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Abstract Any renewal processes on N0 with a polynomial tail, with exponent
α ∈ (0, 1), has a non-trivial scaling limit, known as the α-stable regenerative set.
In this paper we consider Gibbs transformations of such renewal processes in an i.i.d.
random environment, called disordered pinning models. We show that for α ∈ ( 12 , 1

)

these models have a universal scaling limit, which we call the continuum disordered
pinning model (CDPM). This is a random closed subset of R in a white noise random
environment, with subtle features:

• Any fixed a.s. property of the α-stable regenerative set (e.g., its Hausdorff dimen-
sion) is also an a.s. property of the CDPM, for almost every realization of the
environment.
• Nonetheless, the lawof theCDPMis singularwith respect to the lawof theα-stable
regenerative set, for almost every realization of the environment.

The existence of a disordered continuummodel, such as the CDPM, is a manifestation
of disorder relevance for pinning models with α ∈ ( 12 , 1

)
.
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1 Introduction

We consider disordered pinning models, which are defined via a Gibbs change of
measure of a renewal process, depending on an external i.i.d. random environment.
First introduced in the physics and biology literature, thesemodels have attractedmuch
attention due to their rich structure, which is amenable to a rigorous investigation; see,
e.g., the monographs of Giacomin [19,20] and den Hollander [13].

In this paper we define a continuum disordered pinning model (CDPM), inspired
by recent work of Alberts et al. [4] on the directed polymer in random environment.
The interest for such a continuum model is manifold:

• It is a universal object, arising as the scaling limit of discrete disordered pinning
models in a suitable continuum and weak disorder limit, Theorem 1.3.
• It provides a tool to capture the emerging effect of disorder in pinning models,
when disorder is relevant, Sect. 1.4 for a more detailed discussion.
• It can be interpreted as an α-stable regenerative set in a white noise random envi-
ronment, displaying subtle properties, Theorems 1.4, 1.5 and 1.6.

Throughout the paper, we use the conventions N := {1, 2, . . .}, N0 := {0} ∪N, and
write an ∼ bn to mean limn→∞ an/bn = 1.

1.1 Renewal processes and regenerative sets

Let τ := (τn)n≥0 be a renewal process on N0, that is τ0 = 0 and the increments
(τn−τn−1)n∈N are i.i.d.N-valued random variables (so that 0 = τ0 < τ1 < τ2 < · · · ).
Probability and expectation for τ will be denoted respectively by P and E. We assume
that τ is non-terminating, i.e., P(τ1 <∞) = 1, and

K (n) := P(τ1 = n) = L(n)

n1+α
, as n→∞, (1.1)

where α ∈ (0, 1) and L(·) is a slowly varying function [8]. We assume for simplicity
that K (n) > 0 for every n ∈ N (periodicity complicates notation, but can be easily
incorporated).

Let us denote by C the space of all closed subsets of R. There is a natural topology
on C, called the Fell–Matheron topology [15,24,25], which turns C into a compact
Polish space, i.e. a compact separable topological space which admits a complete
metric. This can be taken as a version of the Hausdorff distance (see Appendix A for
more details).
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The continuum disordered pinning model 19

Identifying the renewal process τ = {τn}n≥0 with its range, we may view τ as a
random subset of N0, i.e. as a C-value random variable (hence we write {n ∈ τ } :=⋃

k≥0{τk = n}). This viewpoint is very fruitful, because as N →∞ the rescaled set

τ

N
=
{

τn

N

}

n≥0
(1.2)

converges in distribution on C to a universal random closed set τ of [0,∞), called the
α-stable regenerative set ([16], [19, Thm. A.8]). This coincides with the closure of the
range of the α-stable subordinator or, equivalently, with the zero level set of a Bessel
process of dimension δ = 2(1− α) (see Appendix A), and we denote its law by Pα .

Remark 1.1 Random sets have been studied extensively [24,25]. Here we focus on the
special case of random closed subsets of R. The theory developed in [16] for regen-
erative sets cannot be applied in our context, because we modify renewal processes
through inhomogeneous perturbations and conditioning (see (1.4)–(1.9) below). For
this reason, in Appendix A we review and develop a general framework to study con-
vergence of random closed sets of R, based on a natural notion of finite-dimensional
distributions.

1.2 Disordered pinning models

Let ω := (ωn)n∈N be i.i.d. random variables (independent of the renewal process
τ ), which represent the disorder. Probability and expectation for ω will be denoted
respectively by P and E. We assume that

E[ωn] = 0, Var(ωn) = 1, ∃t0 > 0 : �(t) := logE[etωn ] <∞ for |t | ≤ t0.
(1.3)

The disordered pinning model is a random probability law Pω
N ,β,h on subsets of

{0, . . . , N }, indexed by realizations ω of the disorder, the system size N ∈ N, the
disorder strength β > 0 and bias h ∈ R, defined by the following Gibbs change of
measure of the renewal process τ :

Pω
N ,β,h(τ ∩ [0, N ])
P(τ ∩ [0, N ]) := 1

Zω
N ,β,h

e
∑N

n=1(βωn−�(β)+h)1{n∈τ }, (1.4)

where the normalizing constant

Zω
N ,β,h := E

[
e
∑N

n=1(βωn−�(β)+h)1{n∈τ }
]

(1.5)

is called the partition function. In words, we perturb the law of the renewal process τ

in the interval [0, N ], by giving rewards/penalties (βωn −�(β)+ h) to each visited
site n ∈ τ . (The presence of the factor �(β) in (1.4)–(1.5), which just corresponds to
a translation of h, allows to have normalized weights E[eβωn−�(β)] = 1 for h = 0).
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20 F. Caravenna et al.

The properties of themodel Pω
N ,β,h , especially in the limit N →∞, have been stud-

ied in depth in the recent mathematical literature (see e.g. [13,19,20] for an overview).
In this paper we focus on the problem of defining a continuum analogue of Pω

N ,β,h .
Since under the “free law” P the rescaled renewal process τ/N converges in dis-

tribution to the α-stable regenerative set τ , it is natural to ask what happens under the
“interacting law” Pω

N ,β,h . Heuristically, in the scaling limit the i.i.d. random variables
(ωn)n∈N should be replaced by a one-dimensional white noise (dWt )t∈[0,∞), where
W = (Wt )t∈[0,∞) denotes a standard Brownian motion (independent of τ ). Looking
at (1.4), a natural candidate for the scaling limit of τ/N under Pω

N ,β,h would be the

random measure Pα;W
T,β,h on C defined by

dPα;W
T,β,h

dPα (τ ∩ [0, T ]) := 1

Zα;W
T,β,h

e
∫ T
0 1{t∈τ }

(
βdWt+

(
h− 1

2β2
)
dt
)

, (1.6)

where the continuum partition function Zα;W
T,β,h would be defined in analogy to (1.5).

The problem is that a.e. realization of the α-stable regenerative set τ has zero Lebesgue
measure, hence the integral in (1.6) vanishes, yielding the “trivial” definition Pα;W

T,β,h =
Pα .

These difficulties turn out to be substantial and not just technical: as we shall see,
a non-trivial scaling limit of Pω

N ,β,h does exist, but, for α ∈ ( 12 , 1
)
, it is not absolutely

continuous with respect to the law Pα [hence no formula like (1.6) can hold]. Note that
an analogous phenomenon happens for the directed polymer in random environment
[4].

1.3 Main results

We need to formulate an additional assumption on the renewal processes that we
consider. Introducing the renewal function

u(n) := P(n ∈ τ) =
∞∑

k=0
P(τk = n),

assumption (1.1) yields u(n+�)/u(n)→ 1 as n→∞, provided � = o(n) (see (2.10)
below). We ask that the rate of this convergence is at least a power-law of �

n :

∃C, n0∈(0,∞), ε, δ∈(0, 1] :
∣∣∣∣
u(n + �)

u(n)
−1
∣∣∣∣ ≤ C

(
�

n

)δ

∀n ≥ n0, 0 ≤ � ≤ εn.

(1.7)

Remark 1.2 As we discuss in Appendix B, condition (1.7) is a very mild smoothness
requirement, that can be verified inmost situations. E.g., it was shown byAlexander [2]
that for any α > 0 and slowly varying L(·), there exists a Markov chain X on N0 with
±1 steps, called Bessel-like random walk, whose return time to 0, denoted by T , is
such that
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The continuum disordered pinning model 21

K (n) := P(T = 2n) = L̃(n)

n1+α
as n→∞, with L̃(n) ∼ L(n). (1.8)

We prove in Appendix B that any such walk always satisfies (1.7).

Recall that C denotes the compact Polish space of closed subsets of R. We denote
by M1(C) the space of Borel probability measures on C, which is itself a compact
Polish space, equipped with the topology of weak convergence. We will work with a
conditioned version of the disordered pinning model (1.4), defined by

Pω,c
N ,β,h( · ) := Pω

N ,β,h( · |N ∈ τ). (1.9)

(In order to lighten notation, when N /∈ N we agree that Pω,c
N ,β,h := Pω,c

�N,β,h).
Recalling (1.2), let us introduce the notation

Pω,c
NT,βN ,hN

(d(τ/N )) := law of the rescaled set
τ

N
∩ [0, T ] under Pω,c

NT,βN ,hN
.

(1.10)
For a fixed realization of the disorder ω, Pω,c

NT,βN ,hN
(d(τ/N )) is a probability law on

C, i.e. an element ofM1(C). Since ω is chosen randomly, the law Pω,c
NT,βN ,hN

(d(τ/N ))

is a random element of M1(C), i.e. aM1(C)-valued random variable.
Our first main result is the convergence in distribution of this random variable,

provided α ∈ ( 12 , 1
)
and the coupling constants β = βN and h = hN are rescaled

appropriately:

βN := β̂
L(N )

Nα− 1
2

, hN := ĥ
L(N )

Nα
, for N ∈ N, β̂ > 0, ĥ ∈ R. (1.11)

Theorem 1.3 (Existence and universality of the CDPM) Fix α ∈ ( 12 , 1), T > 0,

β̂ > 0, ĥ ∈ R. There exists a M1(C)-valued random variable Pα;W,c
T,β̂,ĥ

, called the

(conditioned) continuum disordered pinning model (CDPM), which is a function of
the parameters (α, T, β̂, ĥ) and of a standard Brownian motion W = (Wt )t≥0, with
the following property:

• for any renewal process τ satisfying (1.1) and (1.7), and βN , hN defined as in
(1.11);
• for any i.i.d. sequence ω satisfying (1.3);

the law Pω,c
NT,βN ,hN

(d(τ/N )) of the rescaled pinningmodel (1.10), viewed as aM1(C)-

valued random variable, converges in distribution to Pα;W,c
T,β̂,ĥ

as N →∞.

We refer to Sect. 1.4 for a discussion on the universality of the CDPM. We stress
that the restriction α ∈ ( 12 , 1

)
is substantial and not technical, being linked with the

issue of disorder relevance, as we explain in Sect. 1.4 (see also [10]).

Let us give a quick explanation of the choice of scalings (1.11). This is the canonical
scaling underwhich the partition function Zω

N ,βN ,hN
in (1.5) has a nontrivial continuum

limit. To see this, write
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22 F. Caravenna et al.

Zω
N ,β,h = E

[
N∏

n=1

(
1+ εβ,h

n 1n∈τ
)]

= 1+
N∑

k=1

∑

1≤n1<···<nk≤N
εβ,h
n1 · · · εβ,h

nk P(n1 ∈ τ, ..., nk ∈ τ),

where ε
β,h
n := eβωn−�(β)+h − 1. By Taylor expansion, as β, h tend to zero, one has

the asymptotic behavior E[εβ,h
n ] ≈ h and Var(εβ,h

n ) ≈ β2. Using this fact, we see
that the asymptotic mean and variance behavior of the first term (k = 1) in the above
series is

E

[
N∑

n=1
εβ,h
n P(n ∈ τ)

]

≈ h
N∑

n=1
P(n ∈ τ) ≈ h

Nα

L(N )
,

Var

[
N∑

n=1
εβ,h
n P(n ∈ τ)

]

≈ β2
N∑

n=1
P(n ∈ τ)2 ≈ β2 N

2α−1

L(N )2
,

because P(n ∈ τ) ≈ nα−1/L(n), by (1.1) (see (2.10) below). Therefore, for these
quantities to have a non-trivial limit as N tends to infinity, we are forced to scale βN

and hN as in (1.11). Remarkably, this is also the correct scaling for higher order terms
in the expansion for Zω

N ,β,h , as well as for the measure Pω
N ,βN ,hN

to converge to a
non-trivial limit.

We now describe the continuum measure. For a fixed realization of the Brownian
motion W = (Wt )t∈[0,∞), which represents the “continuum disorder”, we call Pα;W,c

T,β̂,ĥ
the quenched law of the CDPM, while

E

[
Pα;W,c
T,β̂,ĥ

]
( · ) :=

∫
Pα;W,c
T,β̂,ĥ

( · )P(dW ) (1.12)

will be called the averaged law of the CDPM. We also introduce, for T > 0, the law
Pα;c
T of the α-stable regenerative set τ restricted on [0, T ] and conditioned to visit T :

Pα;c
T ( · ) := Pα(τ ∩ [0, T ] ∈ · | T ∈ τ ), (1.13)

which will be called the reference law. (Relation (1.13) is defined through regular
conditional distributions.) Note that both E

[
Pα;W,c
T,β̂,ĥ

]
and Pα;c

T are probability laws on

C, while Pα;W,c
T,β̂,ĥ

is a random probability law on C.
Intuitively, the quenched lawPα;W,c

T,β̂,ĥ
could be conceived as a “Gibbs transformation”

of the reference law Pα;c
T , where each visited site t ∈ τ ∩ [0, T ] of the α-stable

regenerative set is given a reward/penalty β̂ dWt
dt + ĥ, like in the discrete case. This

heuristic interpretation should be taken with care, however, as the following results
show.
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The continuum disordered pinning model 23

Theorem 1.4 (Absolute continuity of the averagedCDPM)For allα ∈ ( 12 , 1
)
, T > 0,

β̂ > 0, ĥ ∈ R, the averaged lawE
[
Pα;W,c
T,β̂,ĥ

]
of the CDPM is absolutely continuous with

respect to the reference law Pα;c
T . It follows that any typical property of the reference

law Pα;c
T is also a typical property of the quenched law Pα;W,c

T,β̂,ĥ
, for a.e. realization of

W:

∀A ⊆ C such that Pα;c
T (A) = 1 : Pα;W,c

T,β̂,ĥ
(A) = 1 forP-a.e. W. (1.14)

In particular, for a.e. realization of W, the quenched law Pα;W,c
T,β̂,ĥ

of the CDPM is

supported on closed subsets of [0, T ] with Hausdorff dimension α.

