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Abstract

Background: Mathematical and computational modelling of biochemical systems has seen a lot of effort devoted
to the definition and implementation of high-performance mechanistic simulation frameworks. Within these
frameworks it is possible to analyse complex models under a variety of configurations, eventually selecting the best
setting of, e.g., parameters for a target system.

Motivation: This operational pipeline relies on the ability to interpret the predictions of a model, often
represented as simulation time-series. Thus, an efficient data analysis pipeline is crucial to automatise time-series
analyses, bearing in mind that errors in this phase might mislead the modeller’s conclusions.

Results: For this reason we have developed an intuitive framework-independent Python tool to automate analyses
common to a variety of modelling approaches. These include assessment of useful non-trivial statistics for
simulation ensembles, e.g., estimation of master equations. Intuitive and domain-independent batch scripts will
allow the researcher to automatically prepare reports, thus speeding up the usual model-definition, testing and
refinement pipeline.

Background
The study of biological systems witnessed a prominent
cross-fertilisation between experimental investigation and
computational methods, thanks to many different model-
ling approaches developed within different research areas
(e.g, biophysics, computational biology, logics) to describe
natural systems [1]. Nowadays, many such studies can be
ascribed to the area of Systems Biology, an approach char-
acterised by studying complex interactions in natural sys-
tems and their properties as wholes, not as collections of
parts [2,3]. This holistic discipline requires us hence to
consider a system at multiple simultaneous abstraction
levels, e.g., from RNA to proteins up to abundant chemical
signals.
In mathematical sciences various theoretical frame-

works for mechanistic modelling, which can be ascribed
to the broad categories of mean-field equations or sto-
chastic processes, have been introduced to capture the

physics underlying a target system, at some level of
abstraction. These frameworks provide fundamental
ingredients to achieve successful results in Systems Biol-
ogy. These ingredients are, for instance, the ability to
naturally describe multi-scale interactions and compo-
nents by combining different mathematical frameworks
(more often termed hybrid) in a sort of orthogonal
approach [4,5].
In the specific context of natural systems, another key

feature of successful frameworks is the ability to consider
stochasticity. This, meant either as the random fluctua-
tions intrinsic to the model components present in few
copies or as the fluctuations induced by extrinsic sources,
is recognised to have a fundamental role in many living
processes [6,7]. Stochastic phenomena arise, for instance,
in the bursts of protein transcription (molecular level), in
cell-fate decision processes of differentiation (cellular
level) and in evolutionary transitions (population level)
[8-13]. Thus, interest has increased towards modelling
frameworks which support one or more forms of sto-
chasticity, e.g., Markovian Gillespie-like approaches,
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stochastic differential equations or non-Markovian
hybrid automata to name but a few [14-21].
In general, regardless of the way in which stochasticity

is embedded in a framework, many analyses rely on the
evaluation of simulation ensembles, under different
model configurations and parameters. Then, an efficient
data analysis pipeline is set up to produce reports of the
model predictions usually in the form of, e.g., probabil-
ity measures which emerge “naturally” by the intrinsic
random nature of the model itself. Evaluating such
quantities sometimes requires a noteworthy computing
time, a price that we need to pay to assess whether a
model reaches an equilibrium behaviour, or if stochastic
bifurcations, resonances or multi-stable phenomena arise.
All in all, according to the physics of the system under

study (e.g., number of components, the type of interac-
tions, and thermodynamic setting) a suitable modelling
framework can be chosen and, quite likely, a simulation
tool can be found in the literature. Sometimes these are
coded within pre-packaged scientific tools such as Matlab,
R or Mathematica. However, these general-purpose frame-
works offer many functions beyond the scope of plain
simulation, and thus one often codes tools in a lower-level
programming environment to boost performance, a key
issue [22-27].
Historically most of the efforts have been devoted to the

definition of high-performance simulation frameworks,
while less has been done to automate the inherently time-
consuming and definitely error-prone task of data analysis.
Thus, adhoc analysis tools are often implemented to pro-
cess the output of a variety of simulators/experiments and
produce the required statistics. Obviously, when this pipe-
line is either inefficient or incorrectly implemented hours
of computation-intensive calculations can be lost, and a
whole research activity slowed down. Of course, the gen-
eral-purpose tools mentioned above, e.g., Matlab, R or
Mathematica can be used to perform analyses of time-
course simulation results. However, they require extra
learning time to master and, in general, provide many
complex functions actually unused for this purpose.

