account that K depends on (pg,p.) only
through Rep,, one can then compute the first derivatives of K with respect to the chi-
ral fields:

K
0 = —2m°,
Opa
0K  2mi
% = Im7 va(IaaﬁImﬁﬁ + Iaaalm)‘a) ) (314)
0K I Oko(z1,Z1;v)
R A T
Along the same lines, one can compute the second derivatives K 5 = agj%, showing

that indeed (3.10) reproduces (3.7).

Notice that the HEFT described here does not include possible perturbative as well
as non-perturbative string corrections. We postpone to section 7 more comments on such
corrections. For the moment we just observe that non-perturbative corrections may a priori
generate a non-trivial superpotential, which would significantly modify the vacuum struc-
ture of the HEFT. In the present setting, such corrections could be generated, if by(X) # 0,
by supersymmetric D3-brane instantons. However, as it can be explicitly checked from the
complete quadratic fermionic effective action derived [17], even if supersymmetric D3-brane
instantons existed, they would always carry at least four fermionic zero-modes. This indi-
cates that a non-trivial superpotential is never generated.

The HEFT (3.5) breaks down when two or more D3-branes coincide. Indeed, in this
limit the above moduli do not describe the comple light spectrum of the string background,
which must include an non-abelian N =4 SYM sector. Such break-down is invisible at the
level of the our second-derivative HEFT. This is consistent with the non-renormalisation
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theorem for N = 4 super-Yang-Mills, which well approximates the D3-brane sector of the
HEFT when they are very close. In any case, at such points the internal geometry has no
pathologies and just develops some larger local AdSs x S° throat, which is an exact string
theory background [16] and is holographically dual to the additional N =4 SYM sector.

3.3 Structure of the moduli space

In this section we discuss in some more detail the structure of the moduli space Mgsuygra
of our models, which provides the target space of the non-linear sigma model defining
our HEFT.

The D3-brane positions z} parametrise the space
Mpsz = Sym™ X, (3.15)

while the chiral moduli f* parametrise a 2b4(X)-dimensional torus Mg. The additional
b2(X) chiral coordinates p, (or rather e27Pa) parametrise the fibres of non-trivial line bun-
dles over Mp3 x Mg. Hence, Msygra can be locally identified with the total space of the
direct sum of such line bundles. This is most easily seen from the Kéahler metric on the
moduli space, which can be read from the HEFT (3.5):

a — i 1-7 ™ a1
ds-%\/ISUGRA =g prapr +2m Zgijdzle} + EMocﬂdﬁ dﬁﬁ ) (3.16)
1

27 pa

where the fibration structure of e over Mps x Mg is encoded in the covariant exterior

derivative

Dpa = dpa — ALz} — ﬁ(zwﬁlm B + TyooIm A% )dB™ . (3.17)

In order to better understand the global structure of Mgygra, it is convenient to
parametrise it in a different way. We first isolate the angular variables ¢, = Imp, and
c¢® = ReB%, which we collectively denote by 7. They parametrise a ba(X) + by(X) =
x(X) —1 dimensional torus U(1)X~! describing the R-R flat potentials.” Together with the
D3 brane positions z}, the angles w7 parametrise a space M. Since the angular variables
¢q are fibered over Mps, My can be regarded as a fibration of the torus U(l)X_1 over Mps.

Then, we substitute Rep, and Im 3 with the coordinates ¢(Z = (v%, xa), defined by a
Legendre transform

1 0K 1 0K
b= —— = —— 3.18
v 47 ORepgy Xe = ir Olm 3o’ (3.18)
where v® are just the usual Kahler moduli, while the new coordinates x, are given by
1
Yo = ——— (Iaaglmﬁﬁ +Im01m)\"> . (3.19)
Im7

The coordinates v* parametrise the standard Kéhler cone of X. On the other hand, under
an overall rescaling v — Av®, with A > 0, we also have xo — AXa. Hence ¢ = (v% xa)

9The periodicities of the angles o7 are determined by the periodicities of the R-R potentials, which are
affected by subtle K-theory corrections [10], see footnote 2.
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parametrise a bo(X) + by(X) dimensional cone K.'° Actually, the complete moduli space
is given by the extension of IC to a larger cone, for instance by connecting different Kéhler
cones by flop transitions. The internal space X is not generically invariant under such
transitions and then the supergravity description generically breaks down at the transi-
tion walls.

We arrive at following global description of the supergravity moduli space MgsygRra:

U)Xt My — Msucra

s " (3.20)
Mpsz K

Clearly, such global structure is obscured by the use of the chiral coordinates (pq, 5%, z})
In the new coordinates the moduli space metric (3.16) reads

dstspena = TGapdv®dv’ + aIm7TM* Dy oDy s

T - (3.21)
+ 71G Do Dy, + EMaﬁdcadcﬁ + 27 EI giydz7dz]
where M?? is the inverse of Mg,
1
Dxo = dxa + 1 (Imﬂlm 88 + ImImX’> do® (3.22)

and D¢, is obtained by taking the imaginary part of (3.17).
We can also express such metric in terms of the potential obtained by Legendre trans-
form of K:
F =K + 47v*Repg — 4mxolm 5

2 (3.23)
:2TFZ/€(Z[,2[;U)+ T
I

ImTv“ mglmﬂalm,ﬁﬁ ,

where
k(z, z;v) = ko(z,Z;0) + v%Rkq (2, Z50) (3.24)

is a Kihler potential of the internal space: J = id0k.

F must be considered as a function of (¢Z, z}, zt). In particular, Im 3% must be con-
sidered as functions of (v%, x4), whose explicit form can be obtained by inverting (3.19).
By using the collective coordinates (£ = (v%, xo) and @7 = (¢a,c®) the metric (3.21) can
be rewritten as

1 .
A8 euans = —Fr 7d¢Td¢T — 4’ FY DDy 7 + FlY dzjd7) (3.25)
where
O*F _ O°F

= 2r6" giz(21, 21) (3.26)

17 = pacr i = 02107

100More precisely, xo parametrise a bs(X) dimensional torus, with v®-dependent periodicity xa — Xa +
¥ Zaapn® inherited from the integral periodicity of the Ba-field. This torus degenerates as v® — 0 and the
cone K can be regarded as the result of fibering it over the Kéhler cone.
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with FZ7 being the inverse of Fr7, and

*F

1 % 7 lo'
DSOI = ngI — %Im (aczaz}dzl) = (d¢a —Im (ACIndZI) ,dC ) . (327)

Furthermore, the Kihler form i00K on Mgyugra reads

_ F .
190K = —21d¢% A dpr +dIm (g idz})
27

= —21d(T A Doz +iFY dzp AdZ

(3.28)

which shows that the coordinates ¢Z can be regarded as symplectically paired with the
angles 7 and that F can be interpreted as a mixed complex-symplectic potential.'!

We then obtain two possible descriptions of the geometry of Mgygra. A mixed
complex-symplectic one and a purely complex one. On the one hand, the complex-
symplectic one appears more ‘natural’ since it better exhibits the global structure (3.20) of
the moduli space, the potential F' is not implicitly defined as the Kéahler potential K and
may even more easily accommodate world-sheet quantum corrections. In this sense, one
may regard I’ as the fundamental quantity and derive K as its anti-Legendre transform.
On the other hand, as we discuss in the next section, the chiral coordinates of the complex
formulation can be directly related to the vev of the chiral operators of the dual CFT. Fur-
thermore, they naturally couple to D-brane instantons and then they appear more suitable
to describe the complete quantum corrected geometry of the moduli space.

4 CFT moduli space

In this section we compare the description of the supergravity moduli space provided by
the HEFT with the expectations for the moduli space of the dual CFT.
4.1 Quiver gauge theories

In all the known cases, the CFT corresponds to the IR fixed point of a gauge theory
describing N D3 branes probing the Calabi-Yau singularity C(Y'). This is given by an
N =1 quiver gauge theory with gauge group

G=]]suw), (4.1)

chiral fields ®,, transforming in the bi-fundamental representation of pairs of SU(N) factors
and a certain superpotential W (®).'? The number g of SU(N) factors correspond to the

1The above Legendre transform can be interpreted as a duality transformation between chiral and linear
multiplets [18]. Indeed, the function F' gives the HEFT in terms of linear multiplets. The linear multiplets
are described by real superfields L%, such that D?L? = D?L* = 0. Each L% contains the scalar field ¢Z,
as lowest component, and a three-form field-strength H” which is dual to dez. The HEFT Lagrangian can
then be defined as superspace integral [ d*0F(L, z,2). If by(X) = 0, its bosonic terms are as in (A.20), up
to replacing the indices A, B with a, b.

12YWe consider adjoint fields as particular cases of bi-fundamentals connecting the same gauge group.
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Euler characteristic of the resolved space X:
g=X(X)=1+b2(X) + bs(X). (4.2)

The theory admit marginal deformations that are parametrised by the gauge and superpo-
tential couplings. Only a part of these couplings are marginal parameters. Geometrically,
we always have at least 1+ bo(Y') marginal parameters that correspond to the parameters
7, A% of the dual string background. Some CFTs have additional marginal deformations,
for example the so-called [-deformation [19], corresponding to string backgrounds where
the internal metric is no more a warped Calabi-Yau.

The moduli space is given by the solutions of the F and D term conditions

ow
55, =0 Dai(®a) =0, (4.3)
a
up to gauge equivalence, where Dg,(y),, 2 = 1,--- , g, is the moment map for the action of

the group SU(N);. The D-term condition can be omitted if we mod by the complexified
gauge group Gg¢. As an affine variety, the moduli space can be indeed written as the
quotient of the manifold of F-term solutions by the complexified gauge group

M= {gg: _ o} J Ge = Spec <<c [gg; _ o] GC) . (4.4)

By definition, the coordinate ring of this affine variety is just the set of gauge invariant

chiral operators made with the ®,. The gauge invariant chiral operators are then in one-
to-one correspondence with the holomorphic functions on the moduli space and provide a
complete characterisation of the moduli space as an affine complex variety.

In the toric case, there is an explicit algorithm to write the quiver gauge theory from
the toric data which is discussed in details in [20, 21].

