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Abstract
Let M be complex projective manifold and A a positive line bundle on it. Assume that a
compact and connected Lie group G acts on M in a Hamiltonian manner and that this action
linearizes to A. Then, there is an associated unitary representation of G on the associated
algebro-geometric Hardy space. If the moment map is nowhere vanishing, the isotypical
components are all finite dimensional; they are generally not spaces of sections of some
power of A. One is then led to study the local and global asymptotic properties the isotypical
component associated with a weight k ν, when k → +∞. In this paper, part of a series
dedicated to this general theme, we consider the case G = U (2).

Keywords Hamiltonian action · Positive line bundle · Szegö kernel · Hardy space ·
Asymptotic expansion
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1 Introduction

Inmany interesting and natural situations, anHamiltonian action of a Lie groupG on aHodge
manifold can be linearized to a polarizing positive line bundle; when this happens, there is
an induced unitary representation of G on a certain Hardy space, intrinsically related to the
holomorphic structure of the line bundle. One is then led to investigate the decomposition
of the latter Hardy space into isotypical components over the irreducible representations of
G and how this decomposition reflects the geometry of the underlying action. In particular,
if the corresponding moment map is never vanishing, then all the isotypical components are
finite dimensional.
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For example, in the very special case where G = S1 acts trivially on M and the moment
map is taken to be �G = 1, the corresponding isotypical components are (naturally isomor-
phic to) the spaces of global holomorphic sections of powers of A. In general, however, the
isotypical components in point do not correspond to subspaces of holomorphic sections of
some higher tensor power of the polarizing line bundle; in other words, they generally split
non-trivially under the structure S1-action on X .

From the point of view of geometric quantization, the most appropriate heuristic frame-
work for the present discussion is the setting of ‘homogeneous’ quantization treated in [13]
(and of course [3]). In fact, a motivation for the present analysis is to revisit the general theme
of [13] in the specific context of Toeplitz quantization (in the sense of [3]) by means of the
approach to algebro-geometric Szegö kernels developed in [2,30,34]; this circle of ideas is
ultimately based on the microlocal theory of the Szegö kernel as an FIO developed in [4].

In this work, we shall consider the case G = U (2) and focus on the asymptotics of the
isotypical components pertaining to a given ladder representation, in the terminology of
[13]. In other words, we shall fix a ray in weight space and study the asymptotic behavior of
the isotypes when the representation drifts to infinity along the ray. When G is a torus, this
problem was studied in [6,26,27]; the case G = SU (2) is the object of [10]. To make this
more precise, it is in order to set the geometric stage in detail.

LetM be a connected d-dimensional complex projectivemanifold, with complex structure
J . Let (A, h) be a positive line bundle on M ; in other words, A is an holomorphic ample line
bundle on M , h is an Hermitian metric on A, and the curvature form of the unique covariant
derivative ∇ on A compatible with both the complex and Hermitian structures has the form
� = −2 ı ω, where ω is a Kähler form on M . We shall denote by ρ the corresponding
Riemannian structure on M , given by

ρm(v,w) := ωm
(
v, Jm(w)

)
(m ∈ M, v, w ∈ TmM). (1)

If A∨ ⊃ X
π→ M is the unit circle bundle in the dual of A, then ∇ naturally corresponds

to a connection 1-form α on X , such that dα = 2π∗(ω). Hence, (X , α) is a contact manifold.
We shall adopt

dVM := 1

d! ω
∧d and dVX := 1

2π
α ∧ π∗ (dVM ) (2)

as volume forms on M and X , respectively; integration will always be meant with respect to
the corresponding densities.

Furthermore, α determines an invariant splitting of the tangent bundle of X as

TX = V(X/M)⊕H(X/M), (3)

where V(X/M) := ker(dπ) is the vertical tangent bundle, and H(X/M) := ker(α) is the
horizontal tangent bundle. Given V ∈ X(M) (the Lie algebra of smooth vector fields on M),
we shall denote by V � ∈ X(X) its horizontal lift to X . If the vector field ∂/∂θ ∈ X(X) is the
generator of the structure S1-action, then ∂θ spans V(X/M), and 〈α, ∂θ 〉 = 1.

The holomorphic structure onM , pulled-back toH(X/M), endows X with a CR structure.
Explicitly, the complex structure J on M naturally lifts to a vector bundle endomorphism of
T X , also denoted by J , such that J (∂θ ) = 0 and

J
(
υ�
) = J (υ)�

(
υ ∈ X(M)

)
. (4)

The corresponding Hardy space H(X) ⊂ L2(X) encapsulates the holomorphic structure
of A and its tensor powers. The corresponding orthogonal projector and its distributional
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Equivariant asymptotics of Szegö kernels under… 641

kernel are called, respectively, the Szegö projector and the Szegö kernel of X ; they will be
denoted

� : L2(X)→ H(X), �(·, ·) ∈ D′(X × X). (5)

Consider the unitary group U (2), and its Lie algebra u(2), the space of skew-Hermitian
2 × 2 matrices; in the following, we shall set G = U (2) and g = u(2) for notational con-

venience. The standard invariant scalar product 〈β1, β2〉g := trace
(
β1 β

t
2

)
yields a unitary

isomorphism g ∼= g∨ intertwining the adjoint and coadjoint representations of G.
Suppose given an holomorphic Hamiltonian action μ : G × M → M on the Kähler

manifold (M, J , 2ω), with moment map �G : M → g∨ ∼= g. For every ξ ∈ g, let ξM ∈
X(M) be its associated vector field on M . Then,

ξX := ξ
�
M − 〈�G , ξ 〉 ∂θ (6)

is a contact vector field on (X , α) [20], and the map ξ �→ ξX is an infinitesimal action of g
on (X , α).

We shall assume that the latter infinitesimal action can be integrated to an action of G on
X , i.e., that μ lifts to an action μ̃ : G × X → X preserving the contact and CR structures.
Then, pull-back of functions, given by g · s := μ̃∗

g−1(s), is a unitary representation of G on

L2(X) leaving H(X) ⊂ L2(X) invariant. This yields a unitary representation

μ̂ : G → U
(
H(X)

)
. (7)

By the Theorem of Peter andWeyl [5,31], H(X) decomposes as a Hilbert space direct sum
of finite-dimensional irreducible representations of G. The latter are in 1:1 correspondence
with the pairs ν = (ν1, ν2) of integers satisfying ν1 > ν2 [33]; namely, ν corresponds to the
irreducible representation

Vν := detν2 ⊗ Symν1−ν2−1 (C2) ; (8)

the restriction of its character χν to the standard torus T � G is given by

χν :
(
t1 0
0 t2

)
�→ tν11 tν22 − tν21 tν12

t1 − t2
. (9)

Therefore, there is an equivariant unitary isomorphism

H(X) ∼=
⊕

ν1>ν2

H(X)ν,

where H(X)ν ⊆ H(X) is the ν-isotypical component. Correspondingly,

� =
∑

ν1>ν2

�ν, (10)

where �ν : L2(X)→ H(X)ν is the orthogonal projector (recall (5)).
In general, H(X)ν may well be infinite dimensional; however, if 0 /∈ �G(M), then

dim
(
H(X)ν

)
< +∞ for every ν (see §2 of [26]). In this case, each �ν is a smoothing

operator, with a distributional kernel

�ν(·, ·) ∈ C∞(X × X). (11)

In particular,

dim H(X)ν =
∫

X
�ν(x, x) dVX (x). (12)
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Let us fix a weight ν ∈ Z
2\{0}, and look at the concentration behavior of �kν(·, ·) when

k →+∞. The Abelian analog of this problem was studied in [26] and [27].

Definition 1.1 If ν ∈ Z
2, let

Dν :=
(
ν1 0
0 ν2

)
.

Let us introduce the following loci.

1. Oν ⊂ g is the (co)adjoint orbit of ı Dν ;
2. C(Oν) := R+ ·Oν is the cone over Oν ;
3. in M and X , respectively, we have the inverse images

MG
Oν

:= �−1
G

(C(Oν)
)
, XG

Oν
:= π−1

(
MG

Oν

)
.

We shall occasionally write O in place of Oν . Finally, let us define C∞ functions

m ∈ MG
Oν

�→ hm T ∈ G/T , m ∈ MG
Oν

�→ λν(m) ∈ (0,+∞)

by the equality
�G(m) = ı λν(m) hmDν h

−1
m . (13)

Our first result is the following.

Theorem 1.1 Assume that 0 /∈ �G(M), and �G is transverse to C(Oν). Let us define the
G × G-invariant subset of X × X

Zν :=
{
(x, y) ∈ XG

Oν
× XG

Oν
: y ∈ G · x

}
.

Then, uniformly on compact subsets of (X × X)\Zν , we have

�kν(x, y) = O
(
k−∞

)
.

Corollary 1.1 Uniformly on compact subsets of X\XG
Oν

, we have

�kν(x, x) = O
(
k−∞

)
for k →+∞

The hypothesis of Theorem 1.1 implies that MG
Oν

is a compact and smooth real hypersur-

face of M . Our next step will be to clarify the geometry of MG
Oν

. To this end, we need to
introduce some further loci related to the action.

Definition 1.2 Let

MG
ν := �−1

G

(
ı R+ · Dν

)
, XG

ν := π−1
(
MG

ν

)
. (14)

Remark 1.1 Obviously, MG
ν ⊆ MG

Oν
. Under the assumptions of Theorem 1.1, MG

ν is a com-

pact submanifold of M , of real codimension 3. Clearly, MG
Oν

= G ·MG
ν by the equivariance

of�G (given a G-space Z , and a subset Z1 ⊆ Z , we shall denote by G · Z1 the G-saturation
of Z1 in Z ).

Let T � G be the standard maximal torus of unitary diagonal matrices, and let t be its Lie
algebra. Thus, t is the space of skew-Hermitian diagonal matrices and is also T -equivariantly
identified with the coalgebra t∨. In obvious manner T ∼= S1 × S1 and t ∼= ı R2. We shall
alternatively think of elements of t either as vectors or as matrices, depending on the context.
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Given the isomorphisms g∨ ∼= g and t∨ ∼= t, the restriction epimorphism g∨ → t∨
corresponds to the diagonal map

diag : g→ ı R2, ı

(
a z
z b

)
�→ ı

(
a
b

)
(a, b ∈ R, z ∈ C). (15)

The action of T on M induced by restriction of μ is also Hamiltonian, with moment map

�T = diag ◦�G : M → t. (16)

Let us introduce the loci

MT
ν := �−1

T (R+ · ı ν) , XT
ν := π−1

(
MT

ν

)
(17)

Let us assume that 0 /∈ �T (M) and that�T is transverse to R+ · ı ν; then, MT
ν is a compact

smooth real hypersurface of M . Since MG
ν ⊆ MT

ν , we have MG
Oν

⊆ G · MT
ν .

In Sect. 4.1.2, we shall construct a vector field ϒ = ϒμ,ν tangent to M along MG
Oν

, natu-
rally associated with the action and the weight, which is nowhere vanishing and everywhere
normal to MG

Oν
.

Theorem 1.2 Let us assume that:

1. �G : M → g and �T : M → t are both transverse to R+ · ı Dν;
2. 0 /∈ �T (M) (hence also 0 /∈ �G(M));
3. MG

ν �= ∅ (equivalently, MG
Oν

�= ∅);
4. ν1 + ν2 �= 0.

Then,

1. MG
Oν

is a connected and orientable smooth hypersurface in M and separates M in

two connected components: the ‘outside ’ A := M\G · MT
ν and the ‘inside’ B :=

G · MT
ν \MG

Oν
;

2. the normal bundle to MG
Oν

in M is the real line sub-bundle of T M |MG
Oν

spanned by ϒ;

3. ϒ is ‘outer’ oriented if ν1 + ν2 > 0 and ‘inner’ oriented if ν1 + ν2 < 0;
4. MG

Oν
∩ MT

ν = MG
ν , and the two hypersurfaces meet tangentially along MG

ν .

Remark 1.2 Let us clarify the meaning of the partition M = A∪̇MG
Oν
∪̇B. Clearly, G ·MT

ν =
B, A = (

G · MT
ν

)c
. For any m ∈ M , let O�(m) := �G(G · m) be the coadjoint orbit

of �G(m), and let λ1 > λ2 be the eigenvalues of −ı �G(m); as follows either by direct
verification or by invoking Horn’s Theorem, the projection of O�(m) in t is the segment Jm
joining ı

(
λ1 λ2

)t
and ı

(
λ2 λ1

)t
. Then, we have:

1. m ∈ A if and only if the orthogonal projection of O�(m) in t, diag(O�(m)), is disjoint
from ı R+ · ν;

2. m ∈ MG
Oν

if and only if diag(O�(m)) ∩ (ı R+ · ν) is an endpoint of Jm ;
3. m ∈ B if and only if diag(O�(m)) ∩ (ı R+ · ν) is an interior point of Jm .

The next step will be to provide some more precise quantitative information on the rate
of decay of�kν(·, ·) on the complement of Zν . Namely, we shall show that�kν(x, y) is still
rapidly decreasing when either y → G · x at a sufficiently slow rate, or when at least one of
x and y belongs to the ‘outer’ component A, and converges to XG

Oν
sufficiently slowly.

Let us consider on X the Riemannian structure which is uniquely determined by the
following conditions:
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1. (3) is an orthogonal direct sum;
2. π : X → M is a Riemannian submersion;
3. the S1-orbits have unit length.

The corresponding density is dVX . Let distX : X × X → [0,+∞) denote the associated
distance function.

Theorem 1.3 In the situation of Theorem 1.1, assume in addition that G acts freely on XG
O .

For any fixed C, ε > 0, we have �kν(x, y) = O
(
k−∞

)
uniformly for

max
{
distX (x,G · y), distX

(
x,G · XT

ν

)}
≥ C kε−1/2. (18)

Let us clarify the meaning of Theorem 1.3. The closed loci Rk ⊂ X × X defined by
(18) form a nested sequence R1 ⊆ R2 ⊆ · · · . For any fixed C, ε > 0, there exist positive
constants C j = C j (C, ε) > 0, j = 1, 2, . . ., such that the following holds. Given any
sequence in X × X with (xk, yk) ∈ Rk for k = 1, 2, . . ., we have

∣
∣�kν(xk, yk)

∣
∣ ≤ C j k

− j

for every k.
In Theorems 1.4 and 1.5, we shall consider the diagonal and near-diagonal asymptotic

behavior of �kν along XG
O . In the setting of Theorem 1.2, every x ∈ XG

Oν
has discrete

stabilizer subgroup in X . To simplify our exposition, we shall make the stronger assumption
that μ̃ is actually free along XG

Oν
. Before giving the statement, some further notation is

needed.

Definition 1.3 If ξ ∈ g, we shall denote by ξM ∈ X(M) and ξX ∈ X(X) the vector fields
induced by ξ on M and X , respectively. If ν ∈ Z

2, we have the vector fields (ı Dν)M
and (ı Dν)X ; similarly, for any g T ∈ G/T , we have the vector fields Adg(ı Dν)M and
Adg(ı Dν)X . To simplify notation, we shall set1

νM := (ı Dν)M , νX := (ı Dν)X ,

and

Adg(ν)M := Adg(ı Dν)M , Adg(ν)X := Adg(ı Dν)X .