It is tempting to deduce from (1.14) the absolute continuity of the quenched law
Pα;W,c
T,β̂,ĥ

with respect to the reference law Pα;c
T , for a.e. realization ofW , but this is false.

Theorem 1.5 (Singularity of the quenched CDPM) For all α ∈ ( 12 , 1
)
, T > 0, β̂ > 0,

ĥ ∈ R and for a.e. realization of W, the quenched law Pα;W,c
T,β̂,ĥ

of the CDPM is singular

with respect to the reference law Pα;c
T :

for P-a.e. W, ∃A ⊆ C such that Pα;c
T (A) = 1 and Pα;W,c

T,β̂,ĥ
(A) = 0. (1.15)

The seeming contradiction between (1.14) and (1.15) is resolved noting that in
(1.14) one cannot exchange “∀A ⊆ C” and “for P-a.e.W”, because there are uncount-
ably many A ⊆ C (and, of course, the set A appearing in (1.15) depends on the
realization of W ).

We conclude our main results with an explicit characterization of the CDPM. As
we discuss in Appendix A, each closed subset C ⊆ R can be identified with two
non-decreasing and right-continuous functions gt (C) and dt (C), defined for t ∈ R by

gt (C) := sup{x : x ∈ C ∩[−∞, t]}, dt (C) := inf{x : x ∈ C ∩ (t,∞]}. (1.16)

As a consequence, the law of a random closed subset X ⊆ R is uniquely deter-
mined by the finite dimensional distributions of the random functions (gt (X))t∈R and

(dt (X))t∈R, i.e. by the probability laws onR
2k

given, for k ∈ N and−∞ < t1 < t2 <

. . . < tk <∞, by

P
(
gt1(X) ∈ dx1, dt1(X) ∈ dy1, . . . , gtk (X) ∈ dxk, dtk (X) ∈ dyk

)
. (1.17)

As a further simplification, it is enough to focus on the event that X ∩[ti , ti+1] �= ∅ for
all i = 1, . . . , k, that is, one can restrict (x1, y1, . . . , xk, yk) in (1.17) on the following
set:

R(k)
t0,...,tk+1 :=

{
(x1, y1, . . . , xk, yk) : xi ∈ [ti−1, ti ], yi ∈ [ti , ti+1] for i = 1, . . . , k,

such that yi ≤ xi+1 for i = 1, . . . , k − 1
}
, (1.18)
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24 F. Caravenna et al.

with t0 = −∞ and tk+1 := +∞. The measures (1.17) restricted on the set (1.18) will
be called restricted finite-dimensional distributions (f.d.d.) of the random set X (see
§A.3).

We can characterize the CDPM by specifying its restricted f.d.d.. We need two
ingredients:

(1) The restricted f.d.d. of theα-stable regenerative set conditioned to visitT , i.e. of the
reference law Pα;c

T in (1.13): by Proposition A.8, these are absolutely continuous
with respect to the Lebesgue measure on R

2k , with the following density (with
y0 := 0):

fα;cT ;t1,...,tk (x1, y1, . . . , xk, yk) =
( k∏

i=1

Cα

(xi − yi−1)1−α (yi − xi )1+α

)
T 1−α

(T − yk)1−α
,

(1.19)

with Cα := α sin(πα)

π
, (1.20)

where we restrict (x1, y1, . . . , xk, yk) on the set (1.18), with t0 = 0 and tk+1 := T .
(2) A family of continuum partition functions for our model:

(
Zα;W,c

β̂,ĥ
(s, t)

)
0≤s≤t<∞.

These were constructed in [10] as the limit, in the sense of finite-dimensional
distributions, of the following discrete family (under an appropriate rescaling):

Zω,c
β,h (a, b) := E

[
e
∑b−1

n=a+1(βωn−�(β)+h)1{n∈τ }
∣∣
∣a ∈ τ, b ∈ τ

]
, 0 ≤ a ≤ b.

(1.21)
In Sect. 2 we upgrade the f.d.d. convergence to the process level, deducing impor-
tant a.s. properties, such as strict positivity and continuity (Theorems 2.1 and 2.4).

We can finally characterize the restricted f.d.d. of the CDPM as follows.

Theorem 1.6 (F.d.d. of the CDPM) Fix α ∈ ( 12 , 1
)
, T > 0, β̂ > 0, ĥ ∈ R and

let
(
Zα;W,c

β̂,ĥ
(s, t)

)
0≤s≤t<∞ be an a.s. continuous version of the continuum partition

functions. For a.e. realization of W, the quenched law Pα;W,c
T,β̂,ĥ

of the CDPM (Theo-

rem 1.3) can be defined as the unique probability law on C which satisfies the following
properties:

(i) Pα;W,c
T,β̂,ĥ

is supported on closed subsets τ ⊆ [0, T ] with {0, T } ⊆ τ .

(ii) For all k ∈ N and 0 =: t0 < t1 < · · · < tk < tk+1 := T , and for
(x1, y1, . . . , xk, yk) restricted on the set R(k)

t0,...,tk+1 in (1.18), the f.d.d. of Pα;W,c
T,β̂,ĥ

123



The continuum disordered pinning model 25

have densities given by

Pα;W,c
T,β̂,ĥ

(
gt1(τ ) ∈ dx1, dt1(τ ) ∈ dy1, . . . ,gtk (τ ) ∈ dxk, dtk (τ ) ∈ dyk

)

dx1 dy1 · · · dxk dyk

=
⎛

⎝

∏k
i=0 Z

α;W,c
β̂,ĥ

(yi , xi+1)

Zα;W,c
β̂,ĥ

(0, T )

⎞

⎠ fα;cT ;t1,...,tk (x1, y1, . . . , xk, yk), (1.22)

where we set y0 := 0 and xk+1 := T , and where fα;cT ;t1,...,tk (·) is defined in (1.19).

1.4 Discussion and perspectives

We conclude the introduction with some observations on the results stated so far,
putting them in the context of the existing literature, stating some conjectures and
outlining further directions of research.

1. (Disorder relevance) The parameter β tunes the strength of the disorder in themodel
Pω,c
N ,β,h (1.9), (1.4). When β = 0, the sequence ω disappears and we obtain the so-

called homogeneous pinning model. Roughly speaking, the effect of disorder is said
to be:

• irrelevant if the disordered model (β > 0) has the same qualitative behavior as the
homogeneous model (β = 0), provided the disorder is sufficiently weak (β � 1);
• relevant if, on the other hand, an arbitrarily small amount of disorder (any β > 0)
alters the qualitative behavior of the homogeneous model (β = 0).

Recalling thatα is the exponent appearing in (1.1), it is known that disorder is irrelevant
for pinning models when α < 1

2 and relevant when α > 1
2 , while the case α = 1

2
is called marginal and is more delicate (see [20] and the references therein for an
overview).

It is natural to interpret our results from this perspective. For simplicity, in the sequel
we set hN := ĥ L(N )/Nα , as in (1.11), and we use the notation Pω,c

NT,βN ,hN
(d(τ/N ))

(1.10), for the law of the rescaled set τ/N under the pinning model.
In the homogeneous case (β = 0), it was shown in [31, Theorem 3.1]1 that the

weak limit of Pα;c
NT,0,hN

(d(τ/N )) as N → ∞ is a probability law Pα;c
T,0,ĥ

on C which

is absolutely continuous with respect to the reference law Pα;c
T (recall (1.13)):

dPα;c
T,0,ĥ

dPα;c
T

(τ ) = eĥLT (τ )

E[eĥLT (τ )]
, (1.23)

where LT (τ ) denotes the so-called local time associated to the regenerative set τ . We
stress that this result holds with no restriction on α ∈ (0, 1).

1 Actually [31] considers the non-conditioned case (1.4), but it can be adapted to the conditioned case.
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26 F. Caravenna et al.

Turning to the disordered model β > 0, what happens for α ∈ (0, 1
2

)
? In analogy

with [9,11], we conjecture that for fixed β > 0 small enough, the limit in distribution
of Pω,c

NT,β,hN
(d(τ/N )) as N →∞ is the same as for the homogeneous model (β = 0),

i.e. the law Pα;c
T,0,ĥ

defined in (1.23). Thus, for α ∈ (0, 1
2

)
, the continuum model is

non-disordered (deterministic) and absolutely continuous with respect to the reference
law.

This is in striking contrast with the case α ∈ ( 12 , 1
)
, where our results show that the

continuummodel Pα;W,c
T,β̂,ĥ

is truly disordered and singular with respect to the reference

law (Theorems 1.3, 1.4, 1.5). In other terms, for α ∈ ( 12 , 1
)
, disorder survives in the

scaling limit (even though βN , hN → 0) and breaks down the absolute continuity with
respect to the reference law, providing a clear manifestation of disorder relevance.

We refer to [10] for a general discussion on disorder relevance in our framework.

2. (Universality) The quenched law Pα;W,c
T,β̂,ĥ

of the CDPM is a random probability law

on C, i.e. a random variable taking values in M1(C). Its distribution is a probability
law on the space M1(C)—i.e. an element of M1(M1(C))—which is universal: it
depends on few macroscopic parameters (the time horizon T , the disorder strength
and bias β̂, ĥ and the exponent α) but not on finer details of the discrete model from
which it arises, such as the distributions of ω1 and of τ1: all these details disappear in
the scaling limit.

Another important universal aspect of the CDPM is linked to phase transitions. We
do not explore this issue here, referring to [10, §1.3] for a detailed discussion, but we
mention that the CDPM leads to sharp predictions about the asymptotic behavior of
the free energy and critical curve of discrete pinning models, in the weak disorder
regime λ, h→ 0.

3. (Bessel processes) In this paper we consider pinning models built on top of general
renewal processeses τ = (τk)k∈N0 satisfying (1.1) and (1.7). In the special case when
the renewal process is the zero level set of a Bessel-like random walk [1] (recall
Remark 1.2), one can define the pinning model (1.4), (1.9) as a probability law on
random walk paths (and not only on their zero level set).

Rescaling the paths diffusively, one has an analogue of Theorem 1.3, in which the
CDPM is built as a random probability law on the space C([0, T ],R) of continu-
ous functions from [0, T ] to R. Such an extended CDPM is a continuous process
(X t )t∈[0,T ], that can be heuristically described as a Bessel process of dimension
δ = 2(1 − α) interacting with an independent Brownian environment W each time
Xt = 0. The “original” CDPM of our Theorem 1.3 corresponds to the zero level set
τ := {t ∈ [0, T ] : X t = 0}.

We stress that, starting from the zero level set τ , one can reconstruct the whole
process (X t )t∈[0,T ] by pasting independent Bessel excusions on top of τ (more pre-
cisely, since the open set [0, T ]\τ is a countable union of disjoint open intervals,
one attaches a Bessel excursion to each of these intervals).2 This provides a rigorous

2 Alternatively, one can write down explicitly the f.d.d. of (X t )t∈[0,T ] in terms of the continuum partition

functions Zα;W,c
β̂,ĥ

(s, t) (see Sect. 2). We skip the details for the sake of brevity.
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definition of (X t )t∈[0,T ] in terms of τ and shows that the zero level set is indeed the
fundamental object.

4. (Infinite-volume limit) Our continuum model Pα;W,c
T,β̂,ĥ

is built on a finite interval

[0, T ]. An interesting open problem is to let T →∞, proving that Pα;W,c
T,β̂,ĥ

converges

in distribution to an infinite-volume CDPM Pα;W,c
∞,β̂,ĥ

. Such a limit law would inherit

scaling properties from the continuum partition functions, Theorem 2.4 (iii). (See also
[29] for related work in the non-disordered case β̂ = 0).

1.5 Organization of the paper

The rest of the paper is organized as follows.

• In Sect. 2, we study the properties of continuum partition functions.
• In Sect. 3, we prove Theorem 1.6 on the characterization of the CDPM, which also
yields Theorem 1.3.
• In Sect. 4, we prove Theorems 1.4 and 1.5 on the relations between the CDPM
and the α-stable regenerative set.
• In Appendix A, we describe the measure-theoretic background needed to study
random closed subsets of R, which is of independent interest.
• Lastly, in Appendices B and C we prove some auxiliary estimates.

2 Continuum partition functions as a process

In this section we focus on a family
(
Zα;W,c

β̂,ĥ
(s, t)

)
0≤s≤t<∞ of continuum partition

functions for our model, which was recently introduced in [10] as the limit of the
discrete family (1.21) in the sense of finite-dimensional distributions. We upgrade this
convergence to the process level (Theorem 2.1), which allows us to deduce important
properties (Theorem 2.4). Besides their own interest, these results are the key to the
construction of the CDPM.

2.1 Fine properties of continuum partition functions

Recalling (1.21), where Zω,c
β,h (a, b) is defined for a, b ∈ N0, we extend Zω,c

β,h (·, ·) to a
continuous function on

[0,∞)2≤ := {(s, t) ∈ [0,∞)2 : 0 ≤ s ≤ t <∞},

bisecting each unit square [m − 1,m] × [n − 1, n], with m ≤ n ∈ N, along the main
diagonal and linearly interpolating Zω,c

β,h (·, ·) on each triangle. In this way, we can
regard (

Zω,c
βN ,hN

(sN , t N )
)
0≤s≤t<∞ (2.1)

as random variables taking values in the space C([0,∞)2≤,R), equipped with the
topology of uniform convergence on compact sets and with the corresponding Borel
σ -algebra. The randomness comes from the disorder sequence ω = (ωn)n∈N.
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Even though our main interest in this paper is for α ∈ ( 12 , 1
)
, we also include the

case α > 1 in the following key result, which is proved in Sect. 2.2 below.

Theorem 2.1 (Process level convergence of partition functions) Let α ∈ ( 12 , 1
) ∪

(1,∞), β̂ > 0, ĥ ∈ R. Let τ be a renewal process satisfying (1.1) and (1.7), and ω be
an i.i.d. sequence satisfying (1.3). For every N ∈ N, define βN , hN by (recall (1.11))

⎧
⎪⎪⎨

⎪⎪⎩

βN := β̂
L(N )

Nα− 1
2

hN := ĥ
L(N )

Nα

for α ∈ ( 12 , 1
)
,

⎧
⎪⎪⎨

⎪⎪⎩

βN := β̂√
N

hN := ĥ

N

for α > 1. (2.2)

As N → ∞ the two-parameter family
(
Zω,c

βN ,hN
(sN , t N )

)
0≤s≤t<∞ converges in dis-

tribution on C([0,∞)2≤,R) to a family
(
Zα;W,c

β̂,ĥ
(s, t)

)
0≤s≤t<∞, called continuum

partition functions. For all 0 ≤ s ≤ t <∞, one has the Wiener chaos representation

Zα;W,c
β̂,ĥ

(s, t) = 1+
∞∑

k=1

∫
· · ·
∫

s<t1<···<tk<t

ψ
α;c
s,t (t1, . . . , tk)

k∏

i=1
(β̂ dWti + ĥ dti ), (2.3)

where W = (Wt )t≥0 is a standard Brownian motion, the series in (2.3) converges
in L2, and the kernel ψ

α;c
s,t (t1, . . . , tk) is defined as follows, with Cα as in (1.20) and

t0 := s:

ψ
α;c
s,t (t1, . . . , tk) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

( k∏

i=1

Cα

(ti − ti−1)1−α

)
(t − s)1−α

(t − tk)1−α
if α ∈ ( 12 , 1

)
,

1

E[τ1]k if α > 1.

