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ABSTRACT

In the last years, we observed a surge of interest in the statistical analysis of spatial data
lying on or alongside networks. Car crashes, vehicle thefts, bicycle incidents, roadside
kiosks, neuroanatomical features, and ambulance interventions are just a few of the most
typical examples, whereas the edges of the network represent an abstraction of roads, rivers,
railways, cargo-ship routes or nerve fibers.

This type of data is interesting for several reasons. First, the statistical analysis of the
events presents several challenges related to the complex and non-homogeneous nature of
the network, which creates unique methodological problems. Several authors discussed and
illustrated the common pitfalls of re-adapting classical planar spatial models to network
data. Second, the rapid development of open-source spatial databases (such as Open Street
Map) provides the starting point for creating road networks at a wide range of spatial
scales. The size and volume of the data raise complex computational problems, while
common geometrical errors in the network’s software representations create another source
of complexity. Third, at the time of writing, the most important software routines and
functions (mainly implemented in R) are still in the process of being re-written and re-
adapted for the new spatial support.

This manuscript collects four articles presenting data structures and statistical models
to analyse spatial data lying on road networks using point-pattern and network-lattice
approaches.

The first paper reviews classes, vital pre-processing steps and software representations to
manipulate road network data. In particular, it focuses on the R packages stplanr and
dodgr, highlighting their main functionalities, such as shortest paths or centrality measures,
using a range of datasets, from a roundabout to a complete network covering an urban city.
The second paper proposes the adoption of two indices for assessing the risk of car crashes
on the street network of a metropolitan area via a dynamic zero-inflated Poisson model.
The elementary statistical units are the road segments of the network. It employs a set
of open-source spatial covariates representing the network’s structural and demographic
characteristics (such as population density, traffic lights or crossings) extracted from Open
Street Map and 2011 Italian Census.

The third paper demonstrates a Bayesian hierarchical model for identifying road segments
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of particular concern using a network-lattice approach. It is based on a case study of
a major city (Leeds, UK), in which car crashes of different severities were recorded over
several years. It includes spatially structured and unstructured random effects to capture
the spatial nature of the events and the dependencies between the severity levels. It also
recommends a novel procedure for estimating the MAUP (Modifiable Areal Unit Problem)
for network-lattice data.

Finally, the fourth paper summarises a set of preliminary results related to the analysis
of spatio-temporal point patterns lying on road networks using inhomogeneous Poisson
processes. It focuses on the ambulance interventions that occurred in the municipality of
Milan from 2015 to 2017, developing two distinct models, one for the spatial component
and one for the temporal component. The spatial intensity function was estimated using a
network readaptation of the classical non-parametric kernel estimator.

The first two appendices briefly review the essentials of INLA methodology and the sup-
plementary materials related to the fourth chapter, while the third appendix introduces an
R package, named osmextract, that was developed during the three years of my PhD and
focuses on Open Street Map data.

The sixth chapter concludes the manuscript, summarising the main contributions and em-
phasising future research developments.

ABSTRACT (ITALIAN VERSION)

Negli ultimi anni si é sviluppato un interesse sempre crescente per ’analisi statistica di dati
spaziali aventi supporto di network. Gli esempi piu classici di questa tipologia di eventi
sono, ad esempio, gli incidenti stradali, i furti di auto (o, piu in generale, i crimini), e gli
interventi delle ambulanze, mentre le linee (o edge) che compongono la network rappresen-
tano tipicamente le strade, i fiumi, i binari della ferrovia, le rotte delle navi cargo oppure
le terminazioni nervose.

[’analisi di questi fenomeni ¢ interessante sotto diversi punti di vista. Innanzitutto, i modelli
statistici presentano diverse problematiche legate al supporto spaziale. Per questo motivo,
negli ultimi anni sono stati pubblicati diversi paper che mostrano le difficolta principali
legate alla natura stessa della network. Inoltre, il recente sviluppo di database spaziali
open source (quali Open Street Map) ha permesso il download e la creazione di dataset che
coprono le reti stradali e marittime di quasi tutto il mondo. L’enorme mole di dati e gli
(inevitabili) errori geometrici presenti nei database di Open Street Map rappresentano due
problematiche ulteriori. Infine, dato che al momento la maggior parte dei pacchetti R per
I’analisi di dati su network sono ancora in fase di sviluppo, esistono anche diverse difficolta
computazionali e problemi nell’implementazione di metodologie nuove.

Questo lavoro di tesi riassume quattro articoli che presentano strutture dati e metodologie
statistiche per l'analisi di dati spaziali aventi supporto di network, considerando sia un
approccio di tipo lattice che un approccio di tipo point-pattern.



Il primo paper presenta una revisione dei pacchetti R che implementano classi e funzioni per
I’analisi di network stradali, concentrandosi in particolare su stplanr e dodgr. Vengono
introdotte le principali routines legate al calcolo di shortest paths e centrality measures
utilizzando dataset via via pitt complessi.

Il secondo lavoro presenta un modello di Poisson Dinamico Zero Inflated per la stima di
due indici di rischiosita relativi agli incidenti stradali avvenuti nel network di Milano dal
2015 al 2017. L’unita statistica elementare ¢ rappresentata dal singolo segmento di strada,
mentre la variabile risposta misura il numero di incidenti avvenuti in ognuno dei tre anni.
Viene impiegato un insieme di covariate demografiche e strutturali (come, ad esempio, la
densita di popolazione o la presenza di semafori e incroci) estratte da Open Street Map e
dai dati del censimento italiano avvenuto nel 2011.

Il terzo paper introduce un modello Bayesiano gerarchico multivariato per la stima della
rischiosita stradale tramite un approccio di tipo network-lattice. Ci si é concentrati sul
network stradale della citta di Leeds (UK) e su due diverse tipologie di incidenti. La
componente spaziale é stata modellata tramite un errore casuale di tipo Multivariate CAR,
mentre le correlazioni residue sono state catturate tramite un errore casuale non strutturato.
Infine, si ¢ sviluppata una metodologia per I'analisi di MAUP su dati di tipo network-lattice.
Per concludere, il quarto articolo presenta alcuni risultati preliminari relativi all’analisi
spazio-temporale di point pattern su network tramite processi di Poisson non-omogenei. In
particolare, si ¢ analizzata la distribuzione degli interventi in emergenza delle ambulanze
nel comune di Milano tra il 2015 ed il 2017, sviluppando un modello a fattori latenti per
la componente temporale ed uno stimatore kernel non-parametrico per l'intensita spaziale,
riadattato nel caso di dati su network.

La tesi si compone anche di tre appendici. Le prima riassume le caratteristiche di base della
metodologia INLA, la seconda presenta i materiali addizionali legati al quarto capitolo,
mentre la terza introduce un pacchetto R chiamato osmextract che puo essere utilizzato
per manipolare dati estratti da Open Street Map.

Il sesto capitolo chiude la tesi, riassumendo i risultati principali e introducendo alcuni
sviluppi futuri.

Keywords: Bayesian Hierarchical Models, INLA, Network Lattice, Open Data, Point
Pattern on Networks, Spatial and Spatio-temporal Statistics, Street Networks
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CHAPTER 1

Introduction

In the last years, we observed a surge of interest in the statistical analysis of spatial data
lying on or alongside networks (Baddeley, Nair, et al., ; Okabe and Sugihara, ;
Ziakopoulos and Yannis, ). Car crashes, vehicle thefts, bicycle incidents, roadside
kiosks, neuroanatomical features, and ambulance interventions are just a few of the most
typical examples, whereas the edges of the network represent an abstraction of roads, rivers,
railways, cargo-ship routes or nerve fibers.

The most important characteristic of this type of events is undoubtedly the fact that they are
constrained to lie on a specific spatial domain, which clearly cannot be ignored for proper
model development. For example, H. Huang et al. ( ) compared zonal and network
lattice models for road safety research. They conclude saying that the road segments
approach should be preferred since it has better overall fit and predictive performance,
provides better insights about the micro factors that closely contribute to crash occurrence,
and leads to more direct countermeasures. Indeed, as detailed in Chapters 3 and 4, a
network-lattice approach returns more detailed results than the zonal counterpart, proving
to be more useful from a social and policy perspective. Analogously, Yamada and Thill
( ) and Y. Lu and X. Chen ( ) presented the risks of spurious analysis and false-
positive detection associated with the application of point-pattern methods designed for a
planar space to analyse spatial data on road networks.

Besides, a road network is not a homogeneous space, which implies that readaptations of
classical techniques must be adjusted to take into account the new spatial support. The
network-version of the kernel intensity estimator represents a relevant example. The first
proposals can be tracked back to Borruso ( ) ) ), and they were introduced
without any proper statistical or theoretical justification. Xie and Yan ( ) suggested a
variation of the planar kernel intensity estimator (P. Diggle, ) in which the Euclidean
metric is replaced by the shortest-path distance on the network. Unfortunately, as reported
by Okabe and Sugihara ( ), their proposal turned out to be erroneous and extremely
biased since the direct readaptation of the planar technique does not converse mass. Okabe,
Satoh, and Sugihara ( ) and Sugihara, Satoh, and Okabe ( ) presented equal-split
continuous and equal-split discontinuous estimators, which have desirable properties, but
can be costly to compute for large networks. Finally, in the last years, we observed sev-
eral proposals that combine rigorous theoretical and statistical justifications with effective
implementations (McSwiggan, Baddeley, and Nair, ; M. M. Moradi, Rodriguez-Cortés,



and Mateu, ). For example, the approach adopted in Chapter 5 is based on a recent
paper by Rakshit, Davies, et al. ( ) that proposes a computationally efficient method
that combines the classical planar kernel estimator with a convolution of the kernel on the
network. Ang, Baddeley, and Nair ( ) represents another relevant example to illustrate
fallacies and methodological errors linked with direct readaptations of planar techniques.
More precisely, the authors introduced geometrically corrected K and pair correlation func-
tions (Ripley, ) that do not depend on the network’s topology, modifying the previous
attempts.

The rising interest in road network data can almost certainly be linked with two factors:

1. the rapid development of high-quality street network objects, available to people
worldwide thanks to open-access databases such as Open Street Map (OpenStreetMap
contributors, );

2. the open-access policy adopted by several private or national agencies (like the Italian
Statistical Institute or United Kingdom’s Department for Transport, see Chapters 3
and 4) to share more and more datasets related to road networks events such as car
crashes or petty crimes.

The size and the volume of Open Street Map network data raise complex computational
problems that require ad-hoc solutions. The analysis of network data using a lattice ap-
proach (see Chapters 3 and 4) benefits from innovative statistical techniques, such as INLA
methodology, that permit the analysis of city-wide road networks much faster than classical
MCMC methods (Havard Rue, Martino, and Chopin, ; Havard Rue, Riebler, et al.,
). Moreover, considering that Open Street Map data can present geometrical errors
that create invalid or erroneous network supports, such as missing junctions or fictitious
links, several authors focused on developing spatial and geographical operations that ma-
nipulate the network, fixing these types of problems (Cooper and Chiaradia, ; Van
der Meer et al., ).
This monograph collects four articles introducing data structures and statistical models
to analyse spatial data lying on road networks using point-pattern and network-lattice
approaches. In particular, the rest of the thesis is organised as follows.
Chapter 2 presents methods, pre-processing steps and software implementations for the
spatial analysis of street networks. The first two sections briefly overview several R pack-
ages that define class systems for representing road networks, with a particular focus on
two libraries that offer analytical capabilities difficult to implement using more general ap-
proaches: stplanr and dodgr (Lovelace and Ellison, ; Padgham, ). The former
proposes the S4 class sfNetwork , while the latter defines the S3 class dodgr_streetnet.
In both cases, the starting point is typically an sf object (E. J. Pebesma, ), which rep-
resents the spatial dimension of the network. stplanr wraps the igraph package (Kolaczyk
and Csardi, ) to handle the graph component, while dodgr defines its own functions.
We demonstrate that street networks have particular properties that make them unsuitable
to be analysed using traditional graph-related software. Moreover, the pros and cons of



the two implementations are compared using more and more complex street networks ex-
tracted from Open Street Map. Finally, we report several practical examples that display
algorithms and functions to perform common street network analysis tasks, such as shortest
and fastest paths or centrality measures, which are repeatedly applied in the other articles.
Chapter 3 shows how a range of information collected from open data sources concerning
socio-demographic (e.g. population density) and structural (e.g. highways types, traffic
lights, and pedestrian crossings) covariates can be harmonised to develop a road safety
model. More precisely, we analysed the car crashes that occurred in the road network of
Milan (IT) from 2015 to 2017 considering a network-lattice approach. The spatial support
was downloaded from Open Street Map, and its road segments represent the elementary
statistical units. We developed a Dynamic Zero-Inflated Poisson (ZIP) regression model
(Lambert, ) and proposed the adoption of two indices to assess the risk of car crashes
on the street network of the city. The first index, derived from the counting component
of the ZIP model, measures the road risk. The other, derived from the zero component,
represents an estimate of the likelihood of each segment not to be exposed to crashes.
The socio-demographic variables, that were measured for each census tract of Milan during
the 2011 Census, were summarised using a geographically-weighted principal component
analysis (Fotheringham, Brunsdon, and Charlton, ). Moreover, since the two sources
of information are spatially misaligned, they were merged using an overlay operation. We
found that the most relevant determinant of road risk proneness is crash history and that the
structural characteristics are much more relevant than the demographic variables. Finally,
we show how this information can be visualised to produce maps of crash risk and forecast
the values of the indices in the future.

Chapter 4 proposes a Multivariate Bayesian Hierarchical model with spatially structured
and unstructured random effects to identify street sections with anomalously high car
crashes rates considering a network-lattice approach. It is motivated by a case study of
a major city, Leeds (UK), in which car crashes of different severities were recorded over an
eight-year period (2011-2018). The spatial support was downloaded from Ordnance Survey,
a web provider of street network data for the United Kingdom, and it was manipulated and
simplified using several procedures (described in Chapter 2). The spatially structured ran-
dom effects were modelled using a Multivariate Proper Conditional AutoRegressive (CAR)
prior (Besag, ; Gelfand and Vounatsou, ; Mardia, ), with a separate coefficient
for each severity level and a first-order binary adjacency matrix calculated on the segments
of the network. The unstructured random effects were modelled as multivariate Gaussian
errors. An offset component, proportional to an estimate of commuting flows that pass
through each segment of the network was included in the Bayesian model. The results
underline a strong correlation between the two severity levels in the unstructured error and
an even stronger dependence in the spatial component. Moreover, we produced a series
of maps that highlight several roads in the north-east, north-west and south-east of the
city centre as being more prone both to severe and slight crashes. The Modifiable Areal
Unit Problem (MAUP) (Openshaw, ) was investigated, proposing a novel procedure



to test the presence of MAUP for count models developed on a network-lattice. Finally, an
extensive sensitivity analysis has been performed to assess the robustness of models to a
range of assumptions, such as different hyperpriors or adjacency matrices.
Chapter 5 introduces a spatio-temporal point process for analysing the distribution of am-
bulance interventions that occurred in the road network of Milan from 2015 to 2017. It
represents the first attempt to estimate a non-separable first-order spatio-temporal intensity
function for points on networks. We considered all events that were managed by the regional
Emergency Medical System (EMS) and required the dispatch of one or more ambulances.
The spatial support was downloaded from Open Street Map, and it was simplified using
several methods (analogous to the pre-processing steps described in Chapters 2 and 4).
The preliminary analysis revealed that the temporal evolution of the interventions presents
several seasonalities due to hourly, daily, and weekly patterns, while the spatial represen-
tations showed that the points are located along the segments of a network and tend to be
clustered near popular and busy areas. We noticed the presence of space-time interactions
in the hourly spatial distribution of ambulance dispatches. Hence, we treated the events
as a point pattern on a linear network. We divided the EMS data into discrete intervals of
one hour, and we assumed that, independently for each time unit, the interventions could
be modelled as an Inhomogeneous Poisson Process with a non-separable intensity function,
which is assumed to be decomposable into two terms. The first term captures the temporal
dynamics, while the second one models the spatial effects and the space-time interactions.
A dynamic latent factor model with deterministic covariates was defined for the temporal
component (David S Matteson et al., ), while the spatial dimension was estimated
using a non-parametric Gaussian network kernel function (Rakshit, Baddeley, and Nair,
) combined with a set of weights to capture the spatio-temporal interaction (Zhou and
David S. Matteson, ). The approach was exemplified by estimating the spatio-temporal
intensity function for two future time units, and the results show the effectiveness of our
proposal, displaying the spatial, temporal and spatio-temporal dimensions.
Chapter 6 concludes the manuscript, summarising the most important findings and the key
ideas for future developments.
Three appendices are also included. The first one reports a short introduction to INLA
methodology, briefly reviewing the basic ideas and the key components. The second ap-
pendix contains the supplementary materials for Chapter 4, which include the pseudo-code
related to the algorithm used to test Bayesian Hierarchical model’s predictive accuracy and
several tables summarising the sensitivity analysis. Finally, the third appendix introduces
an R package that was developed during the three years of my PhD, named osmextract.
It defines functions and methods used for matching, downloading, converting and reading
Open Street Map data obtained by external providers such as Geofabrik. It wraps several
GDAL functions (GDAL/OGR contributors, ), creating an efficient workflow for ma-
nipulating large road networks covering a city, a metropolitan area, a country or even a
continent.



CHAPTER 2

Data structures and methods for
reproducible street network analysis:
overview and implementations in R

Maybe I'll become a theoretician. Nobody
expects you to maintain a theorem.

Doug Bates, Ime4 author, 2013

Based on: Gilardi, A., Lovelace, R., Padgham, M. Data structures and methods for repro-
ducible street metwork analysis: overview and implementations in R. osf preprint. URL:
https://doi.org/10.31219/0sf.i0/78yub

2.1 Introduction

Spatial networks, such as power grids, railways or rivers, are entities that can simultaneously
be represented as spatial and graph objects (Barthélemy, ). From a spatial perspective,
they consist of features embedded in a (two or three-dimensional) spatial domain while, from
a graph perspective, they consist of a set of vertices connected by a set of edges. Both edges
and vertices are associated with spatial geometries, typically points, lines, or polygons.
Street metworks represent a particular type of spatial network, with notable distinctive
traits. Their abstract representation can be created in several ways (see, e.g., S. Marshall
et al. ( )), but, in this Chapter, we will focus on the most common approach: each road
is associated to the edges of a graph, while the vertices' correspond to the intersections,
typically at road junctions, although potentially also in between.

The first examples of road network analysis can be traced back to Euler’s solution to the
Seven Bridges of Konigsberg problem (Euler, ) and John Snow’s map of Cholera in
London (Snow, ), two seminal studies representing the foundation of graph theory

!The examples that we present in the following Sections are based on Open Street Map (OSM) data.
The basic structure of OSM data is composed of three elements named nodes, ways and relations (Open-
StreetMap contributors, ). For this reason, when we use the term node we are referring to the OSM
elements, while the term vertices is used for the generic graph element. See also Appendix C for more
details.


https://doi.org/10.31219/osf.io/78yub

and eptdemiology, respectively. Starting from the 1960s, several authors investigated the
characteristics of spatial networks using a more systematic approach (Chorley and Petercoed

Haggett, ; Peter Haggett and Chorley, ), while, more recently, other authors
focused on the comparisons and the analysis of structural characteristics of urban street
networks (Cardillo et al., ; Crucitti, Latora, and Porta, ; Jiang, ; Lammer,

Gehlsen, and Helbing, ).
This chapter demonstrates the particular properties of street networks and explains the
problems that make them unsuitable to be analysed using traditional network analysis
software. We will present the main functionalities, the classes and the methods of two R
packages that focus on street network analysis: stplanr and dodgr (Lovelace and Ellison,
; Padgham, ). The techniques introduced here are extensively applied in the next
Chapters.
Rather than focusing on specialised GIS platforms, such as QGIS (QGIS Development Team
(2020), ) or GRASS (GRASS Development Team, ), we decided to present data-
structures and pre-processing operations implemented in R, an increasingly popular pro-
gramming language for geographical data and network analysis (R Core Team, ). Al-
though other languages, including Python (Van Rossum and Drake, ), C++, and Julia
(Zappa Nardelli et al., ), have emerging projects for spatial network analysis, such
as osmnx (Boeing, ), networkx (Hagberg, Schult, and Swart, ), and networkit
(Staudt, Sazonovs, and Meyerhenke, ), the choice of R was based on the authors’ expe-
rience and the wide range of statistical methods implemented in the language. Moreover,
even if the procedures shown in this chapter are specific to R, the concepts and the ap-
proaches demonstrated here can be implemented using any other software. stplanr and
dodgr may enable reproducible research, similar to the studies mentioned before, and within
a popular open-source command-line drive computational environment.
As described at the outset, the two packages offer functions and analytic capabilities which
are difficult to implement using more general software, including most equivalent packages
in python. stplanr and dodgr, along with their respective class systems, are introduced in
Sections 2.2 and 2.3, in the context of R’s evolving capabilities for handling spatial networks.
The particularities of street network data are outlined in Sections 2.4 and 2.5, which cover
Open Street Map data and illustrate concrete examples of street network entities, from
roundabouts to city-wide networks. Section 2.6 demonstrates how street networks can
be analysed using the two R packages, and the final section discusses the strengths and
limitations of each approach, with a view to informing future development and research
efforts.

2.2 R packages and classes for spatial networks

Spatial networks can be represented using various approaches in R and, in this section, we try
to present the most important ones. In theory, any package that is capable of representing
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Listing 2.1: R code used to generate Figure 2.1. The five matrices store several pairs of
coordinates.

street_net_matrix_list <- list(

matrix(c(0, O, 1, 0, 2, O, 3, 0, 4, 0, 5, 0), ncol = 2, byrow = TRUE),
matrix(c(5, 0, 5, -1, 5, -2, 5, -3, 5, -4, 5, -5), ncol = 2, byrow = TRUE),
matrix(c(5, 0, 5, 1, 5, 2, 5, 3, 5, 4, 5, 5), ncol = 2, byrow = TRUE),
matrix(c(5, 5, 6, 5, 7, 5, 8, 5, 9, 5, 10, 5), ncol = 2, byrow = TRUE),
matrix(c(5, 0, 6, 0, 7, 0, 8, 0, 9, 0, 10, 0), ncol = 2, byrow = TRUE)

)

street_net_df <- as.data.frame(do.call(rbind, street_net_matrix_list))

plot(street_net_df, xlab = "",ylab = "",pch = as.character(rep(1:5, each = 6)))

spatial coordinates and graphs can also represent street networks, and we do not attempt
to cover all options. Instead, this section focuses on packages that can represent the spatial
and graph components of street networks simultaneously. Before describing some of the
key approaches, however, it is worth considering that base-R already supports 1lists and
matrices, two of the essential data structures needed for representing street networks, as
demonstrated in Listing 2.1 (which generates Figure 2.1, a crude representation of the same
street network depicted in Figures 2.2 and 2.3).

The object street_net_matrix_list is a list composed of five matrices representing,
schematically and straightforwardly, the streets of a minimal urban network. Each street
is represented using a sequence of points, and each pair of coordinates define one point.
The list-of-matrices representation of street networks, demonstrated with stylised data in
the code chunk above and converted into a data frame for plotting, is of limited use.
Such base-R representations are impractical because they lack a formal class system for
performing commonly needed operations such as plotting, subsetting, network analysis
and shortest-path calculations. One could build additional components on the structure
represented in street_net_matrix_list. However, for most tasks, it is likely that using
pre-existing representations — encoded in class definitions of several R packages that support
street networks — will be more effective. A selection of such packages, in ascending order
of their first release on CRAN, is outlined below.

spatstat: First released in 2002, it was developed for analysing spatial point patterns. It
was not initially designed with street networks in mind but, because point patterns on

a linear network represent a more and more stimulating application with its problems

and solutions (Baddeley, Nair, et al., ), several methods for working with linear
networks have been developed in the package since spatstat version 1.22-0, released

in 2011. The authors defined the class 1innet for representing a connected network of

line segments, such as a road network, and several ad-hoc functions for Kernel Density
Estimation (KDE) and other statistical techniques (Baddeley, Rubak, and Turner,

). This work has recently been extended in the package spatstat.Knet, which
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Figure 2.1: Plot of a simple street network stored as a list of matrices in base-R. It was
generated using the code documented in Listing 2.1. Each matrix store several pairs of
coordinates, and each number from 1 to 5 represents a distinct segment. There is an
overlap of labels on junction points

improves the computational efficiency of statistical methods, such as the K function,
on route networks (Rakshit, Baddeley, and Nair, ). The main limitation of this
approach is its flexibility since spatstat was developed to perform spatial statistical
analysis, and it offers limited support for routing and other street network operations
outside of the spatstat ecosystem.

shp2graph: Before the release of the R package sf in 2016, the Spatial class system was
the most prominent approach to handling spatial data in R, with the package sp that
defined it, and imported by 73 other packages by 2013 (R. S. Bivand, E. Pebesma,
and Gomez-Rubio, ). Building on the Spatial class system, shp2graph, first
published in 2014, provides functions for converting SpatialLinesDataFrame objects
into a list representing the components of a spatial network including nodes, edges,
weights and other edge attributes. The package enables a variety of common street
network operations, including shortest-path calculations and graph connectivity (B.
Lu et al., ). The main disadvantage of this package is its reliance on sp, which
has become largely superseded by sf. Moreover, it has not been updated for more
than two years.

stplanr: This is a package designed to support evidence-based transport planning, with a
focus on geographic desire lines and route data. The package also provides functions
for working with street network data, including overline2(), which converts over-
lapping lines into a non-overlapping network of lines, and SpatialLinesNetwork(),



which creates an S4 spatial network object comprising spatial (sp or sf) and graph
(igraph) sub-objects (Lovelace and Ellison, ).

dodgr: This R package focuses on routing and distances, with a primary focus on directed
graphs, and many functions dedicated to analyses of street networks. It performs
efficient calculation of many-to-many pairwise distances on dual-weighted directed
graphs, aggregation of flows throughout networks, and highly realistic routing through
street networks (including time-based routing considering incline, turn-angles and
surface quality). It defines classes and functions to represent and manipulate street
networks (Padgham, ).

A couple of packages that have not been published on CRAN are also worthy of mention.
spnetwork represents an alternative approach to convert Spatial objects into igraph ob-
jects. sfnetworks is a recently developed package that uses tidygraph as the basis for the
graph manipulations. The version 0.1 is described in detail in a blog post on the subject
hosted at r-spatial.org, while the current version (0.4 at the time of writing) can be
explored starting from the package’s website.

The remainder of this chapter focuses on street network representations in the packages
stplanr and dodgr, which provide distinct data structures for the representation and anal-
ysis of street networks.

2.3 sfNetwork and dodgr_streetnet objects

As outlined in the Introduction, a defining feature of street networks is their duality: they
are simultaneously spatial and graph objects. As spatial objects they are embedded in
(typically two dimensional) space; as graphs, their vertices and edges correspond to geo-
graphical elements, such as roads or junctions. This section expands on this broad definition
and describes the specific data structures that enable street networks to be represented in
stplanr and dodgr.

The stplanr representation of a street network is typically created starting from an sf
object, which constitutes the spatial dimension of the network (E. J. Pebesma, ). More
precisely, the sf objects extend the data.frame class, defining a 1ist-column named sfc
(acronym for simple feature column) that store the spatial information. The elements of
sfc are called sfg (acronym for simple feature geomery) and are usually characterised
using an attribute that describes their type. The most common types are called POINT (e.g.
zero-dimensional objects representing a geometrical point), LINESTRING (e.g. an ordered list
of points creating straight, non-self-intersecting segments), and POLYGON (e.g. a sequence
of points that form a closed, non-self-intersecting polygon with positive area). We refer to
(OGC) Open Geospatial Consortium Inc ( ) and Lovelace, Nowosad, and Muenchow
( ) for more details. The printing method for sf objects is displayed in the top-right


https://github.com/edzer/spnetwork
https://github.com/luukvdmeer/sfnetworks
https://www.r-spatial.org/r/2019/09/26/spatial-networks.html
https://luukvdmeer.github.io/sfnetworks/

part of Figure 2.2. On the other hand, the graph structure is inferred using an algorithm
which is detailed below, and it is stored as an igraph object (Csardi, Nepusz, et al., ).
The SpatialLinesNetwork() function combines the two worlds defining an S4 object with
class sfNetwork. More precisely, the input given to SpatialLinesNetwork() is an sf
object? with LINESTRING geometry ((OGC) Open Geospatial Consortium Inc, ), while
the output is an S4 object having four slots named:

sl: the sf object that was passed as input with an additional column, named length,
which measures the geographical length of each LINESTRING geometry.

g: an igraph object. The slots sl and g represent, respectively, the spatial and the
graph dimensions.

nb: a list that summarises the connectivity of the graph;

weightfield: acharacter vector that identifies the weighting profile. The default weights
are the lengths of each road segment, but they can be modified using the function
weightfield().

The other two parameters of SpatialLinesNetwork() function, i.e. uselonglat and
tolerance, are used to 1) control the Coordinate Reference System (CRS) of the input
object and 2) set a numerical value indicating a tolerance threshold to be used when cre-
ating the graph structure.

The igraph component of an sfNetwork object is created using the following algorithm
(which is also illustrated in Figures 2.2 and 2.4a): the edges of the network are the
LINESTRING geometries that were passed as input, while the vertices of the graph are the
first and last points of each geometry (removing the duplicates with identical coordinates
if necessary). The connectivity of the graph is determined as follows: two vertices are
connected if they belong to the same LINESTRING geometry and, by the same reasoning,
two edges are connected if they share one boundary point. Moreover, by construction, the
igraph object has several attributes, named x, y, n and weight, that store the spatial coor-
dinates (i.e. x, y), the connectivity of each vertex, and the weight associated to each edge
(which is equal to the length of the corresponding spatial line). This algorithm, despite
being natural and intuitive, has a few pitfalls that are typical of street network data. In
this Chapter we present four examples that exhibit how and why it can fail.

On the other side, dodgr adopts a different philosophy for representing street networks
since it merges the spatial and the graph dimensions, defining a unique object of class
dodgr_streetnet as an extension of regular data.frame. Therefore, the authors of the
package defined several functions and methods for working with dodgr_streetnet objects,
while stplanr package adopts igraph as a backend for managing its graph structure. They
also coded several ways to translate dodgr_streetnet objects into and from other formats,
like sf or igraph, which enhances its interoperability with other packages.