Occasionally, we shall use the abridged notation ξ(m) for ξM (m), ξ(x) for ξX (x) with no
further mention.

Definition 1.4 Let ‖ · ‖m : TmM → R and ‖ · ‖x : Tx X → R be the norm functions. If
ν = (ν1, ν2) ∈ Z

2, ν1 > ν2, let us set ν⊥ := (−ν2, ν1). With the notation introduced in
Definitions 1.1 and 1.3, let us define a C∞ function Dν : MG

Oν
→ (0,+∞) by posing

Dν(m) := ‖ν‖
∥∥Adhm (ν⊥)M (m)

∥∥
m

.

Remark 1.3 Since by assumption μ̃ is locally free on XG
Oν

, but not necessarily on MG
Oν

, the
latter definition warrants an explanation, since it might happen that ξM (m) = 0 for ξ ∈ g not
zero and m ∈ MG

Oν
. However, if x ∈ XG

Oν
and m = π(x), then it follows from (6) and the

definition of hm T that Adhm (ν⊥)X (x) = Adhm (ν⊥)M (m)�, whence
∥∥Adhm (ν⊥)M (m)

∥∥
m = ‖Adhm (ν⊥)X (x)‖x > 0.

1 Occasionally, we shall use the more precise notation (ı ν)M (m), but this should cause no confusion, since
we are making no explicit use of complexifications in this paper.
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Let us record one more piece of notation. If V3 is the area of the unit sphere S3 ⊆ R
4, let

us set

DG/T := 2π/V3.

Theorem 1.4 Under the same hypothesis as in Theorem 1.2, let us assume in addition that
G acts freely on XG

Oν
. Then, uniformly in x ∈ XG

Oν
we have for k → +∞ an asymptotic

expansion of the form

�kν(x, x) ∼ DG/T√
2

1

‖�G(m)‖d+1/2
(
k ‖ν‖
π

)d−1/2
·Dν(m)

·
⎡

⎣1+
∑

j≥1
k− j/4 a j (ν,m)

⎤

⎦ .

We can refine the previous asymptotic expansion at a fixed diagonal point (x, x) ∈ XG
Oν
×

XG
Oν

to an asymptotic expansion for near-diagonal rescaled displacements; however, for the
sake of simplicity we shall restrict the directions of the displacements.

Definition 1.5 Ifm ∈ M , let gM (m) ⊆ TmM be the image of the linear evaluationmap valm :
g → TmM , ξ �→ ξM (m), also, let gM (m)⊥ω ⊆ TmM be its symplectic orthocomplement
with respect to ωm , and let gM (m)⊥g ⊆ TmM be its Riemannian orthocomplement with
respect to gm . Hence,

gM (m)⊥h := gM (m)⊥ω ∩ gM (m)⊥g ⊆ TmM

is the Hermitian othocomplement of the complex subspace generated by gM (m)with respect
to hm := gm − ı ωm .

Definition 1.6 If v1, v2 ∈ TmM , following [30] let us set

ψ2(v1, v2) := −ı ωm(v1, v2)− 1

2
‖v1 − v2‖2m . (19)

Here ‖v‖m := gm(v, v)1/2. The same invariant can be introduced in any Hermitian vector
space. Given the choice of a system of Heisenberg local coordinates centered at x ∈ X [30],
there is built-in unitary isomorphism TmM ∼= C

d ; with this implicit, (19) will be used with
v j ∈ C

d .

The choice of Heisenberg local coordinates centered at x ∈ X gives a meaning to the
expression x + (θ, v) for (θ, v) ∈ (−π, π)×R

2d with ‖v‖ of sufficiently small norm. When
θ = 0, we shall write x + v.

Theorem 1.5 Let us assume the same hypothesis as in Theorem 1.4. Suppose C > 0, ε ∈
(0, 1/6), and if x ∈ X let us set mx := π(x). Then, uniformly in x ∈ XG

Oν
and v1, v2 ∈

gM (mx )
⊥h satisfying ‖v j‖ ≤ C kε , we have for k →+∞ an asymptotic expansion

�kν

(
x + 1√

k
v1, x + 1√

k
v2

)

∼ DG/T√
2

eψ2(v1,v2)/λν (mx )

‖�G(mx )‖d+1/2
(
k ‖ν‖
π

)d−1/2
·Dν(mx )

·
⎡

⎣1+
∑

j≥1
k− j/4 a j (ν,mx ; v1, v2)

⎤

⎦ ,
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where a j (ν,mx ; ·, ·) is a polynomial function of degree ≤ �3 j/2�.
Furthermore, we shall provide an integral formula of independent interest for the asymp-

totics of �kν(x ′, x ′) when x ′ → XG
Oν

at a ‘fast’ pace from the ‘outside’ (i.e., x ′ ∈ A in
the notation of Theorem 1.2) (Sect. 6.1). While the latter formula is a bit too technical to be
described in this introduction, by global integration it leads to a lower bound on dim H(X)ν
which can be stated in a compact form. By (12), with the notation of Theorem 1.2, we have

dim H(X)ν = dimin H(X)ν + dimout H(X)ν, (20)

where

dimout H(X)ν :=
∫

A
�ν(x, x) dVX (x),

and similarly for dimin H(X)ν , with A replaced by B. Hence, an asymptotic estimate for
dimout H(X)k ν when k → +∞ implies an asymptotic lower bound for dim H(X)k ν . In
Theorem 1.6 below, we shall show that dimout H(X)k ν is given by an asymptotic expansion
of descending fractional powers of k, the leading power being kd−1.

Theorem 1.6 Under the assumptions of Theorem 1.4, dimout H(X)k ν is given by an asymp-
totic expansion in descending powers of k1/4 as k →+∞, with leading-order term

1

4
DG/T

(
k ‖ν‖
π

)d−1 ∫

MG
O

1

‖�G(m)‖d ·Dν(m) dVMG
O
(m).

Let us make some final remarks.
First, there is a wider scope for the results of this paper, since it builds on microlocal

techniques that can be also applied in the almost complex symplectic setting. For the sake of
simplicity, we have restricted our discussion to the complex projective setting; nonetheless,
assuming the theory in [30] (which in turn builds on [4] and [3]), the present results can be
extended to the case where M is a compact symplectic manifold with an integral symplectic
formandapolarizing (or quantizing) line bundle A on it.Moreprecisely, given anHamiltonian
compact Lie group action on M linearizing to A, one can find an invariant compatible almost
complex structure and then rely on the theory of generalized Szegö kernels developed in [30]
to extend the present arguments and constructions.

In closing, it seems in order to clarify further the relation of the present work to the
general literature. The asymptotics of Bergman and Szegö kernels have attracted signif-
icant interest in recent years, involving algebraic, complex and symplectic geometry, as
well as harmonic analysis. Generally, the emphasis has been placed on the perspective of
Berezin-Toeplitz quantization, where the parameter of the asymptotics is the index of the
Fourier component with respect to the structure S1-action. Natural variants include addi-
tional symmetries, stemming from a linearizable Hamiltonian Lie group action. It would be
unreasonable for space reasons to give here an account of this body of work, but we refer to
[2,3,7,8,22,23,29,30,32,34] and references therein. For some interesting recent extensions in
the same spirit to a more abstract geometric setting, see [16] and [17].

In particular, the microlocal approach of [2,3,30,34], of special relevance for the present
work, is based on the theory of the Szegö kernel as a Fourier integral operator (see [4]) and has
been exploited in [24,25] to obtain local asymptotics in the G-equivariant Berezin-Toeplitz
context.

This said, the perspective of the present work is quite different, and closer in spirit to
[13], inasmuch as the structure S1-action remains in the background and does not play any
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privileged role in the asymptotics (except of course in defining the underlying geometry);
rather, as in [26], the additional symmetry is considered per se, on the same footing as the
standard circle action in the usual on-diagonal expansion [7,32,34], as well as in the near-
diagonal rescaled extensions [2,30]. As in the toric case [26], this changes considerably the
geometry of the asymptotics.

The present work covers part of the PhD thesis of the first author at the University of
Milano Bicocca.

2 Examples

2.1 Example 1

Let A be the hyperplane line bundle on M = P
3; then, the unit circle bundle X ⊆ A∨\(0)

may be identified with S7 ⊂ C
4\{0}, and the projection π : X → P

3 with the Hopf map.
Consider the unitary representation of G on C4 ∼= C

2 ⊕ C
2 given by

A · (Z ,W ) = (AZ , AW ); (21)

here Z = (z1, z2)t , W = (w1, w2)
t ∈ C

2. This linear action yields by restriction a contact
action μ̃ : G × S7 → S7 and descends to an holomorphic action μ : G × P

3 → P
3. If ωFS

is the Fubini-Study form on P
3, then μ is Hamiltonian with respect to 2ωFS . The moment

map is

�G : [Z : W ] ∈ P
3 �→ ı

‖Z‖2 + ‖W‖2 [zi z j + wi w j ] ∈ g. (22)

Furthermore, μ̃ is the contact lift of μ.
From this, one can draw the following conclusions:

Lemma 2.1 Under the previous assumptions, we have:

1. −ı �G([Z : W ]) is a convex linear combination of the orthogonal projections onto the
subspaces of C2 spanned by Z and W, respectively;

2. −ı �G([Z : W ]) has rank 2 if and only if Z and W are linearly independent, rank 1
otherwise;

3. �G(M) = ı K , where K denotes the set of all positive semidefinite Hermitian matrices
of trace 1;

4. the determinant of −ı �G([Z : W ]) is

det
(− ı �G([Z : W ])) = |Z ∧W |2

(‖Z‖2 + ‖W‖2)2 ,

where Z ∧W = z1 w2 − z2 w1 ∈ C;
5. the eigenvalues of −ı �G([Z : W ]) are both real and given by

λ1,2([Z : W ]) = 1

2

⎛

⎝1±
√

1− 4 |Z ∧W |2
(‖Z‖2 + ‖W‖2)2

⎞

⎠ .

Let us fix ν ∈ Z
2 with ν1 > ν2 ≥ 0. Let as above Oν ⊆ g denote the coadjoint orbit of

ı Dν . With M = P
3, the locus MG

Oν
= �−1

G (R+ ·Oν) is given by the condition

ν2 λ1([Z : W ])− ν1 λ2([Z : W ]) = 0.

In view of Lemma 2.1, this implies:
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Corollary 2.1 Under the previous assumptions,

MG
Oν

=
{
[Z : W ] ∈ P

3 : |Z ∧W |
‖Z‖2 + ‖W‖2 =

√
ν1 ν2

ν1 + ν2

}
.

Let us now consider transversality. By Lemma 4.1 (see also the discussion in §2 of [26]),
�G is transverse to the ray R+ · ı Dν in g if and only if μ̃ is locally free along XG

ν in (1.2)
(i.e., each x ∈ XG

ν has discrete stabilizer).
On the other hand, by (21) μ̃ is locally free at (Z ,W ) ∈ S7 if and only if Z ∧ W �= 0,

and this is equivalent to�([Z : W ]) having rank 2; this means that−ı �G([Z : W ]) has two
positive eigenvalues. Thus, we obtain the following.

Corollary 2.2 The following conditions are equivalent:

1. �G is transverse to R+ · ı Dν , and �−1
G (R+ · ı Dν) �= ∅;

2. �G is transverse to Oν , and �−1
G (R+ ·Oν) �= ∅;

3. ν1, ν2 > 0.

Let us now consider the restricted Hamiltonian action of T . Identifying t with ı R2,
�T : M → t may be written:

�T : [Z : W ] ∈ P
3 �→ ı

‖Z‖2 + ‖W‖2
(|z1|2 + |w1|2
|z2|2 + |w2|2

)
∈ t. (23)

Thus, we obtain

Lemma 2.2 Assume that ν1 > ν2 ≥ 0; then:

1. the image of �T in t ∼= ı R2 is

�T (M) = ı

{(
x
y

)
: x + y = 1, x, y ≥ 0

}
;

2. the locus MT
ν = �−1

T (R+ · ı Dν) is given by

MT
ν = {[Z : W ] ∈ P

3 : ν2
(|z1|2 + |w1|2

) = ν1
(|z2|2 + |w2|2

)} ;
3. �T is transverse to R+ · ı Dν and MT

ν �= ∅ if and only if ν1, ν2 > 0.

Proof The first two statements follow immediately from (23). As to the third, let us recall
again that �T is transverse to R+ · ı Dν if and only if the action of T on XT

ν ⊂ S7 is locally
free [26].

On the other hand, T acts locally freely at (Z ,W ) ∈ S7 if and only if Z andW are neither
both scalar multiples of e1, nor both scalar multiples of e2, where (e1, e2) is the standard
basis of C2. By 2), there are no points (Z ,W ) of this form in XT

ν if and only if ν2 > 0.  "
Hence, if ν1, ν2 > 0, then both �G and �T are transverse to R+ · ν, and MG

ν �= ∅,
MT

ν �= ∅. For instance,
[√

ν1

ν1 + ν2
e1 :

√
ν2

ν1 + ν2
e2

]
∈ MG

ν ∩ MT
ν .

More generally, we have the following.

Lemma 2.3 For any ν, MG
ν ∩ MT

ν = �−1
G

{
ı (ν1 + ν2)

−1 Dν

}
.

123



Equivariant asymptotics of Szegö kernels under… 649

Proof By Lemma 2.1, [Z : W ] ∈ MG
ν if and only if−ı �G([Z : W ]) is similar to Dν/(ν1+ν2);

on the other hand, by Lemma 2.2, [Z : W ] ∈ MT
ν if and only if for some z ∈ C

−ı �G([Z : W ]) =
(
ν1/(ν1 + ν2) z

z ν1/(ν1 + ν2)

)
.

Equaling determinants, we conclude that z = 0. This concludes the proof.  "
Let gı ⊆ g be the affine hyperplane of the skew-Hermitian matrices of trace ı ; we may

interpret �G as a smooth map �′
G : P3 → gı .

Lemma 2.4 If ν1 > ν2 > 0, then ı (ν1 + ν2)
−1 Dν ∈ gı is a regular value of �′

G.

Proof Clearly, the latter matrix is a regular value of�′
G if and only if�G is transverse to the

ray R+ · ı Dν ; thus, the statement follows from Corollary 2.2.  "
By Lemmata 2.3 and 2.4, we obtain

Corollary 2.3 Suppose ν1 > ν2 > 0. Then, with M = P
3:

1. MG
O and MT

ν are smooth compact (real) hypersurfaces in M;
2. MG

O ∩ MT
ν is a smooth submanifold of M of real codimension 3.

Let us now describe the saturation G · MT
ν .

Lemma 2.5 Under the previous assumptions,

G · MT
ν =

{
[Z : W ] ∈ P

3 : ‖Z ∧W‖
‖Z‖2 + ‖W‖2 ≤

√
ν1 ν2

ν1 + ν2

}
.

