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1 Introduction

There has been some recent progress in deriving the entropy of BPS static, asymptotically

AdS4 magnetically charged black holes that can be embedded in string/M-theory [1–6].

The method uses a dual field theory computation based on localization. There are also

many examples of BPS, electrically charged, rotating black holes in various dimensions

whose entropy cannot be yet explained in this way. The most famous ones are asymptotic

to AdS5 × S5 [7–11]. They depend on three electric charges QI (I = 1, 2, 3), associated

with rotations in S5, and two angular momenta Jφ, Jψ in AdS5. Supersymmetry actually

requires a constraint among the charges and only four of them are independent. The

derivation of their entropy in terms of states of the dual N = 4 SU(N) super Yang-Mills

(SYM) theory is still an open problem [12–14]. The natural place where to look for such

derivation is the superconformal index [12, 15]

IS3×S1(∆I , ωi) = TrH(−1)F e−2πi(
∑3

I=1 ∆IrI−
∑2

i=1 ωihi) , (1.1)

where hi are the generators of angular momentum, ri are the Cartan generators of the

SO(6) R-symmetry and ωi, ∆I are the conjugate chemical potentials, respectively. (1.1)

is defined for ∆1 + ∆2 + ∆3 + ω1 + ω2 ∈ Z since the exponent should commute with

the relevant supercharge and chemical potentials are only defined modulo one. The index

counts states preserving the same supersymmetries of the black holes and it depends on a

number of fugacities equal to the number of conserved charges of the black holes. However,

due to a large cancellation between bosonic and fermionic states, the superconformal index
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is a quantity of order one for generic values of the fugacities while the entropy scales like

N2 [12]. We recently observed [16] that the Bekenstein-Hawking entropy of these black

holes can be obtained as the Legendre transform with respect to ωi and ∆I of the quantity

ESU(N) = −iπN2∆1∆2∆3

ω1ω2
, (1.2)

with the determination
3

∑

I=1

∆I +
2

∑

i=1

ωi = 1 . (1.3)

This constraint among chemical potentials reflects the constraint among charges of the

black holes and is compatible with the constraint in the index (1.1). The quantity (1.2)

can be expressed in terms of the flavored cubic t’Hooft anomaly coefficients of N = 4

SYM. Indeed it can be obtained by an equivariant integral of the anomaly polynomial of

the theory, as shown in [17].1

In this short note we extend our observation to BPS, electrically charged, rotating

black holes in AdS7 × S4. We expect a family of black holes depending on two electric

charges QI (I = 1, 2), associated with rotations in S4, and three angular momenta Ji
(i = 1, 2, 3) in AdS5. Supersymmetry again requires a constraint among the charges and

only four of them are independent. The dual field theory is the AN−1 N = (2, 0) theory in

six dimensions. Inspired by the AdS5 result, we consider the expression for the equivariant

integral of the anomaly polynomial of the theory, which, at large N , is given by [17]

E(AN−1)(∆I , ωi) = iπN3 (∆1∆2)
2

12ω1ω2ω3
. (1.4)

We will show that the Bekenstein-Hawking entropy of seven-dimensional BPS black holes

can be obtained by extremizing the quantity

− E(AN−1)(∆I , ωi)− 2πi

2
∑

I=1

∆IQI − 2πi

3
∑

i=1

ωiJi , (1.5)

with respect to ∆I , ωi with the constraint

2
∑

I=1

∆I +
3

∑

i=1

ωi = 1 . (1.6)

The general black hole solution depending on all four conserved quantities is not available

but we will check that (1.5) correctly reproduces the entropy of the existing solutions. A

1With a different choice of angular determination for the chemical potentials ∆I and ωi, the quan-

tity (1.2) becomes the supersymmetric Casimir energy of the theory (see for example eq. (4.50) in [17]).

The supersymmetric Casimir energy can be interpreted as the energy of the vacuum [18] and it arises

both as a prefactor in the relation that connects the supersymmetric partition function on S3 × S1 to the

index [19, 20] and also as a term in the high-temperature expansion of the index [21, 22]. All these results

seem to have been obtained assuming a particular angular determination of fugacities, which implies, in

particular, ∆1 +∆2 +∆3 + ω1 + ω2 = 0, instead of (1.3).
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two-parameter black hole, with two electric charges and one angular momentum, was found

in [23] as the BPS limit of a non-extremal solution [24]. The solution was later extended

to a three-parameter one, with three rotations and one electric charge, in [25]. We have

explicitly checked the validity of (1.5) in both cases and are thus confident that the result

holds in general.

It is remarkable that the equivariant integral of the anomaly polynomial accounts for

the entropy of both the AdS5 × S5 and AdS7 × S4 supersymmetric black holes. Moreover,

it is noteworthy that, in both cases, the solutions to the extremization equations associated

with (1.2) and (1.4) are complex but the value of the Legendre transform at the critical

points, the entropy, is a real function of the black hole charges. This result still needs a

proper field theory interpretation. Here we just make few observations.

