
SCUOLA DI DOTTORATO

UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA

Department of
Computer Science, Systems and Communication

PhD program in Computer Science Cycle XXXIII

Semantic Table Annotation for

Large-Scale Data Enrichment

Surname: Cutrona Name: Vincenzo

Registration number: 745615

Tutor: Prof. Giuseppe Vizzari

Supervisor: Prof. Matteo Palmonari

Coordinator: Prof. Leonardo Mariani

ACADEMIC YEAR 2019/2020

I have never met a man so ignorant that I couldn’t learn something
from him.

— Galileo Galilei

Dedicated to all the people who have shared this journey with me.

A B S T R A C T

Data are the new oil, and they represent one of the main value-creating
assets. Data analytics has become a crucial component in scientific
studies and business decisions in the last years and has brought
researchers to define novel methodologies to represent, manage, and
analyze data. Simultaneously, the growth of computing power enabled
the analysis of huge amounts of data, allowing people to extract useful
information from collected data.

Predictive analytics plays a crucial role in many applications since
it provides more knowledge to support business decisions. Among
the statistical techniques available to support predictive analytics,
machine learning is the technique that features capabilities to solve
many different classes of problems, and that has benefited the most
from computing power growth. In the last years, more complex and
accurate machine learning models have been proposed, requiring an
increasing amount of current and historical data to perform the best.

The demand for such a massive amount of data to train machine
learning models represents an initial hurdle for data scientists because
the information needed is usually scattered in different data sets that
have to be manually integrated. As a consequence, data enrichment
has become a critical task in the data preparation process, and nowa-
days, most of all the data science projects involve a time-costly data
preparation process aimed at enriching a core data set with additional
information from various external sources to improve the sturdiness
of resulting trained models. How to ease the design of the enrichment
process for data scientists is defying and supporting the enrichment
process at a large scale. Despite the growing importance of the en-
richment task, it is still supported only to a limited extent by existing
solutions, delegating most of the effort to the data scientist, who is
in charge of both detecting the data sets that contain the needed
information, and integrate them.

In this thesis, we introduce a methodology to support the data
enrichment task, which focuses on harnessing the semantics as the
key factor by providing users with a semantics-aided tool to design
the enrichment process, along with a platform to execute the pro-
cess at a business scale. We illustrate how the data enrichment can
be addressed via tabular data transformations exploiting semantic
table interpretation methods, discussing implementation techniques
to support the enactment of the resulting process on large data sets.
We experimentally demonstrate the scalability and run-time efficiency
of the proposed solution by employing it in a real-world scenario.
Finally, we introduce a new benchmark dataset to evaluate the per-

v

formance and the scalability of existing semantic table annotation
algorithms, and we propose an efficient novel approach to improve
the performance of such algorithms.

vi

P U B L I C AT I O N S

List of publications related to the work described in this thesis:

[1] Federico Bianchi, Mauricio Soto, Matteo Palmonari, and Vin-
cenzo Cutrona. “Type Vector Representations from Text: An
Empirical Analysis.” In: Proceedings of the First Workshop on
Deep Learning for Knowledge Graphs and Semantic Technologies,
DL4KGS@ESWC. Vol. 2106. CEUR-WS.org, 2018, pp. 72–83.

[2] Michele Ciavotta, Vincenzo Cutrona, Flavio De Paoli, Nikolay
Nikolov, Matteo Palmonari, and Dumitru Roman. “Support-
ing Semantic Data Enrichment at Scale.” In: Technologies and
Applications for Big Data Value. (To appear). 2021.

[3] Ernesto Jiménez-Ruiz, Oktie Hassanzadeh, Vasilis Efthymiou,
Jiaoyan Chen, Kavitha Srinivas, and Vincenzo Cutrona. “Re-
sults of SemTab 2020.” In: Proceedings of the Semantic Web Chal-
lenge on Tabular Data to Knowledge Graph Matching, SemTab@ISWC.
Vol. 2775. CEUR-WS.org, 2020, pp. 1–8.

[4] Shady Abd El Kader, Nikolay Nikolov, Bjørn Marius von Zerni-
chow, Vincenzo Cutrona, Matteo Palmonari, Brian Elvesæter,
Ahmet Soylu, and Dumitru Roman. “Modeling and Publishing
French Business Register (Sirene) Data as Linked Data Using
the euBusinessGraph Ontology.” In: Joint Proceedings of the In-
ternational Workshops on Sensors and Actuators on the Web, and
Semantic Statistics, SemStats@ISWC. Vol. 2549. CEUR-WS.org,
2019.

[5] Vincenzo Cutrona, Federico Bianchi, Ernesto Jiménez-Ruiz,
and Matteo Palmonari. “Tough Tables: Carefully Evaluating
Entity Linking for Tabular Data.” In: ISWC. Vol. 12507. Springer,
2020, pp. 328–343.

[6] Vincenzo Cutrona, Michele Ciavotta, Flavio De Paoli, and Mat-
teo Palmonari. “ASIA: a Tool for Assisted Semantic Interpreta-
tion and Annotation of Tabular Data.” In: ISWC Satellite Tracks.
Vol. 2456. CEUR-WS.org, 2019, pp. 209–212.

[7] Vincenzo Cutrona, Flavio De Paoli, Aljaz Kosmerlj, Nikolay
Nikolov, Matteo Palmonari, Fernando Perales, and Dumitru
Roman. “Semantically-Enabled Optimization of Digital Market-
ing Campaigns.” In: ISWC. Vol. 11779. Springer, 2019, pp. 345–
362.

[8] Vincenzo Cutrona, Gianluca Puleri, Federico Bianchi, and Mat-
teo Palmonari. “NEST: Neural Soft Type Constraints to Improve
Entity Linking in Tables.” In: ESWC. (Under revision). 2021.

vii

A C K N O W L E D G M E N T S

I am extremely grateful to all the people who have played an essential
role in this research.

First and foremost, I would like to thank my supervisor Prof. Matteo
Palmonari, for his invaluable advice and tutelage during my Ph.D. His
continuous support was really influential in shaping my academic re-
search. Thanks for pushing me to give the best and for the constructive
comments to correct my mistakes.

I would also thank Prof. Michele Ciavotta, which I consider to be my
second supervisor. His immense knowledge and great experience have
encouraged me in my academic research and, most importantly, daily
life. It has been a real pleasure to collaborate with him all through my
Ph.D. course.

I would like to offer my special thanks to Prof. Ernesto Jiménez-Ruiz,
who gave me the possibility of joining Prof. Artur d’Avila Garcez’s
lab at City, University of London. I really enjoyed the time we spent
together at City, and I’m deeply grateful to him for all the discussions
we had, which helped me better live the academic life and look to the
future with confidence.

Many thanks to all the other professors of my research group who
gave me continuous advice. A special thank you to Prof. Giuseppe Viz-
zari, my Ph.D. tutor, for his friendly suggestions, and to Prof. Leonardo
Mariani, the school coordinator, who always promptly supported Ph.D.
students in these pandemic times.

I would like to thank all my lab mates and colleagues, especially
Federico Bianchi, who left our research group last year but continued
supporting my research with ideas and suggestions. Special thanks
also to Debora Nozza for her invaluable friendly advice. I would also
like to thank all the students, especially Gianluca Puleri, who brought
valuable contributions to this research.

Finally, I would like to express my gratitude to my family, my girl-
friend, and my friends for their encouragement and support through-
out my studies. Thanks for having helped me in overcoming difficult
moments.

ix

C O N T E N T S

1 introduction 1

1.1 Use Case Example . 4

1.2 Contributions . 7

1.3 Thesis Structure . 8

1.4 Reproducibility . 11

2 preliminaries 13

2.1 Knowledge Bases . 13

2.1.1 Knowledge Graphs 13

2.1.2 Semantic Web . 15

2.1.3 Semantic Gap . 16

2.2 Semantic Table Interpretation and Annotation 17

2.2.1 Instance-level Annotation 20

2.2.2 Schema-level Annotation 21

2.3 Semantic Enrichment of Tabular Data 22

3 related work and contributions 27

3.1 Semantic Annotation Overwiew 27

3.1.1 Instance- and Schema-level Annotation 27

3.1.2 Instance-level Annotation 33

3.1.3 Schema-level Annotation 37

3.1.4 Evaluating Table Annotation Algorithms 39

3.2 Data Enrichment . 41

3.3 Contributions and Related Work 44

4 a semantic table annotation approach to large-
scale data enrichment 47

4.1 From Semantic Annotation to Data Transformations . . 48

4.2 Small-scale Design/Big-scale Execution 51

4.3 Semantic Enrichment of Tabular Data at Scale with Asia 54

4.3.1 Supporting the Interactive Design in Asia . . . 56

4.3.2 Supporting the Enrichment at Scale in Asia . . 58

4.4 Evaluation of Asia Performance 60

4.4.1 Experiment 1: Testing Hierarchical Cache 61

4.4.2 Experiment 2: Testing Cache Over Time 62

4.4.3 Experiment 3: Testing Scalability 63

4.5 Summary . 63

5 evaluating entity linking for tables 67

5.1 Semantic Table Interpretation Evaluation 67

5.2 Tough Tables . 69

5.2.1 Dataset Profile . 71

5.3 Dataset Construction . 74

5.3.1 CEA Ground Truth Contruction 75

5.3.2 CTA Ground Truth Construction 78

5.4 Experiments . 78

xi

5.4.1 Results from SemTab 2020 83

5.5 Summary . 85

6 improving entity linking for automatic and as-
sisted semantic table interpretation 89

6.1 Exploiting Entity Types in Entity Linking 89

6.1.1 Matching Pipelines in FactBase and Embedding-
sOnGraph . 92

6.2 Nest: Filtering and Ranking using Soft Type Constraints 94

6.2.1 Neural Models for Entity Type Prediction . . . 96

6.2.2 Nest-enriched Algorithms 97

6.3 Experimental Evaluation 99

6.3.1 Results . 103

6.4 Summary . 105

7 conclusions 107

7.1 Future Research Directions 108

bibliography 109

xii

L I S T O F F I G U R E S

Figure 2.1 An excerpt of the DBpedia KG (images from
Wikipedia). 15

Figure 2.2 A simple table that contains data about philoso-
phers of science. 18

Figure 2.3 Different annotations resulting from the same
interpretation (images from Wikipedia). 19

Figure 2.4 Infographic representing the main stages of a
data project and the related stakeholders. . . . 23

Figure 2.5 The data transformation graph. 24

Figure 4.1 A data transformation pipeline to enrich a source
dataset with data from n reference datasets. . 50

Figure 4.2 A declarative and interactive approach to the
semantic data enrichment, supported by n dif-
ferent services. 50

Figure 4.3 The small-scale design/large-scale execution
principle at a glance. 51

Figure 4.4 Detailed architecture of Asia. 54

Figure 4.5 An overview of the proposed Big Data Envi-
ronment. 59

Figure 4.6 The pipeline used in the experimental campaign. 61

Figure 4.7 Request execution time in milliseconds for the
second experiment without duplicates (left-
hand side) and with 4 duplicates (right-hand
side). 62

Figure 4.8 Total execution time (in seconds) and linear
regression curve, for datasets of different sizes,
and two experimental setups. 64

Figure 5.1 2T profile at a glance. Boxed categories are
those considered during the evaluation phase.
Each category is composed by some of/all the
tables from the parent categories. 71

Figure 5.2 CEA performance footprints of the considered
algorithms over 2T. F1 score in bold. 81

Figure 5.3 Results in the CEA task with the Automatically
Generated (AG) and 2T Datasets [55]. 83

Figure 5.4 CEA performance footprints of the considered
algorithms over 2T in SemTab 2020. F1 score in
bold. 84

Figure 5.5 Results in the CTA task with the Automatically
Generated (AG) and 2T Datasets [55]. 85

xiii

Figure 5.6 CTA performance footprints of the considered
algorithms over 2T in SemTab 2020. F1 score in
bold. 86

Figure 6.1 The architectures of the DNNs for type predic-
tion. Numbers describe layers size. 96

L I S T O F TA B L E S

Table 1.1 A dataset enriched with data from GeoNames
(GN) and ECWMF (W) by applying different
functions: transformation (gray), reconciliation
(red), and extension (orange). 5

Table 3.1 Comparison between semantic annotation ap-
proaches. 28

Table 5.1 Detailed statistics for 2T. Values are formatted
as avg ± st.dev. (total, min, max). 74

Table 5.2 Comparison with existing benchmark datasets.
Statistics for Limaye and W2D are from [38]. . 75

Table 5.3 Results for the considered algorithms over 2T.
Best results in bold (P, R, F1). 80

Table 5.4 Average F1-score for the top-10 systems dis-
carding outliers [55]. 83

Table 6.1 Profiles of the benchmark datasets considered
within the evaluation. 100

Table 6.2 Results for different benchmark datasets. Al-
gorithms improved with Nest are identified
by the ♣ symbol. Best results in bold (for each
dataset) and underlined (for each algorithm). . 103

A C R O N Y M S

CEA Cell Entity Annotation

CPA Column Predicate Annotation

CTA Column Type Annotation

DNN Deep Neural Network

FOL First-Order Logic

KB Knowledge Base

xiv

KG Knowledge Graph

RDF Resource Description Framework

STA Semantic Table Annotation

STI Semantic Table Interpretation

URI Universal Resource Identifier

xv

1
I N T R O D U C T I O N

We live in the Data era, an era where the volume, velocity, variety, ve-
racity, and value (the Five V’s) of the data are increasing exponentially.
Extracting information from the vast amount of collected data world-
wide is a task of paramount importance in all fields, from research
to business, and it represents one of the main value-creating assets
(estimates indicate yearly earnings in the order of 270 billion dollars
by 2022).1 In the last few years, data science has become a hot spot
because of the importance of data analyses in scientific studies and
business decisions, leading to the definition of novel methodologies to
represent, manage, and analyze data.

Machine Learning and Deep Learning represent some of the most
powerful tools available to data scientists, as they have proven to
excel in solving a range of problems, from image analysis to text
interpretation and understanding. Throughout the years, the increase
in computational resource power enables the training of even larger
and sophisticated machine learning models (i. e., architecturally more
complex, with more parameters to learn), which need more data to
be trained. Back in 2013, the One Billion Words Benchmark for Language
Modeling was released, which contains 0.8 billion tokens.2 In 2020, just
seven years later, OpenAi announced their GPT-3 model, a model with
175 billion parameters, which has been trained on a dataset with 500

billion tokens [10].
Prediction models are useful in different industry-driven and science-

driven application domains to support the business decision. Bigger
models allow companies to consider more factors in their analysis,
thanks to the higher number of model parameters. For example, a
marketing company can study the impact of the weather forecasts
on their digital campaigns, considering different weather features in
their study; or else, an epidemiology study with data collected from
patients diagnoses can be extended by considering demographic in-
formation, such as the population density of a specific city. However,
training datasets in industry-driven and science-driven application
domains are mostly represented by first-party data, i. e., data that a
company already collects about users or customers, usually about
a single domain (e. g., marketing data, diagnoses data). In order to
consider external factors (e. g., weather features), different sources of
information have to be integrated with the first-party data.

1 Worldwide Semiannual Big Data and Analytics Spending Guide - https://www.idc.
com/getdoc.jsp?containerId=IDC_P33195

2 https://opensource.google/projects/lm-benchmark

1

https://www.idc.com/getdoc.jsp?containerId=IDC_P33195
https://www.idc.com/getdoc.jsp?containerId=IDC_P33195
https://opensource.google/projects/lm-benchmark

2 introduction

The extension of the first-party data with the needed second- (i. e.,
data collected and sold by a different company) or third-party data
(i. e., data provided by high volume data aggregators),3 represents the
data enrichment, a core step of the data preparation stage. We define
the data enrichment as the task of enriching one source dataset (source)
with information from a second dataset (target), which we assume to
contain additional features.4

Despite the number of powerful tools available nowadays, complet-
ing the data preparation stage in a typical Data Science project covers
up to the 80% of the whole project duration time, representing a high
cost in terms of time and money [70, 120]. The data enrichment step
poses specific challenges; indeed, finding the right data to use is not
straightforward, and how to push them into the source dataset is still
an even more cumbersome task; in fact, it requires to achieve two
core steps: (i) to reconcile the source dataset against the target datasets,
i. e., to identify data fractions that are available both in the source
and in the target datasets, which can be exploited as join points, and
(ii) to extend the source dataset, i. e., actually to add the additional
information to the source dataset. The challenges in achieving the data
enrichment are mainly due to the following factors:

• Data exploration: finding all the datasets of interest is cumber-
some because different target datasets are available; for example,
extending marketing data with weather features requires to dis-
cover which third-party dataset provides the needed information,
which are the refresh rate and the geospatial coverage of the se-
lected dataset, and so on. Researchers proposed ad-hoc solutions
to consider this aspect in the data analytics pipeline, e. g., the
CAVA [16] system integrates the data preparation and the data
augmentation with the traditional data exploration and analysis
tasks.

• Knowledge gap: the user usually knows the source dataset but
has no knowledge about the target one; for example, weather
datasets contain domain-specific properties, represented with
domain-specific formats, which are not known in advance by
people working in the marketing domain;

• Reproducibility: the data preparation is a recurrent process (e. g.,
the same process applies to several snapshots of the same dataset,
like monthly sales reports), and it is commonly addressed by
defining pipelines that embed all the steps to reproduce the
cleaning/enrichment phases; building such pipelines require

3 Definitions of first-, second-, and third-party data are from [117]. For the sake of
simplicity, we will improperly use the term third-party data to refer to both second-
and third-party data.

4 The target dataset may contain first- or third-party data. We will consider the most
challenging case of using third-party data.

introduction 3

users to know in details the source and the target dataset contents
and structures;

• Scalability: source and target datasets may be very large (millions
of rows and more), making scalability a killer factor in the
pipeline deployment.

.
The Semantic Web proposed by Tim Berners-Lee [3] in 2001 aims to

create a Web where data are connected and semantically annotated,
so that to enable artificial agents to access the data more intelligently
and perform tasks on behalf of users in order to discover the desired
knowledge. Since 2001, the Linked Open Data (LOD) cloud has grown
to the dimension of thousands of interconnected datasets.

The connected structures of the LOD cloud and the massive amount
of high-quality datasets in it represent two valuable ingredients to
exploit in supporting the data enrichment; in fact, once the source
dataset has been reconciled against a target dataset in the LOD cloud,
we have that, on the one hand, it is possible to help the users in dis-
covering the target dataset and in finding the right information thanks
to the intrinsic semantics (addressing the knowledge gap problem);
on the other hand, the inter-datasets links enable the guided discovery
of new and potentially interesting datasets (helping with the data
exploration). The important role that the semantics plays in data en-
richment, especially within Big Data contexts, is also acknowledged
by the European Big Data Value Strategic Research and Innovation
Agenda [129], and dedicated special issues in scientific journals [2, 60,
128].

In this asset, the enrichment workflow can be viewed as a pipeline
of data reconciliation and extension steps. For example, adding demo-
graphic data to the diagnoses data requires a simple two-step pipeline:
(i) a reconciliation step that reconciles patients living cities against
cities in a target dataset; (ii) an extension step to fetch the information
about the population density from the target dataset (e. g., the total
population and the surface area of each city). Effectively supporting
these steps may lead to better usage of the LOD cloud data, helping
users access third-party datasets without acquiring the cross-domain
expertise required to integrate the datasets manually.

Most of the currently available solutions that support data enrich-
ment are embedded in data transformation tools (e. g., KNIME and
Talend). They are designed for users familiar with programming
languages and process definition but usually inexperienced in the
particular domain to which the data pertain [108]. Alternatively, some
interactive tools support the data enrichment (e. g., OpenRefine) but
are plagued with limited scalability and do not offer any functionality
to develop/deploy the enrichment process into a production-ready
pipeline. The ideal solution is to provide the users with a system

4 introduction

that can guide them to interactively explore the target datasets, and
retrieve the needed information in a pay-as-you-go fashion.

In this thesis, a different perspective to address the data enrichment
task for tabular data is discussed, which frees users from the burden
of knowing the target datasets. The proposed methodology uses the
Semantic Table Interpretation (STI) (i. e., a semantic-based approach to
reconciling tables against a target Knowledge Base (KB) - more details
are given in Chapter 2) as the core enrichment enabler: the focus of
the user is in annotating the elements of the source dataset, while the
system offers support in finding new sources of information (target
datasets).

1.1 use case example

We motivate the importance of supporting the data enrichment at scale
by describing a real-life data analytics use case consisting of different
data manipulation and extension tasks.

A digital marketing company invests in sponsored ads in the main
search and display platforms (e. g., Google, Bing, or Facebook), i. e., the
company buys a certain amount of ads, and then pays such platforms
to display specific ad banners to the users. The higher the number of
visualized and clicked ads, the higher the company revenues. Thus,
when it comes to starting a marketing campaign, the company has
to place a bid, i. e., to choose which ads to display, when, where, and
to whom. In fact, nowadays, the advertisement engagement strategy
is highly oriented to personalized user targeting to promote relevant
content to the right users.

In order to evaluate the current bidding strategy, the company
collects daily a considerable amount of data related to different per-
formance indicators, including volume of clicks (number of users that
click the ad banner) and impressions (number of users that visualize
the ad banner), the user location and the timestamp when the user
clicked/visualized the banner, and the device on which the banner
has been displayed. The collected data are then analyzed by expert
managers that optimize the bidding strategy based on their own ex-
perience and the collected data. For example, a manager knows that
the weeks immediately preceding rainy seasons are a perfect period
to advertise umbrellas.

The company wants to exploit the amount of collected data to inves-
tigate the effect of weather conditions on its campaigns’ performance
at a regional level. Anne, the company manager, assigns this task to a
data analyst, Claire, providing her with reports from Google AdWords,
the platform currently used to collect campaign performance indica-
tors (an excerpt of such reports is represented by the white columns
in Table 1.1). The final goal of Claire is to train a prediction model
able to predict the most suitable moment to launch a new campaign.

1.1 use case example 5

Table 1.1: A dataset enriched with data from GeoNames (GN) and ECWMF
(W) by applying different functions: transformation (gray), recon-
ciliation (red), and extension (orange).

Keyword

ID
Clicks City Region Date

Date

(ISO 8601)

Region

ID (GN)
2t (W) tp (W)

...

194906 64 Altenburg Thuringia 6/9/2017 2017-09-06 2822542 287.70 0.08

517827 50 Ingolstadt Bavaria 6/9/2017 2017-09-06 2951839 288.18 0.02

459143 42 Berlin Berlin 6/9/2017 2017-09-06 2950157 290.48 0.00

891139 36 Munich Bavaria 6/9/2017 2017-09-06 2951839 288.18 0.02

459143 30 Ulm Baden-Württemberg 6/9/2017 2017-09-06 2953481 288.18 0.02

...

Claire reserves some time to compare different weather services and
finally decides to retrieve weather forecasts from ECMWF,5 a provider
that release dumps of weather observations collected across Europe.
Among the several weather features available in ECMWF dumps,
Claire is firstly interested in features related to the temperature (2t)
and precipitation (tp).

Claire resorts to asking Bob, a data engineer, to add the set of needed
features to the original dataset, so that to enable the analytics phase.
She also asks him to deliver the data in tabular format because, in this
preliminary stage, she prefers working with Jupyter notebooks, which
allow her to run Python code interactively; thus, she needs data in a
format that can be loaded with standard Python libraries.

Data have been collected for many years by the company, resulting
in a large volume dataset. Bob is familiar with data transformation
tools and immediately decides to exploit their capability to scale
to the dimension of the data. Besides, the created pipeline can be
reused in the future on newly collected data until they share the same
format and schema of the current dataset. Bob downloads a dump
from the ECMWF service and discovers that the dump adheres to the
GRIB format, which organizes the weather information on a grid of
points represented by WGS84 coordinate pairs. Each point in the grid
is assigned a set of weather observations for some dates; dates are
represented using the ISO 8601 standard. Thus, to access the needed
information, a WGS84 coordinate pair and an ISO 8601 formatted date
are required; both the inputs are currently missing in the company
dataset.

Bob designs a transformation pipeline starting with a step that
computes the ISO 8601 formatted dates; as a result, a new column is
appended to the source dataset (the grey column in Table 1.1). As the
next step, Bob has to figure out how to get the weather information
at the region level: in fact, Claire asked for weather information ag-
gregated at the region level, while the GRIB dataset has much more
fine-grained information (at coordinate level). Bob has first to detect

5 https://www.ecmwf.int

https://www.ecmwf.int

6 introduction

the boundary box of a region, then collect the weather information for
those coordinates that fall into the boundary box, and aggregate them
(e. g., by computing the average value).

Locations in AdWords reports are from a proprietary geospatial
dataset, Geotargets,6 which does not contain the boundary box of loca-
tions. Bob finds out that GeoNames,7 a public geographical database,
provides the boundary box of each represented geographical object.
Geotargets and GeoNames use different identifiers to describe lo-
cations, and the lack of existing direct mappings between the two
datasets hinders an easy join between them. Bob has to download
also the dumps of GeoNames and Geotargets, so that he can use an
existing record linkage tool to find the mappings between locations;
however, the information available in Geotargets is poor with respect
to the rich representation provided in GeoNames, and the quality
of the resulting mappings is low. Since the subsequent analysis will
highly rely on the result of this step, Bob has to ensure a high level
of quality, and for this reason, he manually revises the mappings to
remove false positives and fix wrong results. As a result, Bob obtains
a new dataset, where GeoNames and Geotargets identifiers that refer
to the same location are in the same row; this new dataset can now be
easily integrated with the source dataset by adding a join operation to
the pipeline (as a result, the red column in Table 1.1 is created).

At this point, the source dataset contains the information needed
to query the GRIB dataset. Bob adds one more step to the pipeline,
which contains a short script of code that takes as input a pair of
values from the Region ID (GN) and Date (ISO 8601) columns, retrieves
the boundary box of the region from GeoNames, then filters the GRIB
dataset by the selected date and the coordinate pairs that fall into
the boundary box. The results are then aggregated and appended to
the source dataset, resulting in two new columns (orange columns
in Table 1.1). Thanks to the data transformation tool’s scalability,
Bob applies the pipeline to the large volume of data available to the
company, thus enabling the analysis mentioned above. Indeed, Claire
can now sample the desired fraction of data and load the sample into
her most preferred data analytics tool.

Such operations are widespread in data analytics projects, where a
source dataset needs to be extended with additional information to
enable different kinds of analyses. Moreover, the same process may
be repeated many times in the same project because (i) data from
different external sources are needed, or (ii) collected data are not
sufficient to train the desired model, requiring the data analyst to
ask for different features (following a trial-and-error approach). Data
processing tools support the repeatability of the task and offer support
for data transformations and extensions (for extensions, the user is

6 https://developers.google.com/adwords/api/docs/appendix/geotargeting

7 http://www.geonames.org/

https://developers.google.com/adwords/api/docs/appendix/geotargeting
http://www.geonames.org/

1.2 contributions 7

required to write a short code script to query a service, e. g., via API,
and post-process the response). However, the reconciliation is mostly
in charge of the user, which manually creates the mappings of interest
between the involved datasets. Furthermore, the people involved in
the process have to find the needed information on their own. For
example, none of them know in advance which datasets can be queried
by using GeoNames identifiers, if mappings between Geotargets and
GeoNames are available, and so on.

The example we provided here motivates the design of a scalable
solution, which provides users with a tool to (i) design transformation
pipelines on tabular datasets that include data enrichment, helping
users to find the right information, and (ii) record and manage these
pipelines in a repeatable form over large amounts of data. We believe
that all the people involved in data science projects could benefit from
this solution because, at the same time, (i) it eases the enrichment
task, and (ii) it makes the enrichment process repeatable in a scalable
environment, reducing the overall data processing time. Besides, the
gap between data engineers and analysts will be bridged: a single
figure, potentially a data scientist or a data worker, will be able to
both design and deploy the transformation process, avoiding the
continuous handover between engineers and analysts. In Chapter 4, we
will introduce a methodology and a novel system that employs such
methodology that effectively and efficiently supports this scenario.

1.2 contributions

In this thesis, we focus on exploiting the semantics to support the data
enrichment task at scale, thus providing a methodology to support
the semantic data enrichment. We leverage and take existing work on STI

a step forward; we argue that STI can provide a valuable paradigm to
support data enrichment, modularly and at scale, in a broad number
of scenarios. Also, we focus on how to evaluate STI approaches when
employed in scalable solutions and how to better include the human
in the data enrichment process.

More in details, in this thesis, we introduce:

1. The definition of semantic data enrichment, i. e., supporting
the data enrichment by exploiting the semantics. Based on our
definition, we further introduce:

• A comprehensive methodology to provide data workers
with suitable tools to (i) interactively design transformation
pipelines on datasets in tabular format, including semantic
enrichment using curated KBs (general-purpose or domain-
specific), and (ii) deploy and run such pipelines against
massive datasets.

8 introduction

• An interactive framework that modularly supports the defi-
nition of semantic data enrichment pipelines and their exe-
cution at scale. With modularly, we mean that the paradigm
can be implemented by an ecosystem of services that pro-
vide access to different target datasets to support automatic
data reconciliation and extension. Automation is a decisive
factor for managing large volumes of data and reaching the
at scale dimension under certain assumptions.

2. A new benchmark dataset to evaluate STI algorithms at a more
significant scale.

3. A methodology to adapt existing STI approaches in such a way
to better dealing with inaccurate inputs given by non-semantic-
expert users.

We will use (1) to demonstrate the suitability of our proposed
methodology by creating both general-purpose and specialized ser-
vices to support data analytics projects. Since benchmark datasets for
STI mainly consist of several small tables, we propose (2) to evaluate
STI algorithms in a different context, i. e., when large tables have to
be annotated, which better resembles the data enrichment scenario.
Lastly, since the proposed framework is interactive and targeted to
data workers, we propose (3) to improve the interaction with data
workers, as well as to better deal with the information entered by
people not expert in semantics technologies, in such a way to adapt
existing STI approaches and improve their results.

1.3 thesis structure

The structure of this document is illustrated in the following, with
pointers to the relevant publications. The order of the Chapter is to
better introduce the reader to the different aspects of the semantic data
enrichment, and does not reflect the importance of the contributions;
for this reason, we highlight the key publications with the � symbol.

Chapter 2: Preliminaries. This Chapter is devoted to explaining of
the basic notions and definitions needed to thoroughly understand
the rest of this thesis. We describe fundamentals of KBs, then we focus
on the STI task and discuss how STI approaches can be exploited to
support the data enrichment.

Chapter 3: Related Work and Contributions. We explore related
approaches in the semantic annotation and data enrichment fields,
with a specific focus on tabular data. We also discuss alternative ap-
proaches to the instance matching problem.

1.3 thesis structure 9

Chapter 4: A Semantic Table Annotation Approach to Large-Scale
Data Enrichment. In this Chapter, we outline a methodology for
interactively assisting data workers in enriching tabular data at a large
scale. We illustrate a system that employs such methodology, and we
showcase an experiment conducted in a real-life business application.
The research questions answered by this Chapter are:

Q4.1: How can semantics be exploited to support the data enrich-
ment?

Q4.2: Are the existing STI approaches executable in a Big Data envi-
ronment (to support the enrichment of massive datasets)?

Q4.3: Is it possible to consider the users in the enrichment process
in such a way to use their feedback to improve the system
performance?

The methodology is also described in an upcoming book chapter:

� Michele Ciavotta, Vincenzo Cutrona, Flavio De Paoli,
Nikolay Nikolov, Matteo Palmonari, and Dumitru Roman.
“Supporting Semantic Data Enrichment at Scale.” In: Tech-
nologies and Applications for Big Data Value. (To appear).
2021

The experiment we conducted using our system, as well as the
application to support the data workers in the enrichment process,
have been published in the following articles:

� Vincenzo Cutrona, Flavio De Paoli, Aljaz Kosmerlj, Niko-
lay Nikolov, Matteo Palmonari, Fernando Perales, and Du-
mitru Roman. “Semantically-Enabled Optimization of Dig-
ital Marketing Campaigns.” In: ISWC. Vol. 11779. Springer,
2019, pp. 345–362

Vincenzo Cutrona, Michele Ciavotta, Flavio De Paoli, and
Matteo Palmonari. “ASIA: a Tool for Assisted Semantic
Interpretation and Annotation of Tabular Data.” In: ISWC
Satellite Tracks. Vol. 2456. CEUR-WS.org, 2019, pp. 209–212

The same application has been used in a challenge to publish tabular
data on the Web as Linked Data:

Shady Abd El Kader, Nikolay Nikolov, Bjørn Marius von
Zernichow, Vincenzo Cutrona, Matteo Palmonari, Brian
Elvesæter, Ahmet Soylu, and Dumitru Roman. “Modeling
and Publishing French Business Register (Sirene) Data as
Linked Data Using the euBusinessGraph Ontology.” In:
Joint Proceedings of the International Workshops on Sensors and
Actuators on the Web, and Semantic Statistics, SemStats@ISWC.
Vol. 2549. CEUR-WS.org, 2019

10 introduction

Chapter 5: Evaluating Entity Linking for Tables. In this Chapter,
we discuss the limitation of current benchmark datasets for the STI

related tasks. We thus introduce a novel dataset, which solves some of
the current limitations and supports the scalability evaluation of exist-
ing STI algorithms. The research questions answered by this Chapter
are:

Q5.1: Do existing STI algorithms perform the same on different kinds
of tables?

Q5.2: Which are the most difficult challenges to be solved by a STI

algorithm?

The dataset has been published in the following work:

� Vincenzo Cutrona, Federico Bianchi, Ernesto Jiménez-
Ruiz, and Matteo Palmonari. “Tough Tables: Carefully
Evaluating Entity Linking for Tabular Data.” In: ISWC.
Vol. 12507. Springer, 2020, pp. 328–343

An adapted version of the same dataset has been used in the Seman-
tic Web Challenge on Tabular Data to Knowledge Graph Matching,
showing that our new dataset poses new challenges often overlooked
by existing algorithms. The results have been published in the chal-
lenge proceedings:

Ernesto Jiménez-Ruiz, Oktie Hassanzadeh, Vasilis Efthymiou,
Jiaoyan Chen, Kavitha Srinivas, and Vincenzo Cutrona.
“Results of SemTab 2020.” In: Proceedings of the Semantic
Web Challenge on Tabular Data to Knowledge Graph Matching,
SemTab@ISWC. Vol. 2775. CEUR-WS.org, 2020, pp. 1–8

Chapter 6: Improving Entity Linking for Automatic and Assisted
Table Annotation. In this Chapter, we discuss how the incomplete
entity typing information used within STI approaches can be managed
using soft constraints. Thus, we introduce a neural-based methodology
to adapt almost every existing STI algorithm that exploits the entity
typing within the filtering or ranking phases. The same approach
helps STI approaches to better deal with inaccurate type information
provided by a non-expert user. The research question answered by
this Chapter is:

Q6.1: Is it possible to mitigate the incompleteness of the type infor-
mation within STI approaches?