?Note that SpatialLinesNetwork() can also take SpatialLinesDataFrame objects from the sp package.
In this manuscript, we focus on the sf representations because the sp method will no longer be updated.
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Figure 2.2: Graphical example of the data structure used by stplanr for representing street
networks in the sfNetwork class. Left: Map of a street network. The black dots represent
the starting and ending points of each LINESTRING geometry. The grey dots represent the
internal points, which are ignored (but they will be important for the dodgr representation).
Right: Summary of the spatial and graph dimensions of the street network.
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Figure 2.3: Graphical example of the algorithm used by dodgr for the creation of a
dodgr_streetnet object. Left: Geographical map of the input data. The black dots
are the POINTS (or nodes in OSM jargon) composing each LINESTRING. Right: Conversion
into a dodgr_streetnet object. Each row of the new data frame is an edge of the network
and it is linked with a pair of vertices. We created an undirected graph, so each edge is
repeated two times. See Section 2.5 for more details.
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The main function for creating a dodgr_streetnet object is weight_streetnet (), and the
only mandatory input parameter is an sf data structure having a LINESTRING geometry,
with coordinates expressed using the WGS84 reference ellipsoid (EPSG code 4326). Data
expressed using other CRS must first be transformed to EPSG:4326 (using, for example,
the sf function st_crs()) before submitting to weight_streetnet. One of the primary
advantages of dodgr is its support for dual-weighted directed graphs, which are typical
of street networks and also necessary to generate realistic routes reflecting mode-specific
preferences: pedestrians prefer quiet walkways removed from busy roads, cyclists prefer
dedicated bicycle infrastructure, and car drivers prefer fast routes along motorways and
large roads. Each edge in a dual-weighted graph has two distances, one representing the true
geodesic distance, and the other representing a weighting preference (or profile) such that,
for example, the weighted length for a pedestrian along an edge of a multi-lane motorway
would be considerably longer than the actual distance. The wt_profile parameter can
be used to select the preferred mode of transport when building a new street network
with weight_streetnet (). The default value is bicycle, with other possibilities including
foot and motorcar, as described in the help page of weighting profiles(), which also
includes details on how to implement custom weighting profiles. The dual weights are
also determined by a character label that defines the characteristics of each segment of
the network, such as motorway, primary, residential or pedestrian®. All road segments
are mapped to a set of coefficients according to the chosen mode of transport, and these
coefficients determine the dual-weights that define all dodgr functions. Their usefulness is
exemplified in Section 2.6.

One further important advantage of dodgr package is its ability to contract a road network
down to only those edges connecting street junctions through the dodgr_contract_graph()
function. Road networks are commonly represented by points which are effectively arbitrar-
ily located such that, for example, a curved way between two junctions might be represented
by ten intermediate points, while a straight way might not have any intermediate points.
These intermediate points are arguably representational artefacts, rather than intrinsic com-
ponents of the network geometry (Karduni, Kermanshah, and Derrible, ; Open Street
Map, ). It is particularly important for analyses of networks (such as shortest paths
or network centrality, described below) to removes these artefacts throughout contracting a
network down to only those edges directly connecting junctions, which is precisely what the
dodgr_contract_graph() function does. The computation efficiency of routing on street
networks increases non-linearly with NV, the numbers of vertices, with efficiencies commonly
scaling as O(N?)). Graph contraction is the single most important step necessary for effi-
cient routing. The contracted version of the network considered in the final examples of this
Chapter has over 3 times fewer vertices, with typical values generally ranging between 5
and 10. Moreover, graph contraction and dodgr_contract_graph() represent the starting

3We refer to Appendix C for a more detailed description of the highway types and the corresponding
Open Street Map tags.
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(a) stplanr approach. (b) dodgr approach.

Figure 2.4: Left: stplanr-representation of a network. The black dots represent the nodes
and the colored lines the edges. Right: dodgr-representation of a network. The red dots
represent the nodes and the orange lines the underlying street lines. The nodes and the
edges correspond to several different street segments located in the Armley District of Leeds

(UK).

point for the Modifiable Area Unit Problem (MAUP) analysis proposed in Chapter 4. We
refer to the help page of dodgr_contract_graph() for more details.

Although the stplanr and dodgr packages may start from the same spatial objects, they di-
verge in the construction of street networks. More precisely, dodgr divides each LINESTRING
geometry into its minimal components (also called Line Segments, as documented in
(OGC) Open Geospatial Consortium Inc ( )), creating a vertex for each node and an
edge for every subsequent pair of points belonging to the same LINESTRING geometry.

The output of weight_streetnet() function is a dodgr_streetnet dataframe of edges
with several columns including:

1. a unique ID for each LINESTRING geometry, called geom_num;

2. a unique ID for each edge, called edge_id, and for its corresponding vertices, called
from_id and to_id. Duplicated vertices always share the same ID. If the input
st data is created using the osmdata R package (see below), then dodgr checks the
uniqueness of the vertices by comparing their Open Street Map ID(s) instead of the
spatial coordinates. This is a peculiar characteristic of street networks, and we will
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see in Section 2.5 why this feature may be relevant;

3. four columns named from_lon, from_lat, to_lon and to_lat that represent the
coordinates of each vertex using the WGS84 reference ellipsoid;

4. the spatial length, in meters, of each edge;

5. the weighted length of each edge, estimated using the weighting profile.

We include an exemplification of dodgr algorithm in Figure 2.3, where, for simplicity, we
report only the first columns, and we omit the dual-weights, typical of dodgr objects.
Another example is reported in Figure 2.4b. Some of the missing columns are reported in
Table 2.1, while the dual-weights will be extensively covered in Section 2.6.

2.4 Open Street Map

Both packages can work with any type of street data (as long as they are coded in the
right way) but, in this manuscript, we are going to focus on Open Street Map (OSM) data,
briefly mentioned also in Chapter 1 (OpenStreetMap contributors, ). Open Street Map
is the largest, openly available source of spatial network data, and it provides a continuously
evolving and future proof basis for research (Barrington-Leigh and Millard-Ball, ). It’s
rapid evolution certainly helped the development of street network analysis (Anderson,
Sarkar, and Palen, ).

There are several R packages for downloading data from Open Street Map servers but, at
the moment, the most important one is probably osmdata (Padgham et al., ), which is
also perfectly integrated with dodgr. The authors of dodgr created the dodgr_streetnet ()
function (which is a wrapper around several other routines defined in osmdata) to down-
load and format OSM road data for a given location, which can be expressed either as a
string (and processed by Nominatim geocoding servers) or a numeric matrix of coordinates
that define a bounding box. Then, the output of dodgr_streetnet() can be passed to
weight_streetnet() to create a dodgr_streetnet object that represents the street net-
work of a particular area.

The main benefits of this integration are the following:

1. The osmdata functions retain the Open Street Map ID(s) of each node hidden within
the actual LINESTRING structure®, which enables vertex identification through ID(s)
instead of coordinates. We present an example of why this distinction is important
in the Section 2.5.2.

2. The column used for estimating the dual weights is automatically detected and for-
matted according to a pre-specified set of weights, as explained in the help page of
weighting profiles().

*The osmdata: :unname_osmdata_sf () function can be used to remove these ID(s), which can be prob-
lematic for some plotting routines. We refer to the following github issue for more details: https:
//github.com/ropensci/osmdata/issues/188.
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Table 2.1: First five rows and first eight columns of dodgr representation of the spatial
network depicted in Figure 2.4b. The missing columns represent other characteristics of
the edges like their highway-type or the weighted lengths.

geom num edge id from id from lon from lat to id to lon to lat

1 1 1 0 -1.5886 53.7973 1 -1.5885 53.7969
2 1 2 1 -1.5885 53.7969 0 -1.5886 53.7973
3 1 3 1 -1.5885 53.7969 2 -1.5885 53.7968
4 1 4 2 -1.5885 03.7968 1 -1.5885 53.7969
5 1 5 2 -1.5885 53.7968 3 -1.5885 53.7967

3. There are several ancillary functions in osmdata that can be used to modify the
street network objects in dodgr, including trim_osmdata(), which can trim a network
within a bounding polygon rather than a simple rectangle, and the osm_poly2line ()
function which convert all POLYGON objects into LINESTRING objects suitable for rout-
ing.

The previous list describes three problems, i.e. node identification, dual weights and spatial
filters, that are typical of street networks and require ad-hoc solutions that are difficult to
implement using a generic graph software. Finally, we note that the R package osmextract
represents an alternative approach for downloading and reading OSM data. It is extensively
documented in Appendix C.

2.5 Street network data types

Street networks are complex phenomena with a range of sizes, shapes and interrelations,
ranging from a simple network of mud paths in a remote village to a complex city con-
taining dozens of separate but touching roads for walking, cycling, and motorised modes.
In this context, it is important that software for representing and analysing street net-
works can handle a range of data types. To that end, this section introduces four scenarios
that highlight common issues encountered when working with spatial networks representing
transport systems. The first three examples are a roundabout (which is represented as a
circular geometry), an overpass (in which intersecting streets are not connected due to a
vertical grade of separation) and a oneway road (in which vehicles are prohibited from trav-
elling in one direction). They are simple, but they highlight tricky problems that should be
taken into account when working with street network data. The final example is a citywide
graph containing multiple instances of each of the previous entities, approximating objects
that are encountered in applied research and showing how stplanr and dodgr can work on
real-world datasets.
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Before proceeding with these examples, it is worth taking a step back to consider the
minimal requirements that input datasets must meet before they can be classified as street
networks. These requirements apply to data from any source, but, as we said in the previous
section, we focus on Open Street Map, and we present a small part of its mature and open
set of guidelines. The first requirement is that two or more intersecting streets, or ways in
OSM nomenclature, must share at least one point, or node in OSM nomenclature, otherwise
the corresponding edges can not be considered to intersect. A more subtle assumption is
that streets that are not truly intersecting due to a vertical degree of separation, such as
overpasses and underpasses, should not share any point with identical ID (even though
those points may share identical geographical coordinates). These minimal requirements
are documented in the FEditing Standards and Conventions page on the Open Street Map
wiksi.

These are not strict assumptions, and we never found a situation where they are not easily
met. There are also several tools for checking these hypotheses, such as 0SM Inspector
(https://wiki.openstreetmap.org/wiki/0SM_Inspector), and fixing the problems, such
as v.clean tool in GRASS® (GRASS Development Team, ). We do not add more details
on spatial networks preprocessing, and we refer to Cooper and Chiaradia ( ) and Section
8 of SDNA open-source manual, hosted at SDNA webpage. Nevertheless, the importance of
cleaning the data before building the road network should never be overlooked.

2.5.1 Roundabouts

Roundabouts are saved by Open Street Map as circular geometries composed by one or
more connected LINESTRING. In the previous sections, we introduced the algorithm used by
stplanr for inferring the graph structure of an sf data and we said that the connectivity
of the graph is determined according to the presence or absence of shared boundary points
in the LINESTRING geometries. This algorithm implies that the stplanr-representation of
a roundabout may be unroutable since circular geometries have only one boundary point,
which is not always shared with another LINESTRING. We present an example of this problem
in Figure 2.5a. The grey line represents the roundabout, and the black dot is its boundary
point. The coloured points are the boundaries of the other streets, which, according to
stplanr algorithm, are not connected to the roundabout.

This problem can be solved by splitting the circular LINESTRING, and this procedure is
implemented in the rnet_breakup_vertices() function. We refer to its help page for a
more detailed description of the algorithm, which is similar to the procedures illustrated
in Karduni, Kermanshah, and Derrible ( ). The result is a routable street network,
illustrated in Figure 2.5b.

The dodgr approach immediately solves this problem by decomposing each LINESTRING
into its minimal segments, while OSM itself ensures that each junction is represented by a

5The GRASS tools can be accessed from R via bridges (Lovelace, Nowosad, and Muenchow, ) such as
qgisprocess (Dunnington, ) and rgrass7 (R. Bivand, ).

16


https://wiki.openstreetmap.org/wiki/Editing_Standards_and_Conventions
https://wiki.openstreetmap.org/wiki/Editing_Standards_and_Conventions
https://wiki.openstreetmap.org/wiki/OSM_Inspector
https://sdna.cardiff.ac.uk/sdna/wp-content/downloads/documentation/manual/sDNA_manual_v3_4_7/step_by_step_guides.html

(a) Circular LINESTRING. (b) Routable LINESTRING. (c) dodgr approach.

Figure 2.5: Left: The network is unroutable using stplanr since the black dot, which is
the unique boundary point of the roundabout, is not shared with any other street. Center:
The network is routable since every boundary point is also a node of the network. Right:
The dodgr approach bypasses any problem dividing each LINESTRING into its underlying
segments.

shared vertex. This is clear looking at Figure 2.5c.

2.5.2 Overpasses, underpasses and other types of intersections

The second problem that we analyse is strictly related to roundabouts and it concerns
overpasses, underpasses and other types of street intersections.

Overpasses and underpasses could create a challenge for street network software since they
represent a crossing of two highways located at different heights, where clearance to traffic
on the lower level is obtained by elevating the higher level. From a routing perspective,
this particular structure of the network must be taken into account since, even if we are
always working in a two-dimensional space, it should never be possible to pass from one
street-level to another. The algorithms behind stplanr and dodgr were designed taking
care of this problem. An example of an overpass, located in the south of Leeds (UK), is
reported in Figure 2.6a. We overlayed a coloured map of the corresponding stplanr graph
representation where there are connections only between streets belonging to the same level.
Another problem, strictly related to overpasses and roundabouts, is the following. There
exist some streets in Open Street Map data that intersect each other, lie at the same level,
but do not share any point in their boundaries. This implies that, from stplanr perspective,
those streets are not connected. See, for example, Figure 2.6b. This problem can also be
solved (see Figure 2.6¢) using rnet_breakup_vertices() function.

The dodgr approach for representing street networks immediately solves both problems.
Moreover, if the input sf data is built using osmdata package, then the assumption about
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Figure 2.6: Left: stplanr-representation of one overpass where there are connections only
between roads at the same level. Center: stplanr-representation of an unroutable junction.
Right: The result obtained after splitting the junction.

the absence of shared nodes between roads at different levels can be removed because, as
we said in the previous sections, the comparisons between the vertices of the network are
performed according to their Open Street Map ID(s), which are always unique, even when
they share identical coordinates.

2.5.3 Oneway streets

Oneway streets prohibit certain transport modes (typically only motor traffic) from travel-
ling in one direction. They are used in many cities to free up space for other land uses or
dedicated cycleways or walkways, with a textbook example being Torrington Place in Lon-
don, where one carriageway was converted into a bidirectional cycleway®. Oneway streets
pose a challenge from a routing perspective since, by definition, they allow vehicles to travel
only in one direction.

At present, support for oneway streets has not been implemented in stplanr, meaning that
for every two vertices in the network, the shortest path between them is symmetrical, even
if that implies going against traffic in the real world. Oneway streets are supported by
dodgr.

To illustrate the real-world consequences of this, Figures 2.7a and 2.7b demonstrate shortest

5A consultation report by Camden City Council proposing a oneway street on the Torrington Place /
Tavistock Place Corridor, which has been implemented, provides a detailed introduction to oneway streets
from a transport planning perspective. See https://www.camden.gov.uk/documents/20142/3452947/
Consultation+leaflet+FINAL.pdf/f628d6e8-c47b-82f1-cb40-8e24db78beab for details.
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(a) Path in the contra-flow direction (b) Path in the right direction

Figure 2.7: Examples of routing with oneway street, located in New Briggate, Leeds (UK).
Figure (a) presents a path in the contra-flaw direction, estimated by stplnar. Figure (b)

reports the right path, estimated with dodgr.

paths calculated between the end points of an important oneway street in Leeds (UK). The
path represented in the first figure, based on a shortest path calculation on the sfNetwork
class, is shorter but against the law. The path represented in the second figure takes a longer
route but follows the law. To activate oneway routing in dodgr_streetnet objects, there
must be a column in the input sf object named oneway, typically derived from the oneway
tag in Open Street Map. We refer to Appendix C for more details. This column must be a
logical vector, containing TRUE for streets that are oneway only and FALSE otherwise. This
feature can be deactivated (e.g. when working with pedestrian or bicycle routing, where
directionality is generally unimportant) by removing the oneway column from the input

data and then rebuilding the dodgr_streetnet object.

2.5.4 A transport network

Having seen several types of street network components in the previous examples and the
corresponding peculiar problems, this final example demonstrates what a citywide street
network looks like. We report R code to create sfNetwork and dodgr_streetnet objects
starting from an sf object with a LINESTRING geometry named chapeltown_leeds. We
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took highway data from Geofabrik” servers, considering a 5 km radius of the Chapeltown
neighbourhood of Leeds (UK), an area the authors are familiar with, as the basis for the
following examples.
The conversion between the pure sf format and the stplanr and dodgr representations is
performed using the following commands:
street_network_stplanr <- SpatialLinesNetwork(

rnet_breakup_vertices (chapeltown_leeds)

)

Warning: Graph composed of multiple subgraphs, consider cleaning it.
street_network_dodgr <- weight_streetnet(

chapeltown_leeds,

wt_profile = "bicycle"
)

A few notes:

1. The rnet_breakup_vertices() function was applied to the input sf data in the
stplanr representation for the reasons explained in the previous examples. It fixes
several possible routing problems, and it runs in approximately 3 seconds considering
a road network of 12000 segments. Starting from stplanr version 0.8.2, it should
scale quite efficiently for larger network.

2. The SpatialLinesNetwork() function returns a warning message, and we are going
to explain its meaning in the next Section.

3. The wt_profile parameter in weight_streetnet is used to specify the preferred
weighting profile, which is going to determine the dual weights.

Neither packages provides explicit tools for visualisation, other than a basic plot () method
to show the geometry for sfNetwork objects. However, a wide range of visualisation pack-
ages can be used on the spatial component, which can be exported from the @sl slot (for
sfNetwork objects), or via the dodgr_to_sf() function (for dodgr_streetnet objects).
See, for example, Figure 2.8. All the examples shown in the previous subsections were also
taken from within this case study area.

2.6 Analysing street networks

In this Section, we present how to perform a few common operations on street networks
with stplanr and dodgr packages. The examples are based on the road network built in
the last example. These operations are repeatedly applied in the next Chapters.

"Geofabrik is a website that provides extracts of Open Street Map data that are updated daily. It is
one of osmextract’s providers, and it is presented in Appendix C.
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2.6.1 Connectivity

The first functions that we introduce are related to the identification of the components of
a street network. The connectivity of a network is usually defined as follows: a graph G
is said to be connected if there exists a sequence of edges going from each vertex to every
other vertex. The components of the network are its sub-graph(s) formed by all connected
vertexes (Kolaczyk and Csardi, ).

The package dodgr defines a function, named dodgr_components (), which is used to iden-
tify the clusters of connected edges in a dodgr_streetnet object. The output is the same
graph object in input with an additional column, called component, that identifies the com-
ponent of each edge, sequentially numbering them starting from one (the ID of the largest
component).

On the other side, stplanr package does not define any explicit function for a direct identifi-
cation of the components of a street network. Nevertheless, the function sln_clean_graph()
can be used for an automatic selection of all the edges belonging to the largest compo-
nent, creating a fully connected graph. Moreover, as we saw with the previous example,
SpatialLinesNetwork() may raise a warning every time its output is formed by two or
more components, suggesting the adoption of sln_clean_graph() function. The same
result can be obtained using the dodgr approach by filtering all the edges where the compo-
nent column is equal to one. As we can see from Figure 2.8, there are several small clusters
of roads in the Chapeltown road network, and we can exclude them with the following
commands:

street_network_stplanr <- sln_clean_graph(street_network_stplanr)
street_network_dodgr <- street_network_dodgrl[

street_network_dodgr$component == s

]

The connectivity analysis is linked with Conditional Autoregressive prior and kernel meth-
ods, as detailed in several papers (Besag and Kooperberg, ; Rakshit, Baddeley, and
Nair, ) and also mentioned in Chapters 4 and 5.

2.6.2 Shortest paths

We present now several functions that can be used for estimating shortest (in terms of
geographical distance) and fastest (according to the dual weights set by dodgr package)
paths between two locations: Monk Bridge, which lies in the south-west of Leeds City
Center, and Chapeltown neighbourhood, located in the north-east. The first step is the
geo-coding of the coordinates of the two points through stplanr::geo_code() via the
Nominatim service (Open Street Map, ):

leeds_monk_bridge <- geo_code("leeds monk bridge")
chapeltown <- geo_code("Leeds Chapeltown")
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Figure 2.8: Illustration of a citywide street network, in Leeds (UK). For simplicity, we
report only the most important highways. The previous examples were taken from within
this case-study area.

The route_local() function can be used for calculating the shortest path according to the
stplanr approach. The inputs of the function are an sfNetwork object, representing the
street network, and the coordinates of the start and end points, either as numeric values
or text strings. The following command estimates the shortest path between Monk Bridge
and Chapeltown, given the road network built in the previous examples.

stplanr_shortest <- route_local(

sln = street_mnetwork_stplanr,
from = leeds_monk_bridge,
to = chapeltown

)

The output of route_local() is an sf object, which is created as a subset of the original
input data, containing only the edges connecting the two points through the shortest path.
The dodgr package offers multiple options for estimating shortest and fastest paths on a
street network. The main function is called dodgr_paths() and it works as follows:

dodgr_fastest_ids <- dodgr_paths(
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street_network_dodgr , leeds_monk_bridge, chapeltown, vertices = FALSE

)

The inputs are a dodgr_streetnet object, representing the street network, and two matri-
ces (or vectors) of numeric coordinates for the start and end points. The output is a list of
paths tracing the connections between the points, either as a list of vertices or edges ID(s)
(according to the vertices parameter). dodgr functions are optimized for many-to-many
pairwise distances on dual-weighted graphs, so the element dodgr_fastest_ids[[i]1]1[[j]]
contains the path from the i¢th starting point to the jth ending point. The examples pre-
sented in this manuscript are based on just two points, so the indexes of the vertices
composing the best route between Monk Bridge and Chapeltown can be extracted with
the following command: dodgr_fastest_ids[[1]][[1]]. The fastest path can be recon-
structed as a dodgr_streetnet dataframe of edges as follows:

dodgr_fastest_path <- street_network_dodgr[dodgr_fastest_ids [[1]]1[[1]], 1]

Both routes are reported in Figure 2.9a. The shortest path suggested by route_local() is
coloured in dark-green, and it is different from the fastest path suggested by dodgr_paths ()
and coloured in dark-red. We can see that the route chosen by stplanr is going through
several trunks and motorways, while dodgr path prefers tertiary roads and cycleways. This
difference is due to the fact that the fastest way is optimised for bicycle routing using a
dual-weights system.

More precisely, as we mentioned in the previous sections, the real advantage of dodgr
approach is the ability to calculate paths on dual-weighted graphs. The fastest path is
calculated according to one set of weights, while the resultant distances are calculated by
accumulating a different set of weights along the resultant path. This is particularly impor-
tant for realistic transport routing, where different kinds of ways are more or less suitable
for different kinds of transport. The true shortest path for a pedestrian may be along an
eight-lane highway, but they are never likely to actually traverse that way. Instead, that
eight-line highway should be weighted to yield an effective length that is longer than the
actual geographical length. dodgr offers a range of weighting profiles, listed using the follow-
ing R command, and detailed in the help page of the included dodgr: :weighting profiles
data set.

wp <- weighting_profiles

unique (wp$weighting_profiles$name)

#> "foot" "horse" "wheelchair" "bicycle" "moped" "motorcycle" "motorcar"
#> Ilgoodsll |Ihgvll llpsvﬂ

Street networks can be weighted for transport of any of the associated types, by entering
the name in the wt_profile parameter. The following code demonstrates what one profile
actually looks like.

head (wp$weighting_profiles [wp$weighting_profiles$name == "foot", ])
#> name way value max_speed
#> 1 foot motorway 0.0 NA
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Figure 2.9: Graphical example of shortest paths between Monk Bridge and Chapeltown
(UK). The dark green route is the path suggested by stplanr, while the dark red route is
the path suggested by dodgr. The red route on the left is optimized according to a bicycle
mode of transport, while the red route on the right is optimized according to a motorcar
transport.

#> 2 foot trunk 0.4 NA
#> 3 foot primary 0.5 5
#> 4 foot secondary 0.6 5
#> 5 foot tertiary 0.7 5
#> 6 foot unclassified 0.8 5

We can check the differences between two weighting profiles by estimating the fastest path
between Monk Bridge and Chapeltown according to a motorcar type of transport. We do
not repeat the commands since they are analogous to the previous example, but the fastest
path is reported in Figure 2.9b. We can see that the routes suggested by stplanr and
dodgr are almost identical, but for a few minor differences in the City Center due to the
fact that the shortest path estimated by route_local() is going against the flow.

The same ideas can be tested using the dodgr_dists() function. The following code
calculates the geographical distance between Monk Bridge and Chapeltown according to a
bicycle weighting profile using the fastest path:
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dodgr_dists(
graph = street_network_dodgr,
from = leeds_monk_bridge,
to = chapeltown,
shortest = FALSE
)
#> 8023

or the shortest path:

dodgr_dists(
graph = street_network_dodgr,
from = leeds_monk_bridge,
to = chapeltown,
shortest = TRUE
)
#> 3704

dodgr also offers the ability to incorporate elevation data, and to take account of the effect
of elevation changes on travel times. While elevation has little or no effect on motorised
transport, it has very important effects on human-powered modes of transport (walking and
bicycling). Elevation effects can currently only be incorporated when the underlying net-
work is represented in is represented in silicate (sc) format (Sumner and Padgham, )
and we refer to the corresponding R package repository for more details. This effectively
only involves replacing the dodgr_streetnet () function with dodgr_streetnet_sc(). The
final dodgr network will appear largely the same but will incorporate effects of elevation
changes, as well as waiting times at traffic lights, and time penalties for waiting to turn
across oncoming traffic. Time-based routing using these dodgr networks will reflect highly
realistic transit behaviour.

Finally dodgr also offers the functions dodgr_isodists() and dodgr_isochrones() to
calculate the respective isocontours from a given set of starting points. Like all other dodgr
functions, these are computationally optimised for highly efficient parallel calculation of
isocontours from large numbers of starting points.

2.6.3 Graph metrics

A strength of the stplanr approach to street networks analysis is that its sfNetwork class
contains an igraph object, opening-up a wide range of algorithms provided in the igraph
package (Kolaczyk and Csardi, ). A basic characteristic of any graph is whether or
not it is simple, meaning all nodes are connected by only one edge (or either one or two
edges for directed graphs). We can use the igraph function is.simple() to test the
street_network_stplanr citywide street network:

is.simple(slot(street_network_stplanr, "g"))
#> FALSE
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Figure 2.10: Graphical summary of two network metrics estimated using igraph algo-
rithms. Left: We can see how the most important highways in Leeds are highlighted by the
betweenness centrality measure. Right: Histogram of vertex strength. Several vertices are
linked to only a few short edges.

The graph representation of a street network is typically not simple. Another example is
provided in the following command, which estimates the edge betweenness measure of cen-
trality that indicates the number of shortest paths that pass through the edges, considering
all nodes or some subset of them:

edge_betweenness (street_network_stplanr@g)

Other igraph functions can calculate other network characteristics related to the vertices,
such as their closeness centrality (which is a measure of the distance from a vertex to
all others) or their degree (the number of edges incident to each vertex). The following
command, to provide another example, estimates the vertex strength (defined as the sum
of the lengths of all edges incident to a given vertex). Note that, by default, the weights of
the edges are the lengths of the corresponding LINESTRING objects.

strength(street_network_stplanr@g)

At present, there is no functionality in stplanr for linking such vertex metrics to the cor-
responding spatial coordinates (an issue we plan to address in future work). Still, vertex
metrics can be summarised visually, to provide an overview of the structure of the street
network that can be compared with street networks from other cities, to explore concepts
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such as interdependence and resilience (Morris and Barthelemy, ). A graphical sum-
mary of the edge betweenness and vertex strength metrics is reported in Figures 2.10a
and 2.10b.

The authors of stplanr recently extended the integration between igraph and sfNetworks
objects, defining a new function named rnet_group that can be used to explore the spatial
distribution of several algorithms for community detection (Fortunato, ). The following
code can be used to estimate the community structure of the spatial network according to
an algorithm defined in Blondel et al. ( ).

rnet_group(street_network_stplanr, igraph::cluster_louvain)

The output is an sfNetwork object with an extra column in the sl slot named rnet group
that summarizes the partitions.

dodgr also supports network analysis. The function dodgr_centrality() calculates be-
tweenness centrality, with an implementation that can be computed using parallel process-
ing capabilities of modern computers and which enables centrality to be estimated with
respect to weighted measures of distance or time. The following command calculates edge
betweenness centrality, resulting in a dodgr_streetnet object that has an additional col-
umn called centrality.

dodgr_edges_betweennes <- dodgr_centrality(street_network_graph)

Vertex betweenness centrality measures can be calculated by setting the edges argument
to FALSE in the dodgr_centrality() function. The output is a data.frame object with
a column called centrality. A graphical comparison of edge and vertex betweenness is
reported in Figures 2.11a and 2.11b.

A characteristic of Open Street Map data is that vertex locations are, to some extent, arbi-
trary, which can lead to overestimates of centrality near road segments with arbitrarily high
numbers of vertices per unit distance. dodgr addresses this issue by enabling betweenness
centrality measures to be calculated with contracted street networks using the contracted
argument (which defaults to TRUE). We refer to the help page of dodgr_centrality() for
details, including the dist_threshold argument which constrains path lengths on which
centrality estimates are based. Passing suitable values to dist_threshold (and the equiv-
alent cutoff argument in igraph functions) can improve the computational efficiency of
street network centrality calculations.

2.7 Discussion and Conclusion

This Chapter has demonstrated that street networks, a particular type of spatial network
representing transport systems, can be encoded in classes that build on pre-existing data
structures that are available in the statistical programming language R. We explored the
representation of a range of street network features in stplanr and dodgr, two recently
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(a) dodgr: edge betweenness centrality metric. (b) dodgr: vertices centrality metric..

Figure 2.11: Graphical summary of edge and vertex betweenness centrality measure esti-
mated using dodgr. We can see that both metrics highlight the most important roads of
Leeds city area.

developed R packages that provide explicit support for street networks building on pre-
existing geographical/graph and simple data frame class definitions, respectively. Overall,
we found that both approaches can be used for analysing street networks, with support
for shortest path calculation, characterisation of networks, nodes and edges, and the abil-
ity to modify networks. Such capabilities can be (and to some extent are already being)
implemented in other languages for interactive data analyisis, as demonstrated by the es-
tablished Python package osmnx (Boeing, ) and the recently developed Julia package
OpenStreetMap. j1.

Perhaps more important than languages of implementation are the underlying concepts
and real-world applications. We found that concepts of network pre-processing, including
the vital stage of breaking-up linestrings at junction intersections for approaches based on
geographic data structures and weighting profiles/contraction, are vital for effective use of
street network data, regardless of language of implementation or the data structures used
to represent the street network. Although the approaches have been applied on datasets
designed to highlight the techniques rather than to answer applied research questions, it
seems clear that both approaches can help answer important research questions, including:

e What is the relative circuity (divergence factor) for motorised and non-motorised
modes in different areas?
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e What are the relationships between street network characteristics and travel behaviour
(e.g. are some network forms associated with more walking and cycling)?

e What are the optimal places to intervene on the road network to improve transport
system performances, e.g. based on environmental, health or journey time perfor-
mance metrics?

