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Aceruloplasminemia is an ultra-rare hereditary disorder caused by defective production
of ceruloplasmin. Its phenotype is characterized by iron-restricted erythropoiesis and
tissue iron overload, diabetes, and progressive retinal and neurological degeneration.
Ceruloplasmin is a ferroxidase that plays a critical role in iron homeostasis through
the oxidation and mobilization of iron from stores and subsequent incorporation
of ferric iron into transferrin (Tf), which becomes available for cellular uptake via
the Tf receptor. In addition, ceruloplasmin has antioxidant properties preventing the
production of deleterious reactive oxygen species via the Fenton reaction. Some recent
findings suggest that aceruloplasminemia phenotypes can be more heterogeneous
than previously believed, varying within a wide range. Within this large heterogeneity,
microcytosis with or without anemia, low serum iron and high serum ferritin, and
diabetes are the early hallmarks of the disease, while neurological manifestations appear
10–20 years later. The usual therapeutic approach is based on iron chelators that
are efficacious in reducing systemic iron overload. However, they have demonstrated
poor efficacy in counteracting the progression of neurologic manifestations, and also
often aggravate anemia, thereby requiring drug discontinuation. Open questions remain
regarding the mechanisms leading to neurological manifestation and development of
diabetes, and iron chelation therapy (ICT) efficacy. Recent studies in animal models
of aceruloplasminemia support the possibility of new therapeutic approaches by
parenteral ceruloplasmin administration. In this review we describe the state of the art
of aceruloplasminemia with particular attention on the pathogenic mechanisms of the
disease and therapeutic approaches, both current and perspective.

Keywords: aceruloplasminemia, neurodegeneration, iron overload, ferroxidase, diabetes, ceruloplasmin, iron
chelation, plasma

INTRODUCTION

Aceruloplasminemia (ACP) was firstly described in 1987 as an autosomal recessive disease caused
by an inactivating mutation of the ceruloplasmin gene (CP) (Miyajima et al., 1987). The rarity of
the disease (estimate prevalence about 1:2,000,000) is a major limit for a comprehensive definition
of phenotype, genotype-phenotype associations, therapeutic efficiency, and development of disease
markers and drugs. Indeed, the typical manifestations make ACP a unique iron overload disease
being: (i) The only one among the Neurodegeneration with Brain Iron Overload disorders, to whom
ACP belongs, manifesting systemic iron overload; (ii) The unique systemic iron overload disease
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characterized by neuropathy as major cause of morbidity and
microcytic anemia with low serum iron and transferrin (Tf)
saturation as a common manifestation. This phenotype is related
to the function of ceruloplasmin (Cp) in iron homeostasis at
both systemic and brain levels. The lack of Cp induces cellular
iron retention and progressive overload on the one hand, and
low cellular iron release leading to iron-restricted erythropoiesis
and iron deficiency anemia, on the other hand. However, the
physiopathology of organ damage, as well as the pathways
and efficiency of chelators in brain iron removal, are highly
controversial issues which remain to be fully elucidated.

CLINICAL HETEROGENEITY OF
ACERULOPLASMINEMIA

Recent studies showed that ACP phenotypes are more
heterogeneous than previously believed and that some
manifestations may precede neurological manifestation even
by decades (Pelucchi et al., 2018). Thus, this could allow early
diagnosis, hopefully preventing the development of neurological
derangements, which are the most severe complication of this
disease. Neurological symptoms usually appear in the fifth
decade of life and vary within a wide spectrum that includes
cerebellar ataxia, involuntary movements, parkinsonism, mood
and behavior disturbances, and cognitive impairment (McNeill
et al., 2008; Kono, 2012). As magnetic resonance imaging
(MRI) is increasingly used in neurological diagnostics, brain
iron accumulation can be found in a few patients with neuro-
psychiatric symptoms addressing diagnosis to ACP. However,
ACP patients without brain iron overload or patients with
brain iron overload without or with only very mild neurological
manifestations even after 50 years of age have been reported
(Skidmore et al., 2008; Kassubek et al., 2017; Pelucchi et al., 2018),
suggesting that genetic and/or acquired factors may partially
modify neurologic phenotype.