Proof Consider [Z : W ] ∈ P
3 with (Z ,W ) ∈ S7. By definition, [Z : W ] ∈ G · MT

ν if and
only if there exists A ∈ G such that [AZ : AW ] ∈ MT

ν ; we may actually require without
loss that A ∈ SU (2). Let us write

A =
(
a −c
c a

)
∈ SU (2), Z =

(
z1
z2

)
, W =

(
w1

w2

)
;

then [AZ : AW ] ∈ MT
ν if and only if (with some computations)

0 = ν2
(|a z1 − c z2|2 + |aw1 − cw2|2

)− ν1
(|c z1 + a z2|2 + |cw1 + aw2|2

)

= ν2

∥∥∥∥

(
z1 z2
w1 w2

) (
a
−c

)∥∥∥∥

2

− ν1

∥∥∥∥

(
z1 z2
w1 w2

) (
c
a

)∥∥∥∥

2

. (24)

In other words, [Z : W ] ∈ G · MT
ν if and only if there exists an orthonormal basis B =

(V1, V2) of C2 such that

ν2

∥∥∥∥

(
z1 z2
w1 w2

)
V1

∥∥∥∥

2

= ν1

∥∥∥∥

(
z1 z2
w1 w2

)
V2

∥∥∥∥

2

. (25)

Now for any V ∈ C
2 we have

∥∥∥∥

(
z1 z2
w1 w2

)
V

∥∥∥∥

2

= V t
(
z1 w1

z2 w2

) (
z1 z2
w1 w2

)
V

= V t 1

ı
�G([Z : W ]) V .
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If λ1(Z ,W ) ≥ λ2(Z ,W ) ≥ 0 are the eigenvalues of−ı �G([Z : W ]) (Lemma 2.1), we then
obtain for any V ∈ S7

λ1(Z ,W ) ≥
∥
∥
∥
∥

(
z1 z2
w1 w2

)
V

∥
∥
∥
∥

2

≥ λ2(Z ,W ), (26)

with left (respectively, right) equality holding if and only if V is an eigenvector of−ı �G([Z :
W ]) relative to λ1(Z ,W ) (respectively, λ2(Z ,W )). We conclude from (25) and (26) that if
(Z ,W ) ∈ G · XT

ν , then the following inequalities holds:

ν1 λ1(Z ,W ) ≥ ν2 λ2(Z ,W ), ν2 λ1(Z ,W ) ≥ ν1 λ2(Z ,W ). (27)

While the former is trivial, since ν1 > ν2 > 0 and λ1(Z ,W ) ≥ λ2(Z ,W ) ≥ 0, the latter is
equivalent to the other √

ν1 ν2

ν1 + ν2
≥ ‖Z ∧W‖. (28)

Suppose, conversely, that (28) holds. Then, (27) also holds. Let (W1,W2) be an orthonor-
mal basis of eigenvectors of −ı �G

([Z : W ]) with respect to the eigenvalues λ1(Z ,W ) and
λ2(Z ,W ), respectively. Evaluating the two sides of (25) with V ′

1 = W1, V ′
2 = W2 in place

of (V1, V2), we obtain

ν2

∥∥∥∥

(
z1 z2
w1 w2

)
V ′
1

∥∥∥∥

2

= ν2 λ1(Z ,W ) ≥ ν1 λ2(Z ,W ) = ν1

∥∥∥∥

(
z1 z2
w1 w2

)
V ′
2

∥∥∥∥

2

.

Using instead V ′′
1 = W2 and V ′′

2 = W1 in place of (V1, V2), we obtain

ν2

∥∥∥∥

(
z1 z2
w1 w2

)
V ′′
1

∥∥∥∥

2

= ν2 λ2(Z ,W ) ≤ ν1 λ1(Z ,W ) = ν1

∥∥∥∥

(
z1 z2
w1 w2

)
V ′′
2

∥∥∥∥

2

.

Since G = U (2) is connected and acts transitively on the family of all orthonormal basis
of C2, we conclude by continuity that there exists an orthonormal basis (V1, V2) on which
(25) is satisfied.  "

In view of Corollary 2.1, we deduce

Corollary 2.4 MG
Oν

= ∂
(
G · MT

ν

)
.

The boundary ∂
(
G · MT

ν

)
consists of those [Z : W ] ∈ P

3 such that −ı �G([Z : W ]) is
similar to (ν1+ ν2)

−1 Dν , while the interior
(
G · MT

ν

)0
consists of those [Z : W ] ∈ P

3 such
that −ı �G([Z : W ]) is similar to a matrix of the form

1

ν1 + ν2

(
ν1 z
z ν2

)
,

for some complex number z �= 0.
Finally, the locus X ′ ⊆ X = S7 of those (Z ,W ) at which μ̃ is not locally free is defined

by the condition Z ∧ W = 0, and therefore, it is contained in
(
G · MT

ν

)0
. It is the unit

circle bundle over a non-singular quadric hypersurface in P
3. The stabilizer subgroup of

(Z ,W ) ∈ S7 is trivial if Z ∧W �= 0, and it is isomorphic to S1 otherwise.
For any fixed ν = (ν1, ν2) ∈ Z

2 with ν1 > ν2, let consider how Vkν appears in the
isotypical decomposition of H (X) under μ̂ in (7). The Hopf map π : X = S7 → P

3 is
the quotient map for the standard action r : S1 × S7 → S7 ⊂ C

4, given by complex scalar
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multiplication. The corresponding unitary representation of S1 on H(X) yields an isotypical
decomposition H(X) =⊕

l∈Z Hl(X), where for l ∈ N we set

Hl(X) :=
{
f ∈ H(X) : f

(
eıθ x

) = eı lθ f (x)∀ x = (Z ,W ) ∈ X , eiθ ∈ S1
}
.

As is well known, there are natural U (2)-equivariant unitary isomorphisms

Hl(X) ∼= H0 (
P
3,OP3(l)

) ∼= Syml (
C
2 ⊕ C

2)

=
l⊕

h=0
Symh (

C
2)⊗ Syml−h (

C
2) . (29)

On the other hand, a character computation yields the following.

Lemma 2.6 For p ≥ q,

Symp (
C
2)⊗ Symq (

C
2) ∼=

q⊕

a=0
(det)⊗a ⊗ Symp+q−2a (

C
2) .

as U (2)-representations.

Proof of Lemma 2.6 The character of Symp
(
C
2
)
is χ(p+1,0). Since the character of a ten-

sor product of representations is the product of the respective characters, the character of
Symp

(
C
2
)⊗Symq

(
C
2
)
is χ ′ := χ(p+1,0) ·χ(q+1,0). Let us evaluate χ on a diagonal matrix

Dz with diagonal z = (z1, z2). We obtain

χ ′(Dz) = z p+11 − z p+12

z1 − z2
·
(
zq1 + zq−11 z2 + · · · + z1 z

q−1
2 + zq2

)

= 1

z1 − z2
·
⎛

⎝
q∑

j=0
z p+1+q− j
1 z j2 −

q∑

j=0
z j1 z

p+1+q− j
2

⎞

⎠

=
q∑

j=0

1

z1 − z2
·
(
z p+1+q− j
1 z j2 − z j1 z

p+1+q− j
2

)

=
q∑

j=0
χ(p+1+q− j, j)(Dz). (30)

Now, a character is uniquely determined by its restriction to T , and on the other hand, the
character of a direct sum is the sum of the characters; therefore, in view of (8), we conclude
from (30) that

Symp (
C
2)⊗ Symq (

C
2) ∼=

q⊕

j=0
V(p+1+q− j, j) =

q⊕

j=0
det⊗ j ⊗ Symp+q−2 j (

C
2) .

 "
Therefore,

Hl(X) ∼=
l⊕

h=0
Hl,h(X), (31)
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where we set

Hl,h(X) :=
min(h,l−h)⊕

a=0
(det)⊗a ⊗ Syml−2a (

C
2) . (32)

In order for the ath summand in (31) to be isomorphic to Vkν , we need to have a = k ν2 and
l−2a = k (ν1−ν2)−1; hence, in this special case H(X)kν ⊆ Hl(X)with l = k (ν1+ν2)−1.
Let us estimate the multiplicity of H(X)kν in Hl(X). In order for the ath summand with
a = k ν2 to appear in Hlh(X) in (32) for some h ≤ k (ν1 + ν2)− 1, we need to have

a = k ν2 ≤ min
(
h, k (ν1 + ν2)− 1− h

)

⇒ k ν2 ≤ h, k ν2 ≤ k (ν1 + ν2)− 1− h

⇒ k ν2 ≤ h ≤ k ν1 − 1. (33)

Hence, there are k(ν1− ν2)−1 values of h for which Hl,h(X) contains one copy of Vkν . The
dimension of H(X)kν is thus

(
k(ν1 − ν2)− 1

)
k(ν1 − ν2) ∼ k2 (ν1 − ν2)

2 + O(k).

2.2 Example 2

Next, we shall briefly describe an example on M = P
4, being much sketchier than in the

previous case. As before, A will denote the hyperplane line bundle, and X = S9 the dual
unit circle bundle.

Let us consider the unitary action of U (2) on C5 ∼= C
2 ⊕ C

2 ⊕ C given by

A · (Z ,W , t) = (AZ , AW , det(A) t); (34)

here Z = (z1, z2)t , W = (w1, w2)
t ∈ C

2, t ∈ C.We shall again denote by μ̃ : G×S9 → S9,
and μ : G × P

4 → P
4 the associated contact and Hamiltonian actions. The moment map is

now

�G : [Z : W : t] ∈ P
4 �→ ı

‖Z‖2 + ‖W‖2 + |t |2 [zi z j + wi w j + δi j |t |2] ∈ g. (35)

Thus −ı �G
([Z : W : t]) ≥ 0 is a rescaling of ‖Z‖2 pZ + ‖W‖2 pW + |t |2 I2, and its trace

varies in [1, 2]. In particular, 0 /∈ �T (M).
Now, (Z ,W , t) ∈ S9 has non-trivial stabilizer under μ̃ if and only if either t = 0 and

Z ∧W = 0, or else Z = W = 0. In the former case,−ı �G
([Z : W : t]) is similar to D(1,0),

and in the latter to I2. Therefore, �G is transverse to R+ · ı Dν for any ν with ν1 > ν2 > 0.
Furthermore, if (Z ,W , t) ∈ S9 has non-trivial stabilizer K in T under μ̃, then Z and W

are either both multiples of e1, in which case K � {1}× S1, or both multiples of e2, in which
case K � S1 × {1}. If t �= 0, the condition det(A) = 1 for A ∈ K implies that A = I2, so
K is trivial. If t = 0, then −ı �G

([Z : W : t]) is either D(1,0) or D(0,1). On the other hand,
if Z = W = 0, then −ı �G

([Z : W : t]) = I2. Thus, �T is transverse to the ray R+ · ı ν if
ν1 > ν2 > 0.

Let us fix one such ν, and look for all the copies of Vkν within H(X) ∼=⊕+∞
l=0 Hl(X).

For any l = 0, 1, 2, . . ., by Lemma 2.6 we have

Hl(X) =
⊕

p+q+r=l
Sym p (

C
2)⊗ Symq (

C
2)⊗ det⊗r

∼=
⊕

p+q+r=l

min(p,q)⊕

a=0
Symp+q−2a (

C
2)⊗ det⊗(a+r) (36)

123



Equivariant asymptotics of Szegö kernels under… 653

The general summand in (36) is isomorphic to Vkν if and only if

a + r = kν2, p + q − 2a = k (ν1 − ν2)− 1. (37)

Thus for any r = 0, . . . , kν2 we can set a = kν2− r and then consider all the pairs (p, q)
such that

p + q + 2r = k (ν1 + ν2)− 1. (38)

We see from (38) that

k (ν1 + ν2)− 1 ≥ l = p + q + r = k (ν1 + ν2)− 1− r ≥ k ν1 − 1; (39)

furthermore, equality holds on the left in (39) when r = 0 and on the right when r = k ν2;
every intermediate value is assumed. Therefore in this case H(X)kν ∩Hl(X) �= (0) for every
l = k ν1 − 1, k ν1, . . . , k (ν1 + ν2) − 1, so that H(X)kν is not a space of sections of any
power of A.

Finally, we see from (37) and (38) that the copies of Vkν within H(X) are in one-to-one
correspondence with the triples (p, q, r) of natural numbers such that 0 ≤ r ≤ k ν2 and
p + q = k (ν1 + ν2)− 2r − 1. It follows that

dim
(
H(X)kν

) = k3 ν1 ν2 (ν1 − ν2)+ O
(
k2
)
.

3 Proof of Theorem 1.1

3.1 Preliminaries

Before delving into the proof, let us collect some useful pieces of notation and recall some
relevant concepts and results.

3.1.1 TheWeyl integration formula

For the following, see, e.g., §2.3 of [33]. Let dVG and dVT denote the Haar measures on G
and T , respectively (or the respective smooth densities). They determine a ‘quotient’ measure
dVG/T on G/T .

Definition 3.1 Let us define � : T → C by setting

�(t) := t1 − t2
(
t = (t1, t2) ∈ T

);
here we identify T with S1 × S1 in the natural manner.

Furthermore, for any f ∈ C∞(G) let us define A f : T → C by setting

A f (t) :=
∫

G/T
f
(
g t g−1

)
dVG/T (g T ).

If f is a class function, A f (t) = f (t) for any t ∈ T .

Then, the following holds.
Theorem (Weyl)With the assumptions and notation above,

∫

G
f (g) dVG(g) = 1

2

∫

T
A f (t)

∣∣�(t)
∣∣2 dVT (t).
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3.1.2 Ladder representations

For the following concepts, see [13].We shall use throughout the identificationT ∗G ∼= G×g∨
induced by right translations. If R and S are manifolds and� ⊂ T ∗R×T ∗S is a Lagrangian
submanifold, the corresponding canonical relation is

�′ := {(
(r , υ), (s,−γ )

) : ((r , υ), (s, γ )) ∈ �
}
.

Definition 3.2 For every weight ν, let χν : G → C be the character of the associated
irreducible representation, and let dν = ν1 − ν2 be the dimension of its carrier space. Let us
denote by L = Lν := (k ν)+∞k=0 the ladder sequence of weights generated by ν, and set

χL :=
+∞∑

k=1
dkν χkν ∈ D′(G). (40)

Definition 3.3 For every f ∈ C(O), let G f � G be the stabilizer subgroup of f , and let
g f � g be its Lie algebra. Let H f � G f be the closed connected codimension-1 subgroup
with Lie subalgebra h f = g f ∩ f ⊥. The locus

�L :=
{
(g, r f ) ∈ G × g∨ : f ∈ O, r > 0, g ∈ H f

}
(41)

is a Lagrangian submanifold of T ∗G.

Then, we have the following.

Theorem (Theorem 6.3 of [13]) χL is a Lagrangian distribution on G, and its associated
conic Lagrangian submanifold of T ∗G ∼= G × g∨ is �L in (41).