Answers to these and many other research questions have real-world applications, partic-
ularly in transport planning. Perhaps key test of the packages will therefore be whether
they see widespread uptake, beyond niche applications (Lovelace, Goodman, et al., )
of the type that spatial R packages such as sf have seen.

stplanr and dodgr each have strengths and limitations that make them more or less ap-
propriate for different tasks. Building on established spatial and graph packages, stplanr’s
sfNetwork can be analysed using a wide range of spatial and graph functions. Its graph
structure can be linked and analysed with several algorithms implemented in igraph. A
downside of stplanr, at the time of writing, is that it lacks support for routing features
such as in-built weighting profiles for different modes of transport and the representation
of one-way streets. Adding these features, either directly in stplanr or other packages
that build on the geographical /graph data structures it uses, could represent a promising
direction of future development that would address this limitation. dodgr’s class system, by
contrast, is more specifically focussed on Open Street Map data and routing, with support
for a variety of modes and oneway streets being key strengths. The examples presented in
Sections 2.5 and 2.6 exhibit the relevance of dual-weights for realistic routing. These rela-
tive strengths and weaknesses raise the question of priorities for future development, which
could go in various directions including better support for routing in stplanr to integration
with other spatial classes in dodgr (which can already be translated to established graph
and spatial classes).

An article on the r-spatial blog reports an alternative way of representing dual sf/igraph
objects that uses tidygraph as the basis for a data frame-like representation of spatial
networks (Pedersen, ). This approach offers some potential advantages in terms of
usability and could be adopted as the basis of future street network classes, but it is not yet
mature enough to compare with stplanr and dodgr. A range of alternative approaches,
as yet unexplored, may also be advantageous, for example using R as an interface to high
performance graph libraries such as sDNA (Cooper and Chiaradia, ). While such options
remain relatively unexplored, stplanr and dodgr have been tested, are actively maintained,
and provide class structures that open-up street network analysis to reproducible analysis.
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CHAPTER 3

Assessing the Risk of Car Crashes in Road
Networks

Cosa cazzo serve uno che ti dice che a Caropepe
Valguarnera alle 18.45 sulla Tangenziale di Milano
c’e il traffico? A un cazzo!

Giuseppe Cruciani - La Zanzara, 2019-10-18

Based on: Borgoni, R., Gilardi, A. and Zappa, D., 2020. Assessing the Risk of Car Crashes
i Road Networks. Social Indicators Research, pp.1-19.

3.1 Introduction

Worldwide, thousands of people die annually in highway-related crashes and millions are
injured. By 2030, car crashes are predicted to be the 5th leading cause of death in the
world according to the World Health Organization (F. L. Mannering and Bhat, ). In
the United States, traffic incidents are the first cause of workplace fatalities and the leading
cause of death for children aged 1-19 (Cunningham, Walton, and Carter, ). Underpriv-
ileged people, such as those living in poor socio-economic areas, may be vulnerable because
of their lack of access to information and to safe roads and vehicles, while adolescents are
more likely to be involved in a car or motorcycle accident because of their inexperience.
Thus, road crashes have relevant social impacts. Crashes may also have high social costs.
For example, a deficient road safety policy implies that hospital beds will be occupied by
victims of traffic accidents, increasing the burden on the health system. In low- and middle-
income countries, a direct link is found between road safety and poverty (Shah et al., ).
Research in Bangladesh! has shown that 50% of the people involved in a road crash fall
into poverty. This is due to losing the ability to generate income and/or high out of the
pocket expenses for hospitals and medication.

The statistical analysis of crash data has historically been fundamental to estimate the risk
of accidents and develop road-safety policies aimed at saving lives and reducing the severity
of injuries. The European Transportation Safety Council defines a Safety Performance

!See https://wuw.safe-crossings.org.
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Indicator (SPI) of accident risk as a measurement that is causally related to accidents or
injuries, used in addition to a count of accidents or injuries in order to indicate a safety
performance or understand the process that leads to accidents.

Driving-related data (such as acceleration and braking) and crash-related data (such as
those made available from vehicle black-boxes) would help to identify cause and effect
relationships, but they are rarely recorded. Hence, a large majority of research has addressed
the problem in terms of understanding the factors that affect the frequency of crashes, i.e.
the number of crashes occurring in some geographical space over some specified time periods.
A few papers (F. Mannering, ; F. L. Mannering and Bhat, ) provide a comprehen-
sive review of current methodological approaches for studying crash frequencies, stressing
the relevance of data quality, the great difficulty in accessing accident related data and
the role of spatial information. In order to estimate a driver’s risk of crash, for instance,
it is customary to use car characteristics, claims history or qualitative and quantitative
information of the region where the driver lives (i.e. the population density of the postal
code or the town of the driver). However, these covariates are often proprietary and lim-
ited to same places or periods. Additional information to infer crash causes can also be
obtained by mining exogenous databases or scraping the web. We refer to the use of
individual /company-based credit scoring databases and car black boxes to monitor driving
habits; moreover, the latent propensity of some categories to be involved in an accident can
be ascertained by studying the text of accident policy reports or the "sentiment" that can
be inferred from the tweets published by customers, etc (Dugas et al., ; Guo, ;
Zappa et al., ). However, these data are typically difficult to collect.

In this Chapter, we show how to monitor accident exposure in geographical space using
data taken from open archives. Open data sources, presented in Section 3.2 and already
mentioned in Chapter 2, have become more accessible in recent years thanks to the rapid
growth of software and hardware capabilities, which can easily manage a huge amount of
spatial data and disseminate it via the web. Open data archives often provide relevant in-
formation to support local authorities in allocating resources and making political decisions
to mitigate accident risk. The case study presented in this Chapter considers the problem
of modelling car accident frequency in the municipality area of Milan (Italy). Using open
source datasets provided by the Italian national office of statistics (ISTAT), which records
information on the location of all car accidents that resulted in fatalities or injuries of at
least one person, we projected crashes on the road network of the city, counted the number
of occurrences in each street segment and augmented the dataset using several geocoded
open data sources. To estimate the risk of accidents, we employed a Zero Inflated Poisson
(ZIP) regression model (Lambert, ) to account for the excess of zeros that occur in
this dataset. This allows us to define two indices that model different aspects of accident
risk for every street segment that composes the road network. More specifically, the first
index, derived from the counting component of the zero inflated Poisson model, measures
how prone the segment is to car crashes. The other, derived by the zero component of the
zero inflated model, represents a measure of the likelihood of the segment not to be exposed
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to crashes.

We show how this secondary information is useful to measure the impact of the road struc-
ture (e.g. presence of traffic lights and/or pedestrian crossings, type of highways, etc.)
and the role of local socio-demographic features (e.g. population density, concentration
of families, housings etc.) to estimate the risk of accidents. In our analysis, we did not
consider traffic density measures since they are not available for every street of the network.
Although a few existing projects share open traffic data for several cities?, they typically
cover just small portions of the street network.

We are aware that the data considered in this Chapter, although being the largest and most
omni-comprehensive open-source geocoded dataset available on car crashes in Italy, may
possibly provide only a partially complete image of the entire set of events that actually
occurred in the area, since it excludes all accidents not reported to the police. From a
social perspective however, these accidents are expected to be of lesser concern than those
that resulted in injuries or fatalities because they have less impact on people’s lives and the
health care system. Hence, this under-reporting is not expected to severely affect our results
because the events that led to serious adverse outcomes are unlikely to remain unreported.
From a methodological and applied perspective, modelling crash frequency to define appro-
priate safety indexes of territorial units, either areas or streets, is not new. Many papers
(Bao et al., ; Egilmez and McAvoy, ; Gitelman, Doveh, and Hakkert, ; Her-
mans, Van den Bossche, and Wets, , ; Rosié¢ et al., ; Rosolino et al., )
estimate safety measures at a national or regional level using precompiled indices such as
economic growth, the number of highways, the number of registered cars, the domain knowl-
edge of experts, etc. To the best of our knowledge, however, this Chapter summarises an
original attempt to develop a road safety index modelling accident data on an entire road
network covering thousands of kilometres of an extensive and heterogeneous urban territory
using a large amount of geocoded data taken from administrative records as well as from
different sources that are entirely open. In this sense, the approach discussed herein can be
straightforwardly replicated in all areas/countries where similar open source information is
available.

The rest of the Chapter is organized as follows. In Section 3.2, the data sources are described
in detail. In Sections 3.3 and 3.4, the statistical methods adopted in this Chapter are briefly
considered, namely the ZIP model and the geographically weighted principal components,
respectively. In Section 3.5, we comment the results of the ZIP regression model used to
estimate road risk and safety indices. Conclusions and discussion are in Section 3.6.

3.2 Open Data Sources for Car Crashes

We consider all car accidents occurring between the 1st of January 2015 and the 31st
of December 2017 in Milan that required police intervention and resulted in fatalities or

2See https://github.com/graphhopper/open-traffic-collection.
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(a) Projecting car crashes (b) Car crashes and road network

Figure 3.1: Left: Projecting car crashes to the nearest segment. The grey dots delimit the
street segments; Right: Spatial representation of car crashes in the road network of Milan
during 2015.

injuries of at least one person®. The address of every accident was recorded by the police,
and we geocoded it with UTM coordinates using the R (R Core Team, ) package
googleway (Cooley, ) and the Google geocoding API (Application Program Interface).
The original sample included 26,223 events. We exclude from the dataset all those car
accidents with an unknown or incomplete civic address that makes geocoding unfeasible
or uncertain. The final sample includes 24,948 events. Of these accidents, 8341 occurred
in 2015, 8506 in 2016 and 8101 in 2017. The road network is built using data from Open
Street Map. Open Street Map is a project that aims at building a free and editable map
of the World with an open-content license. The basic components of OpenStreetMap data
are called elements and they are divided in: modes, which represent points on the earth’s
surface; ways, which are ordered lists of nodes; and relations, which are lists of nodes,
ways and other relations where each member has additional information that describes its
relationship with the other elements. Bus routes, railways and administrative boundaries
are classical examples of relations. Every physical object in the landscape is represented by
these three elements and its attributes are stored using a tag, which is simply a pair of items
that identify a category, a key, and the corresponding value (e.g. street = "motorway" or
name = "Park Avenue”). We point out that, by definition of OpenStreetMap ways, all
streets of our network are internally stored as the union of a set of segments defined by
their nodes (the grey dots in Figure 3.1a) and the regression model presented later on in

3The data are available at https://www.istat.it/it/archivio/87539.
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the Chapter is based on this particular segmentation.

We use the R package osmdata (Padgham et al., ) to download the data to create the
street network. It includes every primary, secondary, tertiary, unclassified and residential
highway for a total of 25,675 segments having different lengths, which are calculated as
the sum of the Euclidean distances between all subsequent nodes that identify each street
segment.

All car crashes are projected to the nearest point belonging to the linear network (as
in Figure 3.1a), and the final result is reported in Figure 3.1b. Secondary data used as
covariates in the model described later on in the Chapter are also collected from the web.
More specifically, demographic variables representing population (6 variables), family (3
variables) and building characteristics (5 variables) are taken from 2011 Census Data. These
variables are described in detail in Table 3.1.

The locations of traffic lights and pedestrian crossings are downloaded from Open Street
Map and projected onto the nearest segment of the network using the same procedure
described above. Two binary indicators are defined recording the presence of traffic lights
and pedestrian crossings in every street of the network. Finally, the number of roads
touching each street segment” is calculated to provide a proxy measure of the traffic flow.
The higher the number of touching segments, the higher the traffic volume is expected to
be.

3.3 Modelling Car Crashes: Methodology

The response variable Y of the regression model considered hereafter is the total number
of car crashes projected onto each segment of the road network, and we aim at modelling
Y as a function of a set of non-random covariates, say .

Since the response variable takes non-negative integer values, the Poisson regression model
serves as a basis to assess the roles of those factors that potentially influence the crash
frequencies (Agresti, ). This assumption is widely accepted in the literature on road
safety and actuarial® field (De Jong, Heller, et al., ; F. L. Mannering and Bhat, ).
Let Y ~ Poisson(A), the loglinear Poisson regression model is specified by setting

log\ = '3

where x is a g-vector of explanatory variables and 3 is a g-vector of unknown coefficients.
Hence, the expected value of Y is modelled on the scale of the canonical link. Standard
maximum likelihood procedure is used to find the estimate of 3.

4Two street segments are touching each other when the only points in common lie in the union of their
boundaries.

SHow crashes are distributed within a population is very relevant for insurance companies where the
accident frequency is used to determine policy premiums, i.e. the cost of the driving insurance contracts
often compulsory to drive a car.
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Table 3.1: Demographic variables used in the analysis. For reader’s convenience, the name
of the GWPCA transformation described in Section 3.4 is also reported in the last column.

Macro-area Description Short-name

Total residential population
Total working population (age > 15)
Total number of students (age > 15)
Population variables Total population of daily commuters within the GWPCA_pop
municipality
Total population of daily commuters outside of
the municipality
Total number of foreign inhabitants

Total number of occupied dwellings
Total number of unoccupied dwellings
Building variables Total number of buildings GWPCA_ build
Total number of occupied buildings
Total number of residential buildings

Total number of families with a rented house
Family variables Total number of families with a proprietary house GWPCA _fam
Total number of families

Often, the expected value of Y is proportional to an index 7, which stands for different
exposures of the statistical units. For instance, 7 represents the exposure with respect to a
different amount of time, a different population size or a different size of spatial areas. In
these circumstances, one is actually interested in modelling the sampling rate Y/7, which
implies that the loglinear model is changed in

log <i> =z'3

or equivalently log A = '3 + log 7. The adjusting term log 7 is called offset. In the case
study discussed later in the Chapter, the length of a road segment is used as an offset.

Count data are termed zero inflated when the number of 0 frequencies in the sample is
much larger than what the Poisson model can explain. Following Lord and F. Mannering
( ) zero inflation occurs for crash data when the sampling frame is highly detailed, and
low crash counts are then expected. These conditions are both present in our case: in the
period 2015 - 2017, the crash frequency in Italy was around 0.056 and we are dealing with a
very large road network of more than 25,000 segments, many of which having a very short
length. This resulted in a high frequency of zero crash segments (approximately 85%), much
larger than expected under standard Poisson models. As noticed by Lord, Washington, and
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Ivan ( ), segments with zero crashes cannot be considered fully safe. The aim of this
model is, in fact, to estimate an index for the risk of accidents, even for those segments
where a zero frequency is observed.

Technically, zero inflated models explicitly account for a high frequency at zero by mixing
discrete distributions with a degenerate distribution with point mass of one at zero. Given
the high number of road segments without accidents, the number of car crashes is modelled
using a Zero Inflated Poisson (ZIP) model (Lambert, ). More specifically, the ZIP
model assumes that

v 0 with probability ¢
Poisson(#)  with probability 1 — ¢.

Hence, the unconditional distribution turns out to be

o Je+ =gt ity=0
P(Y_y)_{(l_ﬁb)e_e?j; 1fy:1’2,,

where 0 < ¢ < 1 and 6 > 0. The mean and the variance of this distribution are respectively
E[Y] = (1—¢)0 and var[Y] = (1—¢)0(1+¢0). Since var[Y] > E[Y], the model also allows for
overdispersion in the count distribution. In a regression framework, the parameters ¢ and
# can be modelled as a function of a set of explanatory variables by assuming log § = '3
and log % = z'~, where « and z are two vectors of m and ¢ predictors® and 3 and ~ are
unknown parameters.

Many generalizations are available. Lord and F. Mannering ( ) and F. L. Mannering
and Bhat ( ) provide detailed review of the key issues associated with crash-frequency
data as well as the strengths and the weaknesses of the various methodological approaches.

3.4 Geographically Weighted Principal Components Analysis

The fourteen demographic variables, grouped into three groups as described in Table 3.1,
are recoded for every census tract of Milan. All variables in the same group are correlated
to each other and, for this reason, we summarize them by a dimension reduction technique
with the minimum information loss.
A standard approach would be to perform a principal component analysis (PCA) (Jolliffe,
) on each group of variables separately and retain the first principal component (PC) to
represent the corresponding macro-demographic dimension. Instead, since in this study we
are concerned with spatial data, a spatial variant of PCA is adopted. Ignoring the spatial
characteristics of the data and applying a standard PCA does not seem appropriate since
the spatial effects are expected to be relevant and can potentially provide a more com-
plete understanding of the considered process. A geographically weighted PCA (GWPCA)

5The two sets of predictors are not subjected to constrains and they may be either the same or different.
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Figure 3.2: GWPC scores for the first group of demographic variables. The black lines
represent the street segments where the number of observed car crashes during 2015-2017
is greater than 0.

(Fotheringham, Brunsdon, and Charlton, 2003) is implemented to account for a potential
spatial heterogeneity in the data (see Harris, Brunsdon, and Charlton (2011) for a further
discussion).

To estimate the geographically weighted PC scores, it is necessary to first calculate the
sample geographically-weighted variance and covariance matrix conditional to each sample
unit. More precisely, let k be the number of variables to be processed in the PCA and
let X be the n x k matrix of their sample values, n being the sample size. Then, the
GW variance—covariance matrix with respect to the unit j of the sample is defined by
S; = X'W;X, where Wj is a n x n diagonal matrix of geographical weights estimated
using some kernel function that depends on the distance dj; between unit j and every other
unit [ in the geographical space. In this Chapter, we adopt a bi-square kernel function, i.e.

wu(j) = {(1 —(dji/h)?)?* ifdy <h

0 otherwise,

where h represents the bandwidth parameter, that is set equal to 2500m after testing the
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Figure 3.3: Boxplots of GW loadings for every census tract; grey stars represent the classical
PC loadings for the first principal component.

predictive performance of the model described in Section 3.3 on a grid of different values.
Since the units are administrative areas that are geometrically represented by polygons, the
distances dj; are calculated as the minimum Euclidean distance between the two polygons
in metres. This implies that in the estimation of the local variance-covariance matrix S;
we exclude those polygons that are farther than 2500 meters from the jth census tract.
The singular value decomposition of S; provides GW eigenvalues and GW eigenvectors.
The product of the j-th row of X with the GW eigenvector associated to the biggest
eigenvalue provides the score of the first GWPC at location j. The procedure to calculate
the GWPCs has been implemented in the R software. It should be noted that this is a quite
computationally intensive algorithm since it requires the estimation of a different weight
matrix for each census tract. The whole procedure took slightly more than 3 hours on our
laptops (processor 17-6800HQ, ram 8 GB).

Figure 3.2 shows a graphical representation of GWPC analysis applied to the first group
of demographic variables, i.e. the population variables in Table 3.1. The map of those seg-
ments where at least one car accident occurred during the years 2015 — 2017 is superimposed
on the thematic map of the scores by neighbourhood. Note that for this particular plot, we
reported the NIL (Nuclei di Identita Locale) neighbourhoods instead of the census tracts
that, being extremely small, would have made the map extremely confused and difficult to
understand.
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We calculate the value of the GWPC score for every NIL by averaging the GWPC score of
each census tract intersecting that NIL. From Figure 3.2 it appears that there is a spatial
relationship between the GWPC scores and the observed number of car crashes since there
are far more segments in brighter areas than darker areas. It is not possible to obtain
a unique interpretation of the GWPC scores since they are estimated locally for every
census tract. For this reason, we summarize them in Figure 3.3, where each boxplot depicts
the spatial distribution of the first GWPC loadings. The star represents the ordinary PC
loadings for the first principal component. We can see that there is some sort of variability
in the geographically weighted estimates of PC loadings, especially for ST1 variable, i.e. the
total number of foreign inhabitants. This spatial behaviour would not have been properly
modelled using a classical PCA. Moreover, since the GWPC loadings for all census tracts
are strictly greater than zero, we can conclude that high observed numbers of car crashes
seem to be related with high values of Population variables. We obtain similar results for
the other two groups of demographic variables. For further research, this procedure could
also be used to estimate social indexes to link demographic variables to other urban aspects
such as crime or ambulance dispatch.

The GWPC scores obtained by GWPCA pertain to the census tracks of Milan. This
information is spatially misaligned with the street segments. For the regression model
described in Section 3.3, we need to match the GWPCs with the segments of the road
network. Hence, we overlaid the map of the census tracts (available as a shape file at
the ISTAT website) on the spatial network and the PC score of the most overlapping
tract polygon is finally assigned to each road segment. The three GWPCAs are named
GWPCA_ pop, GWPCA _build, GWPCA __fam, respectively, as summarised in Table 3.1.

3.5 Empirical Results

In this Section, the statistical model presented in Section 3.3 is adopted to analyse the
frequency of car accidents occurring in Milan from 2015 to 2017. The covariates included
in the regression model represent structural characteristics of the road network as well
as sociodemographic dimensions. More specifically, the three groups of socio-demographic
variables mentioned in Section 3.2 are summarised using a geographically weighted principal
component analysis (see Section 3.4) and the first principal component of each group is
retained in the model. As far as the structural variables are concerned, we consider the
number of roads touching a street segment and two binary variables indicating the presence
of traffic lights and pedestrian crossings in each street segment. We also include the OSM
classification of each highway segment’.

Since we have data collected for three consecutive years, ¢ = 2015, 2016, 2017, on a network
that is fixed over time, we check for the presence of serial dependence between the crash
counts observed in two consecutive years. We display in Figure 3.4 two scatterplots showing

"Highway classifications: primary, secondary, tertiary, residential, unclassified.
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Figure 3.4: Scatterplots of the number of car crashes that occurred in each street segment
in 2015 versus 2016 (left) and 2016 versus 2017 (right).

the relationship between the number of car accidents per segment that occurred during 2016
and 2017 and the counts of the same segments in the previous year. We can see a positive
association between the frequency of car crashes in two subsequent years, which suggests
that car crashes tend to reoccur (or not to occur) in those street segments where crashes
occurred (or did not occur) one year earlier. We superimpose on the graph a cubic spline
interpolation of the scatter plot with its confidence region (Wood, ). This interpolation
shows that the relationship between the counts of two consecutive years is reasonably linear,
the correlation coefficient® being as high as, roughly, 0.66 in both cases.

Hence, since the number of crashes that occurred in a given year is related to the number of
crashes occurring in the same segment the year before, the lagged response variable, Y;_1,
is also included in the predictor set of the ZIP model. The models for counts and zeros are
then specified as a dynamic lagged regression that writes as

b0 , , (3.1)
log =5 =7 + Mz + 7w +y3y:-1 + log 7,

{log 0; = Bo + Bl + Bhw + Bay_1 + log 7o

where x is the set of structural covariates of the street, w is the set of GWPC extracted
by the three socio demographic macro dimensions in Table 3.1, 3 = (81,32, 83) and v =
(71,72, 7v3) are unknown parameters to be estimated from the data, and log 7. and log 7,

8We removed the coordinate (0, 0) in the computation to reduce a polar effect due to the large number of
observations in that position. If it was included, correlations would have been 0.6717, 0.6722 respectively.
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are offsets for the count and zero component, respectively. The model in Equation (3.1)
will be indicated by ZIP (1) in the rest of the chapter.

The results of the estimation procedure for the count and the zero model are reported in
Table 3.2, respectively in the third and fifth column. The other columns of Table 3.2 will
be explained later on in this Section.

The coefficient associated with the lagged counts in the Poisson component of model ZIP
(1) is positive and highly significant, while it is negative and highly significant in the zero
component. The coefficients of the logistic regression for the zero component represent the
effect of each covariate included in the linear predictor on the log-odds of the probability
that no crash occurs in a street segment. In particular, —1.231 (see last raw and last column
of Table 3.2) is the decrease of the log-odds for a unit increase in the number of crashes in
the previous year, keeping all other variables in the model fixed.

Being (1 — ¢)60 the expected number of car crashes, we can also conclude that this value at
time t tends to increase as the number of crashes at time ¢ — 1 gets larger since both the
zero and the count components point towards the same direction. This result is consistent
with our exploratory analysis.

The joint interpretation of the overall effect of each variable included in the ZIP model is,
however, not easy (Agresti, , Ch. 7), in particular when a covariate affects ¢ and 6 in
an opposite directions, as for Pedestrian Crossing. Following Lambert ( ), another way
to address the interpretation problems of the ZIP model is to average the estimated means
over all combination of covariates that share the same level of a factor and then compare
the averages. Table 3.3 shows the marginal average of (1 — é)é for the network covariates
in model ZIP (1). Each value jointly considers both crash averages and the probability of
extra zeros. It is found that Primary highway is riskier than the other road types whereas
the Residential Highway is the safest street type. As it was somehow expected, the greater
the number of touching segments, the greater the risk of crash. Streets with traffic lights
or pedestrian crossings are riskier than roads without them.

To assess the fit of the ZIP model, we consider the Pearson residuals, which are defined by
T = yz/g:z, where fi; = (1 — ¢;)0; and &; = fi;(1 + ¢) (Cameron and Trivedi, ). The
residuals range from —5.925 to 16.205, their mean is —0.022, the median —0.240 and the
variance 0.8364, whereas 5th and 95th percentile are —0.679 and 1.818 respectively. These
values suggest that, on average, the expected values and the observed counts are close to
each other and more than 90% of total residuals in modulus are smaller than 2.

We checked our decision to adopt a ZIP model that includes all variables both in the count
and in the zero component comparing the estimated coefficients of ZIP (1) with two other
models: a) standard GLM loglinear Poisson model and b) ZIP model, named ZIPopst,
which is equal to ZIP (1) for the count component but it includes no covariates in the zero
component. The estimates of the GLM model are reported in the first column of Table 3.2,
while the estimates of the ZIP st model are reported in the second and fourth columns.
All three models adopted the length of each street segment as an offset. We can see that
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Table 3.2: Estimates of Poisson GLM, ZIPopnst, and ZIP (1).

number of car crashes per segment.

Dependent variable is the

Poisson-GLM ~ ZIPeonsy ~ ZIP (1) | ZIPeonse  ZIP (1)
Count component Zero component
Constant ~6.209%%* C5.25Q%ER 5 132%% | . 268%FF 33447
onsta (0.034) (0.039)  (0.042) | (0.023)  (0.112)
L -0.328%% ~0.250%%%  (),199%%* 0.239%*
Unclassified highway (0.029) (0.031)  (0.035) (0.098)
Tertine hishoa 0.144%%% 0.064%*  0.034 -0.044
y ghway (0.028) (0.030)  (0.032) (0.099)
Secondary Lishua 0.174%%% 0.179%%%  (.212%%% 0,322
Y Hehway (0.030) (0.031)  (0.034) (0.106)
o 0,437 L0.370%%% _(,204%%% 0.152
Residential highway (0.028) (0.031)  (0.035) (0.094)
Number of tonching seoments 0188 0.179%%% (0, 180%%* 0.096%%*
HHIDEE OF FOUCAING SCEIENES (g o7 (0.007)  (0.008) (0.021)
Pedestring crossine L0.118%%* L0.250%%% 0,481 _1.320%%
e (0.018) (0.019)  (0.023) (0.054)
Traffic siomals 0.21 1% 0.190%%%  .220%%* 0.193%*
& (0.023) (0.025)  (0.027) (0.083)
_0.052%% L0.059%%% 0,052 -0.001
GWPCA_pop (0.008) (0.009)  (0.011) (0.026)
‘ 0.021%%* 0.007 0.014%* 0,086
GWPCA_build (0.004) (0.005)  (0.006) (0.016)
0.107%%* 0.111%%%  0,101%%* -0.009
GWPCA_fam (0.012) (0.014)  (0.017) (0.038)
v 0.234%% 0.175%%%  ,170%%* (1,231
-1 (0.002) (0.002)  (0.002) (0.038)
Log likelihood “36762.01 "34380.84 -33008.36
A Log likelihood 2381.17  1372.48

*p < 0.1; ¥ p<0.05; *¥** p < 0.01
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Table 3.3: Marginal average of the response for each network covariate.

Covariate Level Marginal Average
Residential highway 0.233

Unclassified highway 0.224

Highway Tertiary highway 0.411
Secondary highway 0.505

Primary highway 0.575

. Absence - 0 0.280

Traffic signals Presence - 1 0.616
Pedestrian crossings Absence - 0 0.210
Presence - 1 0.416

0 0.109

1 0.123

. 2 0.206

Number of touching segments 3 0.212
4 0.261

>5 0.469

the estimates of the coefficients for the count model are found stable and, with the only
exception of GWPCA _build, we do not observe changes in the sign of the estimates.

At the bottom of Table 3.2, we report the A log likelihood, i.e. the additional amount of
likelihood when passing from GLM loglinear to ZIP onst model and from ZIP opng; to ZIP (1)
model. We can conclude that a ZIP regression is more appropriate to model the distribution
of the car crash counts with respect to simpler models (such as GLM or ZIP ot )-

We can see from Table 3.2 that almost all the estimates of coefficients are significantly
different from zero. To further support this result, we adopt a statistical learning technique
to investigate the complexity of the model (i.e. to select relevant variable) and possibly
improve the interpretation. More specifically, we use the LASSO methodology for zero
inflated data (P. Banerjee et al., ; Z. Wang, S. Ma, and C.-Y. Wang, ). The model
estimates are obtained by solving the penalized likelihood problem

m q
argmin —L(3,7) + A\ Z’ﬂj\ + A2 Z|%|7

AL A2 j=1 r=1
where A1 and Ao are penalty coefficients for the count and zero components. This strategy
aims at shrinking towards zero the coefficients of the covariates that are supposed to be not
significant in a validation perspective. Figure 3.5 shows the trajectory of the estimates of
the count component as the shrinkage A\ increases.

From Figure 3.5, only Y;_1 is persistently far from zero as logA; — 0 (i.e. as A\ — 1),
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Figure 3.5: Lasso estimates of the count coefficients by varying A; (on log scale); on the
left of the picture the tiniest shrinkage, on the right the uppermost shrinkage

while the variables that quickly shrink towards zero as the penalty coefficient increases are
the principal components related to population, the number of buildings and the number
of families. This result further reinforces the thesis that one of the most striking elements
that impacts on crashes are the crash history of a segment, the structure of the network
and, to a lesser extent, the density of buildings, population, and families.

3.6 Discussion

In this Chapter, we showed how to monitor the accident exposure in geographical space us-
ing geocoded data taken from open archives and a dynamic zero inflated Poisson regression
model. This approach allows us to estimate two parameters, 6 and ¢, for every segment of
the network. The first estimated quantity, é, represents a road risk indez: the greater the
value of é, the riskier the road segment is, keeping the other parameter fixed. The estimate
of the second quantity, qg, represents the probability that no car accident occurs in a year
for a given road. We consider it as a road safety indezx: the higher the value of qg, the safer
the street segment is, keeping the value of the road risk index as fixed. It should be pointed
out that the interpretation of the road safety index is much easier than its risk counterpart
since 0 < ¢ < 1 while 6 > 0.

We represent in Figure 3.6 the results of the estimation of the two indices for the road
network of Milan during 2017. In Figure 3.6a we highlight those segments where the
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(a) Road Risk Index (b) Road Safety Index

Figure 3.6: Left: Road Risk Index. We represented in solid black the segments where
6> 1, while the other segments are in depicted in white. Right: Road Safety Inder. We
represented in solid black the segments where gZA) > 0.9, while the other segments are in
depicted in white.

estimated risk inder is greater than 1, i.e. those street segments that are more exposed
to crash occurrences. It should be pointed out that the segments composing our road
network are very small (their mean length is approximately 70 m and the median length is
slightly less than 50 m), which implies that more than one car crash in one year represents
an extremely severe condition. In Figure 3.6b, we highlight those segments whose safety
index is greater than 0.9. These are the segments where the estimated probability of no
car accident during 2017 is greater than 0.9. It turns out from the maps that the safer
segments are mostly located at the boundary of the metropolitan area and the areas with
a large risk are concentrated around the centre of Milan.