4.2 The global symmetries

Of particular importance for us are the global symmetries of the CFT. There are few
general observations that can be made for any quiver. The CFT is the IR limit of the
theory of N D3 branes and, in this limit, eventual abelian gauge groups decouple. Indeed,
the gauge group

G = (H U(N)l) JU(1). (4.5)
i=1

on a set of N D3-branes probing the singularity contains various abelian factors. The N
D3-branes decompose into g = 1 + ba(X) + by(X) stacks of fractional D3-branes, each
supporting a U(NV); gauge group, and the bifundamental fields correspond to the massless
states of open strings connecting different fractional branes. The diagonal U(1) is always
decoupled and can be modded out as in (4.5).

One is then left with bo(X) + bs(X) U(1) gauge factors in G, only b3(Y) of which are
non-anomalous. The anomaly of the remaining by (X) + ba(X) — b3(Y) = 2b4(X) U(1)’s is
cancelled by a Stiickelberg mechanism. This can be understood geometrically as follows.
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One may roughly interpret ba(X) 4 bs(X) fractional D-branes as combinations of D5 and
D7 branes wrapping two- and four-cycles of the resolved geometry. The corresponding
U(1)’s gauge R-R axions associated with the Poincaré dual cohomologies H*(X,Y;R) and
H?(X,Y;R). However, as we have discussed in section 2.3, while all b4(X) independent
elements of H?(X,Y;R) admit an Lo-normalisable harmonic representative, only a by (X)-
dimensional subspace of H*(X,Y;R). Prior to the near-horizon limit, only these 2b4(X)
Lo-normalisable modes remain dynamical in the four-dimensional effective theory, and they
are exactly the right number to cancel the corresponding gauge anomalies a la Stiickelberg.
The remaining b3(Y) axions, which would be gauged by the non-anomalous U(1)’s, have
infinite kinetic terms and hence decouple in the four-dimensional low-energy theory.

The moduli space corresponding to a quiver with gauge group (4.5) is given by

ow
ov,

Mumes = { o} ) Ge c M, (4.6)

and it is a subvariety of the moduli space of the CFT, M. Mes is usually called the
mesonic moduli space of the CFT. Mmeg is the set of solutions of the equations

ow
ob,

0, Du(N)i((I)) =0, (4'7)

up to gauge equivalence under the extended gauge group G. Mmes is expected to describe
the motion of the N D3 branes on the Calabi-Yau singularity. The D3 branes on C(Y') are
mutually BPS and we can put them in arbitrary position. This implies that the mesonic
moduli space is given, as an algebraic variety, by

Mumes = Sym™ C(Y) (4.8)

and it has dimension 3N. It can be parametrised by the D3-brane positions on Y.
The resolution parameters of the Calabi-Yau X enter as FI parameters ; for the D3-
brane theory (4.5). The moduli space of D3-branes probing X is given by the solutions of

ow
ob,

0,  Dywn,(®) =& Inxn, (4.9)

up to gauge equivalence under the extended gauge group G. Since the overall U(1) is
decoupled, one actually has ) . & = 0. The moduli space is now Sym™ X and it can be still
parametrised by the D3-brane positions z} on X that are away from the blown-up locus.

In the IR limit all abelian factors in the D3-brane theory decouple and become global
symmetries of the CFT. More precisely, the b3(Y) non-anomalous U(1) factors decouple
at low energy, being IR free, while the other 2b4(X) U(1) factors become massive by the
Stiickelberg mechanism. Hence, at low energy, one is left with the gauge group (4.1)
and b3(Y) non-anomalous plus 2b4(Y) anomalous global U(1) symmetries. Such U(1)
classical global symmetries are called baryonic. Simultaneously, the trace part of the D-
flatness condition in (4.7) gets relaxed. One is then left with Dy, (), (®) = 0, which can be
written as

Dy, (®) = Vilnxn, (4.10)
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classical U(1)s | harmonic 2-forms | (pseudo)-Goldstone chiral fields | Betti number
anomalous Wa Da by(X)
anomalous Wa B by(X)

non-anomalous Dy Po b3(Y)

Table 2. (Pseudo) — Goldstone bosons.

where!? 1

N
The operator V; is the lowest component of the vector multiplet containing the abelian

Vi = =Tt Dy, (@) (4.11)

current corresponding the ¢-th gauge group. Notice that V; is not part of a chiral multi-
plet, but it is nevertheless protected when the associated baryonic U(1) symmetry is not
anomalous.

After the near-horizon limit, the above FI parameters &; can be identified with the
expectation values of V;,

&= Vi) (4.12)

Now the &; can be regarded as part of the moduli space and, with some abuse of language,
we may refer to them as FI moduli. Since they still satisfy ) . & = 0, they parametrise
g — 1 real directions in moduli space. They naturally pair with the g — 1 Goldstone bosons
associated with the baryonic symmetries. Indeed, in a generic point of the moduli space, the
bi-fundamental fields ®, have a vev and the abelian global symmetries are spontaneously
broken. More precisely, the b3(Y) non-anomalous U(1) symmetries are associated with
Goldstone bosons, while the anomalous ones are associated with pseudo-Goldstone bosons.

We then see that the total moduli space M has complex dimension

dimM = 3N +g—1. (4.13)

Indeed M can be obtained from (4.8), by relaxing the trace of the D-flatness constraints
and by omitting the corresponding U(1) gauge identifications. This gives us the g — 1
extra complex moduli associated with a complex combination of the FI moduli and the
Goldstone bosons. Holographically, they correspond to the metric, By, Co and C4 moduli
of the dual resolved Calabi-Yau, which are dynamical in the near-horizon geometry.

By comparing with section 3, we can make the identification M ~ Mguycgra and set
the correspondence with the string theory moduli given in table 2.

As we noticed in section 3, we can use complex as well as complex-symplectic coordi-
nates to describe the moduli space. The HEFT chiral fields p,, 8¢, z} provide a holographic
complex parameterisation of the CFT moduli space M. The vev of a gauge invariant
chiral operator is a holomorphic function on M and therefore should be expressible as
a holomorphic function of pa,ﬁo‘,z}. On the other hand, one may use the alternative
complex-symplectic coordinates (%, o7, z} The variables z} parametrise the motion of the

13In other words, in the near-horizon limit the FI parameters & appearing in (4.9) must be rescales
appropriately and become dynamical.
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D3-branes on the resolved cone X. The angles o7 = (¢q,¢*), Z =1,...,9 — 1, correspond
to the baryonic Goldstone and pseudo-Goldstone (real) bosons, while the symplectic coor-
dinates ¢ = (v%, xq) can be set in correspondence with FI moduli &; (taking into account
the constraint ) . & = 0).

At the generic point of the moduli space, the CF'T microscopic gauge theory group is
spontaneously broken to N — 1 decoupled U(1) factors, plus the overall diagonal U(1) of
the parent quiver U(N) theory which, being always decoupled, is usually ignored. Then,
at low energy, there is a total of N trivial and fully decoupled SYM U(1) sectors, which
are represented by the contribution (3.6) to the HEFT.

4.3 Comparison with the AdS/CFT correspondence

In the spirit of the AdS/CFT correspondence, smooth backgrounds with the same boundary
asymptotics describe different vacua of the same theory. In our case, AdS; x Y itself
corresponds to the origin of the moduli space M. All other vacua in M are associated
with smooth backgrounds asymptotic to AdSs x Y. As we have discussed, they correspond
to the near horizon geometries of D3-branes moving on the resolved Calabi-Yau.

The non-anomalous baryonic symmetries are easy to identify in terms of the geometry
of Y. They are associated with the massless vectors in the bulk that arise from the reduction
of C4 on Y. There are precisely b3(Y) of them.

In the AdS/CFT correspondence, the natural objects to consider are the gauge invari-
ant operators. The corresponding bulk fields arise from the KK spectrum of AdSs x Y
and from wrapped branes. The chiral KK modes on Y are in one-to-one correspondence
with the mesonic operators with zero baryonic charge. On the other hand, baryonic op-
erators are obtained by wrapping FEuclidean D3-branes on non trivial three-cycles > C Y.
A Euclidean D3-brane is supersymmetric when the complex cone C'(X) is a divisor in the
Calabi-Yau cone C(Y'). The more general classical supersymmetric D3-brane configuration
is obtained by considering arbitrary divisors and it is expected that all baryonic operators
in the CFT arise by a geometric quantisation of these classical configurations [22, 23]. We
can consider also divisors that are trivial and correspond to contractible three-cycles in Y.
The interpretation of the corresponding state is in terms of giant gravitons [23].

This point of view is particularly useful because every elementary field ® in the quiver
transform in the bi-fundamental or adjoint representation of the gauge group G and there-
fore, by a double determinant, we can always construct a gauge invariant operator, schemat-
ically denoted by det ®. There should exist therefore a conical divisor D in C(Y') corre-
sponding to the field ®. A D3-brane wrapped on the base of D corresponds to the operator
det ®. When the base of D in Y is non-trivial, this is a baryonic operator. When the base
is trivial, the operator is equivalent to a complicated linear combination of mesonic op-
erators.!* This identification allows to compute the dimension of a baryonic operator B

1 The standard example is AdSs x S® where all the three-cycles are trivial. The determinant of any ele-
mentary adjoint fields ® in A/ = 4 SYM can be written in terms of a linear combinations of product of traces,

det ® = Zn1+4.4+np:N Cnyoom, TE®™ - Tr®"? | using the tensor identity €*" “Ney ..py = N!éﬁf1 e 6;}1\,"].
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associated with a divisor D using purely geometrical data as [24]

Nrvol(X)

Iol(Y) (4.14)

where ¥ C Y is the base of D.

We then expect, in general, a correspondence between elementary fields and conical
divisors in C(Y). This correspondence is well understood for toric Calabi-Yau cones [20,
21, 25-28]. It allows to reconstruct the quiver gauge theory form toric data and to compute
dimension and R-charges of the elementary fields in the CFT from geometry.

More interestingly for us, we can also probe the vev of the baryonic operator associated
with a divisor D by evaluating the Euclidean action of a D3-brane wrapping the correspond-
ing divisor in the resolved space X [4]. This can be re-interpreted in the language of our
HEFT, as it will be discussed in details in the next section.