(2.4)

Remark 2.2 The integral in (2.3) is defined by expanding formally the product of
differentials and reducing to standard multiple Wiener and Lebesgue integrals. An
alternative equivalent definition is to note that, by Girsanov’s theorem, the law of
(β̂Wt + ĥt)t∈[0,T ] is absolutely continuous w.r.t. that of (β̂Wt )t∈[0,T ], with Radon–
Nikodym density

fT,β̂,ĥ(W ) := e

(
ĥ
β̂

)
WT− 1

2

(
ĥ
β̂

)2
T

. (2.5)

It follows that
(
Zα;W,c

β̂,ĥ
(s, t)

)
0≤s≤t≤T has the same law as

(
Zα;W,c

β̂,0
(s, t)

)
0≤s≤t≤T (for

ĥ = 0) under a change of measure with density (2.5). For further details, see [10].

Remark 2.3 Theorem 2.1 still holds if we also include the two-parameter family of
unconditioned partition functions

(
Zω

βN ,hN
(sN , t N )

)
0≤s≤t<∞, defined the same way

as Zω,c
β,h (a, b) in (1.21), except for removing the conditioning on b ∈ τ . The limiting

process Zα;W
β̂,ĥ

(s, t) will then have a kernel ψα
s,t , which modifies ψ

α;c
s,t in (2.4), by

setting
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ψα
s,t (t1, . . . , tk) =

k∏

i=1

Cα

(ti − ti−1)1−α
, if α ∈ ( 12 , 1

)
. (2.6)

By Theorem 2.1, we can fix a version of the continuum partition functions
Zα;W,c

β̂,ĥ
(s, t) which is continuous in (s, t). This will be implicitly done henceforth.

We can then state some fundamental properties, proved in Sect. 2.3.

Theorem 2.4 (Properties of continuum partition functions)For all α ∈ ( 12 , 1
)
, β̂ > 0,

ĥ ∈ R the following properties hold:

(i) (Positivity) For a.e. realization of W, the function (s, t) �→ Zα;W,c
β̂,ĥ

(s, t) is con-

tinuous and strictly positive at all 0 ≤ s ≤ t <∞.

(ii) (Translation Invariance) For any fixed t > 0, the process
(
Zα;W,c

β̂,ĥ
(t, t + u)

)

u≥0
has the same distribution as

(
Zα;W,c

β̂,ĥ
(0, u)

)

u≥0
, and is independent of

(
Zα;W,c

β̂,ĥ
(s, u)

)

0≤s≤u≤t
.

(iii) (Scaling Property) For any constant A > 0, one has the equality in distribution

(
Zα;W,c

β̂,ĥ
(As, At)

)
0≤s≤t<∞

dist=
(
Zα;W,c
Aα−1/2β̂,Aα ĥ

(s, t)
)

0≤s≤t<∞. (2.7)

(iv) (Renewal Property) Setting Z(s, t) := Zα;W,c
β̂,ĥ

(s, t) for simplicity, for a.e. real-

ization of W one has, for all 0 ≤ s < u < t <∞,

Cα Z(s, t)

(t − s)1−α
=
∫

x∈(s,u)

∫

y∈(u,t)

Cα Z(s, x)

(x − s)1−α

1

(y − x)1+α

Cα Z(y, t)

(t − y)1−α
dx dy,

(2.8)
which can be rewritten, recalling (1.19), as follows:

Z(s, t) = Eα;c
t−s
[
Z
(
s,gu(τ )

)
Z
(
du(τ ), t

)]
. (2.9)

The rest of this section is devoted to the proof of Theorems 2.1 and 2.4. We recall
that assumption (1.1) entails the following key renewal estimates, withCα as in (1.20):

u(n) := P(n ∈ τ) ∼

⎧
⎪⎪⎨

⎪⎪⎩

Cα

L(n)n1−α
if 0 < α < 1,

1

E[τ1] = (const.) ∈ (0,∞) if α > 1,
(2.10)

by the classical renewal theorem for α > 1 and by [12,18] for α ∈ (0, 1). Let us also
note that the additional assumption (1.7) for α ∈ (0, 1) can be rephrased as follows:

|u(q)− u(r)| ≤ C
(r − q

r

)δ

u(q), ∀r ≥ q ≥ n0 with r − q ≤ εr, (2.11)

up to a possible change of the constants C, n0, ε.
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2.2 Proof of Theorem 2.1

We may assume T = 1. For convergence in distribution on C([0, 1]2≤,R) it suffices
to show that {(Zω,c

βN ,hN
(sN , t N ))0≤s≤t≤1}N∈N is a tight family, because the finite-

dimensional distribution convergence was already obtained in [10] (see Theorem 3.1
and Remark 3.3 therein). We break down the proof into five steps.

Step 1.Moment criterion. We recall a moment criterion for the Hölder continuity of a
family of multi-dimensional stochastic processes, which was also used in [3] to prove
similar tightness results for the directed polymermodel. Using Garsia’s inequality [17,
Lemma 2] with (x) = |x |p and ϕ(u) = uq for p ≥ 1 and pq > 2d, the modulus of
continuity of a continuous function f : [0, 1]d → R can be controlled by

| f (x)− f (y)| ≤ 8
∫ |x−y|

0
−1

( B

u2d

)
dϕ(u) = 8

∫ |x−y|

0

B1/p

u2d/p
d(uq)

= 8B1/pq

q − 2d/p
|x − y|q−2d/p,

where

B = B( f ) =
∫∫

[0,1]d×[0,1]d


⎛

⎝ f (x)− f (y)

ϕ
(
x−y√

d

)

⎞

⎠ dx dy

= dq/2
∫∫

[0,1]d×[0,1]d
| f (x)− f (y)|p
|x − y|pq dx dy.

Suppose now that ( fN )N∈N are random continuous function on [0, 1]d such that

E[| fN (x)− fN (y)|p] ≤ C |x − y|η,

for some C, p, q, η ∈ (0,∞) with pq > 2d and η > pq − d, uniformly in N ∈ N,
x, y ∈ [0, 1]d . Then E[B( fN )] is bounded uniformly in N , hence {B( fN )}N∈N is
tight. If the functions fN are equibounded at some point (e.g. fN (0) = 1 for every
N ∈ N), the tightness of B( fN ) entails the tightness of { fN }N∈N, by the Arzelà-Ascoli
theorem [6, Theorem 7.3].

To prove the tightness of {(Zω,c
βN ,hN

(sN , t N ))0≤s≤t≤1}N∈N, it then suffices to show
that

E

[∣∣Zω,c
βN ,hN

(s1N , t1N )− Zω,c
βN ,hN

(s2N , t2N )
∣∣p
]
≤ C

(√
(s1 − s2)2 + (t1 − t2)2

)η
,

(2.12)
which by triangle inequality, translation invariance and symmetry can be reduced to

∃C > 0, p ≥ 1, η > 2 : E

[∣∣Zω,c
βN ,hN

(0, t N )− Zω,c
βN ,hN

(0, sN )
∣∣p
]
≤ C |t − s|η,

(2.13)
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uniformly in N ∈ N and 0 ≤ s < t ≤ 1. (Conditions pq > 2d and η > pq−d are then
fulfilled by any q ∈ ( 4p ,

2+η
p ), since d = 2). Since Zω,c

βN ,hN
(0, ·) is defined on [0,∞)

via linear interpolation, it suffices to prove (2.13) for s, t with sN , t N ∈ {0} ∪ N.

Step 2. Polynomial chaos expansion To simplify notation, let us denote

N ,r := Zω,c
βN ,hN

(0, r) = E

[
r−1∏

n=1
e(βNωn−�(βN )+hN )1{n∈τ }

∣
∣∣∣ r ∈ τ

]

for r ∈ N,

and N ,0 := 1. Since ex1{n∈τ } = 1+ (ex − 1)1{n∈τ } for all x ∈ R, we set

ξN ,i := eβNωi−�(βN )+hN − 1, (2.14)

and rewrite N ,r as a polynomial chaos expansion:

N ,r = E

[
r−1∏

i=1

(
1+ ξN ,i1{i∈τ }

)
∣∣∣∣ r ∈ τ

]

=
∑

I⊂{1,...,r−1}
P(I ⊂ τ |r ∈ τ)

∏

i∈I
ξN ,i ,

(2.15)
using the notation {I ⊂ τ } :=⋂i∈I {i ∈ τ }.

Recalling (2.2) and (1.3), it is easy to check that

E[ξN ,i ] = ehN − 1 = hN + O(h2N ),

√
Var(ξN ,i ) =

√
e2hN

(
e�(2βN )−2�(βN ) − 1

) =
√

β2
N + O(β3

N ) = βN + O(β2
N ),

(2.16)

where we used the fact that hN = o(βN ) andwe Taylor expanded�(t) := logE[etω1 ],
noting that�(0) = �′(0) = 0 and�′′(0) = 1. Thus hN and βN are approximately the
mean and standard deviation of ξN ,i . Let us rewrite N ,r in (2.15) using normalized
variables ζN ,i :

N ,r =
∑

I⊂{1,...,r−1}
ψN ,r (I )

∏

i∈I
ζN ,i , where ζN ,i := 1

βN
ξN ,i , (2.17)

where ψN ,r (∅) := 1 and for I = {n1 < n2 < · · · < nk} ⊂ N, recalling (2.10), we
can write

ψN ,r (I ) = ψN ,r (n1, . . . , nk) := β
|I |
N P(I ⊂ τ |r ∈ τ) = (βN )k

1

u(r)

k+1∏

i=1
u(ni −ni−1),

(2.18)
with n0 := 0, nk+1 := r .

To prove (2.13), we write Zω,c
βN ,hN

(0, sN ) = N ,q and Zω,c
βN ,hN

(0, t N ) = N ,r ,
with q := sN and r := t N , so that 0 ≤ q < r ≤ N . For a given truncation level
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m = m(q, r, N ) ∈ (0, q), that we will later choose as

m = m(q, r, N ) :=
{
0 if q ≤ √N (r − q)

q −√N (r − q) otherwise,
(2.19)

so that 0 ≤ m < q < r ≤ N , we write

N ,r −N ,q = �1 +�2 −�3

with

�1 =
∑

I⊂{1,...,m}

(
ψN ,r (I )− ψN ,q(I )

)∏

i∈I
ζN ,i ,

�2 =
∑

I⊂{1,...,r−1}
I∩{m+1,...,r−1}�=∅

ψN ,r (I )
∏

i∈I
ζN ,i , and

�3 =
∑

I⊂{1,...,q−1}
I∩{m+1,...,q−1}�=∅

ψN ,q(I )
∏

i∈I
ζN ,i . (2.20)

To establish (2.13) and hence tightness, it suffices to show that for each i = 1, 2, 3,

∃C > 0, p ≥ 1, η > 2 : E[|�i |p] ≤ C
(r − q

N

)η ∀N ∈ N, 0 ≤ q < r ≤ N .

(2.21)

Step 3. Change of measure We now estimate the moments of ξN ,i defined in (2.14).
Since (a + b)2k ≤ 22k−1(a2k + b2k), for all k ∈ N, and hN = O(β2

N ) by (2.2), we
can write

E[ξ2kN ,i ] ≤ 22k−1e2k(hN−�(βN ))
E
[(
eβNωi − 1

)2k]+ 22k−1(e−�(βN )+hN − 1)2k

≤ C(k) β2k
N E

[(
1

βN

∫ βN

0
ωi e

tωi dt

)2k
]

+ O(β4k
N + h2kN )

≤ C(k)β2k−1
N

∫ βN

0
E[ω2k

i e2ktωi ]dt + o(β2k
N ) = O(β2k

N ), (2.22)

becauseE[ω2k
i e2ktωi ] is uniformly bounded for t ∈ [0, t0/4k] by our assumption (1.3).

Recalling (2.16), (2.17) and (2.2), the random variables (ζN ,i )i∈N are i.i.d. with

E[ζN ,i ] ∼
N→∞

ĥ

β̂

1√
N

, Var[ζN ,i ] ∼
N→∞ 1, sup

N ,i∈N
E[(ζN ,i )

2k] <∞. (2.23)

It follows, in particular, that {ζ 2
N ,i }i,N∈N are uniformly integrable. We can then apply

a change of measure result established in [10, Lemma B.1], which asserts that we
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can construct i.i.d. random variables (̃ζN ,i )i∈N with marginal distribution P(̃ζN ,i ∈
dx) = fN (x)P(ζN ,i ∈ dx), for which there exists C > 0 such that for all p ∈ R and
i, N ∈ N

E[̃ζN ,i ] = 0, E[̃ζ 2
N ,i ] ≤ 1+ C/

√
N , and E[ fN (ζN ,i )

p] ≤ 1+ C/N .

(2.24)
Let �̃i be the analogue of �i constructed from the ζ̃N ,i ’s instead of the ζN ,i ’s. By
Hölder,

E
[|�i |l−1

] = E

[

|�i |l−1
N∏

i=1
fN (ζN ,i )

l−1
l

N∏

i=1
fN (ζN ,i )

− l−1
l

]

≤ E
[|�̃i |l

] l−1
l E
[
fN (ζN ,1)

1−l] Nl ≤ e
C
l E
[|�̃i |l

] l−1
l .

Relation (2.21), and hence the tightness of {Zω,c
βN ,hN

(·, ·)}N∈N, is thus reduced to show-
ing

E
[|�̃i |l

] ≤ C
(r − q

N

)η

for all N ∈ N and 0 ≤ q < r ≤ N , (2.25)

for some l ∈ N, l ≥ 2 and η > 0 satisfying η > 2 l
l−1 .

