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Abstract
Non-stationary continuous time Bayesian networks
are introduced. They allow the parents set of
each node in a continuous time Bayesian network
to change over time. Structural learning of non-
stationary continuous time Bayesian networks is
developed under different knowledge settings. A
macroeconomic dataset is used to assess the effec-
tiveness of learning non-stationary continuous time
Bayesian networks from real-world data.

1 Introduction
The identification of relationships and statistical dependen-
cies between components in multivariate time-series, and the
ability of reasoning about whether and how these dependen-
cies change over time is crucial in many research domains
such as biology, economics, finance, traffic engineering and
neurology, to mention just a few. In biology, for exam-
ple, knowing the gene regulatory network allows to under-
stand complex biological mechanisms ruling the cell. In such
a context, Bayesian networks (BNs) [Segal et al., 2005;
Nagarajan and Scutari, 2013], dynamic Bayesian networks
(DBNs) [Vinh et al., 2012] and continuous time Bayesian
networks (CTBNs) [Acerbi et al., 2014; 2016] have been
used to reconstruct transcriptional regulatory networks from
gene expression data. The effectiveness of discrete DBNs has
been investigated to identify functional correlations among
neuroanatomical regions of interest [Burge et al., 2009],
while a useful primer on BNs for functional magnetic reso-
nance imaging data analysis has been made available [Mum-
ford and Ramsey, 2014]. However, the mentioned applica-
tions require the time-series to be generated from a stationary
distribution, i.e. one which does not change over time. While
stationarity is a reasonable assumption in many situations,
there are cases where the data generating process is clearly
non-stationary. Indeed, in recent years, researchers from dif-
ferent disciplines, ranging from economics to computational
biology, to sociology and to medicine have become interested
in representing relationships and dependencies which change
over time. More precisely, researchers have been interested
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in analyzing the temporal evolution of genetic networks [Le-
bre et al., 2010], the flow over neural information networks
[Smith et al., 2006], heart failure [Liu et al., 2016], com-
plications in type 1 diabetes [Marini et al., 2015] and the
dependence structure among financial markets during crisis
[Durante and Dunson, 2014]. According to the specialized
literature [Robinson and Hartemink, 2010], evolution mod-
els can be divided into two main categories: structurally non-
stationary, i.e. those models which are allowed to change
their structure over time, and parametrically non-stationary,
i.e. those models which only allow the parameters’ values to
change over time.

In this paper, the structurally non-stationary continuous
time Bayesian network model (nsCTBN) is introduced. A
nsCTBN consists of a sequence of CTBNs which improves
expressiveness over a single CTBN. Indeed, a nsCTBN al-
lows the parents set of each node to change over time at
specific transition times and thus it allows to model non-
stationary systems. To learn a nsCTBN, the Bayesian score
for learning CTBNs [Nodelman et al., 2003] is extended.

The contribution of this paper is twofold. Firstly, it defines
the model of structurally non-stationary continuous time
Bayesian networks. Secondly, the effectiveness of learning
non-stationary continuous time Bayesian networks from real-
world data is assessed by analyzing macroeconomic data.

2 Model
In this section, continuous time Bayesian networks and non-
stationary continuous time Bayesian networks are introduced
together with three knowledge learning settings for structural
learning from complete data.

2.1 Continuous Time Bayesian Networks
Continuous time Bayesian networks combine Bayesian net-
works and homogeneous Markov processes together to effi-
ciently model discrete state continuous time dynamical sys-
tems [Nodelman et al., 2002]. They are particularly useful
for modeling domains in which variables evolve at different
time granularities, such as to model the presence of people
at their computers [Nodelman and Horvitz, 2003], to study
reliability of dynamical systems [Boudali and Dugan, 2006],
to model failures in server farms [Herbrich et al., 2007], and
to detect network intrusion [Xu and Shelton, 2008].
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The continuous time Bayesian network model is defined as
follows.
Definition 1. Continuous time Bayesian network [Nodelman
et al., 2002]. Let X be a set of random variables X =
{X1, X2, . . . , XN}. Each X has a finite domain of values
V al(X) = {x1, x2, . . . , xI}. A continuous time Bayesian
network over X consists of two components: the first is an
initial distribution P 0

X , specified as a Bayesian network over
X , the second is a continuous time transition model speci-
fied as: a directed (possibly cyclic) graph G whose nodes are
X1, X2, . . . , XN ; a conditional intensity matrix,QPa(X)

X , for
each variable X ∈ X , where Pa(X) denotes the set of par-
ents of X in the graph G.