The content of this Chapter has been submitted for publication to
an upcoming conference:

� Vincenzo Cutrona, Gianluca Puleri, Federico Bianchi, and
Matteo Palmonari. “NEST: Neural Soft Type Constraints
to Improve Entity Linking in Tables.” In: ESWC. (Under
revision). 2021

1.4 reproducibility 11

The methodology exploits a particular type representation introduced
is partially based in a previous article:

Federico Bianchi, Mauricio Soto, Matteo Palmonari, and
Vincenzo Cutrona. “Type Vector Representations from Text:
An Empirical Analysis.” In: Proceedings of the First Workshop
on Deep Learning for Knowledge Graphs and Semantic Tech-
nologies, DL4KGS@ESWC. Vol. 2106. CEUR-WS.org, 2018,
pp. 72–83

Chapter 7: Conclusions. Finally, we conclude this thesis by summa-
rizing the most relevant contributions and insights for future research
directions.

1.4 reproducibility

In this thesis, we follow the FAIR (Findable, Accessible, Interoperable,
and Reusable) guidelines [121] to release our contributions. We think
that reproducibility has become a significant issue, and moreover,
publicly releasing all the resources will favor further extensions of
our work by the community. In the following, we provide the list of
repositories that contain our resources, alongside instructions on how
to use them:

• Asia (frontend)

[code] https://github.com/datagraft/grafterizer-2.0

• Asia (backend)

[code] https://github.com/UNIMIBInside/asia-backend

[code] https://github.com/UNIMIBInside/conciliator

[code] https://github.com/UNIMIBInside/ASIA-suggester

[code] https://github.com/UNIMIBInside/asia4j

• 2T

[code] https://github.com/vcutrona/tough-tables

[dataset] https://doi.org/10.5281/zenodo.3840646

• Nest

[code] https://github.com/vcutrona/nest

https://github.com/datagraft/grafterizer-2.0
https://github.com/UNIMIBInside/asia-backend
https://github.com/UNIMIBInside/conciliator
https://github.com/UNIMIBInside/ASIA-suggester
https://github.com/UNIMIBInside/asia4j
https://github.com/vcutrona/tough-tables
https://doi.org/10.5281/zenodo.3840646
https://github.com/vcutrona/nest

2
P R E L I M I N A R I E S

In the following Chapter, we introduce the reader to the fundamental
notions and concepts required to access the rest of this work. We
will start by covering fields such as knowledge representation and
semantic table annotations, then showing how they are exploited to
support the semantic data enrichment.

2.1 knowledge bases

The concept of knowledge demands a systematic function, or system
of functions, which explain that relation in which truth appears to
consist, between the human intelligence on the one hand and fact
or reality on the other [9]. Our world contains several individuals
(e. g., people, places), which are related to each other, and we need
to give formal representations of these individuals if we want to
use them in computational settings. Logic defines means to describe
individuals and properties, thus representing a useful tool to describe
knowledge formally. Logic embeds the notions of consequences and
inferences, thus enabling reasoning over defined properties, and infer
new knowledge. Among the family of artificial languages to describe
general properties, First-Order Logic (FOL) has served as the paradigm
for modern logical systems and their meta-theoretical study [43], but
also other logical approaches have been widely used to represent
knowledge, like Description Logics [81].

FOL allows us to describe the knowledge about a specific domain;
using FOL, we represent domain objects as individuals, and we describe
properties of the individuals by mean of predicates.

KBs are collections of resources described in such a way to enable
inferential reasoning over them, where the reasoning is based on the
logical consequence. We observe that when we only consider binary
predicates, i. e., we have only binary relations between individuals, the
KB resembles a graph; we refer to this particular KB as a Knowledge
Graph (KG).

2.1.1 Knowledge Graphs

A KG represents entities of the real world as vertices, while predicates
between entities are represented as edges. Statements about world
facts are represented as triples 〈subject,predicate,object〉 in a KG,
e. g., the fact “Albert born in Ulm” is represented with the triple
〈Albert,birthPlace,Ulm〉. A commonly-agreed formal definition of

13

14 preliminaries

KG is missing in the literature, while several conflicting definitions
emerged over the past years. In the following, we propose a simplified
definition that contains the building blocks needed to understand the
remainder of this work. Since the entities are core to the enrichment
task we discuss in this thesis, we prefer to distinguish from identifiers
of entities and literals. We refer to recent work in the literature for
complete definitions and more details about the evolution of the
KGs [47]. Before giving our definition of KG, we introduce the reader to
the concept of ontology. An ontology is a concrete, formal representation
of what terms mean within a given domain [47]. Thus, we can interpret
an ontology as a shared vocabulary that proposes terms to capture a
particular convention tailored to a specific domain. Even if an ontology
is a set of axioms, we provide a simplified definition that focuses on
type assertions, which are the only ones we will use in the rest of this
thesis.

Definition 1 (Ontology) An ontology O is defined as a tuple O = 〈C,⊆C〉
where:

• C is a set of concepts, often referred to as classes or types, e. g.,
Person, City, Place;

• ⊆C ⊆ C×C is the subclassOf relation between concepts in C, e. g.,
City ⊆ Place; it is transitive, reflexive and anti-symmetric, and defines
a partial order over C.

Definition 2 (Knowledge Graph) Given an ontology O, a Knowledge
Graph G is defined as a tuple G = 〈O,E,S,∈C,RE,RS〉 where:

• E is the set of the entities that represent domain objects, e. g., Albert,
Ulm, Germany;

• S is the set of the literals that represent values of entities attributes,
e. g., 14/03/1879;1

• ∈C ⊆ E×C is the type relation that holds between an entity and a
concept, e. g., Ulm ∈C City, Albert ∈C Person;

• RE = {r|r ⊆ E× E} is a set of object properties, i. e., logical relations
that hold between entities, e. g., Albert birthPlace Ulm;

• RS = {r|r ⊆ E × S} is a set of datatype properties, i. e., logical
relations that hold between entities and literals, e. g., Albert birthDate
14/03/1879.

Figure 2.1 depicts an example of KG. Since 2012, many companies
have announced the development of a KG as the core component to
represent data and knowledge; among the multitude of companies,

1 Literals may be assigned datatypes. We do not consider this aspect in our simplified
definition.

2.1 knowledge bases 15

birthPlace

Scientist

Person

Agent

Thing

Town

Settlement

Place

Country

Populated
Place

14/03/1879

birth
Date

82,175,700

population

Albert Einstein

Germany

subclassOf

instanceOf

concepts

entities

datatype
properties

object
properties

literals

City

Berlin

Munich

co
un

tr
y

120,925

population

Ulm

BavariaBaden-Württemberg

Admin.
Region

Region

co
un

try

country

fe
de

ra
lS

ta
te

federalState

Figure 2.1: An excerpt of the DBpedia KG (images from Wikipedia).

we cite tech giants like Google, Amazon, eBay, and Facebook, which
used KGs to integrate and extract value from diverse sources of data
at a large scale [47].

2.1.2 Semantic Web

The World Wide Web has been conceived and has grown as a medium
of documents for people rather than information that can be manip-
ulated automatically [3]. In 2001, Tim Berners Lee illustrated how to
transform the Web into the Semantic Web by augmenting Web pages
with data targeted at computers. Nowadays, thanks to the Semantic
Web, we have that artificial agents are able to participate in shared
information space and help users communicate with each other. The
data targeted at computers are a key point: in fact, it is not sufficient that
the data are well structured and have an exact meaning to humans,
like database dumps, to let a machine understand the implications of
those data; thus, the Semantic Web introduced new languages to de-
scribe data and structured representations, so that enabling machines
to reason about the data, and infer new knowledge.

The core components of the Semantic Web are the Resource Descrip-
tion Framework (RDF), a language to describe resources, and SPARQL,
a query language to query resources represented in RDF. Similarly to

16 preliminaries

FOL, RDF allows us to represent factual statements about resources
through simple binary relations, where individuals are represented
with Universal Resource Identifiers (URIs) that uniquely identify the
resources across the Web; relations are expressed with the use of RDF

assertions, i. e., triples structured as 〈subject,predicate,object〉.
RDF in itself is sufficient to achieve the main goal of the Semantic

Web, i. e., the interoperability: resources are uniquely identified, and
the meaning of the resources is described using a machine-readable
language. In different words, we have annotated the resources by using
their respective URI, and eventually, we linked them using a predicate.
Following this approach, we can annotate and share whatever resource
in the Web: datasets, people, Web pages, applications, and data that
they exchange each other.

The Semantic Web anticipated the popularity of KG representations
when logic-based languages had been proposed. Indeed, on top of RDF,
we can use in fact more expressive languages that enable reasoning
over the resources. RDFS and OWL are two languages that offer dif-
ferent models to describe the data, and enable logical reasoning (e. g.,
given a set of triples, we infer new knowledge by applying entailment
rules2 in RDFS, or by executing Description Logic reasoners3 in OWL).

Data described using both RDF and RDFS (or OWL) represent a KG.
Throughout the years, structured conceptualizations of knowledge
have arisen with the advent of the Semantic Web, with KGs spreading
as the most preferred structure. The advantage of using RDF to describe
entities in a KG is that entities become resources identified by a URI; in
this way we can assert that a resource in a specific KG is related with
a resource in a different KG (e. g., we may assert that two resources
are equal), creating the so-called Linked Data [8]. The most prominent
example of interconnected KGs is the Linked Open Data cloud, a
resource that currently counts 1269 datasets, connected with 16201

links (as of May 2020).4

2.1.3 Semantic Gap

A considerable amount of information, either published on the Web or
stored in private repositories, is still not compliant with the Semantic
Web principles, generating the semantic gap, i. e., a gap between the
coverage of structured and unstructured data [75]). This gap calls for
semantic annotation techniques, a variety of methodologies able to add
a semantic layer to unstructured data in order to make the semantic
explicit; in the literature, many techniques have been proposed for
annotating almost every resource, including text [72], images [98], Web
pages [124], outdoor trajectories [27], and geospatial data [113].

2 https://www.w3.org/TR/rdf11-mt/#rdfs-entailment

3 https://www.w3.org/2001/sw/wiki/Category:OWL_Reasoner

4 https://lod-cloud.net/#about

https://www.w3.org/TR/rdf11-mt/#rdfs-entailment
https://www.w3.org/2001/sw/wiki/Category:OWL_Reasoner
https://lod-cloud.net/#about

2.2 semantic table interpretation and annotation 17

In the last years, a particular focus has been dedicated to tabular
data, since the tabular format is one of the most used formats for stor-
ing organized information; in fact, tables are fact easy to understand
by humans due to their simple structure, and at the same time allow
users to store informative content easily. Also, tabular data, especially
in the form of CSV files, is the typical input format in data analytics
pipelines. In 2008, at the time when unstructured documents mainly
populated the Web, at least 14.1 billion HTML tables were published
on the Web, and among them, 154 million were in a “database-like”
format [14]. In 2015, approximately 90 million relational tables were
extracted from the CommonCrawl Web Table Corpus [66].

The large availability of tabular data led to a growing research
interest in exploiting such amount of valuable data for many varied
table-centric applications [13], like data search for query answering [12,
86, 97, 116], table extension [4, 12, 67, 103, 104] and completion [1],
and KG population [36, 105, 125].

The lack of understanding of the semantic structure and meaning
of the data content may represent a hurdle for most of the above
applications. Gaining the semantic understanding requires to interpret
the content of tabular data, i. e., to match the table content against a
known KG, or to interpret the table schema into a known ontology.
The task of interpreting tables with resources described in a reference
KG is referred to as STI in the literature. STI algorithms are in charge
of solving different problems, like to detect the subject column of a
table (i. e., the column that describes the main entities of the table), to
understand the semantic type of columns, to disambiguate values in
cells, and to find relationships between values in columns.

2.2 semantic table interpretation and annotation

An STI approach exploits the semantics to make explicit the meaning
of values in tables. Even if different types of tables exist, we focus
on simple tables like the one depicted in Figure 2.2, where the first
row is the header row, containing column headers), and the other rows
contain the actual data. Examples of simple tables are CSV files and
relational database tables.

Given a table and a reference KG as inputs, the output of an STI

algorithm is a set of annotations that make explicit the semantics of
the table, i. e., annotations that map the source table to the KG. Thus,
we consider the Semantic Table Annotation (STA) as the result of STI.
The two tasks are strictly related, because different strategies in STI

will lead to different annotations. We can distinguish between two
different levels of annotation:

• Instance-level annotation, which is mainly covered by entity link-
ing algorithms for tables; the instance-level annotation maps the

18 preliminaries

Name Date of birth Field Contribution

...

Duhem 1861-06-09 Physics Gibbs–Duhem equation

Einstein 1879-03-14 Physics General theory of relativity

Dewey 1859-10-20 Epistemology Progressive education

...

Column Header

Cell

Column

Row

Figure 2.2: A simple table that contains data about philosophers of science.

disambiguated content of the table to entities in the reference KG.
The most used approaches to the instance-level annotation are:

– The cell-based annotation (see Figure 2.3a), where the con-
tent of a cell is mapped to an entity (e. g., given DBpedia
as the reference KG, the cells containing the labels Einstein
and General theory of relativity in Figure 2.2 can be mapped
to the entities Albert Einstein and General relativity,
respectively).

– The row-based annotation (see Figure 2.3b), where a table
row is mapped to an entity (e. g., the third row depicted in
Figure 2.2 may be mapped to the entity Albert Einstein;
this strategy usually follows the assumption that a row
refers to only one entity (one-entity-per-row assumption).

• Schema-level annotation, which results from the interpretation of
the table schema, thus it maps elements in the table schema to
types and properties described in the reference KG. Sometimes
the schema-level interpretations must deal with more challeng-
ing tables where the header row is missing or contains mean-
ingless column headers (e. g., codes from legacy sources).5 An
annotation strategy may map column headers to classes (e. g., the
column header Name in Figure 2.2 could be mapped to the class
Philosopher in DBpedia), and between pairs of column headers
and properties (e. g., the column headers pair 〈Name, Field〉 in
Figure 2.2 could be mapped to the property mainInterest). A
possible annotation strategy is to map the whole table to a type
from the ontology and map every column header to a property
from the ontology when working under the one-entity-per-row
assumption.

As depicted in Figure 2.3, different annotations may result from the
same STI process, which in turn lead to two different KGs in output,
depending on the employed strategy. In the following, we refer to

5 We assume a table always to have a header row; when missing, the header row is
created with dummy column headers.

2.2 semantic table interpretation and annotation 19

(a) Cell-based annotation.

(b) Row-based annotation.

Figure 2.3: Different annotations resulting from the same interpretation (im-
ages from Wikipedia).

STI approaches as to all the approaches that automatically solve the
STA by interpreting a table, while we refer to STA approaches as to
the approaches that do not interpret the table (e. g., approaches that
support a user in defining the schema-level annotation).

In 2019, the Semantic Web Challenge on Tabular Data to Knowledge
Graph Matching (SemTab) was organized to standardize the definition
and evaluation of STI [54]. According to the terminology introduced
in SemTab, an STI approach delivers three possible annotations:

• Cell Entity Annotation (CEA), that is the instance-level annotation
(cell-based);

• Column Type Annotation (CTA), that is the schema-level annota-
tion focused only on linking columns to ontology classes;

• Column Predicate Annotation (CPA), that is the schema-level
annotation focused only on finding binary relations between
columns, i. e., linking pairs of columns to ontology properties.
Currently, this task is not intended to solve the general case of
n-ary relations, which is instead useful in many applications [65].

An STI approach may produce one or more of the above annotations.
Depending on the specific application (e. g., fully-automated match-
ing, or interactive matching), the annotation tasks may be addressed
together, so that they can mutually inform each other. For example,

20 preliminaries

CEA can provide evidence for CTA and CPA, i. e., linked entities are
exploited to infer the right class for annotating the columns and check-
ing the existing properties between them, while CTA may help the
disambiguation in CEA, e. g., by narrowing the set of acceptable types
for entities. In some cases, it is not required to deliver all the annota-
tions, e. g., when the application’s goal is not to build a new KG, CPA

may be useless.
Approaches that address all the STI tasks usually implement com-

plex pipelines to calibrate how the evidence is collected and propa-
gated across tasks. Usually, algorithms that solve different matching
tasks face different problems; for this reason, in Chapter 3, we will
discuss instance- and schema-level annotation algorithms separately.

2.2.1 Instance-level Annotation

Given a table and a reference KG, an entity linking algorithm aims at
disambiguating textual values in table cells, referred to as labels, after
retrieving a set of candidate entities from the reference KG. Labels are
expected to mention (or, refer to)6 some entities, and the goal of a
matching algorithm is to disambiguate the mentions, i. e., to recognize
if a label is a mention of an entity described in the reference KG; if this
is the case, then the cell is annotated with the mentioned entity. For
each label to disambiguate, the algorithm decides whether to annotate
the cell with an entity from the KG or leave it not linked.

We refer to the cell to annotate as i, j, which is the cell in the ith
row and jth column, which we indicate as Ri and Cj, respectively.
Since the label is not sufficient to disambiguate the mentioned entity
in almost the cases, STI algorithms exploit the structure of the table
by extracting contextual information from Cj and Ri, thus looking at
values occurring on the same row or column of the cell to annotate to
support the disambiguation. We refer to the column Cj as to the entity
column and all the other columns as context columns; similarly, we refer
to the row Ri as to the entity row and all the other rows as context rows.
We refer to the label in the cell to annotate as to labeli,j, while for the
sake of clarity we will use valuej and valuei to refer to the content of
cells in the jth context column or the ith context row, respectively.

If e is an entity identifier assigned to the cell i, j, then e P valuej or
valuej P e are facts in the reference KG that relate e to valuej with a
property P, according to the formalization provided in Chapter 2. For
e P valuej, valuej can be an entity identifier, a type identifier or any
literal, while for valuej P e, valuej must be an entity identifier.

Algorithms for entity linking in tables usually combine three pri-
mary operations into complex matching pipelines:

6 We use the term “mention” as it is used for entity linking in textual documents.

2.2 semantic table interpretation and annotation 21

1. Candidates retrieval, where some value in the table, usually the
label of the cell to annotate, is matched against KG facts; this
operation returns a - possibly empty - set of candidate entities,
i. e., entities that are potential candidates for the annotation.

2. Ranking, where candidate entities are ranked according to some
criterion, which may combine matching scores, e. g., the score
given by the retrieval function, other similarity scores, filters,
and more sophisticated mechanisms.

3. Decision making, where the collected evidence supports the de-
cision of whether to link or not the label and, in the first case,
which entity to consider as the final annotation.

The combination of ranking and decision making is the core of a
disambiguation algorithm. Filters over candidates and scoring used
in ranking can contribute to decision making: if after filtering the
ranked list of candidates is not empty, the top candidate can be se-
lected for the annotation, otherwise, the cell is not annotated. Other
decision-making strategies can use thresholds; however, it is difficult
to apply thresholds over scores that are not bounded, typical for scores
returned by matching functions powered by search engines and avail-
able lookup services. On the other hand, search engines offer very
efficient search over the vast amount of information stored in KGs. As
a result, lookup services usually combine string similarity, document
frequencies (e. g.Lucene-based scores), and even other aspects like
popularity (the DBpedia Lookup Service7 exploits entity popularity
measures, i. e.in-links pointing at the candidate). These considerations
make filtering and scoring particularly relevant.

2.2.2 Schema-level Annotation

Given a table and a reference KG, the schema-level annotation is the
task devoted to mapping the table’s schema to the graph-based schema
of the KG, i. e., its ontology. Often this task is addressed downstream
the instance-level annotation, thus getting also annotated entities as
input. Each column is classified into two different classes:

• Named entity column, a column containing some values that are
mentions of entities; columns Name, Field and Contribution in
Figure 2.2 are named entity columns.

• Literal column, which features plain values that do not mention
entities; the column Date of birth in Figure 2.2 is a literal column
containing dates.

7 https://wiki.dbpedia.org/lookup

https://wiki.dbpedia.org/lookup

22 preliminaries

For each column, the algorithm decides whether to annotate named
entity column with one or more classes from the KG ontology,8 or leave
it not annotated. Eventually, the algorithm may assign a datatype to
literal columns.9 We refer to the column to annotate as Cj, which is the
jth column of the table. Moreover, the algorithm may detect the subject
column of the table among the named entity columns. The subject
column is the column that contains the main entities of the table; as
an example, the table in Figure 2.2 contains data about philosophers,
thus its subject column is the column Name, which contains mentions
of philosophers. When the one-entity-per-row assumption holds, the
only named entity column of the table is also its subject column.

The schema-level annotation also embraces the task of finding re-
lations between columns. In this case, we refer to the columns to
annotate as the ordered pair 〈Cj,Ck〉(j 6= k). For each pair of columns,
the algorithm decided whether to annotate the pair with one or many
properties from the KG or leave it not annotated. Eventually, a direct
property between two columns may be missing in the reference KG,
thus requiring to consider property paths10 as possible annotations: for
example, the property nationality is almost equivalent to the property
path birthPlace/country. Moreover, a column may represent complex
ontology mappings, e. g., a measurement with a unit of measure, or
many columns should be considered at once to be mapped to a single
property, e. g., the Name and Surname columns are both targets of the
fullname property. How to deal with these particular cases is an open
issue not covered yet by the SemTab standardization process.

2.3 semantic enrichment of tabular data

Advancements in data science technology have made it possible to
analyze massive amounts of data and develop highly accurate data
analytics models. Among them, predictive analyses are usually based
on machine learning models; decision tree, random forest, neural
network, and deep neural network are just a few examples of the vast
number of machine learning models available nowadays.

Machine learning models require a massive amount of collected data
to achieve acceptable confidence in making predictions. The data are
usually collected as (or transformed to) tabular data, a data format that
allows users to feed machine learning models easily. However, many
analyses are focused on studying variables that may be missing in
the collected data; for example, it is not possible to study the weather

8 Multi-typing is encouraged in some KGs, e. g., schema.org (https://schema.org/
additionalType).

9 In this thesis, we focus on named entity columns, which are the most relevant for the
semantic data enrichment and the only ones considered in the CTA task defined by
SemTab.

10 https://www.w3.org/TR/sparql11-property-paths/

https://schema.org/additionalType
https://schema.org/additionalType
https://www.w3.org/TR/sparql11-property-paths/

2.3 semantic enrichment of tabular data 23

Figure 2.4: Infographic representing the main stages of a data project and
the related stakeholders.

impact over digital marketing campaigns’ performance if we only
collect data about campaign performance indicators.

Thus, we are in a scenario where we have a dataset that we need
to enrich with data stored in external sources of information. We refer
to this task as data enrichment, a specific data integration problem,
in which a source dataset is extended with additional data from
external sources. While the semantic of the source dataset is known
to the user, the semantic of the external sources is usually unknown.
The problem is usually part of the data preparation step, where a
data transformation pipeline is built to combine different sources of
information manually. Nonetheless, figuring out how to combine
different datasets is a cumbersome task, because in almost the cases,
the external data sources are unknown to the user.

Numbers support the evidence about the effort needed to achieve
this task: a typical data science project is mostly focused on the data
preparation stage (Figure 2.4), which takes up to 80% of the time
required by the project for cleaning enriching the data. Only the
remaining 20% is spent on data analysis [70].

This issue is now widely recognized and requires appropriate tools
and methodologies because it will worsen as data volume and variabil-
ity increase [45]. In this panorama, semantic techniques can support
data enrichment. We discussed in Section 2.1 how the Linked Open
Data (LOD) cloud is a source of valuable information (high-quality
and well-maintained data), which is represented in such a way to
increase the interoperability. A lot of this information is open and
accessible, but few attempts to use it to enrich tabular data have been
made, mainly due to the specific requirements of the task. The seman-
tic data enrichment harnesses the semantics to support the user in the
enrichment task by adding two additional building blocks to the data
transformation pipeline:

24 preliminaries

Figure 2.5: The data transformation graph.

• The reconciliation, which maps tabular data to a pool of reference
KGs; the core component of the reconciliation is the entity linking,
which enables the next task;

• The extension, where the identifiers of linked entities are used to
get data from different external data sources, by exploiting the
relations between entities available in Linked Data.

Given these two new steps, we define a data transformation graph
GT as the one depicted in Figure 2.5, and we say that a semantic data
enrichment pipeline is a path on GT where at least one node is a
reconciliation step. As an example, consider the dataset mentioned
above, containing marketing performance indicators. We suppose this
dataset also contains geographical information, such as the city to
which the performance indicator is related. A simple semantic data
enrichment pipeline first reconciles our dataset against a geospatial
KG, e. g., GeoNames, then relies on locations identifiers to retrieve
the information needed to query external weather providers, e. g.,
ECMWF. The key idea in the semantic data enrichment is to find a
shared space of identifiers between the source and the target dataset; in
our example, the shared space of identifiers is represented by WGS84

coordinate pairs. When needed, tabular transformations are available
to change the format of the data.

Current approaches do not provide comprehensive solutions to the
problem of semantic data enrichment, with many challenges still to
be faced, including: (i) the democratization of structured knowledge,
which is difficult to access for non-expert people; (ii) the creation of
enrichment pipelines that involve various data sources, potentially
from third parties; (iii) the development of tools to ease the design
and execution of semantic enrichment pipelines, also considering the
user in the loop.

On the one hand, there are plenty of tools that support the data
pipeline life-cycle, which are suitable for users familiar with program-
ming languages and process definition [108]. These tools usually offer
a variety of configurable components to create data pipelines, but are
unsuitable for non-technical data workers with only spreadsheet-level
of knowledge; besides, these solutions do not allow the users to incor-

2.3 semantic enrichment of tabular data 25

porate their specific knowledge, which is crucial to perform the data
reconciliation task effectively.

On the other hand, some tools provide users with easy-to-use func-
tionalities for data preparation, offering support to the semantic enrich-
ment only to a limited extent. These solutions are mainly suitable for
the exploratory phases of a project, without supporting the life-cycle
management and guaranteeing automation and scalability.

Consequently, we observe a working environment where different
actors, which have different knowledge backgrounds, are forced to use
different tools that are not compatible with each other: domain experts
design the data transformations using dedicated tools. In contrast,
engineers have to rewrite the data transformations in such a way
as to deploy them into a production environment. The knowledge
gap between these two groups causes delays in the development and
issues in maintaining the solutions, calling for a unified framework to
support users in designing semantic data enrichment pipelines and
deploying them in an effective and scalable way.

3
R E L AT E D W O R K A N D C O N T R I B U T I O N S

Supporting both the design and execution stages of a data enrichment
task demands to address different topics that have been investigated
in the literature. Two main fields are relevant to semantic data enrich-
ment:

• Semantic Annotation, which encompasses all the algorithms that
add a semantic layer to the input data so that artificial agents
can understand the content of the input data;

• Data Enrichment, which focuses on applying transformations to
different datasets to integrate them, paying particular attention
to efficiency.

In this Chapter, we provide a snapshot of the most recent advance-
ments relevant to these two fields, with a specific focus on tabular
data, and then we discuss how we take the best from each field to
support the semantic data enrichment both effectively and efficiently.

3.1 semantic annotation overwiew

In the last decade, the important role of the table annotation has
been discussed in several works. We hereby discuss different semantic
annotation approaches for tabular data proposed in the literature
(Table 3.1); we refer to a recent survey [73] for the discussion of
semantic annotation approaches in different contexts and applications.

3.1.1 Instance- and Schema-level Annotation

In the context of tabular data, CEA is the task of annotating the entities
mentioned in a table against a reference KG. In the last years, different
algorithms and systems have been proposed to achieve this task.
A typical methodology in the literature is to couple the CEA task
with the CTA and CPA tasks, since solving the three tasks collectively
gives accuracy benefits, compared to making local decisions [69]. In
this Section, we discuss the algorithms that exploit the cell-entity
annotations to find the type of each column and the relations between
columns.

In [69], entities and classes to link are modeled as random variables,
then evaluated jointly in a probabilistic graphical model. The approach
assumes that a column may be annotated with more classes, resem-
bling many concrete situations. Candidate entities are obtained and

27

28 related work and contributions

Table 3.1: Comparison between semantic annotation approaches.

Approach CEA CTA CPA
One-entity-

per-row

Supervised (S) /

Unsupervised (U)
Interactive

Limaye et al. [69] X X X S

Mulwad et al. [79] X X X S

Ritze et al. [102] X X X X U

Zhang et al. [126] X X X X U

Zhang [127] X X X X U

Efthymiou et al. [38] (FactBase) X X X X U

Eslahi et al. [41] (Lookup-based) X X X X U

Cremaschi et al. [22] X X X U

Ermilov et al. [40] + Usbeck et al. [114] X X X S

Kruit et al. [61] X X X U

Bhagavatula et al. [5] X S

Efthymiou et al. [38] (Embeddings) X X U

Efthymiou et al. [38] (Ontology Matching) X X U

Eslahi et al. [41] (Looping) X X U

Luo et al. [71] X S

Deng et al. [33] X S

Knoblock et al. [59] X X U X

Taheriyan et al. [111] X X S X

Pham et al. [96] X X S X

Deng et al. [32] X U

Cruz et al. [25] X X U

Quercini et al. [99] X U

Ramnandan et al. [100] X S

Chen et al. [19] X S

Hulsebos et al. [49] X S

Zhang et al. [123] X S

3.1 semantic annotation overwiew 29

ranked according to the TF-IDF similarity between the cell label, and
the entity label; candidate classes are obtained and ranked in the same
way, comparing column headers with class labels. Variables related
to the classes have a lower impact in the probabilistic model than
the variables for entities, because column headers may be omitted,
or not match any type. Relations are also modeled as variables of
the probabilistic model, but in this case, the feature represents the
compatibility between pairs of types assigned to a pair of columns
and binary relations in the reference KG. All the variables are jointly
considered in a generalized Support Vector Machine classifier, which
learns their weights.

A different approach is proposed in [79], where a list of ranked
entities is collected for each column by querying Wikitology, a hybrid
KB that contains data from Wikipedia, DBpedia, YAGO, Wordnet and
Freebase. The rank is based on the entities popularity (PageRank),
which is a good indicator in Web tables, where the most popular
entity is often the correct answer in ambiguous cases. A score is then
assigned to each class as the weighted sum of the ranks of entities
of that class. Finally, the column is annotated with the class with the
highest score. The predicted classes are used to refine the results, then
Wikitology is queried again by restricting the type of returned entities
(type filtering). A classifier is trained to decide whether the evidence
is strong enough to link to the top ranked-entity or not. Candidate re-
lations between columns are found by querying the DBpedia SPARQL
endpoint with pairs of concepts assigned to columns. Then, pairs of
strings in different columns are used to score candidate relations: a
new query is made against the endpoint, and each pair of strings vote
for the candidate relation if the candidate relation appears in the set of
relations between the pair of strings. The most voted relation is used
for annotating the column pair.

The T2K algorithm [102] works under the one-entity-per-row as-
sumption, thus assigning each row with an entity in the KB, each
column to a predicate, the whole table to a concept. A set of candi-
dates is retrieved for each row by querying the KB; then, the types
distribution among the sets of candidates for each row is observed
to decide the best type to assign to the table. To annotate a column
with a property, the value in each row is used for querying the KB and
finding a property that relates the top-ranked candidate in the same
row and the value itself. The property with the highest frequency is
then used to annotate the column. Once the table is assigned a type,
the type is used to filter out properties with a different domain type
and entities of a different type.

The approach proposed in [126] works similarly to the approach
described in [102], querying the reference KB to retrieve candidates, us-
ing the majority voting strategy to decide the right type, and applying
the one-entity-per-row assumption. Candidates are retrieved based

30 related work and contributions

on lexical similarity measures (i. e., Levenshtein and Jaccard), and
a deep semantic matching method to assess the semantic similarity
between cells values, and entity labels and descriptions. Based on the
one-entity-per-row assumption, a property is assigned to each column.
Properties are found by filtering the set of properties of the candidates
in a column, thus using a feature-based binary classifier that predicts
the best property to assign to the considered column; the classifier
considers both the values in the columns and the text in the column
header.

A more complex strategy is proposed by [127], where the column
classification and the entity disambiguation are solved in an incre-
mental, mutually recursive, approach. Entities in cells and concepts of
columns are revised iteratively, by enforcing interdependence between
columns, and between the classification and disambiguation results;
one column is assumed to be the subject column of the table. At the
end of the iterative phase, the algorithm finds relationships between
the entities in the subject column, and all the other columns, based
on the one-entity-per-row assumption. The algorithm firstly finds re-
lations between the subject column and any other columns on each
row independently. Given two cells in the same row, one in the subject
column and the other in a different column, a set of properties is
retrieved by the reference KG by querying triples where the annotated
entity in the subject column occurs as the subject. Then, the set of
triple object values is matched against the value of the cells in the
other columns, using the frequency weighted dice function; the highest
score is assigned to be the confidence score for the candidate relation.
When candidate relations have been found for each row, the algorithm
aggregates the results by scoring the candidate relations (also consid-
ering metadata outside the table, like surrounding paragraphs and
semantic markups), then selecting the top-ranked relation.

An improved version of the above algorithm [127] has been pro-
posed to increase efficiency [22]. The improved algorithm applies an
iterative approach to solve CTA first, based on preliminary results in
CEA (i. e., by finding entities for a subset of rows), then solves the
CPA task using the already discovered knowledge. The improved ap-
proach removes some external dependencies (e. g., queries to external
Web search engines), and simplifies some heuristics, making the al-
gorithm more effective, according to the results obtained on different
benchmark datasets.