5 Baryonic vevs from Euclidean D3-branes

In the unbroken phase, the chiral baryonic operators are associated with supersymmetric
Euclidean D3-branes (E3-branes) wrapping non-compact divisors of the Calabi-Yau cone
C(Y) [22, 23]. This correspondence is assumed to remain true even in the baryonic phase,
in which the FI moduli &; are non-vanishing and the internal space X is correspondingly
resolved into a smooth space.'® In particular, a natural subclass of baryons is associated
with asymptotically conical effective divisors. Hence, according to the prescription adopted
in [4] for the KW theory, the vev of the baryonic operator B with dimension Ap associated
with an asymptotically conical non-compact divisor D can be extracted from the schematic
semiclassical formula

e ~ BB (B) | (5.1)

where 7. represents an UV cut-off that regularises the on-shell action Sgs.

The extension of this procedure to more general theories has been discussed in some
detail in [5, 8]. In this section we would like to compute (B) in terms of our supergravity
chiral fields p,, 8¢, z}. We then need to compute Sgs associated with a supersymmetric
E3-brane wrapping D and supporting a line-bundle with fixed boundary condition specified
as follows.

We denote by ¥ = 90D the asymptotic boundary of D and as in [5] we assume that
b1(X) = 0, Hi(D;Z) = 0 and H?(D;C) = H“(D;C), which indeed hold for most of the
known explicit examples (e.g. in the toric cases). We then have Hi(X;Z) = H1(X; Z)tor
and we can write the short exact sequence

0 — Hy(D;Z) — Ho(D,%:7) — Hi(5; Z)tor — 0. (5.2)

Now, a line bundle L on D is associated with a certain element of H?(D;Z) by its first Chern
class. By Poincaré duality, we can regard it as a relative two-cycle in Ha(D,¥;Z), which

15This correspondence is valid only at the semiclassical level. More precisely, a baryon is associated with
a state of the Hilbert space which is obtained by quantising the moduli space of the divisor [23]. See later
for further discussions on this point.
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can have a torsional one-cycle v C X as boundary. Hence, fixing the boundary condition
for the allowed line bundle L corresponds to fixing such torsional one-cycle v C ¥, which
in turn corresponds to fixing the torsional line bundle L|y on the boundary ¥. On the
other hand from (5.2) it is clear that there are different line bundles with the same fixed
boundary condition. They are counted by the two-cycles in Hy(D;Z), which are Poincaré
dual to compactly supported world-volume fluxes in H?(D,¥;Z). Therefore, on the r.h.s
of (5.1) one should actually sum over all line bundles on D which define the same flat
torsional line bundle on the boundary 3.

Let us denote by F the world-volume flux associated with the line bundle L plus
the possibile half-integer shift due to the Freed-Witten anomaly, so that 5-[F] = c1(L) +
1

sc1(D) [29, 30]. This then naturally combines with the By field into the gauge invariant

field-strength ,

- Q%F ~Bulp. (5.3)
A detailed discussion of the supersymmetry of Euclidean D-branes in N = 1 backgrounds
can be found in [31], and the resulting conditions can be expressed in terms of the gener-
alised calibrations of [32, 33]. In our setting, they traslate into the condition that the E3-
brane warps a holomorphic submanifold, as we are assuming, and that F is anti-self-dual:

xp F=—F. (5.4)

In [5] it is argued that, under our topological assumptions, H2(D,%;R) ~ H?(D;R) ~
7—[%2 (D), so that any element of H?(D;R) admits an harmonic representative, which is
Ls-normalisable with the respect to the metric induced on D. In particular, we can choose
a basis of Le-normalisable harmonic (1, 1)-forms ag, k = 1,...,b2(D), and a basis of two-
cycles C* C D in Hy(D;Z) such that [, a; = 6. We can then define

1 . 5
sz/ F, Nkaz/ O s ngz/ Qo I,gz/ozk/\al. (5.5)
27'(' Ck Ck Ck D

Notice that N*,, N¥, € Z while I,?l is a negative definite symmetric matrix which may
not be integrally quantised.!®
Being F closed and anti-self-dual, it is an Lo-normalisable harmonic form. Hence it
can be expanded as follows
_ _ 2 k 1 \Tk e 7k o
F=oy F=0a | f°+ (N®oImpB* + N¥ImA7)| . (5.6)
Ck Im7
Furthermore, from the above discussion it follows that we can expand 5-[F| € H*(D;Z) ~

Hy(D,%;7Z) as follows:
1

2

16 One can see that Z{ is negative definite by rewriting it as — fD ag N xay. This is possible since, by

1 .
[F] = 5Cp + Co+ mC", (5.7)

following the same argument used for the bulk (1,1)-forms wa, one can show that also the (1,1)-forms ay on D
are primitive and then anti-self-dual. We then observe that, as in [5], one can write [, ax Aoy = [ar]eptUfou],
where [a]cpt is a representative of aj in H?(D,%;R). On the other hand, from the short exact sequence
Poincaré dual to (5.2) we see that, since [a] € H*(D;Z) and H?(3;Z)ior can be non-trivial, [ax]eps does
not necessarily define an element of H2(D, 3;Z). Rather, we can always choose a minimal n, € Z such
that [nrak]ept € H? (D,%;Z) ~ H2(D;Z). Hence, in general the entries of Zy; are just rational.
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with m; € Z, Cp = [¢1(D)] and Cy any fixed element of Hy(D,Y;Z) representing a line
bundle with the appropriate boundary conditions. We can then write

f*=fE+mM™ (5.8)

where M* = CF. Ct and fk = C* - (Cy + +Cp).'" Hence the vector £ = (f1,.. ., (D)
takes value in the shifted lattice fy + MZP2(P) | Notice that M* is the inverse of I,?l and
furthermore [C*]P = M*q;, where [C¥]" is the harmonic representative of the Poincaré
dual of C*.

5.1 DBI contribution

The calibration condition implies that the on-shell DBI action can be written as

S-SBP(D) = /D eATNT - 2£4Im7/ FAF-gimrx(D),  (59)
where x(D) = [, c2(D) is the Euler characteristic of the divisor D, which has been in-
troduced by supersymmetrisation of the curvature correction [29, 34, 35] to the CS ac-
tion, see appendix C. We would like to express (5.9) in terms of our background moduli
and parameters.

Let us start with the second term on the r.h.s. of (5.9). By expanding [D] = n%[D,]
in Hy(X,Y;Z), where D, are a basis of divisors Poincaré dual to the bulk harmonic forms
wq, we can derive the identities

T NF N s = nTaap =T, T N*N'G = nT400 = T2, . (5.10)

Similarly, we define
0 =T NP N, (5.11)
By using the expansions (3.1) and (5.6), we can now rewrite the second term on the
r.hs. of (5.9) as follows

1 1
-3 €4Im7 / FAF= 2ImTI£ﬁImBO‘ImBB — —— 7P Tm f*Tm \*

fmr (5.12)
——Z0Im A\ Im \ + IRP!(f
~ 2ImrT mATIm AT ().
with )
IPBY(f) = —ZD(N* Im g* + N, Im \7) f! — §Imfz,§; frft (5.13)

We can now pass to the first term on the r.h.s. of (5.9). As in [7] (see also [36] for
an analogous argument in the relative M-theory context), it is convenient to rewrite it as
follows:

1 1
/ e MAINT = / e MATNT A §*(D) Z/ 674AJ—'52(D)dV01X' (5.14)
2 D 2 X X

"In may be convenient to minimise f§ by redefining Co — Co + n;C" for some n; € Z.
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We can then use the identity §%(D) = 5-i9dlog|(p(z)|?, where (p(z) is a non-trivial
section of O(D) defining the divisor D = {(p(z) = 0}, which implies that

1
J.6%(D) = —EAlogKD\Q. (5.15)

In order to make this formula useful notice that, since the harmonic (1,1) form wp = n%w,
is primitive, the associated locally defined potential xp = n%k, (such that wp = i00kp) is
harmonic: Axp = 0. Then we can actually write

1
2 .
Ji6%(D) = 47rAhD’ (5.16)

where
hp(z) = log (|¢p|*e ™) (z). (5.17)

This function is nothing but the norm of the holomorphic section (p and (5.16) tells us
that we can regard hp as a harmonic function on X\ D which is ‘sourced’ by the divisor D.

The advantage of modifying (5.15) in this way is that hp is globally defined, while
log [¢p|? is only locally defined. Then, we can substitute it in (5.14) and integrate by parts
twice, getting

1

1
/ 6_4AJ /\ J — / hDA€_4AdV01X + IE(TC)
2 D 4T X

» ) s pg . (5.18)
=5n ZI:%(ZI,ZI,U) ~ o XI: elog (p(zr) + In(re)
where the boundary contribution I (r.) is given by
1
IE(T’C) = 4/ <6_4A * X th - hD *x d€_4A>
Ty
" (5.19)

1
= —R (rc / dvoly d,hp + 4 / dvolth> ,
4 Y,rc Y,rc

and 7. is a very large UV regulator, which will be eventually sent to co. We have implicitly
used the asymptotic warping (2.5) and the fact that the five-dimensional manifold defined
by {r = r.} coincides with the Sasaki-Einstein manifold Y in the r. — oo limit.

In order to compute the behaviour of I (r.) for r. — 0o, we just need the behaviour of
hp(z) at the boundary r ~ r.. In this region the metric is well approximated by the conical
one (2.2). One can then use the expansion hp(z) = h},(r)a,(y) in an orthogonal basis
of eigenfunctions of the Sasaki-Einstein Laplace operator on Y such that Ayay = Aay,
with A > 0. In particular, we can choose ag(y) = 1 as zero-mode. Clearly, only such
zero-mode contributes to (5.19), which, using also (2.6), becomes

In(re) :miﬂzv (e (o) + 4R (ro)] - (5.20)

It then remains to solve the equation for hOD obtained by expanding (5.16), which is given by

1 d [ 5dh%(r) 4mr
Sl P Sk DASIAN | D, f , 21
ro dr (r dr fr=re vol(Y') J(D,re) (for re — oo) (521)
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where we have used the asymptotic form Acone = —%58,«(7“56,") + T%Ay of the Laplace
operator and we have introduced the quantity

J(D,re) = / dvoly J16%(D) . (5.22)
Y,re
Since D is asymptotically conical, we can use the formula derived in appendix B and write

1
J(D,re) ~ ﬁvol(Z). (5.23)
Equation (5.21) is readily integrated into
mvol(X)
vol(Y')

A (re) =~ ¢+ log re . (5.24)

By using such asymptotic expansion in (5.20) we arrive at

Nvol(X%)

Is(re) ~ W

logre, (5.25)
up to an additive constant, which can be reabsorbed by a rescaling of the holomorphic
section (p.