Step 4. Bounding E[|�̃2|l ]. We note that the bound for E[|�̃3|l ] is exactly the same as
that for E[|�̃2|l ], and hence will be omitted. First we write �̃2 as

�̃2 =
r−1∑

k=1
�̃

(k)
2 , where �̃

(k)
2 :=

∑

|I |=k,I⊂{1,...,r−1}
I∩{m+1,...,r−1}�=∅

ψN ,r (I )
∏

i∈I
ζ̃N ,i , (2.26)

with �̃
(k)
2 consisting of all terms of degree k. The hypercontractivity established in

[26, Prop. 3.16 & 3.12] allows to estimates moments of order l in terms of moments
of order 2: more precisely, setting ‖X‖p := E[|X |p]1/p, we have for all l ≥ 2

‖�̃2‖ll := E[|�̃2|l ] ≤
(
r−1∑

k=1
‖�̃(k)

2 ‖l
)l

≤
(
r−1∑

k=1
(cl)

k‖�̃(k)
2 ‖2

)l

, (2.27)

where cl := 2
√
l − 1maxN∈N

( ‖̃ζN ,1‖l
‖̃ζN ,1‖2

)
is finite and depends only on l, by (2.23).

We now turn to the estimation of ‖�̃(k)
2 ‖2. Let us recall the definition of ψN ,r in

(2.18). It follows by (2.24) that Var(̃ζN ,1) ≤ 1+C/
√
N ≤ 2 for all N large. We then

have

‖�̃(k)
2 ‖22 = E

[(
�̃

(k)
2

)2] =
k−1∑

y=0

∑

1≤n1<···<ny≤m
m+1≤ny+1<···<nk≤r−1

ψ2
N ,r (n1, . . . , nk)Var(̃ζN ,1)

k
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≤ 2k
k−1∑

y=0

∑

1≤n1<···<ny≤m
m+1≤ny+1<···<nk≤r−1

β2k
N u(n1)2u(n2 − n1)2 · · · u(r − nk)2

u(r)2

≤ 4k
k−1∑

y=0

∫
· · ·
∫

0<t1<···<ty<
m
N

m
N <ty+1<···<tk<

r
N

(
√
NβNu(�Nt1�))2 · · · (

√
NβNu(r − �Ntk�))2

(
√
NβNu(r))2

dt1 · · · dtk .

(2.28)

It remains to estimate this integral, when 1
2 < α < 1 (the case α > 1 is easy). By

(2.10)

1

c

1

L(�+ 1)(�+ 1)1−α
≤ u(�) ≤ c

1

L(�+ 1)(�+ 1)1−α
∀� ∈ N ,

for some c ∈ (0,∞). Since �Nt� − �Ns� + 1 ≥ N (t − s), recalling (2.2) we obtain

√
NβNu

(�Nt� − �Ns�) ≤ c
L(N )

L
(�Nt� − �Ns� + 1

)
1

(t − s)1−α
.

Let us now fix

α′ :=
{
1 when α > 1

any number in
( 1
2 , α

)
when 1

2 < α < 1.
(2.29)

Since L(·) is slowly varying, by Potter bounds [8, Theorem 1.5.6] for every ε > 0 there
is Dε ∈ (0,∞) such that L(a)/L(b) ≤ Dε max{(a/b)ε, (b/a)ε} for all a, b ∈ N. It
follows that √

NβNu
(�Nt� − �Ns�) ≤ C

1

(t − s)1−α′ , (2.30)

for some C ∈ (0,∞), uniformly in 0 < s < t ≤ 1 and N ∈ N. Analogously, again
by (2.10) and Potter bounds, if 0 ≤ s < t < r

N we have

u(�Nt� − �Ns�)
u(r)

≤ c2
L(r + 1)

L(�Nt� − �Ns� + 1)

r1−α

(N (t − s))1−α
≤ C

(r/N )1−α′

(t − s)1−α′ .

(2.31)

Plugging (2.30) and (2.31) into (2.28), and applying Lemma C.1, then gives

‖�̃(k)
2 ‖22 ≤ Ck

k−1∑

y=0

∫
· · ·
∫

0<t1<···<ty<
m
N

m
N <ty+1<···<tk<

r
N

(r/N )2(1−α′)

t2(1−α′)
1 (t2 − t1)2(1−α′) · · · (r/N − tk)2(1−α′)

dt1 · · · dtk
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≤ Ck
k−1∑

y=0
C1e

−C2k log k
(m
N

)(2α′−1)y(r − m

N

)(2α′−1)(k−y)

≤ C3e
−C4k log k

(r − m

N

)2α′−1
, (2.32)

where the last inequality follows by crude estimates (observe that m/N ≤ 1).
We can substitute the bound (2.32) into (2.27) to obtain

E[|�̃2|l ] ≤
(

r∑

k=1
(cl)

k(C3)
1
2 e−

C4
2 k log k

(r − m

N

)α′− 1
2

)l

≤ C
(r − m

N

)(α′− 1
2 )l

(2.33)
for some C depending only on l. We now choose m as in (2.19), so that

r − m

N
≤ r − q +√N (r − q)

N
≤ 2
(r − q

N

) 1
2
,

(if m = 0 we first write r = r − q + q and we use that in this case q ≤ √N (r − q)),
hence

E[|�̃2|l ] ≤ C 2(α′− 1
2 )l
(r − q

N

)(α′− 1
2 ) l

2
. (2.34)

Since α′ > 1
2 by our choice in (2.29), relation (2.25) is satisfied with η = (α′ − 1

2 )
l
2

(and one has η > 2 l
l−1 , as required, provided l ∈ N is chosen large enough).

Step 5: bounding E[|�̃1|l ]. Following the same steps as the bound for E[|�̃2|l ], it
suffices to establish an analogue of (2.32) for

�̃
(k)
1 :=

∑

1≤n1<···<nk≤m

(
ψN ,r (n1, . . . , nk)− ψN ,q(n1, . . . , nk)

) k∏

i=1
ζ̃N ,ni , (2.35)

where we recall that 0 ≤ m < q < r ≤ N , because m = m(q, r, N ) is chosen as in
(2.19). If m = 0 then �̃

(k)
1 = 0 and there is nothing to prove, hence we assume m > 0

henceforth.
Since (̃ζN ,i )i∈N are i.i.d. with E[̃ζN ,1] = 0 and Var(̃ζN ,1) ≤ 1 + C/

√
N ≤ 2 for

N large,

‖�̃(k)
1 ‖22 = E

[(
�̃

(k)
1

)2] ≤ 2k
∑

1≤n1<···<nk≤m

(
ψN ,r (n1, . . . , nk)−ψN ,q(n1, . . . , nk)

)2
.

(2.36)
Let ε be as in condition (2.11). We first consider the case r − q ≥ ε2r , for which we
bound
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‖�̃(k)
1 ‖22 ≤ 2k+1

∑

1≤n1<···<nk≤m

(
ψN ,r (n1, . . . , nk)

2 + ψN ,q(n1, . . . , nk)
2)

≤ 2k+1
∑

1≤n1<···<nk≤r−1
ψN ,r (n1, . . . , nk)

2

+2k+1
∑

1≤n1<···<nk≤q−1
ψN ,q(n1, . . . , nk)

2. (2.37)

Applying the bound (2.32) with m = 0, since q < r , we obtain

‖�̃(k)
1 ‖22 ≤ 2k+1C3e

−C4k log k
(( r

N

)2α′−1 +
( q
N

)2α′−1) ≤ C5e
−C6k log k

( r

N

)2α′−1
,

(2.38)
By the same calculation as in (2.33), we then have, using r − q ≥ ε2r ,

E[|�̃1|l ] ≤ C
( r

N

)(α′− 1
2

)
l ≤ C

ε(2α′−1)l
(r − q

N

)(α′− 1
2

)
l
,

which gives the desired bound (2.25).
Now we consider the case r − q ≤ ε2r . Denote I := {n1, . . . , nk}. Recalling the

definition of ψN ,r in (2.18), we have

(
ψN ,r (I )− ψN ,q (I )

)2 = (βN )2ku(n1)
2 · · · u(nk − nk−1)2

(
u(r − nk)

u(r)
− u(q − nk)

u(q)

)2
.

(2.39)

Since we assumem > 0, by (2.19) we havem = q−√N (r − q) and q, r ≥ m+√N .
Recalling that u(n) = P(n ∈ τ), we can bound the last factor in (2.39) as follows:

∣∣∣
P(r − nk ∈ τ)

P(r ∈ τ)
− P(q − nk ∈ τ)

P(q ∈ τ)

∣∣∣

=
∣
∣∣
P(q ∈ τ)P(r − nk ∈ τ)− P(r ∈ τ)P(q − nk ∈ τ)

P(q ∈ τ)P(r ∈ τ)

∣
∣∣

=
∣∣∣∣

[
P(q∈τ)−P(r ∈τ)

]
P(r−nk ∈τ)+P(r ∈τ)

[
P(r−nk ∈τ)−P(q−nk ∈τ)

]

P(q∈τ)P(r ∈τ)

∣∣∣∣

≤
∣
∣P(q ∈ τ)− P(r ∈ τ)

∣
∣P(r − nk ∈ τ)

P(q ∈ τ)P(r ∈ τ)

+
∣∣P(q − nk ∈ τ)− P(r − nk ∈ τ)

∣∣P(q − nk ∈ τ)

P(q − nk ∈ τ)P(q ∈ τ)
.

We now apply (2.11), using the assumption r − q ≤ ε2r < εr and noting that

(r − nk)− (q − nk)

r − nk
≤ r − q

q − m
=
√
r − q

N
≤
√
r − q

r
≤ ε,
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which yields

∣∣∣
∣
u(r − nk)

u(r)
− u(q − nk)

u(q)

∣∣∣
∣ ≤ C

(r − q

r

)δ u(r − nk)

u(r)
+ C

( r − q

r − nk

)δ u(q − nk)

u(q)

≤ C
(r − q

r

)δ u(r − nk)

u(r)
+ C

(r − q

r

)δ/2 u(q − nk)

u(q)
.

Plugging this into (2.39) and recalling (2.18) then gives

(
ψN ,r (I )− ψN ,q(I )

)2 ≤ 2C2
(r − q

r

)2δ
ψN ,r (I )

2 + 2C2
(r − q

r

)δ

ψN ,q(I )
2

≤ 2C2
(r − q

r

)δ

(ψN ,r (I )
2 + ψN ,q(I )

2).

We can finally substitute this bound back into (2.36) and follow the same calculations

as in (2.37)–(2.38), with an extra factor
( r−q

r

)δ
, to obtain

‖�̃(k)
1 ‖22 ≤ C7 e

−C6k log k
(r − q

r

)δ( r

N

)2α′−1 ≤ C7e
−C6k log k

(r − q

N

)δ∧(2α′−1)
.

By the same calculation as in (2.33), we then have

E[|�̃1|l ] ≤ C
(r − q

N

) δ∧(2α′−1)
2 l

.

Since δ > 0 and α′ > 1/2, this gives the desired bound (2.25) for E[|�̃1|l ], provided
l ∈ N is chosen large enough. This completes the proof. ��

2.3 Proof of Theorem 2.4

We fix α ∈ (1/2, 1) and T ∈ (0,∞). By Remark 1.2 and Lemma B.2 in the appendix,
we can construct a renewal process τ satisfying (1.1), with L(n)→ 1 as n→∞, such
that condition (2.11) is satisfied. By Theorem 2.1, for this particular renewal process,
the discrete partition functions

(
Zω,c

βN ,hN
(sN , t N )

)
0≤s≤t≤T converge in distribution as

N →∞ to the continuum family
(
Zα;W,c

β̂,ĥ
(s, t)

)
0≤s≤t≤T , viewed as random variables

inC([0, T ]2≤,R). By Skorohod’s representation theorem [6, Thm. 6.7], we can couple
(
Zω,c

βN ,hN

)
N∈N and Zα;W,c

β̂,ĥ
so that, a.s., Zω,c

βN ,hN
(sN , t N ) converges to Zα;W,c

β̂,ĥ
(s, t)

uniformly on [0, T ]2≤. We assume such a coupling from now on.
Property (ii) is readily checked from theWiener chaos representation (2.3). Alterna-

tively, one can observe that similar properties hold for the disordered pinning partition
functions

(
Zω,c

βN ,hN
(i, j)

)
0≤i≤ j , which are preserved in the scaling limit.

We next prove (iv), where we may assume 0 ≤ s < u < t ≤ T . Let us fix a typical
realization of

(
Zω,c

βN ,hN

)
N∈N and Zα;W,c

β̂,ĥ
under the above coupling. Let aN := �sN,
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bN := �uN and cN := �t N. Recalling the definition of Zω,c
β,h in (1.21) and summing

on the index k ∈ N for which τk < bN ≤ τk+1 and on the values i = τk , j = τk+1,
we obtain

Zω,c
βN ,hN

(aN , cN )P(cN − aN ∈ τ)

=
∑

aN≤i<bN

∑

bN≤ j≤cN
Zω,c

βN ,hN
(aN , i)Zω,c

βN ,hN
( j, cN ) e(βNωi−�(βN )+hN )1{i>aN }

×P(i − aN ∈ τ)P(τ1 = j − i)P(cN − j ∈ τ) e(βNω j−�(βN )+hN )1{ j<cN } .

(2.40)

Multiply both sides of (2.40) by N 1−α and let N → ∞. Since P(n ∈ τ) ∼ Cα

n1−α by
(2.10),

Zω,c
βN ,hN

(aN , cN )N 1−αP(cN − aN ∈ τ) −→
N→∞

Cα Zα;W,c
β̂,ĥ

(s, t)

(t − s)1−α
.