PYTSA: a Python Time-Series Analyser
We developed a Python Time-Series Analyzer (PYTSA,
pronounced as “pizza”) as a first step to collect into a
lightweight, simulation-framework-independent and
focused library a number of typical routines (and relative
scripts) to analyse synthetic/wet biological time-course
simulation experiments. PYTSA is flexible in the way sev-
eral analyses can be easily combined, with intuitive com-
mands, in a pipeline with any simulation tool outputting
time-series, thus providing a modeller with more options
to produce a report from his work (see Figure 1). The
wide diffusion of Python for scientific computing makes
this library embeddable in other analysis frameworks

and, also, PYTSA’s input/output support for the Systems
Biology Results Markup Language (SBRML, [28]) allows
one to load and process results obtained with most of the
widely available simulation tools.
The current PYTSA version introduces the notion of

dataset as a set of files in some folder, and assumes that
each file represents a independent time-evolution of a
model. To boost loading of huge datasets, a multi-process
implementation is adopted. In each data file, columns
represent the values of a model variable to which a mne-
monic name can be assigned, for clarity (see the Example
below). Notice that, in principle, this input format is
domain-independent, thus non-biological data can be
analysed as well. The library supports standard plotting
routines and output formats, which either manipulate or
not data. In the former case one might just visualise data
as, e.g., single traces or 2D/3D phase-spaces for some
time window or model variable. In the latter case one
could estimate averages, standard deviations, or probabil-
ities of any variable. Note that probability densities of a
variable either at some specific time point, or over a time
interval, provide an estimation of the (solution of the)
master equation for the model.
This equation, central to stochastic models, see e.g.

[14], describes the probability of observing a configura-
tion of the model over time and, in general, its solution
is assessable solely via numerical simulation ensembles.
If, for example, one were to model a gene regulatory
network, questions such as “what is the probability of
having a certain RNA concentration after some time
units of network activity” could be answered by using
this equation - in the Supplementary Material we show
a simple example of its estimation for the case study
described in the main text.
PYTSA plots these statistics with multi-panel visualisa-

tion, barplots, heatmaps, 3D surfaces, normalisation and
gaussian-fit. All in all, despite the statistics implemented
in PYTSA being rather intuitive, we believe that research-
ers would benefit from a tool specifically tailored to auto-
matise, in a easy fashion and with a domain-specific
language, data analysis of stochastic time-traces. Hope-
fully, this should eventually allow the researcher to focus
on research tasks beyond data analyses, thus speeding up
the usual pipeline of model-definition, testing and
refinement.
Finally, efforts towards a more standardised definition of

what a “simulation” result are under way. For instance, the
SBML community has been working on several standards
that aim to connect models, datasets and simulations (cfr.,
SED-ML [29], SBRML and Teddy [30]). PYTSA fits into
these frameworks by already supporting SBRML in its cur-
rent version, and it will be further developed to adhere to
other standards. To conclude, PYTSA was conceived to
analyse systems where the variation of concentration of
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some molecules is reported, without spatial information.
Spatial models which describe, e.g., tissues and organs,
have usually more complex output formats according to
the notion of “space” they implement, e.g. [24,31-35]. If
proved successful, our tool could be extended to support
spatial outputs in the next versions.

Implementation
PYTSA sources are available (see [36]) and the key
implemented functions are summarised in Table 1. The
manual of the version leads the reader to a wizard-like
understanding of PYTSA. The library relies on some
standard Python libraries to delegate the heaviest