Retinal manifestations are reported in over 75% of Japanese
patients (Miyajima, 1993; Kono, 2012), but these were less
frequent in Italian patients (Pelucchi et al., 2018). However,
accurate descriptions of retinopathy are available in only two
patients (He et al., 2007) ranging from retinal discoloration to
macular degeneration, indicating that further studies are needed
to better characterize ACP-dependent retinopathy.

Diabetes mellitus is considered an early manifestation of
ACP, being reported as the first symptom in 68.5% of
patients at a median age of 38.5 years in a recent overview.
Diabetes was insulin dependent in 60% of patients, undefined
in 30%, and less than 10% orally and/or dietary treated
(Vroegindeweij et al., 2015). Little information is available on
family susceptibility, concomitant overweight, and beta-cells
function, which would be useful in understanding diabetes
pathogenesis in ACP.

Often not included in the classical triad of ACP (diabetes,
retinopathy, and neuropathy), anemia and/or microcytosis
are common manifestations being reported in 80% of ACP
patients in Japan (Miyajima, 1993) and recorded as the earliest
manifestations of disease in 86% of Italian patients, preceding

diagnosis even by decades (Pelucchi et al., 2018). However, in
a retrospective review of reported cases, anemia was recorded
as the first symptom only in 24% of patients (Vroegindeweij
et al., 2015). The high frequency of mild anemia and/or
microcytosis in the general population, which are likely to
be related to iron deficiency or thalassemia traits, can lead
to the underestimation of these signs as early ACP-related
manifestations. Thus, despite ACP rarity, Cp measurement
should be included in the diagnostic work-up of anemia.
The presence of low serum iron and Tf saturation with
normal/high serum ferritin may serve to further enhance disease
suspicion.

PHYSIOPATHOLOGY OF
ACERULOPLASMINEMIA

Ceruloplasmin is part of the multicopper ferroxidase family,
a group of tissue specific proteins (Cp, hephaestin, and
zyklopen) that facilitate cellular iron efflux in conjunction
with the membrane ferrous iron exporter ferroportin (Fpn),
by oxidizing ferrous iron to the ferric state (Vashchenko
and MacGillivray, 2013). Cp is recognized as a serum
protein secreted by the liver, but it has also been found as
glycosylphosphatidylinositol (GPI)-linked protein in astrocytes
and leptomeningeal cells in the central nervous system (CNS),
but also in macrophages, hepatocytes and many other tissues
(Musci et al., 2014). Cp-KO mice revealed an impairment in
hepatocyte and reticuloendothelial iron efflux (Harris et al.,
1999), and showed that Cp-GPI is relevant for brain iron
metabolism in regulating iron efflux from astrocytes (Jeong
and David, 2003). A molecular connection between Cp and
Fpn has been established with the finding that ferroxidase
activity is required to stabilize Fpn at the cell surface in
cells expressing Cp-GPI (De Domenico et al., 2007). Thus,
Cp can be considered as a second determinant of Fpn
stability after hepcidin. These findings suggest that differently
from most disorders of iron overload that reflect changes
in the absolute amount of iron, ACP results, at least in
early stages, from iron imbalance caused by impairment in
the rate of iron efflux from storage sites. Serum hepcidin
is decreased in ACP patients, possibly related to the low
Tf saturation, suggesting that suppressed hepcidin synthesis
might contribute to the development of iron overload (Kaneko
et al., 2010). While it is clear that microcytosis, anemia
and low serum iron depend on reduced iron availability due
to cellular iron sequestration, the development of diabetes
and neurodegeneration in ACP are not evidently explained
at cellular and molecular levels. It has been suggested that
both diabetes and neurodegeneration are secondary to iron
accumulation and toxicity (Kono, 2012), however, no clear
evidence of intracellular iron deposition in the endocrine
pancreas and in neurons has been reported in neither ACP
patients nor mice models of ACP (Kato et al., 1997; Jeong
and David, 2006; Chen et al., 2018). These findings suggest
that neurons and islet beta-cells distress might be related to an
elevated sensitivity/vulnerability to iron toxicity or to the iron
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FIGURE 1 | Schematic representation of the effect that aceruloplasminemia can promote on iron balance either fostering iron overload or iron deficiency, inducing
neurons and islet beta-cells distress due to elevated sensitivity/vulnerability to iron toxicity or to iron deficient status consequent to metal retention in the surrounding
cells.