For the RHS of (2.40), note that
(
e(βNωi−�(βN )+hN )

)
0≤i≤T N converge uniformly to 1

as N → ∞ (because max{ωi : i ≤ T N } = O(log N ) by Borel–Cantelli estimates,
(1.3)). Moreover, for i = �xN and j = �yN, with s < x < u < y < t ,

Zω,c
βN ,hN

(aN , �xN)Zω,c
βN ,hN

(�yN, cN ) −→
N→∞ Zα;W,c

β̂,ĥ
(s, x)Zα;W,c

β̂,ĥ
(y, t) uniformly,

while by P(τ1 = n) = L(n)

n1+α and P(n ∈ τ) ∼ Cα

n1−α , (1.1) and (2.10), we get

N 2N 1−αP(�xN − aN ∈ τ)P(τ1 = �yN − �xN)P(cN − �yN ∈ τ)

−→
N→∞

C2
α

(x − s)1−α(y − x)1+α(t − y)1−α
, (2.41)

for all s < x < u < y < t (the convergence is even uniform for x−s, y−x, t− y ≥ ε,
for any ε > 0).Again by (1.1) and (2.10)with L(n) ∼ 1, theLHSof (2.41) is uniformly
bounded by a constant multiple of the RHS, which is integrable over x ∈ (s, u) and
y ∈ (u, t). Therefore, by aRiemann sum approximation, the RHS of (2.40), multiplied
by N 1−α , converges to

∫

x∈(s,u)

∫

y∈(u,t)

Cα Zα;W,c
β̂,ĥ

(s, x)

(x − s)1−α

1

(y − x)1+α

Cα Zα;W,c
β̂,ĥ

(y, t)

(t − y)1−α
dx dy,

which establishes (2.8).
We then turn to (i), where we may restrict s, t ∈ [0, T ]. The fact that Zα;W,c

β̂,ĥ
(·, ·)

is a.s. continuous and non-negative follows readily from Theorem 2.1 [recall that
Zω,c

βN ,hN
(i, j) ≥ 0, (1.21)]. For the a.s. strict positivity, we apply (2.8) with u :=
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(s + t)/2: since Zα;W,c
β̂,ĥ

≥ 0, for any ε > 0 restricting the integrals to x ≤ s + ε and

y ≥ s − ε yields the lower bound

Zα;W,c
β̂,ĥ

(s, t) ≥ (t−s)1−α

∫∫

x∈(s,(s+ε)∧t), y∈((t−ε)∨s,t)

Cα Zα;W,c
β̂,ĥ

(s, x) Zα;W,c
β̂,ĥ

(y, t)

(x−s)1−α(y − x)1+α(t − y)1−α
dx dy.

(2.42)
Since Zα;W,c

β̂,ĥ
(u, u) = 1 for all u ≥ 0 (2.3), by continuity a.s. there is (a random)

ε > 0 such that Zα;W,c
β̂,ĥ

(u, v) > 0 for all u, v ∈ [0, T ]with 0 ≤ v− u ≤ ε. Observing

that both s − x ≤ ε and y − t ≤ ε in (2.42) yields that a.s. Zα;W,c
β̂,ĥ

(s, t) > 0 for all

0 ≤ s ≤ t ≤ T .
Lastly we prove (iii). For any A > 0, recalling (2.3) and setting W̃t := A−1/2WAt ,

the change of variables t �→ u := t/A yields the equality in distribution (jointly in
s, t)

Zα;W,c
β̂,ĥ

(As, At) = 1+
∞∑

k=1

∫
· · ·
∫

As<t1<···<tk<At

ψ
α;c
As,At (t1, . . . , tk)

k∏

i=1
(β̂ dWti + ĥ dti )

dist.= 1+
∞∑

k=1

∫
· · ·
∫

s<u1<···<uk<t

ψ
α;c
As,At (Au1, . . . , Auk)

×
k∏

i=1
(A1/2β̂ dW̃ui + Aĥ dui ).

Since ψ
α;c
As,At (Au1, . . . , Auk) = A(α−1)kψα;c

s,t (u1, . . . , uk), by (2.4), it follows that

Zα;W,c
β̂,ĥ

(As, At)
dist.= Zα;W̃ ,c

Aα−1/2β̂,Aα ĥ
(s, t).

Since W̃ = (W̃t )t≥0 is still a standard Brownian motion, the proof is completed. ��

3 Characterization and universality of the CDPM

In this section we prove Theorems 1.3 and 1.6. We recall that C is the space of all
closed subsets of R, and refer to Appendix A for some key facts on C-valued random
variables (in particular for the notion of restricted f.d.d., §A.3). Let us summarize our
setting:

• we have two independent sources of randomness: a renewal process τ = (τn)n≥0
satisfying (1.1) and (1.7), and an i.i.d. sequence ω = (ωn)n≥1 satisfying (1.3);
• we fix T > 0 and consider the conditioned pinning model Pω,c

NT,β,h , defined in
(1.9) and (1.4), with the parameters β = βN and h = hN chosen as in (1.11).
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Let us denote by XN the rescaled set τ/N ∩ [0, T ] (1.2), under the law Pω,c
NT,βN ,hN

. If
we fix a realization of ω, then XN is a C-valued random variable (with respect to τ ).

Our strategy to prove Theorems 1.3 and 1.6 is based on two main steps:

(1) first we define a suitable coupling of ω with a standard Brownian motion W ;
(2) then we show that, for P-a.e. fixed realization of (ω,W ), the restricted f.d.d. of

XN converge weakly as N →∞ to those given in the right hand side of (1.22).

Wecan then applyPropositionA.6 (iii),whichguarantees that the densities in (1.22) are
the restricted f.d.d. of a C-valued random variable X∞, whose law on C we denote by
Pα;W,c
T,β̂,ĥ

; furthermore, XN converges in distribution on C toward X∞ as N →∞, for P-

a.e. fixed realization of (ω,W ). This is nothing but Theorem1.3 in a strengthened form,
with a.s. convergence instead of convergence in distribution (thanks to the coupling).
Theorem 1.6 is also proved, once we note that Pα;W,c

T,β̂,ĥ
is the unique probability law on

C satisfying conditions (i) and (ii) therein, because restricted f.d.d. characterize laws
on C, Proposition A.6 (i). It only remains to prove points (1) and (2).

By Theorem 2.1, the family ZN :=
(
Zω,c

βN ,hN
(sN , t N )

)
0≤s≤t≤T of discrete parti-

tion functions defined in (1.21), viewed as a C([0, T ]2≤,R)-valued random variable,

converges in distribution to the continuum family Z := (
Zα;W,c

β̂,ĥ
(s, t)

)
0≤s≤t≤T as

N → ∞. Note that ZN is a function of ω(0,N ) := (ω1, . . . , ωN−1), while Z is a
function of a standard Brownian motion W = (Wt )t≥0. By an extension of Skoro-
hod’s representation theorem [23, Cor. 5.12], we can couple the discrete environments
(ω(0,N ))N∈N and W on the same probability space, so that ZN → Z a.s.. This com-
pletes point (1).

Coming to point (2), we prove the convergence of the restricted f.d.d. of XN , i.e. the
laws of the vectors (gt1(XN ), . . . ,gtk (XN )) restricted on the event AXN

t1,...,tk defined in
(4.16). Since XN = τ/N ∩ [0, T ] under the pinning law Pω,c

T N ,βN ,hN
, we fix k ∈ N and

0 < t1 < . . . < tk < T , as well as a continuous and bounded function F : R2k → R,
and we have to show that

IN := Eω,c
T N ,βN ,hN

[
F
(
gt1(τ/N ), dt1(τ/N ), . . . ,gtk (τ/N ),dtk (τ/N )

)
1
Aτ/N
t1,...,tk

]

(3.1)

converges as N →∞ to the integral of F with respect to the density in (1.22), i.e.

I :=
∫
· · ·
∫

0<x1<t1<y1<x2<t2
<···<xk<tk<yk<T

F(x1, y1, . . . , xk, yk)×
{ ∏k

i=0 Z
α;W,c
β̂,ĥ

(yi , xi+1)

Zα;W,c
β̂,ĥ

(0, T )

}

×
[ k∏

i=1

Cα

(xi − yi−1)1−α(yi − xi )1+α

]
T 1−α

(T − yk)1−α
dx dy, (3.2)

where we set y0 := 0, xk+1 := T and dx dy is a shorthand for dx1dy1 · · · dxkdyk .
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Denoting by PcN the law of the renewal process τ ∩ [0, N ] conditioned to visit N ,

PcN ( · ) := P(τ ∩ [0, N ] ∈ · | N ∈ τ), (3.3)

the pinning law Pω,c
N ,β,h can be written as follows (1.4), (1.9) and (1.21):

Pω,c
N ,β,h(τ )

PcN (τ )
:= 1

Zω,c
β,h (0, N )

e
∑N−1

n=1 (βωn−�(β)+h)1{n∈τ } . (3.4)

In particular, the law Pω,c
T N ,β,h reduces to P

c
T N for β = h = 0. In this special case, the

convergence IN → I is shown in the proof of PropositionA.8, (4.23) and the following
lines, exploiting the renewal decomposition (4.25) for IN . In the general case, with
Pω,c
T N ,β,h instead P

c
T N , we have a completely analogous decomposition, thanks to (3.4):

IN = 1

N 2k

∑

0≤a1≤Nt1

∑

Nt1<b1≤a2≤Nt2

· · ·
∑

Ntk−1<bk−1≤ak≤Ntk

∑

Ntk<bk≤NT

×F
(a1
N

,
b1
N

, . . . ,
ak
N

,
bk
N

)

×
{

k∏

i=1
eβN (ωai+ωbi )−2�(βN )+2hN

}{ ∏k
i=0 Z

ω,c
βN ,hN

(bi , ai+1)
Zω,c

βN ,hN
(0, NT )

}

×
[

k∏

i=1
N 2 u(ai − bi−1)K (bi − ai )

]
u(�NT  − bk)

u(�NT ) .

We stress that the difference with respect to (4.25) is only given by the two terms
in brackets appearing in the middle line. The first term in brackets converges to 1
as N → ∞, because max0≤n≤NT |ωn| = O(log N ) (as we already remarked in
§2.3). When we set ai = Nxi and bi = Nyi , the second term in brackets converges
to its analogue in (3.2) involving the continuum partition functions, for P-a.e. fixed
realization of (ω,W ) (thanks to our coupling), and is uniformly bounded by some
(random) constant, because the continuum partition functions are a.s. continuous and
strictly positive Theorem 2.4 (i). Since the convergence of (4.23)–(4.24) is shown by
a Riemann sum approximation, the convergence of (3.1)– (3.2) follows immediately,
completing the proof of point (2). ��

4 Key properties of the CDPM

In this section, we prove Theorems 1.4 and 1.5. The parameters α ∈ ( 12 , 1
)
, T > 0,

β̂ > 0 and ĥ ∈ R are fixed throughout the section. We use in an essential way the
continuum partition functions

(
Zα;W,c

β̂,ĥ
(s, t)

)
0≤s≤t≤T Theorems 2.1 and 2.4, and the

characterization of the CDPM quenched law Pα;W,c
T,β̂,ĥ

in terms of restricted f.d.d., given

in Theorem 1.6.
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Proof of Theorem 1.4 Assume that ĥ = 0, and recall definition (1.13) of the “reference
law”Pα;c

T .Wewill showat the end of the proof the following equality of twoprobability
measures on C:

E
[
Zα;W,c

β̂,0
(0, T )Pα;W,c

T,β̂,0
(·)] = Pα;c

T (·). (4.1)

Let us assume this for the moment.
By (4.1), if Pα;c

T (A) = 0 for some A ⊆ C, then Pα;W,c
T,β̂,0

(A) = 0 for P-a.e. W

(because Zα;W,c
β̂,0

(0, T ) > 0 a.s., by Theorem 2.4 (i)), hence E[Pα;W,c
T,β̂,0

(A)] = 0.

This shows that the law E[Pα;W,c
T,β̂,0

(·)] is absolutely continuous with respect to Pα;c
T (·),

proving Theorem 1.4 for ĥ = 0.
We now turn to the case ĥ �= 0. By Remark 2.2, the continuum partition functions(

Zα;W,c
β̂,ĥ

(s, t)
)
0≤s≤t≤T have a law that, for ĥ �= 0, is absolutely continuous with

respect to case ĥ = 0, with Radon-Nikodym density fT,β̂,ĥ(W ) given in (2.5). Since

the restricted f.d.d. of Pα;W,c
T,β̂,ĥ

are expressed in terms of continuum partition functions

(1.22), the two probability measures E[Pα;W,c
T,β̂,ĥ

(·)] and E[fT,β̂,ĥ(W )Pα;W,c
T,β̂,0

(·)] on C
have the same restricted f.d.d. and hence are identical, by Proposition A.6 (i). As
a consequence, if E[Pα;W,c

T,β̂,ĥ
(A)] = 0 for ĥ = 0, the same is true also for ĥ �= 0,

completing the proof of Theorem 1.4.
It remains to establish (4.1). Note that its LHS is indeed a probability law on C,

since E[Zα;W,c
β̂,0

(0, T )] = 1 by the Wiener-chaos expansion in (2.3) with ĥ = 0. It

suffices to show that the LHS and RHS in (4.1) have the same restricted f.d.d., by
Proposition A.6 (i), and this follows immediately from relations (1.19) and (1.22),
because E[Zα;W,c

β̂,0
(yi , xi+1)] = 1.

Lastly, we note that the α-stable regenerative set τ a.s. has Hausdorff dimension α

(see e.g. [5, Thm. III.15]), and the same holds a.s. under the conditioned measure Pα;c
T ,

which then carries over to the quenched law Pα;W,c
T,β̂,ĥ

of the CDPM, for a.e. realization

of W . ��
Proof of Theorem 1.5. Let us set

C0,T := {K ∈ C : 0, T ∈ K ⊂ [0, T ]}.

By construction, Pα;W,c
T,β̂,0

and Pα;c
T are probability measures on C0,T , equipped with

the Borel σ -algebra F . Recalling the definition (1.16) of the maps gt ,dt , for n ∈ N

let Fn be the σ -algebra on C0,T generated by g i
2n T

and d i
2n T

for 1 ≤ i ≤ 2n − 1.

Then (Fn)n∈N is a filtration on C0,T that generates the Borel σ -algebra F on C0,T , by
Lemma A.2.

Let f Wn : C0,T → [0,∞] be the Radon-Nikodym derivative of Pα;W,c
T,β̂,ĥ

with respect

to Pα;c
T on (C0,T ,Fn). If τ is a C0,T -valued random variable with law Pα;c

T , then

( f Wn (τ ))n∈N is a non-negativemartingale adapted to the filtration (Fn)n∈N, andPα;W,c
T,β̂,ĥ
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is singular w.r.t. Pα;c
T if and only if f Wn (τ )→ 0 a.s.. To prove Theorem 1.5, it suffices

to show that, under the joint law of τ and W ,

f Wn (τ ) −−−→
n→∞ 0 in probability , (4.2)

because we already know that the martingale limit limn→∞ f Wn (τ ) exists a.s..
We next identify f Wn (τ ). Without loss of generality, assume T = 1. To remove

duplicates among the random variables g i
2n
, d i

2n
, for 1 ≤ i ≤ 2n − 1, let us set

In(τ ) :=
{
2 ≤ i ≤ 2n − 1 : τ ∩

(
i−1
2n , i

2n

]
�= ∅

}
,

an, j (τ ) := min
{
τ ∩

[
j−1
2n ,

j
2n

]}
, bn, j (τ ) := max

{
τ ∩

[
j−1
2n ,

j
2n

]}
.

