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Abstract. The cubic polytype of SiC (3C-SiC) is the only one that can be grown on silicon 
substrate with the thickness required for targeted applications. However, the crystalline quality of 
3C-SiC on silicon has to be improved in order to benefit from the intrinsic 3C-SiC properties.  In 
this project new approaches for the reduction of defects will be used and new compliance substrates 
that can help to reduce the stress and the defect density at the same time will be explored. 
Numerical simulations will be applied to optimize growth conditions and reduce stress in the 
material. The structure of the final devices will be simulated using the appropriated numerical tools 
where new numerical model will be introduced to take into account the properties of the new 
material. Thanks to these simulations tools and the new material with low defect density, several 
devices that can work at high power and with low power consumption will be realized within the 
project.  
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Introduction 
Emerging wide band gap (WBG) semiconductor devices based on both silicon carbide (SiC) 

and gallium nitride (GaN) have the potential to revolutionize power electronics through faster 
switching speeds, lower losses, and higher blocking voltages, relative to standard silicon-based 
devices. 1  Additionally, their attributes enable higher operating temperature yielding increased 
power density with reduced thermal management requirements. To date, the advantages 
demonstrated by WBG power electronics have yet to be fully realized due to their high costs and 
reliability problems.   

Silicon carbide (SiC) is a material presenting different crystalline structures called polytypes. 
Amongst these only two hexagonal structures (4H-SiC and 6H-SiC) are commercially available and 
the cubic form (3C-SiC) is an emerging technology. All these materials are broadly similar with 
high breakdown fields (2-4 MV/cm) and a high energy band gap (2.3–3.2 eV), much higher than 
silicon. The cubic polytype of SiC (3C-SiC) is the only one that can be grown on a Silicon 
substrate, reducing the cost by only growing the silicon carbide thickness required for the targeted 
application. 3C-SiC/Si technology also offers the possibility of increasing wafer size much faster 
than will be possible with the difficult crystal growth of the hexagonal polytypes.  

Tab. I – Property of the main semiconductors for power electronics 

Property Si 3C-SiC 4H-SiC GaN 
Band-gap [eV] 1.12 2.35 3.28 3.4 
Breakdown field [MV/cm] at ND=5x1015/cm3 0.3 1.5 2.2 3.5 
Intrinsic carrier concentration at 300K [cm-3] 1×1010 1.5×10-1 5×10-9 1×10-10 

Electron mobility [cm2V-1s-1] 1350 900 800 2000 
Hole mobility [cm2V-1s-1] 480 40 120 200 
Saturated electron velocity [×107 cms-1] 1 2 2 2.5 
Thermal conductivity [Wcm-1K-1] 1.5 3.2 3.7 1.3 
Dielectric constant 11.7 9.7 9.6 8.9 

Different materials can be competitive with 3C-SiC for power applications, as reported in 
Tab. I. 

From this table it can be understood that 3C-SiC and GaN can work in the same range of 
breakdown voltage but 3C-SiC is more suitable for high power applications thanks to the high 
thermal conductivity while GaN is more suitable for RF applications thanks to the high saturated 
electron velocity. 

The relatively narrow band-gap of 3C-SiC (2.3eV) with respect to 4H-SiC (3.28 eV) is often 
regarded as detrimental in comparison with other polytypes but is in fact an advantage. The 
lowering of the conduction band minimum brings about a reduced density of states at the SiO2/3C-
SiC interface. Therefore, a Metal Oxide Semiconductor Field Effect Transistor (MOSFET) on 3C-
SiC has demonstrated the highest channel mobility of above 300 cm2/(V•s) ever achieved on any of 
the SiC polytypes, promising a remarkable reduction in the power consumption of these power 
switching devices.2 A further advantage of 3C-SiC/Si compared to current 4H-SiC noted by Anvil 
is the much lower Temperature Coefficient of Resistance between RT and 200°C, ~10% compared 
with ~100%. This leads to a large reduction of device on-resistance at realistic junction 
temperatures for power device operation. As in 4H-SiC, the potential electrical activity of extended 
defects in 3C-SiC is a concern for electronic device functionality. To achieve viable commercial 
yields the mechanisms of defects formation must be understood and methods for their reduction 
developed. This project proposes a toolbox of solutions for the reduction of defects based around 
new compliance substrates that will help to reduce the inherent hetero-epitaxy stress and the defect 
density at the same time. The structure of these substrates will force the growth to proceed along 
selected pathways towards a reduction of the defects. Numerical simulations of the growth and 
simulations of the stress reduction will drive this growth process.  
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Three different high voltage devices (Schottky diode, MOSFET and IGBT) operating at high 
power and with low power consumption will be realized within the project. These devices realized 
on the 3C-SiC material can have a very low Ron (Ron<5 mOhm) and then a considerable reduction 
of the power loss with respect to Si and 4H-SiC, in an intermediated breakdown voltage range, can 
be obtained. 