deficient status induced by iron retention in the surrounding cells
(Figure 1).

Physiopathology of Brain Iron Overload
and Damage
Iron enters the CNS via the brain barrier systems, namely the
blood brain barrier (BBB) and the blood-cerebrospinal fluid
barrier (BCSFB), which separate the blood from the interstitial-
and cerebrospinal-fluid (CSF), respectively. The mechanism
of iron uptake/export in cells depends on the iron transport
molecules they express. Transferrin-bound-iron, internalized
by transferrin receptor 1 (TfR1) in brain capillary endothelial
cells (BCECs), can cross the BBB by: (1) transcytosis and
direct release as ferric iron in the brain parenchyma, or (2)
iron release from endosomes to cytosol via divalent metal ion
transporter 1 (DMT1), and exported via Fpn assisted by the
GPI-Cp expressed on perivascular astrocytes (McCarthy and
Kosman, 2015; Simpson et al., 2015). The absence of iron
accumulation in BCECs in both ACP patients and murine
models indicate transcytosis and direct iron release as the more
plausible mechanism in ACP (Miyajima, 1993; Zanardi et al.,
2018). The BCSFB comprises choroid plexus epithelial cells
(CPEpiCs) that are in contact with the CSF on one side, and
with fenestrated endothelial cells on the other. In CPEpiCs iron
is internalized via TfR1 and then exported to the CSF by the
action of Fpn and Cp, which are both expressed by CPEpiCs
(Rouault et al., 2009; Zheng and Monnot, 2012). Large iron
deposition in CPEpiCs precedes accumulation in other brain
regions in Cp-KO mice (Zanardi et al., 2018) suggesting an early

deficit in iron handling by these cells in ACP. However, the
pathophysiology of choroid plexus damage in ACP patients is
largely undefined.

Neurons acquire iron prevalently from Tf and TfR1 while
oligodendrocytes and astrocytes do not express TfR1, which
suggests they import iron using other mechanisms (Zhang
et al., 2006; Belaidi and Bush, 2016). Astrocytes may acquire
iron released by BCECs being in close contact with them via
endfeets that highly express DMT1 (McCarthy and Kosman,
2015). However, DMT1 uptake requires ferric iron to be reduced,
but the mechanism of iron reduction by astrocytes is still unclear.
Oligodendrocytes and astrocytes are rich in ferritin, suggesting
that they function as iron storage site for the whole brain
(Finazzi and Arosio, 2014). Regardless of import mechanisms,
iron efflux from all brain cells involve Fpn, and depends
on the extracellular ferroxidase activity fostered primarily by
both the membrane Cp-GPI and the soluble Cp circulating in
the interstitial fluid and CSF (Patel and David, 1997; Olivieri
et al., 2011). Therefore, in ACP, the absence of Cp-ferroxidase
activity promotes Fpn internalization and degradation favoring
intracellular iron accumulation (Kono et al., 2010; Persichini
et al., 2012).