According to the standard holographic dictionary, the black hole entropy should ac-

count for the 1/16-BPS states in the N = (2, 0) theory with given electric charge and

angular momentum. As in four dimensions, the partition function for such BPS states is

too difficult to compute due to the small amount of preserved supersymmetry. The super-

conformal index of the N = (2, 0) theory, on the other hand, counts states weighted with

signs,2

IS5×S1(∆I , ωi) = TrH(−1)F e−2πi(
∑2

I=1 ∆IrI−
∑3

i=1 ωihi) , (1.7)

where hi are the generators of angular momentum, rI are the Cartan generators of the

SO(5) R-symmetry, and ∆1 +∆2 + ω1 + ω2 + ω3 ∈ Z. The index is explicitly computable

but, as in four dimensions, is a quantity of order one for generic values of the fugacities.

The S5 × S1 partition function, on the other hand, is related to the index in the large N

limit by [26]

logZS5×S1(∆I , ωi) = −Esusy(∆I , ωi) + log IS5×S1(∆I , ωi) , (1.8)

where Esusy is the supersymmetric Casimir energy and scales like O(N3). It would be

interesting to see if the quantity (1.4) dominates the index or the partition function in

some particular regime for the chemical potentials and a choice of angular determination

compatible with the constraint (1.6). An expression for Esusy has been conjectured in [17]

by integrating the anomaly polynomial of the N = (2, 0) theory, and formally coincides

with (1.5). However, the conjecture seems to assume a different angular determination for

the chemical potentials, compatible with
∑2

I=1∆I +
∑3

i=1 ωi = 0 rather than (1.6).

The AdS5 × S5 and AdS7 × S4 black holes behave quite differently from their mag-

netically charged relatives in AdS4 × S7 whose entropy has been recently derived [1, 2].

The main difference comes from the magnetic charges that have a dual interpretation as a

topological twist [27, 28]. The topologically twisted index [29, 30] has been shown to scale

like N3/2 in the large N limit [1, 31, 32], suggesting that there is no cancellation between

bosonic and fermionic ground states, while the superconformal index is a quantity of order

one. It should also be noticed that the derivation of the entropy of AdS4 × S7 black holes

is a purely microscopic counting with no reference to the ubiquitous Cardy formula [33].

On the other hand, whatever its field theory interpretation is, the extremization principles

2In our notations, QI are eigenstates of rI and Ji of −hi.
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in five and seven dimensions suggests that some sort of Cardy mechanism is at work. First

of all, as already said, (1.2) and (1.4) can be written in terms of anomaly coefficients for

the R and flavor symmetries of the dual theory. This is simple to see for (1.2). Indeed, by

an obvious redefinition of the chemical potentials (see appendix A), (1.2) can be written

as the large N limit of3

ESU(N) =
4πi

27

(ω1 + ω2 − 1)3

ω1ω2
a(∆̂I) . (1.9)

Here

a(∆̂I) =
9

32
TrR3(∆̂I) =

27

32
(N2 − 1)∆̂1∆̂2∆̂3 , (1.10)

together with ∆̂1 + ∆̂2 + ∆̂3 = 2 is the trial central charge of N = 4 SYM. (1.4) can be

written similarly since it arises from an equivariant integration of the eight-form anomaly

polynomial of the 6D N = (2, 0) theory [17]. Moreover, for an extremal BTZ black hole in

AdS3 the relevant quantity to consider is the elliptic genus, whose logarithm in the large

N limit goes as cl/ω where ω is the chemical potential associated with rotation and cl is

the left-moving central charge. The entropy of a black hole of angular momentum j is

then correctly reproduced by the Legendre transform with respect to ω, i.e. S ∝ √
jcl.

Obviously, this is nothing else than Cardy formula.

The paper is organized as follows. In section 2 we first review the basic features of the

relevant truncation of seven-dimensional maximal gauged supergravity and we later discuss

the BPS, rotating black holes of interest. In section 3, we show that the Bekenstein-Hawking

entropy of the black holes can be obtained as the Legendre transform of the quantity (1.4).

We conclude in section 4 with discussions and future directions. In the appendices we

briefly discuss a conjecture to extend our previous result for black holes in AdS5 × S5

to more general compactifications and the dimensional reduction of the seven-dimensional

black holes to six dimensions.

2 Supersymmetric rotating AdS7 black holes

The supersymmetric rotating AdS7 black holes of interest are solutions of the SO(5) max-

imal (N = 4) gauged supergravity in seven dimensions [34], obtained by reducing eleven-

dimensional supergravity on S4 [35, 36]. We will work with a U(1)2 consistent trunca-

tion [37] of the theory, which consists of the metric, a three-form potential A(3), two

Abelian gauge fields AI(1) (I = 1, 2) in the Cartan of SO(5) and two real scalars ϕ1 and ϕ2.

The bosonic Lagrangian is given by [34]4

L7 = R ⋆ 1− 1

2

2
∑

i=1

⋆dϕi ∧ dϕi −
1

2

2
∑

I=1

L−2
I ⋆F I

(2) ∧ F I
(2) −

1

2
(L1L2)

2⋆F(4) ∧ F(4)

− 2g2
[

(L1L2)
−4 − 8L1L2 − 4L−1

1 L−2
2 − 4L−2

1 L−1
2

]

⋆ 1

− gF(4) ∧A(3) + F 1
(2) ∧ F 2

(2) ∧A(3) ,

(2.1)

3Comparing to expressions for the supersymmetric Casimir energy that can be found in [18–20] we have

an extra minus one in the numerator which is due to the constraint (1.6).
4Here we use the conventions of [23].
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where
F I
(2) = dAI(1) , F(4) = dA(3) ,