FactBase is an approach proposed to annotate rows in a table, based
on the one-entity-per-row assumption [38]. The algorithm implements
a pipeline that starts with retrieving candidates from a private KB

that contains data from Wikidata, DBpedia, and Wikipedia. Then,
candidates are filtered by observing their types and descriptions:
representative types and description tokens are computed using a
majority voting strategy on the types and descriptions of the top-

3.1 semantic annotation overwiew 31

ranked candidate in each set of candidates. The algorithm assumes
that when a cell has only one candidate, that candidate is the right
annotation. Building on this hypothesis, the algorithm uses unique
candidates to understand which columns in the table describe facts
about the entities in the subject column. Pairs or candidate-value
from the subject column and a different context column are used to
query again the index, collecting triples where the candidate and the
given value appear as subject and object, respectively. Properties in
the returned triples are collected, and the context column is finally
annotated with the most frequent property occurring among rows.
If a row does not have candidates, the algorithm uses the properties
found to query the KB, looking for entities related to the values in the
context columns through the property of each context row. The new
candidates are then sorted by the edit distance between the candidate
label, and the label in the subject column and the best candidate is
used to annotate the row.

An improved version of the FactBase algorithm [38] does not rely
only on the top-ranked candidate to infer the right column type [41].
This choice allows the algorithm to deal with more candidates, consid-
ering the entire context of the table and filtering the correct annotations
using a majority function.

In the following, we discuss two algorithms that solve CEA and CPA

only, without considering CTA. The main reason is that both algorithms
focus on extracting new triples from the table, aiming to populate or
create a KG.

TAIPAN extracts RDF triples from a table, assuming the existence of a
subject column, thus looking for relations between the subject column
and all the other columns [40]. The algorithm starts by selecting a
subset of the table rows, then, disambiguates cell values against the
reference KG. The disambiguation phase is in charge of AGDISTIS, an
approach based on combining the Hypertext-Induced Topic Search
(HITS) algorithm with label expansion strategies and string similarity
measures [114]. A set of candidate entities is retrieved to create a
disambiguation graph; to collect entities, several heuristics are used,
as well as known surface forms (i. e., strings that are usually used
to refer to given resources) for resources in the reference KB. The
HITS algorithm is run over the disambiguation graph to find the
most authoritative candidates; the resources with the highest authority
values represent the correct candidate. After the disambiguation phase,
for each column, two features are computed: (i) the support, i. e., the
ratio between the disambiguated cells and the total number of cell,
and (ii) the connectivity, i. e., the number of connections of the column
to other columns and the total number of columns. Finally, a binary
classifier is used to classify columns as being either subject columns or
not. A set of seed properties is then retrieved in addition to properties
extracted via triple patterns. Properties between pairs of columns are

32 related work and contributions

evaluated using a probabilistic model, finally solving CPA using the
top-ranked property for each column.

A different approach relies on the heuristics described in [102] to
detect the subject column, working under the one-entity-per-row as-
sumption [61]; for each row, a set of candidates is retrieved and ranked
based on a normalized TF-IDF measure. Candidates are evaluated
using a probabilistic graphical model, which is initialized with priors
and then updates its likelihood scoring to maximize the coherence of
candidate entities across the rows. The coherence is computed as a
combination of properties shared by the entities in the table, not by
checking types of candidates. Finally, the best candidate of each row is
taken for finding relations between the subject columns and the other
columns: all the properties of the selected candidate are considered,
and sorted according to the Jaccard similarity between their value, and
the value listed in the considered column; in this way, each property
is given a score for each row, then the scores are aggregated at the
column level, and the top-ranked property is used to annotate the
column.

The algorithms we discussed in this Section are suitable for annotat-
ing Web tables and showed high performance in annotating several
benchmark datasets. However, we will discuss in Chapter 5 that these
approaches are mostly targeted to annotate Web tables, thus they scale
in terms of the number of tables to annotate, but do not scale when
the dimension of a single table increases. In fact, Web tables are many
(benchmark datasets like T2D [102] counts thousands of tables), but
they are very small (a few hundred rows per table). Consequently,
these approaches can not be directly integrated into data enrichment
tools employed in big data environments, where the goal is likely to
annotate large tables. Among the discussed approaches, FactBase [38]
better fits the requirements of a scalable enrichment process, like the
one we will discuss in Chapter 4, even if it is plagued by some limita-
tions discussed in Chapter 6. Moreover, in Chapter 6, we will propose
a novel methodology to increase the tolerance of the type-based fil-
tering phase in algorithms like FactBase, so that to better support the
user interaction in semantic data enrichment.

semtab challenge systems We briefly discuss systems that, in
the last years, participated in the SemTab challenge [54], a specific
challenge that aims at standardizing the evaluation of table anno-
tation algorithms. The following algorithms performed the best in
SemTab, but they are tailored to the challenge specifications, lacking
generality. In some cases, the participants have employed hard-coded
workarounds to increase the performance of their system [115]. Among
the participant systems, we mention MTab [85], which applied a major-
ity voting strategy to select the best candidate in a pool of candidates
retrieved from different lookup services, Tabularisi [112], which creates

3.1 semantic annotation overwiew 33

a feature space from the lookup service results using TF-IDF, CSV2KG,
which exploits different lookup strategies to collect candidates (based
on external services, e. g., DBpedia Spotlight)1, and DAGOBAH [17],
which is based on entity embeddings and K-means clustering. All the
algorithms jointly solve the three annotation tasks, using preliminary
results in CEA to further refine CPA and CTA results.

3.1.2 Instance-level Annotation

In this Section, we discuss the algorithms that focus specifically on the
CEA task. In previous Sections, we discussed instance-level annotation
approaches mainly based on lexical features, which try to match the
text in the table against a target KG. In this Section, we focus on recent
approaches that tried to go beyond the lexical matching.

TabEL exploits a graphical model and uses a collective classification
technique to optimize a global coherence score for a set of entities in
a table [5]. Differently from other approaches that employ graphical
models, TabEL does not consider the assumption that the semantics of
a table can be mapped to predefined types and relations. Candidates
of each cell are set as variables in the graphical model. A classifier
is then run iteratively to update the maximum-likelihood value for
each variable; the classifier is trained to prefer sets of related entities.
Different features are used to train the classifier, such as a prior prob-
ability based on Wikipedia hyperlinks, semantic relatedness feature
(e. g., the similarity between Wikipedia pages, which is based on their
in-links and out-links overlap), mention-entity similarity features (i. e.,
the similarity between the cell context and the entity context; the cell
context is the content of the cells in its row and column, while the
entity context is the aggregation of the contexts in which the entity
occurs in the training data), existing links features (i. e., the system
checks if exists a mention in the cell context with the same surface
that links to the candidate entity), and surface features (e. g., a feature
represents the exact match between the cell content and the name of
the entity in the KG).

An approach purely based on similarities between embeddings is
proposed in [38]. The algorithm computes offline the entity embed-
dings for all the entities in the reference KG. Candidates for each cell
are then retrieved in the online phase by querying an index containing
surface forms of entities; candidates are put as nodes in a disambigua-
tion graph, and a prior probability is assigned to each node, based on
the degree of the entity in the reference KG. Nodes in the graph are
linked with weighted edges, where the weight of the edge between
two nodes is the cosine similarity between the embeddings of the two
nodes. The assumption is that since entities appearing in sentences or
paragraph tend to form coherent sets, the cosine similarity between

1 https://www.dbpedia-spotlight.org/

https://www.dbpedia-spotlight.org/

34 related work and contributions

vectors aids the global disambiguation. The PageRank algorithm is run
over the disambiguation graph to update the priors, and candidates
with the highest score are used to annotate their respective rows.

The above algorithm has been extended with the Looping algo-
rithm [41], which does not create the disambiguation graph by consid-
ering all the candidates at once, but it starts by constructing a small
graph with only unambiguous entities (i. e., rows with a unique can-
didate). In this way, the graph does not grow exponentially with the
number of candidates, and the results are not affected adversely. Thus,
at each iteration of the Looping method, only one ambiguous entity is
considered, and its candidates are added to the initial graph; using
PageRank, the priors of the new graph are updated, and the candidate
with the highest score is considered as the right candidate. Building a
correct initial graph is crucial to the disambiguation of entities with
multiple candidates in this asset.

A different approach tried to reuse ontology matching methods
to solve CEA [38] (we will further discuss this topic at the end of
this Section). The method builds on the assumption that a table can
be converted into a table ontology, where each row is mapped to
an instance in the new ontology. Once the conversion is done, a
generic ontology matching tool can find relationships between the
table ontology and the reference KG, thus returning mappings between
entities and rows.

Focusing on the multilingual aspect, the approach proposed in [71]
focuses on solving the CEA task when the given table and the refer-
ence KG are in different languages. The framework is based on neural
networks and vector representations, aiming to bridge the language
gap by vector space transformation. The neural network represents
a joint model that takes two tables as input: the original input table,
and a candidate table where each cell of the original table is replaced
with a candidate entity. Candidates are found by translating the cell
content into the language of the reference KG (using translation tools),
thus querying the KG with the translated text. Text in cell and candi-
date entities are both converted in embeddings, which are trained on
two corpora of different languages separately. Since different vector
spaces of embeddings are not naturally comparable, the algorithm
also employs a bilingual translation layer in the network, that learns a
linear transformation between the different vector spaces (translation
parameters are pre-trained with a small set of already translated pairs).
The network finally considers three different features to capture the
correlations between entities in the table: the mention and context
features, which represents the relevance or compatibility between the
original table and the entity table, and the coherence feature, which
evaluates the inner relationship of entities in the correct linked table.
The neural network features are learned in a supervised way, thus
requiring a set of training data.

3.1 semantic annotation overwiew 35

Differently from the other approaches, the one proposed in [33]
introduces the pre-training/fine-tuning paradigm to relational Web
tables. A model is pre-trained and learns deep contextualized rep-
resentations on relational tables in an unsupervised manner. The
trained model is then fine-tuned on the specific CEA task. Given a
gold standard, the model is fine-tuned by considering each cell in a
table as a potential entity, thus using the cell text as well as the table
metadata into the pre-trained model; in this way, a contextualized
representation is obtained for each cell. Candidates for each cell are
collected using a lookup function. A dense vector representation of
each candidate is obtained by considering the information about its
name and description (using word embeddings, which are shared with
the aforementioned pre-trained model), as well as its type (the type
embeddings are learned during the fine-tuning phase). A matching
score is then used to learn the similarity between the candidate and
cell representations.

entity resolution We mostly focused on STI algorithms that
solve the CEA task, i. e., the table-to-KG matching, which is more
related to the semantic data enrichment topic discussed in this thesis.
However, this task is part of the vast entity resolution research area,
which includes two kinds of matching that could approximate the
table-to-KG matching: the table-to-table matching (record linkage), and
the KG-to-KG matching (link discovery). In the following, we report
a brief literature overview of these matching tasks, discussing the
challenges that, as of today, prevent the adoption of existing algorithms
to solve the CEA task. We refer to a recent survey [20] for an in-depth
explanation of the record linkage algorithms, with a specific focus on
the new challenges brought by the big data, e. g., entity descriptions
published as linked open data.

Record linkage is the task of matching structured descriptions (i. e.,
records) that refer to the same real-world entity, appearing across dif-
ferent data sources [20]. Many approaches have been proposed in the
literature to solve this task, and they can be exploited to approximate
a solution also the table-to-KG problem if we manage to convert the
KG in a set of records (i. e., a table). However, KGs exhibit properties
that challenge existing record linkage approaches: (i) KGs potentially
contain billion of triples and thousands of KGs are available in the
LOD cloud (volume); (ii) KGs are extremely heterogeneous, even in the
same domain (variety); (iii) KGs in the LOD cloud are very dynamic
(velocity); KGs are of widely differing quality in terms of coverage,
accuracy and timeliness (veracity). For example, KGs feature highly
heterogeneous entity descriptions, which hinder the usage of schema-
aware comparisons [92]; approximate string matching similarities [37]
between values of a pair of entities is weak due to veracity, requiring
the algorithm to gather more sources of evidence (e. g., by checking the

36 related work and contributions

similarity of neighboring entities, which are connected via relations in
KGs).

In the last years, different approaches to tackle the above problems
individually have been proposed. However, they are still challenged
when many characteristics have to be considered simultaneously [20];
for example, approaches based on hierarchical matching strategies [44]
or distributed representations [15] have been proposed to better deal
with the data variety. Neural methods are the core component of novel
entity resolution approaches such as Ditto [68] or DeepMatcher [78],
which adopt language models and different neural architectures for
serializing records and considering domain knowledge within the
matching process. When dealing with entities that do not share a
common schema, a soft-alignment calculation can consider many
attribute pairs at once [87].

Nowadays we have different methods focused on different aspects,
thus identifying the best workflow that fit the real user needs demands
for end-to-end frameworks such as MinoanER [39] and JedAI [93],
which allow the users to combine different sub-components of the
most recent entity resolution approaches, and extensively evaluate
their combination.

Concerning the link discovery, it is the task of finding links across
KGs, which is critical in ensuring the interoperability between different
KGs. In the specific context of the entity resolution, the task is usually
restricted to find sameAs relationships between entities [82]. The most
powerful link discovery framework2 are AgreementMakerLight [42]
and LogMap [53]. Both the frameworks focus on computational effi-
ciency, handle very large ontologies, and allow the users to customize
the link discovery process. Alongside these frameworks, other tools
like Silk [118] and LIMES [84] allow the users to manually define
generic matching pipelines (i. e., pipelines that do not necessarily find
sameAs links), and expose learning-based approaches for determin-
ing linking specifications. For example, LIMES employs decision tree
models to suggest the best set of similarity metrics and thresholds to
use to compare a pair of attributes [90]).

The link discovery matching approximates the table-to-KG problem
if we manage to convert the table into a KG (this task mainly requires
to define the schema-level annotation of the table). However, it has
been evaluated that link discovery approaches do not perform well
in CEA [38]. The main reason that hinders a full mapping between
the two matching problems rely on the variety of the data: most
link discovery tools are not designed to provide mappings between
heterogeneous KGs, and the number of attributes used to describe
entities in a record differs from the information amount available
in the KG. For example, DBpedia entities are described with 11.44

2 According to the results observed in several editions of the Ontology Alignment
Evaluation Initiative.

3.1 semantic annotation overwiew 37

attributes on average, whereas the number of attributes used in a Web
table corpus is typically between 4 and 6. [38].

3.1.3 Schema-level Annotation

The schema-level annotation is devoted to the annotation of the table
structure. The task is broad and covers many other sub-tasks besides
CTA and CPA, such as table structure understanding [88], datatype
prediction [56, 83], and holistic matching across tables [64]. In this
Section, we are more interested in discussing algorithms tightly related
to the specific CTA and CPA task.

We hereby focus on works that tried to decouple these tasks from
CEA, by exploiting the power of text classification models, showing
promising results.

An STA approach to learning how to assign a type to a column
by observing its values is described in [59]. The proposed modeling
framework assumes a semantic type to be either a class, or a pair con-
sisting of a data property and a class. As an example, 〈mainInterest,
Scientist〉 is considered as a semantic type. The algorithm computes
a set of similarity metrics, which are used to retrieve a set of can-
didate types for each column to put as nodes in a disambiguation
graph. Concepts in the graph are then linked with all the possible
relationships existing in the reference ontology. Finally, concepts and
relationships are extracted from the graph by computing the Steiner
tree, i. e., the most succinct model that connects all the semantic types
and relates all the source columns. The approach was first extended
to reuse learned models to annotate tables in the same context [111];
subsequently, a further extension enabled the reuse of a learned model
in different domains [96]. Both the approaches have been integrated
into Karma, a tool to interactively assist the users in mapping tabular
data schema to ontologies [46].

A different approach for finding the top-k concepts for a given
column is provided in [32]. The algorithm ranks the concepts for a
column by computing different exact and fuzzy similarities between
a concept and the column; in particular, this similarity is quantified
based on the matching between the entities in the concept and the cell
values of the column. This work proposes an efficient way to compute
this kind of similarity by extending MapReduce-based similarity-joins.

Another table annotation approach has been proposed as part of the
GIVA framework [24] to integrate geospatial information from hetero-
geneous sources [25]. In this approach, tables are first transformed into
corresponding feature-rich tables, by correctly identifying the column
headers when missing; then, the approach exploits the particular hier-
archical characteristics of geospatial classification schemes, which can
be modeled using a part-of or is-a relationship, to extract ontologies
from relational tables (but also from XML and RDF documents). A

38 related work and contributions

further improvement of the instance matching module in GIVA has
been proposed to improve the dataset integration when dealing with
business names and addresses [106].

The strategy of using snippets returned by a search engine (e. g.,
Bing) has been investigated in [99], where the snippets are used to
determine the type of entities in a table. Each table row is submitted
to the search engine as a query; then the returned snippet is used
as input for a multi-class text classifier, which determines whether a
snippet is the description of an entity of a given type. The classifier
is trained on a set of entities; for each entity, a query label+type is
submitted to the search engine, and up to 10 snippets are used as
training data for the classifier.

The approach used in SemanticTyper learns a semantic labeling
function from a set of values (strings, numbers, or a mix) to a set of
semantic types, in a supervised way [100]. A semantic type can be
either a class or a pair property-class. Since the full column is taken
as input, the algorithm is able to learn the distribution and hence
characteristic properties of the data corresponding to a semantic type
as a whole, rather than extracting features from individual data values.

Recently, approaches based on machine learning models have been
proposed for solving the CTA task.

ColNet [18, 19] is a supervised system based on convolutional neu-
ral networks to model the contextual semantics of a column. ColNet
can also learn inter-column semantics features from a KG and query
answering algorithm, without assuming that table cells have KB entity
correspondences. Furthermore, the algorithm assumes no metadata
is available for the given table (e. g., column headers or table descrip-
tion), typical in many real-world contexts. In addition to the evidence
available in the table, ColNet builds the property vectors, i. e., vectors
representing the degree of existence of a property for each consid-
ered class, which are exploited in the prediction model. In its first
version [18], ColNet trained a single binary classifier for each class to
consider. Subsequently, the approach has been improved by proposing
a single Hybrid Neural Network to solve the multi-class classification
prediction problem [19].

Sherlock [49] relies on a multi-input deep neural network for detect-
ing the semantic type of a column, by looking at the table header row.
In Sherlock, columns are modeled as mappings from column values to
a column header, and the column headers are treated as ground truth
labels of the semantic type. Thus, the CTA problem is modeled as a
multi-class classification problem. Sherlock has been trained on about
680 thousands data columns, learning ∼1,500 features of columns from
VizNet [48], a repository of real-world datasets collected from the
Web. These features include global statistics (e. g., column entropy that
describes how uniformly values are distributed), character-level distri-
butions (e. g., the frequencies of 96 ASCII-printable characters within

3.1 semantic annotation overwiew 39

each value of a column), word embeddings (i. e., high-dimensional
vectors that represent words in a continuous space; words in columns
are mapped to vectors using the GloVe pre-trained embeddings [94]),
and paragraph vectors (i. e., high-dimensional vectors that represent
paragraphs in a continuous space; the column text is considered as a
paragraph, then it is used to fed a Distributed Bag of Words version
of Paragraph Vector [63]).

Sato is a hybrid machine learning model that automatically detects
the semantic types of columns, by exploiting column values, as well as
contextual information. Sato combines Sherlock’s single-column type
prediction with topic modeling and structured learning to solve the
multi-class classification problem. Differently from Sherlock, Sato uses
signals from the global context (values from the entire table) and the
local context (predicted types of neighboring columns). In addition,
Sato is designed in a modular fashion, so that it can be easily plugged
in other single-column models with nearly-zero effort.

Despite the small subset of DBpedia classes used in the experimen-
tal phase (34 for Colnet, 78 for both Sherlock and Sato, out of 685

classes currently covered by the DBpedia ontology,3) all the approaches
showed promising results for the CTA task.

The schema-level algorithms we described in this Section are mainly
based on the text analysis of table columns. This strategy is not suit-
able for supporting the data enrichment of large tables, because it
prevents the scalability of the enrichment algorithm. However, some
models can be pre-trained on a dedicated corpus (e. g., ColNet), but
the small number of predictable types does not support many different
scenarios. Besides these reasons, in this thesis, we do not include a
specific schema-level annotation algorithm in the semantic enrichment
workflow presented in Chapter 4, mainly because we prefer to support
the user in the STA task interactively. Indeed, the number of columns
in a table is usually limited, allowing the user to manually annotate
all the columns, while the instance-level annotation is the crucial task
that requires automation. Moreover, in Chapter 6, we will propose a
methodology to soften STI algorithms filtering and ranking strategies,
in such a way to better deal with inaccurate schema-level annotations
provided by possibly non-expert users.

3.1.4 Evaluating Table Annotation Algorithms

In the last decade, different benchmark datasets have been proposed
in the literature to evaluate table annotation algorithms. For many
years, Limaye [69] and T2D [102] have been the reference benchmark
datasets in the literature. Subsequently, the novel W2D dataset [38] has
been proposed, which contains a larger number of tables, if compared
with previous existing datasets. The three datasets are suitable for

3 https://wiki.dbpedia.org/services-resources/ontology

https://wiki.dbpedia.org/services-resources/ontology

40 related work and contributions

testing different annotation tasks; as an example, T2D can be used
to test algorithms in solving CPA, but W2D does not cover this task
very well, because only a few tables are annotated with properties.
Also, only W2D is suitable for testing the capability of an algorithm to
efficiently annotate many tables, since it counts more than 485k tables,
while T2D counts ∼200 tables.

Even if these datasets have been the reference in the literature, and
many works discussed in the previous Sections have been tested on
them, they come with some limitations:

• These datasets are focused only on Web tables, which are usually
very small, thus do not allow to test the scalability of annotation
algorithms, when the size of a single table increases; in fact, the
average number of rows per table is 123 for T2D, 29 for Limaye
and only 15 for W2D, according to [38].

• They include only entity tables, i. e., tables where each row repre-
sents only one entity; algorithms that work under the one-entity-
per-row assumption benefit the most from this limitation, but
many real-world tables do not have this property.

• Tables in these datasets are extracted from the Web, and the enti-
ties mentioned in tables are usually referred with their canonical
name (e. g., Albert Einstein is almost always mentioned as “Al-
bert Einstein” - it is very unusual to see “A. Einstein”, “Einstein,
A.”, “Einstein”, and similar mentions in a Web table). Conse-
quently, it is not possible to test the capability of annotation
algorithms in dealing with acronyms, abbreviations, and mis-
spelled words by using these benchmark dataset.

A recent work studied the behaviour of STI algorithms on such
datasets, finding out that many of the existing approaches are focused
on obviously linkable cells [126]. According to the study, a tool like
T2K [102] matches only 2.85% of a large corpus of Web tables to DBpe-
dia, while the performance in CEA of the same tool evaluated on T2D
is very high (F1: 0.82, Precision: 0.90, Recall: 0.76); as a consequence,
we conclude that many tables in T2D are easy to annotate. Indeed,
experiments conducted in [102] report that the entity linking in T2K
fails to annotate ambiguous mentions, spotlighting that there are a
few ambiguous mentions in T2D.

In 2019, the Semantic Web Challenge on Tabular Data to Knowledge
Graph Matching (SemTab) was introduced to unify the community
efforts towards the systematic evaluation of table annotation algo-
rithms [54]. Different datasets were constructed to evaluate systems in
different rounds (ST19-R1, ST19-R2, ST19-R3, and ST19-R4). Some of
the datasets feature tables generated through a novel dataset genera-
tor, which automatically build tables from a generic KG by processing
the results of SPARQL queries. ST19-R1 and ST19-R2 include revised

3.2 data enrichment 41

tables from T2D and W2D datasets (e. g., more columns have been
annotated). The analysis of the results achieved by different competing
approaches revealed some challenges to address in future work:

• Wikipedia and DBpedia lookup mechanisms are adequate for
candidate selection tasks, but they might fail when the entity
mention is misspelled (e. g., Winsconsin vs Wisconsin) or differ-
ent from the canonical name (e. g., football player nicknames: La
Pulga to refer Lionel Messi).

• Real-world tables are noisy and not well-formed, in general.
Algorithms should also be evaluated with respect to their ability
to deal with such tables.

• Missing data can affect the results of the algorithms, but this
aspect has not been correctly evaluated.

• Although the overall quality of the SemTab 2019 datasets is
higher compared with the previous datasets, a manual inspection
of the tables in SemTab datasets brought to the surface some
malformed and wrongly annotated tables, e. g., empty rows
mapped to an entity, or long descriptions (with mentions of
different entities) mapped to a single entity (usually, the first-
mentioned entity).4

Finally, existing datasets, as well as SemTab datasets, have contributed
to benchmarking STI algorithms, but none of them provides enough
fine-grained information about the achievement of a specific score
(e. g., if the algorithm fails to annotate a specific type of tables). Some
tools have been developed to at least highlight the main error patterns,
but those patterns must be manually inspected [23].

In conclusion, existing datasets are not suitable for testing scalability
and performance of STI algorithms in more realistic scenarios (e. g.,
enriching a noisy dataset). In Chapter 5, we will propose a novel
dataset that faces some of the challenges discussed above. The dataset
is mainly focused on testing algorithms in CEA, which is crucial in
semantic data enrichment. However, the dataset has been subsequently
extended also to cover the CTA task evaluation.

3.2 data enrichment

The data enrichment is a specific data integration task where a source
dataset is manipulated in order to append additional data, typically
from external sources. The data enrichment differs from a pure data
integration task because the involved data sources (i) have to be

4 See Tables 53822652_0_5767892317858575530 and 12th_Goya_Awards#1 from ST19-R1

and ST19-R2, respectively. These errors come from the T2D and W2D datasets used
in SemTab 2019.

42 related work and contributions

partially integrated, and (ii) are heterogeneous, i. e., they are about
different topics. These differences prevent the smooth adoption of
well-studied record linkage techniques. Similarly, the problem can be
mapped to a link discovery problem, where correspondences between
entities in different KGs have to be found, but the same limitations are
there, as discusses in Section 3.1.2.

The data enrichment task is often viewed as a data transformation
task, where a sequence of data transformation functions is applied to
the involved datasets to integrate them. In this Section, we focus on
methods and tools to facilitate the data enrichment task, when it is
approached as a data transformation problem. We point the reader
to recent surveys in the field for in-depth details about the data inte-
gration accomplished with record linkage [20] and link discovery [82]
techniques.

In general, the data transformation task deals with preliminary
profiling and transformation of the data, and is usually aimed at
identifying and addressing possible data anomalies. Eventually, the
task objective is also to change the shape of the data, in such a way to
ease to work with for further tasks. For example, streaming data from
sensors are collected as plain-text (logs), then are usually transformed
into tabular data to ease the downstream analytics; finally missing
values are filled or removed. Even if existing tools are able to cope with
different input data formats, our focus is on tools able to manipulate
tabular data.

A variety of tools have been proposed to help expert users in defin-
ing data transformation pipelines, which differ in the capabilities
they offer. Such tools include powerful command line interface tools
(e. g., csvkit)5 and libraries for statistical data analysis (e. g., Agate,6 a
Python library for data analysis), spreadsheet software (e. g., Microsoft
Excel),7 and complex systems for the interactive definition of extract-
transform-load processes (e. g., Pentaho Data Integration).8 More details
about advancements in this area, with a focus on the automation of
detection and fixing of data anomalies, also in the context of Big Data,
have been discussed in recent work [109, 119].

While the above tools offer a variety of configurable components to
create data transformation pipelines, no hints are provided to the user
to ease the integration task, i. e., to find the joins between several data
sources. The state-of-the-art lacks solutions like the one described in
Section 2.3, where the semantics is exploited to ease the integration
task.

A popular data transformation tool that supports instance-level rec-
onciliation and extension in tabular data is OpenRefine.9 It provides

5 https://pypi.org/project/csvkit/

6 https://pypi.org/project/agate/

7 https://products.office.com/en/excel

8 http://community.pentaho.com/projects/data-integration

9 http://openrefine.org

https://pypi.org/project/csvkit/
https://pypi.org/project/agate/
https://products.office.com/en/excel
http://community.pentaho.com/projects/data-integration
http://openrefine.org

3.2 data enrichment 43

interactive user-interfaces with spreadsheet-style interaction embed-
ded in a desktop application designed for experts in semantics. The
tool also allows users to extend tables only with the information con-
tained in the same KB used for the reconciliation task (sameAs links
cannot be used for accessing a different KB), or by manually invoking
Web services with the string-content of a cell as a parameter (i. e., it
requires a short script to invoke an external service via HTTP requests).
Although the design phase is well supported in OpenRefine, the tool
comes without any support for batch execution of pipelines; thus, it
can only process data that can be entirely stored in memory, which is
not suitable for the Big Data context [95].

The community around OpenRefine proposed some tools for extend-
ing such tool with support to extensive data processing. Among them,
the most remarkable is OpenRefine-HD,10 which extends OpenRefine
to use Hadoop’s MapReduce jobs on HDFS clusters. Unfortunately,
documentation is missing for such a solution, and it is not stated how
it can support scalability when more distributed datasets, exposed by
external services, are involved. The tool we will present in Chapter 4

implements all the functionalities available in OpenRefine, but more-
over, it also supports the batch execution of enrichment pipelines and
provides support to define the schema-level annotation of tables.

Different commercial tools have been developed to solve the data
integration problem from the data transformation perspective, without
offering any support to the semantic enrichment.

Trifacta Wrangler11 is a commercial suite of Web applications for
the transformation of raw datasets. Many smart tools, also based on
machine learning techniques, are provided to the user to prepare
datasets for different analysis types (e. g., statistics about values in
columns are brought to the user to ease the data cleaning). The tool
comes with parallel processing, thus supports large volumes of data.

KNIME12 is a tool mainly dedicated to data analytics, but it comes
as a modular platform for building and executing workflows. A set of
standard operations is provided to the user, but some other operations
can be manually added by writing short scripts. The execution on
large datasets is supported by ad-hoc extensions, which allow the
user to deploy the designed workflows on Apache Spark and Hadoop
clusters.

Talend13 is a programming editor that offers a predefined set of
components to setup pipelines (similarly to KNIME), which can be
compiled into executable code. Also, Talend provides an open-source
data integration platform with big data extensions.

The three aforementioned commercial tools focus on functionality
to design data transformation pipelines and support their scalable

10 https://github.com/rmalla1/OpenRefine-HD

11 https://www.trifacta.com

12 https://www.knime.com

13 https://www.talend.com

https://github.com/rmalla1/OpenRefine-HD
https://www.trifacta.com
https://www.knime.com
https://www.talend.com

44 related work and contributions

execution. However, none of them comes with specific functionalities
for the semantic data enrichment, which can be manually included by
expert users with hard-coded workarounds (e. g., a user can write a
script for KNIME, which reconciles data against a SPARQL endpoint).

Finally, we report that the topic of data extension has not been ad-
dressed adequately in the scientific literature. Most of the approaches
to fuse two tables have focused on conflict resolution strategies [11],
i. e., how to deal with overlapping information. In data extension,
though, data to be added can be assumed to be new, and the conflict
resolution problem may occur but is not the objective of the fusion op-
eration. A few solutions tailored to the data augmentation have been
proposed in the last years, but they do not consider the information
available in existing KBs.

InfoGather+ is a tool for the data augmentation, focused on filling
missing attributes in a table. The algorithm is mainly indicated for
numeric and time-varying attributes. Infogather+ builds a semantic
graph over different Web tables. Table columns are annotated with
unit, scale, and timestamp in the semantic graph, then links are dis-
covered between columns representing the same semantic attribute
(the algorithm also deals with values expressed in different units and
scales). Finally, the linked columns in the graph are used to extract
the information missing in one table, from another table in the graph.
Experiments show that the system scales when the number of con-
sidered tables increases, but no evidence is given about the system
scalability when dealing with large tables.

Deeper is a data enrichment system powered by deep Web, a hidden
database [120]. Deeper is useful to help data practitioners in linking
a local database to a hidden database. It offers enrichment functions,
so that the user can choose additional attributes from the hidden
database. The approach is focused on studying how to crawl a hidden
database, but issues related to system scalability are not covered. In
addition, the system does not exploit the semantics but exposes an
API to query the hidden database using only textual information.

3.3 contributions and related work

In this thesis, we introduce a system to assist data workers in enrich-
ing source datasets with information from third-party data sources.
Differently from the usual approach to the data extension, which is
mainly in charge of the data worker, we exploit the semantics to ease
the task, without requiring the data worker to design the underlying
data transformation pipeline, as well as to explore the information
stored in KGs for guiding the user in the data enrichment process. We
will illustrate how the designed solution can support a data worker in
enriching large-scale datasets.

3.3 contributions and related work 45

However, smoothly introducing STI algorithms from the literature
in our systems is not possible, because existing algorithms do not
support the human interaction, and scale only to a limited extent
(i. e., they are able to annotate many Web tables, that are usually
small). Moreover, benchmark datasets featuring large tables to test
the scalability of STI algorithms still lack in the literature, with the
existing ones mostly focused on small Web tables. Thus, we first
introduce a novel challenging dataset to test different capabilities of STI

algorithms, including their scalability; then, we propose a neural-based
methodology to allow STI algorithms to deal with the information
entered by a user, also when the user is not expert, and then the
information may be inaccurate.

summary of the contributions The contributions of this re-
search work improve three different aspects of the semantic data
enrichment:

• We propose a methodology to support the interactive data en-
richment harnessing the semantics; we also design a system that
employs this methodology and can execute data enrichment
pipelines at a large scale (Chapter 4).

• We introduce a novel benchmark dataset to test also the scalabil-
ity of existing STI algorithms (Chapter 5).

• We propose a methodology to deal with the incomplete entity
typing information in STI approaches, either entered by non-
expert users or stored in the reference KGs, which is based on
neural prediction models and distributed representations (Chap-
ter 6).

4
A S E M A N T I C TA B L E A N N O TAT I O N A P P R O A C H T O
L A R G E - S C A L E D ATA E N R I C H M E N T

In Chapter 2, we discussed how KGs represent a well-known semantic
paradigm relevant to data enrichment nowadays. Semantic Web tech-
nologies support the publication of KGs with standards and shared
vocabularies that facilitate access and manipulation of knowledge via
web protocols. Several approaches have been proposed to integrate
data from different KGs, e. g., using entity reconciliation techniques [2].
However, we also discussed that in most data analytics projects, the
user is provided with some source legacy dataset that is structured as
a table, not as a KG.