We conclude that 27Ix(r) provides the only (logarithmically) divergent contribution
to SEPL. By comparing (5.25) with (5.1), we arrive at the identification

_ Nmvol(%)

B= ovol(Y) (5:26)

which is indeed the expected dimension of the baryon B, see (4.14). Hence, as already
argued in [8], the DBI action has the correct divergent contribution to match (5.1).

We can now combine the different pieces to write the DBI-action in function of our
background chiral moduli. Indeed, recalling (3.2) and the definitions (5.10), we can write

SED??I =27mn"Rep, — Z Re log (p(zr) + log TCAB
I (5.27)
T
Lot A7 Im N — o dm 7 x (D) + 2r 17 (f).

™

Im~

5.2 Complete E3-brane action and baryonic vev

The complete E3 on-shell action is given Sgs = SED:?I + 15838. The CS contribution is
slightly more subtle than the DBI term and is discussed in some detail in appendix C. The
bottom line is that Sgs is given by the following natural completion of (5.27)

Sp3(f) = 2mn%p, — Zlog Cp(zr) + log r28 + 21 Ip(£) 4 2mic(r, \), (5.28)
I
with '
Ir(£) = iZPD(N* 3% + N* ) L LrzD kgl
2 (5.29)

1 1
c(r,\) = 27 x(D) + mIUDpX’Im)\”.
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We can finally compute the baryonic vev. As discussed above, the relation (5.1) must
be modified into
By=res Y e m®) (5.30)
fefy+Mzb2(D)

where M represents the intersection matrix M* = C* . C!. This gives

(B) = e 2PN AB) [ Cozn)e >0, (5.31)
I
where
D ~ ~
A= Y e g IOfO ( _Nj— N/\‘ - TM) . (5.32)
fefo+Mzb2(D)

Here we are using an obvious matrix notation and © [§](w|T) is the theta function with
characteristics (a, b):

a

)
b

(W)= > exp{27ri [(n+a)k(w+b)k+;(n+a)kal(n+a)l]}. (5.33)

nezb2(P)

Since the matrix I,g is negative definite, see footnote 16, and M* is its inverse, then the
matrix Im (—7M) is positive definite and the theta function is well defined.

We see that, up to a constant, (B) is completely determined by the chiral fields entering
the HEFT in a manifestly holomorphic way, which is indeed one of its expected properties.
The appearance of a theta function depending on the By and Cs moduli in this type of
evaluation of the baryonic vev was already pointed out in [5] and is expected from the
general discussion of [37] for the dual five-brane. Here we have made manifest its compat-
ibility with structure of our HEFT. The proper understanding of the global properties of
this holomorphic dependence would require a better study of the K-theory corrections to
the R-R periodicities, see footnote 2, which will not be addressed in the present paper.

We remark that (5.31) gives just a semiclassical formula for the baryonic condensates.
In fact, in order to obtain a more precise identification of the corresponding baryonic
operators, one must quantise the E3-brane moduli space, as in [23]. This means that one
must consider (B) in (5.31) as a section of an appropriate line bundle £z over the moduli
space of the divisor D. This holomorphic section must be considered as a wave-function in
the Hilbert space of BPS E3-branes, which can be expanded in a basis of global sections
of L, corresponding to a basis of baryonic operators. The coefficients of this expansion
can be then identified with the vev of the corresponding operators. See section 6.4 for an
explicit illustration of this procedure for the Klebanov-Witten model.

6 The HEFT of the Klebanov-Witten theory

In this section we focus on the KW model [2], presenting a detailed discussion of its HEFT.
This will illustrate how to concretely apply our general results in a prototypical example.
It would be interesting to extend this analysis to other models, in particular to understand
some aspects, like the anomalous U(1) symmetries, which are not present in the KW model.
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6.1 CFT of the KW model

Let us start by briefly reviewing the structure of the CFT of the KW model and its moduli
space from a field theoretical perspective.

The field theory describe N D3-branes probing the singular conifold [38]. The gauge
group is SU(N) x SU(N), there are four bi-fundamentals fields A; and B,, i,p = 1,2,
transforming in the representation (N, N) and (N, N) of the gauge group, respectively,
and the superpotential is

W = heleP? Tr(A; B,A;By) . (6.1)

The theory has two SU(2) global symmetries transforming the A; and B, independently
as doublets. There is, in addition, a non-anomalous baryonic symmetry transforming the
fields A; with charge +1 and the fields B, with charge —1.

The classical moduli space is obtained by imposing the conditions (4.3), which in the
present case read

equpAqu = EiinBij = O, (6.2&)
A1Al 4+ Ay Al — BIB, — BiBy = AlA, + AlAy — B\B] — ByBl = V1, (6.2b)

where the fields are regarded as N by N matrices and
1

VEN

Tr(Al A, + Al Ay — BiB] — ByB)). (6.3)
This operator is non chiral but it is contained in the same multiplet of the current that
generates the baryonic symmetry. Hence its dimension is protected and equal to its classical
value, Ay = 2. The expectation value of V determines the arbitrary parameter

§=V), (6.4)

which is formally equivalent to a FI for the U(N) x U(N) theory. As in section 4, we will
refer to € as a FI modulus.

Let us first discuss the mesonic moduli space (4.7), which is obtained by setting
&£=0. This is the subvariety of the moduli space which can be detected by purely mesonic
operators

TILAi1 Bp1 te Alan (65)

n )

with zero baryonic charge. They are fully symmetric in the indices i1, -« , 4, and p1,-- -, pn
by the F-flatness relations (6.2a). The mesonic operators can be constructed by using as
building blocks the four N by N matrices

¢y = A1By, ®y = A B, Oy = A2By, ¢y = A1 B, (6.6)

which transform in the adjoint representation of the first group U(N) and then have zero
baryonic charge. Using the F-flatness relations (6.2a), one can easily check that they
commute and satisfy the algebraic equation of the conifold as an algebraic variety

dydy = Dy Dy . (6.7)
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Since @y, Py, Px, Py commute, they can be simultaneously diagonalised. The correspond-
ing N eigenvalues take values in the space defined by the coordinates (U,V,X,Y) € C*
satisfying the equation

Uv =XY. (6.8)

This equation defines the singular conifold. We see that the mesonic moduli space is
the symmetric product of N copies of the singular conifold and it has dimension 3NV, in
agreement with (4.8).

On the other hand, according to equation (4.13), the full moduli space has dimension
3N +1, which is parametrised not only by the mesonic operators (6.5) but also by baryonic
ones. Since the fields transform in the bi-fundamental representation, we can construct
gauge-invariant baryonic operators, the prototype being

1 b —n b —-n
B, = Ni€ N by (A1)o -+ (AD)aN T (Ag)al ot -+ (A2)oN ©3)
! 6.9
BE = ﬁ€a1"'aN€b1...bN (B1)5 -+ (Br)an " (Ba)an iy -+ (B2)iX

with n = 0,1,..., N. B2 and BZ carry baryonic charge N and —N, respectively. We can
generalised the above operators, by replacing each single entry in the epsilon contraction
with a more general composite field with the same transformation properties under the
gauge group, for example

(Ai)bl - (Aile T AikBpkAi)bl (6'10)

ai ay

and similarly for (Bp)gll. This gives a pletora of baryonic operators which are obtained

by dressing the elementary baryons (6.9) with mesonic excitations. Mesonic and baryonic
operators are not all independent and satisfy many relations.'® The set of generators of the
algebra of chiral operators and the Hilbert series of the moduli space have been investigated
in [26, 41, 42].

The baryonic operators can see directions in the moduli space which are invisible to the
mesonic operators, ‘resolving’ the conifold singularity of mesonic moduli space. To have
an idea of how this happens, consider the vacua where the vev of any mesonic operator
vanishes. This requires that either A; or B, are zero. Consider for example the case where
all B, = 0. The F-flatness conditions (6.2a) are automatically satisfied. The D-flatness
conditions (6.2b) give

A AT+ A0 AL = ATA + ATy = ¢ (6.12)

and necessarily £ > 0. We see that, by modding by the gauge transformation, these equa-
tions imply that the N eigenvalues of the operators A, As describe N points moving on

18Since oy, Py, Px and Py in (6.6) are N by N matrices, mesons consisting of more than N such

building blocks can be written in terms of smaller mesons (see for example [39, 40] for a general discussion).

Moreover, using the tensor identity €' "*Ney .4, = N!dﬁ}l e 65}3’], we can transform particular products

of baryons into mesons, for example, schematically
B{BE ~Tr ol +--- (6.11)

We can only do this because the operator on the left hand side has zero baryonic charge.
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a P!. The P! is the exceptional cycle that resolves the conifold singularity. Correspond-
ingly, the vevs of the N + 1 baryonic operators B;? are generically non-vanishing. These
parametrise the N points moving on the P! together with an additional complex modulus
which combines the FI modulus and the Goldstone boson associated with the spontaneously
broken baryonic U(1). As we will see in the following subsections, all these CFT aspects
have a clear holographic counterpart.