L1 = e
− 1√

2
ϕ1−

1√
10
ϕ2 , L2 = e

1√
2
ϕ1−

1√
10
ϕ2 ,

(2.2)

and g is the gauge coupling constant. There is a “first-order self-duality” condition for the

four-form field strength that has to be imposed after the variation of the Lagrangian and

that can be conveniently written by including a two-form potential A(2), and defining

F(3) = dA(2) −
1

2
A1

(1) ∧ dA2
(1) −

1

2
A2

(1) ∧ dA1
(1) . (2.3)

The self-duality equation then reads

(L1L2)
2⋆F(4) = −2gA(3) − F(3) . (2.4)

We are interested in supersymmetric black holes with electric charges QI (I = 1, 2) under

the U(1)2 and angular momenta Ji (i = 1, 2, 3) in AdS7. We expect supersymmetry to

impose a constraint among the five charges, leaving four independent ones. The most

general family of such black holes has not been written yet. A two-parameter black hole,

with two electric charges and one angular momentum with a constraint among them, was

found in [23]. A three-parameter family of black holes, with three rotations and one electric

charge with a constraint, was later found in [25]. Note that in both cases the near-horizon

geometry is a warped product of AdS2 and a squashed S5. We now write explicitly these

solutions and their thermodynamic quantities. We have corrected few misprints in [23].

2.1 Single-rotation two-charge black holes

The solution can be written as [23]

ds2 = (H1H2)
1/5

(

− V

H1H2B
r2dt2 +B(σ + fdt)2 +

dr2

V
+ r2ds2

CP2

)

,

AI(1) =
2msI
ρ4ΞHI

(αI Ξ−dt+ βIσ) ,

A(2) =
mas1s2
ρ4Ξ−

(

1

H1
+

1

H2

)

dt ∧ σ , A(3) =
2mas1s2
ρ2ΞΞ−

σ ∧ J ,

LI = (H1H2)
2/5H−1

I , HI = 1 +
2ms2I
ρ4

, ρ =
√
Ξr ,

α1 = c1 −
1

2
(1− Ξ2

+)(c1 − c2) , α2 = c2 +
1

2
(1− Ξ2

+)(c1 − c2) ,

β1 = −aα2 , β2 = −aα1 , Ξ± = 1± ag , Ξ = 1− a2g2 ,

sI ≡ sinh δI , cI ≡ cosh δI .

(2.5)

The metric functions V , B and f depends on the radial coordinate r and are given by

V =
Y

Ξρ6
, B =

f1
H1H2Ξ2ρ4

, f = −2f2Ξ−

f1
, (2.6)
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where

f1 = Ξρ6H1H2 −
4Ξ2

+m
2a2s21s

2
2

ρ4
+

1

2
ma2

[

4Ξ2
+ − 2c1c2(Ξ

4
+ − 1) + (c21 + c22)(Ξ

2
+ − 1)2

]

,

f2 = −1

2
gΞ+ρ

6H1H2 +
1

4
ma

[

2c1c2(Ξ
4
+ + 1)− (c21 + c22)(Ξ

4
+ − 1)

]

,

Y = g2ρ8H1H2 + Ξρ6 +
1

2
ma2

[

4Ξ2
+ − 2c1c2(Ξ

4
+ − 1) + (c21 + c22)(Ξ

2
+ − 1)2

]

− 1

2
mρ2

[

4Ξ + 2c1c2a
2g2(3a2g2 + 8ag + 6)− (c21 + c22)a

2g2(ag + 2)(3ag + 2)
]

.

(2.7)

Only two parameters are independent due to the constraints5

eδ1+δ2 = 1− 2

3ag
,

m =
128eδ1+δ2(3eδ1+δ2 − 1)3

729g4(e2δ1 − 1)(e2δ2 − 1)(eδ1+δ2 + 1)2(eδ1+δ2 − 1)4
.

(2.8)

The former comes from the BPS condition and the latter is required in order to avoid naked

closed timelike curves (CTCs). With these choices, the function V becomes

V =
g2(r2 − r20)

2

r2

(

1 +
9e2(δ1+δ2) − 6eδ1+δ2 + 17

3(eδ1+δ2 + 1)(3eδ1+δ2 − 5)g2r2
+

h

g4r4

)

, (2.9)

where

h =
[

32
(

− 2d21 − 2d22 + 9d1d2 + 9d51d
5
2 − 3d31d

3
2(d1 + d2)

2 + 2d21d
2
2(2d

2
1 − 3d1d2 + 2d22)

− d1d2(3d
2
1 − 2d1d2 + 3d22)

)

]

/

[

9d1d2(d
2
1 − 1)(d22 − 1)(d1d2 + 1)(3d1d2 − 5)2

]

,

(2.10)

and we defined dI ≡ eδI (I = 1, 2). The black hole has an event horizon at V (r0) = 0

which reads

r20 =
16

3g2(eδ1+δ2 + 1)(3eδ1+δ2 − 5)
. (2.11)

The line element ds2
CP2 in (2.5) is the standard Fubini-Study metric on CP

2:

ds2
CP2 = dξ2 +

1

4
sin2 ξ

(

σ2
1 + σ2

2 + cos2 ξ σ2
3

)

, (2.12)

where σi (i = 1, 2, 3) are left-invariant one-forms on SU(2), satisfying dσi = −1
2ǫijkσj ∧ σk.