The conditional intensity matrixQPa(X)
X consists of the set

of intensity matrices

Qpau

X =

 −q
pau
x1

. qpau
x1xI

qpau
x2x1

. qpau
x2xI

. . .
qpau
xIx1

. −qpau
xI

 ,
where pau ranges over all possible configurations of the par-
ents set Pa(X), while qpau

xi
=

∑
xj 6=xi

qpau
xixj

. Off-diagonal
elements of Qpau

X , i.e. qpau
xixj

, are proportional to the prob-
ability that the variable X transitions from state xi to state
xj given the parents’ state pau. The intensity matrix Qpau

X
can be equivalently summarized with two independent sets:
qpau

X = {qpau
xi

: 1 ≤ i ≤ I}, i.e. the set of intensities pa-
rameterizing the exponential distributions over when the next
transition occurs, and θpau

X = {θpau
xixj

= qpau
xixj

/qpau
xi

: 1 ≤
i, j ≤ I, j 6= i}, i.e. the set of probabilities parameterizing
the multinomial distributions over where the state transitions.
Note that the CTBN model assumes that only one single vari-
able can change state at any specific instant, while its transi-
tion dynamics are specified by its parents via the conditional
intensity matrix and they are independent of all other vari-
ables given its Markov Blanket1.

Continuous time Bayesian networks are both structurally
stationary, as the graph does not change over time, and para-
metrically stationary, as the conditional intensity matrices do
not change over time. These stationarity assumptions are rea-
sonable in many situations, but there are cases where the data
generating process is intrinsically non-stationary and thus
CTBNs can no longer be used. Therefore, the CTBNs have
been extended to become structurally non-stationary, i.e. the
CTBN’s structure is allowed to change over continuous time.

2.2 Non-stationary CTBNs
In the non-stationary continuous time Bayesian network
model, the graph of the CTBN is replaced by a graphs se-
quence G = (G1,G2, . . . ,GE), where a graph Ge represents
the causal dependency structure of the model for the epoch
e ∈ {1, 2, . . . , E}2. This model is structurally non-stationary

1The set of its parents, children, and its children’s other parents.
2It is worthwhile to mention that the first epoch, i.e. the epoch

starting at time 0 and ending at time t1 is associated with the graph
G1, while the last epoch, i.e. the epoch starting at time tE−1 and
ending at time T (the supremum of the considered time interval, i.e.
[0,T]) is associated with the graph GE .

because of the introduction of the graphs sequence and it can
handle transition times that are common to the whole net-
work and/or node-specific. Following the notations and def-
initions used for non-stationary dynamic Bayesian networks
(nsDBNs), we let T = (t1, . . . , tE−1) be the transition times
sequence, i.e. the times at which the causal dependency struc-
ture Ge, active at epoch e, is replaced by the causal depen-
dency structure Ge+1, which becomes active at epoch e + 1.
An epoch is defined to be the period of time between two
consecutive transitions, i.e. the epoch e is active during the
period of time starting at te−1 and ending at te. The graph
Ge+1, which is active during the epoch e+ 1, differs from the
graph Ge, which is active during the epoch e, in a set of edges
that we call the set of edge changes ∆Ge. A non-stationary
continuous time Bayesian network is defined as follows.

Definition 2. (Structurally) non-stationary continuous time
Bayesian network. Let X be a set of random variables
X1, . . . , XN . Each X has a finite domain of values
V al(X) = {x1, . . . , xI}. A (structurally) non-stationary
continuous time Bayesian network Nns = (B,Mns) overX
consists of two components:

• an initial distribution P 0
X , specified as a Bayesian net-

work B overX ,

• a non-stationary continuous time transition modelMns

specified as: a sequence of directed (possibly cyclic)
graphs G = (Ge)Ee=1 whose nodes are X1, . . . , XN ,
where E represents the number of epochs; a conditional
intensity matrix, QPaG(X)

X,H(X), ∀X ∈ X , where PaG(X)

denotes the parents sets of X in G, and H(X) denotes
the intervals associated with X .