To test the predictive performance of the model, we implemented the following cross-
validated procedure. First, we calculated the correlation coefficient between the predicted
values (1 — 95)§ and the observed number of events for every segment in the road network
in 2017. The correlation coefficient was found as high as 0.46. Then, in order to obtain a
more robust estimate of the predictive performances of our model, we repeated the same
procedure 100 times dividing the dataset into two subsets, which were used to test and train
the model. In each replicate, we trained the model using 80% of road segments (chosen at
random), we calculated the two estimates gﬁ and é, and the correlation coefficient between
(1-— qAﬁ)HA and y on the remaining 20% of segments. The simulated 95% confidence interval
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(a) Road Risk Index (b) Road Safety Index

Figure 3.7: We highlight in solid back those segments where the road risk index is greater
than 1 (left) or the road safety index is greater than 0.9 (right).

ranges within (0.38,0.55), with the median value equals to 0.46, suggesting that our model
is reasonably robust to overfitting.

Exploiting the longitudinal component of the ZIP (1) model and assuming the road network
and its structural characteristics as fixed, we can predict the road safety index and the road
risk index for every segment in the network for 2018 using the same procedure detailed
above. The maps in Figure 3.7 show the result. Given that we are dealing with a high
complex network with tens of thousands of nodes and edges, Figure 3.7 does not apparently
show any strong difference from Figure 3.6. For this reason, we highlight in Figure 3.8 only
those segments where

[(1 — (&)é]gmg — [(1 — dA))é]Qon > (0 such that [(1 — Qg)é]ggn >1

that is, where we estimate an increase in the expected number of car crashes. This procedure
returns a map of segments that should be monitored since we predict they will be more
dangerous in 2018 with respect to the previous year.

To conclude, we summarise the results obtained in this Chapter:

e We produced an analysis of the determinants of crash frequencies in an extended and
heterogeneous urban area. This was done using open data sources, which implies that
a similar procedure can be easily replicated for any other city with similar information.
The whole algorithm could also be enriched by the use of proprietary data, if available;
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Figure 3.8: We highlight in solid red those segments where the road risk index is expected
to increase when passing from 2017 to 2018.

e By spreading socio-demographic features over the territory of interest using geograph-
ically weighted principal components, we were able to compare the effect of the struc-
tural characteristics of the road network and socio-demographical aspects, and assess
which components are more relevant in determining car accident frequency;

e The extremely detailed road network downloaded from OpenStreetMap allowed us
to estimate two indexes that provide local information of the street riskiness at the
segment level, which is, by far, more interesting than aggregated measures of the
proneness to car crashes calculated at areal level (such as municipalities or postal
codes).

Concerning the later point, in actuarial studies, the so-called frequency of accidents, defined
by the ratio between the number of accidents and the total exposure in an area, is custom-
arily used as an index of riskiness. In the present context, the frequency of accidents can be
reformulated as the ratio between the number of accidents, #accidents, and the number of
segments, #roads, representing the actual exposure to the risk of the network. This index
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can be decomposed as

#accidents #accidents #roads with > 1 accident

Hroads  Froads with > 1 accident F#roads

The second term of the product above represents a measure of repeatability, i.e. how many
road segments had accidents given that at least one accident actually occurred. It might
be interesting to assess the impact of road characteristics on crash frequency, and refit the
model of crash occurrences conditional to the roads with at least one accident. Following
this route, the zero inflated model is no longer appropriate, and other approaches, such
as a truncated Poisson or hurdle models, would be more suitable instead (Agresti, ).
This way to proceed would provide different tools to monitor riskiness of the road network.
However, these approaches are beyond the scope of the present manuscript and are not
discussed here.

The computational effort required for this kind of analysis is not negligible. GWPCA or
LASSO for count data are the most time demanding tasks and took several hours to run
on our laptops. Retrieving data from the open source database and spatially aligning the
information are other challenging tasks. However, the computational burden is somehow
a minor cost if one considers the high complexity of the adopted network and the detailed
information this approach actually provides.

Improvements are obviously possible. Most of them depend on the availability of further
information and variables i.e. traffic density, driver behaviour, local well-being indices,
economic factors and so on. Model extensions are also possible e.g. the possibility to
account in the model for potential dependencies in the network components or for prior
information on crash causes. The model presented in Chapter 4 is much more complex and
flexible, albeit it considers a simpler and smaller road network (due to the computational
costs of the Bayesian models). Notwithstanding, we believe that the approach suggested in
this Chapter is relevant, and can contribute to the definition of a methodology to monitor
road safety and improve the quality of life of citizens.

Supplementary Materials

We created a Shiny App (Appelhans, ; Chang et al., ) to better display the results
of our model. It shows an interactive map of the street network of Milan where every
segment is coloured according to its classification as a risky or safe segment. You can check
the app and browse the code behind it at the following links: app and repository.
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CHAPTER 4

Multivariate hierarchical analysis of car
crashes data considering a spatial network
lattice

People can come up with statistics to prove
anything, Kent. Forty percent of people know that!

Homer Simpson, Homer the Vigilante (5x11)

Based on: Gilardi, A., Mateu, J., Borgoni, R. and Lovelace, R., 2020. Multivariate hier-
archical analysis of car crashes data considering a spatial network lattice. arXiv preprint.
URL: https://arxiv.org/abs/2011.12595

4.1 Introduction

Road casualties have been described as a global epidemic (MacKay, ; Nantulya and
Reich, ), representing the leading cause of death among young people worldwide. Car
crashes and other types of collisions are responsible for more than 1 million deaths each year
(1250000 in 2015, 17 deaths per 100000 people), as reported by World Health Organization
( ). In high income nations, such as the United Kingdom (UK), the roads are safer
than the global average, but car crashes are still the cause of untold suffering. According to
the statistics published by the UK’s Department for Transport (DfT) in the Annual report
on Road Casualties in Great Britain (Department for Transport, ), 153158 road traffic
collisions resulting in casualties were recorded in 2019, 5% lower than 2018 and the lowest
level since records began, in 1979.

Nevertheless, the DfT estimates that approximately 33648 people were killed or seriously
injured (KSI) in 2019', and while this number is slightly lower than in 2018, the decaying

!The methodology for classifying the severity level of a car crash has been modified starting from 2016,
adopting the injury-based systems called CRASH and COPA (Braunholtz and Elliott, ). All police
forces are gradually adopting these new reporting systems in England, and the Office for National Statistics
(ONS) developed a logistic regression model to compare the severity levels between different years and
classification systems. The data used in this application have been adjusted using the procedures developed
by ONS (Department for Transport, , pp. 38-41).
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rate has been getting lower and lower starting from 2010. These figures are worrisome
considering that car occupant fatality rates are particularly high in the 17-24 age band
(Department for Transport, , p. 17).
To tackle the flattening trend in the KSI rate over the past decades, a range of interventions
are needed, and analytical approaches can help prioritise them. This Chapter presents a
statistical model to identify street sections with anomalously high car crashes rates, and to
support police responses and cost-effective investments in traffic calming measures (PACTS,
).
Statistical models of road crashes have become more advanced over time. In the 1990s,
models tended to consider only the discrete and heterogeneous nature of the data (Miaou,
; Miaou and Lum, ; Shankar, F. Mannering, and Barfield, ), omitting spatial
characteristics. More recent statistical models of crash data include consideration of crash
location in two-dimensional space, with three main advantages for road safety research
(El-Basyouny and Sayed, ). First, consideration of space allows estimating appropri-
ate measures of risk (such as expected counts, rates or probabilities) at different levels of
resolution and the subsequent ranking of geographical areas to support local interventions.
Second, spatial dependence can be a surrogate for unknown, potentially unmeasured (or un-
measurable) covariates; adjusting for geographic location can reduce model misspecification
(N. A. Cressie, ; Dubin, ). Third, the spatial dimension can be used to take ad-
vantage of autocorrelation in the relevant variables, borrowing strength from neighbouring
sites and improving model parameter estimation.
Road crash datasets, which are typically available on a single accident basis, can be spa-
tially aggregated in two main ways: administrative zones (such as cantons, census wards, or
regions) or street network features (either as contiguous segments or divided into corridors
and intersections). In both cases, the spatial support is a lattice, i.e. a countable collection
of geometrical units (polygons or lines, respectively), possibly supplemented by a neighbour-
hood structure. Several papers addressed the statistical modelling of crash frequencies at
the areal level, based on available zoning systems in the study region (e.g. Aguero-Valverde
and Jovanis ( ), Boulieri et al. ( ), Miaou, Song, and Mallick ( ), and Noland
and Quddus ( )). The second approach has gained in popularity in recent years, with a
number of papers analysing road crash events aggregated to the street level (e.g. Aguero-
Valverde and Jovanis ( ), Miaou and Song ( ), and C. Wang, Quddus, and Ison
( )). We refer to the following review papers for more details: Lord and F. Mannering
( ), Savolainen et al. ( ), and Ziakopoulos and Yannis ( ). In reference to street
level data, we note that there has been a recent surge of research for spatial point patterns
living on networks (Baddeley, Nair, et al., ; Cronie, M. Moradi, and Mateu, ;
Rakshit, Davies, et al., ). The statistical model introduced in Chapter 5 represents a
relevant example.
Both zone and network level approaches have advantages, notably computational require-
ments for the former and spatially disaggregated results for the latter. Given that compu-
tational resources are less of a constraint in the 2020s than they were in previous decades,
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and the fact that it is the nature of roads (not zones) that is responsible for crashes, we
argue that road segments are the more appropriate aggregation units for the analysis of
road crash data. Network analysis can be used to bring attention to specific segments, and,
for these reasons, the models presented in the next sections were developed considering a
network lattice.

Aggregation, e.g. number of crashes per road segment, enables comparison between dif-
ferent road segments. However, spatial aggregation also leads to a well-known problem
in geographical analysis, the Modifiable Areal Unit Problem (MAUP), firstly described in
Openshaw ( ): the size of the spatial units impacts on the statistical analysis, influ-
encing, and possibly biasing, modelling choices and results. Hence, conclusions drawn at
one scale of spatial aggregation might not necessarily hold at another scale or be some-
how different. The MAUP has been mainly ignored in the road safety literature and, as

reported by Xu, H. Huang, and Dong ( ) and Ziakopoulos and Yannis ( , p. 21),
it is mentioned only in a handful of recent papers (Abdel-Aty et al., ; Briz-Redoén,
Martinez-Ruiz, and Montes, ; Ukkusuri et al., ; Zhai et al., ), which explore

the impact of changing the areal zoning system (e.g. TAZ, block groups and census tracts)
on parameter estimates, significance and hotspot detection. Only one early paper (Thomas,
) could be found exploring the impacts of MAUP on road crash data at the network
lattice level, albeit only in terms of summary statistics of aggregated counts. To assess the
MAUP effect on network data modelling, we employed an algorithm to modify the structure
of a road network, merging contiguous segments in the same corridor and preserving the
geometrical properties of the network (Padgham, ). This is analogous to the contrac-
tion procedures introduced in Chapter 2. Then, we compared the results obtained with the
two different network configurations. To the best of our knowledge, this is the first attempt
at exploring and estimating the presence and the magnitude of MAUP in statistical models
that consider a network lattice.
Finally, we note that systems of collision classification present a multivariate nature (Braun-
holtz and Elliott, ; Kirk, Cavalli, and Brazil, ). The occurrences of different sever-
ity degrees can be correlated to each other, and their spatial dynamics can be potentially
interdependent. Hence, it is necessary to account for correlations between crashes counts
at different levels of severity. We consider two types of accidents: slight and severe. The
severe class is very sparse in the dataset at hand, hence modelling both types of acci-
dents simultaneously allows to borrow strength from the existing correlations and improves
estimates.
Following ideas introduced in Barua, El-Basyouny, and Islam ( ), we consider a range of
competing models, developed in a full hierarchical Bayesian paradigm. This approach allows
one to encompass complex structures of spatial dependence in a quite natural way. Spatially
structured random effects are defined using both Intrinsic Multivariate Conditional Auto-
regressive (IMCAR) and Proper Multivariate Conditional Auto-regressive (PMCAR) priors
(Besag, ; Mardia, ; Martinez-Beneito and Paloma Botella-Rocamora, ; Palmi-
Perales, Gomez-Rubio, and Miguel A. Martinez-Beneito, ). We also propose to consider
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a generalisation of PMCAR models unexplored so far in the road safety literature, and firstly
defined for polygonal lattice data in Gelfand and Vounatsou ( ).

The case study is the metropolitan area of Leeds (population 800000) in North England.
We accessed Ordnance Survey data on major roads (3661 segments, total length 450 km),
creating a spatial network substantially larger than previous studies, many of which report
findings on only a few roads. The model presented in Chapter 3 represents a notable excep-
tion albeit with a simpler statistical and spatial structure. We present results for an entire
metropolitan area, approximating more closely the level at which road policing activities
and investment in road safety interventions are prioritised. The scale of the case study pre-
sented several computational challenges, and, in terms of Bayesian parameter estimation,
we used the computationally efficient Integrated Nested Laplace Approximation (INLA)
approach instead of Markov chain Monte Carlo (MCMC) sampling Lindgren, Havard Rue,
et al., ; Havard Rue, Riebler, et al.,

The rest of the Chapter is organised as follows. In Section 4.2, the data sources are de-
scribed. In Section 4.3, the statistical methodology adopted in this Chapter is discussed in
detail. In Section 4.4, the main results of the Chapter are presented whereas, model crit-
icism and further model discussion, such as MAUP analysis, are provided in Section 4.5.
Conclusions, in Section 4.6, end the Chapter.

4.2 Data

The datasets analysed in this Chapter came from several different sources and required
a number of preprocessing steps before they could be made into a structure suitable for
a statistical analysis. The study region was defined as the Middle Super Output Area
(MSOA) zones within the local authority of Leeds. The City of Leeds was selected because
it is a car-dependent city with a large network of major roads that approach the city centre
(the city was dubbed the motorway city of the 70s) and would therefore be expected to be a
place where road safety could be improved. Leeds is part of West Yorkshire and accounts for
approximately 40% of all car crashes in the region. Origin-destination data from the 2011
UK Census were used to estimate traffic volumes, to provide an estimate of exposure, with
traffic volumes used as the denominator in the statistical models presented in Section 4.3.
The road network was obtained from Ordnance Survey, covering all major roads in Leeds.
We matched the network and the MSOASs using an overlay operation. Finally, we associated
all car crashes that occurred in the city of Leeds from 2011 to 2018 with the nearest point
on the road network, counting the occurrences in each street segment. The previous two
steps are analogous to the procedure detailed in Chapter 3.
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Figure 4.1: The grey polygons show the MSOAs in West-Yorkshire region, while the dark-
green area highlights the city of Leeds. The inset map locates the position of the study-area
with respect to England.

MSOA zones

There are 6791 MSOAs in England, 299 of which belong to the West-Yorkshire region. These
were accessed from the github-page? of Propensity Cycle Tool (Lovelace, Goodman, et al.,
2017), focussing, in particular, on the City of Leeds (107 areas). The MSOAs represent
the starting point for all the following steps, and they are mapped in Figure 4.1 as grey
polygons for the West-Yorkshire, and as dark-green polygons for the City of Leeds. The
inset map is used to locate the study-area in the British territory.

Traffic flow

The traffic flow data represent the commuting journeys from home to workplace using
several modes of transport, such as train, bus, bike and motorcycle. The data were collected
during the 2011 Census at the individual level, and then aggregated at the MSOA level. The
UK Data Service shares the flow data through the WICID interface as cross-tables reporting
the flows between all pairs of a predefined set of MSOAs (UK Data Service Census Support,
2014). We considered the commuting flows in the region of Leeds for all possible modes of
transport. Figure 4.2a shows a random sample of 1000 traffic flows® between the centroids

2Last access on 06,/2020.
3We downloaded 10536 traffic flows, which is slightly less than 1072 = 11449 since there are no commuters
between certain MSOAs.
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Figure 4.2: Raw and modified traffic flows in the area of Leeds. The map on the right
highlights several contiguous MSOAs that correspond to the arterial thoroughfares that are
used to reach the City Centre.

of the MSOAs in Leeds, coloured according to the number of daily commuters.

Raw WICID data, however, ignore that people may travel to their workplace through several
MSOAs. For this reason, we calculated a new traffic measure using the following procedure.
Starting from the MSOAs, we defined a graph where the vertices are the centroids of each
area, and the edges connect neighbouring areas. Then, we estimated the shortest path
for all commuting journeys downloaded from WICID and assigned to each MSOA a value
that is equal to the sum of all raw traffic measures going through the area. These values
represent the new traffic measures and are displayed in Figure 4.2b. A similar approach
was also adopted in Boulieri et al. (2017), and we refer to the references therein for more
details. The raw data flows and the MSOAs polygons were downloaded using the R package
pct (Lovelace, Goodman, et al., 2017).

Road network

The road network was built using data downloaded from Ordnance Survey (OS)*, an agency
that provides digital maps and other services for location-based products (Ordnance Sur-
vey, 2020). We downloaded the Vector OpenMap Local data for the SE region®, selected
the Roads and Tunnels layers, and filtered the streets that belong to the City of Leeds.

4Last access on 21-05-2020
5The United Kingdom has been divided into several squares of approximately 100km?2. The SE region
is an area centred around Leeds. See here for a list of maps displaying all OS areas.
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Ordnance Survey represents all the streets of a road network as the union of a finite set of
segments, and it includes additional fields such as the road name or the street type. These
segments represent the elementary units for the statistical analysis described in Section 4.3.
The road network downloaded from OS is composed of approximately 50000 segments. The
OS network was simplified using the following procedure. We first selected only the major
roads, such as the motorways, primary roads and A roads. They represent less than 10% of
the total road network, but more than 50% of all car crashes registered during 2011-2018
occurred in their proximity. The output of this procedure is a road network composed by a
big cluster of connected streets, displayed in Figure 4.4a, and several small isolated groups
of road segments (which are also called islands), created by the exclusion of their links to
the other roads.

These small clusters can be problematic from a modelling perspective since they produce a
not-fully-connected network (see also Freni-Sterrantino, Ventrucci, and Havard Rue ( )
and Hodges, Carlin, and Fan ( ), and the properties of ICAR and MICAR distributions
explained in Section 4.3), so we implemented an algorithm to further simplify the road
network and remove them. This algorithm is based on the dual representation of a road
network as a geographical entity, composed by points and lines, and a graph object, with
nodes and edges (S. Marshall et al., ; Porta, Crucitti, and Latora, ).

More precisely, we created a graph whose vertices correspond to the street segments of
the road network, and we defined an edge for each pair of spatial units sharing a point
at their boundaries. This graph uniquely determines a (sparse) adjacency matrix amongst
the spatial units (i.e. the road segments), that summarises the graph dimension of the
road network. We sketched a toy example in Figure 4.3, representing the idea behind the
dual representation of a road network and the definition of the adjacency matrix. Then,
starting from the graph and the adjacency matrix, we calculated its components®, and we
excluded all small clusters of road segments that did not belong to the biggest component. It
should be stressed that this procedure creates a fully connected network, which has relevant
consequences on the rank-deficiency problem of the ICAR models described in Section 4.3.
This algorithm is just a simplified version of the functionalities presented in Chapter 2 and,
in particular, Section 2.6.1.

In the end, the road network is composed of approximately 3600 units, and it is shown in
Figure 4.4a, where the segments are coloured according to their road types. Moreover, since
the street network and the MSOAs are spatially misaligned, they were matched using an
overlay operation: each road segment was assigned to the MSOA that intersects the largest
fraction of the segment. This procedure allows us to assign a traffic estimate to each road
segment, which will be used as an exposure parameter in the statistical models considered
below.

SA graph is said to be connected if there exist a sequence of edges going from each vertex to every other
vertex. The components of a graph are sub-graphs formed by all connected vertices Kolaczyk and Csardi,
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Figure 4.3: Graphical example showing the dual nature of a road network. Left: map
showing the geographical dimension. Each segment is coloured and labelled using a different
ID and colour respectively. Right: adjacency matrix of the graph associated with the road
network. Each vertex corresponds to a segment whereas an edge connects two vertices if
they share one boundary point. For example, segments 1 and 2 are not neighbours since
they do not share any point at the boundaries, even if they intersect each other. This
situation may occur at bridges or overpasses.

Car crashes data

We analysed all car crashes that occurred between the 1st of January 2011 and the 31st
of December 2018 in the MSOAs pertaining to the City of Leeds, which involved personal
injuries, occurred on public roads and became known to the Police forces within thirty
days of the occurrence. The data were downloaded from the UK’s official road traffic
casualty database, called STATS19, using the homonym R package (Lovelace, Morgan, et
al., ). We excluded all car crashes that occurred farther than ten meters from the closest
segment in the simplified road network since they are probably related to other streets.
STATS19 data also report the severity level of each casualty using one of three possible
categories: fatal, serious or slight”. We harmonised the severity levels for different years
and police forces using the CRASH methodology (Braunholtz and Elliott, ; Department
for Transport, ), and we decided to aggregate serious and fatal levels since fatal crashes
represent approximately 1% of the total number of car accidents. Henceforth, we will refer
to serious or fatal crashes as severe accidents. The final sample is composed of 5862
events, and they are reported as black dots in Figure 4.4a. Then, we projected all crashes
to the nearest point on the road network, and we counted the number of slight or severe
occurrences on all street segments. We decided to ignore the temporal dimension since

7An accident is classified as fatal if it involved a human casualty whose injuries caused his death less
than thirty days after the accident; severe if at least one person was hospitalised after the accident or
recorded a particular type of injury (like concussions or severe cuts), and slight in all the other cases.
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(a) Road network and car crashes in Leeds. (b) Choropleth map of severe counts.

Figure 4.4: The map on the left represents the road network in Leeds. Each segment is
coloured according to its OS classification. The black dots represent the car crashes. On
the right, we report a choropleth map displaying severe car crashes counts.

severe crashes counts present an extreme sparsity, with more than 80% of zero counts
during 2011-2018. Moreover, 40% of all segments registered no car crashes during the
study period, while another 40% reported two or more crashes. These numbers highlight a
common temporal trend between the eight years, and we refer to Appendix B for a space-
time representation. The map in Figure 4.4b shows the spatial distribution of severe crashes
counts.

4.3 Statistical methodology

We first focus on the definition of a three-level hierarchical model structure, which is shared
among all the alternative specifications considered below. Then, we introduce two baseline
models that serve as benchmarks and starting points for the other specifications. Thereafter,
five different extensions to the baseline models are introduced. Finally, some techniques used
for model comparison are discussed. The common theme behind all the seven alternatives
is the presence of spatially structured and unstructured multivariate random effects.

Let Y;;, ¢ = 1,...,n, represent the number of car crashes that occurred in the i-th road
segment with severity level j, j = 1,...,J. In this Chapter, we consider two possible
severity levels, a car crash being either severe, j = 1, or slight, j = 2.

In the first stage of the hierarchy, we assume that

Y;j|/\ij ~ Poisson (Ez)\u) s (4.1)

where E; is an exposure parameter and );; represents the car crashes rate in the ith road
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segment for severity level j. At the second stage of the hierarchical model, a log-linear
structure of \;; is specified. We assume that

M
log (Aij) = Boj + >, BmjXijm + 0ij + i (4.2)
m=1

where (y; represents a severity-specific intercept, the vector { ﬁmj}%zl is a set of coefficients,
(Xij1, .-+, Xijm) is a collection of M covariates, ¢;; is a spatially structured random effect
and 0;; represents a normally distributed error component. The third stage that completes
the hierarchical model is the specification of prior and hyperprior distributions. We assigned
a vague N (0, 1000) prior to B,,j, m = 0,... M. The two random effects, namely 6;; and ¢;;,
represent the structured and unstructured spatial components and are defined differently
in different models as discussed below. Hereafter, we follow the notation used in Martinez-
Beneito and Paloma Botella-Rocamora ( , Ch 4, 6 and 8).

4.3.1 Baseline models: independent spatial and unstructured effects

The two baseline models are defined considering multivariate spatial and unstructured
random effects with independent components. More precisely, a bivariate Gaussian prior
with independent components is assigned to (6;1,6;2) for both baseline models:

2
(9i1,9i2)~N2<0,[agl (;D i=1,...,n. (4.3)

092

We assigned a Gamma hyperprior with parameters 1 (shape) and 0.00005 (inverse scale)
to the inverse of O'gl and 032, i.e. the precisions.

The spatially structured term in the first baseline model was defined using an Indepen-
dent Intrinsic Multivariate Conditional Auto-regressive (IIMCAR) prior, whereas, for the
second model, we adopted an Independent Proper Multivariate Conditional Auto-regressive
(IPMCAR) prior. The IIMCAR and IPMCAR distributions are briefly introduced here-
after, starting from their classical univariate counterparts, namely the ICAR and PCAR
distributions.

Univariate spatial random effects are traditionally modelled using a prior that belongs to the
family of Conditional Auto-regressive (CAR) distributions (Besag, ). Given a random
vector ¢ = (¢P1,...,¢n), the Intrinsic Conditional Auto-Regressive (ICAR) distribution,
which is a particular case of the CAR family, is usually defined through a set of conditional
distributions (Besag and Kooperberg, ):

9
. _ o .
¢il{gi,i' € 0i};0% ~ N | m; ! E ¢i',% ,1=1,...,n, (4.4)

i’ €0; v
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where 9; and m; denote, respectively, the indices and the cardinality of the set of neigh-
bours for spatial unit ¢. These quantities are defined through a sparse binary symmetric
neighbourhood matrix W with dimensions n X n, that summarises the spatial relationships
in the region of study. We built it taking advantage of the dual representation of a road
network as a spatial and a graph object (see Chapter 2 and Section 4.2). More precisely,
W is the adjacency matrix of a graph whose vertices correspond to the street segments of
the road network and the edges identify a shared point at the boundaries of two spatial
units. This procedure defines a First Order neighbourhood matrix. Second and Third
Order neighbourhood matrices are defined iteratively in the same way.

It is possible to prove that the prior defined by (4.4) suffers from rank-deficiency problems,
that are usually fixed by imposing a set of sum-to-zero constraints on the vector ¢, one for
each component in the graph of the road network (Hodges, Carlin, and Fan, ). In this
application, we deal with a fully connected road network (see the pre-processing procedures
detailed in Section 4.2), so we always had to fix only one set of constraints.

The Proper Conditional Auto-Regressive (PCAR) distribution is another member of the
CAR family and it is usually defined as follows:

0.2

6il{on,i' €0iio® p~ N | p|mit Y o |, — |, i=1....n, (4.5)

i €0; t

where 0; and m; are defined as for the ICAR distribution and p is a parameter controlling
the strength of spatial dependence, usually called spatial autoregression coefficient (N. A.
Cressie, ). It is possible to prove that the joint distribution defined by (4.5) is proper
if |p| < 1, hence there is no need to set any sum-to-zero constraint in this case. The ICAR
prior can be seen as a limit case of the PCAR distribution with p — 1, analogously to
the relationship between Auto-Regressive and Random-Walk models in time series models
(Botella-Rocamora, Lopez-Quilez, and M. Martinez-Beneito, ).

The family of Multivariate Conditional Auto-regressive (MCAR) distributions was firstly
introduced by Mardia ( ), extending the ideas of Besag ( ) to the multivariate case.
Given a random matrix ® = (¢;;), which is defined for ¢ =1,...,n units and j =1,...,J
levels, the Intrinsic Multivariate Conditional Auto-regressive (IMCAR) distribution is a
particular case of the MCAR family, defined through a set of multivariate conditional

distributions (Martinez-Beneito and Paloma Botella-Rocamora, ):
P |vec (@) ; Q2 ~ Ny | m;? Z o m; Q] (4.6)
i €0;

The terms ®;. and ®_;. denote, respectively, the ith row of ® and the matrix obtained by
excluding the ith row from ®. The vec operator is used for row-binding the columns of a

matrix, meaning that vec (®_;.) = (<I>Zi1, ce <I>TU)T. The elements m; and 0; are defined
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as before, through the adjacency matrix W of the graph associated to the road network,
and they represent the spatial dimension of the IMCAR distribution. The J x J precision
matrix {2 is used to model the associations between pairs of levels in the same road segment
i, and it acts as a multivariate extension of the parameter ¢ in (4.4).

This distribution suffers from the same rank-deficiency problems as its univariate coun-
terpart, which are usually solved by imposing appropriate sum-to-zero constraints. The
number of restrictions is equal to the number of components in the graph of the road net-
work times the number of levels in the multivariate setting. The pre-processing operations
that we performed on the network data (see Section 4.2) imply that we always have to set
only J sum-to-zero constraints.

The IIMCAR distribution is a particular case of (4.6), which is obtained by setting Q=1 =
diag(aél, cee O';J). More precisely, if we assume J = 2 as we do in this application, then
IIMCAR is defined by the following set of multivariate conditional distributions:

2
_ 1o 0
P, |vec (P_;.) ;03,1,03)2 ~ Ny | m;? E o m; ! [ 8’1 52 ] . (4.7)
i'€0; 2

In equation (4.7) we are assuming independence between the 2 levels, and this implies that
the IIMCAR distribution is equivalent to two independent ICAR distributions, one for each
level.

Analogously to the univariate case, the Proper Multivariate Conditional Auto-regressive
(PMCAR) distribution is a particular case of the MCAR family, characterised by the fol-
lowing set of multivariate conditional distributions:

®; |vec (®_i.);p, 2~ Ny | m;'p Z o m;7to | (4.8)
i’ €0;

The strength of the spatial dependence is controlled by p (as for the univariate PCAR
distribution) and all the other parameters are defined as before. It can be proved that
the joint distribution defined by equation (4.8) is proper if |p| < 1, although we restricted
ourself to p € (0,1) to avoid some counter-intuitive behaviour of the PMCAR distribution
(Miaou and Song, ; Wall, ).

The IPMCAR distribution is defined as a particular case of equation (4.8) with Q7! =
diag(aél, e a(%J). More precisely, if we assume J = 2, then IPMCAR is defined through
the following set of multivariate conditional distribution:

2
_ _1lo 0
‘IDZ-_|V€C (Q*’L) P 0’3,1,0'352 ~ Ny m; lp E (I)zj:>mz ! [ 651 035 :| : (4'9)
i/ €0; 2

For the same reasoning as in equation (4.7), the IPMCAR distribution is equivalent to J
independent PCAR distributions.
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Now we can characterise the random effects for the two baseline models. The first model was
defined by considering unstructured random effects with a bivariate independent Gaussian
prior (4.3), and spatial random effects with an IIMCAR prior (4.7). The second one was
defined analogously to the first baseline model, but assuming an IPMCAR, distribution for
the spatial random effects (4.9). These models assume independence between the two levels
both in the spatial and unstructured components, so they were used as benchmarks. In the
next sections, we will also refer to the two baseline models using, respectively, the codes
(A) and (B). We assigned an improper prior to o7 and o2, the variances in 2, defined on
R*, and a Uniform(0, 1) prior to p.

Hereafter we introduce three increasingly complex sets of extensions that generalise the
baseline models. The first one is characterised by the removal of the independence assump-
tion from the spatially structured random effects, whereas, in the second set of extensions,
we also relax the independence assumption from the unstructured random effects. The
third and last set of extensions is characterised by a generalisation of PMCAR distribution
that introduces a separate spatial autoregression coeflicient, p;, for each level in .