Then we claim that the following explicit expression for f Wn (τ ) holds:

f Wn (τ ) =
∏

j∈{1}∪In(τ )∪{2n} Z
α;W,c
β̂,ĥ

(an, j (τ ), bn, j (τ ))

Zα;W,c
β̂,ĥ

(0, 1)
. (4.3)

In order to prove it, first note that f Wn (τ ) must necessarily be a function of the vector

Vn(τ ) :=
(
g 1

2n
(τ ),

(
d j−1

2n
(τ ),g j

2n
(τ )
)
j∈In(τ )

, d1− 1
2n

(τ )
)

, (4.4)

because the variables g i
2n

(τ ), d i
2n

(τ ) for i /∈ In(τ ) are just repetitions of those in

Vn(τ ).3 Then observe that Vn(τ ) can be rewritten equivalently as

Vn(τ ) =
(
g 1

2n
(τ ), d 1

2n
(τ ),

(
g j

2n
(τ ),d j

2n
(τ )
)
j∈In(τ )

)
,

because if j < j ′ are consecutive points in In(τ ) then d j
2n

(τ ) = d j ′−1
2n

(τ ). Finally,

note that on the event In(τ ) = J , defining t1 := 1
2n and {t2, . . . , tk} := { j

2n } j∈J , the
density of the random vector Vn(τ ) (w.r.t. Lebesgue measure on R

2k) under Pα;c
1 is

given by (1.19), while under Pα;W,c
1,β̂,ĥ

is given by (1.22); then (4.3) follows comparing

(1.19) and (1.22).
Since Zα;W,c

β̂,0
(0, 1) > 0 a.s. by Theorem 2.4, relation (4.2) will follow by showing

that

Pα;c
1 − a.s., E

[(
f Wn (τ )Zα;W,c

β̂,ĥ
(0, 1)

)γ ] −→
n→∞ 0 for some γ ∈ (0, 1). (4.5)

3 The presence of g 1
2n

(τ ) and d1− 1
2n

(τ ) in (4.4) is due to the fact that 0 and T are accumulation points

of τ , Pα;c
1 (dτ )-a.s., hence τ ∩ (0, 1

2n ] �= ∅ and τ ∩ (1− 1
2n , 1] �= ∅.
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We can reduce to the case ĥ = 0 using Remark 2.2, in particular (2.5), writing

E
[(

f Wn (τ )Zα;W,c
β̂,ĥ

(0, 1)
)γ ] = E

[
f1,β̂,ĥ(W )

(
f Wn (τ )Zα;W,c

β̂,0
(0, 1)

)γ ]

≤ E
[
f1,β̂,ĥ(W )

p
p−1
] p−1

p E
[(

f Wn (τ )Zα;W,c
β̂,0

(0, 1)
)γ p]1/p

.

Choosing p ∈ (1,∞) close to 1, it suffices to prove (4.5) in the special case ĥ = 0.
Henceforth we fix ĥ = 0. For a given realization of τ , we note that the factors in

the numerator of (4.3) are independent, by Theorem 2.4 (i). Therefore

E
[(

f Wn (τ )Zα;W,c
β̂,0

(0, 1)
)γ ] =

∏

j∈{1}∪In(τ )∪{2n}
E
[(
Zα;W,c

β̂,0
(an, j (τ ), bn, j (τ ))

)γ ]

=
∏

j∈{1}∪In(τ )∪{2n}
E
[(
Zα;W,c

β̂n, j (τ ),0
(0, 1)

)γ ]
, (4.6)

where we set β̂n, j (τ ) := β̂(bn, j (τ ) − an, j (τ ))α−1/2 and we used the translation

invariance and scaling property of Zα;W,c
β̂,0

(·, ·) established in Theorem 2.4 (ii)–(iii).

We claim that for any γ ∈ (0, 1
2

)
there exists c = c(γ ) > 0 such that for β̂ > 0

sufficiently small,

E
[(
Zα;W,c

β̂,0
(0, 1)

)γ ] ≤ 1− cβ̂2 ≤ e−cβ̂2
. (4.7)

Substituting this bound into (4.6) then gives

logE
[(

f Wn (τ )Zα;W,c
β̂,0

(0, 1)
)γ ] ≤ −cβ̂2

∑

j∈{1}∪In(τ )∪{2n}
(bn, j (τ )− an, j (τ ))2α−1.

The RHS diverges Pα;c
1 (dτ )-a.s. as n→∞, because {[an, j (τ ), bn, j (τ )]} j∈{1}∪In∪{2n}

is a covering of τ with balls of diameter atmost 2−n , and τ a.s. hasHausdorff dimension
α, which is strictly larger than 2α − 1 for α ∈ ( 12 , 1). The divergence follows from
the definition of the Hausdorff dimension (see e.g. [5, Section III.5].

Lastly we prove (4.7). By (2.3), we have the representation

Zα;W,c
β̂,0

(0, 1) = 1+
∞∑

k=1
β̂kYk ,

where Yk is a random variable in the k-th order Wiener chaos expansion, and we recall
that the series converges in L2 for all β̂ > 0. By Taylor expansion, there exist ε,C > 0
such that

(1+ x)γ ≤ 1+ γ x − Cx2 for all |x | ≤ ε.
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For later convenience, let us define

S
β̂
:=

∞∑

k=1
β̂kYk , T

β̂
:=

∞∑

k=2
β̂kYk .

We then obtain

E
[(
Zα;W,c

β̂,0
(0, 1)

)γ ] = E
[
(1+ S

β̂
)γ1{|S

β̂
|≤ε}
]+ E

[
(1+ S

β̂
)γ1{|S

β̂
|>ε}
]

≤ 1+ γE[S
β̂
1{|S

β̂
|≤ε}] − CE[S2

β̂
1{|S

β̂
|≤ε}] + E[1+ S

β̂
]γP(|S

β̂
| ≥ ε)1−γ

= 1− CE[S2
β̂
] + {− γE[S

β̂
1{|S

β̂
|>ε}] + CE[S2

β̂
1{|S

β̂
|>ε}] + P(|S

β̂
| ≥ ε)1−γ

}
,

(4.8)

having used the fact that E[S
β̂
] = 0 in the last line. Observe that

E[S2
β̂
] =

∞∑

k=1
β̂2kE[Y 2

k ] = E[Y 2
1 ]β̂2 + O(β̂4) as β̂ ↓ 0 ,

hence the first two terms in (4.8) give the correct asymptotic behavior (4.7). It remains
to show that the three terms in brackets are o(β̂2). Note that

E[T 2
β̂
] =

∞∑

k=2
β̂2kE[Y 2

k ] = O(β̂4) ,

and moreover E[Y 4
1 ] ≤ (const.)E[Y 2

1 ]2 < ∞, by the hyper-contractivity of Wiener
chaos expansions (see e.g. [22, Thm. 3.50]). Writing S

β̂
= β̂Y1 + T

β̂
, we obtain

P(|S
β̂
|≥ε) ≤ P(|β̂Y1| ≥ 1

2ε)+P(|T
β̂
| ≥ 1

2ε) ≤
( 2

ε

)4E[Y 4
1 ]β̂4+( 2

ε

)2
E[T 2

β̂
]=O(β̂4).

Since E[S2
β̂
] = O(β̂2), we can also write

∣∣E[S
β̂
1{|S

β̂
|>ε}]

∣∣ ≤ E[S2
β̂
]1/2 P(|S

β̂
| > ε)1/2 = O(β̂3),

and analogously

E[S2
β̂
1{|S

β̂
|>ε}] ≤ 2E[(β̂Y1)21{|S

β̂
|>ε}] + 2E[T 2

β̂
1{|S

β̂
|>ε}]

≤ 2β̂2
E[Y 4

1 ]1/2 P(|S
β̂
| > ε)1/2 + 2E[T 2

β̂
] = O(β̂4).

The terms in bracket in (4.8) are thus O(β̂3)+ O(β̂4)+ O(β̂4(1−γ )), which is o(β̂2)

provided we choose 4(1− γ ) > 2, i.e. γ < 1
2 . This concludes the proof of (4.5) and

Theorem 1.5. ��
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Appendix A: Random closed subsets of R

In this section, we give a self-contained account of the theoretical background needed
to study random closed sets of R.

A.1 Closed subsets of R

We denote by C the class of all closed subsets of R (including the empty set):

C := {C ⊆ R : C is closed}. (4.9)

We equip the set C with the so-called Fell–Matheron topology, built as follows.
We first compactify R by defining R := R ∪ {±∞}, equipped with the metric

d(x, y) = | arctan(y)− arctan(x)| for all x, y ∈ R. (4.10)

The Hausdorff distance of two compact non-empty subsets K , K ′ ⊆ R is defined by

dH(K , K ′) := max
{
sup
x∈K

d(x, K ′) , sup
x ′∈K ′

d(x ′, K )
}
, (4.11)

where d(a, B) := infb∈B d(a, b). (Note that dH (K , K ′) ≤ ε if and only if for each
x ∈ K there is x ′ ∈ K ′ with d(x, x ′) ≤ ε, and vice versa switching the roles of K and
K ′.)

Coming back to C, one can identify a closed subset C ⊆ R with the compact
non-empty subset C ∪ {±∞} ⊆ R. This allows to define a metric dFM on C:

dFM(C,C ′) := dH(C ∪ {±∞},C ′ ∪ {±∞}), C,C ′ ∈ C. (4.12)

The topology induced by the distance dFM on C is called the Fell–Matheron topology
[24, Prop. 1-4-4 and Remark on p.14]. Since the metric space (C, dFM) is compact
(hence separable and complete) [24, Th. 1-2-1], it follows that C is a Polish space.

Remark A.1 By (4.11)–(4.12), Cn → C in C if and only if the following conditions
hold:

• for every open set G ⊆ R with G ∩ C �= ∅, one has G ∩ Cn �= ∅ for large n;
• for every compact set K ⊆ R with K ∩ C = ∅, one has K ∩ Cn = ∅ for large n.
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We also observe that the Fell–Matheron topology on closed subsets can be studied for
more general topological space, together with the topology induced by the Hausdorff
metric (4.11) on compact non-empty subsets (calledmyope topology): formore details,
we refer to [24], [25, Appendixes B and C] and [30, Appendix B].

A.2 Finite-dimensional distributions

The space C is naturally equipped with the Borel σ -algebra B(C) generated by the
open sets. By random closed subset of R we mean any C-valued random variable
X . We are going to characterize the law of X , which is a probability measure on C,
in terms of suitable finite-dimensional distributions, which provide useful criteria for
convergence in distribution.

To every element C ∈ C we associate two non-decreasing and right-continuous
functions t �→ gt (C) and t �→ dt (C), defined for t ∈ R with values in R as follows:

gt (C) := sup{x : x ∈ C, x ≤ t}, dt (C) := inf{x : x ∈ C, x > t} (4.13)

(where sup∅ := −∞ and inf ∅ := +∞). Note that either function determines the set
C , because t ∈ C if and only if gt (C) = t if and only if dt−(C) = t . It is therefore
natural to describe a random closed set X in terms of the random functions t �→ gt (X)

and t �→ dt (X).
For convenience, we state results for both g and d, even if one could focus only on

one of the two. We start with some basic properties of the maps gt (·) and dt (·).
Lemma A.2 For every t ∈ R, consider gt (·) and dt (·) as maps from C to R.

(i) These maps are measurable with respect to the Borel σ -algebra B(C), and they
generate it as the index t ranges in a dense set T ⊆ R, i.e. B(C) = σ((gt )t∈T ) =
σ((dt )t∈T ).

(ii) These maps are not continuous on C. In fact, the map gt (·) is continuous at C ∈ C
if and only if the function g·(C) is continuous at t . The same holds for dt (·).

Given a C-valued random variable X , we call g-finite-dimensional distributions
(g-f.d.d.) of X the laws of the random vectors (gt1(X), . . . ,gtk (X)), for k ∈ N

and t1, . . . , tk ∈ R. Analogously, we call d-f.d.d. the laws of the random vectors
(dt1(X), . . . ,dtk (X)). We simply write f.d.d. to mean either g-f.d.d. or d-f.d.d., or
both, when no confusion arises.

Since X is determined by the functions t �→ gt (X) and t �→ dt (X), it is not
surprising that the law of X on C is uniquely determined by its f.d.d., and that criteria
for convergence in distribution Xn ⇒ X of C-valued random variables can be given
in terms of f.d.d.. Some care is needed, however, because the maps gt (·) and dt (·) are
not continuous on C. For this reason, given a C-valued random variable X , we denote
by Ig(X) the subset of those t ∈ R for which the function s �→ gs(X) is continuous
at s = t with probability one:

Ig(X) := {t ∈ R : P(gt−(X) = gt (X)
) = 1

}
. (4.14)

One defines Id(X) analogously. We then have the following result.
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Proposition A.3 (Characterization and convergence via f.d.d.) Let (Xn)n∈N, X be
C-valued random variables.

(i) The set Ig(X) is cocountable, i.e. R\Ig(X) is at most countable.
(ii) The law of X is determined by its g-f.d.d. with indices t1, . . . , tk in a dense set

T ⊆ R.
(iii) Assume that Xn ⇒ X. Then the g-f.d.d. of Xn with indices in the cocountable set

Ig(X) converge weakly to theg-f.d.d. of X: for all k ∈ N and t1, . . . , tk ∈ Ig(X),

(gt1(Xn), . . . ,gtk (Xn))⇒ (gt1(X), . . . ,gtk (X)).

(iv) Assume that the g-f.d.d. of Xn with indices in a set T ⊆ R with full Lebesgue
measure converge weakly: for k ∈ N, t1, . . . , tk ∈ T there are measures μt1,...,tk

on R
k
such that

(gt1(Xn), . . . ,gtk (Xn))⇒ μt1,...,tk .

Then there is a C-valued random variable X such that Xn ⇒ X. In particular,
the g-f.d.d. of X with indices in the set T ∩ Ig(X) are given by μt1,...,tk .

The same conclusions hold replacing g by d.

Remark A.4 In Proposition A.3 (iv) it is sufficient that T has uncountably many points
in every non-empty open interval (a, b) ⊆ R, as the proof shows. In fact, arguing as
in [14, Th. 7.8 in Ch. 3], it is even enough that T is dense in R (in which case the
f.d.d. of X must be recovered from μt1,...,tn by a limiting procedure, since T ∩ Ig(X)

could be empty).

Remark A.5 The map C �→ (gt (C))t∈R allows one to identify C with a class of
functions D0 that can be explicitly described:

D0 := { f : R→ R ∪ {−∞} : f (t) ≤ t and f (t+) = f (t), ∀ t ∈ R;
if f (t) < u for some u < t, then f (u) = f (t)}. (4.15)

The functions in D0 are non-decreasing and right-continuous, hence càdlàg, and it
turns out that the Fell–Matheron topology on C corresponds to the Skorokhod topology
on D0. As a matter of fact, given the structure of D0, convergence fn → f in the
Skorokhod topology is equivalent to pointwise convergence fn(x) → f (x) at all
continuity points x of f .