Note that, the Kähler form on CP
2 is J = 1

2dB with B = 1
2 sin

2 ξσ3 being the connection of

the U(1) bundle over CP2 whose total space is the unit S5. We also have σ = dψ + B and

0 ≤ ψ ≤ 2π is the coordinate along the U(1) fiber of S5. The thermodynamic quantities

5We correct a misprint in [23] here, i.e. mhere = (3eδ1+δ2 − 1)mthere.
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are given by6

E =
mπ2

32GNΞ4

[

12Ξ2
+(Ξ

2
+ − 2)− 2c1c2a

2g2(21Ξ4
+ − 20Ξ3

+ − 15Ξ2
+ − 10Ξ+ − 6)

+ (c21 + c22)(21Ξ
6
+ − 62Ξ5

+ + 40Ξ4
+ + 13Ξ2

+ − 2Ξ+ + 6)
]

,

S =
π3

4GN
[B(r0)H1(r0)H2(r0)]

1/2r40 ,

J =
maπ2

16GNΞ4

[

4agΞ2
+ − 2c1c2(2Ξ

5
+ − 3Ξ4

+ − 1) + ag(c21 + c22)(Ξ+ + 1)(2Ξ3
+ − 3Ξ2

+ − 1)
]

,

QI =
mπ2sI
4GNΞ3

[

a2g2
c1c2
cI

(2Ξ+ + 1)− cI(2Ξ
3
+ − 3Ξ2

+ − 1)

]

,

T = 0 , Ω = −g , ΦI = −1 .

(2.13)

The charges satisfy the BPS condition E + 3gJ −∑2
I=1QI = 0.

2.2 Three-rotation single-charge black holes

The solution reads [25]

ds2 = H2/5

{

(r2 + y2)(r2 + z2)

R
dr2 +

(r2 + y2)(y2 − z2)

Y
dy2 +

(r2 + y2)(z2 − y2)

Z
dz2

− R

H2(r2 + y2)(r2 + z2)
A2

+
Y

(r2 + y2)(y2 − z2)

[

dt+ (z2 − r2)dψ1 − r2z2dψ2 −
q

H(r2 + y2)(r2 + z2)
A
]2

+
Z

(r2 + y2)(z2 − y2)

[

dt+ (y2 − r2)dψ1 − r2y2dψ2 −
q

H(r2 + y2)(r2 + z2)
A
]2

+
a21a

2
2a

2
3

r2y2z2

[

dt+ (y2 + z2 − r2)dψ1 + (y2z2 − r2y2 − r2z2)dψ2 − r2y2z2dψ3

− q

H(r2 + y2)(r2 + z2)

(

1 +
gy2z2

a1a2a3

)

A
]2
}

,

L = H−1/5 , A(1) = −q(1− a1g − a2g − a3g)

H(r2 + y2)(r2 + z2)
A ,

A(2) =
q

H(r2 + y2)(r2 + z2)
A

∧







dt+
3

∑

i=1

a2i (g
2dt+ dψ1) +

∑

i<j

a2i a
2
j (g

2dψ1 + dψ2) + a21a
2
2a

2
3(g

2dψ2 + dψ3)

− g2(y2 + z2)dt− g2y2z2dψ1 + a1a2a3g
[

dψ1 + (y2 + z2)dψ2 + y2z2dψ3

]







,

6We correct a misprint in [23] here, i.e. Shere =
1
4
Sthere.
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A(3) = qa1a2a3
[

dψ1 + (y2 + z2)dψ2 + y2z2dψ3

]

∧
[

1

(r2 + y2)z
dz ∧

(

dψ1 + y2dψ2

)

+
1

(r2 + z2)y
dy ∧

(

dψ1 + z2dψ2

)

]

− qgA ∧
[

z

r2 + y2
dz ∧

(

dψ1 + y2dψ2

)

+
y

r2 + z2
dy ∧

(

dψ1 + z2dψ2

)

]

,

(2.14)

where

R =
(r2 − r20)

2

r2

{

g2r4 +
[

1 + (a21 + a22 + a23)g
2 + 2g2r20

]

r2 +
(a1a2a3 − qg)2

r40

}

,

Y =
1− g2y2

y2

3
∏

i=1

(

a2i − y2
)

, Z =
1− g2z2

z2

3
∏

i=1

(

a2i − z2
)

,

A = dt+ (y2 + z2)dψ1 + y2z2dψ2 ,

H = 1 +
q

(r2 + y2)(r2 + z2)
.

(2.15)

The black hole has an event horizon at r = r0:

r20 =
a1a2 + a2a3 + a3a1 − a1a2a3g

1− a1g − a2g − a3g
. (2.16)

We also denote Ξi = 1 − a2i g
2 and Ξi± = 1 ± aig, which are positive to have a correct

signature. The parameters q and ai have to satisfy

q = −Ξ1−Ξ2−Ξ3−(a1 + a2)(a2 + a3)(a1 + a3)

(1− a1g − a2g − a3g)2g
, (2.17)

in order for the solution to be free from naked CTCs. The thermodynamic quantities are

given by

E = − π2

8GN

∏

k<l(ak+al)
[

∑

i Ξi+
∑

i<j ΞiΞj−
(

1+a1a2a3g
3
)

(

2+
∑

i aig+
∑

i<j aiajg
2
)]