Brain iron accumulation, particularly in the basal ganglia
and cerebellum, is reported by MRI in a large number of ACP
patients (Grisoli et al., 2005; Kono, 2012). Nevertheless, the
few autopsy studies performed indicated that iron deposition
was more evident in glial and astrocytes than in neurons,
in particular in the perivascular regions of brain areas where
neuronal loss is prevalent (Kawanami et al., 1996; Kaneko et al.,
2002, 2012; Oide et al., 2006). Thus, it has been hypothesized that
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apoptosis/ferroptosis of iron-engulfed astrocytes/glial cells might
release large amounts of toxic ferrous iron promoting oxidative
neuronal damage, as inferred by large lipids peroxidation
observed in the brain of ACP patients (Miyajima et al., 1998,
2001a; Kohno et al., 2000; Yoshida et al., 2000). Neuronal damage
could be aggravated by the loss of glial-derived growth factors
necessary for neuronal survival (Jeong and David, 2006). It is also
conceivable that neuronal injury might depend on iron deficiency
as the consequence of impaired mobilization of the accumulated
iron in glial cells (Jeong and David, 2006; Kono, 2013).

Physiopathology of Systemic Iron
Overload and Damage
In the liver of ACP patients, iron accumulation prevails in
hepatocytes, a surprising finding considering the role of Cp
in regulating cellular iron efflux via Fpn. (Morita et al.,
1995; Kawanami et al., 1996; Hellman et al., 2000; Bosio
et al., 2002; Loreal et al., 2002; Finkenstedt et al., 2010;
Rusticeanu et al., 2014). Indeed, liver iron distribution differs
in patients with classical Fpn disease and ACP, being prevalent
in reticuloendothelial cells in the former and in hepatocytes
in the latter, indicating the need to expand our knowledge on
the relative function of Fpn and Cp and their interactions in
different tissues. Despite hepatocellular iron overload, cirrhosis
is uncommon in ACP, however, some patients developed
moderate/severe fibrosis in the presence of heavy hepatic iron
overload (Pelucchi et al., 2018). This suggests that in ACP patients
the risk of liver fibrosis depends on the iron burden, a similar
scenario to hereditary hemochromatosis (HH) (Wood et al.,
2008), and that liver iron overload in ACP patients generally
does not reach the threshold associated with liver damage
risk.

Clinically, diabetes may precede neurological derangements
even by decades, but the mechanism of endocrine pancreatic
damage in ACP is unclear. Iron accumulation in the exocrine
pancreas has been commonly reported in mouse models
characterized by systemic iron loading (hypotransferrinemic
mice, bone morphogenetic protein 6, hemojuvelin-, and
hepcidin-deficient strains) (Chen et al., 2018). About 20% of
HH patients show diabetes, all of them being heavy iron
overloaded and the majority having liver fibrosis/cirrhosis
(McClain et al., 2006). In HH-patients iron deposition is present
in the exocrine pancreas and, varied from case to case, in
beta-cells together with loss of endocrine granules (Rahier
et al., 1987). In mouse models of HFE-HH, iron accumulates
specifically in the endocrine pancreas resulting in increased
beta-cell death (Cooksey et al., 2004). The total pancreatic-
and per islet-insulin content were low in Hfe-KO mice (Huang
et al., 2011), suggesting an iron-related beta-cell oxidative stress
and decreased insulin secretory capacity secondary to beta-
cell apoptosis and desensitization of glucose-induced insulin
secretion (Backe et al., 2016). However, in other mouse models
of hemochromatosis, the endocrine pancreas was unaffected.
Hepcidin-KO mice developed chronic pancreatitis owing to
exocrine iron overload (Lunova et al., 2017), and, similarly,
a murine model of Fpn mutant resistant to hepcidin binding

showed exocrine pancreatic failure and iron overload (Altamura
et al., 2014). Iron deposition and functional deficit restricted
to the exocrine pancreas has also been reported in the double
Cp/Hephaestin-KO mice model that did not display structural or
functional (insulin secretion) deficiency of pancreatic islets (Chen
et al., 2018).