4.3.2 Model extensions
First set of extensions

Starting from the baselines, we defined two new models replacing the IIMCAR and IPM-
CAR priors with their non-independent multivariate counterparts, the generic IMCAR and
PMCAR defined above. If we assume J = 2, then the variance-covariance matrix Q! in
(4.6) and (4.8) can be written as

01— 0351 p¢>‘7¢>21 O o
PpO 10 p 04y

I

where 0351 and 03)2 represent the conditional variances and pg represents the correlation
coefficient between the two levels in the same spatial unit. These models represent a
generalisation of the baselines since we are now taking into account the correlations between
different levels in the same road segment. We will also refer to them using, respectively,
the codes (C) and (D). Following Palmi-Perales, Gomez-Rubio, and Miguel A. Martinez-
Beneito ( ), we assigned a Wishart hyperprior to Q7! with parameters 2 and I, i.e.
the identity matrix of size two. The prior distributions on the unstructured random effects
were left unchanged with respect to the baselines.

Second set of extensions

In these models, the independence assumption of the spatially unstructured random effects
is removed. More precisely, assuming J = 2, we assign a generic bivariate Gaussian prior
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to the unstructured random effects

2
(9i179i2) ~ Ny (()7 |: %6, P00'9210'92:|> .
p0‘7910'92 0'92
2

Parameters oy and 032 represent the marginal variances of the unstructured random error,
whereas py represents their correlation. These models will also be identified using the codes
(E) and (F). We assigned a Wishart hyperprior to the variance-covariance matrix with
parameters 2 and Is.

Third set of extensions

It is possible to prove (Mardia, ) that the set of conditional normal random variables
defined by equation (4.8) induce a multivariate joint distribution for vec(®) that can be
written as

vec(®) ~ Nyps(0,[Q @ (D — pW)| ™) (4.10)

where D is a n x n diagonal matrix whose elements d;; are equal to m;, the number of
neighbours for spatial unit 7, and ® denotes the Kronecker product. The precision matrix
in Equation (4.10) is given by the Kronecker product of two quantities: €2, that models the
variability between the J levels in the same road segment i, and (D — pW), that models
the spatial variability between different road segments for the same level j.

In the third set of extensions, following Gelfand and Vounatsou ( ), we generalised the
PMCAR distribution, defining a model which introduces a different spatial autocorrelation
coefficient p; for each level in ®. More precisely, we set

vec(®) ~ Ny (0, [bdiag(Rl, ...,R;)(Q® I,,)bdiag (Ry, . . ., RJ)T} _1> (4.11)

where R;,j = 1,...,J is the Cholesky decomposition of D — p;W, i.e. RjR;‘F = —
p;W, and bdiag(Ry,...,R;) denotes a block-diagonal matrix with elements Ry,..., R;
and dimension nJ x nJ.

For example, assuming J = 2, the precision matrix in equation (4.11) can be written as

0 e [ ;I.

It is possible to prove that the joint distribution defined by equation (4.11) is proper if
|pj| < 1Vj and, following the same ideas as before, we assigned a Wishart hyperprior to
Q! with parameters 2 and Iy, and a Uniform(0, 1) prior to p; and pz. We will refer to this
last model using the code (G).

We summarised in Table 4.1 the prior distributions adopted for the random effects in the
two baselines and their extensions. We also included the IDs that will be used to identify
each model in subsequent Tables and Sections.
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ID  Model Unstructured Effect Spatial effect

Baseline 1 Independent Gaussian Independent IMCAR
Baseline 2 Independent Gaussian Independent PMCAR
Extension 1 - Model 1 Independent Gaussian IMCAR
Extension 1 - Model 2 Independent Gaussian PMCAR
Extension 2 - Model 1  Correlated Gaussian IMCAR
Extension 2 - Model 2 Correlated Gaussian PMCAR
Extension 3 Correlated Gaussian PMCAR - Multiple p

LIgdazZz

(
(
(
(
(
(
(

Table 4.1: Summary of the prior distributions assigned to the random effects in the models
introduced in Section 4.3.

4.3.3 Model comparison

The models proposed in the previous paragraphs were compared using Deviance Information
Criterion (DIC) (David J Spiegelhalter et al., ) and Watanabe-Akaike Information
Criterion (WAIC) (Gelman, Hwang, and Vehtari, ; Watanabe, ). These criteria
represent a measure for the adequacy of a model, penalised by the number of effective
parameters. In both cases, the lower is the value of the index, the better is the fitting of
the model.

4.4 Results

We estimated the models previously described using the software INLA (Gomez-Rubio,
; Lindgren, Havard Rue, et al., ; Havard Rue, Riebler, et al., ), interfaced
through the homonymous R package (Lindgren, Havard Rue, et al., ; R Core Team,
). We used the Simplified Laplace strategy for approximating the posterior marginals
and the Central Composite Design strategy for determining the integration points. The
INLA methodology is briefly reviewed in Appendix A.
The code behind multivariate ICAR and PCAR random effects is defined in the package
INLAMSM (Palmi-Perales, Gomez-Rubio, and Miguel A. Martinez-Beneito, ), and we
wrote the functions used to estimate the spatial random effects in model (G). They are
reported in Appendix B. It took approximately 30 - 45 minutes to estimate each model
using a virtual machine with an Intel Xeon E5-2690 v3 processor, six cores, and 32GB of
RAM.

Fixed effects

The models listed in Table 4.1 share a common structure for the fixed effect component,
with a severity-specific intercept and a set of covariates, representing some characteristics
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of the road segments. We considered two severity-specific covariates: the road type (either
Motorway, Primary Road or A Road, according to OS definition), and the edge betweenness
centrality measure, which reflects the number of shortest paths traversing each segment
(Kolaczyk and Csardi, ). It can be considered as a proxy for the average vehicle miles
traveled (VMT) (Briz-Redon, Martinez-Ruiz, and Montes, ) and it was estimated as
reported in Section 2.6.3. Following the suggestions in C. Wang, Quddus, and Ison ( ),
the exposure parameter, E;, is given by the product of two quantities: the segment’s length
and the estimate of traffic flow (see Section 4.2).

Table 4.2 shows the posterior means and standard deviations for the fixed effects. We first
notice that the estimates are stable among the models. The intercept for severe car crashes,
Bo1, is found slightly smaller than Sgo. This is not surprising since severe accidents are rarer
than the slight ones. The coefficients of edge betweenness centrality measures are found
close to zero for all models, and their 95% credible interval (not reported in the table)
always include the value zero. Road type parameters represent relative differences with
respect to the reference category (i.e. A Roads), hence Motorways are found less prone to
severe and slight car crashes than A roads. A similar finding was also reported by Boulieri
et al. ( ) for UK data. An analogous interpretation applies to Primary Roads.

Random effects

The posterior means and standard deviations for all hyperparameters are reported in Ta-
ble 4.3, which reflects the models’ nested structure, also summarised in Table 4.1. We
started from two baselines, (A) and (B), with independent random effects, and generalised
them until model (G), that presents multiple spatial autocorrelations between the severity
levels.
Models from (A) to (D), which assume independent unstructured random effects, exhibit a
degenerate posterior distribution of agl, i.e. the variance of severe random component, and
this is possibly due to the severe car crashes sparseness. This problem gets mitigated once
the correlation parameter between the two severity levels is included in the model, suggest-
ing that the estimation procedure benefits from the inclusion of a multivariate structure
that allows borrowing strength from less rare events.
The estimates of 052 and py are stable among the models, and the correlation parameter is
estimated as high as 0.40, suggesting a positive and mildly strong relationship between the
two random components.
The posterior means for hyperparameters p in models (B), (D), (F) and (G), are always
very close to one, which is not uncommon for this type of models (Carlin, S. Banerjee, et al.,
). In particular, the spatial autocorrelation coefficient of model (G) is found higher
for slight car crashes than its severe counterpart, indicating a greater spatial homogeneity,
something that can also be related with the sparse nature of severe car crashes.
The estimates of the posterior distributions for the two conditional variances, U?n and 0352,
are found less stable compared to the unstructured errors. The credible intervals of the two
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ID DIC WAIC

14472.38  14479.97
14429.88 14445.44
14271.16  14296.64
14160.68 14173.21
14136.85 14118.19
14114.91 14094.39
14113.36  14093.90

BEEEIEE

Table 4.4: Estimates of DIC and WAIC values for the models described in Section 4.3.

hyperparameters overlap in all models, indicating a similar spatial structure between the
two kinds of severities. The posterior mean of pg, the correlation coefficient between the
two severity levels, is found approximately equal to 0.85, indicating a strong multivariate
nature for the spatial random component.

These results suggest that car crash data have a complex latent structure being the severity
levels strongly correlated, and the spatially structured and unstructured effects statistically
relevant.

Model comparisons

We compared the models listed in Table 4.1 using DIC and WAIC criteria. The results are
reported in Table 4.4.

PMCAR models (i.e. (B), (D) and (F)) are found to perform always better than their
Intrinsic counterparts in terms of goodness of fit. They are somewhat unexplored in the
road safety literature on spatial networks, Miaou and Song ( ) being the only paper
we found that analyse the importance of a spatial autocorrelation parameter. However,
our results suggest that PCAR distribution and its generalisations should deserve more
attention.

Moving from (A) to (G) the model performance improves, indicating one more time the ben-
efits of considering a correlated multivariate structure for the spatial and the unstructured
components. In particular, model (G), which includes a specific spatial autocorrelation pa-
rameter for each severity level, is the best one according to both criteria. Hence, hereafter,
we focus on this model.

Car crashes rate

Figure 4.5 displays the posterior means of car accident rates, \;;, estimated using model
(G) both for severe and slight crashes. The colours of the road segments were generated
by dividing the predicted values of each severity level into ten classes based on quantiles,
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(a) Severe Car Crashes. (b) Slight Car Crashes.

Figure 4.5: Maps representing the posterior means for severe and slight car crashes rates,
estimated using model (G). The colours go from red (higher quantiles) to green (lower
quantiles). The black star represents Leeds City Centre.

ranging from red (highest quantile) to dark green (lowest quantiles). The black star in the
middle of the map denotes Leeds City Centre. The two maps show similar patterns, but
some roads in the southern part of the city (especially M621) look more prone to severe
car crashes. The city of Leeds appears to be divided into several areas. The northern
and eastern part of the city are associated with lower car accident rates compared to other
suburbs. The areas located in the north, north-west and south-east of the city centre seem
to be associated with the highest levels of car crashes rates, especially severe ones. Finally,
we note that the roads closer to the city centre are the safest part of the city network.

4.5 Model criticism and sensitivity analysis

DIC and WAIC criteria were never intended to be absolute measures of model fit, and they
cannot be used for Model Criticism. Hence, we tested the adequacy of model (G) using two
strategies.

4.5.1 First strategy for criticism

The classical criterion for criticism of a Bayesian hierarchical model is the Probability In-
tegral Transform (Held, Schrodle, and Havard Rue, ; E. Marshall and Spiegelhalter,

), typically adjusted in case of a discrete response variable (such as car crashes counts)
using a continuity correction. Unfortunately, these adjustments do not seem to work ap-
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Table 4.5: Left: Confusion matrix showing the observed and predicted counts, binned in
two classes. Right: Definition of accuracy measures.

propriately when modelling sparse count data, such as severe crashes, since the correction
is not adequate. We refer to Appendix B for more details.
Therefore, hereafter, we followed a different strategy. We binned the observed and predicted
counts into two classes: Zero and One or more car crashes®. Then, we built a confusion
matrix and evaluated the model’s performances via some accuracy measures that are sum-
marised in Table 4.5. A similar correction for sparse count data was also presented in X.
Ma, S. Chen, and F. Chen ( ).
The accuracy measure, usually adopted for evaluating the predictive performance of a
model, is typically biased and overly-optimistic in case of unbalanced classes (such as Zero
and One or more severe car crashes per road segment), since, even in the worst case, it
is as high as the percentage of observations in the more frequent class (Brodersen et al.,
). The balanced accuracy, firstly introduced by Brodersen et al. ( ), is defined as
the average of Sensitivity and Specificity, and it overcomes this drawback since it represents
an average between the predictive performances on each class.
The output of a Bayesian hierarchical model is an estimate of the posterior distribution of
predicted values, while the procedure reported in the previous paragraph can only be applied
to binary data. For this reason, we simulated n Poisson random variables (one for each road
segment) with mean equal to the mean of each posterior distribution. Then, we binned the
observed and sampled counts into two classes, i.e. Zero and One or more car crashes, and we
compared the two values, obtaining a single estimate of balanced accuracy. Its distribution
was finally approximated by repeating this procedure N = 5000 times. This strategy is
suboptimal since it involves computations based on the posterior marginal distributions
of the Gaussian random field instead of the joint posterior distribution. Nevertheless, we
compared the two approaches and we found identical results. Hence, for simplicity, we will
report only the results based on the marginal distributions.
Moreover, we calculated several quantiles of the posterior distribution of each predicted
value, and we run the same steps as in the previous paragraph sampling from a Poisson

8We decided to adopt one as a threshold to dichotomise the variables since more than 80% of road
segments registered no severe car crash during 2011-2018. The procedure proposed here can be extended
to three or more classes, defined using a set of different thresholds (such as Zero, One, and Two or more
road crashes).
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Figure 4.6: Distribution of balanced accuracy for severe crashes (right) and slight crashes
(left), considering a binary classification using the posterior mean and a set of quantiles.
The red curve represents the mean.

distribution with mean equal to each of those quantiles. Lastly, being severe and slight car
crashes potentially quite different processes, this algorithm was applied independently for
the two severity levels. We reported in Appendix B the pseudo-code for this procedure,
whereas results are displayed in Figure 4.6a (severe cashes) and Figure 4.6b (slight crashes).
In both cases, the red curve represents the distribution of balanced accuracy obtained by a
binary classification based on the posterior means, whereas the other curves represent the
same distribution obtained using the set of quantiles. It looks like the optimal threshold
for binary classification of severe car crashes is given by the 0.975-quantile, where the
balanced accuracy distribution is concentrated around 0.66. The optimal threshold for
binary classification of slight car crashes is given by the median, and the distribution of
balanced accuracy is centred around 0.72. These plots remark the differences between the
two severity levels in terms of sparsity, suggesting the adoption of a higher quantile for the
prediction of the more sparse events. However, using the appropriate cut-off(s), Model (G)
seems to perform reasonably well in both cases with slightly better performance for slight
car crashes.

4.5.2 Second strategy for criticism

Following the results illustrated before, we estimated the 0.975-quantile of \;; (severe
crashes) and the median of \;o (slight crashes), and we multiplied them by the correspond-
ing offset values, i.e. FE;. Then, we created a sequence of histograms of predicted values,
grouped by the observed counts categorised in four levels: 0, 1, 2, and 3 or more. The re-
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Figure 4.7: Histogram of posterior 0.975-quantile (left) and posterior median (right),
grouped by the corresponding observed counts. Other means "Three or more."

sults are summarised in Figure 4.7a and Figure 4.7b. Both graphs show a good agreement
between predicted and observed number of crashes, since the distributions corresponding
to higher observed counts progressively move more and more to the right. Moreover, Fig-
ure 4.7a shows the importance of our previous analysis and the pitfalls of predicting severe
car crashes counts using the posterior means.

4.5.3 Sensitivity analysis and the modifiable areal unit problem

Finally, we performed a sensitivity analysis evaluating the robustness of model (G) under
different specifications for 1) the hyperprior distributions, 2) the adjacency matrix, and 3)
the definition of the segments in the road network.

The models described in Section 4.3 considered a Wishart hyperprior for precision matrix
Q with rank equal to 2 and scale matrix equal to Is. We repeated the analysis using
more vague and more informative Wishart distributions, setting the scale matrix equal to
diag(2, 2) and diag(0.5,0.5). We did not find any noticeable differences amongst alternative
specifications. Hence results are not reported hereafter, but we refer to Appendix B.

We compared different definitions for the adjacency matrix W, testing second and third
order neighbours and distance-based spatial neighbours’. Also in this case, we did not

°In this case two road segments are considered neighbours if the euclidean distance between their cen-
troids is smaller than a certain threshold. In particular, we used 25m, 50m, 100m, 250m and 500m as
alternative thresholds. In case a network segment was longer than twice the threshold, we consider first
order neighbours to avoid the creation of several islands (see Section 4.2). This problem is more pronounced
for smaller values of the threshold.
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(a) Road Network with redundant vertices (in red) (b) Contracted road network

Figure 4.8: Sketching the algorithm used for contracting the road network. Red points on
the left represent redundant vertices.

find any noticeable differences as far as the estimation of the fixed effects is concerned,
whereas only small differences were found in the posterior distributions of the random
effects (especially for 0351 and 03)2 when we considered a spatial adjacency matrix with a
threshold equal to 500m). However, worse DIC and WAIC values were found for models
using alternative definitions of W matrix, and we refer to Appendix B for more details.
Similar findings are also reported by Aguero-Valverde and Jovanis ( ), Alarifi et al.
( ), and X. Wang et al. ( ).

Finally, we explored the influence of a particular configuration of the network segments on
our results. In fact, the location of the vertices (and, hence, the edges) in a road network
created with OS data is essentially arbitrary (although some minimal consistency require-
ments must be satisfied, see Karduni, Kermanshah, and Derrible ( ) and Section 2.5),
which implies that there is no unique and unambiguous way of defining the lengths and
relative positions of the road segments. We, therefore, considered an alternative network
configuration reshaping and contracting the road network using an algorithm implemented

in Padgham ( ). This algorithm manipulates a network by excluding all redundant
vertices, i.e. those vertices that connect two contiguous segments without any other inter-
section (Padgham, ). More details were reported in Chapter 2.

A toy example representing the ideas behind the contraction of a road network is sketched
in Figure 4.8. The red dots in Figure 4.8a represent redundant vertices since they can be
removed without tampering the shape or the routability of the network'’. The goal is to
remove all redundant vertices and merge the corresponding edges, creating a graph which
looks identical to the original one but with fewer edges. Figure 4.8b shows the results of the
contraction operations applied to the toy network sketched in Figure 4.8a. We can see that
the redundant vertices were removed, combining the road segments that touched them.

1We say that the algorithm in Padgham ( ) preserves the routability of a road network since it does
not remove any vertex that could add a new component to the graph.
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Severe Crashes ‘ Slight Crashes

—15.335 —13.694

Bo (0.233) (0.198)
Betweenness —0.008 —0.041

(0.055) (0.037)
Motorways —0.872 —0.298

(0.180) (0.140)

. 0.413 0.496

Primary Roads (0.132) (0.117)

Table 4.6: Means and standard deviations for the posterior distributions of the fixed effects
in the model estimated after contracting the road network.

g 31 052 Po £1 P2 03)1 g 352 Po

mean: 0.307 0.500 0.388 0.995 0.993 3.970 4.767 0.944
sd: (0.103) (0.100) (0.020) (0.003) (0.003) (0.630) (0.622) (0.016)

Table 4.7: Means and standard deviations for the posterior distributions of the hyperpa-
rameters in the model estimated after contracting the road network.

Applying this algorithm produced a contracted road network with, approximately, 2700 seg-
ments (instead of the original 3661). Following the same procedures detailed in Sections 4.2
and 4.4, we calculated the number of severe and slight car crashes that occurred in each
road segment, the traffic volumes (which are used as an offset), and the edge betweenness
centrality measures. The road type was automatically determined since the algorithm did
not merge two road segments with different classifications. Finally, we estimated model
(G) and reported a summary of means and standard errors of the posterior distributions of
fixed and random effects in Tables 4.6 and 4.7, respectively.

As far as the fixed effects are concerned, the new network configuration influences results
quite mildly, since the estimates of the coefficients did not change in sign, order of magni-
tude or significance. As one could expect, the impact of network reshaping is slightly more
pronounced for the random effects, in particular for 03)1 and 03527 two of the five hyper-
parameters in the PMCAR, prior. The model trained on the contracted network presents
a greater spatial uncertainty than model (G), but similar posterior distributions for car
crashes rates. We refer to Appendix B, where we also report the maps of predicted rates
using the new network configuration.

Network reshaping and contraction is a network-readaptation of the classical Modifiable
Area Unit Problem (MAUP), only recently explored by a handful of authors in the literature
of road safety models for areal data (see, for example, Xu, H. Huang, and Dong ( ) for
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an introduction, and Briz-Redén, Martinez-Ruiz, and Montes ( ) for an extensive
application). The main conclusion of these papers is that MAUP severely impacts car
crashes models, affecting the magnitude and significance of the estimates for both fixed and
random effects, hence it should never be ignored for a reliable road safety analysis.

Our results tell a somewhat different story. The statistical analysis is found quite robust
to MAUP when carried out on a network lattice, possibly because the road network has a
physical geometrical meaning and, hence, a lower degree of arbitrariness than administrative
boundaries. Hence, we suggest not to ignore the network structure of the data whenever
it is available when analysing car crashes data or other phenomena that naturally occur
on a network. The only paper that performs a descriptive analysis of the influence of road
segment configurations on car crashes counts is Thomas ( ), and, to the best of our
knowledge, this is the first attempt to explore the robustness of a statistical model for
lattice network data to MAUP.

4.6 Conclusions

This Chapter investigated the spatial distribution of road crashes in a major city using
new methods for network analysis. The relationship between crashes of different severity
levels, either slight or severe, were modelled using a range of multivariate models to explore
their spatial dynamics. Key to the approach was constraining crash locations to the road
network, a one-dimensional linear network composed of segments representing a spatial
lattice.

We found that the best model includes a multivariate spatially unstructured random effect
and a multivariate spatially structured PMCAR random effect with a different autocorre-
lation parameter for each severity level. The results, which are summarised in Tables 4.2
and 4.3, suggest that the Motorways are less prone to severe and slight car crashes than
A-roads, which are also less dangerous than Primary roads. The posterior distributions of
the hyperparameters point out a strong between-level correlation in the unstructured errors
and an even stronger dependence in the spatial component.

The approach proposed in this Chapter allows the estimation of a severity specific car
crashes rate for every single segment in the road network, which can be visualised using an
appropriate choropleth map. Figure 4.5 exemplifies this process by showing two maps that
display the posterior means of car crash rates for severe and slight accidents. They highlight
several roads, or portions of a road, mainly located in the north-east, north-west and south-
east of Leeds city centre, which are associated with higher car crashes rates. The two maps
illustrate that adopting a network-based approach allows the identification of dangerous
streets more precisely than using an areal-based aggregation. These results could represent
the starting point for further analysis, linking car crashes rates with structural aspects of
the network such as roundabouts, street junctions or pedestrian crossings, hence, in turn,
identifying and evaluating potential levers to intervene on. This extension was ignored in
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the current manuscript since it requires a different methodological approach, and OS data
do not include a precise database of roundabouts or street junctions.

We evaluated the sensitivity of our modelling approach to different hyperprior specifications
and adjacency configurations of the components of the lattice network, showing that the
statistical model presents substantial robustness in this respect. We finally considered the
impact of MAUP when modelling data collected on a spatial network. An algorithm was
proposed to assess the magnitude of MAUP effect in the estimates and model predictions.
Differently from several previous studies that considered the MAUP for various areal par-
titions of the spatial region of interest, we found that our results are quite robust under
an alternative configuration of the road network. This can be related to the fact that road
networks have a physical meaning, hence they are expected to suffer MAUP less, a further
advantage of the network approach. Robustness of results is fundamental for the develop-
ment of a reliable model that can be used to support the implementation of new policies.
Nevertheless, further research, possibly in different fields, is definitely necessary to better
understand the impact of MAUP on network lattice data.

The ideas presented in this Chapter could be extended in several directions. A first step
forward could be focused towards the development of a spatio-temporal extension of model
(G), following the suggestions in Boulieri et al. ( ), X. Ma, S. Chen, and F. Chen ( )
Miaou and Song ( ), and C. Wang, Quddus, and Ison ( ). We point out, however,
that this is not straightforward (and, to the best of our knowledge, it was pursued only
by X. Ma, S. Chen, and F. Chen ( ) using a single road divided into a few segments)
given the extreme sparse spatio-temporal nature of severe car crashes on a metropolitan
road network. Indeed, for the dataset at hand, more than 95% of all car crashes registered
no fatal or serious car accident for any given year, something that could require a differ-
ent methodological approach. The procedure for MAUP detection could also be improved
by developing new routines for testing alternative algorithms for network reshaping and
contraction, which were first developed for areal data in the field of geography (see, e.g.,
Xu, H. Huang, and Dong ( ) and references therein). An additional improvement to
the approach could involve the development of spatial or spatio-temporal theoretical point
pattern models for car crashes on networks. It is clear that more research is needed to eval-
uate the full range of possible models for identifying crash ‘hot spots’ on the network. The
research presented in this Chapter demonstrates the potential of network-based approaches
to work at city scales for flexible and robust estimates of crash rates, down to the road
segment level and provides a basis for more further work in the field.
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CHAPTER 5

A non-separable first-order spatio-temporal
intensity function for events on networks:
an application to ambulance interventions

Paper still under development

Questa & novita, questa é una grossa novita.

Enzo Spatalino - Voce alla Gente, 2019-09-18

5.1 Emergency Medical Systems data

We analysed the spatio-temporal distribution of all emergency events that occurred in the
road network of the municipality of Milan (IT) from 2015-01-01 to 2017-12-31, required
an ambulance intervention and were handled by the regional Emergency Medical System
(EMS), which is called AREU (an acronym for Azienda Regionale Emergenza Urgenza). In
the following paragraphs of this Section, we will describe the algorithms and the procedures
that were used to transform the raw information into a data structure suitable for estimating
the statistical model detailed in Section 5.2. We will also present an exploratory analysis
that summarises the main spatio-temporal characteristics of the data at hand and justify
our modelling choices.

We started from a dataset provided by the official regional authorities that included all
ambulance dispatches in Lombardia from 2015-01-01 to 2017-12-31. However, we decided
to focus only on the city of Milan since it represents one of the most important Italian
metropolitan areas, where hundreds of thousands of people pass through every day. Fur-
thermore, the experts of emergency interventions and management of ambulance fleets in
AREU reported that the spatio-temporal dynamics in Milan are quite different from the
other parts of the region, and require ad-hoc modelling and planning.

Each record in the dataset included the day, the hour, and the GPS coordinates (using
Monte Mario Coordinate Reference System) of the corresponding ambulance dispatch, the
three building blocks for the spatio-temporal model introduced below. The description of
the ambulance interventions is typically enriched using a series of markers that characterise
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(a) 2015 (b) 2016 (c) 2017

Figure 5.1: Graphical representation of ambulance interventions that occurred in Milan
(IT) from 2015-01-01 to 2017-12-31. We can notice that the spatial distributions are similar
among the three years and that the events highlight some the roads in the city. The white
areas correspond to not-urban or abandoned areas (e.g. Cimitero Monumentale, Scalo
Farini or Ippodromo), large buildings (e.g. Policlinico di Milano or City Life) and parks
(such as Parco Sempione or Giardini pubblici Indro Montanelli).

their severity levels (using a code that can be either green, yellow, or red, in increasing
order of seriousness), the place (e.g. private house, public office or retirement home) and
the reason (e.g. discomfort, illness, car crash, poisoning or tumble). We removed all records
with missing spatial or temporal coordinates or anomalies in the other descriptive markers.
Moreover, we included only the first ambulance intervention in case of multiple dispatches
for the same event, which can occur in case of severe car crashes, heart attacks or other
types of life-threatening situations. We did not consider ambulance interventions related to
scheduled events, like hospital admissions or discharges. The final sample included 495,950
interventions, 163,488 occurred in 2015, 165,368 in 2016 and 167,094 in 2017.

The spatial representation of the points is depicted in Figure 5.1. First of all, we can notice
that the distributions look stable among the three years. The events seem to highlight the
skeleton of a road network structure that corresponds to the city ring road and some of
the most important arterial thoroughfares. The white areas can be recognised as desert,
not-urban places, mainly located in the south or the west. We can also clearly distinguish
the shapes of some of the most iconic locations in Milan, such as City Life, Parco Sempione,
Scalo Farini or Giardini Indro Montanelli, where the ambulance interventions are usually
geo-located at the entrance or the nearest point in the city network. Similar maps are also
reported by Bayisa et al. ( ) and Zhou, David S Matteson, et al. ( ). Given the
spatial distribution of the emergency interventions that resemble a network structure, we
argue that, in this particular case, a network-approach is more appropriate than a planar
approach since it takes into account the nature of the data and the particular characteristics
of their geo-locations (Baddeley, Nair, et al., ; Okabe and Sugihara, ).

We explored the temporal dimension of the data, examining the hourly, daily, weekly,
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and monthly dynamics that govern the total number of emergency calls. We report in
Figure 5.2 three time series that represent the daily number of ambulance interventions,
divided according to the year of occurrence. The data exhibit a monthly seasonal behaviour,
where the global minima are registered around August, in conjunction with the national
holidays. Other local peaks and minima could be linked with the most important religious
holidays (such as Christmas or Easter), national celebrations (New year’s eve) or other
sporadic events (such as the heatwave in July 2015 or the ice storms in January 2017). We
can notice a common trend behind the temporal dynamics in the three years.
We also considered the temporal dynamics of the emergency calls within a day, and we
report in Figure 5.3 three time series that summarise the average number of hourly ambu-
lance interventions divided by the hour of the day and the day of the week. In all cases, we
can recognise a distinct shape: after rapidly increasing in the early morning, the time series
peaks around 10:00, slowly fall until 20:00 and then sink until the next day. Moreover,
the hourly seasonalities are different between weekends and weekdays. In fact, in the latter
case, the regional EMS registers, on average, more interventions during the first hours of the
day, which is probably linked with the city’s nightlife, and lower rates in the morning and
the afternoon. Again, we can recognise a similar pattern among the three years. Analogous
findings regarding the temporal dimensions of EMS calls are also reported by (Bayisa et al.,
; David S Matteson et al., ; Zhou and David S Matteson, ; Zhou, David S
Matteson, et al., ). The statistical model proposed in Section 5.2 takes into account
these seasonalities.
The road network was created starting with data download from Open Street Map (OSM)
servers, and, in particular, we used the openstreetmap.fr! provider, accessed using the R
package osmextract, detailed in Appendix C.
Open Street Map is a project that aims to build an open and editable map of the World
(Barrington-Leigh and Millard-Ball, ). The basic components of Open Street Map data
are called elements, and they are divided into nodes, which represent points on the earth’s
surface; ways, which are ordered lists of nodes; and relations, which are lists of nodes,
ways and other relations, where each member has additional information that describes its
relationship with the other elements.
A road network is typically represented as the union of a finite set of segments (or, using
the OSM jargon, ways). More precisely, we downloaded Open Street Map data for the
Lombardia region, and then we filtered only the highways that lie inside the polygonal
boundary that define the city of Milan using a spatial filter operation. Then, we selected
only the ways that could be linked with the most important streets of Milan, focusing on the
following classes” (listed in descending order of importance): motorways, trunks, primary,

!See http://download.openstreetmap.fr/. Last access: 2020-12-09.