Figure 1 PYTSA pipeline for automatic data analysis. PYTSA generates reports of simulations by analysing output time-series. Input data is
expected to be obtained by running simulations of a model, which is implemented from some specification and is simulated by some tool.
Output time-series of simulations should be stored in some folder, and a PYTSA script should be prepared to perform the desired analyses (see
Table 1 for available PYTSA commands). By executing the script a report of the model predictions can be generated (possibly for various
independent sets of simulations, denoted as “experiments” in the figure) and a decision process can be started to either accept or refine the
model, or any of its constituting components.
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computations: NUMPY [37], SCIPY [38], MATPLOTLIB
[39], Pandas [40] and PyTables [41] which provide func-
tions to either manipulate mathematical objects or pro-
cess input/output data.
The PYTSA implementation consists of 4 classes (see

the technical specifications at [36]). A fork-based imple-
mentation ensures an optimal parallel data-loading based
on the number of available cores, and a cache-based
implementation avoids the repetition of a computation
already performed on some data, to optimise speed. Preli-
minary testing shows that on a 4-core machine parallel
data-loading is 300% faster than with a sequential one.
Also, loading of datasets of size exceeding 10 GB seems
prohibitively slow without a parallel implementation.
Further memory-optimisation is given by NUMPY and
PANDAS to efficiently store arrays and time-series,
meanwhile processing data. Also, statistical routines pro-
vided by SCIPY allow one to efficiently evaluate fits of
histograms and binning (i.e., a form of quantisation used
to aggregate values which fall in a given small interval, a
bin, to obtain a value representative of that interval) and,
finally, by using MATPLOTLIB, advanced plot-editing
capabilities are possible (i.e., a visualised plot can be
modified by using the underlying PYTSA tool and its
imported libraries, allowing the advanced user to benefit
from the power of all the tools interfaced with PYTSA).

Results
We denote with X the model of a system under study,
whose time-evolution can be either deterministic, sto-
chastic or hybrid (see Figure 1). The point is to gather
information from a dataset of realisations of X which
describe its variables in the form of a time-trace. These
datasets are often stored to disks and processed offline,
and sometimes several hours are required to set up the
analysis framework, load, process and interpret data.

This process, very sensitive to errors, is eased by
PYTSA.
Aside from plain traces visualisation, numerical statis-

tics can be evaluated:

• the average 〈Xt〉 of n traces, and its standard devia-
tion σX;
• the probability density at a time t of X’s variables,
P [X (t) = X], i.e. the probability of the system to be
in a configuration × at time t;
• the above probability in a time interval. This, is
analogous to estimating the solution of the master
equation ∂tP [x, t] which rules the time-evolution of
the probability of the system to be in some config-
uration × [42].

Example report generation
The Lotka-Volterra predator-prey models are a family of
models describing the dynamics of competitive popula-
tions living in an environment. These are based on the
competition between species together with their evolu-
tion and, because of their generality, these equations are
often used to model, e.g., microbial population dynamics.
When one analyses these kind of models is often inter-
ested in finding parameter settings which guarantee the
environmental sustainability, i.e. the situation in which
the two species oscillate in time, without extinction.
Here we show a simple analysis of a dataset describing

100 independent simulations of the model realised with
NOISYSIM [26]. In the Additional file 1 we provide
details on the model specification, the parameters used
for its simulation and other kind of questions which can
be easily answered with PYTSA’s analysis capabilities. To
analyse stability of the ecosystem we use, as rough mea-
sure, the estimation of the time-varying probability of
preys/predators in the time interval [0, 100]. We show

Table 1. Data-processing PYTSA functions

Function Synopsis

timeseries load a time-series from a single file (output of a single simulation)

dataset load a dataset of time-series (output of repeated simulations)

splot plot plain time-series (without any processing)

aplot, sdplot, asdplot plot average, standard-deviation and both of them for a dataset

phspace2d,
phspace3d

plot 2D/3D phase-spaces for plain time-series

aphspace2d,
aphspace3d

plot 2D/3D phase-spaces for the average of a dataset

pdf, pdf3d plot the probability density of a model variable at one or more (3D) time-points (requires a dataset)

meq2d, meq3d estimates the master equation solution for a model variable in the form of time-varying probability density for a time-interval
(heatmap 2D or surface 3D, requires a dataset)

These functions (plus others unreported here which allow the user to customise the running environment) are natively implemented within PYTSA and can be
combined in scripts for batch processing, or interpreted in any Python interactive environment. Each of these functions has a complex set of input parameters,
whose meaning and usage is documented in the tool manual, where examples are provided, see [36]. A simple explanatory script which makes use of some of
these commands is reported and commented in Figure 2.
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how this can be easily assessed with the following 5-line
PYTSA script:
1 import pytsa as tsa # load pyTSA