Ξ1+Ξ2+Ξ3+(1−a1g−a2g−a3g)2gr0
,

S = − π3

4GN

(a1+a2)(a2+a3)(a1+a3) (a1a2+a2a3+a1a3−a1a2a3g)

Ξ1+Ξ2+Ξ3+(1−a1g−a2g−a3g)2gr0
,

Ji = − π2

8GN

(a1+a2)(a2+a3)(a1+a3)
[

ai−
(

a2i+2ai
∑

j 6=i aj+
∏

j 6=i aj

)

g+a1a2a3g
2
]

Ξ1+Ξ2+Ξ3+Ξi+(1−a1g−a2g−a3g)2g
,

Q = − π2

4GN

(a1+a2)(a2+a3)(a1+a3)

Ξ1+Ξ2+Ξ3+(1−a1g−a2g−a3g)g
,

T = 0 , Ωi = −g , Φ = −1 .

(2.18)

Finally, the charges satisfy the BPS condition

E + g
3

∑

i=1

Ji − 2Q = 0 . (2.19)
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3 An extremization principle for the entropy

In this section we will show that the Bekenstein-Hawking entropy of the BPS black

holes (2.5) and (2.14) can be obtained as a Legendre transform of a combination of anomaly

coefficients of the dual N = (2, 0) theory in six dimensions. The result is a natural gener-

alization of the analogous one for AdS5 × S5 black holes [16].

3.1 Anomaly polynomials for 6D N = (2, 0) field theories

Our analysis involves a quantity formally equal to the supersymmetric Casimir energy of

the theory, which we now briefly review.

The supersymmetric Casimir energy, E(g), for an N = (2, 0) theory with algebra g

arises in the regularization of the S5 × S1 partition function [26, 38–43] and is related to

the superconformal index defined in (1.7) by

logZS5×S1(∆I , ωi) = −E(g)(∆I , ωi) + log IS5×S1(∆I , ωi) . (3.1)

It is the leading contribution to logZS5×S1 for β → ∞, where β is the radius of S1 when

the chemical potentials are rescaled as ∆I = β∆̂I and ωi = βω̂i.
7 Since the superconformal

index is a quantity of order one for generic values of the fugacities, the supersymmetric

Casimir energy, which scales as N3, is also the leading contribution to the S5×S1 partition

function in the large N limit. The supersymmetric Casimir energy of the N = (2, 0) theory

has been conjectured to be equal to an equivariant integral of the eight-form anomaly

polynomial and it reads [17]

E(g)(∆I , ωi) = rgE
(1)(∆I , ωi) +

iπ

12
dgh

∨
g

(∆1∆2)
2

ω1ω2ω3
, (3.2)

where rg, dg and h∨g are the rank, dimension and dual Coxeter number of the simply laced

Lie algebra g, respectively; E(1) is the supersymmetric Casimir energy of the Abelian tensor

multiplet theory:

E(1)(∆I , ωi) =
iπ

24ω1ω2ω3



(∆1∆2)
2 −

∑

i<j

(ωiωj)
2 +

1

4

(

3
∑

i=1

ω2
i −∆2

1 −∆2
2

)



 . (3.3)

Here ∆I (I = 1, 2) are the chemical potentials conjugate to the R-symmetry generators

rI and ωi (i = 1, 2, 3) are the chemical potentials conjugate to the Cartan generators of

rotations hi in three orthogonal planes in R
6.

Superconformal indices are defined in general as

I(µa) = TrH(−1)F e−β{Q,Q
†}e−

∑
a
µaRa , (3.4)

for a choice of supercharge Q, and Ra is the set of all R and flavor symmetries that commute

with Q. For the superconformal index (1.7), the linear combination
∑3

i=1 hi+
∑2

I=1 rI does

7We have reabsorbed a standard factor of β in the definition of E(g) for convenience. (3.1) is usually

written as logZS5×S1 = −βE(g) + log IS5×S1 .
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not commute with Q. This translates into a linear constraint among the chemical potentials

2
∑

I=1

∆I +

3
∑

i=1

ωi = n , n ∈ Z . (3.5)

Notice that, since rI and Ji have integer eigenvalues, the chemical potentials are only

defined modulo one. For this reason the right-hand side of (3.5) is not required to vanish

but it must be an integer. In four dimensions, where an analogous constraint appears in

the definition of the four-dimensional superconformal index, the statement (3.1) has been

derived under the assumption n = 0. In six dimensions, things are less clear.

In this paper we shall consider the quantity (3.2), arising from the equivariant integral

of the eight-form anomaly polynomial, for a general choice of angular ambiguities in (3.5).

For g = AN−1, the equivariant integral at large N reads

E(AN−1)(∆I , ωi) = iπN3 (∆1∆2)
2

12ω1ω2ω3
. (3.6)

3.2 Reproducing the entropy

We now show that the Bekenstein-Hawking entropy of the BPS black holes (2.5) and (2.14)

can be obtained by extremizing the quantity

S(∆I , ωi) ≡ −E(AN−1)(∆I , ωi)− 2πi
2

∑

I=1

∆IQI − 2πi
3

∑

i=1

ωiJi , (3.7)

where E(AN−1) is given in (3.6), with respect to ∆I , ωi and subject to the constraint

2
∑

I=1

∆I +
3

∑

i=1

ωi = 1 . (3.8)

In order to check it, it is convenient to work with the following parameterization of the

chemical potentials:

ω1 =
1

1 + z1 + z2 + z3 + z4
, ∆1 =

z1
1 + z1 + z2 + z3 + z4

,

∆2 =
z2

1 + z1 + z2 + z3 + z4
, ω2 =

z3
1 + z1 + z2 + z3 + z4

,

ω3 =
z4

1 + z1 + z2 + z3 + z4
.