If we suppose to change all the actual silicon power devices used in the world in this range 
with 3C-SiC devices, a reduction of 1.2x1010 kWh/year can be obtained. This reduction corresponds 
to a reduction of 6 millions ton of CO2 emission. This reduction will be even higher in the next 
years when the increase of the Photo Voltaic (PV) and of the Hybrid Electric Vehicle (HEV) or 
Electric Vehicle (EV) market.   

The low cost of the 3C-SiC hetero-epitaxial approach, and the high scalability of this process 
to 300 mm wafers and beyond, makes this technology extremely competitive in the motor drives of 
Electric Vehicle/Hybrid Electric Vehicle (EV/HEV), air conditioning systems, refrigerators, and 
LED lighting systems.   Furthermore the opportunity of using a p+ Si substrate can be used to 
realize an Insulated Gate Bipolar Transistor (IGBT) with a further reduction of the Ron.  

Our consortium is unique in breadth across the whole supply chain (equipment, materials, 
characterization, processing, power devices, simulations), and contains the wealth of talent that can 
be brought together only at international European scale. Furthermore, all the participants have a 
strong technology and Intellectual Property (IP) on the main arguments of this project and several 
patents will be used during the project. 

A successful CHALLENGE project will place all the consortium members at the leading edge 
of this technology, and place Europe in a competitive position to fully exploit this new and vital 
market. 

Objectives 
Typical figures of merit for power devices suggest that SiC is approximately ten times better 

than Si in terms of device on resistance for a given operating voltage and also in power density per 
unit area. Today 4H-SiC is the preferred material but its main limitation is the low channel mobility 
of carriers, which reduces the performance of the MOSFET switch used in high power applications.  
This limitation is extremely important especially in the region below a breakdown voltage of 800 V 
where DC-DC converters and DC-AC inverters are needed for electric vehicles or hybrid cars (see 

Fig. 1). Currently silicon power devices 
are used for these applications where the 
inevitable power dissipation requires the 
use of very heavy and expensive heat 
sinks to keep the device junction 
temperature in the range where Si devices 
are able to function, because of the low Si 
band-gap. 

The best alternative for these 
applications is 3C-SiC. To become 
feasible this emerging technology needs 
to improve the quality of the material that 
is grown on the silicon substrate, which 
can have a high density of defects at the 
Si/SiC interface. We propose a new 
approach to improve the quality and to 

reduce stress: it is necessary to modify the structure of the substrate (compliance substrate)3,4 in 
order to force the system to reduce the defects while increasing the thickness of the layer. 
Furthermore, by using the typical bulk growth techniques used for 4H-SiC it is possible to grow 
bulk 3C-SiC wafers, improving considerably the quality of the material. This will circumvent the 
need for silicon with its poor thermal conductivity, leading to a more robust system. With these 

 
Fig. 1 – Ro vs. breakdown voltage for Si, 3C-SiC and 
4H-SiC 
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improvements in material quality and robustness, it will be possible to obtain good device 
characteristics and yields to meet the market needs of low power dissipation devices in the 
automotive applications of the future. 
 