We do not prove these facts, because we do not use them directly. However, as the
reader might have noticed, the key results of this section are translations of analogous
results for the Skorokhod topology [6,14,21].

A.3 Restricted finite-dimensional distributions

It turns out that, in order to describe the f.d.d. of a C-valued random variable X , say
the law of (gt1(X), . . . ,gtk (X)), with −∞ < t1 < · · · < tk < +∞, it is sufficient to

123



The continuum disordered pinning model 49

focus on the event

AX
t1,...,tk := {X ∩ (t1, t2] �= ∅, X ∩ (t2, t3] �= ∅, . . . , X ∩ (tk−1, tk] �= ∅}. (4.16)

We thus define the restricted g-f.d.d. of X as the laws of the vectors (gt1(X), . . . ,

gtk (X)) restricted on the event AX
t1,...,tk . These are sub-probabilities, i.e. measures

with total mass P(AX
t1,...,tk ) ≤ 1, and we equip them with the usual topology of weak

convergence with respect to bounded and continuous functions. One defines analo-
gously the restricted d-f.d.d. of X . We can then rephrase Proposition A.3 as follows.

Proposition A.6 (Characterization andconvergencevia restricted f.d.d.)Let (Xn)n∈N,
X be C-valued random variables.

(i) The law of X is determined by its restricted g-f.d.d. with indices in a dense set
T ⊆ R.

(ii) Assume that Xn ⇒ X. Then the restricted g-f.d.d. of Xn with indices in the
cocountable set Ig(X) ∩ Id(X) converge weakly to those of X.

(iii) Assume that the restricted g-f.d.d. of Xn with indices in a set T ⊆ R with full

Lebesgue measure converge weakly to some measures μrest
t1,...,tk on R

k
. Then there

is a C-valued random variable X such that Xn ⇒ X. In particular, the restricted
g-f.d.d. of X with indices in the set T ∩ Ig(X) ∩ Id(X) are given by μrest

t1,...,tk .

The same conclusions hold replacing g by d.

Remark A.7 Note that X ∩ (s, t] �= ∅ if and only if s ≤ ds(X) ≤ gt (X) ≤ t .
Recalling the definition (1.18) of the setR(k)

t0,t1,...,tk ,tk+1 , the event A
X
t1,...,tk in (4.16) can

be rewritten as

AX
t1,...,tk =

{
(gt1(X),dt1(X), . . . ,gtk (X),dtk (X)) ∈ R(k)

−∞,t1,...,tk ,∞
}
. (4.17)

Also note that, in case X ⊆ [a, b] a.s., it is enough to specify the restricted f.d.d.
with indices ti ∈ [a, b], using correspondingly R(k)

a,t1,...,tk ,b
instead of R(k)

−∞,t1,...,tk ,∞
in (4.17).

A.4 The α-stable regenerative set

For each α ∈ (0, 1) there is a universal random closed set τ of [0,∞), called the
α-stable regenerative set. Its probability law Pα on C is then characterized by the
following restricted f.d.d. densities: for all k ∈ N and 0 < t1 < · · · < tk <∞, setting
y0 := 0 and Cα := α sin(πα)

π
,

Pα
(
gt1(τ ) ∈ dx1, dt1(τ ) ∈ dy1, . . . , gtk (τ ) ∈ dxk, dtk (τ ) ∈ dyk

)

dx1 dy1 · · · dxk dyk

= fαt1,...,tk (x1, y1, . . . , xk, yk) :=
k∏

i=1

Cα

(xi − yi−1)1−α (yi − xi )1+α
, (4.18)
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restricting (x1, y1, . . . , xk, yk) in the set R(k)
0,t1,...,tk ,∞ ⊆ R

2k (4.17)–(1.18).
The α-stable regenerative set can be characterized in many ways (e.g., as the zero

level set of a Bessel process of dimension δ := 2(1−α) ∈ (0, 2) [27], or as the closure
of the range of the α-stable subordinator [16]). One of the most expressive is to view
it as the universal scaling limit of discrete renewal processes: for any renewal process
τ := (τn)n∈N0 on N0 satisfying (1.1), the rescaled random set τ/N (1.2), viewed as a
C-valued random variable, converges in distribution as N → ∞ toward the α-stable
regenerative set.

This can be shown using the general theory of regenerative sets [16], but it is
instructive to prove it directly, as an application of Proposition A.6 (which shows,
as a by-product, that the restricted f.d.d. (4.18) define indeed a probability law on
C). We spell this out in the conditioned case, which is more directly linked to our
main results, but the proof for the unconditioned case is analogous (and actually
simpler).

Proposition A.8 (Characterization and universality of α-stable regenerative set)
Let τ := (τn)n∈N0 be a renewal process onN0 satisfying (1.1), for some α ∈ (0, 1).

For fixed T > 0, the rescaled random set τ/N∩[0, T ] (1.2), conditioned on �T N ∈ τ ,
converges in distribution as N → ∞ to the probability law Pα;c

T of the α-stable
regenerative set τ ∩ [0, T ] conditioned on T ∈ τ (1.13). This law is characterized
by the following restricted f.d.d.: for all k ∈ N and 0 < t1 < · · · < tk < T , and for
(x1, y1, . . . , xk, yk) in the setR(k)

0,t1,...,tk ,T
⊆ R

2k (4.17) and (1.18),

Pα;c
T

(
gt1(τ ) ∈ dx1, dt1(τ ) ∈ dy1, . . . ,gtk (τ ) ∈ dxk, dtk (τ ) ∈ dyk

)

= fα;cT ;t1,...,tk (x1, y1, . . . , xk, yk) := fαt1,...,tk (x1, y1, . . . , xk, yk)
T 1−α

(T − yk)1−α
,

(4.19)

where fαt1,...,tk (·) are the f.d.d. densities of the α-stable regenerative set (4.18).

Proofs

We now give the proofs of the results stated in the previous subsections.

Proof of Lemma A.2 We start proving part (ii). Fix C ∈ C and t ∈ R and recall
Remark A.1. If the function g·(C) is not continuous at t , i.e. gt−(C) < gt (C),
definingCn := C+ 1

n (i.e. translatingC to the right by 1
n ) one hasCn → C as n→∞,

but gt (Cn) = gt− 1
n
(C) + 1

n → gt−(C) �= gt (C). Thus gt (·) is not continuous at
C .

Assume now that g·(C) is continuous at t . We set s := gt (C) and distinguish two
cases.

• If s < t , then t /∈ C by (4.13). Assume for simplicity that s > −∞ (the case
s = −∞ is analogous). For ε > 0 small one has (s − ε, s + ε) ∩ C �= ∅, while
[s+ε, t]∩C = ∅. IfCn → C , then (s−ε, s+ε)∩Cn �= ∅ and [s+ε, t]∩Cn = ∅
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for large n, hence gt (Cn) ∈ (s − ε, s + ε). This shows that gt (Cn)→ gt (C), i.e.,
gt (·) is continuous at C .
• If s = t , since gt−(C) = gt (C) = t , for every ε > 0 one has (t − ε, t) ∩ C �= ∅.
If Cn → C , then (t − ε, t) ∩ Cn �= ∅ for large n, hence gt (Cn) ∈ (t − ε, t). This
shows that gt (Cn)→ gt (C), that is, gt (·) is continuous at C .

Thus gt (·) is continuous at C ∈ C if and only if g·(C) is continuous at t , proving part
(ii).

We now turn to part (i). Defining Gt;m,ε(C) := 1
ε

∫ t+ε

t max{gs(C),−m} ds, we
can write gt (C) = limm→∞ limn→∞ Gt;m,1/n(C) for all t ∈ R and C ∈ C. The
measurability of gt (·) will follow if we show that Gt;m,ε(·) is continuous, and hence
measurable. If Cn → C in C, we know that gs(Cn)→ gs(C) at continuity points s of
the non-decreasing function g·(C), hence for Lebesgue a.e. s ∈ R. Since gs(C) ≤ s,
dominated convergence yields Gt;m,ε(Cn)→ Gt;m,ε(C) as n→∞, i.e. the function
Gt;m,ε(·) is continuous on C.

Finally, setting B′ := σ((gt )t∈T ), where T ⊆ R is a fixed dense set, the mea-
surability of the maps gt (·) yields B′ ⊆ B(C). If we exhibit measurable maps
ψn : (C,B′) → (C,B(C)) such that C = limn→∞ ψn(C) in C, for all C ∈ C, it
follows that the identity map ψ(C) := C is measurable from (C,B′) to (C,B(C)), as
the pointwise limit of ψn , hence B(C) ⊆ B′.

Extracting a countable dense set {ti }i∈N ⊆ T , we define ψn(C) := {gt1(C), . . . ,

gtn (C)} ∩ R, so that ψn(C) is a finite subset of R and ψn(C) → C in C. Since
gt (·) is a measurable map from (C,B′) to R and (x1, . . . , xn) �→ {x1, . . . , xk} ∩ R

is a continuous, hence measurable, map from R
k
to (C,B(C)), it follows that ψn :

(C,B′)→ (C,B(C)) is measurable. ��

Proof of Proposition A.3. Since the path t �→ gt (X) is increasing and right-
continuous, its discontinuity points t , at whichgt (X) �= gt−(X), are at most countably
many, a.s.. The corresponding fact that P(gt (X) �= gt−(X)) > 0 is possible for at
most countably many t follows by a classilcal argument, see e.g. [6, Section 13]. This
proves part (i).

The proof of part (ii) is an easy consequence of Lemma A.2. A generator for
the Borel σ -algebra B(C) is given by sets of the form {C ∈ C : gt1(C) ∈
A1, . . . ,gtk (C) ∈ Ak}, for k ∈ N, t1, . . . , tk ∈ T and A1, . . . , Ak Borel subsets
of B. Note that such sets are a π -system, i.e. they are closed under finite intersections.
It is then a standard result that any probability on (C,B(C)) — in particular, the dis-
tribution of any C-valued random variable X — is characterized by its values on such
sets, i.e. by its finite-dimensional distributions.

We now turn to part (iii). If Xn ⇒ X on C, by Skorokhod’s Representation Theorem
[6, Th.6.7] we can couple Xn and X so that a.s. Xn → X in C. If ti , . . . , tk ∈ Ig(X),
the maps gti (·) are a.s. continuous at X , by Lemma A.2 (ii), hence one has the a.s.
convergence (gt1(Xn), . . . ,gtk (Xn)) → (gt1(X), . . . ,gtk (X)), which implies weak
convergence of the f.d.d..

We finally prove part (iv). Since C is a compact Polish space, every sequence
(Xn)n∈N of C-valued random variables is tight, and hence relatively compact for the
topology of convergence in distribution [6, Th.2.7].We can then extract a subsequence
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Xnk converging in distribution to some C-valued random variable X . To show that the
whole sequence Xn converges to X , by [6, Th.2.6] it is enough to show that for any
other converging subsequence Xn′k ⇒ X ′, the random variables X and X ′ have the
same distribution.

By assumption, the f.d.d. of Xn with indices t1, . . . , tk in a set T ⊆ R with full
Lebesgue measure converge to μt1,...,tk . Since Xnk ⇒ X , the f.d.d. of X are given by
μt1,...,tk for indices in T ∩ Ig(X), by part (iii); analogously, the f.d.d. of X ′ are given
by μt1,...,tk for indices in T ∩Ig(X ′). Thus X and X ′ have the same f.d.d. with indices
in T ∩ Ig(X) ∩ Ig(X ′). Since this set is dense, X and X ′ have the same distribution,
by Proposition A.3 (ii). ��
Proof of Proposition A.6 We start proving part (i). Fix a C-valued random vari-

able X and let μt1,...,tk (dx1, . . . , dxk) be the g-f.d.d. of X , i.e. the law on R
k
of

(gt1(X), . . . ,gtk (X)). Analogously, let μrest
t1,...,tk (dx1, . . . , dxk) be the restricted g-

f.d.d. of X (4.16)–(4.17). Since X ∩ (s, t] �= ∅ if and only if gt (X) ∈ (s, t], the
restricted f.d.d. μrest

t1,...,tk is just the f.d.d. μt1,··· ,tk restricted on the subset [−∞, t1] ×
(t1, t2] × · · · × (tk−1, tk]:

μrest
t1,...,tk (dx1, . . . , dxk) = μt1,...,tk (dx1, . . . , dxk)

k∏

i=2
1{xi∈(ti−1,ti ]}. (4.20)

To prove that the f.d.d. can be recovered from the restricted f.d.d., we show that
μt1,...,tk (·) can be written as a mixture of μrest

I (·), as I ranges in the subsets of
{t1, . . . , tk}. For k = 1 there is nothing to prove, sinceμt1 = μrest

t1 , so we assume k ≥ 2
henceforth. We associate to X the (possibly empty) subset B(X) ⊆ {1, . . . , k − 1}
defined by

B(X) := { j ∈ {1, . . . , k − 1} : X ∩ (t j , t j+1] �= ∅
}
.

Performing a decomposition over the possible values of B(X), we can write

μt1,...,tk (dx1, . . . , dxk) =
∑

B⊆{2,...,k}
P(gt1(X) ∈ dx1, . . . , gtk (X) ∈ dxk, B(X) = B).

(4.21)
It remains to express each term in the right hand side in terms of restricted f.d.d..