Few studies describe pancreatic alteration in ACP patients
mainly reporting generic iron accumulation without histological
description of the cells and structures involved (exocrine vs.
endocrine) (Daimon et al., 1995; Kawanami et al., 1996). Three
reports described the absence or mild iron accumulation in the
islets compared to the exocrine pancreas (Morita et al., 1995; Kato
et al., 1997; Miyajima et al., 2001b). In a single ACP patient, an
autopsy study showed marked reduction of insulin-containing
cells without iron accumulation and degeneration/loss of islet
cells, despite massive iron deposition in the exocrine pancreas
(Kato et al., 1997). The patient’s long type-2 diabetes history
may suggest beta-cell exhaustion as a possible explanation for
such findings. Nevertheless, the pathogenesis of diabetes in
ACP and the role of iron remain elusive, also considering that

TABLE 1 | Therapeutic approaches for aceruloplasminemia.

Iron chelation

Deferoxamine Deferasirox Deferoxamine-Deferiprone

Miyajima et al., 1997 Skidmore et al., 2008 Fasano et al., 2008

Yonekawa et al., 1999 Bethlehem et al., 2010 Mariani et al., 2004

Loreal et al., 2002 Roberti Mdo et al., 2011 Badat et al., 2015

Haemers et al., 2004 Suzuki et al., 2013 Bove and Fasano, 2015

Finkenstedt et al., 2010 Tai et al., 2014 Poli et al., 2017

Hida et al., 2010 Rusticeanu et al., 2014 Pelucchi et al., 2018

Pan et al., 2011 Lindner et al., 2015

Doyle et al., 2015

Deferiprone Deferiprone-Deferasirox Deferoxamine-Deferasirox

Pelucchi et al., 2018 Pelucchi et al., 2016 Calder et al., 2017

Pelucchi et al., 2018

Zinc administration

Kuhn et al., 2007

Minocycline administration

Hayashida et al., 2016

Iron chelation + Vitamin E and C

Kuhn et al., 2007

Pelucchi et al., 2016

Pelucchi et al., 2018

Iron chelation + Fresh Frozen Plasma

Logan et al., 1994

Yonekawa et al., 1999

Poli et al., 2017

Iron chelation + Fresh Frozen Plasma with high Cp level

“under development”

Enzyme Replacement Therapy

Harris et al., 1999*

Zanardi et al., 2018*

Gene Therapy

“desirable”

∗Preclinical model.
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diabetes can occur early when systemic iron overload is still
minor (Hatanaka et al., 2003; Muroi et al., 2006; Pelucchi et al.,
2018).

TREATMENT OF
ACERULOPLASMINEMIA

Current treatment in ACP (Table 1) is primarily focused
on reducing iron overload using iron chelators (deferasirox,
deferoxamine, and deferiprone). In the majority of patients,
iron chelation therapy (ICT) was effective in reducing systemic
iron overload, but there is no information on whether it can
improve glucose metabolism derangement and retinopathy. ICT
was less or not effective on neurological symptoms [reviewed
in (Kono, 2013; Dusek et al., 2016)]. Thus, there is the need
to find treatments efficient in rescuing/preventing neurological
manifestations, taking advantage of the window between
the appearance of the first manifestations and neurological
symptoms (Vroegindeweij et al., 2015; Pelucchi et al., 2018).
The variable efficacy of ICT on neurological symptoms may
depend on the ability of different chelators to cross the BBB, the
timeliness of the treatment, the large heterogeneity of therapeutic
protocols, and the unclear kinetics of iron chelators in the brain
in vivo [reviewed in (Dusek et al., 2016)]. In the large majority,
therapeutic efficacy was evaluated in a short time, and the few
data available in long-term follow-up studies showed progression
of neurological derangements (Pelucchi et al., 2018). ICT seems
more promising if started before the onset of neurological
symptoms, although the majority of the cases that remained
asymptomatic have not yet reached the risk age [reviewed in
(Dusek et al., 2016)]. Also, ICT must be often discontinued
because of the aggravation of functional iron deficiency anemia,
limiting the long-term therapy required to mobilize iron from the
brain (Loreal et al., 2002; Mariani et al., 2004; Fasano et al., 2008;
Finkenstedt et al., 2010). Due to the antioxidant properties of zinc
sulfate and minocycline, the inhibitory effect on iron absorption
of zinc sulfate, and chelating properties of minocycline iron, these
have been proposed as alternatives to ICT when the latter must be
discontinued, but the results, although promising, are limited to
only two patients (Kuhn et al., 2007; Hayashida et al., 2016). To
prevent tissue damage, antioxidants like vitamin E and C have
been used along with ICT (Kuhn et al., 2007; Pelucchi et al.,
2018).