The conditional intensity matrixQPaG(X)
X,H(X) consists of a set

of intensity matrices

Qpau

X,hm
=


−qpau

x1,hm
. qpau

x1xI ,hm

qpau

x2x1,hm
. qpau

x2xI ,hm

. . .
qpau

xIx1,hm
. −qpau

xI ,hm

 ,
one for each configuration pau of each parents set Pa(X) ∈
PaG(X) which is active during the interval hm ∈ H(X).3

Non-stationary continuous time Bayesian networks allow
each node to have its own sequence of parents sets, each
parents set being active at a given epoch. Therefore, we
introduce the concept of homogeneous interval H(X) =
(h1, . . . , hM ) associated with nodeX , which is defined as the
union of consecutive epochs during which the same parents
set Pa(X) is active for the node X . Note that if each epoch
is associated with a different parents set, then M is equal to
E. Figure 1 shows the graphs sequence G = (G1,G2,G3,G4)
of a nsCTBN consisting of four epochs (E = 4) with transi-
tion times T = (t1, t2, t3).

Learning a non-stationary continuous time Bayesian net-
work from a fully observed dataset can be done using the
Bayesian learning framework. The following learning set-
tings are considered; known transition times (KTT), where

3Note that the equation qpau
xi,hm

=
∑

xj 6=xi
qpau
xixj ,hm

still holds.
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Figure 1: Graphs sequence G = (G1,G2,G3,G4) of a nsCTBN with four epochs, E = 4, and three transition times, T = (t1, t2, t3), where
the edges are gained and lost over time. Each epoch is associated with a set of edge changes. Specifically, the graph G2 differs from the
graph G1 by the following set of edge changes ∆G1 = {X3 → X2, X2 6→ X3, X1 6→ X2}, the graph G3 differs from the graph G2 by
the following set of edge changes ∆G2 = {X2 → X1} and the graph G4 differs from the graph G3 by the following set of edge changes
∆G3 = {X3 → X4, X4 → X1, X1 6→ X4, X4 6→ X3}.

transition times between epochs are given, known number
of epochs (KNE), where the number of epochs is given, and
unknown number of epochs (UNE) where nothing is known
about epochs. These learning settings have increasing diffi-
culty, for each of them the Bayesian score decomposition has
been formally derived and the corresponding learning algo-
rithm has been designed [Villa and Stella, 2016].

3 Numerical Experiments
Numerical experiments have been performed on both syn-
thetic and real-world datasets. Synthetic datasets were used
to compare nsCTBNs to nsDBNs under three knowledge set-
tings in terms of accuracy, precision, recall and F1 mea-
sure. The following real-world datasets: drosophila, sac-
charomyces cerevisiae and songbird, were used to compare
nsCTBNs to state-of-the-art algorithms, i.e. TSNI (a method
based on ordinary differential equations), nsDBN [Robin-
son and Hartemink, 2010] and non-homogeneous dynamic
Bayesian networks with Bayesian regularization (TVDBN)
[Dondelinger et al., 2013], under the UNE knowledge set-
ting. Results show that nsCTBNs are highly competitive
when compared to state-of-the-art algorithms for both syn-
thetic and real-world datasets [Villa and Stella, 2016].

In this paper, for the sake of brevity, we illustrate results of
nsCTBNs structural learning on the macroeconomics dataset
which consists of 17 financial/economic time-series pertain-
ing to the economy of the United States. Time-series have
different time granularity and span from 1st January 1986
to 31st March 2015. More specifically, five time-series have
daily granularity, namely Crude oil (OIL), USD to EUR spot
exchange rate (USDEUR), Gold (GOLD), S&P500 equity
index (S&P500) and the 10-years treasury bond yield rate
(US10yrsNote). Eleven time-series have monthly granularity,
namely production of total industry (PTI), real manufacturing
and trade industries sales (RMTIS), personal income (PI), un-
employment (UN), consumer price index (CPI), federal funds
rate (RATE), producer price index (PPI), non-farm payrolls
(NFP), new one-family houses sold (NHSold), new houses

for sale (NHSale) and new private house permits (NHPer-
mit). Finally, the gross domestic product (GDP) time-series
has quarterly granularity.