STI approaches to transform legacy datasets (e. g., CSV tables) by
giving them a graph structure enriched with shared vocabularies,
and, possibly, with background knowledge already available in a
graph structure, have been proposed in the literature [46, 80]. The
transformation of legacy sources into a final KG, possibly enriched
with background knowledge, is a complex process. It can be addressed
as an STA task, where users specify mappings manually (e. g., by using
specific mapping languages like R2RML1 or RML2 to transform CSV
data into RDF graphs [62], or by employing the Ontology Based Data
Access (OBDA) approach for exposing a database as a graph [58]). In
contrast, the same process can be partly sustained by STI approaches,
which aim to automatically map the table to the schema of a reference
KG and link values in the source table to entities in the KG [40, 61].

Linking values to entity was found to be particularly useful for data
enrichment, in the sense that the information in the source table can
be fused with information in the target KG, e. g., a large and cross-
domain information source like Wikidata. An example of this kind
of approach is DAGOBAH [17], whose aim is to use STI to obtain
a final KG enriched with information about the entities available in
external sources. The focus on one reference KG, the creation of one
enriched KG as the output of the enrichment process, and applying STI

algorithms to automatically annotate tables are assets shared by most
of the work in this domain.

In the following, we discuss how to leverage and take existing work
a step forward. We argue that STA can provide a valuable paradigm
to support data enrichment, modularly and at scale, in a much wider
number of scenarios, including when the final objective is to enrich
datasets, and not their transformation into KGs. By modularly, we mean

1 https://www.w3.org/TR/r2rml/

2 https://rml.io/specs/rml/

47

https://www.w3.org/TR/r2rml/
https://rml.io/specs/rml/

48 a sta approach to large-scale data enrichment

that the paradigm can be implemented by an ecosystem of services
that provide access to different KGs to support automatic entity linking
and data extensions, under the assumption that entity linking is the
crucial task that requires automation. Indeed, automation is a key
factor in managing large volumes of data and reaching the at scale
dimension under certain assumptions.

In this Chapter, we describe a methodological proposal where data
workers can perform the data enrichment as an interactive table ma-
nipulation and annotation process [21]. Applying STI to an input
table plays a fundamental role in linking information to external
data sources and supporting data fetching from these sources. In this
methodology, entity linking algorithms bridge the gap between the
source table and external data sources, while the assisted schema-level
annotation drives the selection of data extension services available for
these entities.

We then discuss how the semantics (especially KGs) can be employed
as a facilitator of the enrichment process, thus filling an existing gap
between technologies available today to support data enrichment at
scale. To demonstrate the suitability of the proposed methodology,
we designed a system supported by general-purpose and specialized
services for Linked Data (for instance, for geographical toponyms,
weather, and events), which support industry-driven analytic projects
that motivated our work. We also report on the architectural choices
to put in place to achieve the desired level of scalability, which enables
the apply enrichment pipelines on massive datasets. The architectural
solution we proposed to implement our methodology has some limi-
tations, mainly due to some suboptimal design choices, which hinder
us from exploiting sophisticated STI approaches in our application.

We developed and demoed a prototype application that implements
our methodology and relies on the specialized services for Linked
Data mentioned above [29]. The proposed methodology has also been
employed in a real-life scenario, where we enriched a large dataset of
a digital marketing company [30].

4.1 from semantic annotation to data transformations

In a typical analytics project, data enrichment is addressed as part of
the data preparation stage. As a result, a data transformation pipeline is
developed manually, containing the logic to combine different sources
of information. We briefly recall the motivating example we provided
in Chapter 1, where a company is interested in enriching a source
dataset containing digital marketing campaigns data with additional
features about weather forecasts. In our scenario, different operations
have to be achieved by a data worker in order to enrich the dataset: (i)
change the date format, (ii) fetch additional data from the reference

4.1 from semantic annotation to data transformations 49

KG (i. e., GeoNames), and (iii) fetching the feature of interest from an
external provider (i. e., ECMWF).

The data worker has to deal with three different sources of infor-
mation: (i) the source dataset containing the company data, (ii) the
GeoNames KG, and (iii) the weather dumps, which are provided in a
specific format. Figuring out how to combine these datasets is a cum-
bersome task, especially because in almost all the cases the external
data sources (e. g., GeoNames and ECMWF) are unknown to the data
worker. Indeed, the data worker faces the following challenges while
joining the involved datasets:

• Investigate how to reconcile locations in the table to GeoNames,
i. e., to look for a service that meets this requirement (suitable
for users familiar with programming languages), or to check out
the GeoNames KG and build an ad-hoc reconciliation service
(suitable for users experienced in semantics and the geospatial
domain);

• Manage to query the ECMWF service, i. e., look for the API docu-
mentation (usually suitable for users familiar with programming
languages, less applicable to data workers and domain experts);

• Propose a scalable architectural solution able to efficiently enrich
datasets, also when they contain a massive amount of data. Meet-
ing possible time constraints is crucial because the enrichment
process will very likely query external services (e. g., ECMWF),
thus an effective solution for architectural issues (e. g., network
latency) is required to overcome any bottlenecks due to a large
number of issued API requests.

As a result, the data worker operates at the transformation level and
directly designs a data transformation pipeline, like the one depicted in
Figure 4.1, where several datasets (or services) are loaded (or queried),3

then joined with the source dataset.
We argue that the semantics can be exploited to support the data

enrichment, allowing the user to do the above operations transparently:
the focus becomes to declare the operations needed, while artificial
agents (e. g., services) solve the actual problem of data integration,
also modeling the final solution as a sequence of transformation
steps. An example of this scenario is depicted in Figure 4.2, where
a simple data enrichment pipeline is automatically converted into
a set of data transformations, generated by transformation services
that act as agents; the data worker has thus to invoke the needed
transformation services interactively. The transformation steps are
then automatically packed into a pipeline and deployed in a generic
production environment suitable for managing massive amounts of
data.

3 We assume the result is already in tabular format, or it can be transformed into this
format.

50 a sta approach to large-scale data enrichment

Figure 4.1: A data transformation pipeline to enrich a source dataset with
data from n reference datasets.

Extend
column B with

property y in KG1

Reconcile
column A

to KG1

...
Reconcile
column C

to KG2

Get param w
from service W
(columns A, C)

check results

PROD
ENV

check results check results check results check results

Non-expert
Data Worker

Se
m

an
tic

La
ye

r

DEPLOY

Load source Save target

Reconciliation
Service 1

Load/Query KG2

Reconciliation
Service 2

Extension
Service 3

Transf 1 Transf 2 Transf 3 Transf 4 ... Transf m

[R/E] Service n

KGnQuery D3

Transf Service 1

Load/Query KG1

Transf Service 2 Transf Service nTransf Service 3

Tr
an

sf
La

ye
r

Figure 4.2: A declarative and interactive approach to the semantic data en-
richment, supported by n different services.

The following functionalities are crucial in actually supporting a
data worker in enriching a dataset at scale:

• Manipulation over table elements (i. e., cell values, column head-
ers, rows, and columns) to clean data anomalies, e. g., removing
rows with missing values, or transform the data, e. g., creating
a new column that contains dates in a different format. These
steps remain fundamental, since they are the building blocks of
transformation pipelines.

• Values reconciliation against a reference KG, e. g., matching the
locations adopted in the source dataset against the system of
spatial identifiers adopted by the external dataset or service (e. g.,
GeoNames identifiers or WGS84 coordinates).

• Data extension based on the reconciliation results, which repre-
sent the bridge between the source dataset and a target KG or
service. The extension could add one or more columns to the
original dataset, depending on the set of desired features.

These functionalities have to be packed into an approach able to
support the development of an interactive environment to design the
reconciliation and extension process, and an automatic and scalable
platform to execute the process on massive input datasets.

4.2 small-scale design/big-scale execution 51

Figure 4.3: The small-scale design/large-scale execution principle at a glance.

In the rest of this Chapter, we will introduce Asia (Assisted Se-
mantic Interpretation and Annotation), a comprehensive approach to
provide data workers with suitable tools to interactively design en-
richment pipelines on datasets in tabular format, alongside a scalable
solution to deploy and run such pipeline against large datasets. We
emphasize that most of the related work in this field addresses the
problem of automatically inferring annotations that encode the seman-
tics of a table. However, the contribution we discuss in this Chapter
is related to implementing reconciliation and extension mechanisms
to support interactive data enrichment on small tabular datasets and
their automatic execution on massive workloads.

4.2 small-scale design/big-scale execution

The approach we propose in this Chapter is built on a small-scale
design/full-scale execution principle (also referred to simply design/execu-
tion from now on), whose driver is to separate the full data enrichment
process in two logic phases, as also depicted in Figure 4.3:

• The design phase, where the user designs the data enrichment
pipeline by working on a sample of the source dataset; the
output of this phase is a transformation model that embeds all the
operations needed to enrich the dataset.

• The processing phase, which executes the pipeline against the
original dataset and produces its enriched version.

Both phases harness the semantics to support the reconciliation and
extension tasks, thus rely on external data sources and services.

The rationale behind adopting the design/execution principle is
that in a data analytics pipeline, removing the human control during
the data preparation stage in favor of a fully automated approach
is unsuitable, due to the very high-quality standards they have to
meet. In a process where the semantics supports the matching phase,

52 a sta approach to large-scale data enrichment

the contribution of a domain expert’s knowledge and experience is
relevant to the final dataset quality. At the same time, requiring user
contributions while processing large datasets is unpractical. Based
on this observation, following this principle allows the user to fully
control the definition of the enrichment, while the resulting process is
fully automated.

Within the design phase, the user is in charge of defining the steps
needed to enrich the dataset. The user is expected to work with a
sample dataset when the full dataset is too big to be considered and
controlled (e. g., a dataset that can be manually revised). The user is
supported throughout the definition by computer-aided tools offered
as a service in such a way to reduce the need for strong programming
skills. Subsequently, the processing phase applies the enrichment
pipeline defined by the user, also considering the choices the user
made for increasing the dataset quality (e. g., revision actions put in
place by the user). The actual transformation is run in batch mode,
supporting possibly larger datasets.

Data management efficiency and confidentiality issues also ben-
efit from the design/execution principle. When a dataset contains
confidential information, the design/execution principle reduces the
amount of data needed to design the transformation, reducing the risk
of data leaks. Moreover, the user in charge of defining the enrichment
pipeline can work on regular hardware (e. g., data are handled in a
Web application accessible via Web browsers), without the need to
move the data (e. g., download a full dump); the massive workload is
instead processed on-premise, exploiting potentially larger corporate
infrastructures.

Finally, the two phases have different time requirements and poten-
tially work on datasets of different sizes, thus need different execution
strategies: within the design phase, the system is expected to work
on a smaller dataset and to be responsive so that the user can pro-
vide feedback interactively; on the contrary, the processing phase
processes larger dataset, but can last several hours. The design/ex-
ecution principle allows us to built an architecture where two main
logical components manage these phases, supported by a pool of
shared services.

design phase As illustrated in Figure 4.3, the design phase takes
a sample dataset as input and iterates over three steps:

• Enrichment design: the user designs an enrichment pipeline that
features transformation steps, supported by a graphical interface
that facilitates the interactions with reconciliation and extension
services;

• Small-size processing: each step in the pipeline is applied to the
sample dataset;

4.2 small-scale design/big-scale execution 53

• Quality insights: the user can now check the resulting sample
dataset, collect statistics about the overall quality of the result
(e. g., the number of new missing values).

The iterative process is also interactive, i. e., it is executed every time
the user edits the pipeline (e. g., adding a new step). When the re-
quired quality standards are met, the process terminates returning
two outputs: the enriched sample dataset, and an executable trans-
formation model, which contains the steps of the pipeline and the
user actions. The two outputs serve two different scenarios: (i) in a
small-scale scenario (e. g., a data journalist that would like to enrich
a small dataset), the dataset size is reasonable (e. g., a few thousand
rows), and the sample dataset corresponds to the full dataset, thus the
full design/process approach should stop at this point (the enriched
table produced as output is already the final enriched dataset); (ii) in
a large-scale scenario, the executable transformation model is used
as the primary step in the downstream processing phase. We assume
that when the user needs to enrich large volumes of data (i. e., data
too large to be interactively managed), the design phase is carried out
using a representative sample of the original dataset.

processing phase Given as input the executable transformation
model generated in the previous stage, the processing phase implied
three iterative steps:

• Stack configuration: the data flow is defined to support the
execution of the enrichment pipeline; the data flow is mainly
composed of standard pre- and post-processing steps that can
be customized.

• Batch execution: the pipeline is actually executed, possibly in
parallel;

• Quality assessment: the user can lastly evaluate the overall qual-
ity of the resulting dataset.

In the processing phase, if the result does not meet the desired quality
level (e. g., the number of reconciliation mismatches is above a given
threshold), the user must go back to the design phase and change the
enrichment pipeline, eventually working a different sample dataset
(e. g., by adding the set of rows with mismatches). The goal is to
reduce the number of overall trials, by limiting as much as possible
the trial-and-error approach to the design phase.

In the batch execution, the choice of using external services imple-
menting the reconciliation and extension functionalities represents the
main scalability limitation, which we discuss in the following sections.

54 a sta approach to large-scale data enrichment

Figure 4.4: Detailed architecture of Asia.

4.3 semantic enrichment of tabular data at scale with

asia

In this Section, we introduce Asia, our open source solution that
employs the design/execution principle to support the enrichment
of tabular data at scale. We describe in the following the decisions
and the strategies we put in place so that to ensure a suitable level of
scalability, while also maintaining a high level of modularity and loose
coupling between components, which simplify future extensions.

The resulting overall architecture is presented in Figure 4.4 and
features the following main logical blocks:

user interface The Asia frontend is represented by a single-page
Web application fully integrated into DataGraft,4 an existing data
management platform. The application provides the function-
alities and widgets to declare the schema-level annotation and
match values in columns against different KGs. These functional-
ities are supported by a set of backend services that the user can
invoke interactively. The application also supports the user in
discovering new sources of information: once a column is recon-
ciled against a specific KG, a set of external services that supports
the extension from that KG is proposed to the user. More details
about the frontend application are given in Section 4.3.1.

big data environment This component is the Big Data counter-
part of the Asia frontend, and is responsible for the orchestration
and execution of the enrichment pipeline at a larger scale. Along-
side high-level interfaces to configure and monitor the different
data flows, this component provides the needed scalability: the
workload is thus distributed to machines, which apply differ-
ent replicas of the enrichment pipeline to different chunks of

4 https://datagraft.io/

https://datagraft.io/

4.3 semantic enrichment of tabular data at scale with asia 55

the same dataset. We will provide the reader with more details
about this component in Section 4.3.2.

backend The core of Asia is an ecosystem of services orchestrated
by the Asia API Gateway, which provides a unified view of the
Asia backend. Services expose different functionalities, based
on their category:

• Conciliators: services devoted to the reconciliation of value
against a specific KG. Conciliators implement the OpenRefine
Reconciliation and Extension APIs,5 which optionally allows
for reconciled entities to be also exploited for fetching addi-
tional information from the same KG (e. g., once locations
have been reconciled with the GeoNames conciliator ser-
vice, additional properties can be fetched from the service,
like the population of the locations). When the extension
is available, we say that the conciliator service is also a KG-
based extension service. Services actually available in Asia

are represented in Figure 4.4 as pink (reconciliation only)
and pink-and-red (reconciliation and KG-based extensions)
blocks. Different services may rely on different data struc-
tures (e. g., full-text indexes), depending on the specific
implemented reconciliation strategy and the considered KG

dimension.

• Mapping Services: services in charge of finding and exposing
links between KGs. The primary purpose of these services
is to enable the user to map entities seamlessly in different
KGs to obtain URIs from a different conciliator. The mapping
service (purple block in Figure 4.4) currently available in
Asia is built on links between locations represented in
Google Geotargets, GeoNames, DBpedia, and Wikidata.6

• Extension Services: these services are suitable for extend-
ing the input dataset with information from external data
sources. Each external data source can be accessed from its
specific extension service. Currently, two extension services
are available in Asia: a weather extension service (based on
the ECMWF service) and an event extension service (based
on the EventRegistry),7 represented with yellow and blue
blocks in Figure 4.4, respectively. In principle, extension
services would directly fetch the data from their respective
external services; however, to overcome network latency
issues, the two services work on regularly downloaded

5 https://github.com/OpenRefine/OpenRefine/wiki/Documentation-For-Developers

6 We found links between Geotargets and GeoNames using a link discovery tool (i. e.,
Silk) after converting the Google Geotargets CSV file into an RDF graph. We relied
upon existing sameAs links between DBpedia and Wikidata and between GeoNames
and DBpedia to connect the whole graph.

7 https://eventregistry.org/

https://github.com/OpenRefine/OpenRefine/wiki/Documentation-For-Developers
https://eventregistry.org/

56 a sta approach to large-scale data enrichment

dumps of data, which are incrementally stored in local
storages.

We remark that since the backend provides common function-
alities to both the frontend (to support the definition of the
enrichment pipeline) and the Big Data Environment (to support
the actual reconciliation and extension steps), its deployment
must be tailored to support a specific scenario: in the frontend,
we have to support DataGraft in a multi-tenant mode,8 while
in the Big Data Environment, a dedicated deployment is nec-
essary (e. g., with replicas of services) to ensure scalability and
efficiency.

4.3.1 Supporting the Interactive Design in Asia

A core component of Asia is the application to assist the user in
defining enrichment pipelines. This component is essential because
it is the one in charge of allowing the user to transparently access
the Web of data, so that to connect values in tables with existing KGs,
enabling the data extension.

The application is fully integrated within the DataGraft and its data
manipulation tool Grafterizer [108], which provides the transforma-
tion pipeline abstraction needed to support the transformations over
table values, also in batch mode. We chose Grafterizer as our base
application because it features a tabular-to-linked-data generator and
a compiler to produce portable and repeatable data manipulation
pipelines. By inheriting its capabilities, we automatically provide solu-
tions for transforming tabular data to KG and executing many times
the same transformation over different datasets that share a common
schema (e. g., different temporal snapshots of the same dataset). Asia

extends Grafterizer and provides the user with new functionalities to
support the schema- and instance-level annotations.9

Concerning the schema-level annotation, Asia provides features to
streamline this task by supplying cross-lingual vocabulary suggestions
services based on data profiling systems, which provide information
about the usage of vocabularies in existing data. Currently, suggestions
and autocomplete functionalities for types and properties are powered
by two services, ABSTAT [91] and Linked Open Vocabularies (LOV).
The user can annotate each column with multiple types, a datatype,
and a property. At the same time, the application ensures that the
annotation is valid, i. e., it enables a proper tabular to RDF conversion
(e. g., a user cannot annotate a column with a datatype, without
specifying the property that links the column to another column

8 A DataGraft deployment that includes Asia is available online at https://datagraft.
io.

9 Demo videos that showcase Asia functionalities are publicly available online at
https://youtube.com/playlist?list=PLy7SznldqqmezwdL4QcxQYy2Fz1HV0wMS.

https://datagraft.io
https://datagraft.io
https://youtube.com/playlist?list=PLy7SznldqqmezwdL4QcxQYy2Fz1HV0wMS

4.3 semantic enrichment of tabular data at scale with asia 57

of the same table). The schema-level annotation functionality of Asia

has been exploited to annotate the French Business Register dataset
(Sirene) schema, enabling its publication as Linked Data [57].

The reconciliation is supported by the conciliator services available
in the backend. The user specifies a column to reconcile against one
of the available services. The reconciliation includes a validation step
that involves the user. The validation step is crucial because a wrong
reconciliation leads to wrong extensions downstream. Asia provides
statistics to help the user understand the quality of the results (e. g.,
number of unique values reconciled vs. not reconciled, and number of
entities reconciled with a score higher/lower than a threshold) and
modify them when needed: the user can alternatively choose a differ-
ent URI from a list of candidate entities for a cell, or manually inserting
the right URI when missing. As a result, a new column with URIs is
appended to the table, and the tool automatically annotates the new
column with the types of reconciled entities when possible (i. e., when
a most common type is identifiable, given the set of reconciled entities).
Reconciled columns enable the extension from the same conciliator
service (i. e., KG-based extension) used for the reconciliation; by using
this type of extension, the user can query different properties of the
KG. When the selected property is an object property, the target values
are KG entities (e. g., the property parentADM1 in GeoNames returns
GeoNames locations as objects), and the new appended column is
considered as an already reconciled column, enabling, in turn, new ex-
tensions. The new appended column is automatically annotated with
a type only when the selected property has a specified rdfs:range in
the KG ontology.

Extension from specific extension services are enabled as soon as
a column matches one of the criteria defined for the service: e. g.,
the weather extension service based on ECMWF requires a column
to be (i) reconciled against the GeoNames reconciliation service, or
(ii) annotated as a column with datatype xsd:date. In both cases, a
dedicated widget mediates the interaction with the user, which can
specify the desired properties to include in the dataset. For example,
when the weather extension is activated from a reconciled column, a
specific widget allows the user to select the observation dates (that can
be kept from another column - Asia recognizes the most common date
formats) and the day offset x, i. e., the weather forecast for the next x
days using the observation date as base. The user also has to select
which aggregation function to apply to the daily weather observations
(avg, min, max, cumulative).

At any point of the design phase, users can apply transformation
steps to the pipeline (e. g., to transform the result of an extension step).
When the design is complete, the application provides the user with
different functionalities: (i) to download the enriched dataset in CSV
format, or (ii) to generate a new RDF graph, or (iii) to download an ex-

58 a sta approach to large-scale data enrichment

ecutable version of the pipeline to perform the same enrichment steps
on a different (possibly larger) dataset, which share the schema with
the dataset used in the design phase.10 The executable pipeline also
encodes the validation phases addressed by the user when reconciling
columns, so that manual fixes and thresholds can be reused in further
executions.

4.3.2 Supporting the Enrichment at Scale in Asia

In order to efficiently support the data enrichment at scale, we adopted
specific techniques and strategies in the Asia design phase. In the
following, we discuss our choices and report also about current limita-
tions.

To enable scalability, we rely on a Big Data Environment that pro-
motes parallelism by distribution (horizontal scalability): different
computation nodes can work independently and in parallel on differ-
ent dataset chunks. To maximize the parallelism, a desirable feature is
that the enrichment pipeline can be executed both independently and
in parallel, on different chunks of the same dataset, thus following the
so-called shared-nothing approach [107]).

Asia has been integrated into a real Big Data Environment imple-
mented as a private cloud in our scenario. In this environment, the
enrichment pipeline steps are compiled into a chain of dependent
processing units (i. e., to follow the original sequence of the pipeline
steps), each of which is assigned to a different machine. The depen-
dency between units, and thus their synchronization, is managed by
reading/writing intermediary results from/to a shared file system (we
point the interested reader to [34] for details on the setting up of the
Big Data Environment). Figure 4.5 shows a pipeline featuring three
steps, which are compiled into three different processing units, each
of which can be replicated on different nodes within a cluster; then, all
the machines process the first step on a chunk of the original dataset,
resulting in an intermediate result stored in the shared file system;
then, all the machines apply the second pipeline step to the interme-
diate result, and so on until all the enrichment steps are completed.
While the different processing units are dependent on each other (due
to the pipeline chaining), the replicas of a single processing unit have
to be as much independent as possible to maximize the parallelism.

Reconciliation and extensions are single steps of an enrichment
pipeline, thus they are compiled to processing units. In order to inde-
pendently execute such operations, Asia conciliator services have been
implemented following the OpenRefine Reconciliation and Extension
APIs; basically, each conciliator receives a list of labels or URIs and

10 The executable is provided as a JAR file, requiring a Java Runtime Environment to be
executed. The JAR file takes as input a CSV file and allows the user to produce both
the CSV and the RDF version of the enriched dataset.

4.3 semantic enrichment of tabular data at scale with asia 59

Figure 4.5: An overview of the proposed Big Data Environment.

returns one or more resulting entities (for reconciliation) or values
(for extensions). In this way, Asia guarantees a stateless execution,
which easily enables horizontal scalability: in fact, Asia services can
be deployed alongside the cluster nodes, which can invoke the services
needed for the enrichment. Since Asia services are stateless, the full
system can be replicated on many nodes, distributing the workload on
different Asia instances. The service replication is achievable because
the involved datasets (i. e., KGs and indexes) are used in read-only
mode, thus they can be duplicated, also on-demand, without consis-
tency issues. The workload is distributed by a load balancer (i. e., the
Enrichment Service API Gateway in Figure 4.5), which dispatches the
enrichment requests across the Asia replicas.

At the same time, Asia extension services (e. g., weather and events)
rely on external service providers, which are outside the Big Data
Environment. While directly rely on such external providers (i. e., mak-
ing queries directly against their services) is suitable when working in
a small-scale asset (e. g., when using the Asia UI), the same strategy
hinders scalability in the Big Data Environment due to the network
latency and the high number of needed invocations.

We thus decided to make local the life-cycle of enrichment data.
In practice, dumps of external datasets are downloaded in advance
from their respective providers (e. g., the weather information are
downloaded daily from the ECMWF). This strategy also allows us to
preprocess the downloaded dump with information useful to speed
up the enrichment process: for example, in this stage, GeoNames URIs

are attached to locations available in the downloaded dump, speeding
up the weather enrichment based on GeoNames identifiers. However,
this solution is suitable for datasets with a known refresh rate, and

60 a sta approach to large-scale data enrichment

the refresh frequency depends on the application domain and the
nature of data. From the architectural point of view, locally managing
these datasets allows us to better size the resources to allocate in terms
of computation nodes (e. g., for big KGs, we avoid duplicating the
instance, while smaller datasets can be replicated, accordingly with
the expected workload).

However, we recognize that the data locality principles are currently
partially exploited. In fact, the processing units are deployed on dif-
ferent nodes and perform the transformation pipeline on a physically
separated dataset (data are stored in the distributed file system). The
main disadvantage of this choice is that the average read/write times
double because each node reads a data chunk and writes an enriched
data chunk to the file system. To apply the data locality principles as
much as possible, a better choice is to directly onboard data chunks on
the computation nodes; in this way, the processing units can directly
read/write the chunks without transmitting them over the network.

Lastly, it should be noted that values in the same table column may
be duplicated, potentially leading to a high number of identical recon-
ciliation/extension requests. To address this issue, we implemented
a hierarchical caching system in which each processing unit directly
manages the first level of the hierarchy (i. e., two equal values are
queried only once), while the Asia services and databases manage the
other levels (i. e., a cached response is returned to identical queries,
coming from different processing units). However, the adopted solu-
tion has a drawback. Each Asia replica has its local cache, thus it could
be the case that identical requests can be assigned to different replicas
of Asia, causing preventable cache misses. A distributed cache system
can be adopted to improve this solution (e. g., Ehcache [122]), so as to
share a common cache among multiple replicas of Asia.

4.4 evaluation of asia performance

To test the flexibility and scalability of the proposed solution, we
developed a pilot implementation of Asia, relying on an existing
Big Data Environment implemented by SINTEF.11 The evaluation
we hereby describe has been facilitated by JOT Internet Media,12 a
Spanish company operating in the digital marketing domain, which
provided us with a real dataset that we exploited for performing three
experiments of increasing scale.

The experiments analyzed in the following are based on a subset
of the services available in Asia: the geospatial reconciliation and
extension service GN (based on GeoNames) and the weather extension
service W (based on ECMWF weather forecasts). GN takes only one
value as input (e. g., a toponym listed in a single column of the table)

11 https://www.sintef.no/en/

12 https://www.jot-im.com

https://www.sintef.no/en/
https://www.jot-im.com

4.4 evaluation of asia performance 61

Figure 4.6: The pipeline used in the experimental campaign.

and can be used to generate one (reconciliation) or more (extension)
columns, while W takes two attributes as input (location and date),
and appends as many columns as the number of desired weather
features.

The dataset we used contains 21 columns and describes digital
marketing campaign performance indicators collected for three years
in Germany and Spain. The experiment has been designed to reflect
the real needs of JOT: given a row, the enrichment goal is to add
weather information about the region where the city mentioned in the
StrCity column is located.

To address such a problem, we designed a pipeline like the one
sketched in Figure 4.6, which execute the following steps:

• Reconciliation of the column StrCity against GN to obtain GeoN-
ames URIs of city toponyms; as a result, a new column gnURI
containing GeoNames URIs is appended to the dataset.

• KG-based extension of the toponyms contained in the new col-
umn gnURI to fetch their corresponding first-level administrative
division from GN (i. e., regions): given a GeoNames URI, GN re-
turns its parentADM1 location, which roughly corresponds to the
region where the city is located.13 As a result, the new parentURI
column is appended to the dataset.

• Extension with weather information about regions in column
parentURI, i. e., the temperature for the specific date in column
Date, and the following one, appending two new columns to the
dataset: (temp+0 and temp+1).

4.4.1 Experiment 1: Testing Hierarchical Cache

The first experiment has been designed to inspect the real performance
boost brought by the introduction of the hierarchical cache. We create
a scenario where a user designs and executes an enrichment pipeline
on a commodity machine over a dataset with 200k rows. An instance
of Asia has been installed on a multi-tenant machine.14

13 Different countries use different nomenclature to refer to their highest administrative
level; for example, Spain has Autonomous Communities, while Germany has States. We
adopt the general term region.

14 A server with 4 Intel Xeon CPUs (2.20GHz) and 125GB RAM.

62 a sta approach to large-scale data enrichment

0 5 10 15 20
Request number

0

20

40

60

80

100

120

Ti
m

e
(m

illi
se

co
nd

s)

0 20 40 60 80
Request number

Reconciliation KG-based extension Weather extension

Figure 4.7: Request execution time in milliseconds for the second experiment
without duplicates (left-hand side) and with 4 duplicates (right-
hand side).

We truncated the pipeline in Figure 4.6 to its first step (reconcili-
ation) for this test,15 obtaining a short pipeline with only one step.
We executed the short pipeline without using the caching strategy:
we reconciled the 2,227 different locations available in the dataset,
measuring an average time per row of 12.92ms.

We then repeated the same test, but this time we enabled the second
level of caching, which is implemented at the reconciliation service
level. The same short pipeline ran five times faster, achieving an
average processing time of 2.56ms per row. When the first cache
layer has been enabled (i. e., the processing units avoid executing the
same query twice), the pipeline ran ∼770 times faster than the first run
without any caching mechanism (0.017ms/row on average). This result
is mainly due to the reduced amount of requests over the network,
which avoids network latency whenever possible.

4.4.2 Experiment 2: Testing Cache Over Time

A second experiment was designed, based on the full pipeline in
Figure 4.6, to analyze the behavior of the cache over time.

This pipeline was used to enrich a dataset derived from the one used
in the first experiment, filtering out duplicates in the reconciliation
target column (i. e., each value occurs at most once), resulting in
2,227 unique cities (and rows). In the first run of this experiment, the
cache did not improve the performance because it was built but never
used (the table contains unique values only); results are depicted in
Figure 4.7 (left-hand side).16 Afterward, we created a synthetic dataset

15 All the Asia services implement the same cache mechanism, and we can assume that
caching brings the same performance changes to all the services. We can thus safely
test only one service.

16 Initial spikes are due to the system startup (e. g., database connectors initialization).

4.5 summary 63

where each line from the previous one was replicated four times, so
that to increase the usage of the local cache. The same pipeline has
been run to execute the full pipeline, obtaining the results reported
in Figure 4.7 (right-hand side); reusing cache speeds up the process
progressively (4x on average) and reduces the execution time (we
observe a trend that tends to the pure cache access time).

4.4.3 Experiment 3: Testing Scalability

We conducted a final experiment to observe the system scalability. We
started by running experiments on a single physical machine, where a
single instance of the Asia backend has been deployed.

We sampled the JOT original dataset to obtain datasets of different
sizes: 100MB, 1GB, 5GB, and 10GB.17 Each dataset has been split
into 10 chunks of equal size, assigned to 10 processing nodes.18 The
performance is reported in Figure 4.8 (blue points); we can observe
that our architecture achieves a linear trend, thus highlighting the
scalability of the proposed solution.

Finally, the enrichment of a 100GB dataset was performed on the
Big Data Environment deployed on a private cloud. The Big Data
Environment has an 8-node cluster of heterogeneous hosts and a
shared files system.19 The processing units of the enrichment pipeline
have been deployed on the most powerful hosts in the cluster. The
Enrichment Service API Gateway allows each processing unit to access
10 load-balanced replicas of Asia backend services.

The performance observed in the last run is reported in Figure 4.8
with a red dot. The linear trend with R2=0.998 is also maintained
for the red data point,20 despite the different contexts in which the
experiments have been executed (commodity machine vs. Big Data
Environment). This result is mainly due to similar access and reconcil-
iation times between the two experimental configurations.

4.5 summary

In this Chapter, we discussed a methodology that addresses the ef-
ficient enrichment of massive datasets. We targeted a new type of
application that is crucial to support analytics workflows at scale: the
semantic enrichment of tabular data to help users analyze their propri-
etary data once enriched with third-party data sources. We identified
the main challenges in the data science field, where involved data

17 For this dataset, 10MB corresponds to ∼50k rows.
18 On a single machine, processing nodes are single processes, which run the enrichment

model independently.
19 Five out of eight nodes have 4-core CPUs and 15.4GB RAM, the other three nodes

onboard 12-core CPUs and 64GB RAM. The distributed file system manages 6 HDDs
(3TB each).

20 The axes in Figure 4.8 uses a base-10 log scale.

64 a sta approach to large-scale data enrichment

10 1 100 101 102

GB

102

103

se
co

nd
s

HW
commodity
big data env.

Figure 4.8: Total execution time (in seconds) and linear regression curve, for
datasets of different sizes, and two experimental setups.

workers need to integrate large datasets but often have limited pro-
gramming expertise. We motivated how many applications of this
semantic enrichment task can be found in real-world data analytic
projects, and we report on a real-life domain such as digital marketing.