Consider the Hilbert space direct sum

H(X)L :=
+∞⊕

k=1
H(X)k ν,

and let �L : L2(X) → L2(X)L denote the corresponding orthogonal projector, �L(·, ·) ∈
D′(X × X) its Schwartz kernel. Then,

�L(x, y) :=
∫

G
χL (g)�

(
μ̃g−1(x), y

)
dVG(g). (42)

We shall express (42) in functorial notation (cfr the discussion on page 374 of loc. cit.), and
use basic results on the functorial behavior ofwave fronts under pull-backs and push-forwards
(see for instance §1.3 of [9] and §VI.3 of [11]) to draw conclusions on the singularities of
�L .

To this end, let us consider the map

f : G × X × X → X × X , (g, x, y) �→ (
μ̃g−1(x), y

)

and the distribution �̂ := f ∗(�) ∈ D′(G × X × X). Let

� := {(x, r αx ) : x ∈ X , r > 0} ⊂ T ∗X\(0) (43)

denote the closed symplectic cone sprayed by the connection 1-form; by [4], the wave front
of � satisfies

WF′(�) = diag(�) ⊂ � ×�. (44)

It follows that WF′
(
�̂
) ⊆ f ∗

(
diag(�)

)
. This implies the following.
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Lemma 3.1 In terms of the identification T ∗G ∼= G × g∨ induced by right translations, the
canonical relation of �̂ is

WF′
(
�̂
) =

{((
g, r �G(mx )

)
, (x, r αx ), (y, r αy)

)

: g ∈ G, x ∈ X , r > 0, y = μ̃g−1(x)
}
; (45)

recall that mx = π(x).

Now let us give the functorial reformulation of (42). Consider the diagonal map

� : G × X × X → G × G × X × X , (g, x, y) �→ (g, g, x, y),

and the projection

p : G × X × X → X × X , (g, x, y) �→ (x, y).

Lemma 3.2 The Schwartz kernel �L ∈ D′(X × X) is given by

�L = p∗
(
�∗(χ L � �̂

))
.

Let σ : T ∗G → T ∗G be given by (g, f ) �→ (g,− f ). Then,

WF(χ L � �̂) ⊆
(
σ(�L)× (0)

)
∪
(
σ(�L)×WF

(
�̂
) ) ∪

(
(0)×WF

(
�̂
) )

⊂ T ∗G × (T ∗G × T ∗X × T ∗X).

Therefore, the pull-back �∗(χ L � μ̂
)
is well defined, and

WF
(
�∗(χ L � �̂

)) ⊆ d�∗(WF(χ L � �̂)
)

⊆
(
σ(�L)× (0)

)
∪ d�∗(σ(�L)×WF

(
�̂
) ) ∪WF

(
�̂
)

⊂ T ∗G × T ∗X × T ∗X . (46)

Explicitly, we have

d�∗(σ(�L)×WF
(
�̂
) )

=
{((

g,− f + r �G(mx )
)
, (x, r αx ), (y,−r αy)

)

: f ∈ C(O), g ∈ H f , x ∈ X , r > 0, y = μ̃g−1(x)
}
. (47)

Using that�G is nowhere vanishing,we can nowapply Proposition 1.3.4 of [9] to conclude
the following.

Corollary 3.1 The wave front W F(�L ) ⊆ (T ∗X\(0)) × (T ∗X\(0)) of the distributional
kernel �L satisfies

W F
(
�L

)

⊆
{(

(x, r αx ), (y,−r αy)
)
: f := �G(x) ∈ C(O), y ∈ H f · x

}
,

where H f · x is the H f -orbit of x.

Corollary 3.2 Let SS(�L) ⊆ X × X be the singular support of the distributional kernel�L .
Then, SS

(
�L

) ⊆ Zν .
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3.2 The proof

Proof of Theorem 1.1 For every μ = (μ1, μ2) ∈ Z
2 with μ1 > μ2, let Pμ : L2(X) →

L2(X)μ be the orthogonal projector. Clearly

�kν = Pkν ◦�L . (48)

In terms of Schwartz kernels, (48) can be reformulated as follows:

�kν(x, y) = dkν

∫

G
dVG(g)

[
χkν(g)�L

(
μ̃g−1(x), y

)]
. (49)

Using the Weyl integration, character and dimension formulae, (49) can in turn be rewritten
as follows:

�kν(x, y)

= k (ν1 − ν2)

(2π)2

∫

(−π,π)2
dϑ

[
e−ı k〈ν,ϑ〉

(
eı ϑ1 − eı ϑ2

)
FL

(
x, y; eı ϑ

)]
, (50)

where for t ∈ T we set

FL(x, y; t) :=
∫

G/T
dVG/T (gT )

[
�L

(
μ̃g t−1 g−1(x), y

)]
. (51)

Now suppose K � (X × X)\Zν . We may assume without loss that K is G×G-invariant.
There exist G × G-invariant open subsets A, B ⊂ X × X such that

K ⊂ A � (X × X)\Zν, Zν ⊂ B � (X × X)\K , X × X = A ∪ B.

Hence, A is a G ×G-invariant open neighborhood of K in X × X , and the restriction of�L

to A is C∞.
Therefore, we get a C∞ function

R : T × G/T × A → C,
(
t, gT , (x, y)

) �→ �L
(
μ̃g t−1 g−1(x), y

)
.

With FL as in (51), we obtain a C∞ function on T × A by setting

β : (t, (x, y)) �→ �(t) FL (x, y; t).

Let us denote by FT the Fourier transform with respect to t ∈ T of a function on T × A,
viewed as a function on Z

2 × A; then (50) may be rewritten

�kν(x, y) = k

2
(ν1 − ν2) · FT (β)(k ν; x, y). (52)

The statement of Theorem 1.1 follows from (52) and the previous considerations.  "

4 Proof of Theorem 1.2

We shall assume throughout this section that the assumptions of Theorem 1.2 hold.

123



Equivariant asymptotics of Szegö kernels under… 657

4.1 Preliminaries

Before attacking the proof, it is in order to list some useful preliminaries (see also the
discussion in §2 of [26]).

For any m ∈ M , let valm : g → TmM be the evaluation map ξ �→ ξM (m); similarly, for
any x ∈ X let valx : g→ Tx X be the evaluation map ξ �→ ξX (x).

4.1.1 Ray transversality and locally free actions

Since μ̃ preserves the connection 1-form, the induced cotangent action of G on T ∗X leaves
the symplectic cone � in (43) invariant. The restricted action is of course still Hamiltonian,
and its moment map �̃G : � → g is the restriction to � of the cotangent Hamiltonian map
on T ∗X .

If m ∈ MG
O , then by equivariance �G is transverse to R+ ·�G(m). Hence,

dm�G(TmM)+ span
(
�G(m)

) = g. (53)

Suppose x ∈ π−1(m) ⊂ X and r > 0, and consider σ = (x, rαx ) ∈ �. Then, it follows
from (53) that

dσ �̃G(Tσ�) = dm�G(TmM)+ span
(
�G(m)

) = g. (54)

Thus �̃G is submersive at any (x, rαx ) with x ∈ XG
O . If we let �G

O ∼= XG
O × R+ denote the

inverse image of XG
O in �, we conclude therefore that G acts locally freely on �G

O , and this
clearly implies that it acts locally freely on XG

O .
The previous implications may obviously be reversed, and we obtain the following.

Lemma 4.1 The following conditions are equivalent:

1. �G is transverse to R+ · ı ν;
2. μ̃ is locally free on XG

O;
3. for every x ∈ XG

O , valx is injective;
4. for every m ∈ MG

O , valm is injective on �G(m)⊥g .

4.1.2 The vector field7 = 7�,�

Let us construct the normal vector field ϒ = ϒμ,ν to MG
O appearing in the statement of

Theorem 1.2.
Bydefinition,m ∈ MG

Oν
if and only if�G(m) is similar to ı λν(m) Dν , for someλν(m) > 0

(Definition 1.2). Equating norms and traces, we obtain

λν(m) = ‖�G(m)‖
‖ν‖ = −ı trace

(
�G(m)

)

ν1 + ν2

(
m ∈ MG

Oν

)
. (55)

Since ν1 > ν2, there exists a unique coset hm T ∈ G/T such that

�G(m) = ı λν(m) hm Dν h
−1
m . (56)

Let us set ν⊥ := (−ν2 ν1
)t
, and define ρ = ρν : MG

Oν
→ g by setting

ρ(m) := ı hm Dν⊥ h−1m

(
m ∈ MG

Oν

)
. (57)

Then, ρ(m)M ∈ X(M) is the vector field on M induced by ρ(m) ∈ g; its evaluation at
m′ ∈ M is ρ(m)M (m′) (and similarly for X ).
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Definition 4.1 The vector field ϒ = ϒμ,ν along MG
Oν

is

ϒ(m) := Jm
(
ρ(m)M (m)

) (
m ∈ MG

Oν

)
.

With abuse of notation, recalling (4) we shall also denote by ϒ the vector field along XG
Oν

given by
ϒ(x) := Jx

(
ρ(mx )X (x)

)
, mx := π(x).

Notice that
〈�G(m), ρ(m)〉 = λν(m) 〈ν, ν⊥〉 = 0

(
m ∈ MG

Oν

)
. (58)

Therefore, in view of (6) for any x ∈ π−1(m) we have

ρ(m)X (x) = ρ(m)
�
M (x) = ρ(m)M (m)�(x). (59)

Hence, ϒ(x) = ϒ(m)� if m = π(x).

4.1.3 A spectral characterization of G · MT
�

Suppose that −ı �G(m) has eigenvalues λ1(m) ≥ λ2(m). Then, m ∈ MG
O if and only if

λ1(m)ν2−λ2(m) ν1 = 0. We shall give a similar spectral characterization of G ·MT
ν . Notice

that if λ1(m) = λ2(m), then�G(m) is a multiple of the identity, hence certainlym /∈ G ·MT
ν .

Thus we may as well assume that λ1(m) > λ2(m).

Proposition 4.1 Suppose m ∈ M, and let the eigenvalues of −ı �G(m) be λ1(m) > λ2(m).
Then, m ∈ G · MT

ν if and only if

t(m, ν) := λ1(m) ν2 − λ2(m) ν1

(ν1 + ν2)
(
λ1(m)− λ2(m)

) ∈ [0, 1/2). (60)

Proof of Proposition 4.1 Let us set λ(m) := (
λ1(m), λ2(m)

)
, and let Dλ be the corresponding

diagonal matrix. By definition, m ∈ G · MT
ν if and only if there exists g ∈ SU (2) � G such

that diag
(
g Dλ g−1

) ∈ R+ · ν. This is equivalent to the condition that there exist u, w ∈ C

such that
(
u −w

w u

)
Dλ

(
u w

−w u

)
= c

(
ν1 a
a ν2

)
, (61)

for some c > 0 and a ∈ C. If we set t = |w|2, we conclude that m ∈ MG
O if and only if there

exists t ∈ [0, 1] such that

λt (m) :=
(
(1− t) λ1(m)+ t λ2(m)

t λ1(m)+ (1− t) λ2(m)

)
∈ R+

(
ν1
ν2

)
. (62)

The condition λt (m) ∧ ν = 0 translates into the equality t = t(m, ν). Hence, we need to
have t(m, ν) ∈ [0, 1]. Given this, λt (m) is a positive multiple of ν if and only if

(
1− t(m, ν)

)
λ1(m)+ t(m, ν) λ2(m) > t(m, ν) λ1(m)+ (

1− t(m, ν)
)
λ2(m),

and this is equivalent to t(m, ν) < 1/2.
Conversely, suppose that t(m, ν) ∈ [0, 1/2), and define

g :=
(√

1− t(m, ν) −√t(m, ν)√
t(m, ν)

√
1− t(m, ν)

)
.

 "
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4.2 The proof

Proof of Theorem 1.2 As �G is equivariant, it is transverse to R+ · ı Dν if and only if it is
transverse to R+ · O. Given that ν1 > ν2, O is two dimensional (and diffeomorphic to S2);
therefore,R+ ·O has codimension 1 in g. Similarly,R+ · ı Dν has codimension 1 in t∨. Given
that 0 /∈ �T (M), we conclude the following.

Step 4.1 MG
ν , MG

O and MT
ν are compact and smooth (real) submanifolds of M. MG

ν has
codimension 3, and MG

O and MT
ν are hypersurfaces.

The Weyl chambers in t are the half-planes

t+ := {
μ : μ1 > μ2

}
, t− := {

μ : μ1 < μ2
}
,

and clearly with our identifications ı Dν ↔ ν ∈ t+. Since�G(M)∩ t+ is a convex polytope
[14,15,18],�G(M)∩R+·ı Dν is a closed segment J . Furthermore, for any a ∈ J , the inverse
image �−1

G (a) ⊆ M is also connected [19,21]. Thus we obtain the following conclusion.

Step 4.2 MG
ν , MG

O and MT
ν are connected.

Proof of Step 4.2 The previous considerations immediately imply that MG
ν is connected.

Given this, since MG
O = G · MG

ν , the connectedness of G implies the one of MG
O . Let

us consider MT
ν . Since �T (M) is a convex polytope [1,14], �T (M) ∩ R+ · ı Dν is also a

closed segment J ′. The statement follows since the fibers of �T are connected again by
[19,21].  "

For any m ∈ MG
O , let us set

MG
�G (m) := �−1

G

(
R+ ·�G(m)

)
.

Since�G is transverse toR+·ν, by equivariance it is also transverse toR+·�G(m); hence,
MG

�G (m) is also a connected real submanifold of M , of real codimension 3 and contained in

MG
O .
Let us consider the normal bundle N

(
MG

�G (m)

)
toMG

�G (m) ⊂ M . For any ξ ∈ g, let ξ⊥ ⊂ g

be the orthocomplement to ξ . Under the equivariant identification g ∼= g∨, ξ⊥ corresponds
to ξ0.

For any subset L ⊆ g, let L⊥g denote the orthocomplement of L (i.e., of the linear span
of L) under the pairing 〈·, ·〉g.
Lemma 4.2 For any m ∈ MG

O , we have

Nm

(
MG

�G (m)

)
= Jm ◦ valm

(
�G(m)⊥g

)
.

Simlarly, for any m ∈ MT
ν , we have

Nm

(
MT

ν

)
= Jm ◦ valm

(
(ı ν)⊥t

)
.

Proof of Lemma 4.2 If v ∈ TmMG
�G (m), then dm�G(v) = a�G(m) for some a ∈ R. Given

η ∈ �G(m)⊥g , and with ρ as in (1), we have

ρm

(
Jm
(
ηM (m)

)
, v
)
= ωm

(
ηM (m), v

) = dm�
η(v)

= 〈dm�(v), η〉g = a〈�G(m), η〉g = 0.
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Therefore, Jm ◦ valm
(
�G(m)⊥g

) ⊆ Nm(MG
�G (m)). Since both�G(m)⊥g and Nm(MG

�G (m))

are three dimensional, it suffices to recall that by Lemma 4.1 valm is injective when restricted
to �G(m)⊥g .