Then the main objectives of the project are the following: 
• Develop new compliance substrates that can reduce both the defects (essentially stacking 
faults) and the stress, hence reducing wafer bow and making device manufacturing easier; 
• Develop a new CVD process specifically on these compliance substrate to grow thick 3C-
SiC layers that can be used both for the realization of some power devices and as seed for the 3C-
SiC bulk growth; 
• Develop a new bulk process using both Hot Wall CVD with chloride precursors and PVT 
systems on the seed obtained on the compliance substrates; 
• Develop new fabrication processes (e.g. gate oxidation, laser annealing of implanted layers, 
Vanadium doping and more)) that can be used for the fabrication of power devices; 
• Develop new simulation codes (Molecular Dynamics, Monte Carlo, Finite Elements, …) to 
help the experiments on the growth on compliance substrate, to simulate the fabrication process and 
to simulate the devices; 
• Develop new device structures and processes for the realization of some prototype devices 
(Schottky diodes, P/N junctions, MOSFET and IGBT) that can be used to test the properties of the 
material (both epitaxial and bulk) and the fabrication processes; 

Advance Beyond the State of the Art 
 Although the hexagonal form of Silicon carbide is the current technology for advanced 
power conditioning applications, the possibility of 3C-SiC growth on a silicon substrate remains a 
real advantage in terms of wafer size and hence cost. To date growth of 3C-SiC on silicon has been 
demonstrated on 150 mm Si wafers and is feasible, with the appropriate tools, on 200 mm or 300 
mm wafers. The pace of development of 3C-SiC technology has been hampered by the few 
industrial epitaxial reactors available, but Europe is currently the main centre of excellence. With 
this project we will do a further step in the development of this technology and we will bring it 
closer to the market needs. We will try to develop two different approaches. In the first one we will 
try to improve the quality of the hetero-epitaxial material using several structured substrates 
(compliance substrates) that can decrease the defect density and the stress. This approach keep low 
the cost of the material (a factor 10 or 20 lower with respect to 4H-SiC and comparable to silicon), 
but it does not take advantage of all the quality of the 3C-SiC in term of heat dissipation due to the 
low thermal conductivity of silicon. The second approach of the bulk growth increase the cost of the 
final material but the complete properties of 3C-SiC can be used. Furthermore, the device 
processing becomes easier because the high temperature processes typical of 4H-SiC processing 
can be also used. In this case the main advantage with respect to 4H-SiC is the possibility to reach 
large dimensions directly using the silicon substrates and not the long and expensive process of the 
ingot enlargement. Furthermore the lower band gap and the higher channel mobility can do of the 
3C-SiC polytype the optimum candidate for the breakdown voltage region between 200 and 800 V 
that is too high for silicon and too low for 4H-SiC.  
Furthermore the main patents on this technology are inside the CHALLENGE consortium.  
 The main problems to solve remain the intrinsic stress created during the growth process 
due to the lattice mismatch between 3C-SiC (4.36Å) and Si (5.43Å). In addition, thermo elastic 
stress is introduced during the post-deposition cooling due to the 8% difference in the thermal 
expansion coefficients between the materials. The resulting stress, which induces the formation of 
different planar or extended defects in 3C-SiC, is a major parameter leading to a noticeable 
degradation of the crystalline quality of the epitaxial layer. 
 Two kinds of defects within epitaxial 3C-SiC films are widely documented. Anti-phase 
boundaries are planar defects formed at the geometrical separation of two 3C-SiC grains differing 
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one from each other by a 90° rotation in the Si(100) growth plane. These anti-phased domains 
(APDs) are formed by the presence of steps on the Si surface, these steps being constituted by an 
odd number of Si atomic steps. A second kind of defect of importance is linked to the formation of 
stacking faults along the {111} planes. Most of the published work dealing with 3C-SiC growth on 
silicon substrates highlight the intrinsic nature of these defects and point out that a drastic reduction 
of their density is possible by increasing the film thickness or converting the surface polarity of 
stacking fault. The electrical activity of extended defects in 3C-SiC is a major concern for 
electronic device functioning. Consequently a drastic reduction of the defects or of their electrical 
activity is essential to improve the yield and performance of power electronic devices. 