Moreover, we proposed Asia, an open-source solution that mod-
ularly integrates different capabilities to assist the user in different
phases of the enrichment process, from the design to the execution.
The design phase is mainly supported by the Asia UI, an application
that interactively assists users in transforming and enriching datasets,
making KGs accessible to non-expert users. The application is sustained
by an orchestrated pool of backend services, which support the recon-
ciliation and extension phases, as well as provide users with useful
suggestions for completing the schema-level annotation of the dataset.
The execution phase is driven by an executable model, which encodes
the user-designed enrichment pipeline, and enables the enrichment at
a larger scale. At the same time, the executable model supports the
repeatability of the task, since the same model can be executed on
several different datasets that share a common data schema.

We tested the scalability of an Asia prototype in an experimental
campaign conducted in a real-world asset, thus solving a real enrich-
ment problem for a company. The results we observed highlighted
promising performance in terms of scalability, showing that Asia lin-
early scales with the dataset dimension, also depending on specific
architectural choices we made. We indeed completed the experimental
campaign by enriching a 100GB dataset (counting ∼500 million rows)
with weather information.

Asia represents a novel system in the literature, which differs from
tools like OpenRefine because it also supports the batch execution of
enrichment pipelines and provides support to define the schema-level
annotation of tables. Compared with traditional data integration tools,

4.5 summary 65

Asia exploits the KGs to support the enrichment step.21 Concerning
the schema-level annotation, Asia does not employ sophisticated STA

approaches like the ones integrated into Karma [46] but drives the
manual schema-level annotation by providing the user with useful
suggestions about the usage of shared vocabularies.

However, different extension alternatives may be evaluated in future
work to improve Asia: (i) to further improve the system efficiency,
we propose to address the drawbacks discussed in Section 4.3.2, i. e.,
to adopt the data locality principle completely and to replace the
hierarchical caching with a distributed one; (ii) to support more recon-
ciliation scenarios, we plan to integrate or extend more sophisticated
STI approaches, which is particularly challenging when dealing with
large tables [28]; however, integrated STI approaches must support the
interactive approach adopted in Asia; (iii) to exploit better the user
feedback within the reconciliation step, we plan to exploit learning
mechanisms to propagate the user choices to other ambiguous cases,
not directly evaluated by the user, or to combine the feedback of
possibly more than one user as proposed for analogous tasks [26].

21 A detailed comparison can be found as a resource at https://ew-shopp.github.

io/eswc2019-tutorial/, the tutorial’s page where Asia has been presented and
compared with other tools, including OpenRefine.

https://ew-shopp.github.io/eswc2019-tutorial/
https://ew-shopp.github.io/eswc2019-tutorial/

5
E VA L UAT I N G E N T I T Y L I N K I N G F O R TA B L E S

In this Chapter, we focus on the evaluation of entity linking approaches.
As outlined in Chapter 4, STI approaches can be exploited to support
data enrichment. However, existing STI approaches are targeted to
Web table because the main objective is to support querying the Web.
As a result, benchmark datasets to test existing approaches have been
built by collecting thousands of Web tables, which are very small
(a few hundred rows), but that allow the user to test the algorithm
capability to scale to the dimension of the Web. We argue that in the
data enrichment context, interpreting Web tables does not cover many
real-world scenarios; in fact, company tables are generally a few, but
they count millions of rows. In such a setting, STI approaches that
consider the full table at once will encounter scalability issues. Existing
benchmark datasets do not allow users to test this aspect.

To bridge this gap in the literature, we introduce a novel benchmark
dataset that features larger tables, with reference to the dimension
of the tables contained in existing datasets [28]. The dataset resem-
bles many situations that occur in not well-maintained data, like the
presence of typos, and also increases the level of ambiguity in the
dataset, making more challenging the interpretation task. The dataset
is mainly targeted to evaluating the CEA task, which is crucial in data
enrichment applications. However, the dataset has been extended to
cover also the CTA task evaluation. A limitation of our approach is
that many situations have been artificially recreated, thus they can be
reverse-engineered and easily fixed.

5.1 semantic table interpretation evaluation

Tables are one of the most used formats to organize data. Every day,
data workers and business people have to handle tables that have
been extracted from databases of sales, pricing, and more. These tables
represent a great source of information for building or populating
KGs [103], as well as supporting query answering [110], but firstly the
source data have to be manipulated, interpreted within a graph-based
schema (e. g., an ontology), transformed, and linked to a reference KG.
This operation is usually addressed by solving the STI task (defined
in Chapter 2) and mainly consists of linking table elements (i. e., cells
and columns) to reference identifiers (e. g., URIs) that are used in larger
KGs.

Given an STI algorithm and a benchmark dataset, it is often difficult
to understand the shortcoming of the algorithm and how difficult the

67

68 evaluating entity linking for tables

dataset tables are to annotate. For example, is the algorithm we are
evaluating able to annotate tables that contain homonymic names of
people?

We argue that different aspects have to be balanced when defining
the matching strategy of an STI algorithm: the string matching is a core
mechanism, but giving too much importance to its evidence may cause
the algorithm to fail in recognizing nicknames and different names for
things; also, a too simple string matching strategy (e. g., because a clean
text is expected) will fail to identify misspelled entities; conversely,
allowing too much fuzziness in the search matching increases the
number of candidate entities, i. e., a pool of entities that are selected
as potential links, making the disambiguation step more difficult and
prone to errors; finally, the popularity of entities is an indicator used
to disambiguate entities, but as a consequence, the most popular
entities are always preferred by the algorithms, failing to recognize
homonymic entities.

Separately evaluating the aspects mentioned above eases the evalua-
tion of the real power of different STI methods in handling the different
challenges that data in the tables present. Moreover, building a dataset
that enables the evaluation of all these aspects requires collecting
non-artificial tables; in fact, if we use a generator for building a dataset
(e. g., tables are created by querying a SPARQL endpoint), we have the
advantage of creating a multitude of different tables quickly, but at
the same time we are prevented from creating tables with new content
(i. e., with facts missing in queried KG), or we have to add artificial
noise to include some challenges, e. g., typos.

In the last decade, some STI benchmark datasets have been proposed
in the literature. As discussed in Section 3.1.4, the most important and
used are T2D [102],1 Limaye [69],2 and W2D [38], which are all targeted
to test STI algorithms with a specific focus on Web tables. Furthermore,
we observed that the datasets feature a different amount of tables
(∼200 tables in T2D, ∼485k in W2D), which are relatively small (the
average number of rows per table is 123 for T2D, 29 for Limaye, and
only 15 for W2D, according to [38]), thus being particularly suitable
to benchmark STI algorithms that annotate many small tables, e. g.,
algorithms to support question answering over tables published on
the Web [110].

In our opinion, tables considered for the population of KGs are
usually different from Web tables, being more similar to larger legacy
tables, which are not represented in the datasets above. We can shortly
summarize the difference between these two kinds of tables as follows:

1 The T2Dv2 revised version has been released (http://webdatacommons.org/
webtables/goldstandardV2.html). However, in this Chapter, we refer to the orig-
inal version.

2 Different versions of this dataset has been released. In this Chapter, we refer to the
one described in [38].

http://webdatacommons.org/webtables/goldstandardV2.html
http://webdatacommons.org/webtables/goldstandardV2.html

5.2 tough tables 69

• Legacy tables usually have many rows, while tables in existing
benchmark datasets are small. Large tables hinder the usage of
heuristics that consider the full table at once (e. g., infer the col-
umn type by looking at the whole column), demanding different
strategies, e. g., sampling.

• Legacy tables, especially when exported as CSV files, are usually
de-normalized tables, counting several columns; this aspect is
not well represented in the existing benchmark datasets (each
table contains ∼1.77 columns with entities on average).

• Because of the de-normalization, legacy tables contain many
columns with entity matches, while tables in existing bench-
marks are mostly focused on “entity tables”, i. e., tables where
each row represents only one entity (one-row-per-entity assump-
tion). In some cases (e. g., T2D), additional entity columns, when
available in the table, are disregarded and not annotated.

• Entities in Web tables are usually mentioned using their canoni-
cal name, while in legacy sources, we find acronyms, abbrevia-
tions, misspelled words that considerably increase the ambiguity
of the table. For example, the misspelling of drug names is a
significant problem in the health domain [50, 52].

In 2019, the Semantic Web Challenge on Tabular Data to Knowledge
Graph Matching (SemTab) was introduced to unify the community
efforts towards the systematic evaluation of table annotation algo-
rithms [54], and new benchmark datasets have been proposed. We
reported in Section 3.1.4 that some unsolved challenges emerged
from the SemTab evaluation, including the need for tables with non-
canonical mentions (e. g., nicknames and aliases), misspelled entries
(noisy data), missing data, and without false positives that negatively
affect the performance of the algorithms (some tables in SemTab in-
herit annotation errors from T2D and W2D). Moreover, the existing
benchmark datasets, as well as the new datasets provided in SemTab,
do not provide enough fine-grained information about the achieve-
ment of a specific performance score (e. g., if the algorithm fails to
annotate a specific type of tables), requiring a manual inspection of
the error patterns (some tools have been developed to ease this task,
like StilTool [23], which highlights the main error patterns).

5.2 tough tables

To address the challenges described above, we constructed 2T (Tough
Tables), a novel manually curated dataset designed to evaluate STI

approaches, and, in particular, to evaluate specific aspects of the CEA

task. While the focus is on CEA because of the central role it plays in

70 evaluating entity linking for tables

data enrichment, 2T has been extended to provide also CTA annotations
(more details will be given in Section 5.3).

The annotations in 2T have been manually revised, i. e., we checked
the annotations with the following question in mind: “Would a human
annotator be able to disambiguate values in this table?”. Considering
the intrinsic ambiguity of references appearing in tables, we want to
ensure that the dataset includes those tables that can be effectively
disambiguated by a human annotator, based only on the information
available in the table. Indeed, in some cases also the human annotators
found it very hard to match cells in some tables due to the high
ambiguity of their content (e. g., for a table containing the list of
bank failures since 2000, it was not always clear if a bank A has
been acquired by another bank B, or by the B’s holding company,
which are different entities with very similar names). When the correct
link was hard to be decided based on the table content (the context
supporting the disambiguation), we decided to leave the annotation
empty, preserving the quality of the dataset.

Compared to the previous benchmark dataset, 2T has the follow-
ing distinguishing features, which make it a precious resource for
evaluating the CEA task:

1. Real Tables, useful for testing how STI algorithms deal with the
knowledge gap due to novel facts. It can often be the case that
some cells in a table refer to entities that are described in the
reference KG, for which the algorithm is expected to link the
correct entity, and some cells refer to entities not described in
the reference KG, for which the algorithm should decide not to
link any of the existing entities.

2. Tables with Ambiguous Mentions, useful for testing the algorithms’
capability to handle the ambiguity and link to non-popular
entities (tail entities).

3. Tables with Misspelled Mentions, useful for testing the weights of
lexical features used by the algorithms. We used the misspelled
words as a generator to add controlled noise to other tables.

4. Tables from Various Sources, useful for understanding the kind of
table that is the most difficult to deal with for an algorithm.

5. Manually Verified Tables, useful to prevent false positives while
evaluating the algorithms; 2T is of high quality, and all the
annotations have been manually verified.

2T has been shaped in such a way to allow the users to know
which aspects of the entity linking task are handled better/worse by
different approaches (see Figure 5.1). Indeed, 2T comes with two main
categories of tables:

5.2 tough tables 71

Figure 5.1: 2T profile at a glance. Boxed categories are those considered
during the evaluation phase. Each category is composed by some
of/all the tables from the parent categories.

• The control group (Ctrl), which contains tables that are easy to
annotate; an STI algorithm should at least annotate these tables
with relatively high performance.

• The tough group (Tough), which features only tables that are hard
to annotate.

A complete STI algorithm should properly annotate tables in both the
categories because otherwise (i) solving only the Ctrl group means
that the algorithm is able to cope with obvious entities only, and
(ii) solving only the Tough tables highlights that the algorithm is too
complex and cannot deal with the more straightforward cases.

5.2.1 Dataset Profile

Figure 5.1 provides an overview of the different table flavors included
within 2T. The Ctrl group has been built by collecting tables from
Wikipedia (CtrlWiki) and querying the DBpedia SPARQL endpoint.3

Tables in CtrlWiki have been manually revised and annotated (further
details about this procedure are available in Section 5.3), while tables in
CtrlDbp are mostly left as returned by the SPARQL endpoint. Entities
in such tables are pretty explicit and easy to annotate since most of the
mentions refer to DBpedia entities with just slightly different labels
from the ones contained in the KG.

The Tough group contains mainly tables scraped from the Web. This
group contains a small subset of T2D tables (ToughT2d), which we
re-annotated considering the entities appearing in all the columns (in
the original dataset, only the “subject” column is annotated, usually
the left-most column). In addition, we collected tables from the Web
that contain nicknames or homonyms (ToughHomo) and misspelled

3 We used the online version at http://dbpedia.org/sparql, which is based on the
2016-10 release.

http://dbpedia.org/sparql

72 evaluating entity linking for tables

words (ToughMissp). The ToughHomo category has been extended by
adding a few tables generated via ad-hoc SPARQL queries (e. g., using
properties that point to entity aliases). Alongside these tables, we
included other Web tables (ToughMisc), like non-cleaned Wikipedia
tables and tables available as Open Data (in a limited quantity, due to
motivations stated in Section 5.3).

To increase the difficulty of the dataset, we selected some specific
tables from the ToughHomo category and sorted them in a specific order
(ToughSorted). In this way, the task of detecting the column type may
be harder; as an example, if we are creating a table describing athletes,
we would reasonably organize them by category, having the soccer
players in the first part, followed by the basket players, then by the
golf players, and so on. Sorting table values poses a problem for those
algorithms that infer the column type by only looking at the first n
rows (with n usually small), and then use the inferred type as a filter
for the entity linking.4

noisy tables Starting from the collected tables, we generated
additional noisy Tough tables. Tables in the ToughMissp category are
then used to generate a new category of tables, i. e., ToughNoise1, by
adding a level-1 noise: for each table, 10 additional tables with noise
have been generated, where each of them contains an incremental
percentage of misspelled mentions (increasing by 10% at a time). This
noise resembles real noise since we use lists of real-world misspelled
words to add noise in tables.

We processed tables in the Ctrl and Tough categories (excluding the
ToughNoise1 category) in a similar way, thus creating two new cate-
gories (CtrlNoise2 and ToughNoise2) by adding a level-2 noise, i. e.,
random noise that changes the labels of randomly selected columns
and rows (e. g., it randomly duplicates a symbol). Tables in this new
category feature a noise that is random and artificial, thus it does not
always resemble a real-world scenario.

novel facts One of the main applications of STI is the KG popula-
tion, where new facts described in a table have to be included in a KG.
In data integration pipelines, entity linking and new triples generation
play an equally important role. Novel facts detection is not consid-
ered in the standard CEA evaluation as defined by SemTab,5 but we
outline that our dataset can be used to test algorithms in finding new
facts. 2T tables contain 3,292 entity mentions across 42 tables without
a corresponding entity in DBpedia 2016-10. In the CEA asset, an STI

algorithm is expected to decide to no link such cells to any entity (e. g.,
using the NIL annotation as in Named Entity Linking/Recognition).

4 This strategy might look naive, but it is the one implemented in OpenRefine, where
the first 10 rows are used to infer the possible types of the current column.

5 The SemTab 2019 challenge provided the target file with the full list of cells to
annotate with an entity, disregarding novel facts.

5.2 tough tables 73

In more general assets, like KG construction or population, we expect
the algorithm to exploit the annotations to generate a new triple (e. g.,
using the discovered column type to create a triple with the rdf:type

property). Depending on the context, such particular cells might be
used in the future to test novel knowledge discovery algorithms.

overview Benchmarking an STI algorithm using 2T enables a clear
understanding of the overall performance of the algorithm. Indeed, by
looking at the results achieved in specific categories, we can conclude
that:

• If the algorithm performs well only in Ctrl, then it relies too
much on the performance of simple string matching strategies
like label lookup (i. e., it looks only for exact matches or considers
only the canonical name of entities);

• If the performance is excellent also in CtrlNoise2, then the
algorithm adopts a kind of fuzziness in its lookup phase (e. g.,
small edit distance), but this strategy is not suitable to solve the
Tough tables;

• If the algorithm performs well only on some Tough tables, then
we can investigate the weaknesses of the algorithm by looking
at the performance on different categories of tables:

– If the ToughSorted tables are annotated in the wrong way,
then the algorithm is constrained by the column type in-
ferred by looking at the first n rows, with n too small;

– If homonyms or nicknames have been wrongly matched,
then the algorithm employs popularity mechanisms (e. g.,
PageRank), or it is based on a lookup service that returns
the most popular entities first (e. g., DBpedia Lookup).6

Annotating nicknames requires the algorithms to cover
aspects of semantics that go a bit beyond simple heuristics;7

– If ToughNoise1 tables are not correctly annotated, then the
algorithm cannot deal with real-world noise (that can be
trickier than the artificial level-2 noise);

– If the annotations are wrong for the ToughHomo tables, it
might be the case the algorithm only focuses on the canoni-
cal names of the entities.

6 We point out that some homonyms are very easy to solve using DBpedia. For
example, cities in U.S. are easy to find, since the concatenation of the city name with
its state name points directly to the right city, e. g., the Cambridge city in Illinois is
dbr:Cambridge,_Illinois in DBpedia).

7 Note that it is possible to solve this problem using a mapping dictionary if available,
but this is not the desired solution because it will not make the algorithm smart; the
same is valid for looking up on Google Search.

74 evaluating entity linking for tables

Table 5.1: Detailed statistics for 2T. Values are formatted as avg ± st.dev. (total,
min, max).

Category Cols Rows Matches Entities
Cols with

Matches
Tables

ALL
4.46±1.90

(802, 1, 8)

1,080.21±2,805.31

(194,438, 5, 15,477)

3,686.98±10,142.60

(663,656, 6, 61,908)

435.92±1,241.93

(15,997, 6, 7,032)

3.00±1.18

(540, 1, 6)
180

Ctrl

Wiki

5.73±1.28

(86, 4, 7)

66.00±81.54

(990, 10, 263)

241.73±333.57

(3,626, 20, 1,040)

155.53±223.18

(1,904, 15, 769)

3.47±1.41

(52, 2, 6)
15

Ctrl

Dbp

4.40±0.91

(66, 3, 6)

708.60±718.31

(10,629, 120, 2,408)

2,507.60±2,575.55

(37,614, 360, 7,820)

336.20±212.39

(4,872, 68, 613)

3.53±0.64

(53, 3, 5)
15

Ctrl

Noise2

5.07±1.28

(152, 3, 7)

387.30±599.25

(11,619, 10, 2,408)

1,374.67±2,141.00

(41,240, 20, 7,820)

245.87±232.95

(6,606, 15, 769)

3.50±1.07

(105, 2, 6)
30

Tough

T2d

5.73±1.85

(63, 3, 8)

78.09±77.26

(859, 6, 232)

170.00±151.05

(1,870, 6, 464)

95.27±78.92

(1,001, 6, 247)

2.18±1.08

(24, 1, 4)
11

Tough

Homo

3.36±1.12

(37, 2, 5)

1,648.73±3,272.16

(18,136, 13, 8,302)

6,421.18±13,169.01

(70,633, 25, 33,208)

1,465.45±2,720.49

(8,254, 23, 7,032)

3.00±0.77

(33, 2, 4)
11

Tough

Misc

6.50±1.31

(78, 4, 8)

122.25±162.86

(1,467, 11, 561)

366.25±416.77

(4,395, 22, 1,214)

220.25±261.07

(2,344, 16, 769)

3.67±1.44

(44, 2, 6)
12

Tough

Missp

3.50±1.29

(14, 2, 5)

4,175.50±7,549.48

(16,702, 52, 15,477)

16,379.50±30,385.95

(65,518, 178, 61,908)

201.75±347.73

(763, 11, 723)

3.25±0.96

(13, 2, 4)
4

Tough

Sorted

3.50±2.12

(7, 2, 5)

4,215.00±5,779.89

(8,430, 128, 8,302)

16,732.00±23,300.58

(33,464, 256, 33,208)

3,602.00±4,850.75

(7,201, 172, 7,032)

3.00±1.41

(6, 2, 4)
2

Tough

Noise1

2.50±1.13

(100, 1, 4)

2,000.30±3,701.62

(80,012, 5, 14,008)

5,735.40±11,198.09

(229,416, 15, 42,024)

201.75±304.98

(763, 11, 723)

2.25±0.84

(90, 1, 3)
40

Tough

Noise2

4.97±1.97

(199, 2, 8)

1,139.85±3,183.54

(45,594, 6, 15,477)

4,397.00±12,774.58

(175,880, 6, 61,908)

695.55±1,824.20

(11,479, 6, 7,032)

3.00±1.22

(120, 1, 6)
40

Tables 5.1 and 5.2 show statistics about the profile of 2T and existing
benchmark datasets.8 Comparing 2T to existing datasets, we observe
that 2T has a higher average number of rows per table, pushing the
size of individual tables towards the size of real legacy tables; the
number of matches is slightly greater than the number available in
ST19-R2 and ST19-R3, also if 2T comes with a number of tables that is
up to two orders of magnitude smaller. Since some tables in 2T are
built starting from the same core table, we observe a small number
of unique entities. Finally, 2T tables have a lower average number of
columns per table, but the highest number of columns with at least a
match: this aspect helps in having more columns to annotate in the
CTA task, and it is also a starting point for future extensions of 2T, i. e.,
covering the CPA task.

5.3 dataset construction

The 2T dataset has been built using real tables, meaning that we look
for tables, also artificially built, which resembles real tables. Examples

8 The statistics we reported in this thesis are for 2T v1.0, thus slightly differ from the
one provided in [28], which refer to 2T v0.1-pre. Moreover, the header rows were
considered while counting rows in [28], while here are discarded.

5.3 dataset construction 75

Table 5.2: Comparison with existing benchmark datasets. Statistics for Limaye
and W2D are from [38].

Dataset Cols (avg) Rows (avg) Matches Entities
Cols with

Matches (avg)
Tables

T2D 1,153 (4.95) 28,333 (121.60) 26,124 13,785 233 (1.00) 233

Limaye - (3.79) 8,670 (29) 5,278 - - 296

W2D - (5.58) 7,437,606 (15) 4,453,329 - - 485,096

ST19-R1 323 (5.05) 9,089 (142.02) 8,418 6,222 64 (1.00) 64

ST19-R2 66,734 (5.60) 300,794 (25.23) 463,796 229,280 15,335 (1.29) 11,920

ST19-R3 9,736 (4.51) 152,753 (70.69) 406,827 174,338 5,762 (2.67) 2,161

ST19-R4 3,564 (4.36) 51,249 (62.73) 107,352 53,007 1,732 (2.12) 817

2T 802 (4.46) 194,438 (1,080.21) 663,656 15,997 540 (3.00) 180

of such tables are “list of companies with their market segment”,
or “list of Italian merged political parties”, which look like results
of queries made by a manager or a journalist against a database.
We also included artificial tables because obtaining only real tables
(e. g., tables from real databases) is very difficult because of some
factors: (i) having access to real databases and making the data public
is reasonably impractical; (ii) many database dumps are available as
open data, which effectively represent a great source of tables; however,
such tables usually contain aggregated data (e. g., statistics) to preserve
company data, making it difficult to annotate them with entities from
a general KG like DBpedia. When the data are fine-grained enough
to enable the annotation, almost all the mentioned entities are not
available in a general KG. For example, we annotated a table containing
the list of bank failures from the U.S. Open Data Portal:9 only 27 over
561 failed banks are represented in the considered DBpedia KG.

5.3.1 CEA Ground Truth Contruction

In this Section, we describe the specific processes we adopted to collect
real tables, or build artificial tables that resemble real ones, and how
we annotated them.

dbpedia tables We used the DBpedia SPARQL endpoint as a
table generator (SPARQL results are tables). We run queries to generate
tables that include:

• Entity columns: columns with DBpedia URIs that represent enti-
ties.

• “Label columns”: columns with possible mentions for the corre-
sponding entities in the entity column. Given an entity column,

9 https://www.data.gov/

https://www.data.gov/

76 evaluating entity linking for tables

the corresponding label column has been created by randomly
choosing between rdfs:label, foaf:name, or dbo:alias proper-
ties.

• Literal columns: other columns, with additional information
(e. g., average annual incomes of companies).

The tables are almost left as returned by the endpoint; only a few
tables required manual fixes because of obvious errors, e. g., the entity
Kazakhstan has an empty name (“”). The collected URIs are used as
the right annotations of the labels listed in the label column.

wikipedia tables We browsed Wikipedia looking for pages con-
taining tables of interest (e. g., list of presidents, list of companies, list
of singers). We generated different versions of the collected Wikipedia
tables, applying different cleaning steps. The following steps have
been applied to Wikipedia tables in the ToughMisc category:

• Merged cells have been split into multiple cells with the same
value.

• Multi-value cells (slash-separated values, e. g., Pop / Rock, or
multi-line values, e. g., Barbados
 United States, or in-line
lists, e. g., ,) have been exploded into several lines. If
two or more multi-value cells are on the same line, we exploded
all the cells (as the cartesian product of all the values). If a
cell contains the same information in more languages (e. g.,
anthem song titles), we exploded the cell in two or more columns
(creating new lines will basically produce duplicates).

Wikipedia tables in the CtrlWiki group underwent the next additional
cleaning steps:

• “Note”, “Description”, and similar long-text columns have been
removed.

• Cells with “None”, “null”, “N/A”, “Unaffiliated”, and similar
values have been cleared.

• Columns with only images (e. g., list of U.S. presidents) have
been removed.

• All HTML tags have been deleted from cells (e. g., country flag
icons).

• Notes, footnotes, and any other additional within-cell informa-
tion (e. g., birth year and death year of U.S. presidents) have been
removed.

Most of the values in tables are already mapped to their Wikipedia
page via hyperlinks. We used the hyperlinks as the correct annotations

5.3 dataset construction 77

(we trust Wikipedia as a correct source of information since it is
maintained and verified by the community), following these criteria:10

• If a cell content has several links, we took the most relevant an-
notation, given the column context (e. g., in the table about U.S.
presidents,11 the “U.S. senator from Tennessee” cell in the “Prior
office” column contains two annotations: wiki:U.S._senator and
wiki:Tennessee; in this case we took only the wiki:U.S._senator
annotation, as the column is about prior offices, not about
places).

• Sometimes, if the same value appears several times in the same
column (e. g., music genres), only one instance has the hyper-
link to the Wikipedia page. In these cases, we copied the same
hyperlink to all the instances.

• When the hyperlink is missing (e. g., “Hard Rock” labels in the
table of best-selling music artists),12 we manually added the right
link by visiting the main entity page (e. g., wiki:Led_Zeppelin)
and looking for the missing piece of information (e. g., under the
“Genre” section on the Led Zeppelin page, we can find “Hard
Rock” linked to wiki:Hard_rock). In case when the information
is missing on the main page (e. g., in the same table, Michael
Jackson genres include “Dance”, while on his Wikipedia page
the genre is Dance-pop), we manually annotated the value with
the most related entity in Wikipedia (in this case, the music
genre Dance wiki:Dance_music).

Finally, we converted the Wikipedia links to their DBpedia corre-
spondent links by replacing the prefix wiki: with dbp: in the decoded
URI (e. g., wiki:McDonald%27s is replaced with dbp:McDonald’s), if
available, otherwise, we manually looked for the right DBpedia URI

(e. g., wiki:1788–89_United_States_presidential_election is replaced
with dbp:United_States_presidential_election,_1788–89). If this attempt
also failed, we left the annotation blank (no annotations available in
DBpedia).

other tables Finally, tables in 2T have been collected from other
sources (e. g., Open Data portals, domain-specific website, T2D). We
manually annotated entities mentioned in such tables and revised
them by ensuring that the table content was enough to properly
disambiguate the entities (i. e., without querying the Web to obtain
additional information). For example, we had to remove the “Florida,

10 In the following, wiki: and dbp: stand for https://en.wikipedia.org/wiki/ and
http://dbpedia.org/resource, respectively.

11 https://en.wikipedia.org/wiki/List_of_presidents_of_the_United_States#

Presidents

12 https://en.wikipedia.org/wiki/List_of_best-selling_music_artists#250_

million_or_more_records

https://en.wikipedia.org/wiki/U.S._senator
https://en.wikipedia.org/wiki/Tennessee
https://en.wikipedia.org/wiki/U.S._senator
https://en.wikipedia.org/wiki/Led_Zeppelin
https://en.wikipedia.org/wiki/Hard_rock
https://en.wikipedia.org/wiki/Dance_music
https://en.wikipedia.org/wiki/
http://dbpedia.org/resource
https://en.wikipedia.org/wiki/McDonald%27s
http://dbpedia.org/resource/McDonald's
https://en.wikipedia.org/wiki/1788\T1\textendash 89_United_States_presidential_election
http://dbpedia.org/resource/United_States_presidential_election,_1788\T1\textendash 89
https://en.wikipedia.org/wiki/
http://dbpedia.org/resource
https://en.wikipedia.org/wiki/List_of_presidents_of_the_United_States#Presidents
https://en.wikipedia.org/wiki/List_of_presidents_of_the_United_States#Presidents
https://en.wikipedia.org/wiki/List_of_best-selling_music_artists#250_million_or_more_records
https://en.wikipedia.org/wiki/List_of_best-selling_music_artists#250_million_or_more_records

78 evaluating entity linking for tables

New York, NY” entry from a table because it is impossible to disam-
biguate without obtaining extra information: in fact, according with
the Florida disambiguation page in DBpedia,13 there are a town and a
village named Florida in two different counties of New York, thus it is
impossible to disambiguate the cell without knowing the county of
the mentioned entity.

5.3.2 CTA Ground Truth Construction

The 2T dataset focus is mainly on evaluating CEA because this task
is crucial in semantic data enrichment applications, but also it is the
core component of many STI approaches, as seen in Chapter 3: indeed,
good performance in CEA enables to approximate the CTA task. We
exploited this observation to automatically construct the CTA ground
truth starting from the CEA one, which we trust as correct. We derived
the CTA ground truth employing a majority voting strategy: for each
annotated column, we collected its annotated entities from the CEA

ground truth and retrieved the most specific type for all the entities.14

Finally, we annotate the column with the most specific common type,
i. e., the lowest common ancestor of all the types. To find the most
specific common type, we explored the DBpedia 2016-10 ontology.15

5.4 experiments

In this Section, we describe the experiments we conducted to evaluate
the toughness of our dataset, as well as its capability to spot the
weaknesses of STI algorithms. We recreated the same environment used
in SemTab 2019 for evaluating , i. e., target cells are known, and extra
annotations, if any, are disregarded. We evaluate the STI algorithms
using the evaluation code used in SemTab 2019,16 thus computing the
macro Precision (P), Recall (R), and F1-score (F1) metrics defined as
follows:17

P =
|CorrectAnnotations|
|SystemAnnotations| R =

|CorrectAnnotations|
|TargetAnnotations|

F1 = 2×P×R
P+R

We introduced two simple baselines that annotate a cell by exploiting
external lookup services, queried with the actual cell content. The
baselines are DBLookup and WikipediaSearch, which query the corre-

13 https://dbpedia.org/page/Florida_(disambiguation)

14 Specific types of entities in DBpedia 2016-10 are available in the instance type
dump (http://downloads.dbpedia.org/2016-10/core-i18n/en/instance_types_
en.ttl.bz2).

15 http://downloads.dbpedia.org/2016-10/dbpedia_2016-10.nt

16 https://github.com/sem-tab-challenge/aicrowd-evaluator

17 SystemAnnotations = cells annotated by the algorithm; TargetAnnotations =

ground truth cells.

https://dbpedia.org/page/Florida_(disambiguation)
http://downloads.dbpedia.org/2016-10/core-i18n/en/instance_types_en.ttl.bz2
http://downloads.dbpedia.org/2016-10/core-i18n/en/instance_types_en.ttl.bz2
http://downloads.dbpedia.org/2016-10/dbpedia_2016-10.nt
https://github.com/sem-tab-challenge/aicrowd-evaluator

5.4 experiments 79

sponding online lookup service.18 Both the baselines annotate a cell
using the first result returned by the online service without further
processing.

Alongside the baselines, we searched for algorithms to test among
the ones that participated in SemTab 2019. We contacted the authors
of MTab [85], CSV2KG [115], and Tabularisi [112], the top-3 systems,
but they reported that their systems were not ready to be released.
We found that the source code of MantisTable [22], awarded with the
outstanding improvement award at SemTab 2019 (CEA task), is publicly
available.19 Since the scores obtained by all the tools in the CEA task
were similar to each other, we considered MantisTable as a good
representative STI algorithm for our evaluation.

In addition, we consider other state-of-the-art algorithms that did
not participate in the challenge. These algorithms are FactBase, Em-
beddingOnGraph, HybridI and HybridII, which have been published
in [38].20 In this way, we tested 2T with general algorithms, which are
not tailored to the specific SemTab challenge.

We run all the algorithms on 2T, obtaining the results depicted
in Figure 5.2. We underline here that our dataset adopts the same
standard format defined in SemTab 2019, thus it is compatible with
all the systems that participated in the challenge.21

results In some cases, we experienced scalability issues using
MantisTable, which failed to annotate some tables (e. g., it failed to
annotate tables with thousands of rows). In our opinion, the scalability
issues are due to the several heuristics computed within the matching
algorithm, which lead to processing errors when dealing with big ta-
bles. Moreover, the complexity of the matching algorithm increases the
computational costs: MantisTable took more than 24 hours to process
all the 180 tables of 2T. However, this aspect does not compromise our
evaluation, proving again that MantisTable can effectively annotate
tables as shown in the SemTab 2019 challenge. The reader should
consider that the reported results may not reflect the full performance
of MantisTable as they represent the output of a dry-run test without
the involvement of the developers. Nevertheless, the results suggest
that tables in 2T are effectively difficult to annotate for state-of-the-art
algorithms.

18 We used the WikipediaSearch online service available at https://en.wikipedia.org/
w/api.php, while we recreated the DBpedia Lookup service on a dedicated virtual
machine.

19 A fork of the original code repository is available at https://bitbucket.org/

vcutrona/mantistable-tool.py.
20 The original source code is not available. We re-implemented the algorithms from

scratch, as described in [38]. More details about the algorithms and their re-
implemented versions are available in Chapter 6.