The proof of the second statement is similar.  "
For any vector subspace L ⊆ g, let us set LM (m) := valm

(
L) ⊆ TmM (m ∈ M). For any

m ∈ MG
O , given that MG

O is the G-saturation of MG
�G (m), we have

TmM
G
O = TmM

G
�G (m) + gM (m). (63)

Therefore, passing to ρm-orthocomplements

Nm

(
MG

O
)
= Nm

(
MG

�G (m)

)
∩ gM (m)⊥ρm . (64)

Weconclude fromLemma4.2 and (63) that Nm
(
MG

O
)
is the set of all vectors Jm

(
ηM (m)

) ∈
TmM where η ∈ �G(m)⊥g and ρm

(
Jm
(
ηM (m)

)
, ξM (m)

) = 0 for every ξ ∈ g. From this
remark, we can draw the following conclusion.

Step 4.3 Let ϒ = ϒμ,ν be as in Sect. 4.1.2. Then, for any m ∈ MG
O we have

Nm

(
MG

O
)
= span

(
ϒ(m)

)
.

In particular, MG
O is orientable.

Proof of Step 4.3 By the above,

Nm

(
MG

O
)

=
{
Jm
(
ηM (m)

) : η ∈ �G(m)⊥g ∧ ρm

(
Jm
(
ηM (m)

)
, ξM (m)

)
= 0 ∀ξ ∈ g

}

=
{
Jm
(
ηM (m)

) : η ∈ �G(m)⊥g ∧ ωm
(
ηM (m), ξM (m)

) = 0 ∀ξ ∈ g
}

=
{
Jm
(
ηM (m)

) : η ∈ �G(m)⊥g ∧ ηM (m) ∈ ker(dm�G)
}

=
{
Jm
(
ηM (m)

) : η ∈ �G(m)⊥g ∧ [
η,�G(m)

] = 0
}
. (65)

The latter equality holds because, by the equivariance of �G , we have

dm�G
(
ηM (m)

) = d

dt
�G (μetη (m))

∣∣∣∣
t=0

= d

dt
Adetη�G (m)

∣∣∣∣
t=0

= [
η,�G(m)

]
.

There exists a unique hm T ∈ G/T such that �G(m) = ı λν(m) hm Dν h−1m . It is then
clear that 〈�G(m), η〉g = 0 and

[
η,�G(m)

] = 0 if and only if

η ∈ span
(
ı hm Dν⊥ h−1m

) = span
(
ρ(m)

)
,

where ρ(m) is as in (57). This completes the proof of Step 4.3.
 "

Step 4.4 MG
O ∩ MT

ν = MG
ν .
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Proof of Step 4.4 Obviously, MG
O ∩MT

ν ⊇ MG
ν . Conversely, suppose m ∈ MG

O ∩MT
ν . Then,

on the one hand �G(m) is similar to a positive multiple of ı Dν : for a unique hm T ∈ G/T ,

�G(m) = ı λν(m) hm Dν h
−1
m . (66)

We can assume without loss that hm ∈ SU (2). On the other diag
(
�G(m)

)
is a positive

multiple of ı ν. Hence, the diagonal of hm Dν h−1m is a positive multiple of ν. Let us write hm
as in (61) and argue as in the proof of Proposition 4.1; using that ν21 �= ν22 , one concludes
readily that hm is diagonal. Hence, hm Dν h−1m = Dν , and so �G(m) ∈ R+ · ıν. Thus
m ∈ MG

ν .
 "

Step 4.5 For any m ∈ MG
ν , TmMG

O = TmMT
ν .

Proof of Step 4.5 If m ∈ MG
ν , then hm = I2 in (56) and (57); therefore, ϒ(m) =

JM ((ı ν⊥)(m)). Hence, Nm
(
MG

O
) = span (Jm ((ı ν⊥)(m))). The claim follows from this

and Lemma 4.2.
 "

Step 4.6 MG
O = ∂

(
G · MT

ν

)
.

Proof of Step 4.6 Supposem ∈ MG
O . Thus�G(m) = ı λν(m) hm Dν h−1m for a unique hm T ∈

G/T . Let us choose δ > 0 arbitrarily small, and let M(m, δ) ⊆ M be the open ball centered
at m and radius δ in the Riemannian distance on M . Since �G is transverse to R+ · ı ν,
there exists ε1 > 0 such that the following holds. For every ε ∈ (−ε1, ε1), there exists
m′ ∈ M(m, δ) with

�G(m
′) = ı λ(m′) hm Dν+ε ν⊥ h−1m (67)

for some λ(m′) > 0 (see §2 of [28]). This implies that the eigenvalues of −ı �G(m′) are

λ1(m
′) := λ(m′) (ν1 − ε ν2), λ2(m

′) := λ(m′) (ν2 + ε ν1).

Therefore, the invariant defined in (60) takes the following value at m′:

t(m′, ν) = − ε

ν1 + ν2

ν21 + ν22

(ν1 − ν2)− ε (ν1 + ν2)
. (68)

Therefore, if ε (ν1 + ν2) > 0 (and ε is sufficiently small) then m′ /∈ G · MT
ν by Proposition

4.1. This implies MG
O ⊆ ∂

(
G · MT

ν

)
.

To prove the reverse inclusion, assume that m ∈ G · MT
ν \MG

O . Then, t(m, ν) ∈ [0, 1/2)
by Proposition 4.1. Furthermore, t(m, ν) �= 0, for otherwise m ∈ MG

O . Hence, t(m, ν) ∈
(0, 1/2); by continuity, then t(m′, ν) ∈ (0, 1/2) for every m′ in a sufficiently small open
neighborhood of m. Hence, Proposition 4.1 implies that G · MT

ν \MG
O contains an open

neighborhood of m in M . Thus G · MT
ν \MG

O is open, and in particular m /∈ ∂
(
G · MT

ν

)
.  "

Step 4.7 ϒ is outer oriented if ν1 + ν2 > 0 and inner oriented if ν1 + ν2 < 0.

Proof of Step 4.7 Let denote by Bν the collection of all B ∈ g such that diag
(
g B g−1

) ∈
R+ ı ν for some g ∈ G. Thus Bν is a conic and invariant closed subset of g\{0}; in addition,
m ∈ G · MT

ν if and only if �G(m) ∈ Bν .
If λ1(B) ≥ λ2(B) are the eigenvalues of −ı B, then Proposition 4.1 implies that B ∈ Bν

if and only if λ1(B) > λ2(B) and

t(B, ν) := λ1(B) ν2 − λ2(B) ν1
(ν1 + ν2)

(
λ1(B)− λ2(B)

) ∈ [0, 1/2).
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In particular, if t(B, ν) ∈ (0, 1/2), then B belongs to the interior of Bν .
Suppose m ∈ MG

ν and consider the path

γ1 : τ ∈ (−ε, ε) �→ �G
(
m + τ ϒ(m)

) ∈ g,

defined for sufficiently small ε > 0; the expression m+ τ ϒ(m) ∈ M is meant in an adapted
coordinate system on M centered at m. Then,

γ1(0) = �G(m) = ı λν(m) Dν , (69)

γ̇1(0) = ωm
(·, ϒ(m)

) = ρm
(·, (ı ν⊥)M (m)

)
. (70)

Let us consider a smooth positive function, y : (−ε, ε) → R+, to be determined but
subject to the condition y(0) = λν(m). Let us define a second smooth path of the form

γ2(τ ) := ı y(τ )Adeτ ξ

(
Dν+a τ ν⊥

)
, (71)

where a > 0 is a constant also to be determined.
Then,

γ1(0) = γ2(0)

γ̇2(0) = ı
[
ẏ(0) Dν + λν(m) [ξ , ν] + a λν(m) Dν⊥

]
. (72)

Clearly, we can choose a > 0 uniquely so that

a λν(m) ‖ν‖2 = ρm
(
(ı ν⊥)M (m), (ı ν⊥)M (m)

)
, (73)

so that 〈γ̇2(0), ν⊥〉 = 〈γ̇1(0), ν⊥〉. Having fixed a, we can then choose ẏ(0) uniquely so that
ẏ(0) ‖ν‖2 = ρm

(
(ı ν)M (m), (ı ν⊥)M (m)

)
, (74)

so that we also have 〈γ̇2(0), ν〉 = 〈γ̇1(0), ν〉. Finally, if we set

υ1 :=
(

0 1
−1 0

)
, υ2 :=

(
0 ı
ı 0

)

we can choose ξ ∈ spanR
{
υ1, υ2

}
uniquely so that

λν(m) 〈[ξ , ν],υ j 〉 = ρm
(
υ jM (m), (ı ν⊥)M (m)

)
, (75)

so that in addition
〈
γ̇2(0),υ j

〉 = 〈
γ̇1(0),υ j

〉
for j = 1, 2. With these choices, γ1 and γ2 agree

to first order at 0.
Let us remark that when τ is sufficiently small γ2(τ ) has eigenvalues

λ1
(
γ2(τ )

) = y(τ ) (ν1 − a τ ν2) > λ2
(
γ2(τ )

) = y(τ ) (ν2 + a τ ν1).

Hence,

t(B, ν) = − a τ

ν1 + ν2

ν21 + ν22

ν1 − ν2 + aτ (ν1 + ν2)
. (76)

Thus, if ν1 + ν2 > 0, then γ2(τ ) /∈ Bν when τ ∈ (0, ε); since γ1 and γ2 agree to second
order at 0, we also have �G

(
m + τ ϒ(m)

)
/∈ Bν when τ ∼ 0+. Hence, ϒ is outer oriented

at m and thus everywhere on MG
O .

The argument when ν1 + ν2 < 0 is similar.  "
The proof of Theorem 1.2 is complete.  "
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5 Proof of Theorem 1.3

5.1 Preliminaries

5.1.1 Recalls on Szegö kernels

Let �, �(·, ·) and �ν , �ν(·, ·) be as in (5) and (11). For any x, y ∈ X , we have

�ν(x, y) = dν

∫

G
χν(g)�

(
μ̃g−1(x), y

)
dVG(g). (77)

In view of (9) and the Weyl integration formula (3.1.1), (77) can be rewritten

�ν(x, y) = dν

∫

T
t−ν �(t) F(t; x, y) dVT (t), (78)

where t−ν = t−ν1
1 t−ν2 , and

F(t; x, y) :=
∫

G/T
�
(
μ̃gt−1g−1(x), y

)
dVG/T (g T ). (79)

We have already used the structure of the wave front of � in the proof of Theorem 1.1
(see (44)). In the proof of Theorem 1.3, we need to exploit the explicit description of � as
an FIO developed in [4] (see also the discussions in [2,30,34]).

Namely, up to a smoothing contribution, we have

�(x, y) ∼
∫ +∞

0
eı u ψ(x,y) s(x, y, u) du, (80)

where ψ is essentially determined by the Taylor expansion of the metric along the diag-
onal and s is a semiclassical symbol admitting an asymptotic expansion s(x, y, u) ∼∑

j≥0 ud− j s j (x, y). The differential of ψ along the diagonal is

d(x,x)ψ = (αx ,−αx ) (x ∈ X). (81)

5.1.2 An a priori polynomial bound

Let us record the following rough a priori polynomial bound.

Lemma 5.1 There is a constant Cν > 0 such that for any x ∈ X one has

|�kν(x, x)| ≤ Cν k
d+1

for k ' 0.

Proof Let r : S1 × X → X be the standard structure action on the unit circle bundle X . As
in 2.1, let

H(X) =
+∞⊕

l=0
H(X)l

be the decomposition of H(X) as a direct sum of isotypes for the S1-action.
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Since μ̃ commutes with the structure action of S1 on X , we have

H(X)kν =
+∞⊕

l=0
H(X)kν ∩ H(X)l .

On the other hand, by the theory of [12] we have H(X)kν ∩ H(X)l �= (0) only if the highest
weight vector r(kν) of the representation indexed by k ν satisfies

r(kν) = (k ν1 − 1, kν2) = k ν + (−1, 0) ∈ l�G(M) ⊆ g. (82)

Let us define

aG := min ‖�G‖, AG := max ‖�G‖.
Thus AG ≥ aG > 0. Therefore, we need to have

l aG ≤ ‖r(kν)‖ ≤ k ‖ν‖ + 1 ⇒ l ≤ L1(k) :=
⌈‖ν‖
aG

k + 1

aG

⌉
. (83)

Similarly,

k ‖ν‖ − 1 ≤ ‖r(kν)‖ ≤ l AG ⇒ L2(k) :=
⌊‖ν‖
AG

k − 1

AG

⌋
≤ l. (84)

On the other hand, in view of the asymptotic expansion of �k(x, x) from [7,32,34] we also
have �l(x, x) ≤ 2 (l/π)d for l ' 0. We conclude that

�kν(x, x) ≤
L2(k)∑

l=L1(k)

�l(x, x) ≤ 2

πd

L2(k)∑

l=L1(k)

ld ≤ Cν k
d+1 (85)

for some constant Cν > 0.  "

5.2 The proof

We shall use the following notational short-hand. If x ∈ X , g ∈ G, t ∈ T , let us set

x(g, t) := μ̃g t−1 g−1(x);
similarly, if m ∈ M

m(g, t) := μg t−1 g−1(m).

If t = eiϑ := (
eiϑ1 , eiϑ2

)
, we shall write x(g, t) = x(g,ϑ), m(g, t) = m(g,ϑ). Since μ̃ is

a lifting of μ, if m = π(x), then

m(g,ϑ) = π
(
x(g,ϑ)

)
.

Proof of Theorem 1.3 If we replace ν by k ν in (78) and use angular coordinates on T , we
obtain

�kν(x, y)

= k (ν1 − ν2)

(2π)2

∫ π

−π

∫ π

−π

e−ik〈ν,ϑ〉�
(
eiϑ

)
F
(
eiϑ ; x, y

)
dϑ; (86)

here eiϑ = (
eı ϑ1 , eı ϑ2

)
.
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For δ > 0, let us define

Vδ :=
{
(x, y) ∈ X : distX

(
x,G · y) ≥ δ

}
. (87)

Proposition 5.1 For any δ > 0, we have �kν(x, y) = O
(
k−∞

)
uniformly on Vδ .

Proof of Proposition 5.1 By (44), the singular support of� is the diagonal in X×X . Therefore,

β : ((x, y), gT , t) ∈ Vδ × G/T × T �→ �
(
x(g, t), y

) ∈ C (88)

is C∞. The same then holds of
(
(x, y), t

) ∈ Vδ × T �→ �(t) F(t; x, y). Hence, its Fourier
transform (86) is rapidly decreasing for k →+∞.  "

We are thus reduced to assuming that distX
(
x,G · y) < δ for some fixed and arbitrarily

small δ > 0. Let � ∈ C∞0 (R) be ≡ 1 on [−1, 1] and ≡ 0 on R\(−2, 2). We can write

�ν(x, y) = �ν(x, y)1 +�ν(x, y)2,

where the two summands on the right are defined by setting

�ν(x, y) j := dν

∫

T
t−ν �(t) F(t; x, y) j dVT (t), (89)

and F(t; x, y)1 is defined as in (79), but with the integrand multiplied by
�
(
δ−1 distX

(
x(g,ϑ), y

))
; similarly, F(t; x, y)2 is defined as in (79), but with the integrand

multiplied by 1− �
(
δ−1 distX

(
x(g,ϑ), y

))
.

Lemma 5.2 �kν(x, y)2 = O
(
k−∞

)
for k →+∞.