2We refer to https://wiki.openstreetmap.org/wiki/Highways for a comprehensive description of road
network data in Open Street Map and guidelines for its classification system. We also refer to https://
wiki.openstreetmap.org/wiki/IT:Key:highway for a comparison between the Italian classification system
and the classes defined by OSM.
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Figure 5.2: Time series that represent the daily number of ambulance interventions that
occurred in Milan from 2015-01-01 to 2017-12-31. The data clearly exhibit a seasonal
behaviour, and a common distribution among the three years. Some local peaks can be
linked to national holidays (such as Easter), heat aves (see July 2015) or ice storms (see
January 2017).

secondary, tertiary, unclassified, and residential.
As introduced in Chapter 2, a road network can also be seen as a graph object (Barthélemy,
; Karduni, Kermanshah, and Derrible, ; S. Marshall et al., ; Porta, Crucitti,
and Latora, ), where each segment is associated with the edges, while the vertices
correspond to the intersections, usually located at road junctions, although they may po-
tentially be placed also in between. Its adjacency matrix is typically determined as follows:
we say that two edges are connected if the corresponding street segments share at least
one point (or node in OSM jargon) in their boundaries and, by the same reasoning, the
vertices are connected if they belong to the same road segment. We took advantage of this
dual representation to simplify the road structure, excluding all small clusters of segments,
also named components in the graph-analysis literature (Kolaczyk and Csardi, ), not-
connected to the main street network, probably because of small rounding errors in the
coordinates or missing links in OSM data. This pre-processing step creates a fully con-
nected graph (meaning that each vertex can be reached from any other vertex), and it is
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Figure 5.3: Time series that represent the average number of hourly ambulance intervention
that occurred in Milan (IT) from 2015 to 2017, divided by the day of the week. Strong
seasonal components, related to the hour of the day and the day of the week, can be
observed. The three years exhibit similar patterns.

relevant for the kernel estimator that will be proposed and detailed in Section 5.2. We refer
to Chapter 2 for more details.

Following the steps detailed before, we created a road network that is long approximately
1850km, including most streets in the municipality of Milan. It is depicted in Figure 5.4a.
We can notice that it covers a large portion of the city and that the white areas can be
associated with parks, squares and desert or non-urban places.

After creating the road network, we decided to exclude all emergency calls whose GPS
locations were found farther than 50 meters from the closest segment of the network®,
since they are probably linked with other streets not included in the network. We dropped
approximately 10,000 events. Then, we projected the remaining 489,970 points into the
road network, and the result is reported in Figure 5.4b. The events seem to be gathered in
a few particular areas like Stazione Centrale, Duomo, Giardini Indro Montanelli, Colonne
di San Lorenzo or Porta Genova, all popular and busy areas. The point pattern on a

3The distance between a point and a segment was measured using the shortest euclidean perpendicular
distance.
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(a) The road network of Milan. (b) The point pattern of ambulance interventions ly-
ing on the road network of Milan.

Figure 5.4: Left: Map of the road network of Milan. It includes all major streets in the
city. Right: Projecting the emergency interventions into the linear network. In both cases,
the white areas represent parks, squares, desert or non-urban places and big pedestrian
neighbourhoods (e.g. Brera).

linear network represents the starting point for the spatial modelling approach introduced
in Section 5.2.

Finally, we explored the spatio-temporal dynamics of the phenomenon, checking the pres-
ence of space-time interactions between the hours of the day and the spatial distribution.
For this reason, we rounded the occurrence of each emergency event to an integer number
such that, for example, all interventions happened between 00 and 01 AM are labelled
using the character string 0. Then, we plotted their spatial distribution divided by the
hour of occurrence, and the result is reported in Figure 5.5. We can notice that from 08
AM to 08 PM the points look crowded near the city centre, close to the office areas and
the main buildings. On the other hand, the distribution during the night hours look more
scattered in the municipality, and it looks like there is a smooth transition between the two
scenarios. Similar finding are also reported by Zhou and David S Matteson ( ), Zhou,
David S Matteson, et al. ( ), and Zhou and David S. Matteson ( ). The spatial
model detailed in Section 5.2 was defined taking into account these interactions.

5.2 Statistical Methods

We consider a continuous one-dimensional spatial region L and a discrete temporal dimen-
sion T ={1,2,...,T} divided into intervals of one hour. The object L represents a linear
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Figure 5.5: Spatial distribution of the ambulance interventions obtained after rounding
their time of occurrence to an integer hour.

network, typically defined as the union of a finite set of line segments embedded in a planar
region S C R? (Ang, Baddeley, and Nair, 2012; Okabe and Sugihara, 2012). In this Chap-
ter, L is the street network of Milan, built using the procedures detailed in Section 5.1,
while T is equal to 26304, i.e. the hours from 2015-01-01 00:00 to 2018-01-01 00:00.

Let y; represents the number of ambulance interventions that occurred in the network L
at time t € 7, and let s;;, @ = 1,...,y; denote the location of the ith event. We assume
that, independently for each ¢ € T, the process {s;; : 4 =1,...,y:} can be characterized as
a Non Homogeneous Poisson Process (NHPP) with intensity function \(s) (P. J. Diggle,
2013). The NHPP satisfies the following two properties:

e The number of events occurring in L’ C L, which is denoted by N(L'), follows a
Poisson distribution with parameter (L") = [, A¢y(s)ds. The object L’ represents
a finite portion of the network L.

e Let N(L') = n, then the n events represent a random sample from a distribution
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whose probability density function is proportional to A(s).

We assume that the intensity function of the process can be decomposed as follows
Ae(s) = mgi(s) for s € S. (5.1)

The previous equation, despite being similar to the classical separability assumption for
spatio-temporal processes (P. J. Diggle, ; Moller and Waagepetersen, ), implies
that the function g;(s), which, as explained below, represents the spatial dimension of the
events, also depends on time ¢t. We decided to adopt this functional form for A\¢(s) since we
noticed space-time interactions in the hourly evolution of ambulance interventions (see the
end of Section 5.1). The space-time dependencies will be modelled using a set of weights,
which are introduced in Section 5.2.2.

As we have already mentioned, g;(s) represents the spatial dimension at time ¢, and it must
satisfy the two following conditions:

e gi(s)>0Vte T and Vs € L;
° ngt(s)ds: 1vteT.

Hence, p represents the temporal dimension of the process, since it can be viewed as a
spatial aggregation of the intensity function at time ¢. Considering the NHPP hypothesis
and the assumptions on g¢(s), we can see that pu; = fL Ai(s)ds, and, for all t € T, y| A\ ~
Poisson(ut). So pg represents the temporal intensity or total call volume. On the other

hand, the NHPP hypothesis also implies that s; ;| A¢, v i gi(s) for i =1,...,y;. Therefore,
we can interpret g;(s) as the spatial intensity of ambulance interventions at time ¢.
Hereafter we will introduce two statistical models for p; and g;(s). The temporal component
will be modelled using a dynamic latent factor model based on deterministic temporal
covariates, such as the hour of the day or the day of the week. The spatial dimension
will be estimated non-parametrically using a network-readaptation of a weighted kernel
function. We will also present a procedure for the estimation of the weights.

5.2.1 The temporal model

As mentioned above, we assume that we can model the temporal evolution of the ambulance
interventions using a dynamic latent factor model with Poisson distribution. The season-
alities of EMS interventions are taken into account by the inclusion of a pre-determined
structure that depends on deterministic temporal covariates. The model’s definition and
the following notations are based on David S Matteson et al. ( ) and several previous
papers (Shen and J. Z. Huang, ,b; Takane and Hunter, ; Tsai and Tsay, ).

Let y; represent the number of ambulance dispatches that occurred in the network L at
time ¢t € {1,...,T}. The values of y; were calculated by rounding and aggregating all EMS
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event to the smallest integer hour, such that, for example, all interventions between 00:00
and 01:00 are associated with 00:00.

Moreover, let D be the total number of days under analysis, J be the number of intra-day
periods, and Y be the D x J matrix of EMS counts. In the data at hand, we have D = 1096
days and J = 24 periods, i.e. the number of hours in a day. Each element of the matrix
Y, say yi;, 1 = 1,...,D; j =1,...,J, represents the number of ambulance interventions
that occurred in the ith day during the jth hour.

The dynamic latent factor model

Considering the hypotheses stated at the beginning of the Section, we say that 1;; represents
the expected number of ambulance dispatches during the ith day and jth hour, i.e y;;|A\;; ~
Poisson(y;5). Following David S Matteson et al. ( ), we suppose that the logarithm* of
Hi; can be approximated using a linear combination of K < J latent factors, say fi,..., fk,
which are orthogonal vectors with dimension J x 1. More precisely, we can write

logp; ~ Lif1+ -+ Lik fx, (5.2)

where p; represents a vector with dimension J x 1 filled with all EMS counts that occurred
during the ¢th day, while L;1,..., L;x are the loadings of the latent model and also the
weights of the linear combination. The K factors are constant among different days and do
not depend on the value of i since they represent the intra-day effects in the EMS calls (see
Figure 5.3). On the other hand, the loadings are constant within each day but different
among different days, and do not depend on the value of j. They represent daily and weekly
temporal effects (see Figure 5.2). The value of K must be chosen so that we can successfully
approximate the behaviour of EMS counts using the smallest number of factors, and, in
practice, it was chosen by testing the predictive performance of the Poisson model using an
out-of-sample approach.

Equation (5.2) can also be written in matrix form as follows:

logM = LF', (5.3)

where M is a D x J matrix of expected counts, F' = (fi,..., fx) is the J x K matrix
obtained by column-binding the latent factors, and L is the D x K matrix of loadings. At
the moment, the model (5.3) is not strictly identifiable since we do not observe neither F'
nor L, so, following David S Matteson et al. ( ), we assume that F'F = I, where Ig
is the K x K identity matrix.

“The logarithm transformation has several benefits. First, the predicted values of y;; on the original
scale (i.e. after the exponential transformation) are forced to be positive. Second, the temporal effects that
influence p;; on a multiplicative scale are transformed into a linear additive scale. Finally, the logarithm
function represents the canonical link for the Poisson family (Agresti, ).
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Factor modelling with covariates via constraints and smoothing splines

The deterministic covariates explored in Section 5.1 were included in the model using a set
of constraints on the matrices F' and L. A daily and weekly structure is imposed on the
loadings of the model, that we recall as being constant within each day but vary among
different days, and an hourly structure is imposed on the latent factors.

We assume that we can rewrite Equation (5.3) as:

logM = LF' = HBF'

where H is a D x r matrix of constraints related to the matrix L, and B denotes an r X K
matrix of unconstrained loadings.

Looking at Figures 5.2 and 5.3, we can notice that the weekly patterns of ambulance inter-
ventions evolve smoothly during the years, without any remarkably abrupt change (but for
some particular days related to national holidays or sporadic extreme weather conditions),
and that the behaviour of EMS events is dramatically different between weekends and week-
days. For these reasons, the temporal constraints on the loadings L are decomposed into
two matrices of incidence vectors, named H®) and H®, that model the effects related to
the day of the week and the week of the year:

logM = LF' = HBF' = (HYBWY + HOBO)F' (5.4)

H®O is a D x 7 incidence matrix such that, for example, if the first EMS intervention for
t = 1 happened on Monday, then H®) can be written as

1 0 0 0 0 0 O
o 1 0 O 0 0 O
o 0 1 0o 0 0 O

An analogous interpretation holds for matrix H (2)| which has dimension D x 53, where 53
is the number of weeks in a year considering that the first and last weeks may have less
than seven days. The matrices B and B® denote the unconstrained factor loadings
with dimensions 7 x K and 53 x K, respectively.

Similar reasoning can also be applied to matrix F' given the peculiar distribution of EMS
hourly interventions displayed in Figure 5.3. In particular, the factors are modelled using an
incidence matrix, say H®), and an unconstrained factors matrix, say B®), with dimensions
J x J and J x K, respectively:

! / !
logM = LF' = L (H(3)B(3)> — LB H®O) (5.5)
The main differences between Equations (5.4) and (5.5) are given by the nature of the

constraints. The incidence matrices adopted when modelling the loadings represent a di-
mension reduction technique since we are imposing r < D constraints (Tsai and Tsay,
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), while, in the second case, the matrix H 3) is used only to re-parametrise the factors.
In both cases, the constraints condition the temporal evolution and represent the covariates
for the models described below.
More precisely, given the dynamics represented in Figure 5.3, we assume that the values
of pi; evolve smoothly between the hours of each day, so the factors fi,..., fx can be
estimated as smooth functions that depend on the hourly constraints. The smoothness
was included in the estimation process using a spline-based approach via the R package
mgcv (Wood, ). If we consider the matrix L as fixed, then Equation (5.5) can be
seen as a varying coefficient model (Hastie and Tibshirani, ) with Poisson response
variable, logarithmic link and (hourly) deterministic temporal covariates given by the matrix
H®). The hourly evolution is estimated using a thin plate regression spline, i.e. a low-
rank isotropic smoother estimated with truncated eigendecomposition and several desirable
properties that can be used with large datasets via computationally efficient algorithms
(Wood, ).
Analogously, if we assume that the values of p;; evolve smoothly among the weeks of a
year, and we consider the matrix F' as fixed, then Equation (5.4) can be seen as a varying
coefficient model, where the unconstrained loadings B® are estimated via a cyclic cubic
regression spline. On the other hand, the daily constraints H(®) are included just as piece-
wise constant function.
The values of L and F' are initialised using Singular Value Decomposition (SVD) on matrix
logY, and the two modelling steps are repeated until convergence. We refer to David S
Matteson et al. ( ) and Shen and J. Z. Huang ( ) for a more detailed description
of the algorithm behind the estimation process.

5.2.2 The spatial model

As we said at the beginning of this Section, the spatial dimension of the EMS interventions,
denoted by g¢:(s), is modelled using a network-version of a Jones-Diggle corrected weighted
kernel estimator (Jones, ). The network intensity function is defined following the
approach detailed in Rakshit, Davies, et al. ( ), while the weight function, which is
used to model the temporal seasonalities and the space-time interactions introduced in
Section 5.1 and depicted in Figure 5.5, is based on Zhou ( ) and Zhou and David S.
Matteson ( ).

More precisely, given a set of observed time periods (previously denoted by 7)), a future
hour u, and a location s on the network, the weighted kernel estimator can be written as

_ ZtET i/tzl Ws; (t,u)K(s — Si,t)
ZteT Zgi/tzl ws, (¢, u) ’

where K (-) indicates a Gaussian network kernel function and wyg;, (t, w) represents the weight
associated to the s;; ambulance intervention, which is described in Section 5.2.2.

gu(s) (5.6)
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Figure 5.6: Hourly autocorrelation function of EMS interventions. There are some clear
hourly, daily, and weekly seasonalities.

The main difference between the proposal in Zhou (2016) and Zhou and David S. Matteson
(2015) and the current approach is that we assume wg, (¢, u) depends only on the time
periods, i.e. u and t. In contrast, the other authors included a spatial dependence in
wg, (t,u) dividing the planar region under analysis into several areas and defining a different
set of weights for each cell. We ignore the spatial dimension since the planar distribution
of the street network is not homogeneous, and there is no unambiguous way to divide it.
Hence, Equation (5.6) can also be rewritten as

Gu(s) = EteT E?zh:1 ws, (t,u) K (s — Si,t) _ ZteT Ziﬁl w(t,u)K (s — Si,t)
h DteT D iy ws, (tu) DteT Doty wit,u) ’

since we are assuming that, conditioning on two fixed time periods, all interventions on the
road network are linked with the same weights.

(5.7)

Definition of the weight function

As detailed before, the weight function is used to incorporate the space-time interactions
into the kernel estimator, creating a non-separability in A(s), the spatio-temporal intensity.
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Considering Figures 5.2 and 5.3 and the EMS counts’ hourly AutoCorrelation Function
(ACF), which is reported in Figure 5.6, we assume that w(¢,u) can be modelled as a
function of the time difference between w and ¢ and that it depends on hourly, daily and
weekly temporal seasonalities.

The weight function returns the predictive importance of each ambulance intervention given
a future time period, and we assume that it can be measured based on the (positive)
temporal interactions between two events that are (u — t) time-units apart. Thus, we
consider the following functional form for w(t,u), firstly introduced in Zhou and David S.
Matteson ( )

sin? (T g2 (Tt
w(t,u) = w(u—1t) = pi ™" + py ' py - >p4 (5=2) (5.8)

We can see that it includes a separate coefficient for each seasonal patter: p; is used to
capture the short-term dependence, analogous to AR(1) model, while p3 and ps measure
the daily and weekly seasonalities with periodicity equal to 24 and 247 = 168, respectively.
p2 represents a discount factor, which is added to fade-out the daily and seasonal terms
that otherwise would never vanish (since they would keep fluctuating between the product
of their minimum values and 1). The four parameters are bounded between 0 and 1 to
avoid negative weights, exponential growths and difficulties in their interpretations.

The coefficients are estimated implementing an algorithm suggested in Zhou and David S.
Matteson ( ). As we mentioned, the objective of the weight function is to approximate
the positive temporal correlations between two EMS interventions that are separated by
| = u—t time-periods (or lags). Hence, after calculating the empirical hourly ACF of EMS
counts up to lag L and taking its positive part, denoted by ACF™, the parameters p1, ..., pa
were estimated by minimising the sum of squared loss between ACF' and pow(1):

L

argminz (ACF* () — pow(l))2 st.0<p; <1Vj=0,...,4 (5.9)
POs--sPt 13

The additional coefficient, pg, represents another discount factor without any practical
interpretation since it is used only to scale w(-) between 0 and 1, the same as ACF*, while,
in its original formulation, the weight function is bounded between 0 and 2.

We choose L = 672, which represents four weeks of historical temporal data, while the
minimisation problem was solved using the boz-constrained method implemented in the R
function optim() and defined in Byrd et al. ( ). All parameters were initialised at 0.5.

5.3 Results

In this Section, we present the results obtained after estimating the models described in
Section 5.1. All procedures were implemented using the software R (R Core Team, )
and several external packages. More precisely, as we have already mentioned, the smooth
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Table 5.1: Estimates of the Mean Squared Error (MSE) for the temporal model evaluated
on the test data. The two residuals are defined in Equation (5.10).

Number of factors | MSE with Pearson residuals MSE with Anscombe residuals

1 1.237250 1.216869

2 1.141232 1.129958

3 1.136537 1.125091

4 1.134588 1.123214

5 1.136711 1.124742

6 1.137685 1.125492
dynamics in the temporal component were estimated using mgcv (Wood, ), while the
network-version of the gaussian weighted kernel defined in Rakshit, Davies, et al. ( )
is implemented in spatstat (Baddeley, Rubak, and Turner, ). It took approximately

25 minutes to run each iteration of the algorithm for the temporal model using a virtual
machine with an Intel Xeon E5-2690 v3 processor, six cores, and 32GB of RAM. On the
other side, the functions for estimating the spatial dimension are remarkably efficient and,
after approximating the weight function, they usually run in a couple of minutes.

5.3.1 Temporal component

As detailed in Section 5.2.1, the temporal component was estimated using a dynamic latent
factor model with deterministic covariates representing hourly, daily and weekly seasonal
trends. The temporal effects are included using a set of constraints on the factor and
loadings matrices. More precisely, the factors, which should capture the intra-day evolution,
are modelled as smooth functions of the hour of the day, while the loadings were constrained
according to the day of the week and the week of the year.
The starting point of the algorithm for estimating the matrices F' and L is the definition
of K, i.e. the number of factors, which, as already mentioned, is chosen using a forecasting
perspective. The data at hand represent all EMS interventions from 2015-01-01 to 2018-
01-01. Hence, we divided the observations into two groups: the emergency events from
2015-01-01 to 2017-06-30 represent the training set of the algorithm, while the predictive
performances were evaluated on the second group, i.e. the EMS interventions that occurred
from 2017-07-01 to 2017-12-31.
We trained several models with different values of K (from 1 to 6), and we ranked them
using the estimates of Mean Squared Error (MSE) criterion on the test set, calculated with
two types of residuals:

A Yt — ﬂt A % <yt2/3 B ﬂ?/?’)

Tpy = ;

't = TAt = 1/6
Vil iy

(5.10)
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Figure 5.7: Graphical comparison of observed data and factor model’s fitted values consid-
ering EMS hourly counts from 2017-07-01 to 2017-12-31.

The first one, i.e. 7p; represent the Pearson residuals for Poisson GLM or GAM models,
while the other ones are the Anscombe residuals (Anscombe et al., 1961). Following David
S Matteson et al. (2011), we adopted two different criteria since, as reported in McCullagh
and Nelder (1989), the Pearson residuals can be heavily skewed in case of Poisson response
variables.

The results are reported in Table 5.1. The optimal value is obtained when the model is run
with four factors. It should be pointed out that the observed counts present five missing
values from 2015-04-01 at 00:00 to 2015-04-01 04:00:00 which, for each value of K, were
imputed using a dynamic latent factor model with the same structure that was trained
using the data until 2015-03-31 at 23:00.

Finally, after rerunning the model with K = 4 factors on the complete dataset, we checked
its predictive accuracy using a graphical approach. More precisely, we calculated the fitted
values from 2017-07-01 to 2017-12-31, and we compared them to the observed counts. The
result is displayed in Figure 5.7, which shows a good agreement between the two time-series.
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Figure 5.8: The observed positive part of the ACF (grey) and the estimated weight function
(orange) considering lagged counts for one (a) and four (b) weeks.

5.3.2 Estimating the weight function

As introduced in Section 5.2.2, the spatial component was estimated combining a network
Gaussian smoothing kernel with a weight function that measures the predictive importance
of each ambulance intervention. The weights are used to mimic the (positive) interactions
between two EMS interventions separated by [ temporal lags, replicating the hourly, daily,
and weekly seasonalities present in the ACF, which is displayed in Figure 5.6.

As reported in Equation (5.8), the weight function depends on four parameters, that rep-
resent the three seasonal components and a discount factor. They were estimated solving
the minimisation problem introduced in Equation (5.9). We found that the optimal value
of p1 is equal to 0.448, which points out a mildly strong short-term correlation; ps was
found approximately equal to 0.002, while p4 is much higher, being equal to 0.744. The
second seasonal parameter, i.e. ps, indicates that the daily component oscillates betwelen
0.002 and 1. Given the periodic behaviour of sin function, the maximum value of f);mz(ﬂ),
i.e. the daily effect on the weight function, is obtained when the lag [ is approximately a
multiple of 24, and the minimum is reached when the time difference is close to 12 or its
multiples. The value of p4 points out that the weekly effect is smoother and varies between
0.744 and 1. Similarly, the maximum value of the weekly effect is registered when the lag [
is close to 168 or its multiples. The optimal values of pg and po, i.e. the two discount fac-
tors, were found equal to 0.75 and 0.99, respectively, which says that the daily and weakly
seasonalities fade-out slowly.

We display in Figure 5.8 a graphical comparison between the observed positive part of
the hourly ACF and the estimated weight function. Figure 5.8a shows one week of lagged
counts, while Figure 5.8b shows the complete set of lags up to four weeks. In both cases,
the weight function successfully mimics the ACF. The only minor flaws are related to the
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Figure 5.9: Estimates of the spatial intensity function g,(s) considering two future time
periods: 2018-01-03 at 03:00 (left) and 2018-01-03 at 15:00 (right).

smoothed versions of daily and weekly seasonalities that look respectively slightly weaker
and stronger than their counterparts.

5.3.3 Spatial component

After estimating the weight function, we applied Equation (5.7) to obtain the predicted
spatial intensity g, (s) for a future time period w. In particular, considering that the data
at hand report the EMS interventions from 2015-01-01 at 00:00 to 2018-01-01 at 00:00,
we decided to forecast g,(s) considering two future time periods: 2018-01-03 at 03:00 and
2018-01-03 at 15:00. The results are reported in Figure 5.9.

The first map shows that the EMS interventions are scattered in several parts of the munic-
ipality, and highlights some roads of the network that could be linked with nightlife areas
(such as Porta Genova or Colonne di San Lorenzo). The second map draws attention to
the zones close to Duomo and other significant working places, while there is no emphasis
on the nightlife areas. In both cases, the main train station (Stazione Centrale), a popu-
lar square (Piazzale Loreto) and several retirement houses (such as Pio Albergo Trivulzio)
stand out in the spatial intensity function’s estimates.

Maps in Figure 5.9 are drawn using different scales, which implies that they cannot be
directly compared. Hence, to emphasise the spatio-temporal dynamics of the EMS dis-
patches, we report in Figure 5.10 the same maps created using a common scale. Although
they clearly point out the same areas as before, they also highlight the temporal patterns
in the average hourly number of ambulance dispatches considering that most EMS inter-
ventions occur during the morning on the first part of the afternoon (see Figure 5.3).
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Figure 5.10: Estimates of the spatial intensity function g,(s) considering two future time
periods: 2018-01-03 at 03:00 (left) and 2018-01-03 at 15:00 (right). The two maps are
analogous to Figure 5.9, but they are reported using the same scale.

5.4 Conclusions and future works

This paper investigated the spatio-temporal distribution of ambulance interventions that
occurred from 2015-01-01 to 2017-21-31 in the municipality of Milan, one of the most
hectic, vibrant, and congested cities in Europe. We assumed that the emergency events
are the realisation of a point pattern on a linear network, representing the most important
streets of the city. More precisely, the spatial support was downloaded from Open Street
Map, and several pre-processing steps were applied to manipulate the data and create a
fully-connected graph. The street network and the EMS data are visualised in Figure 5.4.
Preliminary analysis, summarised in Section 5.1, revealed that the temporal evolution
presents several types of seasonalities, due to hourly, daily and weekly patterns. The spatial
distribution of the interventions showed that the locations tend to concentrate along the
street network and seem to be clustered near several popular and busy areas (like Stazione
Centrale, Porta Genova or Corvetto). Moreover, we noticed the presence of space-time
interactions in the hourly distribution of the events: in the morning and in the afternoon
the ambulance dispatches look concentrated in the city centre, while, they are more spread
all around the city in the night.

We divided the intervention times into discrete intervals of one hour, and we assumed that,
independently for each time span, the EMS interventions follow a non-homogeneous Poisson
process with a non-separable intensity function, defined in Equation (5.1). The temporal
component was approximated via a dynamic latent factor model with deterministic covari-
ates representing the seasonal trends mentioned above. The hourly and weekly effects were
modelled using a spline approach, to grasp the smooth dynamics noticed in Figures 5.2
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and 5.3. The spatial dimension was estimated using a non-parametric Gaussian network
kernel function that was combined with a set of weights that capture the space-time interac-
tions. The weight function, denoted by w(t, ), measures the (positive) temporal correlation
between two ambulance dispatches separated by [ = u — ¢ temporal lags. This function
was defined using four parameters that represent the temporal dynamics registered in EMS
counts. They were estimated solving the minimisation problem in Equation (5.9).

The temporal model was trained using different values of K, i.e. the number of factors, and
we found that the best predictive performances occur when K = 4. The fitted values seem
to approximate the EMS counts reasonably well, as reported in Figure 5.7. We exemplified
the spatial approach estimating the weight function and the spatial intensity considering
two future time periods: one during the first hours of 2018-01-03 and another in the first
part of the afternoon of the same day. Figures 5.8 and 5.9 display the estimated intensities,
showing that the spatial and spatio-temporal patterns are captured effectively.

The ideas presented in this paper could be extended in several ways. First, we might take
into account the multivariate nature of the EMS data, introduced in Section 5.1, estimating
the relative risk of EMS interventions, i.e. the ratio of the rates of occurrences for different
severity levels. This approach was recently explored in McSwiggan, Baddeley, and Nair
( ) for the multivariate analysis of car crashes on a linear network. Second, we plan
to focus on the second-order characteristics of a spatio-temporal point process, developing
methods and packages for estimating the K function in case of non-separable intensities
(Ripley, ). This type of problems was recently studied by Rakshit, Baddeley, and Nair

( ), developing several algorithms and code for efficient estimation of the K function
on a linear network that ignores the temporal component, and M. M. Moradi and Mateu
( ), where the authors proposed theoretical models and computational implementations

to estimate the network K function in case of a cyclic separable spatio-temporal intensity.
Finally, classical point pattern models such as Log-Gaussian Cox processes or self-exciting
processes could be extended to a network support. These developments also represent
the starting point for the inclusion of relevant spatial covariates measured on the road
network, such as urban traffic (given by motorcars and public transports), environmental
measurements, socio-demographic indices, or the road segment’s type, that can be directly
obtained from Open Street Map.
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CHAPTER 6

Conclusions and Future Developments

Mamma mia la monnezza c¢’ho fatto.

René Ferretti su Caprera - Boris (1x03)

The present manuscript focuses on the analysis of structures and models for spatial data
lying on or alongside road networks. Starting from computational and practical problems
related to transportation, road safety, and emergency interventions, we presented various
statistical techniques based on lattice and point-pattern approaches.

The first Chapter briefly introduced the basic concepts and data sources related to the
analysis of spatial data lying on street networks. We mentioned some of the peculiar
computational and methodological problems that make road network analysis challenging
and, at the same time, exciting.

Chapter 2 reviewed software implementations for representing street network data, focusing
on two R packages named stplanr and dodgr. Their basic structure and relative pros and
cons were discussed using several increasingly complex examples taken from Open Street
Map. The particular properties of road network data were highlighted, showcasing code
for estimating shortest paths and centrality measures. Moreover, we would like to point
out that the ideas summarised in Chapter 2 represented one of the starting points for
developing two new R packages. The first one, named osmextract, is extensively detailed in
Appendix C, while the second one, named sfnetworks, represents an alternative approach
for spatial networks analysis (Van der Meer et al., ). It links the spatial and graph
dimensions using sf and tidygraph objects, extending the stplanr approach in several
ways and fixing some of its inherent problems. In the next weeks, we plan to submit both
packages to CRAN and keep working on their development.

Chapter 3 proposed a Dynamic Zero-Inflated Poisson model to compare car crashes de-
terminants and monitor accidents exposure considering an extremely detailed urban road
network. We illustrated several techniques to summarise and combine spatially misaligned
open-source data and defined a road safety and a road risk index that provide local in-
formation at the segment level. The proposed model is quite simple from a statistical
perspective, but it represents an original attempt to develop a localised road safety index
considering a street network that covers a large area. We plan to extend the social dimen-
sion of the paper, developing a causal approach for identifying the so-called black spots and
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their determinants.

Chapter 4 explored several increasingly complex multivariate Bayesian hierarchical models
to analyse the spatial distribution of severe and slight car crashes that occurred in the
road network of Leeds from 2011 to 2018. The best model included a multivariate CAR
spatial random effect with a different autoregression coefficient for each severity level. We
tested its robustness against different hyperpriors and adjacency matrices, and the results
are detailed in Appendix B. We proposed a novel procedure to contract a road network and
test the severity of MAUP (Modifiable Areal Unit Problem) for spatial models developed
using a network-lattice support. In the next months, we plan to improve the methodology
for estimating traffic exposure at the network level, combining data from official sources
with graph metrics.