In some cases, ICT was combined with fresh-frozen
plasma (FFP) administration. Due to the half-life of Cp
(5.5 days) (Hellman and Gitlin, 2002), FFP administration could
partially/temporarily restore circulating Cp. In two cases, the
combined therapy improved neurological symptoms, visibly
reducing brain iron deposition (Yonekawa et al., 1999; Poli
et al., 2017). This implies that circulating Cp can enter the
CNS and be functionally effective. Since physiological serum
Cp concentration ranges between 21 and 54 mg/dL (Gibbs
and Walshe, 1979; Gaasch et al., 2007), the selection of high-
Cp-content FFP transfusions might be more effective, thereby
advancing this therapeutic approach. A post-transfusion Cp
level of 8–10 mg/dL, comparable to that of ACP heterozygotes,

could be enough to rescue iron homeostasis as inferred by the
absence of clinical symptoms in the vast majority of heterozygous
subjects (Miyajima, 1993; Kono, 2013). Nevertheless, the risks
associated with long-term repeated transfusion could limit this
approach.

A neuroprotective effect of ceruloplasmin administration
was reported in various pathological models (Ayton et al.,
2013, 2014; Tuo et al., 2017; Zanardi et al., 2018). Indeed,
it has been demonstrated that intraperitoneally administered
Cp was able to enter the Cp-KO brain crossing the barrier
systems (Ayton et al., 2013; Zanardi et al., 2018). The
potential of the Cp-enzyme replacement therapy (ERT) in
reducing neurological manifestation was recently demonstrated
in the preclinical model of ACP (Zanardi et al., 2018). The
ferroxidase activity was restored in Cp-KO brain, inducing
reduction in iron deposition, rescue of neuronal loss, and
amelioration of motor incoordination (Zanardi et al., 2018).
The mechanism by which administered Cp crosses the brain
barrier systems in Cp-KO, but not in wild-type mice, is not
known. However, the iron accumulation found in the choroid
plexus of Cp-KO mice suggested that Cp enters the brain likely
through BCSFB impairment (Zanardi et al., 2018). A similar
impairment would also explain the effectiveness of the FFP
therapy in ACP patients. Cp administration also mobilizes
iron and temporarily restores iron homeostasis in Cp-KO
mice (Harris et al., 1999; Zanardi et al., 2018). Thus, ERT
seems to be efficacious on both systemic and neurological
symptoms, and may be a potential therapeutic opportunity in
humans.

As for many monogenic rare diseases, the ideal ultimate cure
consists in gene therapy approaches to correct the defect, but
further studies and several years will be necessary before its
clinical application.

CONCLUSION

In conclusion, current therapies in ACP are effective in reducing
systemic iron overload but have little or no effect on neurological
symptoms. Their capability in improving pancreatic and retinal
damage is unclear, and might have deleterious side effects that
limit long-term therapy. FFP administration can be a suitable
source of functional Cp, and although cost-benefit effects need to
be further evaluated, can represent a step toward the development
of more efficient therapies in ACP.
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