Proof of Lemma 5.2 On the support of the integrand in�kν(x, y)2,wehavedistX
(
x(g, t), y

) ≥
δ. We can then apply with minor changes the argument in the proof of Proposition 5.1.  "

On the support of the integrand in�kν(x, y)1, distX
(
x(g, t), y

) ≤ 2 δ; therefore, perhaps
after discarding a smoothing term contributing negligibly to the asymptotics, we can apply
(80). With some passages, we obtain in place of (86):

�kν(x, y) ∼ �kν(x, y)1

∼ k2 (ν1 − ν2)

(2π)2

∫ π

−π

∫ π

−π

∫

G/T

∫ +∞

0
eı k�x,y Ax,y du dVG/T (gT ) dϑ; (90)

we have applied the rescaling u �→ k u to the parameter in (80), and set

�x,y = �x,y(u,ϑ, gT ) := u ψ
(
μ̃g e−ı ϑ g−1(x), y

)− 〈ν,ϑ〉, (91)

Ax,y = Ax,y(u,ϑ, gT ) := �
(
eiϑ

)
s′
(
μ̃g e−ı ϑ g−1(x), y, k u

)
, (92)

with

s′
(
μ̃g e−ı ϑ g−1(x), y, k u

) := s
(
μ̃g e−ı ϑ g−1(x), y, k u

)

·� (δ−1 distX
(
μ̃g t−1 g−1(x), y

))
. (93)

Lemma 5.3 Only a rapidly decreasing contribution to the asymptotics is lost, if in (90) inte-
gration in du is restricted to an interval of the form (1/D, D) for some D ' 0.
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Proof of Lemma 5.3 Suppose that x, y ∈ X ,
(
g0 T , eıϑ0

) ∈ (G/T )× T and

distX (x(g0,ϑ0), y) < δ. (94)

In view of (81), in any system of local coordinates we have

d(x(g0,ϑ0),y)ψ = (αx(g0,ϑ0),−αy)+ O(δ). (95)

Let d(ϑ) denote the differential with respect to the variable ϑ . If ı η ∈ t, we obtain with
mx := π(x):

d

dτ
x(g0,ϑ0 + τ η)

∣
∣
∣
∣
τ=0

= −Adg0(ı η)X
(
x(g0,ϑ0)

)

= −Adg0(ı η)M
(
mx (g0,ϑ0)

)� +
〈
�G

(
mx (g0,ϑ0)

)
,Adg0(ı η)

〉
∂θ . (96)

On the other hand, as �G is G-equivariant we get

〈�G
(
mx (g0,ϑ0)

)
,Adg0(ı η)〉 =

〈
Adg−10

(
�G

(
mx (g0,ϑ0)

))
, ı η

〉

=
〈
�G

(
μg−10

(
mx (g0,ϑ0)

))
, ı η

〉
=
〈
�T

(
μg−10

(
mx (g0,ϑ0)

))
, ı η

〉
. (97)

Now, (95), (96) and (97) imply

d

dτ
ψ
(
x(g0,ϑ0 + τ η), y

)∣∣∣∣
τ=0

= −d(x(g0,ϑ0),y)ψ
(
Adg0(ı η)X

(
x(g0,ϑ0)

)
, 0
)

= −αx(g0,ϑ0)

(
Adg0(ı η)X

(
x(g0,ϑ0)

))+ 〈O(δ), η〉

=
〈
1

ı
�T

(
μg−10

(
mx (g0,ϑ0)

))+ O(δ), η

〉
. (98)

Let d(ϑ) denote the differential with respect to ϑ . Recalling (91), we obtain

d(ϑ)(u,g0T ,ϑ0)
�x,y = u

ı
�T

(
μg−10

(mx )
)
− ν + O(δ). (99)

By assumption, 0 /∈ �T (M). Let us set

aT := min ‖�T ‖, AT := max ‖�T ‖.
Then, AT ≥ aT > 0, and (99) implies

∥∥∥d(ϑ)(u,g0T ,ϑ0)
�x,y

∥∥∥

≥ max
{
u aT − ‖ν‖ + O(δ), ‖ν‖ − u AT + O(δ)

}
. (100)

Thus, if D ' 0 and u ≥ D, we have
∥∥∥d(ϑ)(u,g0T ,ϑ0)

�x,y

∥∥∥ ≥ aT
2

u + 1, (101)

while for 0 < u < 1/D ∥∥∥d(ϑ)(u,g0T ,ϑ0)
�x,y

∥∥∥ ≥ ‖ν‖
2

. (102)
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The Lemma then follows from (101) and (102) by a standard iterated integration by parts
in ϑ (in view of the compactness of T ).  "

Suppose that ρ ∈ C∞0
(
(0,+∞)

)
is ≡ 1 on (1/D, D) and is supported on (1/(2D), 2D).

By Lemma 5.3, the asymptotics of (90) are unaltered, if the integrand is multiplied by ρ(u).
Thus, we obtain

�kν(x, y)

∼ k2 (ν1 − ν2)

(2π)2

∫ π

−π

∫ π

−π

∫

G/T

∫ 2D

1/(2D)

eı k�x,y A′
x,y du dVG/T (gT ) dϑ; (103)

with Ax,y as in (92), we have set

A′
x,y(u,ϑ, gT ) := ρ(u)Ax,y(u,ϑ, gT ). (104)

Integration in du is now over a compact interval
Let )(z) denote the imaginary part of z ∈ C. In view of Corollary 1.3 of [4], there exists

a fixed constant D, depending only on X , such that

)
(
ψ
(
x ′, x ′′

) ) ≥ D distX
(
x ′, x ′′

)2
(x ′, x ′′ ∈ X). (105)

Proposition 5.2 Uniformly for

distX (x,G · y) ≥ C kε−1/2, (106)

we have �kν(x, y) = O
(
k−∞

)
.

Proof of Proposition 5.2 In the range (106), we have

distX
(
x(g,ϑ), y

) ≥ C kε−1/2 (107)

for every g T ∈ G/T and eı ϑ ∈ T . In view of (91) and (105),
∣∣∂u�x,y(u,ϑ, gT )

∣∣ = |ψ (x(g,ϑ), y)| ≥ ) (ψ(x(g,ϑ), y))

≥ D distX
(
x(g,ϑ), y

)2 ≥ DC2 k2ε−1. (108)

Let us use the identity

− ı

k
ψ
(
x(g,ϑ), y

)−1 d

du
eı k�x,y = eı k�x,y (109)

to iteratively integrate by parts in du in (103); then by (108) at each step we introduce a factor
O
(
k−2 ε

)
. The claim follows.  "

To complete the proof of Theorem 1.3, we need to establish the following.

Proposition 5.3 Uniformly for

distX
(
x,G · XT

ν

)
≥ C kε−1/2, (110)

we have �kν(x, x) = O
(
k−∞

)
as k →+∞.

Remark 5.1 Let distM denote thedistance functiononM ; ifm = π(x), thendistX
(
x,G · XT

ν

)

= distM
(
m,G · MT

ν

)
.
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Proof of Proposition 5.3 SinceG acts onM as a group of Riemannian isometries, (110)means
that for any g ∈ G we have

C kε−1/2 ≤ distM
(
m, μg

(
MT

ν

))
= distM

(
μg−1 (m) ,MT

ν

)
. (111)

On the other hand, as −ı �T is transverse to R+ ν, by the discussion in §2.1.3 of [28]
there is a constant bν > 0 such that every u ∈ [1/(2D), 2D] we have

∥
∥
∥−ı u�T (μg−1 (m)

)− ν

∥
∥
∥ ≥ bν C kε−1/2. (112)

Let us consider (103) with x = y:

�kν(x, x)

∼ k2 (ν1 − ν2)

(2π)2

∫ π

−π

∫ π

−π

∫

G/T

∫ 2D

1/(2D)

eı k�x,x A′
x,x du dVG/T (gT ) dϑ . (113)

Let us choose ε′ ∈ (0, ε) and multiply the integrand in (113) by the identity

�
(
k1/2−ε′ distX

(
x(g,ϑ), x

))+
[
1− �

(
k1/2−ε′ distX

(
x(g,ϑ), x

))] = 1.

Here � is as in the discussion preceding Lemma 5.2. We obtain a further splitting

�kν(x, x) ∼ �kν(x, x)a +�kν(x, x)b, (114)

where �kν(x, x)a is given by (113) with the amplitude A′
x,x replaced by

B′x,x := �
(
k1/2−ε′ distX

(
x(g,ϑ), x

)) A′
x,x ; (115)

similarly, �kν(x, x)b is given by (113) with the amplitude A′
x,x replaced by

B′′x,x :=
[
1− �

(
k1/2−ε′ distX

(
x(g,ϑ), x

))] A′
x,x .

Lemma 5.4 �kν(x, x)b = O
(
k−∞

)
as k →+∞.

Proof of Lemma 5.4 On the support of B′′x,x , we have

distX
(
x(g,ϑ), x

) ≥ kε
′−1/2. (116)

Thus, we may again appeal to (109) and iteratively integrate by parts in du, introducing at

each step a factor O
(
k−1 k1−2ε′

)
= O

(
k−2ε′

)
.  "

Thus, the proof of the Theorem will be complete once we establish the following.

Lemma 5.5 �kν(x, x)a = O
(
k−∞

)
as k →+∞.

Before attacking the proof of Lemma 5.5, let us prove the following.

Lemma 5.6 If (110) holds, then for any u ∈ [1/(2D), 2D] and k ' 0
∥∥∥d(ϑ)(u,gT ,ϑ)�x,x

∥∥∥ ≥ bν

2
C kε−1/2 (117)

on the support of B′x,x .
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Proof of Lemma 5.6 On the support of B′x,x , we have

distX
(
x(g,ϑ), x

) ≤ 2 kε
′−1/2. (118)

Thus, instead of (95) we have

d(x(g,ϑ),x)ψ = (αx(g,ϑ),−αx )+ O
(
kε

′−1/2) . (119)

Therefore, in place of (99) on the support of B′x,x we have

d(ϑ)(u,gT ,ϑ)�x,x = u

ı
�T

(
μg−1(mx )

)− ν + O
(
kε

′−1/2) . (120)

Thus, in view of (112) the claim follows since 0 < ε′ < ε.  "
Given Lemma 5.6, we can prove Lemma 5.5 essentially by iteratively integrating by parts

in dϑ .

Proof of Lemma 5.5 Since μ̃ is free on XG
O , it is also free on a small tubular neighborhood X ′

of XG
O in X . Without loss, we may restrict our analysis to X ′ in view of Theorem 1.1.

On the support of B′x,x , therefore, eı ϑ ∈ T varies in a small neighborhood of I2. Let
f : T → [0,+∞) be a bump function compactly supported in a small neighborhoodU ⊂ T
of I2 (identified with (1, 1)), and identically = 1 near I2. Then, we obtain

�kν(x, x)a ∼
(

k

2π

)2

(ν1 − ν2)

·
∫

U

∫

G/T

∫ 2D

1/(2D)

eı k�x,x f (t)B′x,x du dVG/T (gT ) dϑ . (121)

Let us introduce the differential operator

P =
2∑

h=1

∂ϑh�x,x
(
∂ϑ1�x,x

)2 + (
∂ϑ2�x,x

)2
∂

∂ϑh
, (122)

so that

1

ı k
P
(
eik�x,x

)
= eik�x,x .

Thus,
∫

U
eı k�x,x f (t)B′x,x dϑ (123)

= 1

ı k

2∑

h=1

∫

U

∂ϑh�x,x
(
∂ϑ1�x,x

)2 + (
∂ϑ2�x,x

)2
∂

∂ϑh

[
eı k�x,x

]
f
(
eıϑ

)
B′x,x dϑ

= ı

k

2∑

h=1

∫

U
eı k�x,x

∂

∂ϑh

[
∂ϑh�x,x

(
∂ϑ1�x,x

)2 + (
∂ϑ2�x,x

)2 f
(
eıϑ

)
B′x,x

]

dϑ

= ı

k

∫

U
eı k�x,x Pt( f (t)B′x,x

)
dϑ, (124)

where

Pt (γ ) :=
2∑

h=1

∂

∂ϑh

[
∂ϑh�x,x

(
∂ϑ1�x,x

)2 + (
∂ϑ2�x,x

)2 γ

]

. (125)
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Iterating, for any r ∈ N we have
∫

U
eı k�x,x f (t)B′x,x dϑ = ır

kr

∫

U
eı k�x,x

(
Pt)r ( f (t)B′x,x

)
dϑ . (126)

Let us consider the function

D : ϑ �→ distX
(
x(g,ϑ), x

) = distX
(
μ̃e−ı ϑ ◦ μ̃g−1(x), μg−1(x)

)
. (127)

We have the following.

Lemma 5.7 For ϑ ∼ 0, we have

distX
(
x(g,ϑ), x

) = F1(g T ;ϑ)+ F2(g T ;ϑ)+ · · · ,
where Fj (g T ;ϑ) is homogeneous of degree j in ϑ , and C∞ for ϑ �= 0. In addition,
F1(g T ;ϑ) = ‖Adg(ϑ)X (x)‖ =

∥∥ϑ X
(
μ̃g−1(x)

)∥∥.

For any c ∈ N let D(c) denote a generic iterated derivative of the form

∂c D
∂ϑi1 · · · ∂ϑic

;

clearly D(c) is not uniquely determined by c. By Lemma 5.7, as k →+∞

D(c) = O
(
k(c−1)(1/2−ε′)

)

where �
(
k1/2−ε′ D

)
�≡ 1. For any multi-index C = (c1, . . . , cs), let us denote by D(C) a

generic product of the form D(c1) · · · D(cs ); then,

D(C) = O
(
k(1/2−ε′)

∑
j (c j−1)

)
. (128)

Lemma 5.8 For any r ∈ N,
(
Pt
)r (

f (t)B′x,x
)
is a linear combination of summands of the

form

�(b)
(
k1/2−ε′ Dk(ϑ)

) Pa1(�x,x , ∂�x,x )[(
∂ϑ1�x,x

)2 + (
∂ϑ2�x,x

)2]a2 kb(1/2−ε′) D(C), (129)

times omitted factors bounded in k depending on f j and its derivatives, where:

1. Pa1 denotes a generic differential polynomial in �x,x , homogeneous of degree a1 in the
first derivatives ∂�x,x ;

2. if a := 2a2 − a1, then a, b,C are subject to the bound

a + b +
r∑

j=1
(c j − 1) ≤ 2 r (130)

(the sum is over the c j > 0);
3. C is not zero if and only if b > 0.