Finally, Chapter 5 introduced some preliminary results related to the development of an
inhomogeneous spatio-temporal Poisson process to analyse the distribution of ambulance
interventions in Milan. A non-separable first-order intensity function was considered to
capture the space-time interactions noticed during the preliminary analysis. The algorithm
for estimating the spatial component via a weighted kernel function was exemplified consid-
ering two future time points, and it seems that the main spatial and temporal trends were
successfully modelled. At the time of writing, we are developing diagnostics for testing the
predictive accuracy. Moreover, in the next months we plan to extend the existing ideas in
two directions:

1. develop a network extensions of classical point process models, such as Log-Gaussian
Cox processes or Self-exciting processes;

2. add relevant spatio-temporal covariates to the EMS interventions model, such as
population density, urban traffic, or commuting flows.

Maybe this is a little pretentious, but I sincerely hope that this manuscript may represent
a useful starting point towards the development of innovative software and statistically
principled methods for geo-referenced data on spatial networks.
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APPENDIX A

A note on Integrated Nested Laplace
Approximation (INLA)

A.1 Introduction

The Integrated Nested Laplace Approximation (INLA) is a deterministic statistical method-
ology to perform approximate Bayesian inference using analytical approximations and nu-
merical integrations (Havard Rue, Martino, and Chopin, ). It represents a fast and
accurate alternative to the traditional MCMC methods (Robert and Casella, ) for a
particular class of models named Latent Gaussian Models (LGM), which are introduced
below.

The MCMC approach is a versatile tool to handle complex and general Bayesian models.
However, even if the inference is usually handled by powerful software such as WinBugs
(David Spiegelhalter et al., ), JAGS (Plummer, ) or stan (Carpenter et al., )
the MCMC step requires a large amount of CPU and it is very time consuming. These
two problems are extremely relevant for large! spatial and temporal models, especially for
parameter’s tuning and comparing alternative specifications.

Hence, considering the large amounts of spatial data available worldwide, the INLA method-
ology and the corresponding R package (also named INLA) are getting more and more pop-
ular, which lead to a widespread adoption in several research fields such as measurement

error models (Muff et al., ), network meta-analysis (Sauter and Held, ), outbreak
detection (Salmon et al., ), disease mapping (Moraga, ), and, more generally,
spatial and spatio-temporal models (Lindgren, Havard Rue, et al., ) analogous to the

methods presented in Chapter 4.

In the following Sections, we briefly review the basic ideas and the key components that
define the INLA approach. Excellent introductions and comprehensive books with many
practical examples are provided by (Blangiardo and Cameletti, ; Cameletti, ;
Gomez-Rubio, ; Moraga, ; Havard Rue, Riebler, et al., ), amongst others. We
refer to these works for a more detailed presentation.

!The term large refers not only to the dimensionality of the dataset, but also to the complexity and
flexibility of the model.
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A.2 Latent Gaussian Models

As mentioned above, the INLA methodology is restricted to a particular class of mod-
els called Latent Gaussian Models (LGM), which includes a wide variety of statistical
approaches like GLM, GLMM (Generalised Linear Mixed Models), GAM, GAMM (Gen-
eralised Additive Mixed Models), Survival models, Geostatistical model, and logGaussian
Cox Processes (Agresti, ; P. J. Diggle, ; P. J. Diggle, Tawn, and Moyeed, ;
Fong, Havard Rue, and Wakefield, ; Miller Jr, ; Wood, ).

Indicating by « the structure of a Gaussian random field, usually specified as

|0 ~ N (1u(62), Q™" (62))

and by y = (y1,...,yn) a set of observed data conditionally independent given x and 61,
the Latent Gaussian Models assume that

ylz, 01 ~ p(ylz,01) = [ [ p(vilzi, 61).

The Gaussian random field & describes the model’s dependence structure, 68, and 6y are
sets of hyperparameters, p(62) denotes the mean vector, and Q~*(62) the precision matrix
Furthermore, it is usually assumed that & represents a Gaussian Markov Random Field
(GMRF), which means that the elements of x are conditionally independent given the
remaining ones, i.e. x; L xj|x_;; (Havard Rue and Held, ). In the previous equation,
x_;; denotes the random field without elements ¢ and j.

The conditional independence property usually implies that the precision matrix Q! is
very sparse. Hence, the GMRF hypothesis has important consequences and relevant com-
putational benefits since it implies INLA can take advantage of efficient algorithms for
analytical approximations involving sparse matrices.

A LGM can also be specified using a three-level hierarchical structure, analogous to the
approach adopted in Chapter 4 and detailed in Equations (4.1) and (4.2):

ylx, 0, ~ Hp(yﬂw, 01) (the likelihood)

1€T
x|0y ~ N (pu(62), Q_1(02)) (the GMRF assumption) (A1)
0 =(601,02) ~ p(0) (the hyperpriors)

The hyperparameters 0 control the latent Gaussian field and the distribution of (yi,...,yn).
The INLA framework usually assumes that the dimension of 6 is small, typically from 2 to 5
and not exceeding 20. For example, following the terminology introduced in Chapter 4, the
baseline models included four hyperparameters (i.e. the variances of the two unstructured
errors and the two spatial components), while the most general model considered three extra
hyperparameters. On the other hand, the GMRF can be very large (e.g. 108 components,
most not observed).
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Additive Models

If we assume that the observations y depend on a parameter ¢, which can be linked to
a set of covariates and random effects through an appropriate link function, then we can
re-establish a relationship between classical GAMM models and LGM. More precisely, if
we denote the linear predictor as g(¢) = 1, then the classical additive model setup can be
written as:

glei) =ni=Bo+ Y Bjzij+ Y fr.
j s

The parameter Sy is the overall intercept, z are fixed covariates with linear effects, while
{fx} indicates a set of functions defined using covariates or indices representing, for example,
smoothing splines, unstructured errors or temporal and spatial effects (such as the CAR
and MCAR distributions presented in Section 4.3). If the model components are assumed
to be a priori independent and the coeflicients of fixed effects have a Gaussian prior, then
the joint distribution of

w:(n7/37f15f27"’)

is Gaussian, yielding the GMRF structure of hierarchical LGM introduced in Equation (A.1).
As mentioned before, the critical assumption for computational efficiency is that the di-
mension of @ remains small even when the latent fields is large.

A.3 The Integrated Nested Laplace Approximation

As the name suggests, one of the key ingredients of INLA methodology is the Laplace
approximation (LA) (Barndorff-Nielsen, ). The main idea behind LA is to approximate
the integral of a distribution function f(z) using a Taylor’s series expansion of its logarithm
centred around its mode, denoted as z* = argmax log(f(z)):

_ *\2 92
log(/ (@) = log f(a") + (o o) TELD) - (oL LTI

Then, the integral of interest is approximated matching the mean and the curvature of a
Gaussian distribution:

[ 160 e = [ explton(ra) o= [exp flog 1) + 5o = 0P 0")|

The previous equation implies that, under LA, the distribution of f(x) is approximated as

Gaussian with mean f(z*) and variance - L
(")
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The objective of Bayesian Inference is to compute the posterior distribution of the latent
field, «, and the hyperparameters, 8, which, starting from the LGM hierarchical structure
defined in Equation (A.1), can be expressed as

p(z,0ly) < p(0)p(z|0) Hp(yi!wi, 0)

Nevertheless, considering the assumptions stated before on the behaviour and the dimen-
sionality of @ and @, INLA does not attempt to estimate the posterior distribution written
before, but focuses on the following marginals:

p(0;ly) = /77(0|y) d6_, i=1,...,dim(0); (A.2)

plaily) = / plz:, 8ly)p(Bly) a6, i=1,...dim(z). (A.3)

Approximating the Posterior Marginals for the Hyperparameters

The first step consists in creating an approximation for the joint posterior distribution of
the hyperparameters using the following derivation:

p(z,0ly)
Oly) = Def. of Cond. Prob.
pely) = Lo
= p(ylz, 0)p(z, 0) 1 Bayes Thorem
p(y) p(x]0,y)
_ pylz,0p@0)p(6) 1 Def. of Cond. Prob (A.4)
p(y) p(x]0,y)
x plylz, 0)p(|6)p(6) Since we are conditioning on y
p(x(0,y)
p(y\mle)p(a:\a)p(e) = p(0ly) Laplace approximation
p(x|0,y)

z=x*(0)

More precisely, in Equation (A.4), p(x|0,y) denotes the Laplace approximation of p(x|0, y)
and x*(0) represents its mode for a given 6. Then, because 0 is of low dimension, the
desired marginals, i.e. p(6;]y), can be directly derived from the approximated joint posterior
distribution using a low number of evaluation points (Martins et al., ). Usually, INLA
adopts variance-stabilizing corrections and Fisher-transform of correlations to obtain better-
behaved posterior densities and improve the Laplace approximation in the last step of
Equation (A.4). Sauter and Held ( ) developed an additional correction term to further
improve the Laplace approximation.
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Approximating the Posterior Marginals for the Latent Field

The second step is related to the approximation of the posterior marginal distributions for
the GMRF, defined in Equation (A.3). The integral is solved numerically using a finite
weighted sum:

Blaily) = S B(x:00°, y)p(O"[y)A©"), (A.5)

o

where p(z;|0*, y) represents an estimate of p(z;|y, ), p(0*|y) are the approximate posterior
marginals obtained from Equation (A.4), 8* denotes a set of integration points, and A(0*)
the corresponding weights.
INLA implements several strategies for defining the integrations points and the correspond-
ing weights, but the most relevant are named grid strateqy and composite central design
strategy. The former scheme is usually more precise than the latter, but it has a computa-
tional cost that grows exponentially in the dimension of 8. Hence, it is recommended only
when dim @ < 4. The composite central design strategy involves a spherical approximation
of the integral such that the integration points are located on the level set for the joint
posterior of @ (Box and Wilson, ).
The default behaviour for approximating p(x;|y, @) is the so-called Simplified Laplace Ap-
prozimation, which is based on a Taylor expansion of Laplace approximation, with a linear
and a cubic correction term:

log p(x;]0,y) ~ —%:):12 +0;(0)x; + écz(e)xf’

This approach is the default one, since it represents a reasonable trade-off between accu-
racy and computational speed. INLA implements two other integration strategies. The
first one, named Gaussian, directly approximates p(z;|y, 0) using a Gaussian distribution
and a Cholseky decomposition for the precision matrix. Although it is extremely fast to
compute, this approximation is usually not very accurate. The second one is called Laplace
and it directly adopts the Laplace approximation, following a similar derivation as in Equa-
tion (A.4). The second scheme works really well, but it is usually intractable for large
models since it involves heavy computations which must be repeated several times (up to
dim(x), which can be very large).

A.4 Conclusion

Now we can summarise the reasons why the methodology was named Integrated Nested
Laplace Approximation:

1. The Laplace Approximation is the basis for deriving the posterior marginal distribu-
tions;

2. The posterior marginals of @, the latent field, involve a Laplace approximation for
p(0)y). Hence, the two computing steps are nested.
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3. The analytical approximations are obtained by numerical Integration, as reported, for
example, in Equation (A.5).

To conclude, it should also be noticed that INLA can provide estimates of additional and
useful quantities such as the posterior linear predictors and the predictive densities (also ex-
plored in Section 4 and Appendix B), the Deviance Information Criterion (David J Spiegel-
halter et al., ), and the Watanabe-Akaike infromation criterion (Watanabe, ).
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APPENDIX B

Supplementary materials related to the
paper presented in Chapter 4

B.1 Exploring the temporal dimension

Following the procedures detailed in Section 4.2, we estimated, for each year, the number
of car crashes that occurred in each segment of the city network. We display the results
in Figure B.1, where the red lines represent the segments that registered at least one car
crash for a given year. We notice that the spatial distribution looks more or less the same
for all years. Moreover, we calculated that approximately 40% of road segments reported
zero counts for 2011-2018, while another 40% of road segments registered two or more
crashes, which imply that the spatial distribution is constant among different years. For
these reasons we preferred to ignore the temporal dimension in Chapter 4.

B.2 Probability Integral Transform values

The Probability Integral Transform (PIT) values (or posterior predictive p-values) represent
a common criterion for criticism of a Bayesian Hierarchical model. They measure, for each
elementary unit, the probability that a new observation is lower or equal than the observed
value of the corresponding response variable (Gelman, Meng, and H. Stern, ; H. S.
Stern and N. Cressie, ):

PIT; = P(Y; < y2™y).

The term y represents the vector of observed counts. If the model fits the observations
well, then the histogram of PIT values should resemble a uniform distribution between 0
and 1. We refer to Boulieri et al. ( ) for an application of PIT criterion to road safety
data.

PIT values may be adjusted in case of discrete counts using a continuity correction (E.
Marshall and Spiegelhalter, ):

1
PIT; = P(Yi < 57" [y) + 5P(Yi = 57™|y).

INLA implements a leave-one-out cross-validated version of PIT values (Goémez-Rubio,
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Figure B.1: Spatio-temporal representation of car crashes counts for Leeds city network.
The red lines represent those segments that registered at least one car accident for a given
year.

; Held, Schrédle, and Havard Rue, ):

PIT; = P(Y; < 3|y ),

where the vector y_; denotes the observed counts minus the ith observation. These quan-
tities can also be adjusted using a continuity correction.

Unfortunately, PIT values do not seem to adapt well to a Poisson regression with sparse
counts. A small simulation study was implemented to exemplify this behaviour using the R
software and the INLA package (R Core Team, ; Havard Rue, Riebler, et al., ). The
R code is reported in Listing B.1. The simulation design is as follows. First, we sampled
n = 500 Poisson random variables with mean E;exp();), where E; ~ Uniform(0,1) and
Ai ~ N(—0.33,1) (see R code from line five to ten). Approximately 63% of simulated counts
are equal to 0, which is close to the proportion of segments that registered no slight or severe
car crash in our dataset.

Then, we estimated a Poisson regression model specifying the true random mechanism
behind y (see lines thirteen to twenty of the R code) and calculated the leave-one-out
cross-validated PIT values. The histogram of PIT values obtained without the continuity
correction is reported in Figure B.2a, whereas the histogram of the PIT values with the
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(a) Histogram of PIT values. (b) Histogram of PIT values after continuity correction.

Figure B.2: Histograms of PIT values obtained running a Bayesian hierarchical model with
Poisson responses. Check the code behind the simulation in Listing B.1.

continuity correction is reported in Figure B.2b. Both graphs are clearly far from uniform.
We argue that this is related to the sparseness of simulated counts, since we found that the
problem gets mitigated for less sparse Poisson random variables. We do not report these
further results in detail.

Listing B.1: The R code used to perform the simulation study and to estimate the PIT
values, whose distributions are reported in Figures B.2a and B.2b.

# packages
library (INLA)

# fake data

set.seed (07102020)

n <- 500

x <- rnorm(n)

lambda <- -0.33 + x

E <- runif(n)

y <- rpois(n, E * exp(lambda))

# run INLA model

inla(
formula =y 7 x,
family = "poisson",

data = list(y =y, x = x, E = E),
offset = log(E),
control.compute = list(cpo = TRUE),
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control.inla = list(strategy = "laplace", int.strategy = "grid")

)

B.3 The R code for estimating model (G)

We report in Listing B.2 the R code used to estimate model (G).
Listing B.2: The R code that defines model (G).

model_G <- function(
cmd = c(
"graph", "Q", "mu", "initial", "log.norm.const", "log.prior", "quit"
),
theta = NULL
) o
interpret.theta <- function() {
#> Function for changing from internal scale to external scale

#> First k parameters are the autocorrelation parameters

alpha <- vapply(
thetal[1:k],
function(x) alpha.min + (alpha.max - alpha.min) * stats::plogis(x),
numeric (1)

#> The next k parameters are the marginal precisions
mprec <- vapply(

thetal(k + 1):(2 *x k)],

exp,

numeric (1)

#> the last (k * (k - 1)) / 2 are the correlation parameters
#> ordered by columns.
corre <- vapply(

thetal(2 * k + 1):(k * (k + 3) / 2)1,

function(x) 2 * stats::plogis(x) - 1,

numeric (1)

param <- c(alpha, mprec, corre)

#> length non-diagonal elements
n <- (k - 1) *x k / 2

#> intial matrix with 1s at the diagonal
M <- diag(1l, k)

#> Adding correlation parameters (lower.tri) and (upper.tri)
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M[lower.tri(M)] <- param[(2 * k + 1):(k * (k + 3) / 2)]

M[upper.tri(M)] <- t(M)[upper.tri(M)]

#> Preparing the st. dev matrix
st.dev <- sqrt(1l / param[(k + 1):(2 * k)I1)

#> Matrix of st. dev.
st.dev.mat <- matrix(st.dev, ncol = 1) %x*¥%

matrix(st.dev, nrow = 1)

#> Final inverse matrix
M <- M *x st.dev.mat

#> Inverting matrix
PREC <- solve (M)

return(list (alpha = alpha, param = param, VACOV

#> Build the blockdiagonal matrix
Rs <- vector("list", length = k)

D_W <- Matrix::Diagonal(n = nrow(W), x = Matrix:

for (j in seq_len(k)) {

= M, PREC =

#> Graph of precision matrix; i.e., a 0/1 representation
#> of precision matrix
graph <- function() {

:rowSums (W))

#> I choose alpha = 0.5 for no particular reason

R <- t(chol(D_W - 0.5 * W))
Rs[[jl1] <- R

}

Bdiag_R <- Matrix::bdiag(Rs)

#> Build the central part of the matrix product
central_block <- Matrix::kronecker (
matrix (1, nrow = k, ncol = k),
Matrix::Diagonal (nrow (W), 1)

)

G <- Bdiag_R %*% central_block ¥%*J) t(Bdiag_R)
G

<- function() {
#> Parameters in model scale
param <- interpret.theta()

#> Build the blockdiagonal matrix

Rs <- vector("list", length = k)
D_W <- Matrix::Diagonal(n = nrow(W), x = Matrix
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91 for (j in seq_len(k)) {

92 R <- t(chol(D_W - param$alphalj]l * W))

93 Rs[[jl] <- R

94 }

95 Bdiag_R <- Matrix::bdiag(Rs)

96

97 #> Build the central part of the matrix product
98 central_block <- Matrix::kronecker (

99 param$PREC,

100 Matrix::Diagonal (nrow (W), 1)

101 )

102

103 Q <- Bdiag_R %*% central_block %x*% t(Bdiag_R)
104 Q

105 }

106

107 #> Mean of model

108 mu <- function() {

109 return (numeric (0))

110 }

111

112 log.norm.const <- function() {

113 #> return the log(normalising constant) for the model
114 val <- numeric (0)

115 return(val)

116 }

117

118 log.prior <- function() {

119 #> return the log-prior for the hyperparameters.
120 #> Uniform prior in (alpha.min, alpha.max) on model scale
121 param <- interpret.theta()

122

123 #> log-Prior for the autocorrelation parameter
124 val <- 0

125 for (j in 1:k) {

126 val <- val - thetal[j] - 2 * log(l + exp(-thetaljl))
127 }

128

129 #> Whishart prior for joint matrix of hyperparameters
130 val <- val + log(

131 MCMCpack::dwish (

132 W = param$PREC,

133 v = k,

134 S = diag(rep(lambda_wish, k))

135 )

136 )

137 #> This is for precisions

138 val <- val + sum(thetal[(k + 1):(2 * k)])

139 #> This is for correlation terms

140 val <- val + sum(
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log(2) + thetal(2 * k + 1):(k * (k + 3) / 2)] -
2 * log(l + exp(thetal(2 * k + 1):(k * (k + 3) / 2)1))
)

return(val)

}

initial <- function() {

#> return initial values

#> The Initial values form a diagonal matrix

return(c(rep (0, k), rep(log(l), k), rep(0, (k * (k - 1) / 2))))
}

quit <- function() {
return(invisible ())

}

val <- do.call(match.arg(cmd), args = list())
return(val)

}

B.4 First strategy for criticism of model (G)

We report in Algorithm 1 the pseudo-code that describes the procedure used to estimate the
balanced accuracy distribution. We run the algorithm using N = 5000 iterations and the
quantiles associated to the following set of probabilities: p = (0.5,0.55,0.6,0.65,0.7,0.75,
0.8,0.825,0.85,0.875,0.9,0.925,0.95,0.975,0.99). We also run the same procedure using
the posterior mean instead of a particular quantile (i.e. the red curve in Figure 4.6).

B.5 Alternative specification for the prior distribution

We report in Tables B.1 and B.2 a summary of the estimates of the fixed and random effects
for two alternative specifications of model (G), differing in the hyperprior assigned to £2,
the precision matrix of the PMCAR random effect. More precisely, the two models were
defined using, respectively, a Wishart hyperprior with rank equal to 2 and scale matrix
equal to diag(0.5,0.5) (first model) and diag(2,2) (second model). We will refer to these
models using a code that summarises the corresponding hyperprior distribution.

B.6 Alternative specification for the neighbourhood matrix

We report in Tables B.3 and B.4 a summary of the estimates of the fixed and random effects
for two alternative specifications of model (G), differing in the definition of the adjacency
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Figure B.3: Two maps representing the posterior means for severe and slight car crashes
rates, estimated using model (G) on the contracted network. The colours go from red
(higher quantiles) to green (lower quantiles). The black star represents Leeds City Center.

matrix W. More precisely, the two models were defined using, respectively, a second and
a third order adjacency matrix for W. We will refer to these models as Wy and Wi.
Lastly, we report in Tables B.5 and B.6 a summary of the estimates of fixed and random
effects for four alternative specifications of model (G), that were defined with a spatial
neighbourhood adjacency matrix using, respectively, a threshold of 50, 100, 250, and 500
meters.

B.7 Car crashes rates for the contracted network

We display in Figure B.3 two maps that represent the posterior means of car crashes rates
obtained running model (G) on the contracted network. The two maps look similar to
their not-contracted counterparts (see Figure 4.5). In both cases, the areas that are located
north and north-west to the city center are associated with higher levels of car crashes rates.
Moreover, we can graphically check the effects of removing redundant vertices since, after
merging contiguous road segments, we obtained a smoother estimate of car crashes rates.

B.8 DIC and WAIC for alternative specifications

We report in Table B.7 the estimates of DIC and WAIC for model (G) and all alternative
specifications. We can notice how all models whose adjacency matrix ignored the network
structure performed significantly worse than model (G).
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Algorithm 1: Pseudo-code illustrating the steps used to estimate the balanced accu-
racy. The same procedure was applied independently for the two severity levels.

Input: N (number of iterations) and p (vector of probabilities)

/* For example p = (0.5,0.75,0.95) */
Output: S
/* S is the matrix of estimates of balanced accuracy. */

Data: Posterior distribution of fitted values calculated using model (G)
Result: Estimates of balanced accuracy distribution
/* The algorithm is divided into two blocks: first we compute quantiles
associated to the chosen probabilities, then we estimate balanced
accuracy. */
begin
M + Matrix(0, length(p), n) ; /* Store quantiles */
for ¢« € p do
for j =1 to n do
| MTJi, j] < quantile of order ¢ for road segment j;
end
end
end
begin
/* Store estimates of balanced accuracy */
S < Matrix (0, length(p), N);
for : € pdo
for j =1to N do
predCounts <— n poisson random deviates with mean MTi, |;
binCounts <« discretize predCounts using a threshold of 1;
S|[i, j] + balancedAccuracy (binCounts, obsCounts);
/* obsCounts are the observed counts */

end
end

end
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Scale matrix: diag(0.5,0.5) Scale matrix: diag(2,2)

Severe Crashes ‘ Slight Crashes Severe Crashes ‘ Slight Crashes

—14.490 —12.832 —14.461 —12.831
Po (0.123) (0.113) (0.130) (0.124)
Betweonmess —0.063 —0.069 —0.063 —0.066
(0.052) (0.034) (0.052) (0.034)
Motorways —0.775 —0.169 —0.769 —0.162
(0.177) (0.121) (0.173) (0.119)
Primary Roads 0.469 0.558 0.470 0.558
(0.132) (0.103) (0.130) (0.102)

Table B.1: Means (standard deviations) for the posterior distributions of the fixed effects.

ID o5 0, Po p1 p2 o5, 03, P

mean: 0.425 0.608 0.401 0.994 0.996 0.404 0.346 0.814
sd: (0.083) (0.049) (0.013) (0.002) (0.001) (0.067) (0.043) (0.034)

mean: 0.459 0.652 0.403 0.996 0.997 0.302 0.271 0.862
sd: (0.087) (0.049) (0.013) (0.002) (0.000) (0.063) (0.039) (0.029)

diag(0.5,0.5)

diag(2, 2)

Table B.2: Means (standard deviations) for the posterior distributions of the hyperparam-
eters.

Second order adjacency: W Third order adjacency: W3
Severe Crashes ‘ Slight Crashes Severe Crashes ‘ Slight Crashes
—14.503 —12.900 —14.502 —12.904
fo (0.167) (0.179) (0.163) (0.166)
Botweenness —0.022 —0.029 —0.042 —0.039
(0.050) (0.032) (0.050) (0.032)
Motorways —0.757 —0.153 —0.742 —0.144
(0.161) (0.103) (0.160) (0.103)
Primary Roads 0.475 0.585 0.466 0.570
(0.123) (0.090) (0.122) (0.091)

Table B.3: Means (standard deviations) for the posterior distributions of the fixed effects.
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ID

2

99, 90,

Po P1

P2 g 351

2
9o P¢

Wy

W3

mean:
sd:
mean:

sd:

0.611

0.859 0.417 0.999 0.999 0.373 0.334 0.834

(0.094) (0.051) (0.007) (0.000) (0.000) (0.259) (0.254) (0.754)

0.513 0.754 0.405 0.998 0.998

1.448

1.401

0.893

(0.083) (0.041) (0.007) (0.001) (0.001) (0.184) (0.139) (0.029)

Table B.4: Means (standard deviations) for the posterior distributions of the hyperparam-

eters.

Spatial adjacency: 50m Spatial adjacency: 100m

Severe Crashes ‘ Slight Crashes Severe Crashes ‘ Slight Crashes
3 —14.485 —12.841 —14.446 —12.797
0 (0.133) (0.129) (0.142) (0.144)
Botweenness —0.054 —0.060 —0.030 —0.041
(0.051) (0.033) (0.050) (0.032)
Motorwayvs —0.792 —0.176 —0.858 —0.224
Y (0.174) (0.117) (0.172) (0.113)
Primary Roads 0.464 0.568 0.428 0.546
Y (0.132) (0.101) (0.131) (0.099)

Spatial adjacency: 250m

Spatial adjacency: 500m

Severe Crashes ‘ Slight Crashes

Severe Crashes ‘ Slight Crashes

Bo

Betweenness

Motorways

Primary Roads

—14.424
(0.162)
0.026
(0.050)
—0.968
(0.166)
0.413
(0.122)

—12.794
(0.153)
0.008
(0.031)
—0.303
(0.104)
0.544
(0.088)

—14.397
(0.154)
0.056
(0.047)
—1.052
(0.161)
0.384
(0.110)

—12.777
(0.135)
0.047
(0.030)
—0.402
(0.099)
0.476
(0.081)

Table B.5: Means (standard deviations) for the posterior distributions of the fixed effects.
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ID o5, a5, Po p1 P2 a5, 05, P

mean: 0.501 0.690 0.408 0.997 0.998 0.308 0.272 0.836
sd: (0.088) (0.046) (0.010) (0.001) (0.001) (0.054) (0.033) (0.032)
mean: 0.543 0.749 0.411 0.998 0.999 0.353 0.313 0.847
sd: (0.095) (0.049) (0.009) (0.001) (0.001) (0.071) (0.044) (0.033)
mean: 0.647 0.873 0.416 0.999 0.999 0.638 0.623 0.870
sd: (0.087) (0.047) (0.006) (0.000) (0.000) (0.098) (0.073) (0.031)
mean: 0.695 0.893 0.418 0.998 0.998 2.726 3.139 0.927
sd: (0.100) (0.055) (0.007) (0.001) (0.001) (0.485) (0.389) (0.020)

50m

100m

250m

500m

Table B.6: Means (standard deviations) for the posterior distributions of the hyperparam-
eters.

ID DIC WAIC
(G) 14113.35 14.093.90
diag(0.5,0.5) 14110.41 14087.88
diag(2, 2) 14117.31 14100.84
W, 14198.69 14153.61
Ws 14172.20 14139.50
50m 14125.23 14100.95
100m 14139.76 14112.47
250m 14181.43 14137.60
500m 14241.58 14177.59

Table B.7: DIC and WAIC for model (G) and all its alternative specifications.
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APPENDIX C

osmextract: An R Package to Download,
Convert and Read Open Street Map Data
Extracts

There is no I in team, but there is a U in bug.

Somewhere online

The following appendix is based on one of the package’s vignettes. The R code can be browsed
at the following page: https://github.com/ITSLeeds/osmextract.

C.1 Introduction

Open Street Map (OSM) is an online database that provides open-licence geospatial data
mapping, among the other things, roads, rivers, buildings, coastal lines, political and admin-
istrative boundaries worldwide (OpenStreetMap contributors, ). It is used by several
popular services like Facebook, Flickr, Foursquare, Moovit, Niantic, Snapchat, and Tableu,
and it is the only mapping database to which all major internet companies continue to
contribute. By this definition, at the moment it is the most important geo-database (An-
derson, Sarkar, and Palen, ; Barrington-Leigh and Millard-Ball, ). It also provides
geocoding and reverse geocoding routines via the Nominatim API (Open Street Map, ).
Open Street Map uses a peculiar data structure, which has relevant consequences on every
software related to OSM. In fact, the basic components of Open Street Map data are called
elements, and they are divided into:

nodes: representing the building blocks of ways and other points on the earth’s surface
without a physical size (such as traffic lights, road signs or crossings);

ways: ordered lists of nodes, typically linked with streets, rivers, shops and buildings;

relations: lists of nodes, ways and other relations, where each member has additional
information that describes its relationship with the other elements.

The characteristics of each element may be described using a tag, which is just a pair of a
key and a wvalue. Several examples of tags, keys and values are provided in Section C.3.3
when introducing the R code for filtering OSM extracts.
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In this appendix, we will present osmextract, an R package to download, convert and read-
in bulk OSM data hosted by external providers such as Geofabrik GmbH and bbbike. We
aim to make it easier for people to access OSM extracts for reproducible research and answer
a common question: how to get the data into a statistical environment, in an appropriate
format, as part of a computationally efficient and reproducible workflow? Other R packages
answer parts of this question. osmdata, for example, provides an interface to the Overpass
API, which is ideal for downloading small OSM datasets (Padgham et al., ). However,
the API is rate limited, making it hard to download large datasets. As a case study, the
following code can be used to try downloading all cycleways' in England:

library("osmdata")
cycleways_england = opq("England") %>%

add_osm_feature (key = "highway", value = "cycleway") %>%
osmdata_sf ()
Error in check_for_error (doc) : General overpass server error; returned:

Runtime error: Query timed out in query at line 4 after 26 seconds.

As we can see, the function stops with an error message after approximately 30 seconds,
saying that the query timed out.