(3.9)

Note that
∑2

I=1∆I +
∑3

i=1 ωi = 1. Then the extremization equations become

27g5GN

π2
(qa − q0) = −z21z

2
2

z3z4
(1 + 2/za) , for a = 1, 2 ,

27g5GN

π2
(qb − q0) = −z21z

2
2

z3z4
(1− 1/zb) , for b = 3, 4 ,

(3.10)

where we have relabeled the black hole charges as

J1 = q0 , Q1 = q1 , Q2 = q2 , J2 = q3 , J3 = q4 . (3.11)
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The value of S at the critical point z̃i, as a function of the charges, is given by

S(QI , Ji) =
iπ3

26g5GN

z̃21 z̃
2
2

z̃3z̃4
− 2πiJ1 . (3.12)

By an explicit computation one can check that the solution to the extremization equations

is complex; however, quite remarkably, S at the critical point is a real function of the black

hole charges. Moreover, by equating two electric charges or three angular momenta, one

can check that it precisely coincides with the entropy of the black holes (2.5) and (2.14)

S
∣

∣

crit
(QI , Ji) = SBH(QI , Ji) . (3.13)

In order to compare the field theory inspired result with the gravity ones in (3.13) we

made use of the relation between field theory and gravitational parameters in the large N

limit, which is given by

N3 =
3π2

16g5GN
. (3.14)

It is quite remarkable that the entropy of the black holes is reproduced as a Legendre

transform of the integrated anomaly polynomial with the correct field theory normalization.

4 Discussion and conclusions

In this note we have extended our previous observation [16] that the entropy of BPS,

rotating AdS5×S5 black holes can be written as the Legendre transform of a combination

of anomaly coefficients for R and flavor symmetries of the dual theory to the case of

AdS7 × S4 black holes. It would be interesting to see if the same results hold only for

maximally supersymmetric dual theories or it can be also extended to rotating black holes

asymptotic to AdS5×Y5, where Y5 is a five-dimensional Sasaki-Einstein manifold. For such

black holes there is a natural conjecture that we discuss in appendix A.

An important rôle in our analysis is played by the angular ambiguities (3.5) in the

definition of chemical potentials, which affect both the partition function on S5 × S1 and

the index. A choice of determination for the chemical potentials should be made when

performing limits, for example low- and high-temperature, or modular transformations of

the integrand of the corresponding matrix models, since these operations typically involve

multi-valued functions. Examples in the analogous four-dimensional case can be found

in [19–22, 44]. It is then interesting to ask whether there exists a limit in the fugacities,

subject to the constraint (1.6), where the quantity (1.4) dominates the partition function

or the index. We notice that, also for static magnetically charged black holes in AdS4, the

ambiguities played a crucial rôle. It was shown indeed in [1, 31, 32] that, if we assume that

all the real parts of chemical potentials live in the interval [0, 2π], one can find a consistent

saddle point for the topologically twisted index and reproduce the entropy of the black

holes, only if the sum of all chemical potentials is a very specific multiple of 2π.8

8More precisely, with the determination Re∆I ∈ [0, 2π], one finds a saddle point, up to discrete symme-

tries, only if the sum of all ∆I appearing in each superpotential term is 2π. The interval [0, 2π] in [1, 31, 32]

is analogous to the interval [0, 1] in this paper.
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It would be also very interesting to compute, using supersymmetric holographic renor-

malization, the on-shell action of the black holes in AdS5 ×S5 and AdS7 ×S4. It has been

shown in [45–47] that, for a class of BPS static AdS4 black holes, the on-shell action indeed

reproduces the entropy of the black holes and, in the grand canonical picture, the large N

limit of the twisted index. It would be interesting to see if we can reproduce (1.4) via a

holographic computation. Notice also that anomalies seem to affect the field theory and

holographic computation [48, 49]. These anomalies could also be responsible for the choice

of determination (1.6).

Finally, we noticed in [16] that the extremization for AdS5×S5 black holes with equal

rotations has a nice interpretation in terms of an attractor mechanism for static black

holes in four-dimensional gauged supergravity upon dimensional reduction of the squashed

S3 horizon geometry along the Hopf fiber. It would be interesting to show that a similar

mechanism is at work here, using N = (1, 1) six-dimensional gauged supergravity for the

solution that is obtained by dimensional reduction of the squashed S5 horizon geometry of

the black hole with equal angular momenta along the Hopf fiber. We briefly discuss the

physical interpretation of this reduction in appendix B.
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A AdS5 black holes entropy and anomalies in four dimensions

In this appendix we make some remarks on a possible generalization of the relation between

the entropy of BPS, rotating AdS5 black holes and the anomaly polynomials of their field

theory duals originally presented in [16]. In particular, we consider supersymmetric black

hole solutions asymptotic to AdS5 × Y5, where the internal space Y5 is a Sasaki-Einstein

manifold.