Tab. 2 – Advance beyond the state of the art of the CHALLENGE project 

Current State of the art of 3C-SiC Benefits offered by Project CHALLENGE 
Stacking fault density > 104/cm Stacking faults density ~ 102/cm 
Bow on 4 inches wafers < 10 m radius for 10 
µm layer 

Bow on 4 inches wafers > 25 m radius for 10 
µm layer 

Leakage current > 10-2 A/cm2 Leakage current < 10-4 A/cm2 
Channel mobility < 100 cm2/Vs Channel mobility > 200 cm2/Vs 

With this project the participants want to reduce these defects density to a level that can 
decrease strongly the leakage currents of the devices. Furthermore the use of compliance substrates 
should decrease also the bow of the wafers and then increase the processability of this material. 
Finally the good quality of the material and the lower band gap with respect to 4H-SiC should give 
high channel mobility and then low Ron of the MOSFETs or of the IGBT devices. 
CHALLENGE will address the lack of native substrates and structural defects in 3C-SiC epitaxial 
layers. These two unresolved problems are the main obstacles towards successful device 
applications based on 3C-SiC, which has an unexplored potential for power devices, solar cells, 
biosensors, and many others. 
 There will be two main routes towards 3C-SiC material fabrication: (i) Si substrate based 
epitaxy and (ii) boule growth to produce native substrates for subsequent epitaxial growth and 
device processing. In both routes different innovative approaches will be pursued.  

The first approach can have a lower material cost but cannot take advantage of the 3C-SiC 
high thermal conductivity (see table I) that can reduce the device temperature in the high current 
applications (as in the HEV or EV) without the necessity of a heavy radiator. The production of a 
3C-SiC substrate can solve this problem but will probably increase the cost of the material. An 
estimate of this cost increase cannot be easily done because it strongly depends on several 
parameters (growth rate, boule length, growth temperature, market size, etc.) that are not really 
known at present but after the project conclusion, a more accurate prevision can be done. 

Impact 
3C-SiC technology can have a large impact in the future power device market. This market is 

segmented by voltage rating such that different materials can find their applications according to 
their technical capability and cost. In the low voltage (~100V) section silicon dominates thanks to 
the technology that has been developed in the last 50 years. In the high voltage (>1200V) section of 
the market probably 4H-SiC will dominate thanks to its material properties and the possibility to 
grow large wafers (up to 6 inches). The high voltage segment is not overly cost sensitive and so the 
high cost of the 4H-SiC substrate is not critical.  
The key requirements in each area vary and consequently so do the optimum technology to achieve 
those requirements. Figure 6 shows the different market sectors and the power ranges in which they 
operate with approximate market size for 2020. 

The technology choices for improving power efficiency in the consumer market between 
200V and 1200V are still being debated. One key characteristic of this market is that it is very price 
sensitive, consequently 4H-SiC technology is unlikely to fit here. These huge markets, as illustrated 
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below, are likely to be divided between two emerging technologies, We can suggest that between 
200V and 500V GaN/Si is best suited to the market needs while between 600V and 1200V the 3C-
SiC/Si technology is optimum. This market is growing rapidly and according to the HIS previsions 
it will go from 100 million dollars in 2020 to 300 million dollars in 2023. 
Today, low voltage applications (<1.2kV) represent over 99% of device sales and this is where 3C-
SiC/Si comes into its own. Whilst not achieving quite such high breakdown voltages as 4H-SiC, (it 
is expected to be limited to below 2kV), once mature, it can achieve device prices near to Si and 
here cost is key. These systems need to be efficient to reduce the demand for electrical power, but 
designers will be driven by the cheapest way of achieving an acceptable efficiency. Using SiC has 
the advantage of significantly reducing the component count so SiC components can afford to be 
slightly higher price of Si and still achieve a lower cost system. 

The technology choices for 
improving power efficiency in the 
consumer market between 200V and 
1200V are still being debated. One 
key characteristic of this market is 
that it is very price sensitive, 
consequently 4H-SiC technology is 
unlikely to fit here. These huge 
markets, as illustrated below, are 
likely to be divided between two 
emerging technologies, We can 
suggest that between 200V and 500V 
GaN/Si is best suited to the market 
needs while between 600V and 
1200V the 3C-SiC/Si technology is 
optimum. This market is growing 
rapidly and according to the HIS 

previsions it will go from 100 million dollars in 2020 to 300 million dollars in 2023. 
CHALLENGE is a research and innovation action funded by the European Union’s Horizon 2020 
programme (8M€ total budget). 
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