6.2 The dual background

The generic vacuum of the KW theory is holographically dual to a IIB solution of the kind
described in section 2.1, with the resolved conifold as internal space X. The boundary is
then given by the Sasaki-Einstein space Y = T"!'. X has a complex structure which is
most easily described by using toric homogenous coordinates (Z*, Z2, Z3, Z*) € C*, which
must be identified under a U(1) action with charge vector @ = (1,1,—1,—1) and must
satisfy the D-flatness condition

2P +122P -1 2P - 12 =¢. (6.13)

For £ = 0 one gets the singular conifold, while there are two possible resolutions associated
with & > 0 or £ < 0 respectively, which are related by a flop transition. By comparing
this description with the dual CFT, we see that the complex coordinates (Z!, 2%, 73, Z4)
are naturally associated with the elementary chiral operators Ai, As, B, Bs in the chosen
order. So, as the notation suggest, £ can be identified with the FI modulus of the dual
CFT defined in (6.4). In the following we will assume £ > 0. As a complex space, this
resolved conifold X can be represented as

Ct—{z'=2*=0}
C* ’
where C* ~ U(l)c acts as follows: (Z',2%2,73,Z%) — (aZ',aZ? a7 173, a7 12%)
for a € C*.
The resolved conifold space X has Betti numbers by(X) = b3(Y) = 1 and by(X) = 0.
In particular, Ho(X;Z) is generated by the two-sphere P! defined by Z3 = Z* = 0. In fact,
as a complex space, X can be alternatively identified with the total space of the bundle

X ~ (6.14)

Op1(=1) & Op1 (—1) . (6.15)

On the other hand, in the above toric description the space X inherits also a Kéahler
structure from the ambient flat metric on C*. This does not coincides with the Ricci-flat
Kahler form J on X, but lies in the same cohomology class. This allows to compute

/HMng, (6.16)

which shows how & measures the size of the resolution P!.
We can identify four toric divisors D4 = {Z4 = 0}. Notice that Dy ~ Dy ~ C? and
D3 ~ Dy ~ Opi(—1). In other words D; and Dj can be identified with the fiber of (6.15),
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while D3 and Dy are obtained by setting to zero one of the two line coordinates in Op1 (—1).
Furthermore, these toric divisors define relative homology classes [D4] € H4(X,Y'; Z) which
are identified as follows [D1] = [Ds] = —[D3] = —[D4].**

Let us introduce the harmonic form w which is Poincaré dual to, say, D1 (or Ds).
Then, according to our general discussion — see equation (2.21) — we can decompose the
Kéhler form on X as follows

J=Jy+vw, (6.17)

where Jj is an exact two-form. Since [p, w =P'- Dy =1, from (6.16) we see that we can
in fact identify the FI parameter £ with the (unique) Kéhler modulus v:

[

¢. (6.18)

Hence, in particular, we have
(V) =v. (6.19)

The moduli space (3.20) for the KW background has the following structure. M is
a U(1) fibration over Mpz = Sym™ X, with fibral angular variable ¢ and local complex
coordinates z} along Mps. The cone K coincides with the one-dimensional Kéahler cone
R* parametrised by v.2° The coordinates (v, ¢) are symplectically paired and are Legendre
dual to a single chiral coordinate p, as described in general in section 3.3. Hence, the HEF'T
will be described by a total of 14 3N chiral fields p, 2.

In order to compute the HEFT of the KW model we need the explicit form of J in
complex coordinates. This can be described by identifying X with (6.15) and using two
local patches Uy as follows. First introduce two local patches of the base P!, parametrised
by two local coordinates x and x’, such that x’ = 1/x, so that x = 0 can be identified
with the North pole and x’ = 0 with the South pole. The local patches U+ on X are
then provided by the restriction of the fibration (6.15) to these patches on the base P!.
In particular, (x,U,Y) and (x’, X,V) denote the coordinates on U, and U_ respectively,
where (U,Y) and (X, V) are fibral coordinates along the vector bundle (6.15), related by
X = xU and V = xY.2! They satisfy the constrain XY — UV = 0 and then parametrise
the singular conifold. By expressing (U, V, X,Y") in terms of the homogeneous coordinates
— see footnote 21 — it is clear that their values at position of the N D3-branes correspond
to the eigenvalues of the mesonic operators (6.6).

We now introduce the radial coordinate

s= VI +DIUR+YP) = VA + DX+ V). (6.20)

19 As usual, the homological relations between toric divisors can be refined into linear equivalences, see
e.g. [43]. For instance, D1 + Ds is represented by the zero-locus of Z 173, which defines a holomorphic
function on X. Hence D; and Ds are linearly equivalent, the divisor D1 + D3 corresponds to a trivial line
bundle and is then homologically trivial.

20This can be extended to the entire real line by adding the other possible small resolution. In this case,
the extended K is divided in two chambers, connected by a flop transition.

2! In terms of the homogeneous coordinates, Uy = {Z1 # 0} with (x = g—f, U=2'23Y = ZlZ4), and
U ={Z°>#0} with ' = Z;, X = 72322V = 2°7*}.

Z2
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The resolved P! then sits at zero radius s = 0. The Kéhler form .J is specified by the
(locally defined) Kihler potential k(z, z;v), such that J = i90k. In the patch U, it is
given by [38, 44]
_ 1 (% da 1 )

k(z,z;v) = = —G(z;v) + —v log(1 + |x|%), (6.21)
0o 27
and by replacing y with x’ one gets the Kihler potential & on _. The function G(z;v) is
uniquely determined by the equation

G(z;v)® + ;—; G(z;v)? —22 =0, (6.22)

and it is explicitly given by [44]%

1 v 1
Glziv) = = gvt N P (@o) + N3 (30)

; (6.23)
. 1/ 45 v , 3
with N(w;v)zi x —4—7F3+x 22 =53 |

For small and large =/ v3 we have, respectively,

G(m;v):v[\/?fg%—(’)(zzﬂ , G(x;v)m["f’—;r+o<;§>]. (6.24)

The harmonic form w = i90k can be obtained by computing the derivative g—‘g. In U,

the associated potential is given by

82 .
k(z,Z;0) = _‘11/0 tpm + % log(1 + |x|*) — 8% logv . (6.25)
More in detail, by integrating w = i00k one gets k(z,Z;v) up to a v-dependent piece.
This can be fixed by requiring the boundary condition (2.35), which uses the conical radial
coordinate r, introduced in (6.28) below. This fixes the form (6.25) for x(z, z;v). On U_,
K takes the same form (6.25), up to replacing y with x’.

We can also compute the potential kg defined as in (2.28) and satisfying (2.32). This
is given by

3 3
ko(z,z;v) = ZG(sQ; v) + e (6.26)

We note that kg is globally defined on X, accordingly with our general discussion.
It is also useful to recall how to write the metric and Kéahler form in real conical
coordinates. These are given by five angular coordinates (1, ¢1, 01, ¢2,02) defined by

: 0 i 0 0 i ) 0
X = ei92 tan 52 , U= sez(Wtorte2) g 51 cos ?2 , Y =s e2(V=1402) gipy 7L ooq 72 ,
(6.27)
2By using the cubic root (—)% = ei?ﬂ, the solution (6.23) remains valid (and real) even if 2% < 21;—33
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and a new radial coordinate r such that
3
r? = §G(52;v). (6.28)

In these coordinates the internal metric in (2.1) reads
1
ds? =t (r)dr? +t(r)r’n’ + 67“ 2(dh2 +sin? 0,dp?) + (6 7“2—|-47TU> (d6? +sin” 6;d¢?) (6.29)

with ¢(r) = jﬁ:ﬂgz and n = % (de) + cos 01d¢y + cos Oadepe), while the Kahler form becomes

1
J=rdrAn+ 67‘ volsz + <67‘ +4ra )volsz , (6.30)
where vol}gz = sin61d¢1 A df; and VOI%Q = sin fodpo A dfy. The metric (6.29) has conical
asymptotically behaviour dsg( ~dr? + r2ds2T171, where

1
dsZ., =n*+ - (d9 + sin? 91d¢$)+6(d9%+sm291d¢%) (6.31)

is the Sasaki-Einstein metric on T"!, with contact form 7. In conical coordinates the
harmonic form w takes the form

18v r? 47r? 4 120
= rdrAn— ——————vol’ — " _vol%,. 6.32
v (47r? 4+ 6v)2r T S 1200 + 87 (47r? + 6v) VOls (6:32)
One can check that w satisfy (2.25) and is then LY -normalisable.
The KW model has two marginal parameters: the axio-dilaton 7 and the parameter A

which sets the (non-dynamical) value of the two-form potentials: Co — 7By = £2 \w.

6.3 The HEFT

We are now ready to derive the HEFT. We have already said that in addition to the 3N
chiral moduli z¢ = (x7, Uy, Y7) (in the patch U, ) describing the positions of the D3-branes,
there is just one chiral modulus p.

The implicitly defined K&hler potential is given by

3T 3N
K(p,p,z,2z) = 2772 ko(zr,zr;v) = - ZG(S%;U) + VL (6.33)
I I

where s = (1 + |x71?)(|Ur]? + |Y7/?). On the r.h.s. of (6.33) v must be considered as the
function of (p, p, 21, Zr) that is obtained by inverting

sId
Rep——Z/ xi —Zlog + Ix11?) ——logv (6.34)

x 7G(z;v) + v

see (3.2). From the Kahler potential (6.33) one can then derive the HEFT non-linear sigma
model (3.7):

VpAxVp— QWZQU (21, Zr;v)d2% A xdz) + (fermions),  (6.35)

Lopey— —
TG (0,5, 2, 2) i
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where
3 1

—_— )y —— 6.36
167 < v+ 7G(s%;v) (6.36)

g(pv 2% 2) =
is obtained from (3.4), and gi;(z, z;v) = 9;0;k(z, z;v) are the components of the Kihler
metric (6.29) in complex coordinates. Furthermore, V,p = 8,p— > ; Ai(z1, 21;v)9,, 2% with
(see (3.9))

2. 2. 7 3,
Ai(z, 7 0)ds = 1 ) [2v+7TG(5 jv) G(s%0)(UdU +YdY)

— 6.37
o 4G 0) | a(i ) X UE+ VP (6.5

It is interesting to observe that, as far as the D3-branes are all away from the blown-
up P! (i.e. s2 # 0 for all I), the Lagrangian (6.35) remains regular in the limit v < 1,
in which the internal space X develops a conifold singular. This is true not only for the
z} kinetic terms but, maybe unexpectedly, also for the p kinetic term. Indeed, this limit
is practically implemented by considering s% > 03 and by using the second of (6.24) we

see that G ~ % > s;%, which is finite. Roughly, the singularity is invisible to the N
D3-branes and then the HEFT remains regular even in this limit.