Consider five-dimensional gauged supergravity with nV massless vector multiplets and

Fayet-Iliopoulos (FI) gauging. The Lagrangian is completely determined by the symmetric

coefficients CIJK , I, J,K ∈ {1, . . . , nV} which can be read off from the Chern-Simons terms

in the Lagrangian,

L5 = eR5 + . . .− 1

6
CIJKF I ∧ F J ∧AK + . . . , (A.1)
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and the FI parameters ξI , that specify the linear combination ξIA
I used for electrically

gauging the R-symmetry. Here, AI are the U(1) gauge fields and F I their corresponding

field strengths. See for example [50] and references therein for a comprehensive description

of five-dimensional gauged supergravity.

The general supersymmetric rotating black holes in the above class of five-dimensional

gauged supergravity were written down in [11] after the seminal paper [7] and further

developments. The black hole solutions, apart from explicitly depending on the numbers

CIJK and ξI , depend on the set of asymptotic charges given by nV electric charges QI and

two angular momenta J±. Due to the requirement of supersymmetry and the existence of a

smooth black hole horizon, there is one additional constraint among the set of asymptotic

charges. It is particularly useful to consider a Scherk-Schwarz dimensional reduction down

to four dimensions as it was done in [16], where one can explicitly write down the black

hole attractor mechanism. The resulting four-dimensional supergravity has (nV + 1) U(1)

vector fields (the new Kaluza-Klein gauge field is labeled by A0) and is uniquely specified

by a the holomorphic prepotential,

F(XΛ) = −1

6

CIJKXIXJXK

X0
. (A.2)

The prepotential uniquely determines the scalar manifold given by the holomorphic sec-

tions XΛ,Λ ∈ {0, I}, in turn defining all kinetic terms in the four-dimensional La-

grangian. The R-symmetry in four dimensions is again gauged by the linear combination

ξΛA
Λ where the new gauge field A0 is included with a weight ξ0 = 1. From a four-

dimensional perspective the same black holes can be described by (nV+1) electric charges

(q0, qI) = G
(5)
N (J+/2,−QI)/π, an angular momentum j = G

(5)
N J−/2π, and the KK mag-

netic charge p0 = 1. Note that G
(5)
N = 4πG

(4)
N and the black hole entropy remains the

same upon reduction to four dimensions. The static limit (J− = 0) is particularly useful

since we can write down the black hole entropy, in terms of four-dimensional variables, in

a compact form [51, 52]9

S(XΛ) = − iπ

2G
(4)
N

(

qΛX
Λ−pΛ

∂F(XΛ)

∂XΛ

)

= − iπ

2G
(4)
N

(

q0X
0+qIX

I−1

6

CIJKXIXJXK

(X0)2

)

,

(A.3)

under the constraint

ξΛX
Λ = X0 + ξIX

I = 1 . (A.4)

Upon extremizing S(XΛ) as given above, one fixes the scalar fields in terms of the conserved

charges and recovers the correct Bekenstein-Hawking entropy at the extremum.

Introducing an extra parameter X− (being conjugate to J−), in [16] we showed that

the function S can be extended to include also the last remaining charge J− for the stu

model. In this case the only nonvanishing triple intersection numbers are C123 = 1 (and

cyclic permutation) and ξI = 1. It would be interesting to similarly generalize also the

(J− ∝ j 6= 0) case to arbitrary parameters CIJK , but at the moment we are lacking proper

understanding of the four-dimensional rotating attractor mechanism.

9Here we correct a sign mistake in (4.23), (4.24) and (4.30) in [16].
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However, we can try to apply these arguments to the case of BPS, rotating black holes

in AdS5×Y5. The five-dimensional effective theory contains nV massless vector multiplets,

corresponding to the R- and global symmetries of the dual field theory. Generically the

reduction on Y5 leads to other matter multiplets in five-dimensional supergravity, such as

hypermultiplets and massive vector multiplets. These, however, do not carry additional

U(1) gauge symmetries and we will work under the assumptions that they decouple in

the description of the black hole near-horizon geometry. With this working assumption, we

could expect that the entropy is given by the minimum of (A.3) in the case of equal angular

momenta and by its natural extension for J− 6= 0. This is particularly intriguing because

the coefficients CIJK in a compactification on AdS5 × Y5 are proportional to the anomaly

coefficients TrQIQJQK for the nV symmetries QI associated with the gauge fields AI in

the bulk five-dimensional theory [53, 54]. As a consequence, it is tempting to speculate

that the entropy of a black hole with electric charges QI and angular momenta Ji should

be obtained as a Legendre transform of10

E(∆I , ωi) = −iπN2
nV
∑

I,J,K=1

CIJK
6

∆I∆J∆K

ω1ω2
, (A.5)

with respect to ∆I and ωi with the constraint

ω1 + ω2 +

nV
∑

I=1

∆I = 1 . (A.6)

The expression (A.5) is fully determined by anomalies. By setting ∆I = (1− ω1 − ω2)

· ∆̂I/2, it can be written as

E(∆I , ωi) =
4πi

27

(ω1 + ω2 − 1)3

ω1ω2
a(∆̂I) , (A.7)

where

a(∆̂I) =
9N2

64

nV
∑

I,J,K=1

CIJK∆̂I∆̂J∆̂K , (A.8)

subject to
∑nV

I=1 ∆̂I = 2 is the trial R-charge of the conformal field theory in the large N

limit [53, 54]. The expression (A.7) has a strong resemblance with the refined supersym-

metric Casimir energy for the Hopf surface Hp,q ≃ S3 × S1 in the large N limit [18–20].