# import a dataset and name the columns
3 mydata = tsa.dataset(”.”, colnames =

["time”,"Preys”,"Predators"])
# just visualize the loaded traces for

t< = 1000
5 mydata.splot(columns =["Preys”,"Pre-

dators"], stop = 1000)
# plot the species probabilities (nor-

malized and fit) at t = 100
7 mydata.pdf(100, columns =["Prey-

s”,"Predators"], normed=True, fit=True)
# estimate the master equation in [0,

100], show it as a 2D heatmap
9 mydata.meq2d(start = 0, stop = 100)
Results of executing this script are sketched in Figure

2 (dataset and script are available at [36]); a more com-
plete analysis is shown in Additional file 1.

Notice in that case the definition of the mnemonic
names Preys and Predators (at data-loading time) and in
the successive plot commands splot, pdf and meq2d
which produce the plots shown in the Figure 2 (script
processing time approx. 20 sec). When this report is gen-
erated further information is also returned within the
Python environment, e.g., the minimum and maximum
values for each species, the parameters µ and s2 of the
Gaussian fit (as performed by the scipy library with a
numerical algorithm which uses explicit formulas for the
maximum likelihood estimation of the parameters).
The estimation of the solution of the master equation

for this system allows the modeller to make inferences
about stability of the populations. In particular, as it can
be observed in the figure, for the parameters used to carry
out the simulations and for the considered time-window
the species oscillate with a period of about 80 days. Also,
predators reach low values with non-negligible probability,
i.e., observe the area where Y2 < 20, which might threaten
predators’ survival. With this in mind it is possible to raise

Figure 2 Example report for the prey-predator model. PYTSA example report produced for a dataset of 100 independent simulations of a
prey-predator model realised with NOISYSIM [26]. Dataset and the analysis script are available at [36]. The above script loads data where each
output file is expected to have at least three columns (t stands for time, the free variable). Then, all the loaded time-series are visualised without
processing for t ≤ 1000, and the probability distribution of preys/predators is numerically estimated (with normalisation an Gaussian fit) at t =
100. Finally, in the interval t ∈ [0, 100] the time-varying probability distribution is evaluated too, yielding a heatmap representation of the
approximate solution of the master equation ruling the dynamics of preys/predators. This allows to investigate, visually, the model stability and
possibly raise further questions about the species behaviour.
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and answer questions such as: “What is the probability of
observing less than 10 predators in the first 100 days of
simulation?”. Similar questions become immediate once a
graphical representation of the involved probabilities is
available and, in a model-refinement loop as the one
depicted in Figure 1, might lead to further questions such
as “Can we find parameter values which guarantee that
the probability of observing less than 10 predators is less
than .001?”.
For availability and requirements, see Table 2.

Conclusions
In the light of automatising the common approaches to
the analysis of models of biological systems, we intro-
duced the reader to PYTSA, a novel Python Time-Series
Analyser to analyse synthetic/wet biological time-course
simulation experiments. This lightweight, simulation-fra-
mework-independent and focused library combines sev-
eral analyses, with intuitive commands, which can be
pipelined with any simulation tool, allowing to generate
reports in a very intuitive way. Also, PYTSA supports
SBRML to load/export analysis results in a format likely
to become a standard, possibly allowing the tool to be
pipelined further.
Despite being in its infancy, this tool sets the basis of

a novel open source data-analysis framework for the
community. PYTSA relies on standard Python APIsfors-
cientific computing to provide an off-the-shelf reusable
component for the analysis of time-series, that fits
between integrated simulation/analysis environments
and “general” tools like Matlab and Mathematica. Its
future implementations might enlarge the class of sup-
ported input time-series to account, for instance, for
spatial models [31] which are generally characterised by
more complex output types. Similarly, web services
might be implemented for remote-analysis capabilities,
and support of data-exchange standard formats beyond
SBRML will be considered, so to fit PYTSA within
the"ecosystem” established by ongoing standardisation
efforts [29,30].

Additional material

Additional file 1: Supplementary Material Supplementary
description of the prey-predator model, of the parameters used for
its simulation and further analysis are shown.
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