Here �(l) is the lth derivative of the one-variable real function �.
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Proof of Lemma 5.8 Let us set F := f j
(
eıϑ

) B′x,x . For r = 1, we have

∂

∂ϑh

[
∂ϑh�x,x

(
∂ϑ1�x,x

)2 + (
∂ϑ2�x,x

)2 F

]

= ∂ϑh�x,x
(
∂ϑ1�x,x

)2 + (
∂ϑ2�x,x

)2
∂ F

∂ϑh
+ F

∂

∂ϑh

[
∂ϑh�x,x

(
∂ϑ1�x,x

)2 + (
∂ϑ2�x,x

)2

]

. (131)

We have

∂ϑh�x,x
(
∂ϑ1�x,x

)2 + (
∂ϑ2�x,x

)2
∂ F

∂ϑh

= ∂ϑh�x,x
(
∂ϑ1�x,x

)2 + (
∂ϑ2�x,x

)2

[
∂ f j
∂ϑh

B′x,x +
∂ B′x,x
∂ϑh

f j

]
. (132)

Thus, in view of (115), the first summand on the right-hand side of (131) splits as a linear
combination of terms as in the statement, with a1 = a2 = 1, b and C both zero, or a1 =
a2 = 1, b = 1, C = (1). Hence, a + b+∑

j (c j − 1) = 2 in either case. On the other hand,
the second summand on the right-hand side of (131) satisfies

F
∂

∂ϑh

[
∂ϑh�x,x

(
∂ϑ1�x,x

)2 + (
∂ϑ2�x,x

)2

]

= F
[(
∂ϑ1�x,x

)2 + (
∂ϑ2�x,x

)2]2

·
{

∂2ϑh ,ϑh�x,x

[(
∂ϑ1�x,x

)2 + (
∂ϑ2�x,x

)2]− 2 ∂ϑh�x,x

2∑

a=1
∂ϑa�x,x ∂

2
ϑaϑh

�x,x

}

.

This is of the stated type with a1 = a2 = 2, b and C both zero. Hence, a = 4− 2 = 2.
Passing to the inductive step, let us consider (125) with γ given by (129), and assume

that (130) is satisfied. Let us write �(l) for the factor in front in (129). We obtain a linear
combination of expressions of the form

∂

∂ϑh

⎡

⎢
⎣�(b)

Pa1+1(�x,x , ∂�x,x )
[(
∂ϑ1�x,x

)2 + (
∂ϑ2�x,x

)2]a2+1
kb(1/2−ε′) D(C)

⎤

⎥
⎦ . (133)

It is clear that (133) splits as a linear combination of summands of the following forms:

�(b)
Pa′(�x,x , ∂�x,x )

[(
∂ϑ1�x,x

)2 + (
∂ϑ2�x,x

)2]a2+1
kb(1/2−ε′) D(C), (134)

with a′ ∈ {a1, a1 + 1, a1 + 2};

�(b)
Pa1+2(�x,x , ∂�x,x )

[(
∂ϑ1�x,x

)2 + (
∂ϑ2�x,x

)2]a2+2
kb(1/2−ε′) D(C); (135)

�(b+1) Pa1+1(�x,x , ∂�x,x )
[(
∂ϑ1�x,x

)2 + (
∂ϑ2�x,x

)2]a2+1
k(b+1)(1/2−ε′) D(C′), (136)
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where C′ is of the form C′ = (1,C);

�(b)
Pa1+1(�x,x , ∂�x,x )

[(
∂ϑ1�x,x

)2 + (
∂ϑ2�x,x

)2]a2+1
kb(1/2−ε′) D(C′), (137)

where C′ is obtained from C (if the latter is not zero) by replacing one of the c j ’s by c j + 1,
and leaving all the others unchanged.

In all these cases, we obtain a term of the form (129), satisfying (130) with r replaced by
r + 1. This completes the proof of Lemma 5.8.  "

As 0 < ε′ < ε, the general summand (129) is

O
(
ka(1/2−ε)+[b+∑ j (c j−1)](1/2−ε′)

)
= O

(
k[a+b+

∑
j (c j−1)](1/2−ε′)

)

= O
(
k2r(1/2−ε′)

)
= O

(
kr(1−2ε′)

)
.

Making use of the latter estimate in (126), we obtain the following:

Corollary 5.1 For any r ∈ N,
∫

Uj

eı k�x,x f (t)B′x,x dϑ = O
(
k−2r ε′

)
. (138)

The proof of Lemma 5.5 is thus complete.  "
Given (114), Proposition 5.3 follows from Lemmata 5.4 and 5.5.  "
Thus, the statement of Theorem 1.3 holds true when x = y. The general case follows

from this and the Schwartz inequality
∣∣�kν(x, y)

∣∣ ≤ √
�kν(x, x)

√
�kν(y, y);

in fact both factors on the right-hand side have at most polynomial growth in k by Lemma
5.1, and if say (110) holds, then the first one is rapidly decreasing. The proof of Theorem 1.3
is complete.  "

6 Proof of Theorems 1.4, 1.5 and 1.6

6.1 Preliminaries on local rescaled asymptotics

In the proof of Theorems 1.4, 1.5 and 1.6, we are interested in the asymptotics of�kν(x ′, x ′′)
when (x ′, x ′′) approaches the diagonal of XG

O in X × X along appropriate directions and at
a suitable pace.

In Theorems 1.4 and 1.6, we consider x ′ = x ′′ in a shrinking ‘one-sided’ neighborhood
of XG

O . In Theorem 1.5, we shall assume that (x ′, x ′′) approaches the diagonal in XG
O along

‘horizontal’ directions orthogonal to the orbits. We shall treat the former case in detail and
then briefly discuss the necessary changes for the latter.

Suppose x ∈ XG
O and let m = π(x). Let us choose a system of HLC centered at x , and

let us consider the collection of points

xτ,k := x + τ√
k
ϒν(m), (139)
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where k = 1, 2, . . ., and |τ | ≤ C kε for some fixed C > 0 and ε ∈ (0, 1/6). The sign of τ
is chosen so that τ ϒν(m) is either zero or outer oriented. Thus, τ (ν1 + ν2) ≥ 0. We shall
provide an integral expression for the asymptotics of �kν(xτ,k, xτ,k) when k →+∞.

Applying as before the Weyl integration and character formulae, inserting the microlocal
description of� as an FIO, and making use of the rescaling u �→ k u, ϑ �→ ϑ/

√
k, we obtain

that, as k →+∞,

�kν(xτ,k, xτ,k)

∼ k (ν1 − ν2)

(2π)2

∫

G/T
dVG/T (gT )

∫ ∞

−∞
dϑ1

∫ ∞

−∞
dϑ2

∫ +∞

0
du

⎡

⎣e
ı k

[
u ψ

(
μ̃
g e−ıϑ/

√
k g−1 (xτ,k ),xτ,k

)
−〈ϑ,ν〉/√k

]

·�
(
eıϑ/

√
k
)
s
(
μ̃g e−ıϑ/

√
k g−1(xτ,k), xτ,k, k u

)]
. (140)

Integration in ϑ = (ϑ1, ϑ2) is over a ball centered at the origin and radius O (kε) in R
2. A

cut-off function of the form �
(
k−ε ϑ

)
is implicitly incorporated into the amplitude.

In order to express the previous phase more explicitly, we need the following Definition.

Definition 6.1 Let us define ρ = ρm : G/T → t ∼= R
2, g T �→ ρg T , by requiring

〈ρg T ,ϑ〉 = ωm

(
Adg(ı Dϑ )M (m), ϒν(m)

)
(ϑ ∈ R

2).

Next, let the symmetric and positive definite matrix E(g T ) = Ex (g T ) be defined by the
equality

ϑ t E(g T )ϑ = ∥∥Adg(ı Dϑ )X (x)
∥∥2
x (ϑ ∈ R

2).

Furthermore, let us define �̃(u, g T , τ ) = �̃m(u, g T , τ ) ∈ t by setting

�̃(u, g T ) := u diag
(
Adg−1

(
�′

G(m)
)− ν, �′

G(m) := −ı �G(m).

Finally, let us pose

�(u, g T ,ϑ) := 〈
�̃(u, g T ),ϑ

〉
.

The following proposition is proved by a rather lengthy computation, along the lines of
those in the proof of Theorem 1.3 and in [26].

Proposition 6.1

ı k

[
u ψ

(
μ̃g e−ıϑ/

√
k g−1(xτ,k), xτ,k

)
− 1√

k
〈ν,ϑ〉

]

= ı
√
k �(u, g T ,ϑ)− u

2
ϑ t E(g T )ϑ + 2 ı u τ

〈
ρg T ,ϑ

〉+ k R3

(
τ√
k
,

ϑ√
k

)
.

Corollary 6.1 (140) may be rewritten as follows:

�kν(xτ,k, xτ,k)

∼ k (ν1 − ν2)

(2π)2

∫

G/T
dVG/T (gT )

∫ ∞

−∞
dϑ1

∫ ∞

−∞
dϑ2

∫ +∞

0
du

[
eı
√
k �(u,g T ,ϑ) Ak,ν(u, g T , τ,ϑ)

]
, (141)
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where (leaving implicit the dependence on x)

Ak,ν(u, g T , τ,ϑ) := e
− u

2 ϑ t E(g T )ϑ+2 ı u τ
〈
ρg T ,ϑ

〉
+k R3

(
τ√
k
, ϑ√

k

)

�
(
eıϑ/

√
k
)

·s
(
μ̃g e−ıϑ/

√
k g−1(xτ,k), xτ,k, k u

)
. (142)

Let hm T ∈ G/T be the unique coset such that h−1m �G(m) hm is diagonal. Then, only a
rapidly decreasing contribution to the asymptotics is lost in (141), if integration in dVG/T is
localized in a small neighborhood of hm T . In the following, a C∞ bump function on G/T ,
supported in a small neighborhood of hm T and identically equal to 1 near hm T , will be
implicitly incorporated into the amplitude (142).

For some choice of hm ∈ hm T and δ > 0 sufficiently small, let us consider the real-
analytic map

h : w ∈ B(0; δ) ⊂ C �→ h(w) := hm exp

(
ı

(
0 w

w 0

))
∈ G.

By composition with the projection π : G → G/T , we obtain a real-analytic coordinate
chart on G/T centered at hm T ∈ G/T , given by w ∈ B(0; δ) �→ h(w) T ∈ G/T . The
Haar volume form on G/T has the form VG/T (w) dVC(w), where dVC(w) is the Lebesgue
measure on C, and VG/T is a uniquely determined C∞ positive function on B(0; δ). We
record the following statements, whose proofs we shall omit for the sake of brevity.

Lemma 6.1 VG/T is rotationally invariant, that is,

VG/T (w) = VG/T
(
eı θ w

)
,

for all w ∈ B(0; δ) and eı θ ∈ S1. In particular, VG/T is given by a convergent power series
in r2 = |w|2 on B(0; δ).

Thus, we shall write

VG/T (w) = VG/T (r) = DG/T · SG/T (r), (143)

where DG/T > 0 is a constant, and SG/T (r) = 1+∑
j s j r

2 j .

Lemma 6.2 Let V3 be the total area of the unit sphere S3 ⊂ C
2. Then,

DG/T = 2π/V3.

Furthermore, let us introduce the real-analytic function

κ = κm : w ∈ B(0, δ) �→ diag
(
Adh(w)−1

(
�′

G(m)
)) ∈ R

2. (144)

Then, we also have the following.

Lemma 6.3 κ is rotationally invariant and is given by a convergent power series of the
following form

κ(w) = λν(m)
[
ν − r2 (ν1 − ν2) Sκ (r)b

]
, b =

(
1
−1

)
,

where r = |w|, and Sκ (r) is a real-analytic function of r , of the form

Sκ (r) = 1+
∑

j≥1
b j r

2 j .
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If w = r eıθ in polar coordinates, we shall write accordingly VG/T = VG/T (r) and
κ = κ(r).

Recalling Definition 6.1 and (144), let us set

�̃w(u) := u κ(r)− ν, �w(u,ϑ) :=
〈
�̃w(u),ϑ

〉
. (145)

We obtain the following integral formula (dependence on x on the right-hand sides is left
implicit).

Proposition 6.2 As k →+∞ we have

�kν(xτ,k, xτ,k)

∼ DG/T
k (ν1 − ν2)

(2π)2

∫ π

−π

dθ
∫ +∞

0
d r [Ik(τ, r , θ)] , (146)

where

Ik(τ, r , θ) = Ik(τ, w) :=
∫ ∞

−∞
dϑ1

∫ ∞

−∞
dϑ2

∫ +∞

0
du

[
eı
√
k �w(u,ϑ) Ak,ν(u, h

(
r eı θ

)
T , τ,ϑ)SG/T (r) r

]
. (147)

Our next goal is to produce an asymptotic expansion for Ik(τ, r , θ).

Definition 6.2 Let us set

n1(r) := k(r)
∥∥k(r)

∥∥ ,

and let n2(r) be uniquely determined for |r | < δ so that Br := (n1(r), n2(r)) is a positively
oriented orthonormal basis of R2. We shall write the change of basis matrix in the form

MBr
C2 (idR2) =

(
C(r) −S(r)
S(r) C(r)

)
, (148)

whereC2 is the canonical basis ofR2, and denote the change of coordinates byϑ = ζ1 n1(w)+
ζ2 n2(w).

A straightforward computation then yields the following.

Corollary 6.2 With w = r eıθ ∈ B(0; δ) and Ik(τ, w) as in (147), we have:

Ik(τ, w) =
∫ ∞

−∞
dζ2

[
e−ı

√
k
〈
ν,n2(w)

〉
ζ2 Jk(τ, w; ζ2)SG/T (r) r

]
, (149)

where

Jk(τ, w; ζ2)
:=

∫ ∞

−∞
dζ1

∫ +∞

0
du

[
eı
√
k ϒr (u,ζ1) Ak,ν

(
u, h (w) T , τ,ϑ(ζ )

)]
, (150)

and

ϒr (u, ζ1) :=
[
u ‖κ(r)‖ − 〈ν,n1(r)〉

]
ζ1.

Let us view Jk (150) as an oscillatory integral with phase ϒr .

123



676 A. Galasso, R. Paoletti

Lemma 6.4 ϒr has the unique critical point

Pr =
(
u(r), 0

) :=
( 〈ν,n1(r)〉

‖κ(r)‖ , 0

)
.

Furthermore, ϒr
(
Pr
) = 0, and the Hessian matrix is

H(ϒr )Pr =
(

0 ‖κ(r)‖
‖κ(r)‖ 0

)
.

Hence, its signature is zero and the critical point is non-degenerate.