Indeed it differs from it only by the −1 in the numerator.11 (A.5) reduces exactly to the

supersymmetric Casimir energy if we impose ω1 + ω2 +
∑nV

I=1∆I = 0 instead of (A.6),

corresponding to a different choice of angular determinations for the chemical potentials.

B Dimensional reduction and topological twist on CPCPCP
2

For the case of asymptotically AdS5 BPS rotating black holes that we considered previously

in [16], the reduction of the solutions from five to four dimensions gave us an additional

10To compare with (A.3), we set XI = ∆I , X
0 = ω1 + ω2, X

− = ω1 − ω2 and J± = J1 ± J2.
11See, for example, eq. (C.3) in [16] with ωi = −i|bi| where p = e−2π|b1|, q = e−2π|b2|. Recall also that in

the large N limit a = c.
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physical understanding. The rotating black holes with equal angular momenta reduce to

static domain-wall solutions in four dimensions with near horizon geometry AdS2×S2. We

showed that from four-dimensional perspective supersymmetry is preserved by the U(1)R
gauge field canceling the spin connection on the internal S2 manifold via a topological

twist [27, 28]. Without going into so much details, now we would like to argue that a

similar dimensional reduction gives analogous understanding of the asymptotically AdS7
black holes from six-dimensional point of view.

We focus on the single-rotation class of solutions described in section 2.1. We can

dimensionally reduce the metric and all other fields along the U(1) fiber of S5, with the

remaining CP
2 retaining all its symmetries and obtaining a static solution. We consider

the usual Kaluza-Klein (KK) ansatz for the metric,

ds27 = eφ
KK

ds26 + e−4φKK
(dψ +AKK)2 , (B.1)

where ds26 is the resulting 6D line element, φKK is the KK scalar field, and AKK the U(1)

KK vector field. We see that the resulting six-dimensional line-element has the usual time

and radial directions, as well as internal space CP
2, whose metric we repeat again here,

ds2
CP2 = dξ2 +

1

4
sin2 ξ

(

σ2
1 + σ2

2 + cos2 ξ σ2
3

)

, (B.2)

where σi (i = 1, 2, 3) are left-invariant one-forms on SU(2), satisfying dσi = −1
2ǫijkσj ∧ σk.

The Kähler form on CP
2 is J = 1

2dB with B = 1
2 sin

2 ξσ3. Comparing to the explicit solution

in (2.5), we see that the KK vector field has a leg along the time direction carrying an

electric charge in 6D (which corresponds to the angular momentum in 7D) but also has a

leg along the internal CP2 manifold,

AKK
CP2 = B =

1

2
sin2 ξ σ3 . (B.3)

The reduction of the remaining fields give rise to additional electric charges for the other

six-dimensional vector fields.

The only vector field along the internal manifold is the KK vector (B.3), therefore

we are interested in seeing how the Killing spinor covariant derivative depends on it. Via

a general Scherk-Schwarz ansatz for the reduction of fermions along a U(1) isometry, see

e.g. [55], the Killing spinor covariant derivative looks like

Dµǫ = ∂µǫ+
1

4

(

ω ab
µ γab + 2gAKK

µ ΓR

)

ǫ+ . . . , (B.4)

where the ellipsis denotes additional connections that will not be important below. The

coupling constant g is left arbitrary, the γab are spatial gamma matrices, and the matrix

ΓR allows for some internal structure of the spinors as typically the U(1) KK gauge field

becomes part of a bigger R-symmetry mixing the fermions.

An arbitrary four-manifold has an SO(4) = SU(2)l× SU(2)r holonomy, but for Kähler

manifolds such as CP
2 we have a further simplification and one of the two SU(2) fac-

tors, say SU(2)r becomes U(1)r. Explicitly, in the coordinates we already introduced, the
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nonvanishing components of the spin connection read

ω 14
σ1 = ω 32

σ1 =
1

2
cos ξ , ω 13

σ2 = ω 24
σ2 =

1

2
cos ξ ,

ω 12
σ3 =

1

2
cos2 ξ − 1 , ω 34

σ3 =
1

2
(cos2 ξ − sin2 ξ) .

(B.5)

It is easy to see that splitting the spin connection into a self-dual and antiself-dual part

ω± is equivalent to splitting it into a U(1)r and an SU(2)l factor, respectively. In order for

the supersymmetric twist to be performed, we need to cancel completely both ω+ and ω−

in the Killing spinor covariant derivative, (B.4). The SU(2)l part drops out automatically

if we impose the projection

γ1234ǫ = −ǫ ⇒ ω−ab
µ γ−abǫ = 0 , (B.6)

where 2γ−ab ≡ γab − εabcdγ
cd. The U(1)r part of the spin connection is then

ω+12 = −3

2
sin2 ξ σ3 = −3B = −3AKK

CP2 . (B.7)

We therefore see that the spin connection is precisely canceled and the supersymmetric

twist is completed upon imposing

γ12ǫ = ΓRǫ , g =
3

2
, (B.8)

in (B.4).

Note that supersymmetric flows in six dimensions with a U(1) twist have already been

explicitly found in [56] and further studied in [57], in the absence of electric charges, two-

form field and additional scalars. Here we have shown that the 7D rotating black holes we

consider, upon reduction to six dimensions, fit in the same category of solutions in [56, 57]

with additional conserved charges.
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