On the other hand, osmextract adopts a different approach linking OSM extracts created
and formatted by external providers instead of querying the Open Street Map database.
The same request can be made with osmextract as follows, which reads-in almost 100,000
lines in less than 10 seconds, after downloading and converting the data. The download-
and-conversion operations of England’s OSM extract, which are extensively explained in
Section C.3, take approximately eight minutes using a laptop with i7-7500U processor and
8GB of RAM. The result is depicted in Figure C.1.

cycleways_england = oe_get(
place = "England",
provider = "geofabrik",
quiet = FALSE,
query = "SELECT * FROM ’lines’ WHERE highway = ’cycleway’"

)

osmextract is designed to complement osmdata, which has advantages over our package for
small datasets: osmdata is likely to be quicker for datasets less than a few tens of MB in size,
provides up-to-date data and has an intuitive interface. osmdata can provide data in a range
of formats, such as sf ((OGC) Open Geospatial Consortium Inc, ), sp (R. S. Bivand, E.
Pebesma, and Gomez-Rubio, ) or sc (Sumner and Padgham, ), while osmextract
only returns sf objects. osmextract’s niche is that it provides a fast way to download
large OSM datasets in the highly compressed pbf format and read them in via the fast C
library GDAL (GDAL/OGR contributors, ) and the popular R package for working
with geographic data sf (E. J. Pebesma, ). There are several other projects that

!The exact definition of cycleway is quite tricky since OSM uses different formats to indicate the cycle-
ways. We are going to present just a textbook example.
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Figure C.1: Map of the cycleways in England. The data were downloaded using osmextract

and plotted via the R package tmap (Tennekes, ).

focus on OSM data such as pyrosm (Tenkanen, ), pydriosm (Fu, ), osmium (Map,
), osmosis (Map, ), and OpenStreetMapX.jl (Szufel, ), mainly developed

using different software like C++, python (Van Rossum and Drake, ) or Julia (Zappa

Nardelli et al., ). In the near future, we will compare our package with the alternative

implementations.

C.1.1 Install and load the package

At the time of writing, the package is not on CRAN, but the development version can be
installed from Github as follows:

install.packages("remotes"); library("remotes")
install_github("ITSLeeds/osmextract")

Loading the package generates an important message about the license associated with
OSM data:

library("osmextract")
#> Data (c) OpenStreetMap contributors, O0DbL 1.0.
#> https://www.openstreetmap.org/copyright.

There are important legal considerations that should be taken into account before using
OSM data, especially for people working in a for-profit capacity. Anyone using OSM data

118



is bound by law to adhere to the ODBL licence, and we refer to the package’s introductory
vignette for more details.

As we said before, osmextract returns data using sf format, so we also load the R package
with the same name that define all st_* functions used in the next Section:

library ("sf")

The rest of the appendix is organised as follows. In Section C.2 we present a brief overview
of the OSM providers currently supported by osmextract, explaining their pros and cons.
Section C.3 introduces the five most important functions in osmextract, which define the
building blocks of the package and are used to match, download, convert and read-in an
OSM extract. Finally, Section C.4 concludes the appendix and presents some future works.

C.2 Open Street Map Providers

At the time of writing, the package is linked with three OSM extracts providers: Geofabrik,
bbbike, and openstreetmap.fr. Geofabrik is a company that creates map products and
offers free downloads of OSM extracts that are updated daily. These extracts are based
on a hierarchical division of the world into different regions. The first level covers the
six continents (plus the Russian Federation); the second level contains most countries and
several special areas (like the Alps, Britain and Ireland, US MidWest, US Northeast, US
Pacific, US South and US West); the third and last level represents some local regions
(mainly in Europe, Russia, Canada and South America). openstreetmap.fr is a web-service
that provides OSM data for several zones worldwide, which are updated minutely. Geofabrik
and openstreetmap.fr are based on similar partitions of the world. The latter is more detailed
in some countries (mainly France, Italy, China, India, Russia, and Brazil), but it does not
store extracts related to several areas in Africa and South America, while the former covers
the whole world. Finally, bbbike is different from the other providers since it saves OSM
data for more than 200 cities worldwide. We refer to the package’s vignette for a more
detailed comparison of the provider’s partitions.

osmextract summarises the OSM data stored by each provider using an sf dataframe
object that records, among the other things, the URLs and the polygonal boundaries of
each area. These dataframe objects are used by oe_match() (detailed in Section C.3.1) to
match a place with one of the extracts stored by the providers.

The function oe_providers() can be used to print a short summary of all providers sup-
ported by osmextract:

oe_providers ()

#> available providers dataframe name number of zones number of fields
#> 1] geofabrik geofabrik zones 430 14
# (2] bbbike bbbike zones 235 10
#> [3] openstreetmap fr openstreetmap fr zones 835 6

The previous output can be interpreted as follows:
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available_providers: summarizes the name of the supported providers;
database_name: stores the name of the corresponding sf dataframe objects;
number_of_zones:  the number of zones (or rows);

number_of_fields:  the number of fields (or columns).

The most important fields of each dataframe object are:

id: A unique identifier, containing letters, numbers, and the characters - and /.
name: The, usually English, long-form name of the area.

pbf: Link to the latest .pbf file for this region.

geometry: A polygonal boundary around the region, stored in sfg” format.

We refer to the help pages of the dataframe objects (e.g. ?geofabrik_zones) for more
details.

C.3 The main functions

This Section describes the essential characteristics of the five main functions that compose
the package. We refer to the introductory vignette and the help pages for more details.
These functions are used to

1. oe_match(): Match an input place with one of the files stored by OSM providers;
oe_download(): Download the chosen file;

oe_download(): Convert between .pbf and .gpkg formats;

oe_read(): Read .pbf and .gpkg files;

oe_get () : Match, download, translate, and import data, all in one step.

Al

They are presented following the same order in which they are typically used. It should
be noticed that we adopted a common oe_x* prefix so that a user can take advantage of
auto-completion features implemented by the IDE (e.g. Rstudio).

C.3.1 oe_match: Match OSM extracts

The function oe_match() takes in input a string through the parameter place, and it
returns a named list of length two with the URL and the size (in bytes) of a .pbf file
representing a geographical zone stored by one of the supported providers. The .pbf
format is a highly optimised binary format used by OSM providers to store and share OSM
extracts. For example:

oe_match(place = "Italy", quiet = TRUE)

#> $url

#> [1] "https://download.geofabrik.de/europe/italy-latest.osm.pbf"

#> $file_size

#> [1] 1544340778

2The sfg class is defined in the package sf (E. J. Pebesma, ).
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The geographical zone is chosen by calculating the Approximate String Distance between
the input place and one of the fields in the provider’s dataset. Then, the function selects
the closest match. By default, it uses the name field and Geofabrik provider, but a user
can select a different column via the argument match_by. We refer to the help page of the
chosen provider for a detailed description of all available fields. A useful and interesting
alternative field is represented by the (unique and unambiguous) iso3166-1 alpha2 codes:
oe_match(place = "US", match_by = "iso3166_1_alpha2")

#> $url

#> [1] "https://download.geofabrik.de/north-america/us-latest.osm.pbf"

#> $file_size
#> [1] 6982945396

The parameter max_string_dist (which defaults to 1) represents the maximum tolerable
distance between the input place and the closest match in match_by column before the
function prints a warning message or stops with an error. This value can always be increased
to help the matching operations, but that can lead to false matches:

oe_match("London", max_string_dist = 3)
#> The input place was matched with: Jordan
#> $url

#> [1] "https://download.geofabrik.de/asia/jordan-latest.osm.pbf"
#> $file_size
#> [1] 27400228

If the approximate string distance between the closest match and the input place is greater
than max_string_dist, then oe_match() will also check the other supported providers. For
example:

oe_match("leeds")

#> No exact match found for place = leeds and provider = geofabrik.
#> Best match is Laos.

#> Checking the other providers.

#> An exact string match was found using provider = bbbike.

#> $url

#> [1] "https://download.bbbike.org/osm/bbbike/Leeds/Leeds.osm.pbf"
#> $file_size

#> [1] 19376705

Finally, if there is no tolerable match with any of the supported providers and match_by
argument is equal to "name", then oe_match() will use the Nominatim API to geolocate the
input place and perform a spatial matching operation, introduced below.

oe_match("Milan")

#> No exact match found for place = Milan and provider = geofabrik.

#> Best match is Iran.

#> Checking the other providers.

#> No exact match found in any 0SM provider data. Searching for the location online.
#> $url

#> [1] "https://download.geofabrik.de/europe/italy/nord-ovest-latest.osm.pbf"
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#> $file_size
#> [1] 416306623

oe_match() returns a warning message if there are multiple zones equidistant (according to
approximate string distance) from the input place. In that case, it selects the first match:
oe_match("Belin")

Warning: The input place was matched with multiple

geographical zones: Benin - Berlin.

#> Selecting the first match.
#> The input place was matched with: Benin

Matching zones with geographic inputs

The input place can also be specified using an sfc_POINT object® with arbitrary Coordinate
Reference System (CRS), as documented in the following example. The function will return
a named list of length two with the URL and the size of a .pbf file representing a zone
that geographically intersects the sfc_POINT (or an error, if the input point does not cross
any area). If the input place intersects multiple geographically nested zones, the function
returns the area with the highest 1level. The meaning of the level fields depends on the
chosen provider, so we refer to the help pages for more details. We could roughly say that
the higher is the level, the lower is the geographical area’s administrative unit. If there
are multiple matches within the same level, then oe_match() will return the area whose
centroid is closest to the input place.

milan_duomo = st_sfc(st_point(c(1514924, 5034552)), crs = 3003)
oe_match(milan_duomo)

#> The input place was matched with multiple geographical areas.

#> Selecting the areas with the highest "level".

#> $url

#> [1] "https://download.geofabrik.de/europe/italy/nord-ovest-latest.osm.pbf"
#> $file_size

#> [1] 416306623

The input place can also be specified using a numeric vector of coordinates. In that case,
the CRS is supposed to be EPSG:4326. For example:

oe_match(c(9.1916, 45.4650)) #> Duomo di Milano using EPSG: 4326

The output is the same as before.

Most of the following examples are based on a small and simple OSM extract that can be
retrieved as follows:

its_details = oe_match("ITS Leeds", provider = "test")

3The sfc_POINT objects are defined in the R package sf.
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C.3.2 oe_download: Download OSM extracts

The oe_download() function is used to download .pbf files representing OSM extracts. It
takes in input a URL, through the parameter file_url, and it downloads the requested
data in a directory (specified by the parameter download_directory):

oe_download(
file_url = its_details$url,

file_size = its_details$file_size,
provider = "test",
download_directory = tempdir ()

)

The argument provider can be omitted if the input file_url is associated with one of the
supported providers.

The default value for download_directory is tempdir(), which is a function that returns a
path to a temporary directory, erased every time R is restarted). A user can set a persisting
directory as the default value by adding the character string O0SMEXT_DOWNLOAD_DIRECTORY
= /path/for/osm/data to the .Renviron file, e.g. with:

edit_r_environ ()
#> Add a line containing: OSMEXT_DOWNLOAD_DIRECTORY=/path/to/save/files

The function edit_r_environ() is defined in the R package usethis (Wickham et al., ).
The default download_directory can always be checked using oe_download_directory().
We strongly advise all users to set a persistent directory since downloading and converting
(see Section C.3.3) .pbf files are expensive operations, that are skipped by all oe_*()
functions if they detect that the input file was already downloaded and/or converted. More
precisely, oe_download() runs several checks before actually downloading a new file, to
avoid overloading the OSM providers. The first step is the definition of the path associated
with the input file_url. The path is created by pasting together the download_directory,
the name of the chosen provider (specified by provider argument or inferred from the input
file_url), and the base-name of the URL. For example, if file_url points to the OSM
extract of Italy, i.e. https://download.geofabrik.de/europe/italy-latest.osm.pbf
and download_directory is equal to /tmp/, then the path of the new file is built as follows:
/tmp/geofabrik_italy-latest.osm.pbf. In the second step, the function checks if the
new path already exists and, in that case, it returns it (without downloading anything®).
Finally, it downloads a new file, and it returns its path.

C.3.3 oe_vectortranslate: Convert to .gpkg format

The oe_vectortranslate() function translates a .pbf file into .gpkg format. GeoPackage
(.gpkg) is an open, stardards-based, platform-independent, portable, self-descripting, com-
pact format for transferring geospatial information (Open Geospatial Consortium (OGC),

4The parameter force_download can override this behaviour.
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2020). It takes in input a string representing the path to an existing . pbf file and it returns
the path to the newly generated .gpkg file. The .gpkg file is created in the same directory
as the input .pbf file and with the same name. The conversion is performed using ogr2ogr
(GDAL/OGR contributors, 2020) through vectortranslate utility in gdal_utils(). We
decided to adopt this approach following the suggestions of the maintainers of GDAL. More-
over, GeoPackage files have database capabilities like random access and querying that are
extremely important for OSM data (see Section C.3.5).

The simplest example works as follows:

its_pbf = oe_download(its_details$url, provider = "test")
its_gpkg = oe_vectortranslate (its_pbf)

The vectortranslate operation can be customised in several ways modifying the parameters
layer, extra_tags, osmconf_ini, and vectortranslate_options.

layer argument

The .pbf files processed by GDAL are usually categorized into 5 layers, named points,
lines, multilinestrings, multipolygons and other_relations following the structure
used by the OSM database (see Section C.1). The oe_vectortranslate() function can
covert only one layer at a time, specified through the parameter layer. The default value
is "lines", since that’s the most used layer according to our experience. Several layers with
different names can be stored in the same .gpkg file.

The .pbf files always contain all five layers:

st_layers (its_pbf, do_count = TRUE)

#> Driver: 0SM
#> Available layers:

#> layer_name geometry_type features fields
#> 1 points Point 186 10
#> 2 lines Line String 189 9
#> 3 multilinestrings Multi Line String 10 4
#> 4 multipolygons Multi Polygon 104 25
#> 5 other_relations Geometry Collection 3 4

while, by default, oe_vectortranslate() convert only the lines layer:

st_layers (its_gpkg, do_count = TRUE)

#> Driver: GPKG

#> Available layers:

#> layer_name geometry_type features fields
#> 1 lines Line String 189 9

Another layer can be added as follows:

its_gpkg = oe_vectortranslate(its_pbf, layer = "points")
st_layers (its_gpkg, do_count = TRUE)

#> Driver: GPKG

#> Available layers:
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#> layer_name geometry_type features fields
#> 1 points Point 186 10
#> 2 lines Line String 189 9

These considerations are important since oe_read() (see Section C.3.4) can only read one
layer at a time.

osmconf_ini and extra_tags argument

The arguments osmconf_ini and extra_tags are used to modify how GDAL reads and
processes a .pbf file. More precisely, several operations that GDAL performs on a .pbf file
are governed by a CONFIG file, that can be checked at the following link: https://github.
com/0SGeo/gdal/blob/master/gdal/data/osmconf.ini. The osmextract package stores
a local copy which is used as the standard CONFIG file.

As we said in the Introduction, the basic components of OSM data are called elements, and
are divided into nodes, ways and relations. Thus, for example, the code at line 7 of that
CONFIG file is used to determine which ways are assumed to be POLYGONS (following the
definition in Simple Feature standards ((OGC) Open Geospatial Consortium Inc, ) if
they are closed.

The parameter osmconf_ini can be used to specify the path to a different CONFIG file, in
case a user needs more control over GDAL operations. See Section C.3.5 for an example. If
osmconf_ini is equal to NULL (the default), then oe_vectortranslate() uses the standard
CONFIG file.

Another example can be built as follows. OSM data are usually described using several tags,
i.e. pairs of keys and values. The code at lines 33, 53, 85, 103, and 121 of the default CONFIG
file is used to determine, for each layer, which tags should be explicitly reported as columns
(while all other tags are stored in the other_tags field). The parameter extra_tags,
which defaults to NULL, manipulates which (extra) tags should be explicitly reported in
the .gpkg file. A complete list of OSM tags and Map features is reported in the OSM
wiki: https://wiki.openstreetmap.org/wiki/Map_Features. It should be noted that
the argument extra_tags is ignored if osmconf_ini is not NULL (since we can not know
how a non-standard CONFIG file was generated).

The oe_get_keys () function can be used to check all keys that are stored in the other_tags
field for a given .gpkg file. For example,

oe_get_keys (its_gpkg, layer = "lines")
#> [1] "bicycle" "foot" "maxspeed" "access" "lanes" "oneway" "lit"
#> [2] ... more keys

Then, the .gpkg file can be recreated adding new tags:

its_gpkg = oe_vectortranslate (its_pbf, extra_tags = c("bicycle", "foot"))

We present more complex (and realistic) examples in Section C.3.5.
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vectortranslate_options argument

The parameter vectortranslate_options is used to control the arguments that are passed
to ogr2ogr via gdal_utils() when converting between .pbf and .gpkg formats. ogr2ogr
can perform various operations during the translation process, such as spatial filters or SQL
queries. These operations are determined by the argument vectortranslate_options. If
NULL (default value), then vectortranslate_options is set equal to:

c(
"-f", "GPKG",
"-overwrite",
"-o0o", pasteO("CONFIG_FILE=", osmconf_ini),
"-1lco", "GEOMETRY_NAME=geometry",
layer

)

The options "-f" and "GPkG" says that the output format is GPKG. This is mandatory
when the version of GDAL is smaller than 2.3. "-overwrite" is used to delete an existing
layer and recreate it empty. The string "-oo", paste0("CONFIG_FILE=", osmconf_ini) modi-
fies the open options of the .pbf file and set the path of the CONFIG file. We refer to
the help page of GDAL OSM driver for more details on its open options. The options
"_lco", "GEOMETRY_NAME=geometry" say that the name of the geometry column in the .GPKG
file should be geometry (default value is geom). The string -1co is an acronym for Layer
Creation Options, and we refer to the help page of GDAL GPKG driver for more details.
Finally, the layer argument specifies which layer should be converted. The arguments that
are passed to vectortranslate_options can also be used to perform queries during the
vectortranslate process, as shown in Section C.3.5.

Other notes

By default, vectortranslate operations are skipped if oe_vectortranslate() detects a file
having the same path as the input file, . gpkg extension and a layer with the same name as
the parameter layer with all extra_tags. In that case, the function will return the path
of the .gpkg file’. If osmconf_ini or vectortranslate_options parameters are not NULL,
the vectortranslate operations are never skipped.

C.3.4 oe_read: Read-in OSM data

The oe_read () function is a wrapper around oe_download(), oe_vectortranslate(), and
sf::st_read(). It is used for reading-in a .pbf or .gpkg file that is specified using its path
or URL. For example, the following code can be used for reading-in the its-gpkg file:

oe_read (its_gpkg)
#> Reading layer ‘lines’ from data source "..." using driver ¢GPKG’

5This behaviour can be overwritten setting force_vectortranslate = TRUE.
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#> Simple feature collection with 189 features and 11 fields

#> geometry type: LINESTRING

#> dimension: XY

#> bbox: xmin: -1.5624 ymin: 53.8047 xmax: -1.5481 ymax: 53.8110
#> geographic CRS: WGS 84

If the input file_path points to a (typically small) .pbf file, the vectortranslate operations
can be skipped using the parameter skip_vectortranslate. The input object can also be
specified using a URL:

my_url = pasteO(

"https://github.com/ITSLeeds/osmextract/",
"raw/master/inst/its-example.osm.pbf"

)

oe_read (my_url, provider = "test", skip_vectortranslate = TRUE)

#> Reading layer ‘lines’ from data source "..." using driver ‘O0SM’

#> Simple feature collection with 189 features and 9 fields

#> geometry type: LINESTRING

#> dimension: XY

#> bbox: xmin: -1.5624 ymin: 53.8047 =xmax: -1.5481 ymax: 53.8110
#> geographic CRS: WGS 84

The provider argument must always be specified in case of non-supported providers.

C.3.5 oe_get: Do it all in one step

To simplify the steps outlined above, while enabling modularity if needs be, we packaged
them all into a single function that works as follows:

its_lines = oe_get("ITS Leeds")

The output is depicted in Figure C.2. oe_get() is a wrapper around oe_match() and
oe_read(), and it summarises the algorithm that we use for importing OSM extracts:

1. match the input place with the URL of a .pbf zone through oe_match();

2. if necessary, download the file using oe_download();

3. convert it into .gpkg format using oe_vectortranslate(). As explained in Sec-
tion C.3.3, the conversion could be skipped in some cases;

4. read-in one layer of the .gpkg file using st_read().

The arguments osmconf_ini, vectortranslate_options, query and wkt_filter (the last
two are defined in st_read()) can be used to further optimize the process of getting OSM
extracts into R.

osmconf_ini argument

The following example shows how to create an ad-hoc CONFIG file. First, we load a local
copy of the standard osmconf.ini, taken from https://github.com/0SGeo/gdal/blob/
master/gdal/data/osmconf.ini:
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Figure C.2: A smalll road network associated with the its_lines object. It is located
in proximity of the Institute of Transport Studies, Leeds (UK). The road segments are
coloured according to value of the highway key.

custom_osmconf_ini = readLines(
con = system.file("osmconf.ini", package = "osmextract")

)

Then, we modify the code at lines 18 and 21 asking GDAL to report all nodes and ways,
even without any significant tag:

1]

custom_osmconf_ini [[18]] "report_all_nodes=yes"
custom_osmconf_ini [[21]] = "report_all_ways=yes"

We change also lines 45 and 53, removing the osm_id field and altering the default columns:

1]

"osm_id=no"
"attributes=highway,lanes".

custom_osmconf_ini [[45]]
custom_osmconf_ini [[53]]

A local copy of the new CONFIG file can be used during ogr2ogr conversion:

temp_ini = tempfile(fileext = ".ini")
writeLines (custom_osmconf_ini, temp_ini)
oe_get(”ITS Leeds", provider = "test", osmconf_ini = temp_ini)

#> Simple feature collection with 191 features and 4 fields
#> Further output
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We can see that the output has 2 extra features (since we set "report_all_nodes=yes" and
"report_all_ways=yes") and only 4 columns, i.e. the new default attributes, highway and
lanes, and two other fields, z_order and other_tags, that were created by GDAL.

vectortranslate_options argument

As we said above, the parameter vectortranslate_options is used to modify the options
that are passed to ogr2ogr. This is extremely important because, if we tune it, then we
can analyse small parts of an enormous .pbf files without fully reading it in memory.

The first example shows how to use the argument -t_srs (acronym for Target Spatial
Reference System) to modify the CRS of a .pbf object while performing vectortranslate
operations:

my_vectortranslate = c(
"-f", "GPKG", #> output file format
"-overwrite", #> overwrite an existing layer
"-lco", "GEOMETRY_NAME=geometry", #> layer creation options,
"-t_srs", "EPSG:27700", #> change the CRS
"lines" #> layer
)
oe_get ("ITS Leeds", vectortranslate_options = my_vectortranslate)

#> Extra output
#> bbox: xmin: 428911.1 ymin: 434356.9 xmax: 429858.1 ymax: 435067
#> projected CRS: 0SGB 1936 / British National Grid

The default CRS of all OSM extracts obtained by Geofabrik and several other providers
is EPSG:4326, i.e. latitude and longitude coordinates expressed via WGS84 ellipsoid, while
the code EPSG: 27700 indicates the British National Grid. Hence, the parameter -t_srs can
be used to transform geographical data into projected coordinates, which may be essential
for some statistical software like spatstat (Baddeley, Rubak, and Turner, 2015). The same
operation can also be performed in R with the sf package, but the conversion can be slow
for large spatial objects.

The next example demonstrates how to use -select and -where options to run a query
during the vectortranslate process. The starting point is analogous to the previous example:

my_vectortranslate = c(
"-f", "GPKG",
"-overwrite",
"-1lco", "GEOMETRY_NAME=geometry",
"-select", "osm_id, highway",
"-where", "highway IN (’primary’, ’secondary’, ’tertiary’)",
"lines™"
)

The options "-select" and "-where" specify an SQL-like query. The first option is used to
select one or more columns from one layer of the .pbf file, while the second option filters
only those features where the value associated to the "highway" key is equal to "primary",
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"secondary" or "tertiary". In fact, GDAL and ogr2ogr runs the OGR SQL dialect, and we
refer to its online manual for more details: https://gdal.org/user/ogr_sql_dialect.
html. These arguments are fundamental for users that need to subset a small portion of a
bigger .pbf file. For example, the following code extracts all primary, secondary and tertiary
roads from the .pbf file of Portugal (240MB) stored by Geofabrik. After downloading the
data, it runs in approximately 40 seconds using a laptop with i7-7500U processor and 8GB
of RAM.

my_vectortranslate = c(
"-f", "GPKG",
"-overwrite",
"-lco", "GEOMETRY_NAME=geometry",
"-select", "osm_id, highway",
"-where", "highway IN (’primary’, ’secondary’, ’tertiary’)",
"lines™"
)

system.time ({
portugal = oe_get("Portugal", vectortranslate_options = my_vectortranslate)

b

#> user system elapsed
#> 26.91 12.64 38.78

The equivalent R code read-in several useless features and takes almost six times as much.
The difference is even more pronounced for larger extracts.

system.time ({
portugal = oe_get("Portugal", force_vectortranslate = TRUE)
portugal = portugal %>%
select (osm_id, highway) %>%
filter (highway %in?% c("primary", "secondary", "tertiary"))
b

#> user system elapsed
#> 172 .52 32.61 217.68

The functions select and filter used in the R code above are defined in the package dplyr
(Wickham et al., 2019) and are analogous to the corresponding SQL keys.

The argument vectortranslate_options can also be tuned to perform spatial filter op-
erations during the vectortranslate process. The option -spat, illustrated in the following
example, can be used to filter only those features that intersect a given rectangular bounding
box, specified as c(xmin, ymin, xmax, ymax). For example:

my_vectortranslate = c(

"_f", "GPKG",

"-overwrite",

"-spat", c(-1.559184, 53.807739, -1.557375, 53.808094),

"lines™"

)

its_small = oe_get(
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Figure C.3: Spatial filter based on a rectangular region applied to the data during vector-
translate processes. The red segments intersect the polygon.

place = "ITS Leeds",
vectortranslate_options = my_vectortranslate

)

The output is represented in Figure C.3, where the bounding box was highlighted in black,
the intersecting streets in red and all the other roads in grey.

Finally, the options -clipsrc and -clipdst can be used to perform more complex oper-
ations such as spatial filtering with generic polygons or clipping. The former option crops
the features considering a polygon specified in the original CRS, while the latter manipu-
lates the data after the projection. In both cases, the polygon must be specified using the
Well Known Text format ((OGC) Open Geospatial Consortium Inc, ). The following
example shows how to download from Geofabrik servers the .pbf extract associated with
the West Yorkshire region and apply a spatial filter while performing vectortranslate op-
erations. We select and clip only the road segments that intersect a 5 kilometers circular
buffer centred in Chapeltown, one of the neighbourhoods of Leeds.

chapeltown <- st_sfc(st_point(c(430964.5, 435700.3)), crs = 27700) %>%
st_buffer (5000) #> Create a 5km circular buffer

my_vectortranslate = c(

ll_fll I|GPKG|I
s E
"-overwrite",
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"-select", "highway",

"-where", "highway IN (’motorway’, ’trunk?’,

’primary’, ’secondary’, ’tertiary’, ’unclassified’)",

"-t_srs", "EPSG:27700",

"-clipdst", st_as_text(chapeltown), #> specify the spatial filter
"-nlt", "PROMOTE_TO_MULTI", #> promote the geometry type

"lines"

)

system.time ({
leeds_small = oe_get(
"West Yorkshire",

vectortranslate_options = my_vectortranslate
)
H
#> user system elapsed
#> 8.33 1.01 9.21
The options "-t_srs", "-select" and "-where" have the same interpretation as before. The

option "-clipdst" says that we want to clip the OSM extract after the reprojection to
EPSG:27700. The function st_as_text() converts an sfg polygon into Well Known Text
format, which is mandatory for the spatial filter. Hence, st_as_text(chapeltown) specifies
the polygon used for clipping. The last step may return invalid LINESTRING geometries.
For this reason, the -nlt and PROMOTE_TO_MULTI options are used to override the default
geometry type and promote the LINESTRING(s) into MULTILINESTRING(s). The result is
reported in Figure C.4, where we highlight the bounding circle and the road segments within
using a dark-red colour, while all the other road segments in Leeds are coloured in grey.
The operations take approximately 9 seconds, while the equivalent R code, reported below,
takes more than four times as much. The time difference is more and more relevant for
larger OSM data.

system.time ({
west_yorkshire <- oe_get(

place = "West Yorkshire",
force_vectortranslate = TRUE
) h>%

st_transform (27700)

west_yorkshire_small <- west_yorkshire %>%
filter (highway %in% c(

"motorway", "trunk", "primary", "secondary", "tertiary", "unclassified"
))
chapeltown_roads <- st_crop(west_yorkshire, chapeltown)
b
#> user system elapsed
#> 31.78 3.09 38.22
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Figure C.4: Spatial filter based on a circular polygonal region centred in the Chapeltown
neighbourhood of Leeds.

query and wkt_filter arguments

The last two options that we introduce are query and wkt_filter. They are defined in the
R package sf and represent a useful compromise between the GDAL and the R approaches ex-
plained above, especially when a user needs to apply different queries to the same (typically
small or medium-size) OSM extract. In fact, the two parameters create regular queries and
spatial filters, respectively, that are applied immediately before reading-in the .gpkg file.
The following code, for example, mimics the operations illustrated above, reading-in the
road segments that intersect the circular buffer defined around Chapeltown neighbourhood:

system.time ({
oe_get (

place = "West Yorkshire",

force_vectortranslate = TRUE,

query =
"SELECT =x*
FROM ’lines’
WHERE highway IN
(’motorway’, ’trunk’, ’primary’, ’secondary’,
tertiary’, ’unclassified’)",
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wkt_filter = st_as_text(st_transform(chapeltown, 4326)),
)

1))
#> user system elapsed
#> 15.86 2.87 20.64

This approach has its pros and cons. First of all, we can see that it’s slightly slower than
the GDAL routines, mainly because several unnecessary features are being converted to
the .gpkg format. Hence, it may become unfeasible for larger .pbf files, probably starting
from 500MB. We will test more cases and add more benchmarks in the near future. On
the other side, the syntax is cleaner, the approach is more intuitive and, most importantly,
it does not require a new (time-consuming) ogr2ogr conversion every time a user defines
a new query. For these reasons, this is the suggested approach for querying a medium-size
OSM extract.

C.4 Conclusions and next steps

In this appendix we reviewed the basic components of Open Street Map data, we intro-
duced some of its external providers, such as Geofabrik or bbbike, and we detailed the main
functionalities included in the R package osmextract. The most important routine is prob-
ably oe_get (), which is a wrapper around the other main functions, and it used to match,
download, convert and read-in an OSM extract. It has several arguments that are used to
modify every aspect of the process, such as the matching operations or the vectortranslate
conversion.

We created several examples to showcase the main functionalities, comparing the new rou-
tines with traditional approaches implemented only in R. We found that the proposed
methods, which integrate R and GDAL, outperform the classical ways, querying, filtering and
reading-in a medium-sized . pbf file several times faster. This effect is even more pronounced
for larger files.

At the time of writing, the package is under review by the ROpenSci foundation and
we are working on the suggested changes. More precisely, we are developing a new level
argument that should make the spatial matching operations more intuitive. We have already
implemented a link between oe_match() and Nominatim servers to search for a location
online if there’s no match in the providers’ data. After completing the review process, we
will submit the package to CRAN.

Finally, the next version of the package will also include a more intuitive approach for defin-
ing spatial and regular queries through the vectortranslate_options argument, analogous
to query and wkt_filter parameters.
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