21 The standard format introduced in SemTab 2019 is directly derived from the T2D
one, thus the number of algorithms that can be tested is potentially more significant.

https://en.wikipedia.org/w/api.php
https://en.wikipedia.org/w/api.php
https://bitbucket.org/vcutrona/mantistable-tool.py
https://bitbucket.org/vcutrona/mantistable-tool.py

80 evaluating entity linking for tables

Table 5.3: Results for the considered algorithms over 2T. Best results in bold
(P, R, F1).

Algorithm ALL
Ctrl

Wiki

Ctrl

Dbp

Ctrl

Noise2

Tough

T2d

Tough

Homo

Tough

Misc

Tough

Missp

Tough

Sorted

Tough

Noise1

Tough

Noise2

WikipediaSearch
P 0.60 0.79 0.93 0.86 0.75 0.55 0.61 0.67 0.54 0.57 0.51

R 0.51 0.75 0.87 0.79 0.70 0.55 0.54 0.51 0.54 0.42 0.46

F1 0.55 0.77 0.90 0.82 0.72 0.55 0.57 0.58 0.54 0.48 0.48

DBLookup
P 0.66 0.76 0.85 0.83 0.74 0.61 0.70 0.75 0.61 0.67 0.57

R 0.50 0.70 0.74 0.57 0.68 0.61 0.59 0.52 0.61 0.46 0.40

F1 0.57 0.73 0.79 0.67 0.70 0.61 0.64 0.62 0.61 0.54 0.47

MantisTable
P 0.76 0.81 0.90 0.87 0.66 0.69 0.72 0.67 0.67 0.49 0.72

R 0.10 0.67 0.48 0.43 0.61 0.06 0.50 0.02 0.03 0.03 0.07

F1 0.18 0.73 0.62 0.58 0.64 0.10 0.59 0.05 0.05 0.06 0.12

FactBase
P 0.36 0.71 0.80 0.77 0.62 0.36 0.62 0.36 0.42 0.07 0.37

R 0.19 0.48 0.58 0.48 0.49 0.29 0.36 0.15 0.28 0.03 0.18

F1 0.25 0.57 0.67 0.59 0.55 0.32 0.45 0.21 0.34 0.04 0.24

EmbeddingOnGraph
P 0.29 0.54 0.68 0.59 0.51 0.31 0.51 0.35 0.33 0.12 0.27

R 0.24 0.51 0.64 0.54 0.49 0.31 0.47 0.25 0.33 0.09 0.24

F1 0.27 0.53 0.66 0.56 0.50 0.31 0.49 0.29 0.33 0.10 0.26

HybridI
P 0.28 0.59 0.71 0.64 0.56 0.31 0.56 0.27 0.31 0.04 0.30

R 0.23 0.58 0.67 0.60 0.54 0.31 0.52 0.19 0.31 0.03 0.26

F1 0.25 0.58 0.69 0.62 0.55 0.31 0.54 0.22 0.31 0.04 0.28

HybridII
P 0.30 0.55 0.68 0.59 0.51 0.31 0.51 0.35 0.33 0.13 0.27

R 0.25 0.53 0.65 0.55 0.50 0.31 0.48 0.25 0.33 0.09 0.24

F1 0.27 0.54 0.66 0.57 0.51 0.31 0.49 0.30 0.33 0.11 0.26

5.4 experiments 81

ALL
CTRL
WIKI

CTRL
DBP

CTRL
NOISE2

TOUGH
T2D

TOUGH
HOMO

TOUGH
MISC

TOUGH
MISSP

TOUGH
SORTED

TOUGH
NOISE1

TOUGH
NOISE2

0.2

0.4

0.6

0.8

0.55
0.77

0.9

0.82

0.720.550.57
0.58

0.54

0.48

0.48
0.55

WikipediaSearch
ALL

CTRL
WIKI

CTRL
DBP

CTRL
NOISE2

TOUGH
T2D

TOUGH
HOMO

TOUGH
MISC

TOUGH
MISSP

TOUGH
SORTED

TOUGH
NOISE1

TOUGH
NOISE2

0.2

0.4

0.6

0.8

0.57 0.73

0.79

0.67

0.7
0.610.64

0.62

0.61

0.54
0.47

0.57

DBLookup

ALL
CTRL
WIKI

CTRL
DBP

CTRL
NOISE2

TOUGH
T2D

TOUGH
HOMO

TOUGH
MISC

TOUGH
MISSP

TOUGH
SORTED

TOUGH
NOISE1

TOUGH
NOISE2

0.2

0.4

0.6

0.8

0.18

0.73

0.62

0.58

0.64

0.1

0.59

0.050.050.06
0.12

0.18

MantisTable
ALL

CTRL
WIKI

CTRL
DBP

CTRL
NOISE2

TOUGH
T2D

TOUGH
HOMO

TOUGH
MISC

TOUGH
MISSP

TOUGH
SORTED

TOUGH
NOISE1

TOUGH
NOISE2

0.2

0.4

0.6

0.8

0.25

0.57

0.67

0.59

0.550.32
0.45

0.21
0.34 0.04

0.240.25

FactBase

ALL
CTRL
WIKI

CTRL
DBP

CTRL
NOISE2

TOUGH
T2D

TOUGH
HOMO

TOUGH
MISC

TOUGH
MISSP

TOUGH
SORTED

TOUGH
NOISE1

TOUGH
NOISE2

0.2

0.4

0.6

0.8

0.27
0.53

0.66

0.56

0.50.31
0.49

0.29
0.33

0.1
0.260.27

EmbeddingOnGraph
ALL

CTRL
WIKI

CTRL
DBP

CTRL
NOISE2

TOUGH
T2D

TOUGH
HOMO

TOUGH
MISC

TOUGH
MISSP

TOUGH
SORTED

TOUGH
NOISE1

TOUGH
NOISE2

0.2

0.4

0.6

0.8

0.25

0.58

0.69

0.62

0.550.31

0.54

0.22
0.31 0.04

0.280.25

HybridI

ALL
CTRL
WIKI

CTRL
DBP

CTRL
NOISE2

TOUGH
T2D

TOUGH
HOMO

TOUGH
MISC

TOUGH
MISSP

TOUGH
SORTED

TOUGH
NOISE1

TOUGH
NOISE2

0.2

0.4

0.6

0.8

0.27

0.54

0.66

0.57

0.510.31

0.49

0.3
0.33

0.11
0.260.27

HybridII

precision
recall
f1

Figure 5.2: CEA performance footprints of the considered algorithms over 2T.
F1 score in bold.

82 evaluating entity linking for tables

The precision and recall of the baseline algorithms are quite similar
since the online lookup services almost always return a result, and we
set it as the annotation without further processing; focusing on the F1,
we observe that WikipediaSearch reaches 0.83 F1 on the Ctrl group,
which is high compared with state-of-the-art models, considering
that the process only relies on the lookup service. The performance
of DBLookup is good as well but decreases due to the CtrlNoise2

subcategory, reaching an average F1 of 0.73 on the Ctrl group. Both
the baseline algorithms are not able to annotate tables in the Tough

group, with DBLookup doing a bit better; this might be because some
of the tables in 2T have been built with SPARQL queries, giving some
advantages to the DBLookup service. In general, the performance is
low as expected (0.63 overall F1 for both the baselines), given that
these algorithms do not use any sophisticated semantic techniques.

Looking at results of MantisTable, we see that the tool focuses on
those cells that can be more easily linked to the KG. The semantic
techniques employed in the algorithm push the precision on the Ctrl

group, but due to the low recall, the algorithm performs worse (0.32

overall F1) than the previous baselines. Since the precision on CtrlDbp

tables is higher than CtrlWiki ones, we can assume that the lookup
phase of the algorithm heavily depends on results from DBpedia (as
a lookup service or SPARQL endpoint). The low recall confirms the
same on the ToughNoise1 tables, which are the ones with real-world
misspelled mentions. For the subset of T2D tables that we chose and
re-annotated, we spot an F1 score lower than the 0.98 obtained by
MantisTable during the Round 1 of the SemTab challenge;22 this con-
firms that the T2D tables are focused on obvious entities, disregarding
the more difficult ones. The F1 score drastically decreases on the mis-
spelled tables, highlighting that this aspect is still not fully covered in
sophisticated state-of-the-art approaches like MantisTable.

FactBase and EmbeddingOnGraph perform the worst in annotating
2T tables, but differently from the previous algorithms, they do not
exploit external lookup services (i. e., the lookup search is performed
against a private index). Using a dedicated index makes the annota-
tion process harder because the searching phase (i. e., defining the
query to submit to the index) is in charge of the algorithm. Results
for ToughMissp and ToughNoise1 categories are the worst; we can con-
clude that the candidates retrieved by both the algorithms are filtered
out using too high thresholds, which often remove the right entity
from the candidates set. Furthermore, EmbeddingOnGraph exploits
popularity indicators (i. e., entities are scored by observing the in-links
and out-links of their Wikipedia pages) that tend to reward popular
entities; in fact, we can observe poor performance in the ToughHomo

category. The recall is higher with respect to MantisTable results, in-

22 https://www.cs.ox.ac.uk/isg/challenges/sem-tab/2019/results.html

https://www.cs.ox.ac.uk/isg/challenges/sem-tab/2019/results.html

5.4 experiments 83

Table 5.4: Average F1-score for the top-10 systems discarding outliers [55].

Automatically Generated (AG) Tough Tables (2T)

Round 1 Round 2 Round 3 Round 4 Round 4

CEA 0.93 0.95 0.94 0.92 0.54

CTA 0.83 0.93 0.94 0.92 0.59

R1 R2 R3 R4

0.80 0.80

0.85 0.85

0.90 0.90

0.95 0.95

1.00 1.00

F1
-S
co

re

MTab4Wikidata
LinkingPark
MantisTable

SSL
DAGOBAH
JenTab

bbw
AMALGAM
LexMa

(a) AG Datasets

Avg. AG 2T

0.2 0.2

0.4 0.4

0.6 0.6

0.8 0.8

1.0 1.0

F1
-S
co
re

MTab4Wikidata
LinkingPark
MantisTable

SSL
DAGOBAH
JenTab

bbw
AMALGAM
LexMa

(b) Average AG vs 2T

Figure 5.3: Results in the CEA task with the Automatically Generated (AG)
and 2T Datasets [55].

deed, FactBase and EmbeddingOnGraph have annotated much more
tables than MantisTable, thanks to their higher scalability.

HybridI and HybridII differently combine FactBase and Embeddin-
gOnGraph; in general, these methods improve the recall but sacrifice
the precision, usually leading to better results in terms of F1.

5.4.1 Results from SemTab 2020

In 2020, a new edition of the SemTab challenge was organized, using
Wikidata as the target KG and releasing a set of new automatically
generated datasets (AG). We converted the ground truth of 2T so that
to link values in cells to entities in Wikidata.23 As a result, we obtained
a new version of 2T, which we used as a benchmark dataset for the
last round (Round 4) of SemTab 2020 [55].

Collected results are available in Table 5.4. We can recognize a
significant complexity brought by 2T if we observe the average results
in Round 4, with respect to the previous rounds based on AG. We
underline that Round 4 was blind, i. e., the participants were prevented
from scoring their submission, thus we evaluated how participant
systems were able to deal with the challenges in 2T without the chance
to tweak and overspecialize the algorithm parameters. 9 systems have
produced results for CEA, while only 8 for CTA.

23 We processed owl:sameAs links available for DBpedia and Wikidata, with a few
manual fixes when the links were missing. More details are available in the 2T
repository at https://github.com/vcutrona/tough-tables.

https://github.com/vcutrona/tough-tables

84 evaluating entity linking for tables

ALL
CTRL
WIKI

CTRL
DBP

CTRL
NOISE2

TOUGH
T2D

TOUGH
HOMO

TOUGH
MISC

TOUGH
MISSP

TOUGH
SORTED

TOUGH
NOISE1

TOUGH
NOISE2

0.2

0.4

0.6

0.8
0.91

0.76

0.84

0.83

0.74

0.87

0.620.95

0.88

0.96

0.89
0.91

MTab4Wikidata
ALL

CTRL
WIKI

CTRL
DBP

CTRL
NOISE2

TOUGH
T2D

TOUGH
HOMO

TOUGH
MISC

TOUGH
MISSP

TOUGH
SORTED

TOUGH
NOISE1

TOUGH
NOISE2

0.2

0.4

0.6

0.8

0.20.3
0.160.060.11

0.52

0.12
0.35

0.54 0.0

0.250.2

SSL
ALL

CTRL
WIKI

CTRL
DBP

CTRL
NOISE2

TOUGH
T2D

TOUGH
HOMO

TOUGH
MISC

TOUGH
MISSP

TOUGH
SORTED

TOUGH
NOISE1

TOUGH
NOISE2

0.2

0.4

0.6

0.80.86

0.51
0.63

0.52

0.49

0.78

0.32

0.98

0.79

0.97

0.84
0.86

bbw

ALL
CTRL
WIKI

CTRL
DBP

CTRL
NOISE2

TOUGH
T2D

TOUGH
HOMO

TOUGH
MISC

TOUGH
MISSP

TOUGH
SORTED

TOUGH
NOISE1

TOUGH
NOISE2

0.2

0.4

0.6

0.80.81
0.75

0.9

0.87

0.76

0.94

0.61
0.76

0.97

0.71

0.85
0.81

LinkingPark
ALL

CTRL
WIKI

CTRL
DBP

CTRL
NOISE2

TOUGH
T2D

TOUGH
HOMO

TOUGH
MISC

TOUGH
MISSP

TOUGH
SORTED

TOUGH
NOISE1

TOUGH
NOISE2

0.2

0.4

0.6

0.8

0.41
0.72

0.8

0.76

0.64

0.09

0.5

0.050.01

0.58
0.09

0.41

DAGOBAH
ALL

CTRL
WIKI

CTRL
DBP

CTRL
NOISE2

TOUGH
T2D

TOUGH
HOMO

TOUGH
MISC

TOUGH
MISSP

TOUGH
SORTED

TOUGH
NOISE1

TOUGH
NOISE2

0.2

0.4

0.6

0.8

0.32
0.61

0.74

0.42

0.610.380.45

0.32
0.38

0.280.18
0.32

AMALGAM

ALL
CTRL
WIKI

CTRL
DBP

CTRL
NOISE2

TOUGH
T2D

TOUGH
HOMO

TOUGH
MISC

TOUGH
MISSP

TOUGH
SORTED

TOUGH
NOISE1

TOUGH
NOISE2

0.2

0.4

0.6

0.8

0.4
0.63

0.54

0.5

0.56

0.77

0.34

0.01
0.79

0.14

0.420.4

MantisTable
ALL

CTRL
WIKI

CTRL
DBP

CTRL
NOISE2

TOUGH
T2D

TOUGH
HOMO

TOUGH
MISC

TOUGH
MISSP

TOUGH
SORTED

TOUGH
NOISE1

TOUGH
NOISE2

0.2

0.4

0.6

0.8

0.37
0.31 0.82

0.73

0.53
0.470.39

0.050.47
0.2

0.360.37

JenTab
ALL

CTRL
WIKI

CTRL
DBP

CTRL
NOISE2

TOUGH
T2D

TOUGH
HOMO

TOUGH
MISC

TOUGH
MISSP

TOUGH
SORTED

TOUGH
NOISE1

TOUGH
NOISE2

0.2

0.4

0.6

0.8

0.59 0.75

0.86

0.62

0.75
0.620.56

0.57

0.72

0.61
0.41

0.59

LexMa

precision
recall
f1

Figure 5.4: CEA performance footprints of the considered algorithms over 2T
in SemTab 2020. F1 score in bold.

5.5 summary 85

R1 R2 R3 R4
0.70 0.70

0.75 0.75

0.80 0.80

0.85 0.85

0.90 0.90

0.95 0.95

1.00 1.00
F1

-S
co

re

MTab4Wikidata
LinkingPark
MantisTable

SSL
DAGOBAH
JenTab

bbw
AMALGAM

(a) AG Datasets

Avg. AG 2T
0.3 0.3

0.4 0.4

0.5 0.5

0.6 0.6

0.7 0.7

0.8 0.8

0.9 0.9

1.0 1.0

F1
-S
co
re

MTab4Wikidata
LinkingPark
MantisTable

SSL
DAGOBAH
JenTab

bbw
AMALGAM

(b) Average AG vs 2T

Figure 5.5: Results in the CTA task with the Automatically Generated (AG)
and 2T Datasets [55].

Figure 5.3a shows the overall results for the AG datasets, which were
very positive; scores drop over 2T, where only three systems achieved
an F1-score higher than 0.8 (Figure 5.3b). By looking at footprints in
Figure 5.4, we observe that systems tend to preserve the precision, at
the recall cost. In many cases, we observe that precision and recall
tend to the same value; this happens when systems always annotate a
cell, disregarding the knowledge gap problem, i. e., without deciding
whether to annotate a cell or not. Those systems assume that if a cell
is listed in the target file (i. e., the file that contains the list of cells to
annotate), then that cell surely has a corresponding entity, while in 2T,
a small percentage of cells (< 1%) has to be annotated with the NIL
annotation.

Within SemTab 2020, we had the chance to evaluate several algo-
rithms also in solving the CTA task over 2T. The results in Figure 5.5
show a trend similar to the one observed in CEA, where the average
performance against the AG datasets is excellent (Figure 5.5a), but then
is dramatically reduced for all the systems when annotating 2T (see
Figure 5.5b). Thus, we can conclude that also the CTA task is challeng-
ing to solve over 2T, especially for those algorithms that solve the CTA

task based on the results of CEA. We can draw the same conclusions
as for CEA if we look at the score footprints in Figure 5.6: precision
is overly preferred to recall, and systems tend always to annotate a
column; by inspecting the submissions files, we spotlighted that some
algorithms annotate column with clearly wrong types, by assuming
that an empty annotation would always be a wrong annotation.

5.5 summary

In this Chapter, we presented a novel dataset for benchmarking ta-
ble annotation approaches on the CEA and CTA tasks. The dataset
comes with a mix of real and constructed tables, which resemble many
real-world scenarios. We tested our dataset using state-of-the-art ap-

86 evaluating entity linking for tables

ALL
CTRL
WIKI

CTRL
DBP

CTRL
NOISE2

TOUGH
T2D

TOUGH
HOMO

TOUGH
MISC

TOUGH
MISSP

TOUGH
SORTED

TOUGH
NOISE1

TOUGH
NOISE2

0.2

0.4

0.6

0.8
0.73 0.81

0.75

0.79

0.84
0.670.75

0.6

0.66

0.6

0.72
0.73

MTab4Wikidata
ALL

CTRL
WIKI

CTRL
DBP

CTRL
NOISE2

TOUGH
T2D

TOUGH
HOMO

TOUGH
MISC

TOUGH
MISSP

TOUGH
SORTED

TOUGH
NOISE1

TOUGH
NOISE2

0.2

0.4

0.6

0.8

0.360.38
0.37

0.43

0.44
0.51

0.23

0.00.36

0.410.29
0.36

SSL
ALL

CTRL
WIKI

CTRL
DBP

CTRL
NOISE2

TOUGH
T2D

TOUGH
HOMO

TOUGH
MISC

TOUGH
MISSP

TOUGH
SORTED

TOUGH
NOISE1

TOUGH
NOISE2

0.2

0.4

0.6

0.8

0.51
0.51

0.51

0.54
0.28

0.57
0.45

0.37
0.46

0.68 0.39
0.51

bbw

ALL
CTRL
WIKI

CTRL
DBP

CTRL
NOISE2

TOUGH
T2D

TOUGH
HOMO

TOUGH
MISC

TOUGH
MISSP

TOUGH
SORTED

TOUGH
NOISE1

TOUGH
NOISE2

0.2

0.4

0.6

0.8
0.69 0.75

0.72

0.72

0.68

0.70.67

0.51
0.95

0.64

0.66
0.69

LinkingPark
ALL

CTRL
WIKI

CTRL
DBP

CTRL
NOISE2

TOUGH
T2D

TOUGH
HOMO

TOUGH
MISC

TOUGH
MISSP

TOUGH
SORTED

TOUGH
NOISE1

TOUGH
NOISE2

0.2

0.4

0.6

0.8
0.72 0.85

0.72

0.77

0.66

0.67
0.78

0.59

0.5

0.68

0.65
0.72

DAGOBAH
ALL

CTRL
WIKI

CTRL
DBP

CTRL
NOISE2

TOUGH
T2D

TOUGH
HOMO

TOUGH
MISC

TOUGH
MISSP

TOUGH
SORTED

TOUGH
NOISE1

TOUGH
NOISE2

0.2

0.4

0.6

0.8

0.61 0.64

0.71

0.63

0.740.580.56
0.61

0.73

0.55

0.55
0.61

AMALGAM

ALL
CTRL
WIKI

CTRL
DBP

CTRL
NOISE2

TOUGH
T2D

TOUGH
HOMO

TOUGH
MISC

TOUGH
MISSP

TOUGH
SORTED

TOUGH
NOISE1

TOUGH
NOISE2

0.2

0.4

0.6

0.8

0.47 0.53

0.55

0.55

0.51
0.52

0.43

0.220.5

0.38
0.43

0.47

MantisTable
ALL

CTRL
WIKI

CTRL
DBP

CTRL
NOISE2

TOUGH
T2D

TOUGH
HOMO

TOUGH
MISC

TOUGH
MISSP

TOUGH
SORTED

TOUGH
NOISE1

TOUGH
NOISE2

0.2

0.4

0.6

0.8

0.62
0.57

0.81

0.73
0.42

0.79
0.63

0.44
0.58

0.44

0.61
0.62

JenTab

precision
recall
f1

Figure 5.6: CTA performance footprints of the considered algorithms over 2T
in SemTab 2020. F1 score in bold.

5.5 summary 87

proaches and two baselines. These baselines are represented by online
lookup services, which are usually adopted as a building block of
many table annotation approaches. We demonstrated that our tables
are tough, and solving them requires the algorithms to implement
sophisticated mechanisms that consider many semantics aspects. In
fact, algorithms focused on precision, like MantisTable, fail to annotate
large tables and noisy tables, while baseline algorithms can annotate
more cells, but the precision decreases in some cases. Existing scalable
solutions like FactBase and EmbeddingOnGraph fail to annotate 2T,
achieving worse scores for all the categories. We also used 2T as a
benchmark dataset in SemTab 2020, showing that the most recent
approaches, when tailored to a specific challenge, an still not cope
with the complexity of 2T.

As future work, we plan to extend 2T to cover also the CPA task. We
think that the dataset profile makes it suitable to evaluate algorithms
in CPA because 2T comes with tables containing many columns with
matches (∼3 columns per table), making the CPA more challenging:
in fact, just moving from 2 to 3 columns to annotate increases the
annotation combinations space by 1 degree of freedom.

6
I M P R O V I N G E N T I T Y L I N K I N G F O R AU T O M AT I C
A N D A S S I S T E D S E M A N T I C TA B L E
I N T E R P R E TAT I O N

In previous Chapters, we highlighted how many applications nowa-
days could benefit from matching tables against KGs, including trans-
forming tabular data into KGs, improving the question answering
over Web tables, and supporting the KG completion. The community
interest in this topic led to a plethora of STI approaches, which auto-
matically support the task at the Web scale. However, we discussed
in Chapter 3 that almost all the existing STI algorithms are fully au-
tomated, thus are not able to include the information provided by a
user in an interactive environment.

In this Chapter, we propose a methodology to improve the entity
linking for automatic and assisted STI approaches that rely on the
semantic type of entities [31]. The proposed methodology is based on
different type enrichment strategies that can be included in existing STI

algorithms in a modular fashion. The two approaches we propose are
targeted to improve the CEA refinement phase of STI algorithms based
on neural type prediction and soft constraints. We will showcase
the actual application of such approaches to existing state-of-the-
art algorithms, showing promising results on different benchmark
datasets. One of the proposed approaches is derived from a particular
technique to representing KG types in a continuous vector space, which
has been introduced in previous work [7].

A limitation of the proposed approaches is that they are based on
a neural model for predicting types, which may be not suitable for
predicting types when dealing with some target KGs (we used the
DBpedia KG for our study). For example, the Wikidata KG does not
have a proper ontology, and the type hierarchy is more fine-grained
than the one described in DBpedia, making it potentially more difficult
to train a prediction model. In these cases, we propose to use more
complex prediction models that should produce better results [74].

6.1 exploiting entity types in entity linking

The literature overview of STI algorithms given in Chapter 3 highlights
that the vast majority of proposed algorithms solve the CEA, CTA,
and CPA tasks jointly. A widely adopted solution to improve the
precision of matching algorithms is to refine the set of candidate
entities collected in the candidate retrieval phase by their type in
the KG. In this Section, we focus on those algorithms that exploit the

89

90 improving entity linking for automatic and assisted sti

evidence collected in CTA (both automatically detected or manually
provided by a human) to support the CEA task.

We argue that when an algorithm implements this strategy, detecting
the right column type becomes crucial, as well as the type information
available in the KG. Column-wise coherence of the entity types is a
characterizing feature of tables as opposed to plain texts, but type
information explicitly stored in KGs is known to be imperfect and
incomplete [74]. For example, in the DBpedia KG,1 the entity Arnold

Schwarzenegger is typed as OfficeHolder, but not as Actor, even if the
same person is very famous for his roles in many movies, also available
in DBpedia (e. g., The Terminator has Arnold Schwarzenegger as a
starring actor). This aspect is often overlooked by STI algorithms, which
assume that KGs are complete [85].

Particular attention has been dedicated to automatic STI, where algo-
rithms must perform the tasks autonomously. Automatic approaches
target, in particular, Web tables, which are small and are more likely to
describe popular entities. In this context, STI algorithms perform well
also when using an incomplete KG, but we reported in Chapter 5 that
the performance of STI algorithms drops dramatically as soon as labels
are ambiguous and the table size increases [55]. Moreover, with the
uprising of interactive tools for transforming tabular data into KGs, like
our system Asia illustrated in Chapter 4, and application scenarios
where big tables (e. g., tables with thousands of rows) are used to build
or enrich KGs, STI algorithms can also work with users-in-the-loop to
obtain high-quality annotations and, consequently, high-quality KGs.
In these settings, users may define or refine schema-level annotations,
while entity linking must be supported by automatic methods due to
the different scale of the annotations that must be defined. In such con-
texts, also assuming a complete KG, the usage of the type information
as a hard filter may be inadequate in assisted environments, where
non-expert users are taken within the annotation loop, and when there
is not a conceptual alignment between the implicit classification in
tables and the explicit classification in the KG.

For example, consider Table 1.1 we defined in our motivating ex-
ample, and DBpedia as our target KG: the implicit classification in the
table may hint to annotate the column City using the City type from
the DBpedia ontology. This choice will make it impossible to annotate
the cells Altenburg, Ingolstadt, and Ulm correctly if we consider the
City type as a hard constraint because the corresponding Altenburg,
Ingolstadt, and Ulm entities in DBpedia are assigned with the Town

type. We have a similar situation if we consider the example table
given in Figure 2.2; the table is about philosophers of science, thus a
non-expert user will annotate the Name column with the Philosopher

type. However, Einstein is represented as a Scientist in DBpedia,
thus the STI algorithm will discard the right entity.

1 We refer to the 2016-10 version.

6.1 exploiting entity types in entity linking 91

On the other hand, expert users may annotate the column with the
list of all the relevant types (e. g., Town and City in the first example),
or resort to using a more generic type, which is a superclass of the
types associated with all or some entities (e. g., Person in the second
example). Whatever the applied solution, the underlying STI algorithm
will have to deal with a much larger set of candidates; for example,
if we set Person in the second example and query DBpedia with the
term “Einstein”, we will end up with 34 entities of type Person, 2 of
which are of type Scientist.

We found two patterns used by STI algorithms available in the
literature that can be improved by better handling entity types:

• Filtering by type, where types associated with a column are used
as hard constraints to filter out candidate entities having different
types;

• Ranking by distributed entity representations similarity, i. e., entity
embeddings, where embeddings are used to compute the simi-
larity between candidates for different labels in order to support
the disambiguation.

We can see these patterns as core mechanisms in some state-of-the-art
algorithms, such as FactBase, EmbeddingsOnGraph, and their hybrid
combinations HybridI and HybridII, which provide a comprehensive
solution to address both the disambiguation of ambiguous labels and
scalability [38], but also in other approaches [102, 127], also tailored
on the SemTab challenge [17, 22, 85].

In this Chapter, we propose to use neural models for type prediction
and type representation to improve the mechanisms mentioned above
and discuss type enrichment strategies that can be used in existing
algorithms in a modular fashion:

• Type enrichment for filtering by type, which uses neural type pre-
diction algorithms to enrich the types of candidate entities with
types predicted by a neural network;

• Type enrichment for ranking by distributed entity representations
similarity, which instead uses distributed type representations to
enrich entity embeddings, making their similarity more aware
of their types.

The two approaches can also be combined, and we propose to enrich
entity embeddings with the type predicted by a neural model. In
fact, we argue that both approaches capture a similar principle in
orthogonal ways, i. e., to implement soft type-based constraints to
improve entity disambiguation.

We tested our approaches by incorporating them into state-of-the-
art algorithms proposed in [38], thus benchmarking the improved
algorithms over datasets used in previous work, or which have been

92 improving entity linking for automatic and assisted sti

published to make disambiguation more challenging and test algo-
rithms at a larger scale. While we run experiments on a selected pool
of state-of-the-art algorithms, the novel methodology we propose in
the following applies to almost every algorithm that uses a filtering
or ranking strategy based on the entity typing. Among the available
algorithms, we selected the ones proposed in [38] because of their
performance and because they are more prone to handle large tables,
general enough to be applied to different settings and not based on
specific assumptions tailored to a specific challenge.

6.1.1 Matching Pipelines in FactBase and EmbeddingsOnGraph

Before introducing our methodology, we introduce the reader to the
complex matching pipelines proposed in [38], providing the sufficient
amount of details needed to understand how we improve the filtering
by type and the ranking by distributed entity representations similarity
strategies adopted in such algorithms.2

factbase The algorithm examines all the cells of an entity column
at once, i. e., it works column-wise. Two filters are applied to the set
of candidates entities: (i) filter by type, where the entities are filtered
by considering their direct types, i. e., the most specific entity types;
(ii) filter by token, where the entities are filtered by representative
language tokens. Values in context columns Cj are used to match facts
in the KG and expand the set of candidates. FactBase implements a
pipeline that consists of a preliminary step and three entity annotation
steps:

• Candidates retrieval and schema-level annotation. All the labels in
the entity column are looked up in an index, which stores the
reference KG. For each label, a list of candidates is returned,
ordered by a specific lookup score. Then, for each label, the
algorithm looks at its top-ranked candidate to extract (from the
KG) its direct types and its textual description, which is processed
(e. g., stop words are removed) to return a set of tokens. Given all
the entity types and description tokens extracted for all the labels
in the column, the k-most frequent types (in the original work,
k = 5) and the most frequent token in the descriptions extracted
for all the labels are associated with the column, thus returning
a set of k column types and one column token. The algorithm
then uses unambiguous labels, i. e., labels for which one unique
candidate has been found, to understand which columns in
the table describe facts that are also present in the KG. Given
the entity column Cj under evaluation, the algorithm annotates

2 We prefer to describe the details of the algorithms to make this work self-contained
and ease the understanding of our methodology and its evaluation. In this way, we
also favor the replicability of our work.

6.1 exploiting entity types in entity linking 93

a context column Ck with a KG property P that describes the
relation between the labels in the entity column and the values
in the context columns. When a context column Ck is annotated
with a property P also used in the KG, a fact labeli,j P valuei,k

can be extracted from the i-th row of the table and used to lookup
more candidates, and, in particular, all those entities x for which
the fact x P valuei,k is part of the KG, thus expanding the set of
candidates for a given label. In order to select the properties to
use for annotating some of the context columns, the algorithm
picks each unambiguous label in the Cj column and, for each
context column Ck, matches the pair (labeli,j, valuei,k) against
all the indexed facts. A property P is chosen to annotate a context
column if it matches facts extracted from at least n different
rows with unambiguous labels (the original work heuristically
set n = 5). If more properties satisfy this constraint, the most
frequent property is selected. We refer to this property as to the
context column property. As a consequence of this step, the entity
column under attention is annotated with a set of its k column
types and its most frequent token, while some context columns
are annotated with a property.

• Annotation by lookup - for unambiguous labels. Unambiguous labels
found in the previous step are annotated with their unique
candidate entity.

• Annotation by strict lookup for ambiguous labels: this step refines
the set of candidates of the ambiguous labels, i. e., labels for
which more than one candidate was found, by filtering out
candidates with types that differ from the entity column types
and a description that does not contain the column token. Then,
the label is annotated with the candidate with the highest score.

• Loose lookup for labels without candidates: this step looks for new
candidates for the labels that are still not annotated; given the
context columns annotated in the first step with a property, this
step retrieves as candidates all the entities that match some of the
indexed facts of the KG, as explained in the preliminary step. The
new set of candidates is then ranked based on the edit distance
between the entity label in the KG, and the label in the entity
column. The first candidate is used to annotate the label in the
current cell. If also this lookup fails, the cell is left without any
annotation.

embeddings on graph The algorithm can work column-wise,
row-wise or table-wise. It does not apply any filter by type mechanism
and is based on constructing a disambiguation graph like several
approaches also applied to named entity linking [77]. We here describe

94 improving entity linking for automatic and assisted sti

the column-wise approach tested in the original work,3 and used in
our experiments. A set of candidates is retrieved for each label in
the entity column by selecting the best m matches using a char-level
trigram similarity with a threshold σ (where m = 8 and σ = 0.82 in
the original paper). All the candidate entities for each label represent
the nodes of the disambiguation graph; each node has (i) a prior
probability, which is based on the degree (in-links + out-links) of
the corresponding DBpedia page (we refer to the original paper for
details), and (ii) an embedding that represent the entity. Each pair of
candidates from different sets is connected by an edge weighted by the
cosine similarity of their embeddings. Finally, the priors are updated
by executing PageRank on the constructed graph; the candidate with
the highest score in each set is chosen for the annotation.

hybrid i/hybrid ii The same work also proposed hybrid models
that apply the FactBase and EmbeddingsOnGraph algorithms sequen-
tially; HybridI executes FactBase first, and then applies EmbeddingsOn-
Graph to annotate cells without an annotation, while HybridII works in
the other way around, applying EmbeddingsOnGraph first and FactBase
subsequently.