As already remarked, in all above expressions one should consider v as a function of
the chiral fields p and z}. We do not know a general analytic formula for such function, but
one can in principle derive it in a perturbative expansion. We can for instance consider the
region in the moduli space in which v is quite large while s% are finite, so that S%/’U% < 1.
Dually, this roughly means that the vevs of the mesonic operators are very small compared
to the vev of the operator (6.3). In terms of the HEFT chiral fields, this regime corresponds
to sIe N <L By using the first of (6.24) in (6.34), we find that

16mRep 1 27'(' 2 2 8mRep
v:H(1—|—|X,~| )aNe e _N(?)z H(1+|Xf| ~3Ne N ZSJ+ . (6.38)
I I

4 32wRep

7e 38 . To this order, the HEFT Kahler
potential (6.33) takes the following explicit form

where we have neglected terms of order ~ s

167rRe
K(p,p,z,2) = —H 1+|X1| AN
3 e 5 8mRep
+§<?) ];[(14_’)([’ ~3Ne 3N ZsJ—{— .. (6.39)

and, for instance, the first kinetic prefactor in (6.35) is explicitly given by

™ 1672 167Rep

g(p ﬁ P 2) - 3N <1+‘XI’ )SN@ 3N
872 /27 5 2 8nRe
+W(?)2H<1+|’“' “3ve 3N”ZSJ+... (6.40)
I

Coming back to the complete HEFT, in addition to being manifestly N = 1 super-

symmetric, it should also be invariant under a non-linear realisation of the superconformal
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generators that are spontaneously broken by the vacua at which the HEFT is defined. Let
us explicitly check it for the dilations.

In order to do that, we must identify the scaling dimensions of the fields entering the
HEFT. This is particularly easy in the KW model since, as discussed above, the CFT chiral
fields A1, As, B, By are in natural correspondence with the homogeneous coordinates Z4.
The dimension of the fields A;, Ay, By, By in the CFT is uniquely fixed to be 3/4 by the
SU(2) x SU(2) symmetry and the fact that the quartic superpotential must have dimension
3. Hence we can assign to Z4 a scaling dimension Ay = % and this in turn implies the
scaling dimensions Ay, = A\x =0 and Ay, = Ay, = Ay, = Ay, = 3 (see footnote 21),
and then also AS% = 3. The scaling dimension of p can be determined by relating it to
the the expectation value of the baryonic operators, as we will see in the next subsection.
The result will imply that e~2™ has scaling dimension %. Furthermore, the real Kahler
modulus v has scaling dimension A, = 2, as one can immediately conclude from (6.19).%

It is now easy to explicitly check that the Kéhler potential (6.33) has scaling dimension
2, which implies that the supersymmetric Lagrangian [ d*0K is indeed scale invariant,

as required.

6.4 Baryonic condensates

So far, we have only partially provided a CFT interpretation of the supergravity chiral
fields p, z}. In particular, we have identified the HEFT chiral fields Uy, Vi, X, Y7 with the
N eigenvalues of the mesonic operators (6.6). On the other hand, the expectation value of
a general mesonic operator cannot ‘see’ neither p nor the position of D3-branes sitting at
different points of the resolution P'.

This additional information is in fact encoded in the vev of the baryonic operators
which, according to the prescription [4] reviewed in section 5, can be computed by eval-
uating the on-shell action of E3-branes on non-compact divisors in X. More precisely,
the different baryons with given dimension and charge are associated with different states
in the Hilbert space which is obtained by quantising the moduli space of the associated
divisors, as in [23].

In particular, the N + 1 baryons B;:‘ defined in (6.9) naturally correspond to the family
of divisors obtained by rotating D; (or D2). The generic divisor in this family is described
by the zero-locus of the polynomial of degree-one:

Pl (2N, Z?)=a1Z' + 2% = 0. (6.41)
The divisor does not change if we rescale ¢; and co by the same complex number. Hence
different divisors in this family are parametrised by the point [¢; : 2] in a complex projec-
tive space IP’}4. We then denote this class of divisors by Délm]. In this notation D; = Dﬁ:o]
and Dy = ng;1]' Correspondingly, by using the description (6.14) of X, the polynomials
PA _(Z', Z?) are associated with global sections ([131102} (z) of a non-trivial line bundle over

C1,C2

X, such that Dy .,) = {Cf;‘lzcﬂ(z) =0}.

2By using (6.34) one can check that this is consistent with the scaling dimension % of e 277,
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in terms of the HEFT chiral fields,

[fc‘l .y AT€ diffeomorphic

}) = 0, Cl(DEinQ}) = 0 and

In order to evaluate the vev of the baryons Bﬁ...iN

we use the semiclassical results of section 5. All the divisors D
to C? and have boundaries ¥4 ~ S3. Hence by(Di}

[e1:e2] [c1ico
Hl(zél;@]?z) = 0, so that the corresponding E3-brane can support just a trivial flat
connection. Since we have chosen the harmonic form w to be Poincaré dual to Dy, and

A
[c1,c2

then to any D L the general formula (5.31) boils down to

<Bf21262]> = H C[clzcz} (ZI) e P ) (642)
1

On the other hand []; (jc,:c,](21) is associated to the homegeneous polynomial

N
HP£,02(2}7Z%) = ZP{LAwn(CLCQ)a (643)
I n=0
where N1
Pn(cr, c2) = v ﬁ),n, o e (6.44)

and P,f‘ are the polynomials which can be obtained by inserting the matrices
zZi o ... Z2 0 ...
0 73 0 Z3
A= . . , A= . (6.45)
A 7%

in B2 defined in (6.9). Correspondingly, in (6.42) we can expand

N
H C[clzcg](zl) = Z C;?(Zla oo aZN)d}n(Cla 62) ’ (646)
I n=0
where Cf(zl, ..., zn) are the holomorphic sections over Mps = Sym” X, which correspond

to the homogeneous polynomials P;;‘. For instance,

1 .
A ~(xa+x2+.. +xw) in Uy
{aneon) = ¥ T Coo Yy o (647)
¥ OGN FXIXG Xy X X yo) In U

From (6.46) we see that (B4

fe1: CQ]> is associated with a homogeneous polynomial of

A
[e1:ca]
wave function taking values in the holomorphic line bundle (’)]p}4 (N) over PY. But the

degree N in (c1,c2). In other words, we can regard (B ) as defining a holomorphic
space of holomorphic sections of Oph (N) exactly corresponds to the quantum Hilbert
space generated by the baryons B,i? [23]. In particular, these operators are associated with
the N + 1-dimensional basis defined by v, (c1,c2). Hence, we can read their expectation
values from (6.42) by picking the appropriate coefficient in the expansion (6.46). We then
arrive at

(BAY = ¢z, .., 2n) e 2P (6.48)
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Note that the above definition of the polynomials P makes it clear the direct connection
between this quantisation procedure and the dual baryonic operators B2 defined in (6.9).

The computation of the vevs of the operators B2 is slightly less straightforward. The
associated family of divisors Dﬁgm], with [c3 : cq] € IP)}B, is now defined by the vanishing of
polynomials of degree one

PC3,C4(Z37 Z4) = CSZS + C4Z4 . (6.49)

which descend to corresponding holomorphic sections C[§33C4] (z) on X. The divisors D[€3:c4]
contain the resolved P! and are isomorphic to the total space of the line bundle Opi(—1).
Let us for the moment omit the subscript (..., to simplify the notation. The divisors
DB have boundary three-cycles X% ~ S$3. Then by(DP) = 1, Hi(XP;Z) = 0 and
Ho(Dp,%B;7Z) = 7, which is generated by a non-compact holomorphic curve C.24 Tts
Poincaré dual [C] € H?(D?;7Z) is cohomologous to w|p, and we denote by « its primitive
(1,1) harmonic Lg-normalisable representative.

On the other hand, the resolved P! generates Ho(D?;Z) = Z and is such that Jpra=
P'.C = 1. Since H;(XP;Z) = 0, the boundary of C' can be (non-holomorphically)
collapsed, getting a(n anti-holomorphic) compact two-cycle which is homologous to —P!.
By regarding D® as a toric variety, one can compute the first Chern class ¢;(D?) = [C]
and the Euler characteristic y(D?) = 2P! - C = 2. Reintroducing the subscript eazca]s WE
arrive at the semiclassical formula

B B 27
Bioye) = 1 Sereq GDAN ) 27, (6.50)
I
where
. . 1
AN, 7) = emrMMAZETQ | 21 ()|7). (6.51)
We can now quantise the family of divisors Dﬁs:cd’ as we did for Dﬁlzcﬂ. In this way

we extract from (6.50) the following expectation values of the baryons BZ:

(BBY = ¢B(z,...,2n) AN, T) €5 (6.52)

n

Here Cf (21,...,2n) are holomorphic sections on Mp3 = Sym” X which correspond to the
homogenous polynomials PP obtained by inserting the matrices

Z3 0 ... Zt o ...
0 73 0 Z3

By = ) ) ) , By= ) ) ) (6.53)
L7y A
in BP defined in (6.9). Again we see that, through the quantisation of the divisor moduli
space, the precise connection with the dual baryonic operators naturally emerges.

%4For instance, in Dﬁ:o] = D3, we can take C = {Z, = Z3 = 0}.
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As a simple check, let us move all D3 branes on the resolved P!, defined by 73 = Z4 =
0, so that only N of the 3N chiral fields 2} are free to vary. In this case (BZ) = 0 for any
n = 0,...,N, while the N + 1 vevs of (B2) are generically non-vanishing. These are in
correspondence with the N + 1 non-vanishing chiral fields given by p and the positions of
the N D3-branes on P'. As a further particular subcase, suppose that all D3-brane sit at
north pole of the P!, defined by Z' = Z3 = Z% = 0. In this case only Bf, is non-vanishing
and, by using (6.34), ]B}iﬂ ~ v%, reproducing the result of [4].