We first consider the case B = ∅. On the event {B(X) = ∅} = {X ∩ (t1, tk] = ∅}
we have gt1(X) = · · · = gtk (X) ≤ t1. Recalling that μt = μrest

t , we can write

P(gt1(X) ∈ dx1, . . . , gtk (X) ∈ dxk, B(X) = ∅)

= P(gtk (X) ∈ dxk) 1{xk≤t1}
k−1∏

i=1
δxk (dxi ) = μrest

tk (dxk) 1{xk≤t1}
k−1∏

i=1
δxk (dxi ),

and this expression depends only on the restricted f.d.d..
If B �= ∅, we can write B = { j1, . . . , j�} with 1 ≤ � ≤ k − 1 and 1 ≤ j1 <

. . . < j� ≤ k − 1. Let us also set j0 := 0 and j�+1 := k. On the event {B = B},
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we have gt jn−1+1(X) = gt jn−1+2(X) = . . . = gt jn (X) ∈ (t jn−1 , t jn−1+1], for every
n = 1, . . . , �+ 1, therefore

P(gt1(X) ∈ dx1, . . . , gtk (X) ∈ dxk, B(X) = { j1, . . . , j�})

= P

( �+1⋂

n=1

{
gt jn (X) ∈ dx jn

})
⎧
⎨

⎩

�+1∏

n=1
1{x jn∈(t jn−1 ,t jn−1+1]}

( jn−1∏

m= jn−1+1
δx jn (dxm)

)
⎫
⎬

⎭
,

(4.22)

where we set (t0, · ] := [−∞, · ] and the product over m equals one when
jn − jn−1 = 1. The first term in the right hand side of (4.22) is the f.d.d.
μt j1 ,...,t j�+1 (dx j1 , . . . , dx j�+1). However, by (4.20), this coincides with the restricted

f.d.d. μrest
t j1 ,...,t j�+1

(dx j1 , . . . , dx j�+1), because each variable x jn is restricted on

(t jn−1 , t jn−1+1] ⊆ (t jn−1 , t jn ]. Part (i) is thus proved.
For part (ii), we proceed as in the proof of Proposition A.3 (iii). If Xn ⇒ X on C, we

couple Xn and X so that a.s. Xn → X in C, by Skorokhod’s Representation Theorem.
On the event that g·(X) is continuous at t , if X ∩ (s, t] �= ∅ then also X ∩ (s, t) �= ∅,
which implies Xn ∩ (s, t) �= ∅ for large n (Remark A.1). Analogously, on the event
that d·(X) is continuous at s, if X ∩ (s, t] = ∅ then also X ∩ [s, t] = ∅, which implies

Xn ∩[s, t] = ∅ for large n. Therefore, if t1, . . . , tk ∈ Ig(X)∩Id(X) and f : Rk → R

is bounded and continuous,

f
(
gt1(Xn), . . . ,gtk (Xn)

)
1{Xn∩(ti−1,ti ]�=∅, ∀i=2,...,k}

a.s.−−−−→
n→∞ f

(
gt1(X), . . . ,gtk (X)

)
1{X∩(ti−1,ti ]�=∅, ∀i=2,...,k}.

Taking expectations of both sides, dominated convergence shows that the restricted
f.d.d. of Xn with indices in Ig(X) ∩ Id(X) converge weakly toward the restricted
f.d.d. of X .

Finally, the proof of part (iii) is analogous to that of Proposition A.3 (iv). Any
sequence Xn of C-valued random variable is tight, hence it suffices to show that
if Xnk , Xn′k are subsequences converging in distribtion to X , X ′ respectively, then
X and X ′ have the same law. Since the restricted g-f.d.d. of Xn with indices in T
converge, X and X ′ have the same restricted g-f.d.d. with indexes in the dense set
T ∩ Ig(X) ∩ Id(X) ∩ Ig(X ′) ∩ Id(X ′), by part (ii). It follows by part (i) that X and
X ′ have the same law. ��

Proof of Proposition A.8 By Proposition A.6 (iii), it is enough to prove the conver-
gence of restricted f.d.d.: for all k ∈ N, 0 < t1 < . . . < tk < T and for every bounded
and continuous function F : R2k → R, recalling (4.16)–(4.17) and (3.3), we show
that the integral

IN := Ec
N

[
F
(
gt1(τ/N ), dt1(τ/N ), . . . ,gtk (τ/N ),dtk (τ/N )

)
1
Aτ/N
t1,...,tk

]
(4.23)
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converges as N → ∞ to the integral of F with respect to the density fα;cT ;t1,...,tk in
(4.19), i.e.

I :=
∫
· · ·
∫

0<x1<t1<y1<x2<t2
<···<xk<tk<yk<T

F(x1, y1, . . . , xk, yk)

×
[ k∏

i=1

Cα

(xi − yi−1)1−α(yi − xi )1+α

]
T 1−α

(T − yk)1−α
dx dy , (4.24)

where y0 := 0 and dx dy is a shorthand for dx1dy1 · · · dxkdyk .
Recall that u(i) := P(i ∈ τ) and K (i) := P(τ1 = i). A renewal decomposition

yields

IN = 1

N 2k

∑

0≤a1≤Nt1

∑

Nt1<b1≤a2≤Nt2

· · ·
∑

Ntk−1<bk−1≤ak≤Ntk

∑

Ntk<bk≤NT

× F
(a1
N

,
b1
N

, . . . ,
ak
N

,
bk
N

)

×
[

k∏

i=1
N 2 u(ai − bi−1)K (bi − ai )

]
u(�NT  − bk)

u(�NT ) , (4.25)

where we write the factor 1
N2k (which cancels with the product of the N 2 inside the

square brackets) to make IN appear as a Riemann sum. Setting xi = ai/N , yi = bi/N
for 1 ≤ i ≤ k, the summand converges pointwise to the integrand in (4.24), since by
(1.1) and (2.10)

∀ z > 0 : K (�Nz) ∼ L(Nz)

(Nz)1+α
, u(�Nz) ∼ Cα

L(Nz)(Nz)1−α
, as N →∞.

To conclude that IN converges to the integral I in (4.24), we provide a suitable
domination. ByPotter bounds [8, Theorem1.5.6], for every ε > 0 there is a constant Dε

such that L(m)/L(�) ≤ Dε max{(m/�)ε, (�/m)ε} for all �,m ∈ N. Since (yi − xi ) ≤
T , (xi − yi−1) ≤ T and max{α, β} ≤ αβ for α, β ≥ 1, we can write

L(bi − ai )

L(ai − bi−1)
≤ Dε max

{
(yi − xi )ε

(xi − yi−1)ε
,
(xi − yi−1)ε

(yi − xi )ε

}
≤ Dε T 2ε

(xi − yi−1)ε(yi − xi )ε
,

L(�NT )
L(�NT  − bk)

≤ Dε

T ε

(T − yk)ε
.

It follows that, for every ε > 0, the summand in IN is bounded uniformly in N by

C(T, ε)

[
k∏

i=1

1

(xi − yi−1)1−α+ε(yi − xi )1+α+ε

]
1

(T − yk)1−α+ε
. (4.26)
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It remains to show that, if we choose ε > 0 sufficiently small, this function has finite
integral over the domain of integration in (4.24). Let us setη := mini=1,...,k+1(ti−ti−1)
and

δi := xi − yi−1 for i = 1, . . . , k + 1, δ′i := yi − xi for i = 1, . . . , k,

where t0 = y0 := 0 and xk+1 = tk+1 := T . Each of the quantities δi , δ′i can be
smaller or larger than η/3, and we split the integral of (4.26) accordingly, as a sum
of 22k+1 terms. Note that if δi < η/3, either δ′i−1 or δ′i must exceed η/3 (because
xi−1 < ti−1 < ti < yi and ti − ti−1 ≥ η). Whenever any δi or δ′i exceeds η/3, we
replace them by η/3, getting an upper bound. This yields a factorization into a product
of just four kind of basic integrals, i.e.

∫
· · ·
∫

yi−1<xi<ti<yi<xi+1
xi−yi−1< η

3 , yi−xi< η
3 , xi+1−yi< η

3

dyi−1
(xi − yi−1)1−α+ε

dxi dyi
(yi − xi )1+α+ε

dxi+1
(xi+1 − yi )1−α+ε

,

and the analogous ones without the integration over yi−1 and/or xi+1. The finiteness
of such integrals is easily checked if ε > 0 is small (so that 1 − α + ε < 1 and
1+ α + ε < 2). ��

Appendix B: Renewal estimates

In this section we show that assumption (1.7) holds true for renewal processes satis-
fying (1.1), under either of the following assumptions:

• α > 1 (in particular, the renewal process has finite mean);
• the renewal process is generated by a Bessel-like Markov chain, in the spirit of
[2].

Actually, it can be shown that condition (1.7) is satisfied in much greater generality,
e.g. when one has an analogue of (1.7), but with u(·) replaced by the renewal kernel
K (·). This renewal-theoretic framework falls out of the scope of the present work and
will be treated elsewhere.

Let us, now, verify (1.7) in the two cases, mentioned above. Note that the precise
value of ε > 0 therein is immaterial: if ε′n ≤ � ≤ εn for 0 < ε′ < ε, relation (1.7) is
always satisfied (with δ = 1), as it follows by (2.10). We then set ε = 1

4 for simplicity
and rewrite (1.7) as

∃C, n0 ∈ (0,∞), δ ∈ (0, 1] :
∣∣∣∣
u(n + �)

u(n)
−1

∣∣∣∣ ≤ C

(
�

n

)δ

∀n ≥ n0, 0 ≤ � ≤ n

4
.

(4.27)

Lemma B.1 Let τ be a non-terminating renewal process satisfying (1.1), with α > 1.
Then (4.27) holds true.
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Proof In the case α > 1, by (1.1) we have E[τη
1 ] <∞ for some η > 1. We can then

apply the following result of Rogozin [28]:

u(n) = P(n ∈ τ) = 1

E[τ1] +
1

E[τ1]2
∞∑

k=n+1
P(τ1 > k)+ Rn,

where Rn = o(n−2(η−1)) if η ∈ (1, 2), and Rn = o(n−η) if η ≥ 2, as n →∞. Note
that, for any α′ ∈ (1, α), by (1.1) we can choose C such that for all k ∈ N0

P(τ1 > k) =
∞∑

n=k+1

L(n)

n1+α
≤

∞∑

n=k+1

C

n1+α′ ≤
C ′

kα′ .

It follows that for n ∈ N large enough and 0 ≤ � ≤ n
4

∣∣∣∣
u(n + �)

u(n)
− 1

∣∣∣∣ =
∣∣∣∣
u(n)− u(n + �)

u(n)

∣∣∣∣

≤ C

(
n+�∑

k=n+1
P(τ1 > k)+ 1

n2(η−1)
+ 1

(n + �)2(η−1)

)

≤ C ′
( �

nα′ +
1

n2(η−1)
)
≤ C ′′

( �

n

)1∧(2η−2)
.

This establishes (4.27) with δ = 1 ∧ (2η − 2). ��
Lemma B.2 Let τ be a non-terminating renewal process satisfying (1.1), with α ∈
(0, 1), such that 2τ1 has the same distribution as the first return to zero of a nearest-
neighbor Markov chain on N0 with ±1 increments (Remark 1.2). Then (4.27) holds
true.

Proof Let X and Y be two copies of such a Markov chain, starting at the origin at
times −2� and 0 respectively, so that

u(n + �) = P(X2n = 0) and u(n) = P(Y2n = 0).

(Although Xn is defined for n ≥ −2�, we only look at it for n ≥ 0.) We can couple
X and Y such that they are independent until they meet, at which time they coalesce.
Since X and Y are nearest neighbor walks, X2n = 0 implies Y2n = 0, and

0 ≤ P(Y2n = 0)− P(X2n = 0) = u(n)− u(n + �)

= P(Y2n = 0 �= X2n) = P(Y2n = 0, Xt �= 0 ∀ t ∈ [0, 2n])

≤ P(Y2n = 0)P(Xt �= 0 ∀ t ∈ [0, 2n]) ≤ u(n)

�−1∑

k=0
u(k)P(τ1 > n + �− k)

≤ u(n)P(τ1 > n)

�−1∑

k=0
u(k),
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where by the properties of regularly varying functions, see [8, Prop. 1.5.8 and 1.5.10],

P(τ1 > n) =
∞∑

k=n+1

L(k)

k1+α
∼ L(n)

αnα
as n→∞,

�−1∑

k=0
u(k) =

�−1∑

k=0

Cα(1+ o(1))

L(k)k1−α
∼ Cα�α

αL(�)
as �→∞. (4.28)

Observe that, for every ε′ > 0 there exists n0 < ∞ such that L(n)/L(�) ≤ (n/�)ε
′

for n ≥ n0 and � ≤ n
4 , by Potter bounds [8, Theorem 1.5.6], hence

u(n)− u(n + �)

u(n)
≤ C

L(n)

L(�)

(
�

n

)α

≤ C

(
�

n

)α−ε′

,

and therefore (4.27) holds true for any δ < α. ��

Appendix C: An integral estimate

Lemma C.1 Let χ ∈ [0, 1). Then there exist C1,C2 > 0 such that for all k ∈ N,

∫
· · ·
∫

0<t1<···<tk<1

dt1 · · · dtk
tχ1 · · · (tk − tk−1)χ (1− tk)χ

≤ C1e
−C2k log k . (4.29)

Furthermore, for any v ∈ (0, 1) and k1, k2 ∈ N0 := N ∪ {0} with k := k1 + k2 ≥ 1,

∫
· · ·
∫

0<t1<···tk1<v

v<tk1+1<···<tk<1

dt1 · · · dtk
tχ1 (t2 − t1)χ · · · (1− tk)χ

≤ C1e
−C2k log k v(1−χ)k1(1− v)(1−χ)k2 .

(4.30)

Proof By the definition of the Dirichlet distribution

∫
· · ·
∫

0<t1<···<tk<1

dt1 · · · dtk
tχ1 · · · (tk − tk−1)χ (1− tk)χ

= (�(1− χ))k+1

�
(
(k + 1)(1− χ)

) .

The bound (4.29) then follows from the properties of the gamma function �(·).
If k1 = 0, then (4.30) can be obtained from (4.29) noting that 1/tχ1 ≤ (1 −

v)χ/(t1 − v)χ and performing a change of variable. The same applies to the case
k2 = 0. If k1, k2 ≥ 1, then denoting the integral in (4.29) by Ak , we have
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∫
· · ·
∫

0<t1<···tk1<v

v<tk1+1<···<tk1+k2<1

dt1 · · · dtk1+k2
tχ1 (t2 − t1)χ · · · (1− tk1+k2 )χ

=
∫∫

0<tk1<v

v<tk1+1<1

dtk1dtk1+1
(tk1+1 − tk1 )

χ
Ak1−1t

k1(1−χ)−1
k1

Ak2−1(1− tk1+1)k2(1−χ)−1

≤ C2
1e
−C2(k1−1) log(k1−1)e−C2(k2−1) log(k2−1)

∫∫

0<tk1<v<tk1+1<1

tk1(1−χ)−1
k1

(1− tk1+1)k2(1−χ)−1

(tk1+1 − tk1 )
χ

dtk1dtk1+1

≤ C3e
−C4(k1+k2) log(k1+k2) v(1−χ)k1 (1− v)(1−χ)k2 ,

where the last inequality is obtained by first noting that max{k1, k2} ≥ (k1 + k2)/2,
and then replacing tk1+1− tk1 with tk1+1−v (resp. v− tk1 ) if v < 1/2 (resp. v ≥ 1/2).
In this way the integral factorizes and one obtains (4.30) after adjusting the values of
C1 and C2. ��
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