6.2 nest : filtering and ranking using soft type con-
straints

Filtering and ranking candidate entities by their type is a fundamental
step to preserve the type coherence of entities in a column, with
the filtering step also reducing the search space. However, using the
column type as a hard constraint might introduce some errors, mainly
due to missing type assertion axioms in the target KG, as well as the
inaccurate type information that non-expert users may enter in an
assisted annotation environment.

We introduce Nest (NEural Soft Type Constraints), a methodology
to replace hard constraints based on entity types adopted in entity
linking pipelines. The methodology relies on distributed represen-
tations of entities, i. e., entity embeddings, which can be computed
with different approaches (we point the reader to a recent survey [51]
for a complete overview). We consider two strategies to include soft
type constraints, addressing two patterns used in previous work and,

3 The approach used in the original work by the authors was not explicitly stated. The
table-wise approach can combine richer information but at the price of scalability for
large tables with thousands of rows; the row-wise approach demands embedding
that maximizes the relatedness between entities, like the ones used in the original
work, while the column-wise approach should exploit embeddings which maximize
the type coherence between similar entities. These aspects are not discussed in [38].
Since EmbeddingsOnGraph has been tested only on datasets featuring tables with
at most one entity column in the original work, we suppose the algorithm works
column-wise.

6.2 nest : filtering and ranking using soft type constraints 95

especially, in the unsupervised state-of-the-art algorithms described
in Section 6.1.1:

• The first strategy, type enrichment for filtering by type, combines
direct types of the candidate entities with types predicted by
a neural model to refine the type-based filtering. The neural
model relies on distributed representations of entities for type
prediction. Given an input vector representing an entity, a neural
network returns a probability distribution over the possible
entity types. The model is trained only with the more specific
types. The distribution can be used to select a list of the most
probable types according to the network, which can enrich (or
refine) the set of most specific types explicitly specified in the KG,
e. g., by predicting the type Philosopher for Albert Einstein.
This strategy will be demonstrated by applying it to the FactBase
algorithm.

• The second strategy, type enrichment for ranking by distributed en-
tity representations similarity, starts from the consideration that
entity embeddings are particularly useful to evaluate entity sim-
ilarity, and evaluating the similarity between candidate enti-
ties in the same column helps entity disambiguation (as de-
scribed in Section 6.1.1). However, the type-level characterization
is not explicitly featured in popular entity embeddings, e. g.,
RDF2Vec [101]. To feature type-level information more explic-
itly in the embeddings, we rely on type embeddings [7], i. e.,
distributed representations of entity types: given the vector of
an entity ~e and the vector of its type ~t, the two vectors are
concatenated, generating a typed entity embedding ~e_~t, i. e., a rep-
resentation in a vector space where entities that share the same
types are closer [6]. In this way, the vector components represent-
ing the entity type in the concatenated vectors induce a soft (type)
constraint over the selected annotations, increasing the similar-
ity of entities of the same type. For example, if the vector of
Philosopher is concatenated to the vector of Albert Einstein,
this candidate entity will be more similar to other entities of
type Philosopher; otherwise, since Philosopher and Scientist

are similar in the type space, even if we concatenate the vector
Scientist, the similarity between Albert Einstein and other
philosophers will not be seriously affected. We will demonstrate
this strategy by applying it to the EmbeddingsOnGraph algorithm.

The clear advantage of this methodology stands in its modularity.
The two approaches can be used jointly and introduced in different
matching pipelines with near zero engineering disruption. Moreover,
the strategies can be applied with different entity and type embed-
dings, and also with different neural type prediction models. The
simplicity of the methodology, as well as the reuse of existing re-

96 improving entity linking for automatic and assisted sti

Linear 300 + ReLU

Output

Linear 300 + ReLU

Linear 300 + ReLU

Output

RDF2VEC (200) BERT EE (1024)

Figure 6.1: The architectures of the DNNs for type prediction. Numbers de-
scribe layers size.

sources (e. g., pre-trained embeddings) represent a great added value
and make the methodology very modular and easily applicable to
different algorithms and KGs.

For type embeddings, we used Type2Vec [7], a model inspired by
distributional semantics that does not require expressive and rich
ontologies. Type2Vec embeddings are obtained by annotating a text
with entities, replacing the entities with their minimal type, and then
applying Word2Vec [76] to the text to generate the embeddings.

In the next Section, we will describe two neural prediction models
working with different sources of information. In Section 6.2.2, we will
provide the reader with details about how we featured these strategies
into state-of-the-art algorithms [38] to demonstrate their effectiveness.

6.2.1 Neural Models for Entity Type Prediction

We designed two Deep Neural Networks (DNNs) for type prediction
that take as input embeddings, possibly generated with different mod-
els. The architectures of such DNNs are depicted in Figure 6.1. One
network (left-hand side network in Figure 6.1) uses embeddings gener-
ated with RDF2Vec [101], which creates a virtual document containing
random walks over a KG and then applies Word2Vec on this document.
A second network (right-hand side network in Figure 6.1) uses entity
embeddings generated from textual descriptions of entities using the
Bidirectional Encoder Representations from Transformers (BERT) [35],
a powerful language model that has shown strong performance over
several downstream tasks in different languages [89]. We generate
entity embeddings, which we named BERT Entity Embeddings (BERT
EE), as follows: we consider the DBpedia abstracts of entities as their
descriptions, thus we use BERT to extract the token embedding of
each token in the description,4 and finally, we average the token em-
beddings, obtaining an average vector that encodes the entity abstract.

The architectures have been selected with respect to the perfor-
mance obtained at validation time, and we use early stopping to
prevent overfitting (more details about the models training are given

4 BERT accepts a limited amount of input tokens; tokens that exceed the limit are just
ignored.

6.2 nest : filtering and ranking using soft type constraints 97

in Section 6.2.2). Both DNNs are trained to reduce the categorical cross-
entropy loss, thus solving a multi-class classification task.

To predict the type of an entity, Nest implements a classifier mod-
eled as a straightforward DNN, which learns to map entities with
similar embeddings to the same type. As an example, we obtain that
the entity Albert Einstein, whose entity embedding is similar to the
embeddings of other scientists and philosophers, has a high probabil-
ity of being of types Scientist and Philosopher. While architecturally
simple, the DNNs we designed within Nest can be trained quickly, us-
ing already available data, and no sophisticated hardware is required
to complete the training. These aspects increase the applicability of
the methods to different KG.

6.2.2 Nest-enriched Algorithms

In this Section, we illustrate how we modularly applied Nest to the
selected state-of-the-art algorithms.

factbase st The candidate retrieval phase in FactBase mainly fil-
ters the candidate entities by a set of acceptable column types and
a single column token. The column types are collected based on the
direct types of the candidate entities available in the target KG. We
propose the enhanced version of this algorithm, namely FactBaseST,
which exploits the neural type prediction models, which we trained
and executed over DBpedia, to enrich the type information used for
filtering. The usage of predicted types in FactBaseST aims to capture
two intertwined intuitions: (i) predicted types for all entities in a col-
umn can provide additional evidence to determine the correct column
types, thus reducing column types used as filters subsequently; (ii)
by enriching the set of types associated with a candidate entity (e. g.,
by adding the type Philosopher to Albert Einstein), the filters ap-
plied to individual candidates are softened and become less sensitive
to missing type information or mismatches between the intended
conceptualization in the table column and the classification in the KG.

More precisely, we captured the intuitions above as follows:

• The set of column types extracted from the KG is refined by
intersecting it with the set of types predicted by the prediction
model. The set of predicted types used in this refinement consists
of the h most frequent types among all the most confident
types predicted for each candidate (we set h = 5 as in the
original work). If the intersection is empty (e. g., because the
model predicts generic types that are not in the current column
types set), the previous column types are preserved, discarding
the predicted types. In this way, predicted types improve the
performance of the algorithm only when they are specific enough
to match the column types.

98 improving entity linking for automatic and assisted sti

• The types associated with each candidate are extended by also
considering the two most likely types predicted for the candi-
date by the network. We consider only the most two confident
predicted types because we found that this reflects the average
number of different direct types in DBpedia for the entities with
more than one direct type.

By considering the two neural type prediction models described in
Section 6.2, we implemented two versions of FactBaseST:

• FactBaseST-R2V, the algorithm that uses the RDF2Vec-based
DNN for type prediction. The DNN has been trained using ∼200k
200-dimensional vectors of DBpedia entities as input [101], con-
sidering only their most specific types.5 We balanced the training
set by down-sampling (we sample 1000 entities per type), and
we removed those types with less than 1000 instances to reduce
variability (e. g., BowlingLeague and MouseGene), resulting in 236

different predictable types. In this case, the network does not
exploit the textual description of entities, making it applicable to
almost every KGs. The trained DNN has shown remarkable per-
formance, surpassing 0.90 in accuracy score both on the training
and on the validation set (20% of the data) on the type predic-
tion task. For the training phase, we set an early stopping on the
validation loss (patience equal to 4).

• FactBaseST-A2V, which instead exploits the DNN based on BERT
EE to predict types. Since training BERT EE requires textual
descriptions of entities, this algorithm is suitable only for KGs

that include a textual description of their entities (e. g., DBpe-
dia abstracts or Wikidata descriptions). We trained the DNN

in FactBaseST-A2V with embeddings generated by feeding a
pre-trained large BERT model (1024-dimensional vectors) with
abstracts of DBpedia entities. As well as we did in FactBaseST-
R2V, we sampled 1000 entities per type, removing those types
with less than 1000 instances; however, in this case, we had also
to remove entities without an abstract from the training set, re-
sulting in 228 different predictable types. The trained DNN scores
slightly above 0.90 in accuracy score on the type prediction task
(same configuration as above).

embedding on graph st The EmbeddingsOnGraph algorithm does
not exploit the type information to either filter the retrieved candidates
or rank them. In fact, the algorithm mainly relies on priors probabilities
of entities, and their entity embeddings, which are used for building a
weighted disambiguation graph. As a consequence, the algorithm does
not preserve the column-wise coherence of entity types, assuming that

5 For DBpedia entity types, see http://downloads.dbpedia.org/2016-10/core-i18n/

en/instance_types_en.ttl.bz2.

http://downloads.dbpedia.org/2016-10/core-i18n/en/instance_types_en.ttl.bz2
http://downloads.dbpedia.org/2016-10/core-i18n/en/instance_types_en.ttl.bz2

6.3 experimental evaluation 99

entities with similar vectors are of the same type. However, this is
not true in general; for example, in RDF2Vec the entity Paris (type:
Settlement) is very similar to the entities Architecture of Paris

(type: Thing, cosine similarity: 0.84) and Anne Hidalgo (type: Person,
cosine similarity: 0.76).

We thus provide an extension of EmbeddingsOnGraph, namely Embed-
dingsOnGraphST, where we introduce the type information in the form
of typed entity embeddings. The conceptually relevant implication in us-
ing typed entity embeddings instead of plain entity embeddings is that
entities with similar predicted types have a higher cosine similarity. As
a consequence, when PageRank is computed over the disambiguation
graph, the weight of edges between entities of the same type increases.
At the same time, the weight of edges between entities of different
types decreases further, thus implementing the soft constraint over the
similarity that we aimed to capture. While the column-wise coherence
of entity types is still not guaranteed, this approach tends to favor the
selection of candidates of the same type.

hybrid i st/hybrid ii st The algorithms resemble their original
implementations by jointly applying FactBaseST-R2V or FactBaseST-
A2V, and EmbeddingsOnGraphST, generating the variants HybridIST-
R2V, HybridIST-A2V, HybridIIST-R2V, and HybridIIST-A2V.

6.3 experimental evaluation

To study the actual performance gain in integrating Nest into state-
of-the-art algorithms, we conducted an experimental campaign by
recreating the SemTab 2019 environment for the CEA task [54]. Hence,
we used DBpedia 2016-10 as the target KG, and we scored the algo-
rithms using the Precision (P), Recall (R), and F1-score (F1) metrics
(all in their macro version) defined as follows:6

P =
|CorrectAnnotations|
|SystemAnnotations| R =

|CorrectAnnotations|
|TargetAnnotations|

F1 = 2×P×R
P+R

In the following, we illustrate the datasets and the actual algorithms
we used in our experiments.

datasets In our experiments, we considered three datasets (Ta-
ble 6.1):7

• T2D [102], which is the dataset also used in the original work [38];
T2D is a relatively small dataset with only limited contents, but

6 SystemAnnotations = cells annotated by the algorithm; TargetAnnotations =

ground truth cells.
7 An extended version of this table is available in Chapter 5; we report this shortened

version for the reader’s convenience.

100 improving entity linking for automatic and assisted sti

Table 6.1: Profiles of the benchmark datasets considered within the evalua-
tion.

Dataset Cols (avg) Rows (avg) Matches Entities
Cols with

Matches (avg)
Tables

T2D 1,153 (4.95) 28,333 (121.60) 26,124 13,785 233 (1.00) 233

ST19-R4 3,564 (4.36) 51,249 (62.73) 107,352 53,007 1,732 (2.12) 817

2T 802 (4.46) 194,438 (1,080.21) 663,656 15,997 540 (3.00) 180

it still represents a reference dataset in the literature. We also
exploit it to observe better the impact of the adaptation we
made while re-implementing the original algorithms. We did
not use the other datasets used in the original work (i. e., Limaye
and W2D) because Limaye and T2D have similar profiles, with
Limaye featuring smaller tables and fewer columns to annotate,
while W2D contains only very small tables (23 cells in average to
annotate for each column), and it has been partially included in
the SemTab dataset. The challenges in dealing with small tables
have been extensively discussed in the original work [38].

• ST19-R4, a novel dataset provided in SemTab 2019 [54]. This
dataset is the only one containing only non-trivial cases among
SemTab datasets.8 More importantly, ST19-R4 has been built
using a generator, which constructs tables by querying DBpe-
dia. Each table has one class as the main topic, and the other
columns are filled with values of a predefined pool of properties
of each instance. We highlight that the generator ensures that
the type of the entities linked by an object property matches
the expected property range in the ontology [54]. Thus, the
problem we are addressing in this Chapter, i. e., dealing with
incomplete type information, has been artificially removed from
ST19-R4. For example, suppose the generator creates a table
about Film, using the property starring to populate a column.
In that case, we obtain that the film The Terminator, which has
Arnold Schwarzenegger as a starring actor, is removed from the
table because the range of the property starring is Actor, but
Arnold Schwarzenegger is typed as OfficeHolder. For the above
reason, experiments on this dataset are reported for fairness, but
also for evaluating if Nest, which uses predicted types and soft
filtering, may lead to degraded performance in a setting where
these mechanisms are not useful (in this case, by construction).
Indeed, we expect Nest not to improve the results of the original

8 The overall performance observed in SemTab 2019 for this dataset was high, also
thanks to hard-coded workarounds adopted by the participants [115], which we did
not implement in our algorithms.

6.3 experimental evaluation 101

algorithms on ST19-R4, but we want to measure its negative
impact.

• 2T [28], the dataset we presented in Chapter 5, which features
ambiguous and noisy tables that resemble real-world cases. In
our experimental setting, 2T represents the general scenario
where (i) columns with entities “of the wrong type” have not
been fixed (as it happened for ST19-R4), and (ii) cells are not
obviously linkable (as in T2D).

algorithms We applied Nest to the algorithms in [38], as de-
scribed in Section 6.2. Since the original algorithms have not been
open-sourced, we had to re-implement all the algorithms from scratch.
We tested our re-implemented versions on T2D for fairness because
T2D is the dataset used in the original work. However, we observed
that our versions performed worse if compared with the original
results.9 We managed to replicate the disambiguation mechanisms
employed in the original algorithms, but then we did not focus on
optimizing the lookup search. Indeed, in our opinion the performance
decrease is due to the following factors:

• The private FactBase index was used in the original work, which
includes a 2016 dump of Wikidata, with mappings to DBpedia
entities. A dump of this index has not been provided, as well
as details on how to properly replicate the indexing phase (e. g.,
index scoring function and field analyzers). Thus, we generated
a new ElasticSearch index containing DBpedia entities, their
labels,10 and their anchor texts from Wikipedia. We preferred
not to include Wikidata in our index to reduce the amount of
total memory needed to store it.

• Within FactBase, the schema:description property of Wikidata
entities is crucial for the candidate disambiguation phase since
it is used for computing the column token. The same property
is missing for DBpedia entities, thus we resembled it by analyz-
ing the DBpedia short abstracts of entities, obtaining different
descriptions.11 Also, the list of stopwords we considered12 may
differ from the one used in the original work.

• The queries to the FactBase index have not been published, thus
it is not possible to either reuse the same strategies (e. g., fuzzy

9 Results are not directly comparable because we computed the macro precision,
recall, and F1-measure, as in SemTab, but their respective micro versions have been
computed in [38]. We report here the scores achieved by the original algorithms
to help the reader in understanding the gap: FactBase (P: 0.88, R: 0.78, F1: 0.83);
EmbeddingsOnGraph (P: 0.86, R: 0.77, F1: 0.81).

10 We also include the labels from the DBpedia Lexicalization datasets.
11 A possible corresponding property in DBpedia would be the dct:description one,

but it is missing for many entities (e. g., Milan).
12 https://www.nltk.org/

https://www.nltk.org/

102 improving entity linking for automatic and assisted sti

match) or apply the same parameters (e. g., max edit distance
in fuzzy search, fields boost). As a consequence, the candidate
retrieval phase potentially returns different candidate entities.

• For the EmbeddingsOnGraph algorithm, we used the RDF2Vec
vectors (uniform model from [101]), which differ from the em-
beddings used in the original work.

The original algorithms assume the one-entity-per-cell, thus anno-
tating rows with entities; however, we need to annotate cells in order
to use the benchmark datasets built for the CEA task. We provided
a generalization of the algorithms by exploiting their column-wise
nature: we can annotate tables with multiple entity columns by con-
sidering one entity column at a time, and setting the other as context
columns, thus annotating individual cells instead of entire rows.

Finally, we modified the original EmbeddingsOnGraph algorithm to
avoid scalability issues in our experiments; in fact, running Embed-
dingsOnGraph on a table with 5000 rows leads to the creation of a
disambiguation graph with 40k nodes in the worst case (if all the top-8
candidates for each label are distinct) and ∼800M edges. The disam-
biguation graph is k-partite (only candidates from different sets are
linked), thus the maximum number of edges is n2(k−1)

2k in the worst
case. In our implementation, EmbeddingsOnGraph splits big tables into
partitions of 500 rows each, which are iteratively annotated.

We remark here that a proper comparison between the original algo-
rithms and their respective re-implemented version is unfair because
we were prevented from fully-reproduce the indexing and searching
steps. Also, different metrics have been adopted for evaluating the
algorithms (micro vs. macro versions). However, we believe that our
comparison is fair over the different discussed models because we
consider the results obtained with the re-implemented algorithms as
baselines.

We also report that we would have preferred to test Nest with
several algorithms to demonstrate its generality. However, just a few
STI algorithms have been open-sourced, with some limitations: e. g.,
MantisTable [22] does not scale to the dimension of the considered
datasets (we reported in Chapter 5 that it took more than 24 hours to
annotate 2T), while CSV2KG [115] has a still incomplete repository.13

We also contacted the authors of MTab [85], Tabularisi [112], and
CSV2KG [115] (the top-3 SemTab systems) after the challenge, but
they reported that their systems were not ready to be released. Thus,
for our experiments, we chose two algorithms from the literature that
(i) were at least partially reproducible (i. e., they have been explained
in detail), (ii) employ the type-based filtering and ranking strategies

13 https://github.com/IBCNServices/CSV2KG - the file csv2kg/annotate.py imple-
ments an incomplete matching pipeline.

https://github.com/IBCNServices/CSV2KG

6.3 experimental evaluation 103

Table 6.2: Results for different benchmark datasets. Algorithms improved
with Nest are identified by the ♣ symbol. Best results in bold (for
each dataset) and underlined (for each algorithm).

Method
T2D ST19-R4 2T

P R F1 P R F1 P R F1

EmbeddingsOnGraph 0.782 0.723 0.751 0.483 0.470 0.477 0.293 0.245 0.267

EmbeddingsOnGraphST ♣ 0.811 0.751 0.780 0.540 0.526 0.533 0.378 0.316 0.344

FactBase 0.791 0.635 0.704 0.745 0.465 0.573 0.365 0.185 0.246

FactBaseST-R2V ♣ 0.789 0.638 0.706 0.731 0.454 0.560 0.434 0.241 0.309

FactBaseST-A2V ♣ 0.783 0.638 0.703 0.735 0.458 0.565 0.374 0.216 0.274

HybridI 0.756 0.740 0.748 0.530 0.526 0.528 0.275 0.231 0.251

HybridIST-R2V ♣ 0.766 0.751 0.759 0.549 0.544 0.546 0.355 0.299 0.324

HybridIST-A2V ♣ 0.762 0.746 0.754 0.551 0.547 0.549 0.317 0.266 0.289

HybridII 0.758 0.742 0.750 0.488 0.484 0.486 0.295 0.248 0.270

HybridIIST-R2V ♣ 0.784 0.768 0.776 0.544 0.540 0.542 0.380 0.319 0.347

HybridIIST-A2V ♣ 0.784 0.768 0.776 0.544 0.540 0.542 0.380 0.319 0.347

we need to test with Nest, and (iii) can scale reasonably (i. e., they
annotate our datasets in a few hours).

6.3.1 Results

To measure the performance gain in introducing Nest in different
matching pipelines, we tested the selected state-of-the-art algorithms
and our Nest-improved versions on different benchmark datasets. The
results we obtained are available in Table 6.2, and they confirm that
the use of Nest can improve existing matching pipelines.

As expected, applying Nest to EmbeddingsOnGraph increases the
performance in all our tests because using typed entity embedding
strengthens the similarity between entities of the same type. As a
result, since EmbeddingsOnGraph is a column-wise approach, the typed
entity embeddings can guarantee a higher column-wise coherence of
entity types, an aspect that was completely overlooked in the original
work. The results for 2T are very low, and in our opinion, this is due to
different reasons: (i) the candidate retrieval phase is based only on the
trigram similarity and uses a high threshold, returning a small set of
candidates; (ii) the prior probabilities used to initialize the PageRank
algorithm are based on the entity popularity, which rewards popular
entities in almost the cases; this choice penalizes the algorithms when
annotating 2T, which contains tables with many homonyms, which
often do not link to the most popular mentioned entity.

104 improving entity linking for automatic and assisted sti

Nest does not improve FactBase when annotating the more straight-
forward datasets T2D and ST19-R4, while its contribution is more
valuable on 2T, which is more challenging to annotate. The scores
obtained by FactBaseST-R2V and FactBaseST-A2V on T2D are compa-
rable with the ones obtained by FactBase: the recall slightly increases,
while the precision drops a little; this is the expected behaviour since
types in T2D are homogeneous in each column; furthermore, tables
in T2D are mainly collected from Wikipedia, the same source used to
create DBpedia, so there is an overlap between the conceptualization
in Wikipedia tables and the entity representations in the KG. If there is
a mismatch, as the example of Albert Einstein in Section 6.1, Nest

increases the performance, but in all the other cases, considering the
secondary type of an entity may add noise to the matching pipeline.

This effect is amplified in ST19-R4, where the problem we address
with Nest has been artificially removed by construction and we always
have a perfect conceptual alignment between the implicit classification
in tables and the explicit classification in DBpedia. Results on this
dataset show the possible performance degrades due to the application
of Nest when it is not useful (e. g., because the extracted types are
complete by construction). In all of the cases except for FactBase on
ST19-R4, we observe that the performance is not affected. In the case
of ST19-R4, the performance drop with respect to FactBase is very
limited (−1% in P and R). We believe that the loss on this specific
dataset is balanced by a consistent gain in all the other settings where
the artificial removal of this problem does not occur. Furthermore, the
results highlight that the standard FactBase algorithm underperforms
on 2T, mainly because the candidate retrieval step is not able to deal
with the values in 2T tables, which are ambiguous and perturbed with
typos. However, using Nest to relax the type-based filtering leads to a
valuable performance increase, helping the algorithm disambiguate
the higher number of candidates.

Similar results for FactBaseST-R2V and FactBaseST-A2V show that
for KGs that have, on average, both textual and factual descriptions,
type information can be predicted from both these sources with small
differences. However, we did not have enough evidence to prefer one
source over the other for similar KGs.

As also observed in the original work [38], hybrid methods improve
the recall of their primary method but often have a negative impact on
the precision. HybridIIST-R2V and HybridIIST-A2V perform better14 than
their respective HybridIST-R2V and HybridIST-A2V methods, thanks to
the higher performance of EmbeddingsOnGraphST.

We finally discuss the worse performance observed for the al-
gorithms FactBase and EmbeddingsOnGraph (as well as their Nest-
improved versions) compared to SemTab 2019 systems.15 We believe

14 Results in Table 6.2 show equal performance, but it is an effect due to the rounding.
15 https://www.cs.ox.ac.uk/isg/challenges/sem-tab/2019/results.html

https://www.cs.ox.ac.uk/isg/challenges/sem-tab/2019/results.html

6.4 summary 105

that the results are due to the underlying algorithms, which we
avoided on purpose to overfit on the selected datasets and KG. In fact,
we advocate that STI algorithms should target the general problem
of matching tables to a KG, and not overspecialize over two KGs like
Wikidata and DBpedia (although we use them for evaluation). More-
over, the comparison between the selected algorithms and SemTab
systems is not completely fair because SemTab systems (i) have been
fine-tuned on the SemTab datasets, and (ii) may implement specific
workarounds (e. g., to handle exceptional cases of people names as
did by CSV2KG16 and MantisTable17 in Round 4).

6.4 summary

In this Chapter, we presented Nest, a methodology to include soft
type-based constraints into matching pipelines of STI algorithms. The
methodology helps to better deal with inaccurate entity type informa-
tion, either when it comes from an incomplete KG or when it is entered
by a non-expert user within the annotation pipeline. The contribution
is useful for different STI approaches because it is modular (it is built
on existing entity/language embedding models that can cover most
of the entities in a KG) and allows for its integration with nearly zero
effort, thus applying at a large scale, with arbitrary KGs and different
algorithms.

Our experimental campaign demonstrated how different state-of-
the-art algorithms could benefit from Nest usage, testing Nest-improved
algorithms on benchmark datasets with different features. We also
tested the negative impact of Nest when annotating a dataset where
the problem addressed in our work has been artificially removed by
construction.

As future work, we plan to explore different ways of improvement:
(i) training the type prediction models would be more problematic
when the target KG does not have a proper ontology, or its types
hierarchy is more fine-grained than the DBpedia one (e. g., as in
Wikidata); thus, it would be interesting to investigate which model is
better to use for individual entities as a function of the information
available for that entity (e. g., a limited number of facts); (ii) in our
work, we focused on the indirect evaluation of the type prediction
on the CEA downstream task, but we plan to compare the proposed
models with other entity types prediction methods [74]; (iii) evaluating
if the type prediction models defined in Nest can support the CTA task,
e. g., by smoothing the standard aggregation policies (e. g., majority
voting) using the confidence scores provided by the DNNs as weights
for the aggregation.

16 https://github.com/IBCNServices/CSV2KG/blob/master/csv2kg/util.py - line 50.
17 https://bitbucket.org/disco_unimib/mantistable-tool.py/src/master/

mantistable/process/utils/nlp/utils.py - line 56.

https://github.com/IBCNServices/CSV2KG/blob/master/csv2kg/util.py
https://bitbucket.org/disco_unimib/mantistable-tool.py/src/master/mantistable/process/utils/nlp/utils.py
https://bitbucket.org/disco_unimib/mantistable-tool.py/src/master/mantistable/process/utils/nlp/utils.py

7
C O N C L U S I O N S

Data enrichment is a fundamental step in many data science projects,
where the extension of a source dataset with additional features en-
ables different downstream analytics. However, a general methodology
to assist data workers in enriching a source dataset with information
from external data sources is still missing. As a result, data enrichment
represents a cumbersome task to solve, which usually takes most of
the time dedicated to a project (up to 80%). Indeed, data workers have
to face different challenges, including where to find the right data to
use and how to push them into the source dataset.

The Semantic Web principles and technologies simplify the access
and reusability of datasets: indeed, URIs support the identification of
resources in different data sources, while SPARQL and shared vocabu-
laries ease the access to these resources. Nowadays, the KG represents
one of the preferred paradigms to store and organize information, and
the availability of several KGs is a valuable factor to support data en-
richment. The data enrichment task can benefit from the KGs because
their semantics provides a powerful tool to help the data workers
find and merge the needed sources of information. We believe data
enrichment represents an important application for semantics tech-
nologies, which simplify the access to different resources, but this
aspect has been underexplored in the literature, with many ad-hoc
solutions tailored to specific projects. Moreover, the focus has been on
KG like DBpedia and Wikidata, with several STI approaches tailored
to these KGs, but we advocate that STI algorithms should target the
general problem of matching tables to a KG, thus being applicable in
different contexts (e. g., with a custom KG).

In this thesis, we have proposed a general semantic-enhanced
methodology to interactively support a data worker in solving the data
enrichment task when working with data in tabular format. We built
our methodology on top of the pervasive data transformation pipeline
paradigm employed by many data integration tools. The paradigm
provides the needed scalability to support the task at a large scale, i. e.,
when dealing with large tables.

The methodology has been implemented within Asia, a system that
we designed to effectively support the interactive data enrichment
task, also at a large scale; indeed, Asia managed to enrich a 100 GB
dataset (∼500M rows) with weather features. However, how to better
support STI in an interactive environment and at a large scale is still an
open problem. The most recent advancements in state of the art [22, 38,
41], as well as the best-performing systems in dedicated challenges [85,

107

108 conclusions

112, 115], are not capable to (i) efficiently annotate a large amount
of data, and (ii) integrating the human in the STI loop. Asia is also
useful for users that need an enriched dataset to support downstream
applications (e. g., data analytics), without building or enriching a KG.

In order to better evaluate how effective and efficient the STI tools
are, we built 2T, a new benchmark dataset that features large tables
collected from different sources, enabling a better understanding of
the capabilities of STI algorithms. 2T has been built by following the
SemTab 2019 specifications, thus it can be used for testing almost all
the proposed STI algorithms in the literature.

Finally, we presented Nest, a human-in-the-loop ready methodology
to move existing semantic table annotation approaches a step forward.
The methodology helps existing approaches in better dealing with the
entity typing information used within linking algorithms, which can
be missing (i. e., the KGs are incomplete [74]) or wrong (e. g., when a
non-expert enters the entity types).

7.1 future research directions

The work presented in this thesis opens up different future research
directions, including:

• The Asia system considers the human in the loop, assisting a
data worker with suggestions on how to annotate the source
dataset, as well as providing evidence about the table reconcili-
ation process; however, an interesting research topic is how to
introduce automatic assistive mechanisms to reuse and propa-
gate the user inputs (e. g., active learning), and how to integrate
them within the data transformation process.

• 2T represents the best candidate to test the scalability of existing
STI algorithms; the scalability is an aspect that has been over-
looked by recent systems (e. g., systems participating in SemTab),
but that is crucial to support the semantic data enrichment for
large tables, and to enable novel scenarios like the semantic en-
richment of streams (which can be interpreted as infinite tables).

• 2T represents a great starting point to generate even more chal-
lenging benchmark datasets, such as by adding new kinds of
noise or increasing the knowledge gap. These aspects are sig-
nificant for pushing STI towards more realistic scenarios (e. g.,
business and industry).

• The Nest methodology can be extended to support the type com-
pletion task in existing KGs, an issue that we indirectly mitigate
for STI algorithms; it is interesting to compare Nest with other
type prediction models [74], eventually providing an integrated
methodology to address the type completion task for KGs.

B I B L I O G R A P H Y

[1] Ahmad Ahmadov, Maik Thiele, Julian Eberius, Wolfgang Lehner,
and Robert Wrembel. “Towards a Hybrid Imputation Approach
Using Web Tables.” In: 2nd IEEE/ACM International Symposium
on Big Data Computing, BDC. IEEE Computer Society, 2015,
pp. 21–30.

[2] Domenico Beneventano and Maurizio Vincini. “Foreword to
the Special Issue: "Semantics for Big Data Integration".” In:
Information 10 (2 Feb. 2019), p. 68.

[3] Tim Berners-Lee, James Hendler, and Ora Lassila. “The seman-
tic web.” In: Scientific american 284.5 (2001), pp. 34–43.

[4] Chandra Sekhar Bhagavatula, Thanapon Noraset, and Doug
Downey. “Methods for exploring and mining tables on Wikipedia.”
In: Proceedings of the SIGKDD Workshop on Interactive Data Ex-
ploration and Analytics, IDEA@KDD. ACM, 2013, pp. 18–26.

[5] Chandra Sekhar Bhagavatula, Thanapon Noraset, and Doug
Downey. “TabEL: Entity Linking in Web Tables.” In: ISWC.
Vol. 9366. Springer, 2015, pp. 425–441.

[6] Federico Bianchi, Matteo Palmonari, and Debora Nozza. “To-
wards Encoding Time in Text-Based Entity Embeddings.” In:
ISWC. Vol. 11136. Springer, 2018, pp. 56–71.

[7] Federico Bianchi, Mauricio Soto, Matteo Palmonari, and Vin-
cenzo Cutrona. “Type Vector Representations from Text: An
Empirical Analysis.” In: Proceedings of the First Workshop on
Deep Learning for Knowledge Graphs and Semantic Technologies,
DL4KGS@ESWC. Vol. 2106. CEUR-WS.org, 2018, pp. 72–83.

[8] Christian Bizer. “The Emerging Web of Linked Data.” In: IEEE
Intell. Syst. 24.5 (2009), pp. 87–92.

[9] Bernard Bosanquet. Logic, Or, the Morphology of Knowledge, Vol-
ume 1. Cambridge University Press, 2012.

[10] Tom B. Brown et al. “Language Models are Few-Shot Learners.”
In: NeurIPS. 2020.

[11] Quyen Bui-Nguyen, Qing Wang, Jingyu Shao, and Dinusha
Vatsalan. “Repairing of Record Linkage: Turning Errors into
Insight.” In: EDBT. 2019, pp. 638–641.