The goal of this study is to discover how the financial and
economic environment evolve over time. In particular, we
focused the attention to detect business cycles4 and the asso-
ciated change of relationships among financial and economic
variables. Given that the duration of a business cycle is highly
variable, the ability to identify the turning point of a cycle
(i.e. when a recession starts) is of considerable importance to
policymakers, financial companies as well as to individuals.
A substantial literature is available about the business cycle
turning points detection relying on Markov-switching mod-
els [Hamilton and Raj, 2005]. However, these models are not
able to represent important features such as the dependence
structure among variables in each business cycle. In order to
use the nsCTBN model in such a context, we applied a binary
discretization to the variable associated with each time-series.
Discretization was performed using a look-back period of 1
year for daily data (i.e. if the current value is greater than
the past one, then the binary variable is set to 1 otherwise it
is set to 0), while a look-back of 1 month for monthly data
and 3 months for quarterly data. The approach of looking
back into the past is widely used in finance [Moskowitz et al.,
2012]. nsCTBNs learning was performed under the UNE set-
ting using the following parameter values: λc = {0.5, 1, 2},
λe = {0.1, 1, 10}, 2 maximum parents per node, 300 itera-
tions and 10 runs.

Figure 2 shows the probability of transition (left side, left
axis) versus the S&P500 equity index used as a reference (left
side, right axis) and the posterior probability over the number
of epochs (right side). The nsCTBN consists of three epochs
with transition times close to the end of July 2000 and the end
of November 2007.

4Business cycles are fluctuations in aggregate economic activity,
they are recurrent (i.e. it is possible to identify expansion-recession
cycles), persistent and not periodic (i.e. they differ in length and
severity).
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Figure 2: Distribution of the transition times versus the S&P500 equity index over time (left picture) and the posterior probability distribution
of the number of epochs (right picture) for the learned nsCTBN under the unknown number of epochs setting.
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(a) Epoch 1 (Jan 1986 - Jul 2000).
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(b) Epoch 2 (Aug 2000 - Nov 2007).
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(c) Epoch 3 (Dec 2007 - Mar 2015).

Figure 3: nsCTBN learned on the macroeconomics dataset under the unknown number of epochs setting. nsCTBN corresponds to the most
probable number of epochs (E = 3). An arc is included in the nsCTBN model when it occurs in more than 75% of the runs in each epoch.

If we compare these dates to the turning points of the US
business cycle reported by the National Bureau of Economic
Research5, then we see that we are not far from the turning
point of March 2001 and very close to the one of December
2007, while the turning point occurred in July 1990 is missed,
probably because of the limited length of the dataset.

Figure 3 shows the structure of the nsCTBN model corre-
sponding to the most probable number of epochs, i.e. E = 3.
An arc is included in the nsCTBN model when it occurs in
more than 75% of the performed runs in each epoch. The
retrieved networks correspond to the following time peri-
ods: from January 1986 to July 2000, from August 2000 to
November 2007 and from December 2007 to March 2015.

The novelty of such approach opens the door to many con-
siderations about the economic variables during business cy-
cles, e.g. the learned models show the well-known central
role of the personal income and its relation to the unemploy-
ment [Mankiw, 2014] and the less known relation of the non-
farm payrolls to the S&P500 equity index [Miao et al., 2014].

5See the official data at http://www.nber.org/cycles.html

4 Conclusions
We introduced non-stationary continuous time Bayesian net-
works (nsCTBNs), a probabilistic graphical model generaliz-
ing continuous time Bayesian networks to the case where the
structure of the probabilistic graphical model is allowed to
change over time. nsCTBNs have been shown to be compet-
itive with the state-of-the-art algorithms when both synthetic
and real-world datasets are considered. The results of ap-
plying the nsCTBN’s structural learning algorithm when the
number of epochs is unknown show the usefulness of the pro-
posed approach but at the same time warn about the following
issues; the variables are assumed to be discrete; specifically
each variable of the dataset must take value over a countable
number of states and finding the optimal parameter settings
of structural learning is extremely difficult as it happens for
non-stationary dynamic Bayesian networks. Possible direc-
tions for further research include the development of a mod-
eling approach that goes towards the direction of allowing
each node to change its parents set asynchronously as well as
the objects classification task in a streaming domain.
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