In view of (142), and recalling that s0(x, x) = π−d , the amplitude in (150) may be
rewritten in the following form:

Ak,ν
(
u, h(w) T , τ,ϑ(ζ )

)

∼ e−
u
2 ϑ(ζ )t E(w)ϑ(ζ )+2 ı u τ

〈
ρh(w) T ,ϑ(ζ )

〉 [
e

ı√
k
ϑ1(ζ ) − e

ı√
k
ϑ2(ζ )

] (k u

π

)d

·
⎡

⎣1+
∑

j≥1
a j
(
u, w; τ,ϑ(ζ )) k− j/2

⎤

⎦ ; (151)

in (151) we have set E(w) := Ẽ
(
h(w) T

)
, and in view of the exponent k R3(τ/

√
k,ϑ/

√
k)

appearing in (142), a j (u, w; ·, ·) is an appropriate polynomial in (τ,ϑ) of degree ≤ 3 j .
Given Lemma 6.4, we may evaluate Jk in (150) by the stationary phase lemma, and obtain

an asymptotic expansion in descending powers of k1/2. The latter expansion may be inserted
in (149), and integrated term by term, thus leading to an asymptotic expansion for Ik . The
leading-order term of either expansion is determined by the contribution of the leading-order
term in the asymptotic expansion for the amplitude in (40), which is given by the following:

J ′k(τ, w; ζ2) =
(
k

π

)d ∫ ∞

−∞
dζ1

∫ +∞

0
du

[
eı
√
k ϒw(u,ζ1) ud

(
e

ı√
k
ϑ1(ζ ) − e

ı√
k
ϑ2(ζ )

)

·e− u
2 ϑ(ζ )t E(w)ϑ(ζ )+2 ı u τ

〈
ρh(w) T ,ϑ(ζ )

〉]
. (152)

Definition 6.3 Supposew = r eıθ ∈ B(0; δ) and let C(r) and S(r) be as in (148). Let us set

a(w) := u(r)
(−S(r) C(r)

)
E
(
w
) (−S(r)

C(r)

)

= u(r)
∥∥Adh(w)

(
n2(r)

)
X (x)

∥∥2
x

and

r(w) := 2 u(r)
〈
ρh(w) T ,n2(r)

〉

= 2 u(r) ωm

(
Adh(w)

(
n2(r)

)
M (m), ϒν(m)

)
.

Given the previous considerations, an application of the Stationary Phase Lemma yields
the following.
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Definition 6.4 With |r | < δ, let us set b(r) := 〈
ν,n2(r)

〉
, and

Dl(r) := ı l

l! ‖κ(r)‖
[
C(r)l + (−1)l−1 S(r)l

]
.

The definition of b(r) implies:

b(r) = − (ν1 − ν2) (ν1 + ν2)

‖ν‖ r2 S1(r), (153)

where S1 is a real-analytic function of the form S1(r) = 1+∑
j≥1 c j r2 j .

Proposition 6.3 Suppose x ∈ XG
O , and let xτ,k be as in (139). Then, as k →+∞ we have

�kν(xτ,k, xτ,k)

∼ DG/T
k (ν1 − ν2)

(2π)2

∫ π

−π

dθ
∫ +∞

0
d r [Ik(τ, r , θ)] , (154)

where Ik(τ, r , θ) is given by an asymptotic expansion in descending powers of k1/2, the
leading power being kd−1. As a function of τ , aside from a phase factor, the coefficient of
kd−(1+ j)/2 is a polynomial of degree ≤ 3 j . Up to non-dominant terms, we may replace
Ik(τ, w) by

Ik(τ, w)′ = −
(
k

π

)d (
2π√
k

)
SG/T (r) r · u(w)d

·
∑

l≥1

Dl(r)

kl/2

∫ ∞

−∞
dζ2

[
e−ı

√
k ζ2 fk (τ,w) ζ l2 · e−

1
2 a(w) ζ 22

]
, (155)

where for k = 1, 2, . . ., we have set

fk(τ, w) := b(r)− τ

k1/2
r(w). (156)

The Gaussian integrals in (155) may be estimated recalling that
∫ +∞

−∞
xl e−ıξ x−

1
2 λ x2dx = √

2π
(−ı)l
λl+1/2

Pl(ξ) e
− 1

2λ ξ2 , (157)

where Pl(ξ) = ξ l+∑
j≥1 pl j ξ l−2 j is a monic polynomial in ξ , of degree l and parity (−1)l

(thus the previous sum is finite). Applying (157) with

ξ = k1/2 fk(w, τ), λ = a(w)

we obtain the following conclusion.

Proposition 6.4 Let us set

Fl(τ, w) :=
√
2π

l!
[
C(r)l + (−1)l−1 S(r)l

‖κ(r)‖
] Pl

(√
k fk(τ, w)

)

kl/2 a(w)l+1/2
. (158)

Up to lower-order terms, we can replace I ′k in (155) by

Ik(τ, w)′′ := −
(
k

π

)d (
2π√
k

)
SG/T (r) r · u(w)d

·e− 1
2 k

fk (τ,w)2

a(w)

∑

l≥1
Fl(τ, w). (159)
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Thus, the leading-order asymptotics of �kν(xτ,k, xτ,k) are obtained by replacing
Ik(τ, r , θ) in (154) by Ik(τ, w)′′ given by (159).

6.2 Proof of Theorem 1.4

We shall set τ = 0 in (154) and obtain an asymptotic estimate for �kν(x, x) when x ∈ XG
O

and k →+∞.

Proof of Theorem 1.4 It follows from the definitions that

fk(0, w)2

a(w)
= b(r)2

a(w)
= λν(m) D(ν) r4 S(r , θ), (160)

where S(r , θ) = 1+∑
j≥1 r j d j (θ), and

D(ν) := (ν1 − ν2)
2 (ν1 + ν2)

2

‖Adhm (ν⊥)M (m)‖2m
. (161)

Similarly,

Pl
(√

k fk(0, w)
)

kl/2 a(w)l+1/2
=

Pl
(√

k b(r)
)

kl/2 a(w)l+1/2

= 1

a(w)l+1/2

⎡

⎣b(r)l +
*l/2,∑

j≥1
pl j k

− j b(r)l−2 j
⎤

⎦

=
*l/2,∑

j=0

1

k j
r2l−4 j Sl j (r , θ), (162)

where Sl j (r , θ) is a convergent power series in r . The resulting series may be integrated term
by term. The lth summand in (159) then gives rise to a convergent series of summands of the
form

Bν,l, j (m, θ)
1

k j

∫ +∞

0
r̃2l−4 j+a e−

1
2 k λν (m) D(ν)·̃r4 r̃ d̃r = O

(
1

k
l+1
2 + a

4

)
. (163)

with j ≤ *l/2, and a = 0, 1, 2, . . ..
The previous discussion shows that �kν(x, x) is given by an asymptotic expansion in

descending powers of k1/4 and that the leading-order term occurs for l = 1 and a = 0.
By Lemma 157, P1(ξ) = ξ ; by Lemma 6.3, ‖κ(r)‖ = λν(m) ‖ν‖ · S ′κ (r), where S ′κ (r) is

a convergent power series in r2 with S ′κ (0) = 1.
In view of (153) and (158), we obtain

F1(0, w) = −√2π · (ν1 − ν2) (ν1 + ν2)
2

‖Adhm (ν⊥)M (m)‖3 λν(m)1/2 r2 SF1(r , θ),

where SF1 is real-analytic and S ′′(0, θ) ≡ 1.
Hence, the leading-order term of the asymptotic expansion of �kν(x, x) is given by

DG/T
k (ν1 − ν2)

(2π)2

∫ π

−π

dθ
∫ +∞

0
d r [Lk(r , θ)] , (164)
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where

Lk(r) := 23/2
kd−1/2

πd−3/2 λν(m)−(d−1/2)

·
[
(ν1 − ν2) (ν1 + ν2)

2

‖Adhm (ν⊥)M (m)‖3
]
e−

1
2 k λν (m) D(ν) r4 S(r ,θ) r3 S̃(r , θ), (165)

where again S̃ is real-analytic and S̃(0, θ) ≡ 1.
We need to integrate in dr the product of the last two factors in (165). Let us perform

the coordinate change s = √
k r2 S(r , θ)1/2, and argue as above. To leading order, we are

reduced to computing

1

2 k

∫ +∞

0
ds

[
e−

1
2 λν (m) D(ν) s2 s

]
= 1

2 k
· 1

λν(m) D(ν)
.

Inserting this in (164), we conclude that the leading-order term in the asymptotic expansion
of �k(x, x) is

DG/T√
2

1

‖�G(m)‖d+1/2
(
k ‖ν‖
π

)d−1/2
· ‖ν‖
‖Adhm (ν⊥)M (m)‖ .

The proof of Theorem 1.4 is complete.  "

7 Proof of Theorem 1.5

The proof is a modification of the one of Theorem 1.4, so the discussion will be sketchy. We
shall set

x j,k := x + 1√
k
v j , j = 1, 2.

Definition 7.1 With the previous notation, let us set

"(ϑ, g T , v j )

:= −1

2

[〈
diag

(
Adg−1(�

′
G(m))

)
,ϑ

〉2 +
∥∥∥v1 − v2 + Adg(ı Dϑ )M (m)

∥∥∥
2

m

]

+ ı
[
− ωm(v1, v2)+ ωm

(
Adg(ı Dϑ )M (m), v1 + v2

)]
.

Then, the same computations leading to Proposition 6.1 yield the following.

Proposition 7.1

ı k

[
u ψ

(
μ̃g e−ıϑ/

√
k g−1(x1,k), x2,k

)
− 1√

k
〈ν,ϑ〉

]

= ı
√
k �(u, g T ,ϑ)+ u "(ϑ, g T , v j )+ k R3

(
v j√
k
,

ϑ√
k

)
.

Remark 7.1 Assuming v1, v2 ∈ gM (mx )
⊥h , recalling Definition 6.1 we have

"(ϑ, g T , v j ) = ψ2(v1, v2)− 1

2
ϑ t E(g T )ϑ .
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In place of Corollary 6.1, we then obtain the following:

�kν(x1,k, x2,k)

∼ k (ν1 − ν2)

(2π)2

∫

G/T
dVG/T (gT )

∫ ∞

−∞
dϑ1

∫ ∞

−∞
dϑ2

∫ +∞

0
du

[
eı
√
k �(u,g T ,ϑ) A′

k,ν(u, g T ,ϑ, v j )
]
, (166)

with the new amplitude

A′
k,ν(u, g T ,ϑ, v j ) := e

u ψ2(v1,v2)− u
2 ϑ t E(g T )ϑ+k R3

(
τ√
k
, ϑ√

k

)

�
(
eıϑ/

√
k
)

·s
(
μ̃g e−ıϑ/

√
k g−1(x1,k), x2,k, k u

)
. (167)

Similarly, in place of (151) we now have the following expansion:

A′
k,ν(u, g T ,ϑ, v j )

∼ e
u ψ2(v1,v2)− u

2 ϑ t E(g T )ϑ+k R3

(
τ√
k
, ϑ√

k

) [
e

ı√
k
ϑ1(ζ ) − e

ı√
k
ϑ2(ζ )

] (k u

π

)d

·
⎡

⎣1+
∑

j≥1
a j
(
u, w; v1, v2,ϑ(ζ )

)
k− j/2

⎤

⎦ , (168)

where a j is, as a function of v1 and v2, a polynomial of degree ≤ 3 j .
With these changes, Theorem 1.5 can be proved by applying the arguments in the proof

of Theorem 1.4 with minor modifications.

8 Proof of Theorem 1.6

Proof Let A′ ⊂ X be a one-sided ‘outer’ tubular neighborhood of XG
O, that is, the intersection

of A with a tubular neighborhood of XG
O in X .

By Theorem 1.1, we have

dimout H(X)k ν

=
∫

A
�k ν(x, x) dVX (x) ∼

∫

A′
�k ν(x, x) dVX (x). (169)

Let us denote by σ(ν) the sign of ν1 + ν2. Then, locally along XG
O , for some sufficiently

small δ > 0 we can parametrize A′ by a diffeomorphism

" : XG
O × [0, δ) → A′, (x, τ ) �→ x + τ σ (ν)ϒν(mx ),

wheremx = π(x). The latter expression is meant in terms of a collection of smoothly varying
systems of Heisenberg local coordinates centered at x ∈ XG

O , locally defined along XG
O (to

be precise, one ought to work locally on XG
O , introduce an appropriate open cover of XG

O ,
and a subordinate partition of unity; however for the sake of exposition we shall omit details
on this).

We shall set xτ := "(x, τ ), and write

"∗(dVX ) = VX (x, τ ) dVXG
O
(x) dτ,
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where VX : XG
O × [0, δ) → (0,+∞) is C∞ and VX (x, 0) =

∥
∥ϒν(mx )

∥
∥.

Hence, we obtain

dimout H(X)k ν

∼
∫

XG
O

dVXG
O
(x)

∫ δ

0
dτ [VX (x, τ )�k ν(xτ , xτ )] . (170)

By Theorem 1.3, only a rapidly decreasing contribution to (170) is lost, if integration in
(170) is restricted to the locus where τ ≤ C kε−1/2. Thus, the asymptotics of dimout H(X)k ν

are unchanged, if the integrand is multiplied by a rescaled cut-off function �
(
k1/2−ε τ

)
,

where � is identically one sufficiently near the origin in R, and vanishes outside a slightly
larger neighborhood.

With the rescaling τ �→ τ/
√
k, we obtain

dimout H(X)k ν ∼ 1√
k

∫

XG
O

dVXG
O
(x)

[
Hk(x)

]
,

where with xτ,k := "
(
x, k−1/2 τ

)
we have set

Hk(x) :=
∫ +∞

0
dτ

[
�
(
k−ε τ

) VX

(
x,

τ√
k

)
�k ν(xτ,k, xτ,k)

]
. (171)

Integration in dτ is now over an expanding interval of the form
[
0,C ′ kε

)
.

Let us consider the asymptotics of (171). Having in mind (159), and inserting the Taylor
expansion of VX , we are led to considering double integrals of the form

1

k(l+ j)/2

∫ +∞

0
dτ

∫ +∞

0
dr

⎡

⎣r C(r)l τ j S ′(r)
Pl
(√

k fk(τ, w)
)

a(w)l+1/2
· e− 1

2 k
fk (τ,w)2

a(w)

⎤

⎦ , (172)

with l ≥ 1 and j ≥ 0, and their analogs with S(r) in place of C(r); S ′ is some real-analytic
function (dependence on θ and x is implicit).

In view of (156), we have

fk(σ (ν) τ, w)√
a(w)

= −σ(ν)

[
(ν1 − ν2) |ν1 + ν2|

‖ν‖√a(0)
r2 S1(r)+ τ

k1/2
r(0)√
a(0)

S2(r , θ)

]
,

where again S2(0, θ) = 1. Therefore, with the change of variables

s := k1/4 r
√
S1(r), τ̃ := τ S2(r , θ)

we obtain

fk(σ (ν) τ, w)√
a(w)

= −σ(ν)√
k

[
(ν1 − ν2) |ν1 + ν2|

‖ν‖√a(0)
s2 + r(0)√

a(0)
τ̃

]
.

Therefore, we also have

fk(σ (ν) τ, w) = −σ(ν)√
k

[
(ν1 − ν2) |ν1 + ν2|

‖ν‖ s2 + r(0) τ̃

]
·
[
1+ R1

(
s
4
√
k

)]
.
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With the substitution a = s2, (172) may be rewritten as a linear combination of summands
of the form

1

k(l+ j+1)/2

∫ +∞

0
dτ

∫ +∞

0
da

[

C

(√
a

4
√
k

)l

(A1 a + B1 τ)
b τ j ·

[
1+ R1

(√
a

4
√
k

)]
· e− 1

2 (A1 a+B1 τ)2
]

= O

(
1

k(l+ j+1)/2

)
. (173)

Hence, the leading contribution occurs for l = 1, j = 0, and dropping the term
R1

(
k−1/4

√
a
)
. The conclusion of Theorem 1.6 then follows by a fairly simple computa-

tion.  "
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