[12] Michael J. Cafarella, Alon Y. Halevy, and Nodira Khoussainova.
“Data Integration for the Relational Web.” In: Proc. VLDB Endow.
2.1 (2009), pp. 1090–1101.

109

110 bibliography

[13] Michael J. Cafarella, Alon Y. Halevy, Hongrae Lee, Jayant Mad-
havan, Cong Yu, Daisy Zhe Wang, and Eugene Wu. “Ten Years
of WebTables.” In: Proc. VLDB Endow. 11.12 (2018), pp. 2140–
2149.

[14] Michael J. Cafarella, Alon Y. Halevy, Daisy Zhe Wang, Eugene
Wu, and Yang Zhang. “WebTables: exploring the power of
tables on the web.” In: Proc. VLDB Endow. 1.1 (2008), pp. 538–
549.

[15] Riccardo Cappuzzo, Paolo Papotti, and Saravanan Thirumuru-
ganathan. “Creating Embeddings of Heterogeneous Relational
Datasets for Data Integration Tasks.” In: SIGMOD. ACM, 2020,
pp. 1335–1349.

[16] Dylan Cashman, Shenyu Xu, Subhajit Das, Florian Heimerl,
Cong Liu, Shah Rukh Humayoun, Michael Gleicher, Alex En-
dert, and Remco Chang. “CAVA: A Visual Analytics System
for Exploratory Columnar Data Augmentation Using Knowl-
edge Graphs.” In: IEEE Trans. Vis. Comput. Graph. 27.2 (2021),
pp. 1731–1741.

[17] Yoan Chabot, Thomas Labbé, Jixiong Liu, and Raphaël Troncy.
“DAGOBAH: An End-to-End Context-Free Tabular Data Se-
mantic Annotation System.” In: Proceedings of the Semantic
Web Challenge on Tabular Data to Knowledge Graph Matching,
SemTab@ISWC. Vol. 2553. CEUR-WS.org, 2019, pp. 41–48.

[18] Jiaoyan Chen, Ernesto Jiménez-Ruiz, Ian Horrocks, and Charles
Sutton. “ColNet: Embedding the Semantics of Web Tables for
Column Type Prediction.” In: AAAI. AAAI Press, 2019, pp. 29–
36.

[19] Jiaoyan Chen, Ernesto Jiménez-Ruiz, Ian Horrocks, and Charles
Sutton. “Learning Semantic Annotations for Tabular Data.” In:
IJCAI. ijcai.org, 2019, pp. 2088–2094.

[20] Vassilis Christophides, Vasilis Efthymiou, Themis Palpanas,
George Papadakis, and Kostas Stefanidis. “An Overview of
End-to-End Entity Resolution for Big Data.” In: ACM Comput.
Surv. 53.6 (Dec. 2020).

[21] Michele Ciavotta, Vincenzo Cutrona, Flavio De Paoli, Nikolay
Nikolov, Matteo Palmonari, and Dumitru Roman. “Support-
ing Semantic Data Enrichment at Scale.” In: Technologies and
Applications for Big Data Value. (To appear). 2021.

[22] Marco Cremaschi, Flavio De Paoli, Anisa Rula, and Blerina
Spahiu. “A fully automated approach to a complete Semantic
Table Interpretation.” In: Future Gener. Comput. Syst. 112 (2020),
pp. 478–500.

bibliography 111

[23] Marco Cremaschi, Alessandra Siano, Roberto Avogadro, Ernesto
Jiménez-Ruiz, and Andrea Maurino. “STILTool: A Semantic
Table Interpretation evaLuation Tool.” In: ESWC Satellite Events.
Vol. 12124. Springer, 2020, pp. 61–66.

[24] Isabel F. Cruz, Venkat R. Ganesh, Claudio Caletti, and Pa-
van Reddy. “GIVA: a semantic framework for geospatial and
temporal data integration, visualization, and analytics.” In:
SIGSPATIAL. ACM, 2013, pp. 534–537.

[25] Isabel F. Cruz, Venkat R. Ganesh, and Seyed Iman Mirrezaei.
“Semantic extraction of geographic data from web tables for
big data integration.” In: Proceedings of the 7th Workshop on
Geographic Information Retrieval, GIR. ACM, 2013, pp. 19–26.

[26] Isabel F. Cruz, Matteo Palmonari, Francesco Loprete, Cosmin
Stroe, and Aynaz Taheri. “Quality-based model for effective
and robust multi-user pay-as-you-go ontology matching.” In:
Semantic Web 7.4 (2016), pp. 463–479.

[27] Vincenzo Cutrona, Federico Bianchi, Michele Ciavotta, and An-
drea Maurino. “On the composition and recommendation of
multi-feature paths: a comprehensive approach.” In: GeoInfor-
matica 23.3 (2019), pp. 353–373.

[28] Vincenzo Cutrona, Federico Bianchi, Ernesto Jiménez-Ruiz, and
Matteo Palmonari. “Tough Tables: Carefully Evaluating Entity
Linking for Tabular Data.” In: ISWC. Vol. 12507. Springer, 2020,
pp. 328–343.

[29] Vincenzo Cutrona, Michele Ciavotta, Flavio De Paoli, and Mat-
teo Palmonari. “ASIA: a Tool for Assisted Semantic Interpreta-
tion and Annotation of Tabular Data.” In: ISWC Satellite Tracks.
Vol. 2456. CEUR-WS.org, 2019, pp. 209–212.

[30] Vincenzo Cutrona, Flavio De Paoli, Aljaz Kosmerlj, Nikolay
Nikolov, Matteo Palmonari, Fernando Perales, and Dumitru
Roman. “Semantically-Enabled Optimization of Digital Market-
ing Campaigns.” In: ISWC. Vol. 11779. Springer, 2019, pp. 345–
362.

[31] Vincenzo Cutrona, Gianluca Puleri, Federico Bianchi, and Mat-
teo Palmonari. “NEST: Neural Soft Type Constraints to Improve
Entity Linking in Tables.” In: ESWC. (Under revision). 2021.

[32] Dong Deng, Yu Jiang, Guoliang Li, Jian Li, and Cong Yu. “Scal-
able Column Concept Determination for Web Tables Using
Large Knowledge Bases.” In: Proc. VLDB Endow. 6.13 (2013),
pp. 1606–1617.

[33] Xiang Deng, Huan Sun, Alyssa Lees, You Wu, and Cong Yu.
“TURL: Table Understanding through Representation Learn-
ing.” In: arXiv e-prints (2020). arXiv: 2006.14806 [cs.IR].

https://arxiv.org/abs/2006.14806

112 bibliography

[34] Yared Dejene Dessalk, Nikolay Nikolov, Mihhail Matskin, Ah-
met Soylu, and Dumitru Roman. “Scalable Execution of Big
Data Workflows using Software Containers.” In: MEDES. ACM,
2020, pp. 76–83.

[35] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
“BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding.” In: NAACL-HLT. Association for
Computational Linguistics, 2019, pp. 4171–4186.

[36] Xin Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko Horn,
Ni Lao, Kevin Murphy, Thomas Strohmann, Shaohua Sun,
and Wei Zhang. “Knowledge vault: a web-scale approach to
probabilistic knowledge fusion.” In: KDD. ACM, 2014, pp. 601–
610.

[37] Carina F. Dorneles, Rodrigo Gonçalves, and Ronaldo dos Santos
Mello. “Approximate data instance matching: a survey.” In:
Knowl. Inf. Syst. 27.1 (2011), pp. 1–21.

[38] Vasilis Efthymiou, Oktie Hassanzadeh, Mariano Rodriguez-
Muro, and Vassilis Christophides. “Matching Web Tables with
Knowledge Base Entities: From Entity Lookups to Entity Em-
beddings.” In: ISWC. Vol. 10587. Springer, 2017, pp. 260–277.

[39] Vasilis Efthymiou, George Papadakis, Kostas Stefanidis, and
Vassilis Christophides. “MinoanER: Schema-Agnostic, Non-
Iterative, Massively Parallel Resolution of Web Entities.” In:
EDBT. OpenProceedings.org, 2019, pp. 373–384.

[40] Ivan Ermilov and Axel-Cyrille Ngonga Ngomo. “TAIPAN:
Automatic Property Mapping for Tabular Data.” In: EKAW.
Vol. 10024. 2016, pp. 163–179.

[41] Yasamin Eslahi, Akansha Bhardwaj, Paolo Rosso, Kurt Stockinger,
and Philippe Cudré-Mauroux. “Annotating Web Tables through
Knowledge Bases: A Context-Based Approach.” In: SDS. IEEE,
2020, pp. 29–34.

[42] Daniel Faria, Catia Pesquita, Emanuel Santos, Matteo Pal-
monari, Isabel F. Cruz, and Francisco M. Couto. “The Agree-
mentMakerLight Ontology Matching System.” In: OTM Confer-
ences. Vol. 8185. Springer, 2013, pp. 527–541.

[43] José Ferreirós. “The road to modern logic—an interpretation.”
In: Bulletin of Symbolic Logic 7.4 (2001), pp. 441–484.

[44] Cheng Fu, Xianpei Han, Jiaming He, and Le Sun. “Hierarchical
Matching Network for Heterogeneous Entity Resolution.” In:
IJCAI. ijcai.org, 2020, pp. 3665–3671.

[45] Tim Furche, Georg Gottlob, Leonid Libkin, Giorgio Orsi, and
Norman W Paton. “Data Wrangling for Big Data: Challenges
and Opportunities.” In: EDBT. 2016, pp. 473–478.

bibliography 113

[46] Shubham Gupta, Pedro A. Szekely, Craig A. Knoblock, Aman
Goel, Mohsen Taheriyan, and Maria Muslea. “Karma: A System
for Mapping Structured Sources into the Semantic Web.” In:
ESWC Satellite Events. Vol. 7540. Springer, 2012, pp. 430–434.

[47] Aidan Hogan et al. “Knowledge Graphs.” In: arXiv e-prints
(2021). arXiv: 2003.02320 [cs.AI].

[48] Kevin Zeng Hu, Snehalkumar (Neil) S. Gaikwad, Madelon
Hulsebos, Michiel A. Bakker, Emanuel Zgraggen, César A. Hi-
dalgo, Tim Kraska, Guoliang Li, Arvind Satyanarayan, and
Çagatay Demiralp. “VizNet: Towards A Large-Scale Visualiza-
tion Learning and Benchmarking Repository.” In: CHI. ACM,
2019, p. 662.

[49] Madelon Hulsebos, Kevin Zeng Hu, Michiel A. Bakker, Emanuel
Zgraggen, Arvind Satyanarayan, Tim Kraska, Çagatay Demi-
ralp, and César A. Hidalgo. “Sherlock: A Deep Learning Ap-
proach to Semantic Data Type Detection.” In: KDD. ACM, 2019,
pp. 1500–1508.

[50] Faiza Hussain and Usman Qamar. “Identification and Correc-
tion of Misspelled Drugs Names in Electronic Medical Records
(EMR).” In: ICEIS. Vol. 2. 2016, pp. 333–338.

[51] Shaoxiong Ji, Shirui Pan, Erik Cambria, Pekka Marttinen, and
Philip S. Yu. “A Survey on Knowledge Graphs: Representation,
Acquisition and Applications.” In: arXiv e-prints (2021). arXiv:
2002.00388 [cs.CL].

[52] Keyuan Jiang, Tingyu Chen, Liyuan Huang, Ricardo A. Calix,
and Gordon R. Bernard. “A Data-Driven Method of Discov-
ering Misspellings of Medication Names on Twitter.” In: MIE.
Vol. 247. Studies in Health Technology and Informatics. IOS
Press, 2018, pp. 136–140.

[53] Ernesto Jiménez-Ruiz and Bernardo Cuenca Grau. “LogMap:
Logic-Based and Scalable Ontology Matching.” In: ISWC. Vol. 7031.
Springer, 2011, pp. 273–288.

[54] Ernesto Jiménez-Ruiz, Oktie Hassanzadeh, Vasilis Efthymiou,
Jiaoyan Chen, and Kavitha Srinivas. “SemTab 2019: Resources
to Benchmark Tabular Data to Knowledge Graph Matching
Systems.” In: ESWC. Vol. 12123. Springer, 2020, pp. 514–530.

[55] Ernesto Jiménez-Ruiz, Oktie Hassanzadeh, Vasilis Efthymiou,
Jiaoyan Chen, Kavitha Srinivas, and Vincenzo Cutrona. “Results
of SemTab 2020.” In: Proceedings of the Semantic Web Challenge
on Tabular Data to Knowledge Graph Matching, SemTab@ISWC.
Vol. 2775. CEUR-WS.org, 2020, pp. 1–8.

https://arxiv.org/abs/2003.02320
https://arxiv.org/abs/2002.00388

114 bibliography

[56] Emilia Kacprzak, José M. Giménez-García, Alessandro Piscopo,
Laura Koesten, Luis Daniel Ibáñez, Jeni Tennison, and Elena
Simperl. “Making Sense of Numerical Data - Semantic La-
belling of Web Tables.” In: EKAW. Vol. 11313. Springer, 2018,
pp. 163–178.

[57] Shady Abd El Kader, Nikolay Nikolov, Bjørn Marius von Zer-
nichow, Vincenzo Cutrona, Matteo Palmonari, Brian Elvesæter,
Ahmet Soylu, and Dumitru Roman. “Modeling and Publishing
French Business Register (Sirene) Data as Linked Data Using
the euBusinessGraph Ontology.” In: Joint Proceedings of the In-
ternational Workshops on Sensors and Actuators on the Web, and
Semantic Statistics, SemStats@ISWC. Vol. 2549. CEUR-WS.org,
2019.

[58] Evgeny Kharlamov et al. “Ontology Based Data Access in
Statoil.” In: J. Web Semant. 44 (2017), pp. 3–36.

[59] Craig A. Knoblock, Pedro A. Szekely, José Luis Ambite, Aman
Goel, Shubham Gupta, Kristina Lerman, Maria Muslea, Mohsen
Taheriyan, and Parag Mallick. “Semi-automatically Mapping
Structured Sources into the Semantic Web.” In: ESWC. Vol. 7295.
Springer, 2012, pp. 375–390.

[60] Dimitrios Koutsomitropoulos, Spiridon Likothanassis, and Panos
Kalnis. “Semantics in the Deep: Semantic Analytics for Big
Data.” In: Data 4 (2 May 2019), p. 63.

[61] Benno Kruit, Peter A. Boncz, and Jacopo Urbani. “Extracting
Novel Facts from Tables for Knowledge Graph Completion.”
In: ISWC. Vol. 11778. Springer, 2019, pp. 364–381.

[62] Kostis Kyzirakos, Dimitrianos Savva, Ioannis Vlachopoulos,
Alexandros Vasileiou, Nikolaos Karalis, Manolis Koubarakis,
and Stefan Manegold. “GeoTriples: Transforming geospatial
data into RDF graphs using R2RML and RML mappings.” In:
J. Web Semant. 52-53 (2018), pp. 16–32.

[63] Quoc V. Le and Tomas Mikolov. “Distributed Representations
of Sentences and Documents.” In: ICML. Vol. 32. JMLR.org,
2014, pp. 1188–1196.

[64] Oliver Lehmberg and Christian Bizer. “Stitching Web Tables
for Improving Matching Quality.” In: Proc. VLDB Endow. 10.11

(2017), pp. 1502–1513.

[65] Oliver Lehmberg and Christian Bizer. “Profiling the semantics
of n-ary web table data.” In: Proceedings of the International
Workshop on Semantic Big Data, SBD@SIGMOD. ACM, 2019,
5:1–5:6.

[66] Oliver Lehmberg, Dominique Ritze, Robert Meusel, and Chris-
tian Bizer. “A Large Public Corpus of Web Tables containing
Time and Context Metadata.” In: WWW. ACM, 2016, pp. 75–76.

bibliography 115

[67] Oliver Lehmberg, Dominique Ritze, Petar Ristoski, Robert
Meusel, Heiko Paulheim, and Christian Bizer. “The Mannheim
Search Join Engine.” In: J. Web Semant. 35 (2015), pp. 159–166.

[68] Yuliang Li, Jinfeng Li, Yoshihiko Suhara, AnHai Doan, and
Wang-Chiew Tan. “Deep entity matching with pre-trained lan-
guage models.” In: Proc. VLDB Endow. 14.1 (2020), pp. 50–60.

[69] Girija Limaye, Sunita Sarawagi, and Soumen Chakrabarti. “An-
notating and Searching Web Tables Using Entities, Types and
Relationships.” In: Proc. VLDB Endow. 3.1 (2010), pp. 1338–1347.

[70] Steve Lohr. “For big-data scientists, ‘janitor work’ is key hurdle
to insights.” In: New York Times 17 (2014).

[71] Xusheng Luo, Kangqi Luo, Xianyang Chen, and Kenny Q. Zhu.
“Cross-Lingual Entity Linking for Web Tables.” In: AAAI. AAAI
Press, 2018, pp. 362–369.

[72] Christos Makris, Georgios Pispirigos, and Michael Angelos
Simos. “Text Semantic Annotation: A Distributed Methodology
Based on Community Coherence.” In: Algorithms 13.7 (2020),
p. 160.

[73] José-Lázaro Martínez-Rodríguez, Aidan Hogan, and Ivan López-
Arévalo. “Information extraction meets the Semantic Web: A
survey.” In: Semantic Web 11.2 (2020), pp. 255–335.

[74] André Melo, Johanna Völker, and Heiko Paulheim. “Type Pre-
diction in Noisy RDF Knowledge Bases Using Hierarchical
Multilabel Classification with Graph and Latent Features.” In:
Int. J. Artif. Intell. Tools 26.2 (2017).

[75] Peter Mika, Edgar Meij, and Hugo Zaragoza. “Investigating
the Semantic Gap through Query Log Analysis.” In: ISWC.
Vol. 5823. Springer, 2009, pp. 441–455.

[76] Tomás Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Cor-
rado, and Jeffrey Dean. “Distributed Representations of Words
and Phrases and their Compositionality.” In: NeurIPS. 2013,
pp. 3111–3119.

[77] Andrea Moro, Alessandro Raganato, and Roberto Navigli. “En-
tity Linking meets Word Sense Disambiguation: a Unified Ap-
proach.” In: Trans. Assoc. Comput. Linguistics 2 (2014), pp. 231–
244.

[78] Sidharth Mudgal, Han Li, Theodoros Rekatsinas, AnHai Doan,
Youngchoon Park, Ganesh Krishnan, Rohit Deep, Esteban
Arcaute, and Vijay Raghavendra. “Deep Learning for Entity
Matching: A Design Space Exploration.” In: SIGMOD. ACM,
2018, pp. 19–34.

116 bibliography

[79] Varish Mulwad, Tim Finin, Zareen Syed, and Anupam Joshi.
“Using Linked Data to Interpret Tables.” In: Proceedings of the
First International Workshop on Consuming Linked Data. Vol. 665.
CEUR-WS.org, 2010.

[80] Emir Muñoz, Aidan Hogan, and Alessandra Mileo. “Using
linked data to mine RDF from wikipedia’s tables.” In: WSDM.
ACM, 2014, pp. 533–542.

[81] Daniele Nardi, Ronald J Brachman, et al. “An introduction to
description logics.” In: Description logic handbook 1 (2003), p. 40.

[82] Markus Nentwig, Michael Hartung, Axel-Cyrille Ngonga Ngomo,
and Erhard Rahm. “A survey of current Link Discovery frame-
works.” In: Semantic Web 8.3 (2017), pp. 419–436.

[83] Sebastian Neumaier, Jürgen Umbrich, Josiane Xavier Parreira,
and Axel Polleres. “Multi-level Semantic Labelling of Numeri-
cal Values.” In: ISWC. Vol. 9981. 2016, pp. 428–445.

[84] Axel-Cyrille Ngonga Ngomo and Sören Auer. “LIMES - A
Time-Efficient Approach for Large-Scale Link Discovery on the
Web of Data.” In: IJCAI. IJCAI/AAAI, 2011, pp. 2312–2317.

[85] Phuc Nguyen, Natthawut Kertkeidkachorn, Ryutaro Ichise, and
Hideaki Takeda. “MTab: Matching Tabular Data to Knowledge
Graph using Probability Models.” In: Proceedings of the Semantic
Web Challenge on Tabular Data to Knowledge Graph Matching
co-located with the 18th International Semantic Web Conference,
SemTab@ISWC. Vol. 2553. CEUR-WS.org, 2019, pp. 7–14.

[86] Thanh Tam Nguyen, Nguyen Quoc Viet Hung, Matthias Wei-
dlich, and Karl Aberer. “Result selection and summarization
for Web Table search.” In: ICDE. IEEE Computer Society, 2015,
pp. 231–242.

[87] Hao Nie, Xianpei Han, Ben He, Le Sun, Bo Chen, Wei Zhang,
Suhui Wu, and Hao Kong. “Deep Sequence-to-Sequence Entity
Matching for Heterogeneous Entity Resolution.” In: CIKM.
ACM, 2019, pp. 629–638.

[88] Kyosuke Nishida, Kugatsu Sadamitsu, Ryuichiro Higashinaka,
and Yoshihiro Matsuo. “Understanding the Semantic Structures
of Tables with a Hybrid Deep Neural Network Architecture.”
In: AAAI. AAAI Press, 2017, pp. 168–174.

[89] Debora Nozza, Federico Bianchi, and Dirk Hovy. “What the
[MASK]? Making Sense of Language-Specific BERT Models.”
In: arXiv e-prints (2020). arXiv: 2003.02912 [cs.CL].

[90] Daniel Obraczka and Axel-Cyrille Ngonga Ngomo. “Dragon:
Decision Tree Learning for Link Discovery.” In: ICWE. Vol. 11496.
Springer, 2019, pp. 441–456.

https://arxiv.org/abs/2003.02912

bibliography 117

[91] Matteo Palmonari, Anisa Rula, Riccardo Porrini, Andrea Mau-
rino, Blerina Spahiu, and Vincenzo Ferme. “ABSTAT: Linked
Data Summaries with ABstraction and STATistics.” In: ESWC
Satellite Events. Vol. 9341. Lecture Notes in Computer Science.
Springer, 2015, pp. 128–132.

[92] George Papadakis, George Alexiou, George Papastefanatos,
and Georgia Koutrika. “Schema-agnostic vs Schema-based Con-
figurations for Blocking Methods on Homogeneous Data.” In:
Proc. VLDB Endow. 9.4 (2015), pp. 312–323.

[93] George Papadakis, Georgios M. Mandilaras, Luca Gagliardelli,
Giovanni Simonini, Emmanouil Thanos, George Giannakopou-
los, Sonia Bergamaschi, Themis Palpanas, and Manolis Koubarakis.
“Three-dimensional Entity Resolution with JedAI.” In: Inf. Syst.
93 (2020), p. 101565.

[94] Jeffrey Pennington, Richard Socher, and Christopher D. Man-
ning. “Glove: Global Vectors for Word Representation.” In:
EMNLP. ACL, 2014, pp. 1532–1543.

[95] Dessislava Petrova-Antonova and Rumyana Tancheva. “Data
Cleaning: A Case Study with OpenRefine and Trifacta Wran-
gler.” In: QUATIC. Vol. 1266. Springer, 2020, pp. 32–40.

[96] Minh Pham, Suresh Alse, Craig A. Knoblock, and Pedro A.
Szekely. “Semantic Labeling: A Domain-Independent Approach.”
In: ISWC. Vol. 9981. 2016, pp. 446–462.

[97] Rakesh Pimplikar and Sunita Sarawagi. “Answering Table
Queries on the Web using Column Keywords.” In: Proc. VLDB
Endow. 5.10 (2012), pp. 908–919.

[98] Nikiforos Pittaras, George Papadakis, George Stamoulis, Gior-
gos Argyriou, Efi Karra Taniskidou, Emmanouil Thanos, George
Giannakopoulos, Leonidas Tsekouras, and Manolis Koubarakis.
“GeoSensor: semantifying change and event detection over big
data.” In: SAC. ACM, 2019, pp. 2259–2266.

[99] Gianluca Quercini and Chantal Reynaud. “Entity discovery
and annotation in tables.” In: EDBT. ACM, 2013, pp. 693–704.

[100] S. K. Ramnandan, Amol Mittal, Craig A. Knoblock, and Pedro
A. Szekely. “Assigning Semantic Labels to Data Sources.” In:
ESWC. Vol. 9088. Springer, 2015, pp. 403–417.

[101] Petar Ristoski, Jessica Rosati, Tommaso Di Noia, Renato De
Leone, and Heiko Paulheim. “RDF2Vec: RDF graph embed-
dings and their applications.” In: Semantic Web 10.4 (2019),
pp. 721–752.

[102] Dominique Ritze, Oliver Lehmberg, and Christian Bizer. “Match-
ing HTML Tables to DBpedia.” In: Proceedings of the 5th Inter-
national Conference on Web Intelligence, Mining and Semantics,
WIMS. ACM, 2015, 10:1–10:6.

118 bibliography

[103] Dominique Ritze, Oliver Lehmberg, Yaser Oulabi, and Chris-
tian Bizer. “Profiling the Potential of Web Tables for Augment-
ing Cross-domain Knowledge Bases.” In: WWW. ACM, 2016,
pp. 251–261.

[104] Anish Das Sarma, Lujun Fang, Nitin Gupta, Alon Y. Halevy,
Hongrae Lee, Fei Wu, Reynold Xin, and Cong Yu. “Finding
related tables.” In: SIGMOD. ACM, 2012, pp. 817–828.

[105] Yoones A. Sekhavat, Francesco Di Paolo, Denilson Barbosa,
and Paolo Merialdo. “Knowledge Base Augmentation using
Tabular Data.” In: Proceedings of the Workshop on Linked Data on
the Web co-located with WWW. Vol. 1184. CEUR-WS.org, 2014.

[106] Vivek R. Shivaprabhu, Booma Sowkarthiga Balasubramani,
and Isabel F. Cruz. “Ontology-based Instance Matching for
Geospatial Urban Data Integration.” In: Proceedings of the 3rd
ACM SIGSPATIAL Workshop on Smart Cities and Urban Analytics.
ACM, 2017, 8:1–8:8.

[107] Michael Stonebraker. “The Case for Shared Nothing.” In: IEEE
Database Eng. Bull. 9.1 (1986), pp. 4–9.

[108] Dina Sukhobok, Nikolay Nikolov, Antoine Pultier, Xianglin
Ye, Arne Berre, Rick Moynihan, Bill Roberts, Brian Elvesæter,
Nivethika Mahasivam, and Dumitru Roman. “Tabular data
cleaning and linked data generation with Grafterizer.” In: ISWC.
Springer. 2016, pp. 134–139.

[109] Dina Sukhobok, Nikolay Nikolov, and Dumitru Roman. “Tabu-
lar Data Anomaly Patterns.” In: International Conference on Big
Data Innovations and Applications. IEEE, 2017, pp. 25–34.

[110] Huan Sun, Hao Ma, Xiaodong He, Wen-tau Yih, Yu Su, and
Xifeng Yan. “Table Cell Search for Question Answering.” In:
WWW. ACM, 2016, pp. 771–782.

[111] Mohsen Taheriyan, Craig A. Knoblock, Pedro A. Szekely, and
José Luis Ambite. “Learning the semantics of structured data
sources.” In: J. Web Semant. 37-38 (2016), pp. 152–169.

[112] Avijit Thawani, Minda Hu, Erdong Hu, Husain Zafar, Naren
Teja Divvala, Amandeep Singh, Ehsan Qasemi, Pedro A. Szekely,
and Jay Pujara. “Entity Linking to Knowledge Graphs to Infer
Column Types and Properties.” In: Proceedings of the Seman-
tic Web Challenge on Tabular Data to Knowledge Graph Matching,
SemTab@ISWC. Vol. 2553. CEUR-WS.org, 2019, pp. 25–32.

[113] Goce Trajcevski, Booma Sowkarthiga Balasubramani, Isabel
F. Cruz, Roberto Tamassia, and Xu Teng. “Semantically Aug-
mented Range Queries over Heterogeneous Geospatial Data.”
In: SIGSPATIAL. ACM, 2020, pp. 68–77.

bibliography 119

[114] Ricardo Usbeck, Axel-Cyrille Ngonga Ngomo, Michael Röder,
Daniel Gerber, Sandro Athaide Coelho, Sören Auer, and An-
dreas Both. “AGDISTIS - Graph-Based Disambiguation of
Named Entities Using Linked Data.” In: ISWC. Vol. 8796. Springer,
2014, pp. 457–471.

[115] Gilles Vandewiele, Bram Steenwinckel, Filip De Turck, and
Femke Ongenae. “CVS2KG: Transforming Tabular Data into Se-
mantic Knowledge.” In: Proceedings of the Semantic Web Challenge
on Tabular Data to Knowledge Graph Matching, SemTab@ISWC.
Vol. 2553. CEUR-WS.org, 2019, pp. 33–40.

[116] Petros Venetis, Alon Y. Halevy, Jayant Madhavan, Marius Pasca,
Warren Shen, Fei Wu, Gengxin Miao, and Chung Wu. “Recov-
ering Semantics of Tables on the Web.” In: Proc. VLDB Endow.
4.9 (2011), pp. 528–538.

[117] John Villafranco. “Self-Regulation in the Big Data and AI
Space.” In: The Judges’ Journal 59.1 (2020), pp. 32–35.

[118] Julius Volz, Christian Bizer, Martin Gaedke, and Georgi Ko-
bilarov. “Discovering and Maintaining Links on the Web of
Data.” In: ISWC. Vol. 5823. Springer, 2009, pp. 650–665.

[119] Hongzhi Wang, Mingda Li, Yingyi Bu, Jianzhong Li, Hong Gao,
and Jiacheng Zhang. “Cleanix: a Parallel Big Data Cleaning
System.” In: SIGMOD Record 44.4 (2015), pp. 35–40.

[120] Pei Wang, Yongjun He, Ryan Shea, Jiannan Wang, and Eugene
Wu. “Deeper: A Data Enrichment System Powered by Deep
Web.” In: SIGMOD. ACM, 2018, pp. 1801–1804.

[121] Mark D. Wilkinson et al. “The FAIR Guiding Principles for
scientific data management and stewardship.” In: Scientific
Data 3.1 (2016), p. 160018.

[122] Daniel Wind. Instant effective caching with Ehcache. Packt Pub-
lishing Ltd, 2013.

[123] Dan Zhang, Yoshihiko Suhara, Jinfeng Li, Madelon Hulsebos,
Çagatay Demiralp, and Wang-Chiew Tan. “Sato: Contextual
Semantic Type Detection in Tables.” In: Proc. VLDB Endow.
13.11 (2020), pp. 1835–1848.

[124] Lu Zhang, Tiantian Wang, Yiran Liu, and Qingling Duan. “A
semi-structured information semantic annotation method for
Web pages.” In: Neural Comput. Appl. 32.11 (2020), pp. 6491–
6501.

[125] Meihui Zhang and Kaushik Chakrabarti. “InfoGather+: se-
mantic matching and annotation of numeric and time-varying
attributes in web tables.” In: SIGMOD. ACM, 2013, pp. 145–
156.

120 bibliography

[126] Shuo Zhang, Edgar Meij, Krisztian Balog, and Ridho Reinanda.
“Novel Entity Discovery from Web Tables.” In: WWW. ACM /
IW3C2, 2020, pp. 1298–1308.

[127] Ziqi Zhang. “Effective and efficient Semantic Table Interpreta-
tion using TableMiner+.” In: Semantic Web 8.6 (2017), pp. 921–
957.

[128] Hai Zhuge and Xiaoping Sun. “Semantics, knowledge, and
grids at the age of big data and AI.” In: Concurrency Computation
31 (3 2019).

[129] S. Zillner, E. Curry, A. Metzger, S. Auer, R. Seidl, and (Eds.)
European Big Data Value Strategic Research & Innovation Agenda.
2017.

	Dedication
	Abstract
	Publications
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Acronyms
	1 Introduction
	1.1 Use Case Example
	1.2 Contributions
	1.3 Thesis Structure
	1.4 Reproducibility

	2 Preliminaries
	2.1 Knowledge Bases
	2.1.1 Knowledge Graphs
	2.1.2 Semantic Web
	2.1.3 Semantic Gap

	2.2 Semantic Table Interpretation and Annotation
	2.2.1 Instance-level Annotation
	2.2.2 Schema-level Annotation

	2.3 Semantic Enrichment of Tabular Data

	3 Related Work and Contributions
	3.1 Semantic Annotation Overwiew
	3.1.1 Instance- and Schema-level Annotation
	3.1.2 Instance-level Annotation
	3.1.3 Schema-level Annotation
	3.1.4 Evaluating Table Annotation Algorithms

	3.2 Data Enrichment
	3.3 Contributions and Related Work

	4 A Semantic Table Annotation Approach to Large-Scale Data Enrichment
	4.1 From Semantic Annotation to Data Transformations
	4.2 Small-scale Design/Big-scale Execution
	4.3 Semantic Enrichment of Tabular Data at Scale with Asia
	4.3.1 Supporting the Interactive Design in Asia
	4.3.2 Supporting the Enrichment at Scale in Asia

	4.4 Evaluation of Asia Performance
	4.4.1 Experiment 1: Testing Hierarchical Cache
	4.4.2 Experiment 2: Testing Cache Over Time
	4.4.3 Experiment 3: Testing Scalability

	4.5 Summary

	5 Evaluating Entity Linking for Tables
	5.1 Semantic Table Interpretation Evaluation
	5.2 Tough Tables
	5.2.1 Dataset Profile

	5.3 Dataset Construction
	5.3.1 CEA Ground Truth Contruction
	5.3.2 CTA Ground Truth Construction

	5.4 Experiments
	5.4.1 Results from SemTab 2020

	5.5 Summary

	6 Improving Entity Linking for Automatic and Assisted Semantic Table Interpretation
	6.1 Exploiting Entity Types in Entity Linking
	6.1.1 Matching Pipelines in FactBase and EmbeddingsOnGraph

	6.2 Nest: Filtering and Ranking using Soft Type Constraints
	6.2.1 Neural Models for Entity Type Prediction
	6.2.2 Nest-enriched Algorithms

	6.3 Experimental Evaluation
	6.3.1 Results

	6.4 Summary

	7 Conclusions
	7.1 Future Research Directions

	 Bibliography