7 Discussion

In this paper we have identified the holographic effective field theory (HEFT) describing the
low-energy dynamics of a large class of strongly-coupled N' =1 CFTs at the generic points
of their moduli space, at which the superconformal symmetry is spontaneously broken.
These CFTs corresponds to IR fixed points of quiver gauge theories engineered by placing
N D3-branes at the tip of a Calabi-Yau cone C(Y') over a Sasaki-Einstein space Y. Our
HEFT is defined, at the two-derivative order, in terms of a non-trivial Kahler potential for
an appropriate set of chiral fields, which parametrise the open and closed string moduli of
the dual holographic background. We have outlined how these HEFT chiral fields determine
the vev of the CFT chiral fields. In particular, we have provided a semiclassical formula
for the vev of baryonic operators, extending the results of [4, 5]. We have also provided an
alternative description of the geometry of the moduli space determined by the HEFT, in
terms of a mixed complex-symplectic potential, whose geometrical interpretation is more
transparent and which is more directly connected with the classical description of the CF'T
moduli space. Our general results have been explicitly applied to the Klebanov-Witten
model [2].

In the paper we have mostly assumed to be at the generic point in the moduli space,
at which the D3-branes are separated. On the other hand, our HEFT breaks down once
some D3-branes coincide. Indeed, we know that at these points the low-energy theory must
contain some A" = 4 SYM sectors. For instance, suppose that all N D3-branes coincide
at a point of coordinates z:. The supergravity background is well defined and close to
the coinciding D3-brane it develops a mildly curved AdSs x S° background supporting N
units of Fy flux, as in [4]. Such throat corresponds to the appearance of a SU(N) N = 4
SYM theory in the IR, to which the UV CFT flows. On the other hand, as it is clear from
the holographic description, the closed string moduli and the open string center-of-mass
moduli z¢ should still appear as dynamical degrees of freedom in a low-energy effective
theory. Assuming that the dynamics of the A" =4 SYM sector decouples from the moduli
dynamics, one may derive an HEFT for the latter just by substituting all z} with 2% in the
formulas obtained in the present paper. Clearly, this procedure can be adapted to more
general cases in which the D3-branes form smaller groups.

The HEFT has been derived starting from the ten-dimensional supergravity and per-
forming a tree-level dimensional reduction. Hence, a priori, it is valid only for small string
coupling and small curvatures. While we can always justify the tree-level approximation by
choosing a small enough string coupling gs, which is a non-dynamical marginal parameter,
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the curvature corrections may become important in some region of the moduli space. In
particular, the internal space of the string background is provided by a smooth Calabi-Yau
resolution X of C(Y'), hosting N back-reacting D3-branes. There are then two sources of
curvature: one associated with curvature of the underlying Calabi-Yau metric itself and
one associated with the warping produced by the D3-branes.

Let us first focus on the Calabi-Yau curvature. The Ké&hler moduli v* measure, in
string units, the Einstein-frame volumes of the two-cycles present in the smooth space
X. Then, the ten-dimensional supergravity approximation we started from is expected to
be valid only when the corresponding string-frame volumes are large in string units, i.e.
v* > 1/,/gs. On the other hand, at the level of the HEFT such condition is not sensible,
because of the underlying conformal symmetry. Indeed, if all v® are non-vanishing, by an
appropriate dilation we can always make them arbitrarily large. Since under this dilation
the complete HEFT must be invariant, we can always choose to compute it in the regime
in which all v® are large enough and the Calabi-Yau geometry is well described by the
leading ten-dimensional supergravity.

We can now turn to the warping. Asymptotically, the warping produces the AdS; x Y
geometry with string frame radius Ry ~ l5(gs IV )i As usual, the conditions gs < 1 and
R /ls > 1 require the large-N limit with large ‘t Hooft coupling Ayy = gsN, which may
be interpreted as a diagonal combination of the quiver gauge couplings. As one moves
closer to the D3-branes, in the generic vacua at which they are not coincident, the space
develops N local strongly curved AdSs x S° throats. Even if AdSs x S° is an exact string
background [16], one may wonder whether higher order corrections due to such strongly
curved warping can affect the HEFT. We do not have a definitive answer to this question.
However, we observe that the warping enters as an ‘integrated’ quantity in the HEFT,
effectively disappearing from it and leaving just the dependence on the positions of the
D3-branes which source it. Hence, our HEFT does not ‘see’ such localised divergences.

To further support this idea, we observe that the dilation discussed above stretches
also the distance between the D3-branes. This means that, generically, we can assume that
the Calabi-Yau radius of curvature and the mutual distance between the non-coincident
D3-branes is much larger than the string length #5. In this case, since the strongly curved
regions are localised around the D3-branes, each D3-brane should be well approximated
by a probe D3-brane on a weakly curved background generated by the remaining N — 1
D3-branes. By consistency, our HEFT should then reproduce the kinetic metric for the
moduli z} obtained by considering the I-th D3-brane as a probe. Indeed, by expanding
the corresponding DBI action one gets —2mg;;(zr, 21)8#2}8“2? Notice that any explicit
dependence on the warping has dropped out and so the probe D3-brane ‘sees’ only the un-
derlying Calabi-Yau metric. This happens basically because of the mutual BPS-ness of the
D3-branes. We see that HEFT Lagrangian (3.7) perfectly matches the probe expectation.

The above observations suggest that our second derivative HEF'T may in fact admit a
broader regime of validity than naively expected. It would be very interesting to check this
possibility more explicitly, by directly studying the implication of the perturbative higher
derivative contributions to the ten-dimensional supergravity. Another source of correction
could come from non-perturbative corrections arising from various kinds of world-sheet or
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brane instantons. In this respect, it would be important to inspect in detail other explicit
models, which for instance include anomalous baryonic symmetries. Indeed, in such cases
by(X) # 0 and there could be potential corrections arising from supersymmetric D3-brane
instantons.

Furthermore, our approach implicitly assumes that, at sufficiently low energies, our
HEFT massless fields are decoupled from the massive four-dimensional states which would
be associated to possible normalisable non-zero modes of the internal supergravity config-
uration. It would be interesting to investigate the spectrum of such non-zero modes and
more explicitly study their impact on the HEFT.

Finally, we observe that the methods of the present paper can have a broader range
of potential applications. For instance, they have an obvious counterpart for the holo-
graphic models which are dual to N' = 2 three-dimensional CFTs. Furthermore, the holo-
graphic string backgrounds can be considered as local strongly warped regions of proper
compactifications and indeed our HEFTs can be generalised to describe local sectors of
phenomenologically motivated string models.
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A HEFT from Mp — oo limit

In this appendix we derive the effective Lagrangian (3.7) by taking the rigid limit of the ef-
fective field theory of warped compactifications derived in [7]. The following discussion can
be applied to quite general local models, not necessarily restricted to the class considered
in this paper.

A.1 Warped EFT for finite Mp

We first summarise some key points of [7], which focuses on the IIB/F-theory warped flux
compactifications discussed in [6]. The Einstein frame metric has the form

072ds3) = 402 st s + e 2 dsk (A.1)

where dsg( = gi7 dz'd#’ is a Kihler metric over the internal space X, which is compact, and
® plays the role of conformal compensator. The metric dsg( is normalised to give a fixed
finite volume

VOZ/dVOIX—/ JANITNT, (AZ)

where

J =igi;dz" AdF, (A.3)
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is the associated Kéhler form. The warp factor must satisfy the Poisson-like equation

~ 1
Ae 44 = 7 * Q6 , (A.4)
where
Qs =02 > o +Qg, (A.5)
1eD3’s
with 1
Eg:Fg/\Hg—ng >+ (A.6)
0€03's

containing additional sources for the warping. The tadpole conditions requires no net
D3-brane charge: fX Q6 = 0. The general solution of (A.4) can be written as

e 4 = g 4 e %o , (A.7)

where @ is an arbitrary constant, the “universal modulus”, and e~*4° is the particular
solution of (A.4) such that?®

1
a= / e *dvoly . (A.8)
X

Vo

In addition to the universal modulus a, there are other h'"! — 1 Kihler moduli, which
are identified by expanding the Ké&hler form in a basis of integral harmonic (1,1) forms
wa € HX(X;Z):

J=v4w,. (A.9)

They are constrained by the condition (A.2), which can be rewritten as

%IABCVUAUBUC =vy, (A.10)
where Zypc = f ywa Awp Awc are triple intersection numbers.

There are also 3N complex moduli z}, I =1,...,N, parametrising the position of
N mobile D3-branes in the internal space. For the purposes of the present paper, we
can consider the axio-dilaton and complex structure moduli as frozen, while there may be
additional axionic moduli, associated with the Cy, By and the seven-brane Wilson lines.
We will be interested only in the Cy and By moduli. However, in order to simplify the
presentation, we initially assume that they are absent.

As explained in [7], the Kéhler potential is just given by

K = —3log(4mvpa) . (A.11)

The definition of the proper chiral fields p4 parametrising the Kéhler deformations (and
the axionic partners) requires the introduction of a set of (locally defined) ‘potentials’
kA(z, Z;v) such that

wq =100k 4 . (A.12)

25The notation may be misleading, since the function e~#49 can become negative in some regions of the
internal space.
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In order to derive the effective action D-terms arising from (A.11), one only needs the
explicit form of the real part of the chiral fields pa, which is given by

1 B c 1 o
Repa = iaIABov Vit ;ﬁA(Z[,Z],U) + ha(v), (A.13)
with 1
ha(v) = 4/ (ka4 — Re log CA)Q]gg, (A.14)
27T€S X

where (4(z) is a holomorphic section of the holomorphic line bundle whose first Chern class
equals wy4.

