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Possible role of pandemic AH1N1 swine flu virus in a
childhood leukemia cluster
Leukemia (2017) 31, 1819–1821; doi:10.1038/leu.2017.127

The causation of acute lymphoblastic leukemia (ALL), the main
subtype of childhood cancer, is still unresolved and the difficulty
in uncovering a likely multi-factorial etiological pathway is
compounded by biological heterogeneity of what is a relatively
rare disease.1,2

There is persuasive evidence that the major subset of ALL, B-cell
precursor or common ALL, is usually initiated pre-natally, in utero and
that additional secondary genetic changes more proximal to
diagnosis are required to trigger overt disease.2 Any putative
etiologic mechanism has to accommodate this pattern of natural
history. Among many candidate exposures, infection has long been
regarded as a plausible causal agent for childhood ALL,3,4 though no
specific microbial infections or transforming viruses have been
identified.2,3 Childhood ALL does not clearly cluster geographically,3

but this is not surprising if, as postulated, ALL causation involves a
rare response to, or outcome of, a common infection of low or
modest pathogenicity.2–4 There are, however, examples of what
appear to be significant time/space clusters.5,6 Historically, the first of
these (in 1957–1960) was in Niles, a suburb of Chicago,5 the most
recent (1999–2004), and striking, was in Fallon, Nevada.6

We record here a time/space cluster of childhood B-cell precursor
ALL in Milan, Italy. The seven cases involved had different ages (2–11
years), but were diagnosed within a tight time window of only
4 weeks (14 December 2009–14 January 2010); three cases being
associated with a single school and a fourth case being resident in
the same area as the school. This led us to suspect that there might
be an identifiable trigger or promoting agent for ALL in this particular
instance, to which all cases were exposed and which occurred very
proximal to the diagnostic time period.
The main biological features of the patients at disease

presentation are shown in Supplementary Table 1. All were
‘common’ B-cell precursor (CD10 positive) ALL, five female and
two male, with a median age of 7.1 (range 2.1–11.9). Cytogenetic,
molecular genetic and genomic alterations were variable but
common to those generally present in ALL.1

We tested remission DNA of the patients for inherited or
constitutive allelic variation in three genes associated with
increased risk of B-cell precursor ALL: ARID5B, IKZF1 and CEBPE.7

The number of risk alleles present per case varied from one to five
(out of six possible; average three) but does not differ from that
expected (Supplementary Table 1).
Figure 1 shows the monthly distribution of cases diagnosed

with childhood ALL between January 1999 and September 2011 in
Milan; the broad-based peak, determined by two consecutive high
frequencies observed in December 2009 (three cases) and January
2010 (four cases), has no equivalent in the considered period of 13
years (see also Supplementary Tables 2 and 3).
Figure 2 shows the results of the Scan statistic for the space–

time analysis of ALL cases. The Kulldorff’s scan method8 identified
only one significant cluster encompassing six administrative areas
in the center of Milan within the time interval from 1 December
2009 to 31 January 2010 (P-value= 0.017) (see also Supplementary
Table 4). The cluster is composed of four cases, compared with
0.04 expected, corresponding to a rate ratio of 100.0 (95% CI:
26.9–256.0) for the areas and time period identified. The cases are
exactly the four children resident in the surroundings of the
school, three of them attending the school.
Because of long-lasting refurbishment, the primary school was

not in operation until September 2009; in the previous year, the
entire school population was temporarily hosted in the buildings of
another school in the same city area. The concentration of all tested
physical and chemical agents in the school as well as in the houses
of cases did not deviate from normal ranges. Neither parents nor
children had noticeable therapeutic exposures to postulated
toxicants. None of the parents had professional exposures relevant
for leukemia etiology. None of the cases had first-level familial
malignancies. (Methods and details in Supplementary).
There was an outbreak of pandemic AH1N1 swine flu in Milan

between July and September 2009 preceding the ALL diagnosis by
around 3 to 6 months. Serological screening of plasma antibodies
retrieved from blood smears at the time of ALL diagnosis (but
before instigation of treatment) revealed that all seven were
seropositive (titer range: 160–640; see Supplementary Table 5). In
plasma samples taken in the same time period from 192 healthy
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children from Milan, 62 (32.3%) were seropositive suggesting the
100% positivity of the seven cases was significant (Po0.001). Five
cases of ALL diagnosed before the outbreak were, as expected, all
seronegative. Of four solid pediatric tumors (Wilm’s) diagnosed in
Milan following the outbreak, only one was seropositive.
If abnormal immune responses to the widespread pandemic of

AH1N1 served as a proximal trigger for ALL in the seven cases,
then these cases would have to be ‘susceptibles’. The ‘delayed
infection’ hypothesis2 predicts that B-cell precursor ALL may be
triggered by immune response signals but that risk is contingent
upon deficits of common infections in infancy that are required to
prime the neonatal and infant immune system. This is endorsed
by measurement of social contacts in infancy as surrogates for
common infections9–11 and by modeling in mice.12,13

We therefore investigated these characteristics in the seven
families involved in the cluster. These were compared with a small
series of control cases (Supplementary Table 6). Six out of seven
cases were first born compared with nine out of 14 for the
controls. All seven cases had parents of medium to high socio-
economic class compared with only two of the 20 controls. None
of the seven cases attended day care in the first year of life (except
for just 1 week in one case). Two of the seven cases attended day
care in the 2–3 years of life compared with 8 out of 14 controls. Of
note is the related fact that the school with three cases serves an
inner area of Milan of high socio-economic status professional
parents.
A plausible explanation for the time/space cluster in Milan is

that the AH1N1 epidemic provided a strong immunological or
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Figure 1. Monthly distribution of the children diagnosed with ALL between January 1999 and September 2011 in Milan, Italy. Mean incidence
and ± 1 s.d. The arrow indicates the time period in object.
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Figure 2. Representation of most likely spatial ALL clusters identified with Scan statistic in Milan, 1999–2010, considering a monthly time
interval. The only statistically significant spatial cluster is in red, whereas different shades of gray identify non-statistically significant spatial
clusters, with specification of corresponding time interval. The site of residence of leukemia cases is indicated by stars (black stars represent
the three cases attending the same school). The location of the school of cases is represented by a black dot, whereas the open dot indicates
the school where cases were temporarily hosted and where controls were recruited.
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inflammatory signal that triggered conversion to clinical ALL in a
small number of individuals harboring clinically silent pre-
leukemic clones but who also were at risk of abnormal response
to AH1N1 because of a prior deficit of microbial exposures in
infancy that prime or modulate the naive immune system
network.2

However, the causal explanation for the cluster we propose is
based on associations and we cannot formally exclude a role for
chance alone. It is therefore tentative. We encourage other
investigators to scrutinize incidence data, both nationally and at
local levels or within school systems, to see if other increases in
incidence occurred shortly after the 2009 pandemic of AH1N1.
We do not suggest that AH1N1 has a unique etiological role in

childhood ALL or that it poses a public health concern. ALL will, at
most, be an extremely rare consequence of AH1N1 infection as part
of a multi-factorial etiology. We would anticipate that other rare
space/time clusters of childhood ALL may also be due to a
promotional effect of infectious agents but not to AH1N1. Influenza
viruses may, however, merit further study as indirect, promotional
agents for ALL. A prior study noted an association between
epidemics of seasonal influenza in the UK and significant increases
in the incidence of ALL that follow very shortly (~6 months)
thereafter.14 AH1N1, other influenza viruses and, possibly, other viral
or bacterial infections may act as triggers or promoters of ALL.
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