One can then show that the bosonic four-dimensional Lagrangian computed from the
Kéhler potential (A.11) is

1 AB _ 1 N 7
L= —MM}%Q Vpa NxNpp — mMg ZI:gij(zj, zr)dzy A xdz) (A.15)
where
1
GAB = v — (M;H)AB (A.16a)
2V0a
Vpa =dpa — ZA,{udZ§ , (A.16D)
I
Al = Omatenziv). (A.16¢)
0z}
Here (M_1)AP is the inverse of
MWAB:/ e_4AJ/\wA/\wB, (A.17)
X

and the four-dimensional Planck mass Mp is related to the ten-dimensional metric (A.1)
by the formula
M3 = 4mvoa|®|*. (A.18)

A.2 Dual formulation with linear multiplets

Eventually, we want to take the decompactification/ Mp — oo limit of the flux compactifi-
cations described in subsection A.1. As we will see, such limit is more naturally described
in the dual formulation in terms of linear multiplets (lA,H A), with [4 real scalars and
HA = db” real 3-forms, which are dual to the chiral multiplets p4. The scalar component

14 is related to Repa by (see for instance [45] for a review)

lA . 1 8K . UA
40Reps  4vpa’

(A.19)

which shows that {4 has a simple geometrical interpretation. In terms of the linear multi-
plets, the effective bosonic Lagrangian becomes

1. 5= o ]
Liincar = ZMl% Kap (A AxdlP + HA A< HP) — ME KL dz) A xdZ
i o (A.20)
— SME (Khidz} — Khazp) nH
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Here the kinetic matrices are obtained by taking double derivatives of the dual potential
K =K+ 41“Repy, (A.21)

with respect to 14, z} and ELJ_,, hence considering Repa as function of these fields — for
instance, f(AB = %.
In our case, the Lagrangian (A.20) becomes

1 , _
Liinear = — 4voa M3 Gap (A4 A +diP + HA A xHP) — 5 aME, > gig(zr, Zr)dz) A xdz]
0

1

—iM3 (ALt — AL,dzh) A HA, (A.22)
where )
Gap = —Myap + v My acMwpp
4V0a

(A.23)

= / 674Aw,4 A *wp
X

is the inverse of (A.16a).%5

A.3 Rigid limit

We now consider a decompactification of the above general setting such that Mp — oo.
Recalling (A.18), we see that the decompactification limit can be obtained by sending
vo — 00, keeping a and ® fixed.

From (A.19) it is clear that the parametrisation of the linear multiplets breaks down
in this limit. Hence, it is convenient to rescale them as follows

1 1
[ EA S S HA > —— g, (A.24)
4vg 4vg
so that we have the new identification
UA
A =—. (A.25)
a

In terms of such rescaled fields the Lagrangian (A.22) becomes

Liinear = — 7r(12|<1>|2 GaB (dlA AxdlB + HA A *HB) — 27r|<I>|2 Zgij(zb Zj)dz} A *dZ}_
T
+ira|®|? (AL;dz) — ALdzh) A HA. (A.26)

On the other hand, after the decompactification, the universal modulus a as well as
® become non-dynamical constant parameters. Hence we can actually substitute (14, H4)
by new liner multiplets (v, H4), with v4 = al* and HA = aH*, and set ® = 1, so that
the effective theory becomes

1 . _
Liinear = 27| — igAB (dvA A xdv® + HA A *HB) — Zgij(zl, zr)dz} A *dz)
_ I (A.27)

- % (ALdet — ALdzh) A HA] .

26Tn order to prove the second identity first decompose w4 in primitive and non-primitive components,
wa = wh + aaJ, and then use *wh = —J Awy and *J = %J/\ J.
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We can now take the decompactification/Mp — oo limit by sending vg — oco. Further-
more, we can also take the limit ¢ — 0, which is relevant for the near-horizon geometries
considered in the present paper. It is clear that generically, in such limits, only a subset
of linear multiplets (v*, H*) remain dynamical and do not decouple. These are selected by
the condition that their kinetic terms do not diverge and remain finite, that is:

Gop = / e Mg A xwp < 00 (A.28)
b's

We refer to the harmonic forms w, satisfying (A.28) as LY -normalisable.

Hence, the rigid low-energy effective theory is given by the restriction of (A.27) to
the LY-normalisable linear multiplets (v%, H?%). One can then dualise the result back to a
rigid supersymmetric Lagrangian using chiral fields p,. In fact, one can obtain the dual
Lagrangian directly from (A.15), by keeping just the chiral fields p, corresponding to the
LY -normalisable harmonic 2-forms w,. By using (A.18) and choosing ® = 1 as above,
we obtain

Lechiral = —T gapra AxVpy — 27 Z gi]—(Z[, Zj)dz} A *dZ}_ , (A29)
I

where G% is the inverse of (A.28).

A.4 Inclusion of B; and C5 axions

C5 and Bs moduli can be included along the same lines. We first need to identify a set of
Ls-normalisable harmonic forms &,, such that

/ W N *Wg < 00. (A.30)
X

A

Let us assume that e~#4 is at most asymptotically constant as one approaches the boundary

of the non-compact X. Then L¥- and Ls-normalisable harmonic forms coincide if e=44

is asymptotically constant, while they can differ when e=44

is asymptotically vanishing,
as in the holographic backgrounds considered in this paper. In these backgrounds, the
Lo-normalisability condition is stronger and the Ls-normalisable harmonic forms @, form
a subset of the L -normalisable harmonic forms w,. Hence, as in section 2.3, we can split

wg in two sets (W, 0y ), Where @, are not Lo-normalisable, and expand
Cy — 7By = (2(B%a + N0y ) . (A.31)

The coeflicients 5% are dynamical moduli entering the four-dimensional effective theory,
while A are fixed non-dynamical parameters. By applying the above rigid limit to the
theory which includes such moduli [7] one arrives at the (rigid) effective Lagrangian (3.7).

Notice that the application of the rigid /decompactification limit vy — oo and the near-
horizon limit a — 0 directly on the definition of chiral coordiantes p, (A.13) (completed by
the appropriate dependence on the % moduli [7]) and the Kéhler potential (A.11) is more
subtle. For the backgrounds considered in the present paper, it is then easier to directly
check that the formulas provided in section 3 — see equations (3.2) and (3.11) — give the
correct effective Lagrangian.
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B A useful formula

Take the cone C(Y') over the Sasaki-Einstein space Y. Y can be regarded as a foliation
parametrised by the variable v, whose local transverse space B has a natural Kahler
structure jp associated with a transverse metric ds%. Then the metric on C(Y) can be
written as

dSé(Y) = d?”2 + r2d8%/ s (Bl)

with
ds? = 7?4+ ds%, (B.2)
where 7 is the contact form, dual to the Reeb Killing vector. Note that dn = jp and 1 can

be locally written as
n=dp+0C, (B.3)

where C'is a locally defined 1-form on B, such that dC' = 2jp. On C(Y') we can introduce
the following vielbein and co-vielbein

1 1
Ey=0., Ex= ;@p, E, = ;(ea — Caly) ,

(B.4)
El'=dr, E? =, E® =re*,
where e, (e%), a = 3,...,6, is a local (co)vielbein on B and C, = t.,C. Furthermore we
can choose a co-vielbein e such that we can write
1
J=-d(r*n) =rdr An+r%jp=E'ANE* + E3ANE* + E° NES. (B.5)

2

Consider now a conical non-compact divisor D ~ RT x ¥, with ¥ C Y and conical
induced metric ds% = dr? + TQdS%. We would like to express in a more useful form
the quantity

J(D,r.) = / dvoly J 16%(D) (B.6)

where Y. = {r = r.} is the transversal five-dimensional slice isomorphic to Y. We can then
make the following manipulations

1 . . 1
I(Dr) = / WA ds AdslI B (D)) = o / E2 A J A J[J.0%(D)]
Yi ¢ ¥ (B.7)
S 5Jm"/ tntn [0 (Ye) NE2 A J A J)AS*(D).
27”'3 X

Now, since §'(Y.) = &(r — r.)dr and 62(D) has legs along E3, ..., E® we arrive at

1 1
J(D,re) = ﬁ/Xél(Yc)/\Ez/\J/\(?(D): 73/277/\j37 (B.8)

C

where Y. = DNY, >~ 3. We can regard ¥ as a foliation with transversal holomorphic
curve C C B, with metric ds% = 17% + ds%, where ny, = d¢ 4+ C|¢. This implies that

T(D,re) = T%Vouz) . (B.9)
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C CS contribution to the E3-brane action

In this appendix we discuss the CS contribution to the on-shell E3-brane effective action
used in section 5 to compute the vev of baryonic operators. The CS terms are given by

%S&? =t (/ c4+/ CQAH;ReT/ .F/\]-") —i—iReTx(D), (C.1)
Q D D D

where the last term comes from the curvature correction (5% [}, Co [A’fl((]j\;g))} 2 [29, 34, 35].

The term | p C4 is particularly subtle because of the presence of the D3-branes, which
makes F5 non-closed. Hence our strategy will be to focus on the other terms and to complete
the result by holomorphy. First, [ pF A F can be expanded as in the subsection 5.1.
Furthermore, we can expand | p C2 A F in the same way, by using that fact that we can
write [, Co AF = [, C} A F, where C} is the Ly-normalisable harmonic representative
of Cqlp [5]

By requiring an appropriate pairing with the DBI-terms of subsection 5.1, it turns out
that we must set

/04:63¢+1/35Ac§ (C.2)

where @ naturally pairs with the 1 5 /p e *4J A J term in the DBI-action into an SL(2; Z)-
invariant contribution. By expandmg [pBYACY as [, FAF and [, C} AF, we arrive at

1 1
SCS (75 4+ aﬁReﬁaImﬁﬁ + 7ID (ReBO‘Im)\U + ImBO‘Re )\0)
27 2I 2Im (C.3)
D o CS
+ mfopRe)\ Im M\ + ﬂReT x(D) + Ig>(f),
where )
IE5(F) = ZH (N*,Re S + N*,Re ) f! + §RGTI]5 frrt (C.4)

The complete E3 effective action is given Sgg = SDBI—I—nggS. The requirement that this
combination depends holomorphically on the HEFT chiral fields singles out the following
completion of (3.2):

n®pg =n [ Z/@a 21,2150 21 ~T 03" Tm 37
(C.5)

1

+ o Toao (B ImAT + X’Imﬁa)] + 0= Zlm log(p(zr) +ip —ip,

where ¢ is a real constant. By reabsorbing it in the phase of (p(z), we can then write

Sus(f) =2mn%pa — Y _log(p(z1) + log re® + 2w Ip(f) + ET x(D) + %prmmv ,
I

(C.6)
where I (f) = IPBI(f) +iI$5(f), that is

Dk aa i Rk Ao i
Ip(f) = iZR(N* 8% + N*,\ )fl+§TI,3fkfl. (C.7)
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